WorldWideScience

Sample records for dehydrogenase ldh levels

  1. Lactate dehydrogenase (LDH isoenzymes patterns in ocular tumours

    Directory of Open Access Journals (Sweden)

    Singh Rajendra

    1991-01-01

    Full Text Available Estimation of lactate dehydrogenase (LDH isoenzymes in the serum and aqueous humor was carried out in 15 cases of benign ocular tumour, 15 cases of malignant tumor and 15 normal cases. Cases of both sexes aged between 1 year and 75 years were included. LDH, isoenzymes specially LDH4 and LDH5 are higher and LDH1 and LDH2 lower in sera of patients with malignant tumor specially retinoblastoma as compared to benign tumor cases and control cases. LDH isoenzymes in aqueous humor are significantly higher and show a characteristic pattern in retinoblastoma cases, the concentration was presumably too low in the control, malignant tumor other than retinoblastoma and benign tumor cases as its fractionation was not possible.

  2. Comparative study of the activity of lactate dehydrogenase (LDH) in different forms of disease

    International Nuclear Information System (INIS)

    Gonzalez Quesada, Jorge; Jorquera Cortez, Rodrigo; Rivera Alvarez, Sonia

    2007-01-01

    The activity of lactate dehydrogenase (LDH) was determined in the fluid gingival crevicular (FGC) from different sites of the anterior sector of the oral cavity in a clinically healthy subjects, and other with moderate gingivitis and with chronic severe generalized periodontists. Patients were treated and followed for three months, after the which has proceeded to make measurements of activity in the same sites discussed above. The results have showed statistically significant differences when comparing the activity of LDH in healthy individuals, and in other patients, treated by the pathology that presenting. On the other hand, were found without statistically significant differences between patients treated with clinically healthy subjects. The conclusion has been that the activity of LDH could be a quantitative marker for assessing cellular damage and evolution of treatment. (author) [es

  3. Microcomputer Assisted Interpretative Reporting of Sequential Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) Isoenzyme Determination

    Science.gov (United States)

    Talamo, Thomas S.; Losos, Frank J.; Mercer, Donald W.

    1984-01-01

    We have developed a microcomputer based system for interpretative reporting of creatine kinase (CK) and lactate dehydrogenase (LDH) isoenzyme studies. Patient demographic data and test results (total CK, CK-MB, LD-1, and LD-2) are entered manually through the keyboard. The test results are compared with normal range values and an interpretative report is generated. This report consists of all pertinent demographic information with a graphic display of up to 12 previous CK and LDH isoenzyme determinations. Diagnostic interpretative statements are printed beneath the graphic display following analysis of previously entered test results. The combination of graphic data display and interpretations based on analysis of up to 12 previous specimens provides useful and accurate information to the cardiologist.

  4. Correlation between LDH levels and response to sorafenib in HCC patients: an analysis of the ITA.LI.CA database.

    Science.gov (United States)

    Sacco, Rodolfo; Mismas, Valeria; Granito, Alessandro; Musettini, Gianna; Masi, Gianluca; Caparello, Chiara; Vivaldi, Caterina; Felder, Martina; Bresci, Giampaolo; Fornaro, Lorenzo

    2015-02-24

    Lactate dehydrogenase (LDH) is a predictor of clinical outcome in hepatocellular carcinoma (HCC) patients. However, its predictive role in the clinical outcomes of sorafenib treatment has been poorly documented. The correlation between LDH levels and clinical outcomes in HCC patients treated with sorafenib and included in the nationwide Italian database ITA.LI.CA was investigated here. The ITA.LI.CA database contains data for 5,136 HCC patients. All patients treated with sorafenib treatment and with available LDH values were considered. Overall survival (OS) and time to progression (TTP) were compared in patients with LDH levels above and below a defined threshold, determined through an ROC analysis. An explorative analysis investigated the relationship between the variation of LDH levels during treatment and response to sorafenib. Baseline LDH levels were available for 97 patients. The most accurate cutoff value for LDH concentration was 297 U/L. Patients with LDH values above (n=45) and below (n=52) this threshold showed equal OS (12.0 months) and TTP (4.0 months) values. Data on LDH levels during sorafenib treatment were reported for 10 patients. LDH values decreased in 3 patients (mean difference = -219 U/L) who also reported a prolonged OS and TTP versus those with unmodified/increased LDH (OS: NE (not evaluated) vs. 8.0 months, p=0.0083; TTP: 19.0 vs. 3.0 months, p=0.008). The clinical benefits of sorafenib do not seem to be influenced by baseline LDH. According to the results of an explorative analysis, however, a decreased LDH concentration during sorafenib might be associated with improved clinical outcomes.

  5. Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation.

    Science.gov (United States)

    Silva, Inês N; Ramires, Marcelo J; Azevedo, Lisa A; Guerreiro, Ana R; Tavares, Andreia C; Becker, Jörg D; Moreira, Leonilde M

    2017-10-01

    LysR-type transcriptional regulators (LTTRs) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several types of bacteria, few have been characterized in Burkholderia Here, we show that gene ldhR of B. multivorans encoding an LTTR is cotranscribed with ldhA encoding a d-lactate dehydrogenase and evaluate their implication in virulence traits such as exopolysaccharide (EPS) synthesis and biofilm formation. A comparison of the wild type (WT) and its isogenic Δ ldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cell viability in the presence of LdhR. The loss of viability in WT cells was caused by intracellular acidification as a consequence of the cumulative secretion of organic acids, including d-lactate, which was absent from the Δ ldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1,000 μm in size after 24 h in liquid cultures, in contrast to Δ ldhR mutant aggregates that never grew more than 60 μm. The overexpression of d-lactate dehydrogenase LdhA in the Δ ldhR mutant partially restored the formed aggregate size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 of 74. As CF patients' lung environments are microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adapting to this environment. IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several types of microorganisms. Among them are the Burkholderia cepacia complex bacteria, which

  6. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    Science.gov (United States)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  7. LDH isoenzyme blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003499.htm LDH isoenzyme blood test To use the sharing features on this page, ... Names LD; LDH; Lactic (lactate) dehydrogenase isoenzymes Images Blood test References Carty RP, Pincus MR, Sarafraz-Yazdi E. ...

  8. Clinical significance of determination of changes of EPS IL-1β, IL-2, IL-10 and LDH5/LDH1 levels in patients with chronic prostatitis

    International Nuclear Information System (INIS)

    Chen Yongchang

    2009-01-01

    Objective: To investigate the clinical significance of the changes of expressed prostatic secretion IL-1β, IL-2, IL-10 and LDH5/LDH1 levels in patients with chronic prostatitis. Methods: Expressed prostatic secretion IL-1β, IL-2, IL-10 (with Radioimmunoassay) and LDH5/LDH1 (with cellulose acetate membrane electrophoresis) levels were determined in 32 patients with chronic prostatitis and 35 controls. These 32 patients were of 3 groups: 1)chronic bacterial prostatitis (CBP, n=10) 2) chronic pelvic pain syndrome IIIA (CPPS IIIA n=9) 3) CPPSIIIB n=13. Results: Expressed prostatic secretion levels of IL-1β, IL-2 and LDH5/LDH1 were significantly higher in patients with chronic bacterial prostatitis (CBP) groups than those in controls (all P 0.05). But the expressed prostatic secretion levels of IL-10 were still significantly lower in patients with chronic nonbacterial prostatitis, chronic pelvic pain syndrome(CPPSIIIB) groups than those in controls (all P<0.05). Conclusion: There were changes of expressed prostatic secretion IL-1β, IL-2, IL-10 and LDH5/LDH1 levels in patients with chronic prostatitis. Combined determination of the expressed prostatic secretion 4 markers levels is valuable for the diagnosis of chronic prostatitis and CPPSIII and for differentiation of CPPSIII types. (authors)

  9. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    Science.gov (United States)

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable

  10. Directed modification of L-LcLDH1, an L-lactate dehydrogenase from Lactobacillus casei, to improve its specific activity and catalytic efficiency towards phenylpyruvic acid.

    Science.gov (United States)

    Li, Jian-Fang; Li, Xue-Qing; Liu, Yan; Yuan, Feng-Jiao; Zhang, Ting; Wu, Min-Chen; Zhang, Ji-Ru

    2018-05-22

    To improve the specific activity and catalytic efficiency of L-LcLDH1, an NADH-dependent allosteric L-lactate dehydrogenase from L. casei, towards phenylpyruvic acid (PPA), its directed modification was conducted based on the semi-rational design. The three variant genes, Lcldh1 Q88R , Lcldh1 I229A and Lcldh1 T235G , were constructed by whole-plasmid PCR as designed theoretically, and expressed in E. coli BL21(DE3), respectively. The purified mutant, L-LcLDH1 Q88R or L-LcLDH1 I229A , displayed the specific activity of 451.5 or 512.4 U/mg towards PPA, by which the asymmetric reduction of PPA afforded L-phenyllactic acid (PLA) with an enantiomeric excess (ee p ) more than 99%. Their catalytic efficiencies (k cat /K m ) without D-fructose-1,6-diphosphate (D-FDP) were 4.8- and 5.2-fold that of L-LcLDH1. Additionally, the k cat /K m values of L-LcLDH1 Q88R and L-LcLDH1 I229A with D-FDP were 168.4- and 8.5-fold higher than those of the same enzymes without D-FDP, respectively. The analysis of catalytic mechanisms by molecular docking (MD) simulation indicated that substituting I229 in L-LcLDH1 with Ala enlarges the space of substrate-binding pocket, and that the replacement of Q88 with Arg makes the inlet of pocket larger than that of L-LcLDH1. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Prognostic significance of serum lactate dehydrogenase levels in Ewing's sarcoma: A meta-analysis.

    Science.gov (United States)

    Li, Suoyuan; Yang, Qing; Wang, Hongsheng; Wang, Zhuoying; Zuo, Dongqing; Cai, Zhengdong; Hua, Yingqi

    2016-12-01

    A number of studies have investigated the role of serum lactate dehydrogenase (LDH) levels in patients with Ewing's sarcoma, although these have yielded inconsistent and inconclusive results. Therefore, the present study aimed to systematically review the published studies and conduct a meta-analysis to assess its prognostic value more precisely. Cohort studies assessing the prognostic role of LDH levels in patients with Ewing's sarcoma were included. A pooled hazard ratio (HR) with 95% confidence intervals (CIs) of overall survival (OS) or 5-year disease-free survival (DFS) was used to assess the prognostic role of the levels of serum LDH. Nine studies published between 1980 and 2014, with a total of 1,412 patients with Ewing's sarcoma, were included. Six studies, with a total of 644 patients, used OS as the primary endpoint and four studies, with 795 patients, used 5-year DFS. Overall, the pooled HR evaluating high LDH levels was 2.90 (95% CI: 2.09-4.04) for OS and 2.40 (95% CI: 1.93-2.98) for 5-year DFS. This meta-analysis demonstrates that high levels of serum LDH are associated with lower OS and 5-year DFS rates in patients with Ewing's sarcoma. Therefore, serum LDH levels are an effective biomarker of Ewing's sarcoma prognosis.

  12. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    Science.gov (United States)

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  13. Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408 Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408

    Directory of Open Access Journals (Sweden)

    Thiago Cezar Fujita

    2010-09-01

    Full Text Available Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed with CML and 56 healthy donors. LDH concentration in plasma was higher in patients with CML. All patients with CML in this study were under treatment, but even so four patients had the Bcr-Abl (b3a2 transcript in peripheral blood. Two out of the four patients with b3a2 showed higher LDH (486 U L-1 and 589 U L-1. Thus, although the study was conducted with small numbers of samples, it is possible to suggest therapy alteration for two patients who presented transcript b3a2 in the peripheral blood samples and whose LDH concentration was high, in order to improve the disease.Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed

  14. LDH and G-6PDH activities in the ovaries of adult female Wistar rats ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the effects of aqueous extracts of neem (Azadirachta Indica) leaves (which have been documented for its antifertility effect on experimental animals) on glucose-6-phosphate dehydrogenase (G-6PDH) and lactate dehydrogenase (LDH) levels in the ovaries of adult female wistar ...

  15. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes: A Diagnostic Accuracy and Observational Outcome Study.

    Science.gov (United States)

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-02-01

    In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far.This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality.One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367-557) in patients with AAS and 383 U/L (IQR 331-460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37-51) and the specificity was 73% (95% CI 69-76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11-4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable and in nonsurgically

  16. Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia = Determinação da lactate desidrogenase (LDH e do transcrito Bcr-Abl em pacientes com leucemia mielóide crônica

    Directory of Open Access Journals (Sweden)

    Roberto Iemitsu Tatakihara

    2010-07-01

    Full Text Available Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed with CML and 56 healthy donors. LDH concentration in plasma was higher in patients with CML. All patients with CML in this study were under treatment, but even so four patients had the Bcr-Abl (b3a2 transcript in peripheral blood. Two out of the four patients with b3a2 showed higher LDH (486 U L-1 and 589 U L-1. Thus, although the study was conducted with small numbers of samples, it is possible to suggest therapy alteration for two patients who presented transcript b3a2 in the peripheral blood samples and whose LDH concentration was high, in order to improve the disease. Leucemia mieloide crônica (LMC é uma desordem mieloproliferativa maligna que é originada de célula-tronco pluripotente caracterizada por expansão anormal, maligna de clones de células tronco da medula óssea na circulação. A grande maioria dos pacientes com LMC apresentam transcritos Bcr-Abl. Lactato desidrogenase (LDH,considerado um marcador bioquímico para crescimento tumoral, glicólise anaeróbica, e tem sido considerado um fator de pior prognóstico da LMC. Portanto, este estudo visa avaliar a concentraçãode LDH no plasma e a detecção do transcrito Bcr-Abl em 22 pacientes com LMC e 56 indivíduos saudáveis. Foram avaliados 22 pacientes com LMC e 56 doadores saudáveis. A

  17. Association of degree and type of edema in posterior reversible encephalopathy syndrome with serum lactate dehydrogenase level: Initial experience

    International Nuclear Information System (INIS)

    Gao, Bo; Liu, Feng-li; Zhao, Bin

    2012-01-01

    Purpose: Posterior reversible encephalopathy syndrome (PRES) is a clinicoradiologic entity characterized by headache, blurred vision and seizures with typical parieto-occipital predominantly vasogenic edema, occasionally with cytotoxic edema. The association between the degree and type of edema in PRES with biochemical parameter, especially serum lactate dehydrogenase, has not been determined. Material and methods: Thirty-five patients with typical clinical symptoms and characteristic MR imaging findings of PRES were included in this study. The extent of brain edema was graded on the anatomical distribution by 2 observers blinded to patients’ clinical record, as well as the type of brain edema determined on DWI and ADC map. The levels of biochemical parameters were correlated with the degree of edema and compared between different types of edema. Results: Serum LDH concentrations between patients with cytotoxic edema and with vasogenic components were not statistically different (NWU test, U = 93.0, Z = 1.818, P = 0.069). Only serum lactate dehydrogenase (LDH) concentration was significantly correlated with the score of brain edema distribution (Spearman's rho correlation, r = 0.721, P = 0.00). No relationship was found between other biochemical parameters and the degree and type of brain edema. Conclusion: Increased serum LDH level, which plays an essential role in endothelial injury, may be a potential risk factor for the development of edema in PRES

  18. Association of degree and type of edema in posterior reversible encephalopathy syndrome with serum lactate dehydrogenase level: Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo, E-mail: gygb2004@yahoo.com.cn [Shandong Medical Imaging Research Institute, Medical School of Shandong University, Jinan, Shandong 250021 (China); Division of MRI, Department of Radiology, Yantai Yuhuangding Hospital, Yantai, 264000 Shandong (China); Liu, Feng-li [Division of MRI, Department of Radiology, Yantai Yuhuangding Hospital, Yantai, 264000 Shandong (China); Zhao, Bin, E-mail: cjr.zhaobin@vip.163.com [Shandong Medical Imaging Research Institute, Medical School of Shandong University, Jinan, Shandong 250021 (China)

    2012-10-15

    Purpose: Posterior reversible encephalopathy syndrome (PRES) is a clinicoradiologic entity characterized by headache, blurred vision and seizures with typical parieto-occipital predominantly vasogenic edema, occasionally with cytotoxic edema. The association between the degree and type of edema in PRES with biochemical parameter, especially serum lactate dehydrogenase, has not been determined. Material and methods: Thirty-five patients with typical clinical symptoms and characteristic MR imaging findings of PRES were included in this study. The extent of brain edema was graded on the anatomical distribution by 2 observers blinded to patients’ clinical record, as well as the type of brain edema determined on DWI and ADC map. The levels of biochemical parameters were correlated with the degree of edema and compared between different types of edema. Results: Serum LDH concentrations between patients with cytotoxic edema and with vasogenic components were not statistically different (NWU test, U = 93.0, Z = 1.818, P = 0.069). Only serum lactate dehydrogenase (LDH) concentration was significantly correlated with the score of brain edema distribution (Spearman's rho correlation, r = 0.721, P = 0.00). No relationship was found between other biochemical parameters and the degree and type of brain edema. Conclusion: Increased serum LDH level, which plays an essential role in endothelial injury, may be a potential risk factor for the development of edema in PRES.

  19. Identifying Malignant Pleural Effusion by A Cancer Ratio (Serum LDH: Pleural Fluid ADA Ratio).

    Science.gov (United States)

    Verma, Akash; Abisheganaden, John; Light, R W

    2016-02-01

    We studied the diagnostic potential of serum lactate dehydrogenase (LDH) in malignant pleural effusion. Retrospective analysis of patients hospitalized with exudative pleural effusion in 2013. Serum LDH and serum LDH: pleural fluid ADA ratio was significantly higher in cancer patients presenting with exudative pleural effusion. In multivariate logistic regression analysis, pleural fluid ADA was negatively correlated 0.62 (0.45-0.85, p = 0.003) with malignancy, whereas serum LDH 1.02 (1.0-1.03, p = 0.004) and serum LDH: pleural fluid ADA ratio 0.94 (0.99-1.0, p = 0.04) was correlated positively with malignant pleural effusion. For serum LDH: pleural fluid ADA ratio, a cut-off level of >20 showed sensitivity, specificity of 0.98 (95 % CI 0.92-0.99) and 0.94 (95 % CI 0.83-0.98), respectively. The positive likelihood ratio was 32.6 (95 % CI 10.7-99.6), while the negative likelihood ratio at this cut-off was 0.03 (95 % CI 0.01-0.15). Higher serum LDH and serum LDH: pleural fluid ADA ratio in patients presenting with exudative pleural effusion can distinguish between malignant and non-malignant effusion on the first day of hospitalization. The cut-off level for serum LDH: pleural fluid ADA ratio of >20 is highly predictive of malignancy in patients with exudative pleural effusion (whether lymphocytic or neutrophilic) with high sensitivity and specificity.

  20. Serum levels of LDH, CEA, and CA19-9 have prognostic roles on survival in patients with metastatic pancreatic cancer receiving gemcitabine-based chemotherapy.

    Science.gov (United States)

    Tas, Faruk; Karabulut, Senem; Ciftci, Rumeysa; Sen, Fatma; Sakar, Burak; Disci, Rian; Duranyildiz, Derya

    2014-06-01

    Serum LDH, CEA, and CA19-9 levels are important tumor markers in pancreatic cancer. The purpose of this study was to evaluate the clinical significance of serum LDH, CEA, and CA19-9 levels in metastatic pancreatic cancer (MPC) receiving gemcitabine-based chemotherapy. In this retrospective study, we analyzed the outcome of 196 MPC patients who are treated with gemcitabine-based chemotherapy in our clinic. Positivity rates of serum LDH, CEA, and CA19-9 were 22, 40, and 83 %, respectively. Likewise, the rates of very high serum levels of tumor markers were correlated with these positivity rates (9 % for LDH, 30 % for CEA, and 55 % for CA19-9). The serum LDH levels were significantly higher in older patients (p = 0.05) and also in the patients with large tumors (p = 0.05), hepatic metastasis (p = 0.01), hypoalbuminemia (p = 0.01), and unresponsive to chemotherapy (p = 0.04). However, no correlation was found between both serum CEA and CA19-9 levels and possible prognostic factors (p > 0.05). The significant relationships were found between the serum levels of CEA and CA19-9 (r s = 0.24, p = 0.004), and serum LDH and CEA (r(s) = 0.193, p = 0.02). But, there was no correlation between serum LDH and CA19-9 levels (p = 0.39). One-year overall survival rate was 12.8 % (95 % CI 8-18). Increased serum levels of all the tumor markers significantly had adverse affect on survival (p = 0.001 for LDH, p = 0.002 for CEA, and p = 0.007 for CA19-9). However, no difference was observed in between high levels and very high levels of serum markers for all tumor markers (p > 0.05). Patients with normal serum levels of all three tumor markers had better outcome than others (p = 0.002) and those with normal serum LDH and CEA levels (whatever CA19-9) levels had associated with better survival compared with other possible alternatives (p CEA, and CA19-9 had significant affect on survival in MPC patients.

  1. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-01-01

    Full Text Available Testis-specific lactate dehydrogenase (LDH-C4 is one of the lactate dehydrogenase (LDH isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4, Lactate Dehydrogenase B4 (LDH-B4, and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and native polyacrylamide gel electrophoresis (PAGE. The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L, LDH-B4 (Ki = 23.800 mmol/L, and LDH-C4 (Ki = 65.500 mmol/L. These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4.

  2. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    Science.gov (United States)

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    Science.gov (United States)

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  4. Urinary Lactate Dehydrogenase Activity and Its Isozyme Patterns in Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Yoichi Kawamura

    2017-01-01

    Full Text Available Abnormal urinary findings, such as sterile pyuria, proteinuria, and microscopic hematuria, are often seen in the acute phase of Kawasaki disease (KD. We investigated the potential significance of urinary lactate dehydrogenase (U-LDH activity and its isozyme patterns in KD. Total U-LDH activity and its isozymes (U-LDH1-5 levels were compared among 120 patients with KD, 18 patients with viral infection (VI, and 43 patients with upper urinary tract infection (UTI and additionally compared between intravenous immunoglobulin (IVIG responders (n=89 and nonresponders (n=31 with KD. Total U-LDH activity was higher in KD (35.4±4.8 IU/L, P<0.05 and UTI patients (66.0±8.0 IU/L, P<0.01 than in VI patients (17.0±6.2 IU/L. In the isozyme pattern analysis, KD patients had high levels of U-LDH1 and U-LDH2, while UTI patients had high levels of U-LDH3, U-LDH4, and U-LDH5. Furthermore, IVIG nonresponders of KD had significantly higher levels of total U-LDH activity (45.1±4.7 IU/L, P<0.05, especially U-LDH1 and U-LDH2 (P<0.05, than IVIG responders (32.0±2.8 IU/L. KD patients have increased levels of total U-LDH activity, especially U-LDH-1 and U-LDH2, indicating a unique pattern of U-LDH isozymes different from that in UTI patients.

  5. Stimulation of d- and l-lactate dehydrogenases transcriptional levels in presence of diammonium hydrogen phosphate resulting to enhanced lactic acid production by Lactobacillus strain.

    Science.gov (United States)

    Singhvi, Mamata; Zendo, Takeshi; Iida, Hiroshi; Gokhale, Digambar; Sonomoto, Kenji

    2017-12-01

    The present study revealed the effect of nitrogen sources on lactic acid production and stimulation of d- and l-lactate dehydrogenases (LDH) of parent Lactobacillus lactis NCIM 2368 and its mutant RM2-24 generated after UV mutagenesis. Both the parent and mutant strains were evaluated for d-lactic acid production in control and modified media. The modified media did not show remarkable effect on lactic acid production in case of parent whereas mutant exhibited significant enhancement in d-lactic acid production along with the appearance of l-lactic acid in the broth. Both LDH activities and specific activities were found to be higher in mutant than the parent strain. These results suggested that the diammonium hydrogen phosphate in modified media triggered the expression of LDH genes leading to enhanced lactic acid production. This observation has been proved by studying the expression levels of d- and l-LDH genes of parent and mutant in control and modified media using quantitative RT-PCR technique. In case of mutant, the transcriptional levels of d-LDH and l-LDH increased ∼17 fold and ∼1.38 fold respectively in modified medium compared to the values obtained with control medium. In case of parent, no significant change in transcriptional levels of d- and l-LDH was found when the cells were grown in either control medium or modified medium. This study suggested that the mutant, RM2-24 has l-LDH gene which is expressed in presence of (NH 4 ) 2 HPO 4 resulting in l-lactic acid production. Co-production of l-lactic acid in d-lactic acid fermentation may be detrimental in the PLA production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Discrimination of damages depending on the types of lactic dehydrogenase isozymes in electron beam irradiation

    International Nuclear Information System (INIS)

    Ohta, Akishige; Matsubayashi, Takashi; Liu Xiaolan; Takizawa, Haruki.

    1995-01-01

    Lactate dehydrogenase (EC 1.1.1.27,LDH) was a tetrameric molecule. The five different combinations of two different polypeptide chains can be readily identified by electrophoresis and ion-exchange chromatography. Injury patterns of LDH activity following electron-beam irradiation was investigated by assaying activities of three isozymes (pig heart LDH;M 4 , rabbit muscle LDH;H 4 , chicken heart LDH;M 3 H 1 ). Following results were obtained in the electron beam irradiation to three kinds of LDH isozymes: 1) Each isozyme has respective different reactivities to the electron beam irradiation. 2) Among the isozymes, M 4 enzyme was increased its enzymatic activity by the irradiations of low-level doses. 3) For the H 4 enzymes, an increasing phenomenon of -SH group was found in the low-level doses of electron beam irradiation. (author)

  7. Antibodies against Clonorchis sinensis LDH could cross-react with LDHB localizing on the plasma membrane of human hepatocarcinoma cell SMMC-7721 and induce apoptosis.

    Science.gov (United States)

    Song, Tianzhang; Gan, Wenjia; Chen, Jintao; Huang, Lilin; Yin, Hongling; He, Tailong; Huang, Huaiqiu; Hu, Xuchu

    2016-04-01

    Lactate dehydrogenase (LDH) is a terminal enzyme in anaerobic glycolytic pathway. It widely exists in various organisms and is in charge of converting the glycolysis product pyruvic acid to lactic acid. Most parasites, including Clonorchis sinensis, predominantly depend on glycolysis to provide energy. Bioinformatic analysis predicts that the LDHs from many species have more than one transmembrane region, suggesting that it may be a membrane protein. C. sinensis LDH (CsLDH) has been confirmed as a transmembrane protein mainly located in the tegument. The antibodies against CsLDH can inhibit the worm's energy metabolism, kill the worm, and may have the same effects on human cancer cells. In this study, we cloned and characterized human LDHA (HsLDHA), HsLDHB, and CsLDH. Semi-quantitative real-time RCP showed that HsLDHB only existed in hepatocarcinoma cell SMMC-7721. Confocal microscopy and Western blot experiments revealed that HsLDHB was localized in the plasma membrane of SMMC-7721 cells, and the antibodies against CsLDH could cross-react with it. This cross-reaction could inhibit the enzymatic activity of HsLDHB. The cancer cells co-cultured with anti-CsLDH sera showed a significant decrease in cell proliferation rate and increases in caspase 9 and reactive oxygen species (ROS) levels. Therefore, anti-CsLDH antibodies can induce the apoptosis of cancer cells SMMC-7721 and may serve as a new tool to inhibit tumor.

  8. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Andersen, H.W.; Pedersen, M.B.; Hammer, Karin

    2001-01-01

    enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control (C- LDH(F1)J=-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate...

  9. Changes in lactate dehydrogenase are associated with central gray matter lesions in newborns with hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Yum, Sook Kyung; Moon, Cheong-Jun; Youn, Young-Ah; Sung, In Kyung

    2017-05-01

    Biomarkers may predict neurological prognosis in infants with hypoxic-ischemic encephalopathy (HIE). We evaluated the relationship between serum lactate dehydrogenase (LDH) and brain magnetic resonance imaging (MRI), which predicts neurodevelopmental outcomes, in order to assess whether LDH levels are similarly predictive. Medical records were reviewed for infants with HIE and LDH levels were assessed on the first (LDH 1 ) and third (LDH 3 ) days following birth. Receiver operating characteristic curves were obtained in relation to central gray matter hypoxic-ischemic lesions. Of 92 patients, 52 (56.5%) had hypoxic-ischemic lesions on brain MRI, and 21 of these infants (40.4%) had central gray matter lesions. LDH 1 and LDH 3 did not differ; however, the percentage change (ΔLDH%) was significantly higher in infants with central gray matter lesions (36.9% versus 6.6%, p = 0.006). With cutoffs of 187 (IU/L, ΔLDH) and 19.4 (%, ΔLDH%), the sensitivity, specificity, positive predictive value and negative predictive value were 71.4, 69.0, 40.5 and 89.1%, respectively. The relative risk was 5.57 (p = 0.001). Changes in serum LDH may be a useful biomarker for predicting future neurodevelopmental prognosis in infants with HIE.

  10. The expression of Ldh-c in the skeletal muscle of plateau pika (Ochotona curzoniae enhances adaptation to a hypoxic environment

    Directory of Open Access Journals (Sweden)

    Zhi F. An

    2017-09-01

    Full Text Available The plateau pika (Ochotona curzoniae is a species of sprint-running alpine animals in the Qinghai-Tibet Plateau, which is a harsh highland hypoxic environment. Ldh-c is expressed in the testis, sperm and somatic tissues of plateau pika. To reveal the role and physiological mechanisms of sperm-specific lactate dehydrogenase (LDH-C4, in plateau pika to adapt to hypoxic environment, an adenoviral line of pMultiRNAi-Ldhc was constructed and injected into the bilateral biceps femoris of the hind legs. The swimming times of the pikas, and the Ldh-c expression levels, total LDH activities and ATP levels in skeletal muscle, were measured after the pikas were raised in the trapped site for 5 days. Our results showed that after Ldh-c was silenced, the sprint-running ability (swimming time of the plateau pikas was significant decreased, and the total LDH activities and ATP levels were reduced by 28.21% and 27.88%, respectively. Our results indicated that expression of Ldh-c in the skeletal muscle of plateau pika increased anaerobic glycolysis and enhanced adaptation to highland hypoxic environments.

  11. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  12. [Investigations on the distribution of serum LDH isoenzymes of patients with carcinoma laryngis (author's transl)].

    Science.gov (United States)

    T-Tomity, I; Takács, O

    1979-12-01

    The distribution of lactate dehydrogenase (LDH) isoenzymes in healthy blood donors and in patients suffering histological identified tumor (neoplasms) laryngis was investigated. The values of 110 healthy persons (controls) proved to be comparable with the average data described in literature. The LDH distribution pattern of 90 tumour affected persons showed significant differences comparing with controls. The alteration appears as absolute increase in LDH-1 (H4) isoenzyme parallel with progressive decrease in the hybrid enzyme rations containing M subunits (LDH-2, LDH-3, LDH-4), and the LDH-5 consisting of four M sununits was undetectable. The conclusions drawn from our investigations seem to be in agreement with Warburg's conception, supposing that in malignant tumours the aerob glycolysis increases. The determination of LDH isoenzyme distributions for diagnostic purposes in clinical practice is recommended.

  13. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy

    OpenAIRE

    Kim, Andrew J.

    2015-01-01

    Researchers at Okayama University, Japan showed lactate dehydrogenase (LDH) inhibition suppresses neuronal excitation in vitro, reduces EEG discharges and seizures in rodent models, and may provide a novel mechanism for anticonvulsant medications in human patients.

  14. Preparation of polymer/LDH nanocomposite by UV-initiated photopolymerization of acrylate through photoinitiator-modified LDH precursor

    International Nuclear Information System (INIS)

    Hu, Lihua; Yuan, Yan; Shi, Wenfang

    2011-01-01

    transition temperature of UV-cured exfoliated nanocomposites increased to 64 o C from 55 o C of pure polymer without LDH addition. The tensile strength was improved from 10.1 MPa to 25.2 MPa, as well the Persoz hardness enhanced greatly, while the elongation at break remained an acceptable level.

  15. Expression and prognostic value of lactate dehydrogenase-A and -D subunits in human uterine myoma and uterine sarcoma.

    Science.gov (United States)

    Song, Ke-Juan; Yu, Xiao-Ni; Lv, Teng; Chen, Yu-Long; Diao, Yu-Chao; Liu, Su-Li; Wang, Yan-Kui; Yao, Qin

    2018-04-01

    This study aimed to determine the expression of lactate dehydrogenase (LDH)-A and LDH-D in patients with uterine myoma, cellular leiomyoma (CLM), and uterine sarcoma and to evaluate their prognostic significance. Protein expression levels of LDH-A and LDH-D were determined in tissue samples from 86 patients (26 uterine myoma, 10 CLM, 50 uterine sarcoma) by immunohistochemistry and their associations with clinicopathologic parameters and outcomes were analyzed in patients with uterine sarcoma. The positivity rates for LDH-A and LDH-D were significantly higher in patients with uterine sarcoma compared with those with uterine myoma or CLM (P sarcoma were classified as having uterine leiomyosarcoma (LMS), malignant endometrial stromal sarcoma, and malignant mixed Mullerian tumor, with 5-year overall survival rates of 59%, 71%, and 29%, respectively (P sarcoma. Furthermore, the overexpressions of LDH-A and LDH-D in uterine sarcoma patients may contribute to further understanding of the mechanism of LDH in tumor metabolism in uterine sarcoma. Positive expression of LDH-A in patients with LMS may act as a potential prognostic biomarker in these patients.

  16. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  17. Reduced grain chalkiness and its possible physiological mechanism in transgenic rice overexpressing l-GalLDH

    Directory of Open Access Journals (Sweden)

    Le Yu

    2015-04-01

    Full Text Available Chalkiness is one of the key factors determining rice quality and price. Ascorbic acid (Asc is a major plant antioxidant that performs many functions in plants. l-Galactono-1,4-lactone dehydrogenase (l-GalLDH, EC1.3.2.3 is an enzyme that catalyzes the final step of Asc biosynthesis in plants. Here we show that the l-GalLDH-overexpressing transgenic rice, GO-2, which has constitutively higher leaf Asc content than wild-type (WT plants, exhibits significantly reduced grain chalkiness. Higher foliar ascorbate/dehydroascorbate (Asc/DHA ratios at 40, 60, 80, and 100 days of plant age were observed in GO-2. Further investigation showed that the enhanced level of Asc resulted in a significantly higher ribulose-1,5-bisphosphate (RuBP carboxylase/oxygenase (Rubisco protein level in GO-2 at 80 days. In addition, levels of abscisic acid (ABA and jasmonic acid (JA were lower in GO-2 at 60, 80, and 100 days. The results we present here indicate that the enhanced level of Asc is likely responsible for changing redox homeostasis in key developmental stages associated with grain filling and alters grain chalkiness in the l-GalLDH-overexpressing transgenic by maintaining photosynthetic function and affecting phytohormones associated with grain filling.

  18. Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans

    Directory of Open Access Journals (Sweden)

    Neal J. Dawson

    2013-01-01

    Full Text Available Lactate dehydrogenase (LDH; E.C. 1.1.1.27 is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD+. The present study investigated purified LDH from the muscle of 20 h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47% Km for L-lactate and a higher Vmax value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a stimulation of endogenously present protein phosphatases decreased the Km of L-lactate of control LDH to anoxic levels, whereas (b stimulation of kinases increased the Km of L-lactate of anoxic LDH to normoxic levels, and (c dot blot analysis shows significantly less serine (78% and threonine (58% phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions.

  19. Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans.

    Science.gov (United States)

    Dawson, Neal J; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    Lactate dehydrogenase (LDH; E.C. 1.1.1.27) is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD(+). The present study investigated purified LDH from the muscle of 20 h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47%) K m for L-lactate and a higher V max value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a) stimulation of endogenously present protein phosphatases decreased the K m of L-lactate of control LDH to anoxic levels, whereas (b) stimulation of kinases increased the K m of L-lactate of anoxic LDH to normoxic levels, and (c) dot blot analysis shows significantly less serine (78%) and threonine (58%) phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions.

  20. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy.

    Science.gov (United States)

    Sada, Nagisa; Lee, Suni; Katsu, Takashi; Otsuki, Takemi; Inoue, Tsuyoshi

    2015-03-20

    Neuronal excitation is regulated by energy metabolism, and drug-resistant epilepsy can be suppressed by special diets. Here, we report that seizures and epileptiform activity are reduced by inhibition of the metabolic pathway via lactate dehydrogenase (LDH), a component of the astrocyte-neuron lactate shuttle. Inhibition of the enzyme LDH hyperpolarized neurons, which was reversed by the downstream metabolite pyruvate. LDH inhibition also suppressed seizures in vivo in a mouse model of epilepsy. We further found that stiripentol, a clinically used antiepileptic drug, is an LDH inhibitor. By modifying its chemical structure, we identified a previously unknown LDH inhibitor, which potently suppressed seizures in vivo. We conclude that LDH inhibitors are a promising new group of antiepileptic drugs. Copyright © 2015, American Association for the Advancement of Science.

  1. The Effect of Direct Current Transthoracic Countershock on Human Myocardial Cells Evidenced by Creatine Kinase and Lactic Dehydrogenase Isoenzymes.

    Science.gov (United States)

    1986-05-01

    however, fractionation of these enzymes will identify their specific source. Plasma levels of CK isoenzymes (CKMB) and LDH isoenzymes ( LDHI ) are most...damage--inferred by isoenzyme levels of CKMB and/or LDHI in the serum above normal levels (see definitions of creatine kinase and lactic dehydrogenase

  2. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    Science.gov (United States)

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Lactate Dehydrogenase Is an Important Prognostic Indicator for Hepatocellular Carcinoma after Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Jing-Ping Zhang

    2015-12-01

    Full Text Available Preoperative serum lactate dehydrogenase (LDH has been used as a prognostic indicator for patients with hepatocellular carcinoma (HCC treated with sorafenib or undergoing transcatheter arterial chemoembolization, but its significance in predicting survival of HCC patients who received curative resection remains undefined. A total of 683 patients with histopathologically confirmed HCC were enrolled in this study. The prognostic significance of preoperative serum LDH was determined by Kaplan-Meier analysis and a Cox proportional hazards regression model. The association between the preoperative serum LDH and clinicopathological parameters was evaluated by the χ2 test or linear regression analysis when appropriate. Higher preoperative serum LDH level was associated with worse prognosis. In a multivariate Cox proportional hazards analysis, the preoperative serum LDH level could predict overall survival and recurrence independently. Higher preoperative serum LDH level is associated with the elevated serum alpha-fetoprotein, the presence of hepatitis B surface antigen, larger tumor size, the presence of macrovascular invasion, the advanced tumor–lymph node–metastasis stage, worse tumor differentiation, and Child-Pugh B. Preoperative serum LDH level was an inexpensive, simple, convenient, and routinely measured biomarker exhibiting a potential to select patients at high risk with poor clinical outcome for appropriate treatment strategies.

  4. Radioimmunoassay of lactate dehydrogenase, H forms

    International Nuclear Information System (INIS)

    Malvano, R.; Massaglia, A.; Zannino, M.; Palmucci, F.; Cali, V.; Zucchelli, G.C.; Consiglio Nazionale delle Ricerche, Pisa

    1979-01-01

    Antisera to H 4 -lactate dehydrogenase (LDH) were elicited in rabbits, against both human (h) and porcine (p) isoenzymes. 125 I-labelled H 4 -LDH was prepared by electrolytic iodination. A simple and fast procedure (1-h incubation for clinical assays) was set up by using polyethylene glycol for the bound-free separation. The results obtained in the antiserum characterization indicated that the heterologous homotetramer, M 4 was completely discriminated in the porcine system, while a weak cross-reaction with human antisera resulted. In both cases, for the hybrid forms, a cross-reactivity level related to the stoichiometric contents of the H-subunit in the tetramers was observed. The H 4 -LDH from other species was found to be much more effectively distinguished in the procine than in the human system. The assay for human LDH was further validated in terms of analytical suitability and clinical response. For healthy subjects the mean concentration was 0.46 +- 0.19 μg/ml (mean +- SD). Patients with acute myocardial infarction had levels ranging from 1.2 to 5.9 μg/ml. (orig.) [de

  5. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    Science.gov (United States)

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.

  6. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fujin [Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu (China); Department of Urinary Surgery, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Ma, Song [Department of Urinary Surgery, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Xue, Yubao [Department of Medical Oncology, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Hou, Jianquan, E-mail: Jianquanhou@aliyun.com [Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu (China); Zhang, Yongjie, E-mail: zhangyj0818@126.com [Department of Medical Oncology, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China)

    2016-01-22

    Lactate dehydrogenase-A(LDH-A) is an important rate-limiting enzyme in the Warburg effect. Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. The results of in vitro experiment indicated that LDH-A promotes MIBC cells proliferation, invasion and migration. The positive relationship between LDH-A expression and CSC/EMT markers was confirmed both in invasive bladder cell line and in 136 MIBC specimens. Thus, we conclude that LDH-A may be a promising target for MIBC. - Highlights: • Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. • IHC analysis of 136 MIBC specimens revealed increased LDH-A is correlated with positive Oct4 and negative E-cadherin. • In vitro experiments demonstrated LDH-A promotes MIBC progression by positive regulation of EMT/CSC.

  7. The effect of extracellular alkalinization on lactate metabolism of breast cancer stem cells: Overview of LDH-A, LDH-B, MCT1 and MCT4 gene expression

    Science.gov (United States)

    Neolaka, G. M. G.; Yustisia, I.; Sadikin, M.; Wanandi, S. I.

    2017-08-01

    Changes in the metabolic status of cancer cells are presumed to be correlated with the adjustment of these cells to extracellular changes. Cell glycolysis increases the production of intracellular lactate catalyzed by the lactate dehydrogenases, both LDH-A and LDH-B. An increase in intracellular lactate can affect extracellular pH balance through monocarboxylate transporters, particularly MCT1 and MCT4. This study aimed to analyze the effects of extracellular alkalinization on the lactate metabolism of human breast cancer stem cells (BCSCs). In this study, human primary BCSCs (CD24-/CD44+ cells) were treated with 100 mM sodium bicarbonate for 0.5, 24, and 48 h in DMEM F12/HEPES. After incubation, extracellular pH was measured and cells were harvested to extract the total RNA and protein. The expression of LDH-A, LDH-B, MCT1, and MCT4 mRNA genes were analyzed using qRT-PCR method. Our study shows that administration of sodium bicarbonate in the BCSC culture medium could increase extracellular pH. To balance the increase of extracellular pH, BCSCs regulated the expression of LDH-A, LDH-B, MCT1, and MCT4 genes. As the extracellular pH increases, the expression of LDH-A that converts pyruvate to lactate increased along with the increase of MCT 4 and MCT 1 expression, which act as lactate transporters. As the incubation time increases, the pH decreases, leading to the suppression of LDH-A and increase of LDH-B expression that converts lactate into pyruvate. Therefore, we suggest that the extracellular alkalinization by sodium bicarbonate in BCSCs affected the genes that regulate lactate metabolism.

  8. Validity of a New Kit Measuring Salivary Lactate Dehydrogenase Level for Screening Gingivitis.

    Science.gov (United States)

    Ekuni, Daisuke; Yamane-Takeuchi, Mayu; Kataoka, Kota; Yokoi, Aya; Taniguchi-Tabata, Ayano; Mizuno, Hirofumi; Miyai, Hisataka; Uchida, Yoko; Fukuhara, Daiki; Sugiura, Yoshio; Tomofuji, Takaaki; Morita, Manabu

    2017-01-01

    Aim . The aim of this study was to determine the usefulness of a new kit that can evaluate salivary lactate dehydrogenase (LD) level in real time for screening gingivitis. Materials and Methods . The study included 70 systemic healthy volunteers [29 males and 41 females; mean age ± SD: 24.1 ± 2.6 years]. Resting saliva was collected from each participant and LD level was evaluated in real time using the kit (a color-changing sheet with an integer scale ranging from 1 to 10). A dentist measured probing pocket depth, clinical attachment level, and the proportion of sites with bleeding on probing (% BOP) at six sites on all teeth. Gingivitis was diagnosed when the BOP value was ≥20%. Results . Salivary LD level was positively correlated with mean % BOP (odds ratio: 1.47, 95% confidence interval: 1.132-1.916, and P gingivitis in young adults, which contributes to early detection of future periodontitis.

  9. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ya-Tang [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Chen, Chien-Jen [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Li, Wan-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Hsu, Ling-I [Genomics Research Center, Academia Sinica, Taiwan (China); Tsai, Li-Yu; Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Taiwan (China); Sun, Chien-Wen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Chen, Wei J., E-mail: wjchen@ntu.edu.tw [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genetic Epidemiology Core Laboratory, National Taiwan University Center for Genomic Medicine, Taiwan (China); Wang, Shu-Li, E-mail: slwang@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China)

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  10. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    International Nuclear Information System (INIS)

    Liao, Ya-Tang; Chen, Chien-Jen; Li, Wan-Fen; Hsu, Ling-I; Tsai, Li-Yu; Huang, Yeou-Lih; Sun, Chien-Wen; Chen, Wei J.; Wang, Shu-Li

    2012-01-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  11. Repercussões da L-alanil-glutamina sobre as concentrações de lactato e lactato desidrogenase (LDH em pacientes com isquemia crítica dos membros inferiores submetidos a revascularização distal Repercussions of l-alanyl-glutamine upon the concentrations of lactate and lactate dehydrogenase (LDH in patients with critical ischemia of lower limbs subjected to distal revascularization

    Directory of Open Access Journals (Sweden)

    Wellington Forte Alves

    2003-06-01

    Full Text Available OBJETIVO: Investigar efeitos da L-alanil-glutamina nas concentrações musculares de lactato, e nas concentrações sanguíneas de LDH, em pacientes com isquemia crítica dos membros inferiores submetidos à revascularização distal. MÉTODOS: Dezesseis adultos (12-homens/4-mulheres foram distribuídos em 2 grupos (1-controle/2-estudo. Três horas após injeção endovenosa de 250 ml de L-alanil-glutamina a 20% adicionados a 750 ml de soro fisiológico (Grupo 2, ou 1000 ml de solução salina (Grupo 1, iniciava-se a revascularização, sob raquianestesia. Amostras musculares e de sangue (arterial/venoso foram coletadas no início do procedimento (TI, no final (TF, e 10 e 20 minutos após isquemia (T1/T2. RESULTADOS: Observou-se redução significante (pPURPOSE: Investigate the repercussions of L-alanyl-glutamine in muscular tissue concentrations of lactate, and venous and arterial blood concentrations of LDH, in patients with critical ischemia of the lower limbs submitted to distal revascularization. METHODS: Sixteen adults (12 male/4 female were distributed in 2 groups (1-Control/2-Experiment. Three hours after the intravenous injection of 250 ml of a 20% solution of L-alanyl-glutamine added to 750 ml of saline solution (Group 2; or 1000 ml of saline solution (Group 1, distal bypass was carried out under spinal anesthesia. Muscle and blood samples (arterial/venous were collected at the beginning of the surgical procedure (TI, at the end (TF, and 10 and 20 minutes after re-establishment of blood flow. RESULTS: Significant reduction (p<0,05 of lactate concentration was observed in healthy muscle tissue in L-alanyl-glutamine treated patients in comparison to control group, at all times studied. There was a significant reduction (p <0,05 in venous concentrations of LDH in treated patients at all times studied (TI/TFV/T1V/T2V; and in arterial blood during reperfusion (T1A/T2A. CONCLUSIONS: 1. Decreased lactate concentrations in healthy skeletal

  12. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    Science.gov (United States)

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  13. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Science.gov (United States)

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2015-01-01

    Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics. The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission. High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl). The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  14. Alcohol Dehydrogenase-1B (rs1229984 and Aldehyde Dehydrogenase-2 (rs671 Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Directory of Open Access Journals (Sweden)

    Akira Yokoyama

    Full Text Available Elevated serum triglyceride (TG and high-density-lipoprotein cholesterol (HDL-C levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.The population consisted of 1806 Japanese alcoholic men (≥40 years who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.High serum levels of TG (≥150 mg/dl, HDL-C (>80 mg/dl, and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively, and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively. The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]. The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl and HDL-C (≥100 mg/dl.The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  15. Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.

    Science.gov (United States)

    Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi

    2016-04-01

    Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.

  16. Lactate Dehydrogenase and Oxidative Stress Activity in Primary Open-Angle Glaucoma Aqueous Humour

    Directory of Open Access Journals (Sweden)

    Predrag Jovanović

    2010-02-01

    Full Text Available Lactate dehydrogenase (LDH and lactate are some of the hypoxy biochemical parameters. Extracellular activity of this enzyme increases under the condition of oxidative stress, since the cell integrity can be disrupted during the lipid peroxidation process. Subsequently that leads to the increase level of the lactic acid and lactic acid salts. The objective of this investigation is establishing the level of LDH, LDH1 (HBDH and the lactate concentration in aqueous humour in patients with primary open-angle glaucoma.Biochemical analysis have been made by enzymatic-colometric method (lactate and UV-kinetic method (LDH and HBDH in aqueous humour of 30 patients (42 eyes with primary open-angle glaucoma (POAG and 30 patients (40 eyes with cataract (the control group.The increased values of lactate and the activity of LDH and HBDH enzyme in aqueous humour of POAG patients in correlation with the control group are the results not only of oxidative stress but also of hypoxy and the mitochondry oxidative function (p<0,001.The increased activity of the examined biochemical parameters in the aqueous humour of the POAG patients points to the fact that other mechanisms, besides IOP, have a role in glaucoma pathogenesis.

  17. Lactate dehydrogenase-B is silenced by promoter methylation in a high frequency of human breast cancers.

    Directory of Open Access Journals (Sweden)

    Nicola J Brown

    Full Text Available Under normoxia, non-malignant cells rely on oxidative phosphorylation for their ATP production, whereas cancer cells rely on Glycolysis; a phenomenon known as the Warburg effect. We aimed to elucidate the mechanisms contributing to the Warburg effect in human breast cancer.Lactate Dehydrogenase (LDH isoenzymes were profiled using zymography. LDH-B subunit expression was assessed by reverse transcription PCR in cells, and by Immunohistochemistry in breast tissues. LDH-B promoter methylation was assessed by sequencing bisulfite modified DNA.Absent or decreased expression of LDH isoenzymes 1-4, were seen in T-47D and MCF7 cells. Absence of LDH-B mRNA was seen in T-47D cells, and its expression was restored following treatment with the demethylating agent 5'Azacytadine. LDH-B promoter methylation was identified in T-47D and MCF7 cells, and in 25/25 cases of breast cancer tissues, but not in 5/5 cases of normal breast tissues. Absent immuno-expression of LDH-B protein (<10% cells stained, was seen in 23/26 (88% breast cancer cases, and in 4/8 cases of adjacent ductal carcinoma in situ lesions. Exposure of breast cancer cells to hypoxia (1% O(2, for 48 hours resulted in significant increases in lactate levels in both MCF7 (14.0 fold, p = 0.002, and T-47D cells (2.9 fold, p = 0.009, but not in MDA-MB-436 (-0.9 fold, p = 0.229, or MCF10AT (1.2 fold, p = 0.09 cells.Loss of LDH-B expression is an early and frequent event in human breast cancer occurring due to promoter methylation, and is likely to contribute to an enhanced glycolysis of cancer cells under hypoxia.

  18. Salivary lactate dehydrogenase and aminotransferases in diabetic patients.

    Science.gov (United States)

    Malicka, Barbara; Skoskiewicz-Malinowska, Katarzyna; Kaczmarek, Urszula

    2016-11-01

    Diabetes mellitus (DM) is a group of metabolic diseases resulting from impaired insulin secretion and/or action. DM is characterized by hyperglycemia that can lead to the dysfunction or damage of organs, including the salivary glands.The aim of this study was to compare the levels of salivary lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in diabetic patients.The study was approved by the Bioethics Committee of Wroclaw Medical University (Poland). The study comprised 90 adults of both sexes, aged 21 to 57 years. The patients were divided into 3 groups: type 1 diabetics (D1), type 2 diabetics (D2), and a healthy control group (C). Each group consisted of 30 age- and sex-matched subjects. Total protein (P, by Lowry method), LDH, AST, ALT (with Alpha Diagnostics kits), and salivary flow rate were measured in unstimulated mixed saliva. The level of glycosylated hemoglobin (HbA1c) was measured with DCA 2000 Reagent Kit. The obtained data were analyzed using the Mann-Whitney U test and the Spearman rank at a significance level of P salivary LDH, AST, and ALT in D1 compared with D2 and C confirm that salivary glands of D1 might be attributed to autoimmunological damage associated with the pathomechanism of DM.

  19. Seasonal Changes in Serum Testosterone, LDH Concentration and Semen Characteristics in Markhoz Goats

    Directory of Open Access Journals (Sweden)

    A. Farshad

    2012-02-01

    Full Text Available This experiment was conducted to study variations of serum testosterone and seminal characteristics of Markhoz male goats. Blood samples were obtained via jugular vein, and semen was collected by using an artificial vagina from 14 fertile male goats (2–3 years of age, at 15-day intervals starting on 15 July and ending on 30 October 2010 (during breeding and non-breeding season. Semen volume, total sperm (volume×concentration, live sperm (%, abnormal sperm (% and semen pH were significantly superior during the late summer and early autumn (breeding season. Variation of sperm density, motility and progressive motility was not significant during the sampling period. The results presented show that the lowest and highest levels of lactate dehydrogenase in the seminal plasma were recorded in late October (2.82 U/ml and in late August (4.81 U/ml, respectively. Moreover, the study indicated that the serum testosterone concentration was higher during late summer and early autumn (p<0.05 than at any other of sampling period. There were negative correlations between volume and sperm density (−0.135, p<0.05, and positive correlations between volume and percentage live sperm (0.224 and percentage progressive motility (0.194, p<0.01. Sperm density was correlated with live sperm (0.200, p<0.05 and progressive motility (0.202, p<0.01. The correlation between live sperm and progressive motility was 0.554 (p<0.01. Furthermore, the results in this study indicated a significant positive correlation between live sperm and LDH (0.450 and a negative correlation between sperm density and LDH concentration (−0.272 (p<0.01. Significant, but positive correlations were found between sperm motility and LDH (0.542 and testosterone concentration (0.522, respectively (p<0.05. In conclusion, this study demonstrated that the best obtained semen was collected in late summer (during decreasing photoperiod and early autumn (September and October. This also coincides with

  20. Lactate and lactate dehydrogenase in predicting the severity of transient tachypnea of the newborn.

    Science.gov (United States)

    Ozkiraz, Servet; Gokmen, Zeynel; Boke, Saltuk Bugra; Kilicdag, Hasan; Ozel, Deniz; Sert, Ahmet

    2013-08-01

    Low Apgar score is strongly associated with the incidence of transient tachypnea of the newborn (TTN) and other respiratory diseases of the newborn. We aimed to investigate the relationship between hypoxia determinants and the prolonged oxygen and respiratory support requirement even if the Apgar scores were normal. Retrospective case-controlled study. Infants born after 35 weeks of gestational age with clinical signs, chest X-ray findings and clinical course consistent with TTN were included. Receiver operating characteristic curves were used to assess the predictive values of determinants in predicting the risk for prolonged oxygen requirement and mechanical ventilatory support. We showed a positive correlation between the duration of oxygen with lactate and lactate dehydrogenase (LDH) levels. LDH offered the best predictive value for prolonged oxygen requirement with a positive predictive value (PPV) of 88.9%. The predictive value of lactate exceeds the predictive value of LDH, aspartate aminotransferase, and percentage of normoblasts to predict the requirement of respiratory support with a PPV of 88.5%. Lactate and LDH might be useful for clinicians at first level hospitals for decision making to refer the TTN patient to the secondary or tertiary level neonatal intensive care unit before the clinical situation is worsened.

  1. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione.

    Science.gov (United States)

    Demircan, Celaleddin; Gül, Zülfiye; Büyükuysal, R Levent

    2014-07-01

    One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen-glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD-REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD-REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.

  2. Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide

    Directory of Open Access Journals (Sweden)

    Marta Rodríguez-Ruiz

    2017-08-01

    Full Text Available Pepper fruit is one of the highest vitamin C sources of plant origin for our diet. In plants, ascorbic acid is mainly synthesized through the L-galactose pathway, being the L-galactono-1,4-lactone dehydrogenase (GalLDH the last step. Using pepper fruits, the full GalLDH gene was cloned and the protein molecular characterization accomplished. GalLDH protein sequence (586 residues showed a 37 amino acids signal peptide at the N-terminus, characteristic of mitochondria. The hydrophobic analysis of the mature protein displayed one transmembrane helix comprising 20 amino acids at the N-terminus. By using a polyclonal antibody raised against a GalLDH internal sequence and immunoblotting analysis, a 56 kDa polypeptide cross-reacted with pepper fruit samples. Using leaves, flowers, stems and fruits, the expression of GalLDH by qRT-PCR and the enzyme activity were analyzed, and results indicate that GalLDH is a key player in the physiology of pepper plants, being possibly involved in the processes which undertake the transport of ascorbate among different organs.We also report that an NO (nitric oxide-enriched atmosphere enhanced ascorbate content in pepper fruits about 40% parallel to increased GalLDH gene expression and enzyme activity. This is the first report on the stimulating effect of NO treatment on the vitamin C concentration in plants. Accordingly, the modulation by NO of GalLDH was addressed. In vitro enzymatic assays of GalLDH were performed in the presence of SIN-1 (peroxynitrite donor and S-nitrosoglutahione (NO donor. Combined results of in vivo NO treatment and in vitro assays showed that NO provoked the regulation of GalLDH at transcriptional and post-transcriptional levels, but not post-translational modifications through nitration or S-nitrosylation events promoted by reactive nitrogen species (RNS took place. These results suggest that this modulation point of the ascorbate biosynthesis could be potentially used for biotechnological

  3. Karnofsky Performance Status and Lactate Dehydrogenase Predict the Benefit of Palliative Whole-Brain Irradiation in Patients With Advanced Intra- and Extracranial Metastases From Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Partl, Richard, E-mail: richard.partl@medunigraz.at [Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz (Austria); Richtig, Erika [Department of Dermatology, Medical University of Graz, Graz (Austria); Avian, Alexander; Berghold, Andrea [Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz (Austria); Kapp, Karin S. [Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz (Austria)

    2013-03-01

    Purpose: To determine prognostic factors that allow the selection of melanoma patients with advanced intra- and extracerebral metastatic disease for palliative whole-brain radiation therapy (WBRT) or best supportive care. Methods and Materials: This was a retrospective study of 87 patients who underwent palliative WBRT between 1988 and 2009 for progressive or multiple cerebral metastases at presentation. Uni- and multivariate analysis took into account the following patient- and tumor-associated factors: gender and age, Karnofsky performance status (KPS), neurologic symptoms, serum lactate dehydrogenase (LDH) level, number of intracranial metastases, previous resection or stereotactic radiosurgery of brain metastases, number of extracranial metastasis sites, and local recurrences as well as regional lymph node metastases at the time of WBRT. Results: In univariate analysis, KPS, LDH, number of intracranial metastases, and neurologic symptoms had a significant influence on overall survival. In multivariate survival analysis, KPS and LDH remained as significant prognostic factors, with hazard ratios of 3.3 (95% confidence interval [CI] 1.6-6.5) and 2.8 (95% CI 1.6-4.9), respectively. Patients with KPS ≥70 and LDH ≤240 U/L had a median survival of 191 days; patients with KPS ≥70 and LDH >240 U/L, 96 days; patients with KPS <70 and LDH ≤240 U/L, 47 days; and patients with KPS <70 and LDH >240 U/L, only 34 days. Conclusions: Karnofsky performance status and serum LDH values indicate whether patients with advanced intra- and extracranial tumor manifestations are candidates for palliative WBRT or best supportive care.

  4. Influence of thorax irradiation on lactic dehydrogenase isoenzyme activity

    International Nuclear Information System (INIS)

    Valle, C.; Munnich, A.; Pasquier, C.

    The right hemi-thorax of rats was irradiated with 1200 and 3000 rads ( 60 Co) and blood samples were taken sequentially. The five lactic dehydrogenase (LDH) isoenzymes which have proved to be useful as biochemical indicators of acute pulmonary injury in other experimental animals (dogs), were assayed, after irradiation, as a function of time and as a functon of dose. There was no significant change in LDH isoenzyme activities after lung irradiation in rats [fr

  5. SIGNIFICANCE OF LACTATE DEHYDROGENASE AND ASPARTATE TRANSAMINASE AS BIOCHEMICAL MARKERS AND AS PREDICTORS OF SEVERITY OF PREGNANCY-INDUCED HYPERTENSION AND ITS COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ramesh Sonowal

    2017-03-01

    Full Text Available BACKGROUND To compare serum Lactate Dehydrogenase (LDH and serum Aspartate Transaminase (AST of normotensive pregnant women with those of preeclamptic and eclamptic women. To determine the relationship of levels of serum lactate dehydrogenase and serum aspartate transaminase with severity of pregnancy-induced hypertension and its complications. MATERIALSAND METHODS The study was carried out on pregnant hypertensive patients attending outpatient department of Obstetrics and Gynaecology department, AMCH, Dibrugarh, Assam from 1 st July 2013 to 30 th June 2014. Normotensive pregnant women were taken as controls. Each serum sample from both the control group as well as study group was estimated for lactate dehydrogenase and aspartate transaminase using standard methods and a comparison is drawn and analysed using t-test and Chi-square test. RESULTS Serum lactate dehydrogenase and serum aspartate transaminase levels were higher in the study group in comparison to the study groups. The mean serum LDH was 198±30.03U/L in control group, whereas in preeclampsia and eclampsia, mean serum levels of LDH were 817±114U/L and 927±108U/L, respectively. The levels of the serum AST were found to be less than 600U/L in normotensive and preeclampsia patients and more than 600 U/L in eclampsia and other complications of PIH. CONCLUSION Serum lactate dehydrogenase and serum aspartate transaminase levels in patients suffering from preeclampsia and its complications are consistently higher compared to the normotensive pregnant patients. To determine the usefulness of inclusion of these enzymes along with other cardiac enzymes in the panel of investigations of pregnant women universally needs further large scale comparative studies.

  6. PARÁMETROS BIOQUÍMICOS ENZIMÁTICOS (ALT, AST, ALP, Γ-GT, LDH EN NIÑOS CON LEUCEMIA LINFOBLÁSTICA AGUDA ANTES DEL TRATAMIENTO ANTINEOPLÁSICO

    Directory of Open Access Journals (Sweden)

    Jeél Moya S

    2015-12-01

    Full Text Available Objective: To determine the enzymatic biochemical parameters (glutamic pyruvic transaminase (ALT, glutamic oxaloacetic transaminase (AST, alkaline phosphatase (ALP, gamma glutamyltransferase (γ-GT, and lactate dehydrogenase (LDH in children with acute lymphoblastic leukemia (ALL before cancer treatment. Material and Methods: A prospective experimental, observational, cross-sectional study was conducted in 30 children between 2 and 15 years old, from several Neoplastic Centers in Lima. Blood collection was performed in BD red cap Vacutainer tubes, processed in the semi-automated analyzer BIOTEC® EMP-168, with Wiener Lab Group enzyme reagents under the modified method Szaaz and UV-Optimized by IFCC, SSCC and SFBC. Finally, coding and tabulation was performed. Results: 60% were boys and 46.7% are between the ages of 2-6 years. Serum levels of AST were increased by 33.3% in boys and 50% in girls. Serum ALT values were increased in 33.3% of boys and 41.7% of girls; only 25% of girls showed increased levels of γ-GT values; ALP was increased in 44.4% of boys and 66.7% of girls. Moreover LDH levels were increased in 55.6% of boys and 41.7% of girls. Conclusions: The enzymatic tests LDH, AST, ALT and ALP are increased in children with ALL compared to normal values due to tumor lysis syndrome characterized by electrolyte abnormalities, and as a result of the massive destruction of tumor cells and rapid release of large amounts of intracellular elements.

  7. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines

    Directory of Open Access Journals (Sweden)

    van Esbroeck Marjan

    2010-07-01

    Full Text Available Abstract Background Most malaria rapid diagnostic tests (RDTs detect Plasmodium falciparum and an antigen common to the four species. Plasmodium vivax-specific RDTs target P. vivax-specific parasite lactate dehydrogenase (Pv-pLDH. Previous observations of false positive Pv-pLDH test lines in P. falciparum samples incited to the present study, which assessed P. vivax-specific RDTs for the occurrence of false positive Pv-pLDH lines in P. falciparum samples. Methods Nine P. vivax-specific RDTs were tested with 85 P. falciparum samples of high (≥2% parasite density. Mixed P. falciparum/P. vivax infections were ruled out by real-time PCR. The RDTs included two-band (detecting Pv-pLDH, three-band (detecting P. falciparum-antigen and Pv-pLDH and four-band RDTs (detecting P. falciparum, Pv-pLDH and pan-pLDH. Results False positive Pv-pLDH lines were observed in 6/9 RDTs (including two- three- and four-band RDTs. They occurred in the individual RDT brands at frequencies ranging from 8.2% to 29.1%. For 19/85 samples, at least two RDT brands generated a false positive Pv-pLDH line. Sixteen of 85 (18.8% false positive lines were of medium or strong line intensity. There was no significant relation between false positive results and parasite density or geographic origin of the samples. Conclusion False positive Pv-pLDH lines in P. falciparum samples with high parasite density occurred in 6/9 P. vivax-specific RDTs. This is of concern as P. falciparum and P. vivax are co-circulating in many regions. The diagnosis of life-threatening P. falciparum malaria may be missed (two-band Pv-pLDH RDT, or the patient may be treated incorrectly with primaquine (three- or four-band RDTs.

  8. Effect of rare earth ion Ce3+ on the lactate dehydrogenase isozyme patterns of six mouse organs

    International Nuclear Information System (INIS)

    Jiangyan, L.; Guojun, S.; Hengyi, L.; Yinhua, L.; Ting, W.; Yansheng, Y.

    1998-01-01

    Full text: Effect of rare earth ion Ce 3+ on the lactate dehydrogenase (LDH) isozyme patterns of six organs of mouse (heart, liver, kidney, muscle, stomach) were investigated by utilizing polyacrylamide gel electrophoresis (PAGE) methods. The results indicated: Ce 3+ not only can make some LDH bands disappear but also can induce some new bands. Under the action of Ce 3+ , the shades of some LDH bands were changed and the shade variations were different from organ to organ. In the muscle, it appeared the shade of LDH bands was related to the rare earth concentration in the feed. Rare earth can affect the muscle LDH patterns widely and apparently

  9. New Ideas for an Old Enzyme: A Short, Question-Based Laboratory Project for the Purification and Identification of an Unknown LDH Isozyme

    Science.gov (United States)

    Coleman, Aaron B.

    2010-01-01

    Enzyme purification projects are an excellent way to introduce many aspects of protein biochemistry, but can be difficult to carry out under the constraints of a typical undergraduate laboratory course. We have designed a short laboratory project for the purification and identification of an "unknown" lactate dehydrogenase (LDH) isozyme that can…

  10. The correlation between aldehyde dehydrogenase-1A1 level and tumor shrinkage after preoperative chemoradiation in locally advanced rectal cancer

    Directory of Open Access Journals (Sweden)

    Rhandyka Rafli

    2015-12-01

    Full Text Available This study was performed to determine the correlation between aldehyde dehydrogenase-1A1 (ALDH1A1 level and tumor shrinkage after chemoradiation in locally advanced rectal cancer. This is a retrospective study of 14 locally advanced rectal cancer patients with long course neoadjuvant chemoradiation. ALDH1A1 level was measured using ELISA from paraffin embedded tissue. Tumor shrinkage was measured from computed tomography (CT scan or magnetic resonance imaging (MRI based on Response Evaluation Criteria in Solid Tumor v1.1 (RECIST v1.1. The mean of ALDH1A1 level was 9.014 ± 3.3 pg/mL and the mean of tumor shrinkage was 7.89 ± 35.7%. Partial response proportion was 28.6%, stable disease proportion was 50% and progressive disease proportion was 21.4%. There was a significant strong negative correlation (r = –0.890, plt; 0.001 between ALDH1A1 and tumor shrinkage. In conclusion, tumor shrinkage in locally advanced rectal cancer after preoperative chemoradiation was influenced by ALDH1A1 level. Higher level of ALDH1A1 suggests decreased tumor shrinkage after preoperative chemoradiation.

  11. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD+ on NiO Film Modified by GO and MBs

    Science.gov (United States)

    Yan, Siao-Jie; Liao, Yi-Hung; Lai, Chih-Hsien; Wu, You-Xiang; Wu, Cian-Yi; Chen, Hsiang-Yi; Huang, Hong-Yu; Wu, Tong-Yu

    2017-01-01

    We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH) and nicotinamide adenine dinucleotide (NAD+) on nickel oxide (NiO) film, and which the average sensitivity could be enhanced by using graphene oxide (GO) and magnetic beads (MBs). By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM) with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS), the electron transfer resistance of LDH-NAD+-MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD+/GPTS/GO/NiO film and LDH-NAD+/GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated. PMID:28704960

  12. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD+ on NiO Film Modified by GO and MBs

    Directory of Open Access Journals (Sweden)

    Jung-Chuan Chou

    2017-07-01

    Full Text Available We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH and nicotinamide adenine dinucleotide ( NAD + on nickel oxide (NiO film, and which the average sensitivity could be enhanced by using graphene oxide (GO and magnetic beads (MBs. By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS, the electron transfer resistance of LDH- NAD + -MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD+/GPTS/GO/NiO film and LDH- NAD + /GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated.

  13. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle

    DEFF Research Database (Denmark)

    Rasmussen, Hans N; van Hall, Gerrit; Rasmussen, Ulla F

    2002-01-01

    The presence of lactate dehydrogenase in skeletal muscle mitochondria was investigated to clarify whether lactate is a possible substrate for mitochondrial respiration. Mitochondria were prepared from 100 mg samples of human and mouse vastus lateralis muscle. All fractions from the preparation...... procedure were assayed for marker enzymes and lactate dehydrogenase (LDH). The mitochondrial fraction contained no LDH activity (detection limit approximately 0.05 % of the tissue activity) and the distribution of LDH activity among the fractions paralleled that of pyruvate kinase, i.e. LDH was fractionated...... as a cytoplasmic enzyme. Respiratory experiments with the mitochondrial fraction also indicated the absence of LDH. Lactate did not cause respiration, nor did it affect the respiration of pyruvate + malate. The major part of the native cytochrome c was retained in the isolated mitochondria, which, furthermore...

  14. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  15. Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide.

    Science.gov (United States)

    Rodríguez-Ruiz, Marta; Mateos, Rosa M; Codesido, Verónica; Corpas, Francisco J; Palma, José M

    2017-08-01

    Pepper fruit is one of the highest vitamin C sources of plant origin for our diet. In plants, ascorbic acid is mainly synthesized through the L-galactose pathway, being the L-galactono-1,4-lactone dehydrogenase (GalLDH) the last step. Using pepper fruits, the full GalLDH gene was cloned and the protein molecular characterization accomplished. GalLDH protein sequence (586 residues) showed a 37 amino acids signal peptide at the N-terminus, characteristic of mitochondria. The hydrophobic analysis of the mature protein displayed one transmembrane helix comprising 20 amino acids at the N-terminus. By using a polyclonal antibody raised against a GalLDH internal sequence and immunoblotting analysis, a 56kDa polypeptide cross-reacted with pepper fruit samples. Using leaves, flowers, stems and fruits, the expression of GalLDH by qRT-PCR and the enzyme activity were analyzed, and results indicate that GalLDH is a key player in the physiology of pepper plants, being possibly involved in the processes which undertake the transport of ascorbate among different organs. We also report that an NO (nitric oxide)-enriched atmosphere enhanced ascorbate content in pepper fruits about 40% parallel to increased GalLDH gene expression and enzyme activity. This is the first report on the stimulating effect of NO treatment on the vitamin C concentration in plants. Accordingly, the modulation by NO of GalLDH was addressed. In vitro enzymatic assays of GalLDH were performed in the presence of SIN-1 (peroxynitrite donor) and S-nitrosoglutahione (NO donor). Combined results of in vivo NO treatment and in vitro assays showed that NO provoked the regulation of GalLDH at transcriptional and post-transcriptional levels, but not post-translational modifications through nitration or S-nitrosylation events promoted by reactive nitrogen species (RNS) took place. These results suggest that this modulation point of the ascorbate biosynthesis could be potentially used for biotechnological purposes to

  16. Pretreatment serum lactate dehydrogenase as a prognostic indicator for oral cavity squamous cell carcinoma.

    Science.gov (United States)

    Takenaka, Yukinori; Oya, Ryohei; Aoki, Kengo; Hamaguchi, Hiroko; Takemura, Kazuya; Nozawa, Masayuki; Kitamura, Takahiro; Yamamoto, Yoshifumi; Uno, Atsuhiko

    2018-04-01

    To examine whether lactate dehydrogenase (LDH) can predict the prognosis of oral cavity squamous cell carcinoma (OSCC) and to determine the optimal cut-off values for LDH. This retrospective study included 184 patients with OSCC, treated with surgery between 2006 and 2014. The association between LDH and T, N classification was investigated using the Mann-Whitney test. Cut-off values for LDH were determined with a recursive partitioning analysis (RPA). Survival rates were estimated using the Kaplan-Meier method. A Cox hazard model was used to assess the prognostic capability of LDH. There was no association between LDH and T or N classification (p = .657, .619, respectively). RPA determined the cut-off values for LDH as 160 and 220 IU/L. The five year survival for low-, moderate-, and high-LDH groups were 87.7, 73.7, and 50.9%, respectively (p < .001). The hazard ratios (HRs) for death in moderate- and high-LDH groups were 2.92 (95%CI =1.02-12.30, p = .001) and 7.36 (95%CI =2.54-31.20, p < .001), respectively. The model including LDH-based stratification (Akaike's information criterion (AIC) = 516) was better than the model including clinical stage (AIC =528). Pretreatment serum LDH is an independent prognostic factor for overall survival in patients with OSCC.

  17. Controlled release of ibuprofen using Mg Al LDH nano carrier

    Science.gov (United States)

    Dasgupta, Sudip

    2017-08-01

    In the present study, NSAID (non-steroidal anti-inflammatory drugs) such as ibuprofen in anionic form has been intercalated in-situ into the interlayer space of Mg Al LDH nanoparticle during co-precipitation of hydroxides. LDH nanohybrids are characterized by XRD, FTIR and UV spectroscopy. Mg1-xAlx(NO3)x(OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Ibuprofen was intercalated in inter layer space of Mg-Al LDH during coprecipitation of drug LDH conjugate in nitrogen atmosphere. The nanopowders synthesised were in the size range between 25 to 90 nm with an average particle size of 55 nm. XRD analysis proved that there is an increase in d003 spacing from 7.89 Å for pristine LDH to 14.71 Å for ibuprofen intercalated LDH due to the intercalation of bigger ibuprofen molecule in the interlayer space of LDH. FTIR analysis showed hydroxyl and carbonyl stretching of ibuprofen in LDH-IBU sample confirming the intercalation of ibuprofen in the interlayer structure of LDH. The drug release study in phosphate buffer solution at pH 7.4 using UV-Vis spectroscopy demonstrated that 50 % drug molecules were released in 15 hours and more than 85 % release was achieved after 36 hours.

  18. Low Retinal Dehydrogenase 1 (RALDH1) Level in Prepubertal Boys with Autism Spectrum Disorder: A Possible Link to Dopamine Dysfunction?

    Science.gov (United States)

    Pavăl, Denis; Rad, Florina; Rusu, Răzvan; Niculae, Alexandru-Ştefan; Colosi, Horaţiu Alexandru; Dobrescu, Iuliana; Dronca, Eleonora

    2017-08-31

    Retinal dehydrogenase 1 (RALDH1) is a cytosolic enzyme which acts both as a source of retinoic acid (RA) and as a detoxification enzyme. RALDH1 has key functions in the midbrain dopaminergic system, which influences motivation, cognition, and social behavior. Since dopamine has been increasingly linked to autism spectrum disorder (ASD), we asked whether RALDH1 could contribute to the autistic phenotype. Therefore, we investigated for the first time the levels of RALDH1 in autistic patients. To further assess the detoxification function of RALDH1, we also explored 4-hydroxynonenal protein adducts (4-HNE PAs) and reduced glutathione (GSH) levels. Moreover, considering the effect of testosterone on RALDH1 expression, we measured the second to fourth digit ratio (2D:4D ratio) for both hands, which reflects exposure to prenatal testosterone. Male patients with ASD (n=18; age, 62.9±4.3 months) and healthy controls (n=13; age, 78.1±4.9 months) were examined. Erythrocyte RALDH1, serum 4-HNE PAs and erythrocyte GSH levels were measured using colorimetric assays, and digit lengths were measured using digital calipers. We found significantly lower (-42.9%) RALDH1 levels in autistic patients as compared to controls ( p =0.032). However, there was no difference in 4-HNE PAs levels ( p =0.368), GSH levels ( p =0.586), or 2D:4D ratios ( p =0.246 in the left hand, p =0.584 in the right hand) between healthy controls and autistic subjects. We concluded that a subset of autistic patients had a low RALDH1 level. These results suggest that low RALDH1 levels could contribute to the autistic phenotype by reflecting a dopaminergic dysfunction.

  19. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes.

    Science.gov (United States)

    Fokina, K V; Yazykova, M Y; Danshina, P V; Schmalhausen, E V; Muronetz, V I

    2000-04-01

    Data are presented concerning the possible participation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in regulation of the glycolytic pathway and the level of 2,3-diphosphoglycerate in erythrocytes. Experimental support has been obtained for the hypothesis according to which a mild oxidation of GAPDH must result in acceleration of glycolysis and in decrease in the level of 2, 3-diphosphoglycerate due to the acyl phosphatase activity of the mildly oxidized enzyme. Incubation of erythrocytes in the presence of 1 mM hydrogen peroxide decreases 2,3-diphosphoglycerate concentration and causes accumulation of 3-phosphoglycerate. It is assumed that the acceleration of glycolysis in the presence of oxidative agents described previously by a number of authors could be attributed to the acyl phosphatase activity of GAPDH. A pH-dependent complexing of GAPDH and 3-phosphoglycerate kinase or 2, 3-diphosphoglycerate mutase is found to determine the fate of 1,3-diphosphoglycerate that serves as a substrate for the synthesis of 2,3-diphosphoglycerate as well as for the 3-phosphoglycerate kinase reaction in glycolysis. A withdrawal of the two-enzyme complexes from the erythrocyte lysates using Sepharose-bound anti-GAPDH antibodies prevents the pH-dependent accumulation of the metabolites. The role of GAPDH in the regulation of glycolysis and the level of 2,3-diphosphoglycerate in erythrocytes is discussed.

  20. Clinical value of jointly detection serum lactate dehydrogenase/pleural fluid adenosine deaminase and pleural fluid carcinoembryonic antigen in the identification of malignant pleural effusion.

    Science.gov (United States)

    Zhang, Fan; Hu, Lijuan; Wang, Junjun; Chen, Jian; Chen, Jie; Wang, Yumin

    2017-09-01

    Limited data are available for the diagnostic value, and for the diagnostic sensitivity and specificity of joint detection of serum lactate dehydrogenase (sLDH)/pleural fluid adenosine deaminase (pADA) and pleural fluid carcinoembryonic antigen (pCEA) in malignant pleural effusion (MPE). We collected 987 pleural effusion specimens (of which 318 were malignant pleural effusion, 374 were tubercular pleural effusion, and 295 were parapneumonic effusion specimens) from the First Affiliated Hospital of Wenzhou Medical University from July 2012 to March 2016. The pADA, sLDH, pleural fluid LDH (pLDH), serum C-reactive protein (sCRP), pleural fluid protein, pCEA, white blood cell (WBC), and red blood cell (RBC) were analyzed, and the clinical data of each group were collected for statistical analysis. The level of sLDH/pADA, pCEA, and RBC from the MPE group was markedly higher than the tuberculosis pleural effusion (TB) group (Mann-Whitney U=28422.000, 9278.000, 30518, P=.000, .000, .000) and the parapneumonic pleural fluid group (Mann-Whitney U=5972.500, 7113.000, 36750.500, P=.000, .000, .000). The receiver operating characteristic curve ROC showed that the area under the ROC curve (AUC) (=0.924, 0.841) of pCEA and sLDH/pADA (cutoff=4.9, 10.6) were significantly higher than other markers for the diagnosis of MPE. Thus, joint detection of pCEA and sLDH/pADA suggested that the sensitivity, specificity, and AUC was 0.94, 81.70, and 94.32 at the cutoff 0.16 and diagnostic performance was higher than pCEA or sLDH/pADA. Joint detection of sLDH/pADA and pCEA can be used as a good indicator for the identification of benign and MPE with higher sensitivity and specificity than pCEA or sLDH/pADA. © 2016 Wiley Periodicals, Inc.

  1. An Amperometric Biosensor Based on Alanine Dehydrogenase for the Determination of Low Level of Ammonium Ion in Water

    Directory of Open Access Journals (Sweden)

    Tan Ling Ling

    2011-01-01

    Full Text Available An amperometric electrochemical biosensor has been developed for ammonium (NH4+ ion detection by immobilising alanine dehydrogenase (AlaDH enzyme in a photocurable methacrylic membrane made up of poly(2-hydroxyethyl methacrylate (pHEMA on a screen-printed carbon paste electrode (SPE. The current detected was based on the electrocatalytic oxidation of nicotinamide adenine dinucleotide reduced (NADH that is proportional to the consumption of NH4+ ion whilst enzymatic amination of AlaDH and pyruvate is taking place. The biosensor was operated amperometrically at a potential of +0.6 V and optimum pH 7. The NH4+ biosensor demonstrated linear response to NH4+ ion concentration in the range of 0.03–1.02 mg/L with a limit of detection (LOD of 8.52 μg/L. The proposed method has been successfully applied to the determination of NH4+ ion in river water samples without any pretreatment. The levels of possible interferents in the waters were negligible to cause any interference on the proposed method. The analytical performance of the biosensor was comparable to the colorimetric method using Nesslerisation but with much lower detection limit and linear response range at ppb level.

  2. New enzymatic assay, parasite lactate dehydrogenase in diagnosis ...

    African Journals Online (AJOL)

    Background: The unique ability of plasmodial lactate dehydrogenase p(LDH) to utilise 3-acetyl pyridine dinucleotide (APAD) in lieu of NAD as a coenzyme in the conversion of pyruvate to lactate, led to the development of a biochemical assay for the detection of plasmodial parasitaemia. Researchers have reported that ...

  3. Assessment of creatine kinase and lactate dehydrogenase activities ...

    African Journals Online (AJOL)

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  4. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    Science.gov (United States)

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Exfoliation and dispersion of LDH modified with N ...

    Indian Academy of Sciences (India)

    N-tetrabromophthaloyl-glutamic in poly(vinyl alcohol): Morphological and thermal studies ... of cationic and non-ionic surfactants.20. Poly(vinyl alcohol) ... ultrasonic liquid processor, XL-2000 SERIES. Ultra- ... 2.5 Preparation of the PVA/M-LDH NC films. PVA/M-LDH .... ture, and light gray showed uniform ultrathin sheets that.

  6. The interactions between three typical PPCPs and LDH

    Science.gov (United States)

    Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan

    2018-03-01

    With a positively charged layered structure, layered double hydroxide has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) (tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)) by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, FT-IR spectroscopy and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the Cl-LDH for TC and DF were 1.85 mmol/g and 0.95 mmol/g, respectively. The adsorption isothermal of TC was fitted with the Freundlich adsorption model, and the adsorption isothermal of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs onto Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was mainly driven by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of anionic DF was attributed both to ion exchange of DF for Cl- and the electrostatic interaction between the negatively charged DF and the positively charged structure layer of Cl-LDH. Cl-LDH does not adsorb the neutral CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of the three selected PPCPs in the interlayer of Cl-LDH, which were responsible for the different uptake process of PPCPs on Cl-LDH.

  7. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    Directory of Open Access Journals (Sweden)

    Yaou Xu

    2013-06-01

    Full Text Available The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1 gene in yak (Bos grunniens. Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.

  8. Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis.

    Science.gov (United States)

    Miglietta, Fabio; Faneschi, Maria Letizia; Lobreglio, Giambattista; Palumbo, Claudio; Rizzo, Adriana; Cucurachi, Marco; Portaccio, Gerolamo; Guerra, Francesco; Pizzolante, Maria

    2015-09-01

    The aim of this study was to evaluate procalcitonin (PCT), C-reactive protein (CRP), platelet count (PLT) and serum lactate dehydrogenase (LDH) as early markers for diagnosis of SIRS, bacterial sepsis and systemic candidiasis in intensive care unit (ICU) patients. Based on blood culture results, the patients were divided into a sepsis group (70 patients), a SIRS group (42 patients) and a systemic candidiasis group (33 patients). PCT, CRP, LDH and PLT levels were measured on day 0 and on day 2 from the sepsis symptom onset. PCT levels were higher in Gram negative sepsis than those in Gram positive sepsis, although the P value between the two subgroups is not significant (P=0.095). Bacterial sepsis group had higher PCT and CRP levels compared with the systemic candidiasis group, whereas PLT and LDH levels showed similar levels in these two subgroups. The AUC for PCT (AUC: 0.892, P candidiasis groups (P=0.093 N.S.). In conclusion, PCT can be used as a preliminary marker in the event of clinical suspicion of systemic candidiasis; however, low PCT levels (candidiasis and SIRS groups.

  9. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Science.gov (United States)

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  10. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  11. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes and Alcoholic Ketosis Are Associated with the Serum Uric Acid Level in Japanese Alcoholic Men.

    Science.gov (United States)

    Yokoyama, Akira; Yokoyama, Tetsuji; Mizukami, Takeshi; Matsui, Toshifumi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2016-05-01

    To identify determinants of hyperuricemia in alcoholics. The serum uric acid (UA) levels of 1759 Japanese alcoholic men (≥40 years) were measured on their first visit or within 3 days after admission; ADH1B and ALDH2 genotyping on blood DNA samples were performed. Dipstick urinalyses for ketonuria and serum UA measurements were simultaneously performed for 621 men on their first visit. Serum UA levels of >416 μmol/l (7.0 mg/dl) and ≥535 μmol/l (9.0 mg/dl) were observed in 30.4 and 7.8% of the subjects, respectively. Ketonuria was positive in 35.9% of the subjects, and a multivariate analysis revealed that the ketosis level was positively associated with the UA level. The presence of the ADH1B*2 allele and the ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) among subjects with a high UA level of >416 μmol/l (vs. ≤416 μmol/l; 2.04 [1.58-2.65] and 1.48 [1.09-2.01], respectively) and those with a high UA level of ≥535 μmol/l (vs. ≤416 μmol/l; 2.29 [1.42-3.71] and 3.03 [1.51-6.08], respectively). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs (2.86 [1.61-5.10] and 6.21 [1.49-25.88] for a UA level of >416 μmol/l and ≥535 μmol/l, respectively), compared with the ADH1B*1/*1 plus ALDH2*1/*2 combination. The presence of diabetes and the consumption of Japanese sake rather than beer were negatively associated with the UA levels. The faster metabolism of ethanol and acetaldehyde by the ADH1B*2 allele and ALDH2*1/*1 genotype and higher ketosis levels were associated with higher UA levels in alcoholics, while diabetes and the consumption of sake were negative determinants. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  12. A potato tuber-expressed mNRA with homology to steroid dehydrogenases affects gibberellin levels and plant development

    NARCIS (Netherlands)

    Bachem, C.W.B.; Horvath, B.M.; Trindade, L.M.; Claassens, M.M.J.; Davelaar, E.; Jordi, W.J.R.M.; Visser, R.G.F.

    2001-01-01

    Using cDNA-AFLP RNA fingerprinting throughout potato tuber development, we have isolated a transcript-derived fragment (TDF511) with strong homology to plant steroid dehydrogenases. During in vitro tuberization, the abundance profile of the TDF shows close correlation to the process of tuber

  13. Regulation of glutamate dehydrogenase expression in the developing rat liver: control at different levels in the prenatal period

    NARCIS (Netherlands)

    Das, A. T.; Salvadó, J.; Boon, L.; Biharie, G.; Moorman, A. F.; Lamers, W. H.

    1996-01-01

    To study the regulation of the expression of glutamate dehydrogenase (Glu-DH) in rat liver during development, the Glu-DH mRNA concentration in the liver of rats ranging in age from 14 days prenatal development to 3 months after birth was determined. This concentration increased up to two days

  14. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    OpenAIRE

    Wisselink, H. Wouter; Mars, Astrid E.; van der Meer, Pieter; Eggink, Gerrit; Jeroen Hugenholtz

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and 13C nuclear magnetic resonance analysis revealed that small amounts (

  15. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance

  16. Predictive value of mid-trimester amniotic fluid high-sensitive C-reactive protein, ferritin, and lactate dehydrogenase for fetal growth restriction

    Directory of Open Access Journals (Sweden)

    Borna Sedigheh

    2009-10-01

    Full Text Available Background: Fetal growth restriction (FGR is surprisingly common with placental dysfunction occurring in about 3% of pregnancies and despite advances in obstetric care, FGR remains a major problem in developed countries. Aim: The purpose of this study is to find out the predictive value of amniotic fluid high sensitive C-reactive protein (hs-CRP, ferritin, and lactate dehydrogenase (LDH for FGR. Materials and Methods: This prospective strategy of this study has been conducted on pregnant women who underwent genetic amniocentesis between 15th and 20th weeks of gestation. All patients were followed up on until delivery. Patients with abnormal karyotype and iatrogenic preterm delivery for fetal and maternal indications were excluded. The samples were immediately sent to laboratory for cytogenetic and biochemical examination. Non-parametric tests and receiver-operator characteristic curve analysis were used for statistical purpose. Results: A significant correlation between incremental amniotic fluid alpha fetoprotein (αFPr and LDH levels and FGR at gestational weeks 15th-20th was found out. We also found an optimum cut-off value> 140 IU/L for the amniotic fluid LDH concentration with a sensitivity of 87.5% and a specificity of 82.4% for the prediction of FGR. Conclusion: Once the LDH value is confirmed, it could serve as a prediction factor for FGR at the time of genetic amniocentesis at gestational weeks 15-20.

  17. Characterization of Plasmodium Lactate Dehydrogenase and Histidine-Rich Protein 2 Clearance Patterns via Rapid On-Bead Detection from a Single Dried Blood Spot

    Science.gov (United States)

    Markwalter, Christine F.; Gibson, Lauren E.; Mudenda, Lwiindi; Kimmel, Danielle W.; Mbambara, Saidon; Thuma, Philip E.; Wright, David W.

    2018-01-01

    Abstract. A rapid, on-bead enzyme-linked immunosorbent assay for Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein 2 (HRP2) was adapted for use with dried blood spot (DBS) samples. This assay detected both biomarkers from a single DBS sample with only 45 minutes of total incubation time and detection limits of 600 ± 500 pM (pLDH) and 69 ± 30 pM (HRP2), corresponding to 150 and 24 parasites/μL, respectively. This sensitive and reproducible on-bead detection method was used to quantify pLDH and HRP2 in patient DBS samples from rural Zambia collected at multiple time points after treatment. Biomarker clearance patterns relative to parasite clearance were determined; pLDH clearance followed closely with parasite clearance, whereas most patients maintained detectable levels of HRP2 for 35–52 days after treatment. Furthermore, weak-to-moderate correlations between biomarker concentration and parasite densities were found for both biomarkers. This work demonstrates the utility of the developed assay for epidemiological study and surveillance of malaria. PMID:29557342

  18. Glyceraldehyde-3-phosphate dehydrogenase is largely unresponsive to low regulatory levels of hydrogen peroxide in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sousa-Lopes Ana

    2010-12-01

    Full Text Available Abstract Background The reversible oxidation of protein SH groups has been considered to be the basis of redox regulation by which changes in hydrogen peroxide (H2O2 concentrations may control protein function. Several proteins become S-glutathionylated following exposure to H2O2 in a variety of cellular systems. In yeast, when using a high initial H2O2 dose, glyceraldehyde-3-phosphate dehydrogenase (GAPDH was identified as the major target of S-glutathionylation which leads to reversible inactivation of the enzyme. GAPDH inactivation by H2O2 functions to reroute carbohydrate flux to produce NADPH. Here we report the effect of low regulatory H2O2 doses on GAPDH activity and expression in Saccharomyces cerevisiae. Results A calibrated and controlled method of H2O2 delivery - the steady-state titration - in which cells are exposed to constant, low, and known H2O2 concentrations, was used in this study. This technique, contrary to the common bolus addition, allows determining which H2O2 concentrations trigger specific biological responses. This work shows that both in exponential- and stationary-phase cells, low regulatory H2O2 concentrations induce a large upregulation of catalase, a fingerprint of the cellular oxidative stress response, but GAPDH oxidation and the ensuing activity decrease are only observed at death-inducing high H2O2 doses. GAPDH activity is constant upon incubation with sub-lethal H2O2 doses, but in stationary-phase cells there is a differential response in the expression of the three GAPDH isoenzymes: Tdh1p is strongly upregulated while Tdh2p/Tdh3p are slightly downregulated. Conclusions In yeast GAPDH activity is largely unresponsive to low to moderate H2O2 doses. This points to a scenario where (a cellular redoxins efficiently cope with levels of GAPDH oxidation induced by a vast range of sub-lethal H2O2 concentrations, (b inactivation of GAPDH cannot be considered a sensitive biomarker of H2O2-induced oxidation in vivo

  19. [A clinical evaluation of the increased serum myoglobin: creatine phosphokinase and lactic dehydrogenase in patients with thyroid disorders (author's transl)].

    Science.gov (United States)

    Shimoda, S I; Kasai, K

    1980-08-20

    Since muscle dysfunction is frequently associated with a hypothyroid state, many clinical reports have indicated that serum enzyme activities derived from the muscle such as creatine phosphokinase (CPK), lactic dehydrogenase (LDH) and glutamic-oxaloacetic transamynase (GOT) are elevated. These enzyme activities in the serum of hyperthyroidism, euthyroidism and hypothyrodism have been known to have a good inverse correlation with protein-bound iodine (PBI). Therefore, as part of a study of the relationship between thyroid states and muscle tissue, values of serum myoblobin (Mb) were measured by RIA. The values of Mb in untreated hyperthyroidism were significantly lower (P<0.01) and, in untreated hypothyroidism, Mb values were significantly higher (p<0.001) than in normal subjects. There was a significant inverse correlation (p<0.01) between T4 or T3 concentration and Mb levels in these subjects. The relationship found between either Mb and LDH or Mb and CPK was also studied in the present study, and it was found that Mb significantly correlated to both LDH and CPK (P<0.001). Abnormalities of these enzyme levels in serum returned to the normal range rapidly after the correction of the abnormal thyroid states in each patient.

  20. Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum.

    Science.gov (United States)

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Harnyuttanakorn, Pongchai

    2018-01-09

    Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of

  1. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    Directory of Open Access Journals (Sweden)

    Stickeler Elmar

    2010-04-01

    Full Text Available Abstract Aims As one of the five Lactate dehydrogenase (LDH isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung cancers (n = 269 and non neoplastic lung tissue (n = 35 were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010. The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1 expression were correlated to LDH5 expression. Results 89.5% (n = 238 of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34 (p Conclusions LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation.

  2. Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors.

    Science.gov (United States)

    Singh, Saurabh; Shinde, Nanasaheb M; Xia, Qi Xun; Gopi, Chandu V V M; Yun, Je Moon; Mane, Rajaram S; Kim, Kwang Ho

    2017-10-14

    Herein, we tailor the surface morphology of nickel-manganese-layered double hydroxide (NiMn-LDH) nanostructures on 3D nickel-foam via a step-wise cobalt (Co)-doping hydrothermal chemical process. At the 10% optimum level of Co-doping, we noticed a thriving tuned morphological pattern of NiMn-LDH nanostructures (NiCoMn-LDH (10%)) in terms of the porosity of the nanosheet (NS) arrays which not only improves the rate capability as well as cycling stability, but also demonstrates nearly two-fold specific capacitance enhancement compared to Co-free and other NiCoMn-LDH electrodes with a half-cell configuration in 3 M KOH, suggesting that Co-doping is indispensable for improving the electrochemical performance of NiMn-LDH electrodes. Moreover, when this high performing NiCoMn-LDH (10%) electrode is employed as a cathode material to fabricate an asymmetric supercapacitor (ASC) device with reduced graphene oxide (rGO) as an anode material, excellent energy storage performance (57.4 Wh kg -1 at 749.9 W kg -1 ) and cycling stability (89.4% capacitive retention even after 2500 cycles) are corroborated. Additionally, we present a demonstration of illuminating a light emitting diode for 600 s with the NiCoMn-LDH (10%)//rGO ASC device, evidencing the potential of the NiCoMn-LDH (10%) electrode in fabricating energy storage devices.

  3. Level of coenzyme A and the activity of certain dehydrogenases under chronic low dose X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cherkasova, L A; Novik, V A; Tsychun, G F [AN Belorusskoj SSR, Minsk. Inst. Fiziologii

    1975-01-01

    A study was made of the effect of long-term x ray irradiation (cumulative dose 50 R) on: the content of co-enzyme A (KoA) in the brain and liver, the activity of a number of oxydizing reducing enzymes in the brain mitochondria and heart muscle, and the blood glucocorticoid content. It was established that the metabolism of brain and liver KoA is quite stable, the enzymes of the brain tricarbonic acids and pyruvate-dehydrogenase cycle are labile.

  4. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    Science.gov (United States)

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  5. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    Science.gov (United States)

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  6. Comparing the impact of melatonin and captopril on early effects of radiation on the heart tissue by studying glutathione, malondialdehyde, and lactate dehydrogenase enzyme activity in rats

    International Nuclear Information System (INIS)

    Shirazi, Alireza; Tabatabaie, Farnaz; Ghazi-Khansari, Mahmoud; Mirzaei, Hamidreza

    2015-01-01

    Prevention of secondary malignancy while the patient is receiving radiotherapy for the management of primary cancer has been an enormous challenge for biological and medical safety. The aim of the study is to compare protective effects of melatonin and captopril on early effects of radiation on the heart tissue of rats. Forty-eight adult male Wistar rats weighing 180-220 g were used. The rats were divided into six groups and the rats were exposed to 8 Gy whole body dose from Cobalt-60 sources. Thirty minutes prior to irradiation, six animals received melatonin (100 mg/kg body weight), and six animals received captopril (50 mg/kg body weight). All groups were sacrificed 10 days post-irradiation, and hearts were collected. Malondialdehyde (MDA), lactate dehydrogenase (LDH), and glutathione (GSH) were measured to evaluate cellular oxidative stress-induced injury. The biochemical data are presented as mean ± standard error of the mean, and the difference between the groups was analyzed using a two-way variance analysis. Treatment with captopril resulted in a significant increase in LDH and MDA, although the level of GSH was decreased (P < 0.01). MDA and LDH levels were decreased after melatonin treatment while GSH level was increased (P < 0.001). Melatonin has protective effects following radiation, while treatment with captopril post-irradiation seems to be radiosensitizing and does not have protective effects against radiation exposure. (author)

  7. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  8. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Creatine Kinase and Lactate Dehydrogenase Responses After Different Resistance and Aerobic Exercise Protocols

    Directory of Open Access Journals (Sweden)

    Callegari Gustavo A.

    2017-08-01

    Full Text Available The aim of this study was to investigate the responses of creatine kinase (CK and lactate dehydrogenase (LDH after performing different resistance and aerobic exercise protocols. Twelve recreationally trained men (age, 23.2 ± 5.6 years; body mass, 84.3 ± 9.3 kg; body height, 178.9 ± 4.5 cm; and BMI, 26.3 ± 2.3 kg·m2 volunteered to participate in this study. All subjects were randomly assigned to four experimental protocols (crossover: (a aerobic training at 60% of VO2max, (b aerobic training at 80% of VO2max, (c a resistance exercise (RE session with a bi-set protocol, and (d an RE session with a multiple sets protocol. Blood samples were collected before, immediately after and 24 hours following the experimental protocols. After 24 hours, there was a significant increase in CK for the 80% of VO2max protocol vs. the bi-set RE session (p = 0.016. Immediately after the protocols, we observed a significant increase in LDH among certain groups compared to others, as follows: multiple sets RE session vs. 60% of VO2max, bi-set RE session vs. 60% of VO2max, multiple sets RE session vs. 80% of VO2max, and bi-set RE session vs. 80% of VO2max (p = 0.008, p = 0.013; p = 0.002, p = 0.004, respectively. In conclusion, aerobic exercise performed at 80% of VO2max appears to elevate plasma CK levels more than bi-set RE sessions. However, the bi-set and multiple sets RE sessions appeared to trigger greater levels of blood LDH compared to aerobic protocols performed at 60% and 80% of VO2max.

  10. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury.

    Science.gov (United States)

    Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra

    2010-04-23

    The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  11. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    Directory of Open Access Journals (Sweden)

    de Reggi Max

    2010-04-01

    Full Text Available Abstract Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. Results We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. Conclusions These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  12. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso

    OpenAIRE

    Maltha, Jessica; Guiraud, Issa; Lompo, Palpouguini; Kaboré, Bérenger; Gillet, Philippe; Van Geet, Chris; Tinto, Halidou; Jacobs, Jan

    2014-01-01

    Background In most sub-Saharan African countries malaria rapid diagnostic tests (RDTs) are now used for the diagnosis of malaria. Most RDTs used detect Plasmodium falciparum histidine-rich protein-2 (PfHRP2), though P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH)-detecting RDTs may have advantages over PfHRP2-detecting RDTs. Only few data are available on the use of RDTs in severe illness and the present study compared Pf-pLDH to PfHRP2-detection. Methods Hospitalized children...

  13. [Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder].

    Science.gov (United States)

    Zhou, Rong-Yi; Wang, Jiao-Jiao; You, Yue; Sun, Ji-Chao; Song, Yu-Chen; Yuan, Hai-Xia; Han, Xin-Min

    2017-05-01

    To study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD). A total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA. Compared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (PATPase activity (PATPase activity (PATPase activity (PATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.

  14. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  15. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  16. Oxamate, but Not Selective Targeting of LDH-A, Inhibits Medulloblastoma Cell Glycolysis, Growth and Motility

    Directory of Open Access Journals (Sweden)

    Cara J. Valvona

    2018-03-01

    Full Text Available Medulloblastoma is the most common malignant paediatric brain tumour and current therapies often leave patients with severe neurological disabilities. Four major molecular groups of medulloblastoma have been identified (Wnt, Shh, Group 3 and Group 4, which include additional, recently defined subgroups with different prognosis and genetic characteristics. Lactate dehydrogenase A (LDHA is a key enzyme in the aerobic glycolysis pathway, an abnormal metabolic pathway commonly observed in cancers, associated with tumour progression and metastasis. Studies indicate MBs have a glycolytic phenotype; however, LDHA has not yet been explored as a therapeutic target for medulloblastoma. LDHA expression was examined in medulloblastoma subgroups and cell lines. The effects of LDHA inhibition by oxamate or LDHA siRNA on medulloblastoma cell line metabolism, migration and proliferation were examined. LDHA was significantly overexpressed in Group 3 and Wnt MBs compared to non-neoplastic cerebellum. Furthermore, we found that oxamate significantly attenuated glycolysis, proliferation and motility in medulloblastoma cell lines, but LDHA siRNA did not. We established that aerobic glycolysis is a potential therapeutic target for medulloblastoma, but broader LDH inhibition (LDHA, B, and C may be more appropriate than LDHA inhibition alone.

  17. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    Science.gov (United States)

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  18. Effects of Sesame (Sesamum indicum L.) Supplementation on Creatine Kinase, Lactate Dehydrogenase, Oxidative Stress Markers, and Aerobic Capacity in Semi-Professional Soccer Players.

    Science.gov (United States)

    Barbosa, Carlos V da Silva; Silva, Alexandre S; de Oliveira, Caio V C; Massa, Nayara M L; de Sousa, Yasmim R F; da Costa, Whyara K A; Silva, Ayice C; Delatorre, Plínio; Carvalho, Rhayane; Braga, Valdir de Andrade; Magnani, Marciane

    2017-01-01

    Nutritional intervention with antioxidants rich foods has been considered a strategy to minimize the effects of overtraining in athletes. This experimental, randomized, and placebo-controlled study evaluated the effects of consumption of sesame ( Sesamum indicum L.) on muscle damage markers, oxidative stress, systemic inflammation, and aerobic performance in male semi-professional soccer players. Twenty athletes were randomly assigned to groups that received 40 g (two tablespoons) per day of sesame or a placebo during 28 days of regular training (exposed to routine training that includes loads of heavy training in the final half of the season). Before and after intervention, creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), C-reactive protein (hs-CRP), and aerobic capacity were evaluated. Before intervention, a physiologic imbalance was noted in both groups related to CK and LDH levels. Sesame intake caused a reduction of CK (19%, p < 0.05), LDH (37%, p < 0.05), MDA (55%, p < 0.05) and hs-CRP (53%, p < 0.05) and increased SOD (14%, p < 0.05), vitamin A (25%, p < 0.05), and vitamin E (65%, p < 0.05) in the experimental group. These phenomena were accompanied by increased aerobic capacity (17%, p < 0.05). The placebo group showed an increase in CK (5%, p < 0.05) and no significant change in LDH, SOD or vitamin A. MDA levels decreased (21%, p < 0.05) and vitamin E increased (14%, p < 0.05) in the placebo group, but to a much lesser extent than in the experimental group. These results show that sesame consumption may reduce muscle damage and oxidative stress while improving the aerobic capacity in soccer players.

  19. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal

    2003-01-01

    production levels of G6PDH on xylose fermentation. We used a synthetic promoter library and the copper-regulated CUP1 promoter to generate G6PDH-activities between 0% and 179% of the wildtype level. G6PDH-activities of 1% and 6% of the wild-type level resulted in 2.8- and 5.1-fold increase in specific xylose...

  20. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    Directory of Open Access Journals (Sweden)

    Tahereh Esmaeilpour

    2014-01-01

    Full Text Available Background: Application of follicular fluid (FF and platelet-activating factor (PAF in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase chain reaction (q-RT PCR and western blotting after it was treated with optimized concentrations of FF and PAF in twenty asthenozoospermic samples. Also, LDH-C expression was evaluated in five normozoospermic samples. Results: Samples with 75% FF and 100 nM of PAF had an increase in their percentages of progressive and slowly motile sperms and a decrease in their percentages of non-progressive and non-motile sperms. Moreover, LDH-C mRNA transcripts were not changed following PAF and FF treatment, and LDH-C protein was detected in highly progressive motile specimens treated with FF in the asthenozoospermic samples. Furthermore, LDH-C expression was more detectable in the normal sperms. Conclusion: Our results indicated that PAF had more beneficial effects than FF on sperm motility in the asthenozoospermic samples (P=0.0001, although the LDH-C expressions of the sperms were not changed significantly in both groups. We found no association between LDH-C expression and sperm motility after FF and PAF actions. This finding, however, requires further investigation. The fact that LDH-C protein was detected in the normozoospermic, but not asthenozoospermic, samples could be cited as a reason for the infertility in these patients.

  1. Enzymatic and thermodynamic profiles of a heterotetramer lactate dehydrogenase isozyme in swine

    International Nuclear Information System (INIS)

    Goto, Tatsufumi; Sugawara, Kotomi; Nakamura, Shigeyoshi; Kidokoro, Shun-Ichi; Wakui, Hideki; Nunomura, Wataru

    2016-01-01

    Lactate dehydrogenase (LDH) is a glycolytic enzyme that catalyzes the final step of glycolysis and produces NAD + . In somatic cells, LDH forms homotetramers and heterotetramers that are encoded by two different genes: LDHA (skeletal muscle type, M) and LDHB (heart type, H). Analysis of LDH isozymes is important for understanding the physiological role of homotetramers and heterotetramers and for optimizing inhibition of their enzymatic activity as it may result in distinct effects. Previously, we reported that hydroxychloroquine (HCQ) inhibited LDH activity, but we did not examine isozyme specificity. In the present study, we isolated heterotetrameric LDH (H 2 M 2 ) from swine brain, determined its kinetic and thermodynamic properties, and examined the effect of HCQ on its activity compared to homotetrameric LDH isozymes. We show that: (1) the K m values for H 2 M 2 –mediated catalysis of pyruvate or lactate were intermediate compared to those for the homotetrameric isozymes, M 4 and H 4 whereas the V max values were similar; (2) the K m and V max values for H 2 M 2 –mediated catalysis of NADH were not significantly different among LDH isozymes; (3) the values for activation energy and van't Hoff enthalpy changes for pyruvate reduction of H 2 M 2 were intermediate compared to those for the homotetrameric isozymes; (4) the temperature for half residual activity of H 2 M 2 was closer to that for M 4 than for H 4 . We also show that HCQ had different affinities for various LDH isozymes. - Highlights: • Heterotetrameric (H 2 M 2 ) LDH isozyme was isolated from swine brain. • Kinetics of H 2 M 2 were intermediate between the two homotetramers. • Thermodynamics of H 2 M 2 were also intermediate between the two homotetramers. • Hydroxychloroquine inhibited more strongly H 2 M 2 than homotetramers.

  2. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Directory of Open Access Journals (Sweden)

    Cristescu Melania E

    2011-07-01

    Full Text Available Abstract Background Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh. Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S for Glutamic acid (F at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.

  3. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  4. Decreased hematocrit-to-viscosity ratio and increased lactate dehydrogenase level in patients with sickle cell anemia and recurrent leg ulcers.

    Directory of Open Access Journals (Sweden)

    Philippe Connes

    Full Text Available Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA but the exact pathophysiological mechanisms are unknown. The aim of this study was to identify the hematological and hemorheological alterations associated with recurrent leg ulcers. Sixty-two SCA patients who never experienced leg ulcers (ULC- and 13 SCA patients with a positive history of recurrent leg ulcers (ULC+--with no leg ulcers at the time of the study--were recruited. All patients were in steady state condition. Blood was sampled to perform hematological, biochemical (hemolytic markers and hemorheological analyses (blood viscosity, red blood cell deformability and aggregation properties. The hematocrit-to-viscosity ratio (HVR, which reflects the red blood cell oxygen transport efficiency, was calculated for each subject. Patients from the ULC+ group were older than patients from the ULC- group. Anemia (red blood cell count, hematocrit and hemoglobin levels was more pronounced in the ULC+ group. Lactate dehydrogenase level was higher in the ULC+ group than in the ULC- group. Neither blood viscosity, nor RBC aggregation properties differed between the two groups. HVR was lower and RBC deformability tended to be reduced in the ULC+ group. Our study confirmed increased hemolytic rate and anemia in SCA patients with leg ulcers recurrence. Furthermore, our data suggest that although systemic blood viscosity is not a major factor involved in the pathophysiology of this complication, decreased red blood cell oxygen transport efficiency (i.e., low hematocrit/viscosity ratio may play a role.

  5. Clinical implications of thymidylate synthetase, dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activity levels in colorectal carcinoma following radical resection and administration of adjuvant 5-FU chemotherapy

    International Nuclear Information System (INIS)

    Ishikawa, Masashi; Miyauchi, Takayuki; Kashiwagi, Yutaka

    2008-01-01

    A number of studies have investigated whether the activity levels of enzymes involved in 5-fluorouracil (5-FU) metabolism are prognostic factors for survival in patients with colorectal carcinoma. Most reports have examined thymidylate synthetase (TS) and dihydropyrimidine dehydrogenase (DPD) in unresectable or metastatic cases, therefore it is unclear whether the activity of these enzymes is of prognostic value in colorectal cancer patients treated with radical resection and adjuvant chemotherapy with 5-FU. This study examined fresh frozen specimens of colorectal carcinoma from 40 patients who had undergone curative operation and were orally administered adjuvant tegafur/uracil (UFT) chemotherapy. TS, DPD and orotate phosphoribosyl transferase (OPRT) activities were assayed in cancer tissue and adjacent normal tissue and their association with clinicopathological variables was investigated. In addition, the relationships between TS, DPD and OPRT activities and patient survival were examined to determine whether any of these enzymes could be useful prognostic factors. While there was no clear relationship between pathological findings and TS or DPD activity, OPRT activity was significantly lower in tumors with lymph node metastasis than in tumors lacking lymph node metastasis. Postoperative survival was significantly better in the groups with low TS activity and/or high OPRT activity. TS and OPRT activity levels in tumor tissue may be important prognostic factors for survival in Dukes' B and C colorectal carcinoma with radical resection and adjuvant chemotherapy with UFT

  6. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  7. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    Science.gov (United States)

    Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain

    2011-03-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  8. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    Science.gov (United States)

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  9. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors.

    Science.gov (United States)

    Kohlmann, Anna; Zech, Stephan G; Li, Feng; Zhou, Tianjun; Squillace, Rachel M; Commodore, Lois; Greenfield, Matthew T; Lu, Xiaohui; Miller, David P; Huang, Wei-Sheng; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Zhang, Sen; Dodd, Rory; Liu, Shuangying; Xu, Rongsong; Xu, Yongjin; Miret, Juan J; Rivera, Victor; Clackson, Tim; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2013-02-14

    Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.

  10. Purification and Electrophoretic Characterization of Lactate Dehydrogenase from Mammalian Blood: A Different Twist on a Classic Experiment

    Science.gov (United States)

    Brunauer, Linda S.

    2016-01-01

    A multiweek protein purification suite, suitable for upper-division biochemistry or biotechnology undergraduate students, is described. Students work in small teams to isolate the enzyme lactate dehydrogenase (LDH) from a nontraditional tissue source, mammalian blood, using a sequence of three column chromatographic procedures: ion-exchange, size…

  11. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  12. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Directory of Open Access Journals (Sweden)

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  13. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids

    Institute of Scientific and Technical Information of China (English)

    Sunil P Lonkar; Jean-Marie Raquez; Philippe Dubois

    2015-01-01

    A facile and rapid method to synthesize graphene/layered double hydroxide (LDH) nanohybrids by a micro-wave technique is demonstrated. The synthesis procedure involves hydrothermal crystallization of Zn–Al LDH at the same time in situ reduction of graphene oxide (GO) to graphene. The microstructure, composition, and morphology of the resulting graphene/LDH nanohybrids were characterized. The results confirmed the formation of nanohybrids and the reduction of graphene oxide. The growth mechanism of LDH and in situ reduction of GO were discussed. The LDH sheet growth was found to prevent the scrolling of graphene layers in resulting hybrids. The electrochemical properties exhibit superior performance for graphene/Zn–Al LDH hybrids over pristine graphene. The present approach may open a strategy in hybridizing graphene with multimetallic nano-oxides and hydroxides using microwave method.

  14. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide(LDH) Nanohybrids

    Institute of Scientific and Technical Information of China (English)

    Sunil P.Lonkar; Jean-Marie Raquez; Philippe Dubois

    2015-01-01

    A facile and rapid method to synthesize graphene/layered double hydroxide(LDH)nanohybrids by a microwave technique is demonstrated.The synthesis procedure involves hydrothermal crystallization of Zn–Al LDH at the same time in situ reduction of graphene oxide(GO)to graphene.The microstructure,composition,and morphology of the resulting graphene/LDH nanohybrids were characterized.The results confirmed the formation of nanohybrids and the reduction of graphene oxide.The growth mechanism of LDH and in situ reduction of GO were discussed.The LDH sheet growth was found to prevent the scrolling of graphene layers in resulting hybrids.The electrochemical properties exhibit superior performance for graphene/Zn–Al LDH hybrids over pristine graphene.The present approach may open a strategy in hybridizing graphene with multimetallic nano-oxides and hydroxides using microwave method.

  15. Development of a photoelectrochemical lactic dehydrogenase biosensor using multi-wall carbon nanotube-TiO2 nanoparticle composite as coenzyme regeneration tool

    International Nuclear Information System (INIS)

    Liu, Xiaoqiang; Yan, Rui; Zhu, Jie; Huo, Xiaohe; Wang, Xinhai

    2015-01-01

    Highlights: •Multi-wall Carbon Nanotube-TiO 2 nanoparticle composite was synthesized by hydrothermal method •The composite was characterized by TEM, XRD, FT-IR •A photoelectrochemical (PEC) lactic dehydrogenase (LDH) biosensor was developed based on the composite •The composite acts as both coenzyme regeneration tool and immobilization material •The PEC biosensor shows superiority over the electrochemical LDH biosensors in analytical performance -- Abstract: A novel photoelectrochemical (PEC) lactic dehydrogenase (LDH) biosensor was developed based on a multi-wall carbon nanotube (MWCNT)-TiO 2 nanoparticle (TNP) composite platform. This composite platform can not only aid in regeneration of nicotinamide adenine dinucleotide (NAD + ) in the enzymatic cycle, but also immobilize enzymes on electrode surface. TNPs were grown on MWCNT surface through a hydrothermal method and the composite was characterized by various spectroscopic techniques. The electrochemical performance of the LDH biosensors has demonstrated that the composite is a feasible immobilization matrix for LDH. The PEC experiments have confirmed that NAD + can be regenerated by the holes produced by irradiating MWCNT-TNP composite to fulfill the enzyme catalytic cycle. The analytical performance of the PEC LDH biosensor was studied by measuring its photocurrents. The dynamic range, sensitivity and limit of detection of the biosensor were estimated to be 0.5 to 120 μM, 0.0242 μA μM −1 and 0.1 μM respectively, which are superior to those of electrochemical LDH biosensors

  16. Low temperature electron beam irradiation effects on the lactate dehydrogenase activity

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Oproiu, C.; Popescu, Alina; Hategan, Dora; Morariu, V. V.

    1998-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range 0-400 Gy at 20 deg. C, -3 deg. C and -196 deg. C on the global enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed a monoexponential decrease in the enzymatic activity of irradiated LDH at all irradiation temperatures independently of direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 deg. C drastically influences the results. Our data suggest that freeze-thawing in two steps down to -196 deg. C make LDH insensitive to irradiation, while one step freeze-thawing procedure results in a gradual activity loss with increasing dose irradiation. This data can be interpreted in terms of different conformational changes during the particular freeze-thawing process. (authors)

  17. The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) leaves

    Czech Academy of Sciences Publication Activity Database

    Gaudinová, Alena; Dobrev, Petre; Šolcová, Blanka; Novák, Ondřej; Strnad, Miroslav; Friedecký, D.; Motyka, Václav

    2005-01-01

    Roč. 24, - (2005), s. 188-200 ISSN 0721-7595 R&D Projects: GA ČR GA206/03/0313 Institutional research plan: CEZ:AV0Z50380511 Keywords : Aromatic cytokinin * cis-zeatin * Cytokinin oxidase/dehydrogenase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.695, year: 2005

  18. Bioactivity-guided identification and cell signaling technology to delineate the lactate dehydrogenase A inhibition effects of Spatholobus suberectus on breast cancer.

    Directory of Open Access Journals (Sweden)

    Zhiyu Wang

    Full Text Available Aerobic glycolysis is an important feature of cancer cells. In recent years, lactate dehydrogenase A (LDH-A is emerging as a novel therapeutic target for cancer treatment. Seeking LDH-A inhibitors from natural resources has been paid much attention for drug discovery. Spatholobus suberectus (SS is a common herbal medicine used in China for treating blood-stasis related diseases such as cancer. This study aims to explore the potential medicinal application of SS for LDH-A inhibition on breast cancer and to determine its bioactive compounds. We found that SS manifested apoptosis-inducing, cell cycle arresting and anti-LDH-A activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cell. Oral herbal extracts (1 g/kg/d administration attenuated tumor growth and LDH-A expression in both breast cancer xenografts. Bioactivity-guided fractionation finally identified epigallocatechin as a key compound in SS inhibiting LDH-A activity. Further studies revealed that LDH-A plays a critical role in mediating the apoptosis-induction effects of epigallocatechin. The inhibited LDH-A activities by epigallocatechin is attributed to disassociation of Hsp90 from HIF-1α and subsequent accelerated HIF-1α proteasome degradation. In vivo study also demonstrated that epigallocatechin could significantly inhibit breast cancer growth, HIF-1α/LDH-A expression and trigger apoptosis without bringing toxic effects. The preclinical study thus suggests that the potential medicinal application of SS for inhibiting cancer LDH-A activity and the possibility to consider epigallocatechin as a lead compound to develop LDH-A inhibitors. Future studies of SS for chemoprevention or chemosensitization against breast cancer are thus warranted.

  19. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  20. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of l-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    International Nuclear Information System (INIS)

    Zhang, Yanfeng; Gao, Xiaoli

    2011-01-01

    Recombinant wild-type l-lactate dehydrogenase from B. subtilis (BsLDH) was cocrystallized with fructose 1,6-bisphosphate and NAD + and the crystal diffracted to 2.38 Å resolution. The H171C mutant of BsLDH was also crystallized as the apoenzyme and in complex with NAD + and the crystals diffracted to 2.20 and 2.49 Å, respectively. All crystals belonged to space group P3. l-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to l-lactate with the simultaneous oxidation of NADH to NAD + . In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD + and the crystal diffracted to 2.38 Å resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 Å. BsLDH-H171C was also crystallized as the apoenzyme and in complex with NAD + , and data sets were collected to 2.20 and 2.49 Å resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 Å and a = b = 133.43, c = 99.09 Å, respectively. Tetramers were observed in the asymmetric units of all three crystals

  1. Dynamic water vapor sorption on Mg(Ga3+)O mixed oxides: Analysis of the LDH thermal regeneration process

    International Nuclear Information System (INIS)

    Bedolla-Valdez, Zaira I.; Ramirez-Solis, Sergio; Prince, Julia; Lima, Enrique; Pfeiffer, Heriberto; Valente, Jaime S.

    2013-01-01

    Highlights: ► Ga-LDH regeneration process was analyzed varying the relative humidity. ► Ga-LDH rehydrates faster than aluminum content LDH materials. ► Gallium seems to favor diffusion processeses during LDH regeneration. - Abstract: The rehydration process of the calcined MgGa-layered double hydroxides (Ga-LDH) was analyzed at different temperatures and relative humidities. Results clearly showed that Ga-LDH sample presented an excellent regeneration kinetic, in comparison to the aluminum typical one. Different techniques such as X-ray diffraction, infrared spectroscopy and thermal analysis were used to elucidate the presented results

  2. Dynamic water vapor sorption on Mg(Ga{sup 3+})O mixed oxides: Analysis of the LDH thermal regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Bedolla-Valdez, Zaira I.; Ramirez-Solis, Sergio [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510, México, DF (Mexico); Prince, Julia [Instituto Mexicano del Petróleo, Eje Central 152, CP 07730, México, DF (Mexico); Lima, Enrique [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510, México, DF (Mexico); Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510, México, DF (Mexico); Valente, Jaime S. [Instituto Mexicano del Petróleo, Eje Central 152, CP 07730, México, DF (Mexico)

    2013-02-10

    Highlights: ► Ga-LDH regeneration process was analyzed varying the relative humidity. ► Ga-LDH rehydrates faster than aluminum content LDH materials. ► Gallium seems to favor diffusion processeses during LDH regeneration. - Abstract: The rehydration process of the calcined MgGa-layered double hydroxides (Ga-LDH) was analyzed at different temperatures and relative humidities. Results clearly showed that Ga-LDH sample presented an excellent regeneration kinetic, in comparison to the aluminum typical one. Different techniques such as X-ray diffraction, infrared spectroscopy and thermal analysis were used to elucidate the presented results.

  3. Small-angle X-ray scattering studies on the X-ray induced aggregation of ribonnuclease, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase and serum albumin. A comparison with malate synthase

    International Nuclear Information System (INIS)

    Zipper, P.; Gatterer, H.G.; Schutz, J.; Durchschlag, H.

    1980-01-01

    The X-ray induced aggregation of ribonuclease, lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and serum albumin in aqueous solution was monitored in situ by means of small-angle X-ray scattering. Measurements carried out with ribonuclease, LDH and serum albumin in the absence of dithiothreitol (DTT) and with GAPDH in the presence of 0.2mM DTT established the following series for the rates of aggregation of the proteins under these conditions: ribonuclease >LDH> >GAPDH> serum albumin. Within six hours from the beginning of irradiation (i.e. about the time required for the exposure of one complete scattering curve under the conditions of our experiments) the following increases of R tilde resulted: ribonuclease 9%, LDH 7%, GAPDH 4%, serum albumin <1%. Changes of R tilde exceeding 1% are, of course, too high to be tolerated in conventional scattering experiments. Measurements carried out with LDH and GAPDH in the presence of 2mM DTT established a strong protective effect of DTT against the X-ray induced aggregation of these enzymes. The initial increase of R tilde upon irradiation of LDH and GAPDH in the presence of 2mM DTT was found to be even lower than the increase of R tilde observed when serum albumin was irradiated in the absence of DTT. However, the observed decrease of anti x of LDH and GAPDH at the early stages of irradiation suggested the occurrence of fragmentation of the enzymes as another consequence of radiation damage. This finding is discussed in context with the results from previous scattering experiments and electrophoretic studies on malate synthase. (author)

  4. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  5. Low Prolactin and High 20-α-Hydroxysteroid Dehydrogenase Levels Contribute to Lower Progesterone Levels in HIV-Infected Pregnant Women Exposed to Protease Inhibitor-Based Combination Antiretroviral Therapy.

    Science.gov (United States)

    Papp, Eszter; Balogun, Kayode; Banko, Nicole; Mohammadi, Hakimeh; Loutfy, Mona; Yudin, Mark H; Shah, Rajiv; MacGillivray, Jay; Murphy, Kellie E; Walmsley, Sharon L; Silverman, Michael; Serghides, Lena

    2016-05-15

    It has been reported that pregnant women receiving protease inhibitor (PI)-based combination antiretroviral therapy (cART) have lower levels of progesterone, which put them at risk of adverse birth outcomes, such as low birth weight. We sought to understand the mechanisms involved in this decline in progesterone level. We assessed plasma levels of progesterone, prolactin, and lipids and placental expression of genes involved in progesterone metabolism in 42 human immunodeficiency virus (HIV)-infected and 31 HIV-uninfected pregnant women. In vitro studies and a mouse pregnancy model were used to delineate the effect of HIV from that of PI-based cART on progesterone metabolism. HIV-infected pregnant women receiving PI-based cART showed a reduction in plasma progesterone levels (P= .026) and an elevation in placental expression of the progesterone inactivating enzyme 20-α-hydroxysteroid dehydrogenase (20α-HSD; median, 2.5 arbitrary units [AU]; interquartile range [IQR], 1.00-4.10 AU), compared with controls (median, 0.89 AU; IQR, 0.66-1.26 AU;P= .002). Prolactin, a key regulator of 20α-HSD, was lower (P= .012) in HIV-infected pregnant women. We observed similar data in pregnant mice exposed to PI-based cART. In vitro inhibition of 20α-HSD activity in trophoblast cells reversed PI-based cART-induced decreases in progesterone levels. Our data suggest that the decrease in progesterone levels observed in HIV-infected pregnant women exposed to PI-based cART is caused, at least in part, by an increase in placental expression of 20α-HSD, which may be due to lower prolactin levels observed in these women. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    Science.gov (United States)

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (palpha amylase (palpha amylase (pamylase were negatively associated with sleep duration (palpha amylase.

  7. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites

    Science.gov (United States)

    Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui

    2015-02-01

    The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.

  8. Degradability Enhancement of Poly(Lactic Acid) by Stearate-Zn3Al LDH Nanolayers

    Science.gov (United States)

    Eili, Mahboobeh; Shameli, Kamyar; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan

    2012-01-01

    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn3Al LDH. A solution casting method was used to prepare PLA/stearate-Zn3Al LDH nanocomposites. The anionic clay Zn3Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn3Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn3Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn3Al LDH nanocomposites showed that the presence of around 1.0–3.0 wt % of the stearate-Zn3Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn3Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA. PMID:22942682

  9. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  10. Serum lactate dehydrogenase with a systemic inflammation score is useful for predicting response and survival in patients with newly diagnosed diffuse large B-cell lymphoma.

    Science.gov (United States)

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-01-01

    We evaluated the relationship between serum lactate dehydrogenase (LDH) level with systemic inflammation score and survival in 213 patients with diffuse large B-cell lymphoma (DLBCL) receiving R-CHOP chemotherapy. The patients were classified into 3 groups based on LDH with the Glasgow Prognostic Score (L-GPS). A score of 2 was assigned to patients with elevated C-reactive protein, hypoalbuminemia and elevated LDH, a score of 1 to those with one or two abnormalities and a score of 0 to those with no abnormality. In multivariate analysis, independent poor prognostic factors for progression-free survival were L-GPS 2 [hazard ratio (HR) 5.415, p = 0.001], Eastern Cooperative Oncology Group performance status (ECOG PS) ≥2 (HR 3.504, p = 0.001) and bulky lesion (HR 2.030, p = 0.039). Independent poor prognostic factors for overall survival were L-GPS 2 (HR 5.898, p = 0.001) and ECOG PS ≥2 (HR 3.525, p = 0.001). The overall response rate for the R-CHOP chemotherapy decreased according to the L-GPS; it was 96.7% at L-GPS 0, 87% at L-GPS 1 and 75% at L-GPS 2 (p = 0.009). L-GPS based on systemic inflammatory indicators may be a useful clinical prognostic indicator for survival, and predicts the response for R-CHOP chemotherapy in patients with newly diagnosed DLBCL. © 2014 S. Karger AG, Basel.

  11. LDH ACTIVITY IN COPPER INTOXICATION OF CARASSIUS AURATUS GIBELIO GILLS AND INTESTINE

    Directory of Open Access Journals (Sweden)

    DANIELA TEODORESCU

    2008-05-01

    Full Text Available The pathological effects of two sublethal concentrations (100 μg/l and 250 μg/l of copper (CuSO4x5H2O on goldfish Carassius auratus gibelio were studied for 7,14 and 21 days. The specific activity of LDH in gills and intestine, two target organs that uptake the metal from the water were assayed. In gills at 100 μg Cu2+/l the specific activity of LDH was gradually decreasing, while in the intestine, after 7 days of exposure, the enzymatic activity was distinct significantly increased. LDH activity demonstrated a hypoxic condition and a stimulation of glycolysis. In the both organs ,the 250 μg Cu2+/l concentration generated a decrease of LDH specific activity after 7 days followed by an increase of this after 14 and 21 days of exposure. Histologically, the modifications are, generally, directly correlated with the toxicant dose and exposure time.

  12. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    Science.gov (United States)

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.91±0.28mM and 2613.57±6.43μmol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55°C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55°C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50°C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Synthesis and morphological modification of semiconducting Mg(Zn)Al(Ga)–LDH/ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Jaime S., E-mail: jsanchez@imp.mx [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico); López-Salinas, Esteban [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico); Prince, Julia [Universidad Anáhuac México Norte, Av. Universidad Anáhuac # 46, Huixquilucan, Edo. de México 52786 (Mexico); González, Ignacio; Acevedo-Peña, Prospero [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Apdo. Postal 55-534, 09340 México D.F. (Mexico); Ángel, Paz del [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico)

    2014-09-15

    Layered double hydroxide (LDH) thin films with different chemical compositions (MgZnAl, MgZnGa, MgGaAl) and varying thicknesses were easily prepared by sol–gel method followed by dip-coating. Films were chemically uniform, transparent and well adhered to a conductive indium tin oxide (ITO) substrate. Structure, chemical composition and morphology of the thin films were characterized by XRD-GADDS, SEM-EDS and AFM. Additionally, the semiconducting properties of all the prepared films were studied through the Mott–Schottky relationship; such properties were closely related to the chemical compositions of the film. The films were characterized after electrochemical treatment and important modifications regarding surface morphology, particle and crystal sizes were observed. An in-depth study was conducted in order to investigate the effect of several different electrochemical treatments on the morphology, particle size distribution and crystal size of LDH thin films. Upon electrochemical treatment, the films' surface became smooth and the particles forming the films were transformed from flaky open LDH platelets to uniformly distributed close-packed LDH nanoparticles. - Highlights: • Semiconducting Mg(Zn)Al(Ga)–LDH/ITO thin films prepared by sol–gel. • LDH thin films show a turbostratic morphology made up of porous flakes. • Electrochemical treatments change the flaky structure into a nanoparticle array.

  14. Ontogenetic changes and developmental adjustments in lactate dehydrogenase isozymes of an obligate air-breathing fish Channa punctatus during deprivation of air access.

    Science.gov (United States)

    Ahmad, Riaz; Hasnain, Absar-Ul

    2005-02-01

    In air-breathing snakehead Channa punctatus, Ldh-B is expressed at all ontogenetic and developmental stages, while Ldh-A is expressed temporally in pre-hatchlings 12-13 days ahead of bimodal respiration marked by air-breathing. Remarkable differences are observed in the LDH isozyme expression among various ontogenetic and developmental stages upon denying air access. When denied air access, water-breathing larvae show two distinct characteristics: (i) they survive longer than transitory air-breathers due to independence from air-breathing and (ii) there is more transient induction of Ldh-B than Ldh-A. Transition to bimodal breathing, which occurred post-hatching in 15-day old larvae, is coincidental with inducibility of Ldh-A and concomitant down-regulation of Ldh-B. Heart tissue from air-breathing adults denied air access shows a preferential expression of LDH-A subunit and slight down-regulation of LDH-B. Heterotetramers of A and B subunits participate in adjusting LDH levels among those stages which either precede air-breathing switchover, or are subsequent to this transition. The contribution of heterotetramers depends on the stage-specific levels of LDH homotetramers A(4) or B(4). Scaling of muscle mass during growth, tolerance to extended deprivation of air access and induction of Ldh-A are correlated. Response to restoring air contact indicated that advanced air-breathing stages of C. punctatus possess an inherent capacity to sense surface air. In kinetic properties, LDH isozymes of C. punctatus are teleost-like but species specificity is displayed in oxidative potential by cardiac muscle and in L-lactate reduction by skeletal muscle.

  15. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    Science.gov (United States)

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  16. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic Activity, ATP or Survival.

    Science.gov (United States)

    Mack, Nzinga; Mazzio, Elizabeth A; Bauer, David; Flores-Rozas, Hernan; Soliman, Karam F A

    2017-03-01

    In the US, African Americans have a high death rate from triple-negative breast cancer (TNBC), characterized by lack of hormone receptors (ER, PR, HER2/ERRB2) which are otherwise valuable targets of chemotherapy. There is a need to identify novel targets that negatively impact TNBC tumorigenesis. TNBCs release an abundance of lactic acid, under normoxic, hypoxic and hyperoxic conditions; this referred to as the Warburg effect. Accumulated lactic acid sustains peri-cellular acidity which propels metastatic invasion and malignant aggressive transformation. The source of lactic acid is believed to be via conversion of pyruvate by lactate dehydrogenase (LDH) in the last step of glycolysis, with most studies focusing on the LDHA isoform. In this study, LDHA was silenced using long-term MISSION® shRNA lentivirus in human breast cancer MDA-MB-231 cells. Down-regulation of LDHA transcription and protein expression was confirmed by western blot, immunocytochemistry and qPCR. A number of parameters were measured in fully viable vector controls versus knock-down (KD) clones, including levels of lactic acid produced, glucose consumed, ATP and basic metabolic rates. The data show that lentivirus V-165 generated a knock-down clone most effective in reducing both gene and protein levels to less than 1% of vector controls. Stable KD showed absolutely no changes in cell viability, lactic acid production, ATP, glucose consumption or basic metabolic rate. Given the complete absence of impact on any observed parameter by LDH-A KD and this being somewhat contrary to findings in the literature, further analysis was required to determine why. Whole-transcriptome analytic profile on MDA-MB-231 for LDH subtypes using Agilent Human Genome 4×44k microarrays, where the data show the following component breakdown. Transcripts: 30.47 % LDHA, 69.36% LDHB, 0.12% LDHC and 0.05% LDHD. These findings underscore the importance of alternative isoforms of LDH in cancer cells to produce lactic acid

  17. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso.

    Science.gov (United States)

    Maltha, Jessica; Guiraud, Issa; Lompo, Palpouguini; Kaboré, Bérenger; Gillet, Philippe; Van Geet, Chris; Tinto, Halidou; Jacobs, Jan

    2014-01-13

    In most sub-Saharan African countries malaria rapid diagnostic tests (RDTs) are now used for the diagnosis of malaria. Most RDTs used detect Plasmodium falciparum histidine-rich protein-2 (PfHRP2), though P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH)-detecting RDTs may have advantages over PfHRP2-detecting RDTs. Only few data are available on the use of RDTs in severe illness and the present study compared Pf-pLDH to PfHRP2-detection. Hospitalized children aged one month to 14 years presenting with fever or severe illness were included over one year. Venous blood samples were drawn for malaria diagnosis (microscopy and RDT), culture and complete blood count. Leftovers were stored at -80 °C and used for additional RDT analysis and PCR. An RDT targeting both PfHRP2 and Pf-pLDH was performed on all samples for direct comparison of diagnostic accuracy with microscopy as reference method. PCR was performed to explore false-positive RDT results. In 376 of 694 (54.2%) included children, malaria was microscopically confirmed. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value were 100.0, 70.9, 69.4 and 100.0%, respectively for PfHRP2-detection and 98.7, 94.0, 91.6 and 99.1%, respectively for Pf-pLDH-detection. Specificity and PPV were significantly lower for PfHRP2-detection (p <0.001). For both detection antigens, specificity was lowest for children one to five years and in the rainy season. PPV for both antigens was highest in the rainy season, because of higher malaria prevalence. False positive PfHRP2 results were associated with prior anti-malarial treatment and positive PCR results (98/114 (86.0%) samples tested). Among children presenting with severe febrile illness in a seasonal hyperendemic malaria transmission area, the present study observed similar sensitivity but lower specificity and PPV of PfHRP2 compared to Pf-pLDH-detection. Further studies should assess the diagnostic accuracy and safety of an

  18. HRP2 and pLDH-Based Rapid Diagnostic Tests, Expert Microscopy, and PCR for Detection of Malaria Infection during Pregnancy and at Delivery in Areas of Varied Transmission: A Prospective Cohort Study in Burkina Faso and Uganda.

    Directory of Open Access Journals (Sweden)

    Daniel J Kyabayinze

    Full Text Available Intermittent screening and treatment (IST of malaria during pregnancy has been proposed as an alternative to intermittent preventive treatment in pregnancy (IPTp, where IPTp is failing due to drug resistance. However, the antenatal parasitaemias are frequently very low, and the most appropriate screening test for IST has not been defined.We conducted a multi-center prospective study of 990 HIV-uninfected women attending ANC in two different malaria transmission settings at Tororo District Hospital, eastern Uganda and Colsama Health Center in western Burkina Faso. Women were enrolled in the study in the second or third trimester of pregnancy and followed to delivery, generating 2,597 blood samples for analysis. Screening tests included rapid diagnostic tests (RDTs targeting histidine-rich protein 2 (HRP2 and parasite lactate dehydrogenase (pLDH and microscopy, compared to nPCR as a reference standard. At enrolment, the proportion of pregnant women who were positive for P. falciparum by HRP2/pan pLDH RDT, Pf pLDH/pan pLDH RDT, microscopy and PCR was 38%, 29%, 36% and 44% in Uganda and 21%, 16%, 15% and 35% in Burkina Faso, respectively. All test positivity rates declined during follow-up. In comparison to PCR, the sensitivity of the HRP2/pan pLDH RDT, Pf pLDH/pan pLDH RDT and microscopy was 75.7%, 60.1% and 69.7% in Uganda, 55.8%, 42.6% and 55.8% in Burkina Faso respectively for all antenatal visits. Specificity was greater than 96% for all three tests. Comparison of accuracy using generalized estimating equation revealed that the HRP2- detecting RDT was the most accurate test in both settings.The study suggests that HRP2-based RDTs are the most appropriate point-of-care test currently available for use during pregnancy especially for symptomatic women, but will still miss some PCR-positive women. The clinical significance of these very low density infections needs to be better defined.

  19. Loss of 51chromium, lactate dehydrogenase, and 111indium as indicators of endothelial cell injury

    International Nuclear Information System (INIS)

    Chopra, J.; Joist, J.H.; Webster, R.O.

    1987-01-01

    Injury to endothelial cells appears to be an important initial event in the pathogenesis of many diseases such as acute lung injury, venous and arterial thromboembolism, and atherosclerosis. Different methods for detecting damage to cultured endothelial cells have been described. However, their relative sensitivity as markers of endothelial cell damage has not been adequately determined. We compared the loss of 51 Chromium ( 51 Cr), the cytoplasmic enzyme lactate dehydrogenase (LDH), and 111 Indium ( 111 In) from endothelial cells upon exposure to several injurious agents. Cultured bovine pulmonary artery endothelial cells in confluent monolayers were labeled with 51 Cr or 111 Inoxine and exposed to increasing concentrations of the nonionic detergent, Triton X-100 (0.2 to 1%), hydrogen peroxide (1 to 500 microM), or neutrophils stimulated with phorbol myristate acetate. With all forms of injury, loss of 51 Cr occurred earlier and to a greater extent than LDH loss which in turn was greater than loss of 111 In. Substantial loss of 51 Cr was observed in the absence of appreciable ultrastructural damage to endothelial cell external membranes. The findings may reflect the relative ease with which small molecules such as adenine nucleotides ( 51 Cr-labeled) escape whereas larger molecules such as LDH and proteins binding 111 In are retained intracellularly. Thus, 51 Cr loss appears to be a more sensitive indicator of sublytic endothelial cell injury than either 111 In or LDH release

  20. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload.

    Science.gov (United States)

    Washington, Tyrone A; Healey, Julie M; Thompson, Raymond W; Lowe, Larry L; Carson, James A

    2014-09-01

    Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (pyoung muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Expressão do Mg+2, CK, AST e LDH em equinos finalistas de provas de enduro Endurance horses finalists: expression of Mg+2, CK, AST and LDH in horse finalists of endurance race

    Directory of Open Access Journals (Sweden)

    Juliana V.F. Sales

    2013-01-01

    ção de permeabilidade das células musculares estriadas esqueléticas, sugerindo o estabelecimento de um processo inflamatório agudo. Devido à expressão da atividade enzimática da CK (p≤0,001, por sua especificidade em relação à ocorrência de danos na musculatura estriada esquelética, juntamente com o íon magnésio (p=0,0004 que participa de várias reações celulares. Houve alterações na concentração de proteína plasmática total (p=0,0009 e hematócrito (p=0,0001, entre os momentos avaliados. Portanto estes resultados servem como valores de referência de equinos finalistas de provas de enduro de 90 km, auxiliando na prevenção da ocorrência de possíveis danos musculares e processos inflamatórios severos.In recent years, due to rising competitive demands, the equine athlete is being increasingly required. Thus, the demands for high performance have fostered interest in the study of pathophysiology of various horse diseases. The relationship between magnesium and exercise has received significant attention because this ion is closely related with the skeletal muscle tissue. Moreover, among the main strategies for the detection and monitoring of clinical muscle damage, features the evaluation of the activity of the enzymes creatine kinase (CK, lactate dehydrogenase (LDH and aspartate aminotransferase (AST. The search for the establishment of parameters that relate to each other is a determining factor in understanding the physiological changes found on athletic horses in effort. Thus, this study aimed to determine how the blood concentrations of magnesium ion and the enzymatic activities of the enzymes CK, LDH and AST behave in Arabian finalist horses in endurance races of 90km and to relate possible changes to the type of physical effort played by animals. It was evaluated the enzymatic activities of the enzymes CK, LDH, AST e the concentration of the ion magnesium in exercise in relation to the rest state of 14 clinically healthy Arabian horses, 9

  2. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    International Nuclear Information System (INIS)

    Xu Zhiping; Gu Zi; Cheng Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu Gaoqing Max

    2011-01-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6–0.8 mg of MgAl-LDH and 0.08–0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40–200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10 −12 m 2 /s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  3. Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1,4-lactone dehydrogenase

    DEFF Research Database (Denmark)

    Pateraki, Irene; Sanmartin, Maite; Kalamaki, Mary S.

    2004-01-01

    of a GalLDH full-length cDNA from melon (Cucumis melo L.) are described. Melon genomic DNA Southern analysis indicated that CmGalLDH was encoded by a single gene. CmGalLDH mRNA accumulation was detected in all tissues studied, but differentially expressed during fruit development and seed germination....... It is hypothesized that induction of CmGalLDH gene expression in ripening melon fruit contributes to parallel increases in the AA content and so playing a role in the oxidative ripening process. Higher CmGalLDH message abundance in light-grown seedlings compared with those raised in the dark suggests that Cm......GalLDH expression is regulated by light. Finally, various stresses and growth regulators resulted in no significant change in steady state levels of CmGalLDH mRNA in 20-d-old melon seedlings. To the authors' knowledge, this is the first report of GalLDH transcript induction in seed germination and differential gene...

  4. Cellulase and alcohol dehydrogenase immobilized in Langmuir and Langmuir-Blodgett films and their molecular-level effects upon contact with cellulose and ethanol.

    Science.gov (United States)

    Rodrigues, Dilmer; Camilo, Fernanda Ferraz; Caseli, Luciano

    2014-02-25

    The key challenges for producing devices based on nanostructured films with control over the molecular architecture are to preserve the catalytic activity of the immobilized biomolecules and to provide a reliable method for determining the intermolecular interactions and the accommodation of molecules at very small scales. In this work, the enzymes cellulase and alcohol dehydrogenase (ADH) were coimmobilized with dipalmitoylphosphatidylcholine (DPPC) as Langmuir-Blodgett (LB) films, and their biological activities were assayed by accommodating the structure formed in contact with cellulose. For this purpose, the polysaccharide was dissolved in an ionic liquid, 1-buthyl-3-methylimidazolium chloride (BMImCl), and dropped on the top of the hybrid cellulase-ADH-DPPC LB film. The interactions between cellulose and ethanol, which are the catalytic substrates of the enzymes as well as important elements in the production of second-generation fuels, were then investigated using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Investigation of the secondary structures of the enzymes was performed using PM-IRRAS, through which the presence of ethanol and cellulose was observed to highly affect the structures of ADH and cellulase, respectively. The detection of products formed from the catalyzed reactions as well as the changes of secondary structure of the enzymes immobilization could be carried out, which opens the possibility to produce a means for producing second-generation ethanol using nanoscale arrangements.

  5. Deproteinization is Necessary for the Accurate Determination of Ammonia Levels by Glutamate Dehydrogenase Assay in Blood Plasma From Subjects With Liver Injury.

    Science.gov (United States)

    Vodenicarovova, Melita; Skalska, Hana; Holecek, Milan

    2017-11-08

    To determine the effect of presence of high concentrations of nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes on the accuracy of glutamate dehydrogenase (GLDH) assay for ammonia. We measured ammonia concentrations using GLDH and NADH or NADPH in blood-plasma specimens and specimens deproteinized by sulfosalicylic acid from CCl4-treated or control rats. The nonspecific oxidation of NADH and NADPH was measured in mixtures without GLDH. We observed a gradual decrease (~0.5%) in absorbance in the plasma of controls after the addition of NADH but not after adding NADPH. The decrease in absorbance in plasma of CCl4-treated animals was 13.2% and 5.2% after the addition of NADH and NADPH, respectively. The decrease in absorbance was not detected in deproteinized specimens. The values of ammonia concentration were higher in the plasma specimens compared with the deproteinized ones. Deproteinization is necessary for accurate measurement of ammonia using GLDH assay in the blood plasma of subjects with liver injury. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Preparation of melt-spun antimicrobially modified LDH/polyolefin nanocomposite fibers.

    Science.gov (United States)

    Kutlu, Burak; Schröttner, Percy; Leuteritz, Andreas; Boldt, Regine; Jacobs, Enno; Heinrich, Gert

    2014-08-01

    Layered double hydroxide (LDH) was synthesized and organically modified with camphorsulfonic acid (CSA) and ciprofloxacin. The thermal stability of CSA was improved remarkably under LDH shielding. A minimal inhibitory concentration of free CSA against tested bacteria was determined in order to define the essential quantity in LDH modification. The modified LDHs were melt-compounded with high density polyethylene and the prepared nanocomposites were further melt-spun using a piston-type spinning device. The melt-spun fibers were tested for their antimicrobial activity against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. CSA integrated fibers show susceptibility against Gram-positive bacteria and ciprofloxacin integrated fibers showed activity against both Gram-positive and Gram-negative bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. New way for iron introduction in LDH matrix used as catalysts for Friedel–Crafts reactions

    Directory of Open Access Journals (Sweden)

    S. Kerchiche

    2017-02-01

    Full Text Available The alkylation of toluene, reaction employing benzyl chloride as the alkylating agent over basic hydrotalcite materials: Fe–Mg–Al-LDH prepared by different synthesis methods, including the method of co-precipitation, impregnation and a new method called the method of intercalation by anion exchange in the lamellar space of the host structure LDH. Our prepared solids were characterized by chemical analysis, XRD analysis, BET method and thermogravimetric analysis (TGA and tested in the alkylation of toluene by benzyl chloride reaction. Fe–Mg–Al-LDH clay without or with calcination (at 773 K has been investigated. The catalyst derived from the hydrotalcite by its calcination at 773 K shows high catalytic activity for the alkylation of toluene and other aromatic compounds. The catalytically active species present in the catalyst in its most active form are the oxides of iron on the catalyst surface.

  8. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors

    Science.gov (United States)

    Jiang, Zhen; Li, Zhengping; Qin, Zhenhua; Sun, Haiyan; Jiao, Xiuling; Chen, Dairong

    2013-11-01

    Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures. Electronic supplementary information (ESI) available: Experimental details, XRD, TEM, SEM, and XPS images. See DOI: 10.1039/c3nr03829g

  9. Studies on irradiated lactate dehydrogenase using gel electrophoresis

    International Nuclear Information System (INIS)

    Huth, O.

    1981-01-01

    LDH in aqueous phosphate buffer solution was x-irradiated under nitrogen and dinitrogen oxide. The pre-treated samples were separated by SDS-phosphate gel electrophoresis. Colour yields of the protein bands were determined by planimetry following staining and photometric densitometry. It could be shown that aggregates formed up to the tetramer size were mainly covalently bonded and that negligent amounts of fragments are formed. No exact statements could be made concerning products formed after longer irradiation treatment. Measurements under UV-light also revealed an elevated base from the point of application to the band at the native LDH level; this supports the theory of a reduced migration path through intra-molecular bonding. No firm conclusions can be drawn from the process of staining because CBB itself leads to an increased background colouring between closely-lying protein bands. It could be shown that OH-radicals cause greater changes than H-radicals or solvated electrons since the native LDH peak diminished fastest when irradiated under dinitrogen oxide. With regard to radiation effect it could be demonstrated that a higher radiation dose was required for degradation of the LDH molecule than for its inactivation. These values approach each other with increasing concentration. This indicates that at low concentrations inactivation of the enzyme is mainly caused by conformational changes and at high concentrations by aggregation. Disulphide bridges were found to contribute to aggregate formation in 5-15% of the aggregates formed, this increasing linearly with concentration. (orig./MG) [de

  10. Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growth

    Directory of Open Access Journals (Sweden)

    Maria Serdechnova

    2017-11-01

    Full Text Available Plasma electrolytic oxidation (PEO is an environmentally friendly anodizing technique leading to the formation of a ceramic-like coatings under high-voltage discharges. Layered double hydroxides (LDHs were grown directly on γ, α, and amorphous Al2O3 powders, respectively, in order to investigate the phase responsible for in-situ LDH growth on PEO coating. Furthermore, it is shown that LDH growth is limited by the high tortuosity of the PEO layer and the accessibility of Al ( OH 4 − anions from the substrate covered with thin amorphous aluminum oxide, through the pores.

  11. Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression.

    Science.gov (United States)

    Bak, Lasse K; Schousboe, Arne

    2017-11-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate involving the coenzyme NAD + . Part of the foundation for the proposed shuttling of lactate from astrocytes to neurons during brain activation is the differential distribution of LDH isoenzymes between the two cell types. In this short review, we outline the basic kinetic properties of the LDH isoenzymes expressed in neurons and astrocytes, and argue that the distribution of LDH isoenzymes does not in any way govern directional flow of lactate between the two cellular compartments. The two main points are as follows. First, in line with the general concept of chemical catalysis, enzymes do not influence the thermodynamic equilibrium of a chemical reaction but merely the speed at which equilibrium is obtained. Thus, differential distribution of LDH isoenzymes with different kinetic parameters does not predict which cells are producing and which are consuming lactate. Second, the thermodynamic equilibrium of the reaction is toward the reduced substrate (i.e., lactate), which is reflected in the concentrations measured in brain tissue, suggesting that the reaction is at near-equilibrium at steady state. To conclude, the cellular distribution of LDH isoenzymes is of little if any consequence in determining any directional flow of lactate between neurons and astrocytes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    International Nuclear Information System (INIS)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.; Rives, V.

    2011-01-01

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate was more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: → LDH-PET compatibility is enhanced by preintercalation of organic anions. → Dodecylsulphate performance is much better than that of terephthalate. → Microwave heating improves the thermal stability of the composites. → Microwave heating improves as well the dispersion of the inorganic phase.

  13. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    Science.gov (United States)

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  14. Improving the Carprofen Solubility: Synthesis of the Zn2Al-LDH Hybrid Compound.

    Science.gov (United States)

    Capsoni, Doretta; Quinzeni, Irene; Bruni, Giovanna; Friuli, Valeria; Maggi, Lauretta; Bini, Marcella

    2018-01-01

    The development of efficient strategies for drug delivery is considerably desired. Indeed, often several issues such as the drug solubility, the control of the drug release rate, the targeted delivery of drugs, the drug bioavailability, and the minimization of secondary effects still present great obstacles. Different methodologies have been proposed, but the use of nano-hybrids compounds that combine organic and inorganic substances seems particularly promising. An interesting inorganic host is the layered double hydroxide (LDH) with a sheets structure and formula [M 2+ 1-x M 3+ x (OH) 2 ](A n- ) x/n yH 2 O (M 2+  = Zn, Mg; M 3+  = Al; A n-  = nitrates, carbonates, chlorides). The possibility to exchange these counterions with drug molecules makes these systems ideal candidates for the drug delivery. In this article, we synthesize by co-precipitation method the hybrid compound Carprofen-Zn 2 Al-LDH. Carprofen, a poorly soluble anti-inflammatory drug, could also benefit of the association with a natural antacid such as LDH, to reduce the gastric irritation after its administration. Through X-ray diffraction and Fourier-transformed infrared spectroscopy (FT-IR), we could verify the effective drug intercalation into LDH. The dissolution tests clearly demonstrate a significant improvement of the drug release rate when carprofen is in the form of hybrid compound. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system

    Science.gov (United States)

    Oh, Jae-Min; Park, Man; Kim, Sang-Tae; Jung, Jin-Young; Kang, Yong-Gu; Choy, Jin-Ho

    2006-05-01

    We have been successful to intercalate anticancer drug, methotrexate (MTX), into layered double hydroxides (LDHs), Mg2Al(OH)6(NO3)·0.1H2O, through conventional co-precipitation method. Layered double hydroxides (LDHs) are endowed with great potential for delivery vector, since their cationic layers lead to safe reservation of biofunctional molecules such as drug molecules or genes. And their ion exchangeability and solubility in acidic media (pHosteosarcoma cell culture lines (Saos-2 and MG-63) and the normal one (human fibroblast) were used for in vitro test. The anticancer efficacy of MTX intercalated LDHs (MTX-LDH nanohybrids) was also estimated in vitro by the bioassay such as MTT and BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Saos-2 and MG-63). According to the toxicity test results, LDHs do not harm to both the normal and cancer cells upto the concentration of 500 ug/mL. The anticancer efficacy test for the MTX-LDH nanohybrids turn out to be much more effective in cell suppression compared to the MTX itself. According to the cell-line tests, the MTX-LDH shows same drug efficacy to the MTX itself in spite of the low concentration by ˜5000 times. Such a high cancer suppression effect of MTX-LDH hybrid is surely due to the excellent delivery efficiency of inorganic delivery vector, LDHs.

  16. The Synthesis and Characterization of Gold-Core/LDH-Shell Nanoparticles

    Science.gov (United States)

    Rearick, Colton

    In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG

  17. Lactate dehydrogenase as a biomarker for early renal damage in patients with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Mohammad S Alzahri

    2015-01-01

    Full Text Available Among many complications of sickle cell disease, renal failure is the main contributor to early mortality. It is present in up to 21% of patients with sickle cell disease. Although screening for microalbuminuria and proteinuria is the current acceptable practice to detect and follow renal damage in patients with sickle cell disease, there is a crucial need for other, more sensitive biomarkers. This becomes especially true knowing that those biomarkers start to appear only after more than 60% of the kidney function is lost. The primary purpose of this study is to determine whether lactate dehydrogenase (LDH correlates with other, direct and indirect bio-markers of renal insufficiency in patients with sickle cell disease and, therefore, could be used as a biomarker for early renal damage in patients with sickle cell disease. Fifty-five patients with an established diagnosis of sickle cell disease were recruited to in the study. Blood samples were taken and 24-h urine collection samples were collected. Using Statcrunch, a data analysis tool available on the web, we studied the correlation between LDH and other biomarkers of kidney function as well as the distribution and relationship between the variables. Regression analysis showed a significant negative correlation between serum LDH and creatinine clearance, R (correlation coefficient = -0.44, P = 0.0008. This correlation was more significant at younger age. This study shows that in sickle cell patients LDH correlates with creatinine clearance and, therefore, LDH could serve as a biomarker to predict renal insufficiency in those patients.

  18. White shrimp Litopenaeus vannamei recombinant lactate dehydrogenase: Biochemical and kinetic characterization.

    Science.gov (United States)

    Fregoso-Peñuñuri, Ambar A; Valenzuela-Soto, Elisa M; Figueroa-Soto, Ciria G; Peregrino-Uriarte, Alma B; Ochoa-Valdez, Manuel; Leyva-Carrillo, Lilia; Yepiz-Plascencia, Gloria

    2017-09-01

    Shrimp lactate dehydrogenase (LDH) is induced in response to environmental hypoxia. Two protein subunits deduced from different transcripts of the LDH gene from the shrimp Litopenaeus vannamei (LDHvan-1 and LDHvan-2) were identified. These subunits are expressed by alternative splicing. Since both subunits are expressed in most tissues, the purification of the enzyme from the shrimp will likely produce hetero LDH containing both subunits. Therefore, the aim of this study was to overexpress, purify and characterize only one subunit as a recombinant protein, the LDHvan-2. For this, the cDNA from muscle was cloned and overexpressed in E. coli as a fusion protein containing an intein and a chitin binding protein domain (CBD). The recombinant protein was purified by chitin affinity chromatography column that retained the CBD and released solely the full and active LDH. The active protein appears to be a tetramer with molecular mass of approximately 140 kDa and can use pyruvate or lactate as substrates, but has higher specific activity with pyruvate. The enzyme is stable between pH 7.0 to 8.5, and between 20 and 50 °C with an optimal temperature of 50 °C. Two pK a of 9.3 and 6.6, and activation energy of 44.8 kJ/mol°K were found. The kinetic constants K m for NADH was 23.4 ± 1.8 μM, and for pyruvate was 203 ± 25 μM, while V max was 7.45 μmol/min/mg protein. The shrimp LDH that is mainly expressed in shrimp muscle preferentially converts pyruvate to lactate and is an important enzyme for the response to hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Coenzyme protection of lactic dehydrogenase against inactivation by gamma-rays

    International Nuclear Information System (INIS)

    Saito, M.

    1978-01-01

    A comparison has been made of the radiation sensitivities of the ternary complexes, oxamate-LDH-NADH and pyruvate-LDH-NAD with those of free LDH molecules and the intermediate binary complexes LDH-NAD and LDH-NADH. The enzyme solutions were 60 Co γirradiated and the rate of pyruvate reduction then measured. At doses of more than 10 krad the coenzymes afforded considerable protection to LDH against inactivation, and the dose-effect curves deviated from the curve for the unprotected enzyme, implying very specific protection. Coenzyme protection for a 30 krad dose at various concentrations of NAD and NADH reached a saturation level at about 4.0 x 10 -4 M for both NAD and NADH; protection by pyruvate alone was slight in comparison. Pyruvate and NAD (or oxamate and NADH) together at 1.0 x 10 -3 M protected the enzyme in a cooperative way. The results suggest that the major events of protection occur on the substrate and coenzyme binding sites, and support the view that coenzyme binding protects the enzyme by altering its conformation. (U.K.)

  20. Evidence of lactate dehydrogenase-B allozyme effects in the teleost, Fundulus heteroclitus.

    Science.gov (United States)

    DiMichele, L; Paynter, K T; Powers, D A

    1991-08-23

    The evolutionary significance of protein polymorphisms has long been debated. Exponents of the balanced theory advocate that selection operates to maintain polymorphisms, whereas the neoclassical school argues that most genetic variation is neutral. Some studies have suggested that protein polymorphisms are not neutral, but their significance has been questioned because one cannot eliminate the possibility that linked loci were responsible for the observed differences. Evidence is presented that an enzymatic phenotype can affect carbon flow through a metabolic pathway. Glucose flux differences between lactate dehydrogenase-B phenotypes of Fundulus heteroclitus were reversed by substituting the Ldh-B gene product of one homozygous genotype with that of another.

  1. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 1- Measured by using dehydrogenase Enzyme Activities

    International Nuclear Information System (INIS)

    Salama, M.S.; Shoman, A.A.; Elbermawy, S.M.; Abul Yazid, I.

    2000-01-01

    The present study searches for the improvement vitality of the Mediterranean fruit fly, Ceratitis capitata Wied. Through the induction of a specific variance (mutation) in the genetic material. Several types of treatments that were thought to cause this mutation were used, as IGR's, temperature, formaldehyde, colchicine, alcohols, several types of larval rearing media and gamma-rays. Generally, the activities of the energy enzymes alpha-glycerophosphate dehydrogenase (alpha-GPDH) enzyme lactate dehydrogenase (LDH) enzyme and malate dehydrogenase (MDH) enzyme, when used as a direct measure for the fly vitality, increased due to treatments of the egg stage by the previously mentioned treatments specially by the usage of rice hulls in the larval rearing medium alone or followed by irradiation of the pupal stage with 90 Gy

  2. Level of PAX5 in differential diagnosis of non-Hodgkin′s lymphoma

    Directory of Open Access Journals (Sweden)

    Brij Bharti

    2016-01-01

    Full Text Available Background & objectives: The PAX5, a paired box transcription factor and B-cell activator protein (BSAP, activates B-cell commitment genes and represses non-B-cell lineage genes. About 14 transcript variants of PAX5 have been observed in human. Any alteration in its expression pattern leads to lymphogenesis or associated diseases and carcinogenesis in non-lymphoid tissues. Its mechanisms of function in pathophysiology of non-Hodgkin′s lymphoma (NHL are unclear. This study was intended to explore influence of PAX5 in cascade of NHL pathogenesis and diagnosis. Methods: Samples of 65 patients were evaluated by immunohistochemical staining for cellular localization of PAX5, CD19, CD3, cABL, p53, Ras and Raf and by TUNEL assay, RNA-isolation and reverse transcriptase (RT-PCR, w0 estern blot analysis, and lactate dehydrogenase (LDH specific staining. Results: B-cell type NHL patients were positive for PAX5, p53, Ras, CD19, Raf and CD3. All of them showed TUNEL-positive cells. The differential expression pattern of PAX5, CD19, p53, CD3, Zap700 , HIF 1α, Ras, Raf and MAPK (mitogen-activated protein kinase at the levels of transcripts and proteins was observed. The LDH assay showed modulation of LDH4 and LDH5 isoforms in the lymph nodes of NHL patients. Interpretation & conclusions: The histological observations suggested that the patients represent diverse cases of NHL like mature B-cell type, mature T-cell type and high grade diffuse B-cell type NHL. The findings indicate that patients with NHL may also be analyzed for status of PAX5, CD19 and ZAP70, and their transcriptional and post-translational variants for the differential diagnosis of NHL and therapy.

  3. Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khenifi, Aicha [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal, Clermont-Ferrand (France); Laboratoire de physico-chimie des materiaux, catalyse et environnement Usto, Oran, El M' nouar (Algeria); Derriche, Zoubir [Laboratoire de physico-chimie des materiaux, catalyse et environnement Usto, Oran, El M' nouar (Algeria); Forano, Claude; Prevot, Vanessa [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal, Clermont-Ferrand (France); Mousty, Christine, E-mail: Christine.Mousty@univ-bpclermont.fr [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal, Clermont-Ferrand (France); Scavetta, Erika, E-mail: scavetta@fci.unibo.it [Laboratorio di Chimica Analitica, Dipartimento di Chimica Fisica ed Inorganica, Universita degli Studi di Bologna (Italy); Ballarin, Barbara; Guadagnini, Lorella; Tonelli, Domenica [Laboratorio di Chimica Analitica, Dipartimento di Chimica Fisica ed Inorganica, Universita degli Studi di Bologna (Italy)

    2009-11-10

    An amperometric sensor based on Ni{sub 1-x}Al{sub x}(OH){sub 2}NO{sub 3x}.nH{sub 2}O layered double hydroxide (LDH) has been developed for the electrochemical analysis in one step of two herbicides: glyphosate (N-(phosphonomethyl)glycine, Glyp) and glufosinate ((DL-homoalanine-4-yl)-methylphosphinic acid, Gluf). NiAl-LDH was prepared by coprecipitation or by electrodeposition at the Pt electrode surface. Inorganic films were fully characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Adsorption isotherms of Glyp onto this inorganic lamellar material have been established. Electrocatalytic oxidation of Glyp and Gluf is possible at the Ni{sup 3+} centres of the structure. The electrochemical responses of the NiAl-LDH modified electrode were obtained by cyclic voltammetry and chronoamperometry at 0.49 V/SCE as a function of herbicide concentration in 0.1 M NaOH solution. The electrocatalytic response showed a linear dependence on the Glyp concentration ranging between 0.01 and 0.9 mM with a detection limit of 1 {mu}M and sensitivity 287 mA/M cm{sup 2}. The sensitivity found for Gluf was lower (178 mA/M cm{sup 2}).

  4. Self-assembling organomodified Co/Al based layered double hydroxides (LDH) via one-step route

    Institute of Scientific and Technical Information of China (English)

    WANG De-yi; A.LEUTERITZ; U.WAGENKNECHT; G.HEINRICH

    2009-01-01

    The preparation of self-assembling organomodified Co/Al-layered double hydroxide (LDH) via one-step route was studied.A common surfactant,sodium dodecylbenzenesulfonate (DBS),was employed as an organic modifier.The behavior and structure of self-assembled intercalated organic Co/Al-LDH were investigated by FTIR,SEM,WAXS,element analysis and TGA.Based upon the WAXS results and calculation by Bragg equation,the interlayer distance (d value) for organic Co/Al-LDH is enlarged from 0.75 nm to 3.10 nm,showing that the self-assembling behavior has been carried out successfully.Considering the observation from SEM,the product shows the morphology of organic Co/Al-LDH of a layered structure.In addition,FTIR,element analysis and TGA analysis show that the modifier is intercalated into the gallery of the Co/Al-LDH.Since organic modification for nanofiller is deemed to be necessary before applying it into polymer,the successful preparation of organomodified Co/Al-LDH will be significantly beneficial to the preparation and investigation of novel polymer/LDH nanocomposite.

  5. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    Science.gov (United States)

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  7. Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum

    Energy Technology Data Exchange (ETDEWEB)

    Germain, P; Toukourou, F; Donaduzzi, L

    1986-07-01

    The enzyme lactate dehydrogenase (LDH) in Clostridium thermohydrosulfuricum is controlled by the type and the concentration of the substrate. In batch fermentations an increase of the initial concentration of glucose leads to an increase in the activity of LDH. This increase in activity is related to the accumulation of fructose 1,6-diphosphate (F 1,6-DP), an intermediate of the Embden-Meyerhof-Parnas (EMP) pathway, which stimulates the enzyme by increasing its affinity for pyruvate and NADH. The Ksub(m) values of LDH for pyruvate and NADH, which are 2.5 x 10/sup -3/ M and 9.1 x 10/sup -5/ M respectively in absence of F 1,6-DP, fall considerably in the presence of this substrate. In presence of 0.2 mM of F 1,6-DP we observed a Ksub(m) of 3.3 x 10/sup -4/ M for pyruvate and 4.1 x 10/sup -5/ M for NADH.

  8. Degradability Enhancement of Poly(Lactic Acid by Stearate-Zn3Al LDH Nanolayers

    Directory of Open Access Journals (Sweden)

    Mahboobeh Eili

    2012-06-01

    Full Text Available Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid/layered double hydroxide (PLA/LDH nanocomposites from PLA and stearate-Zn3Al LDH. A solution casting method was used to prepare PLA/stearate-Zn3Al LDH nanocomposites. The anionic clay Zn3Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn3Al LDH nanocomposites were studied by X-ray diffraction (XRD, transmission electron microscope (TEM, scanning electron microscope (SEM, thermogravimetric analysis (TGA, tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn3Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn3Al LDH nanocomposites showed that the presence of around 1.0–3.0 wt % of the stearate-Zn3Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn3Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.

  9. Topotactic intercalation of a bulky organic anion (thiacalix[4]arene) into LDH through an osmotic swelling/restoration reaction in formamide.

    Science.gov (United States)

    Huang, Gailing; Ma, Shulan; Zhao, Xinhua; Yang, Xiaojing; Ooi, Kenta

    2009-01-21

    Utilizing the osmotic swelling of LDH in formamide, for the first time, the bulky thiacalix[4]arene anion is introduced, leading to the recovery of LDH layers, and the hexagonal prism morphology of the precursor is well retained.

  10. In vivo effect of the D-(-) isomer or natural form of 3-hydroxybutyrate on initial release of lactate dehydrogenase from the acutely ischaemic myocardium.

    Science.gov (United States)

    Lammerant, J; Huynh-Thu, T; Kolanowski, J

    1986-07-01

    D-(-)-3-hydroxybutyrate, the isomer found in the circulation and in the urine of diabetic patients, generally is believed to be the physiologically important form of 3-hydroxybutyrate [10]. Little is known concerning the effects of an elevated plasma level of the D-(-) isomer of 3-hydroxybutyrate upon the acutely ischaemic heart. Using anaesthetized intact dogs with a balloon catheter inserted into the proximal part of the left anterior descending coronary artery (LAD), we have recently demonstrated that a 1 mM ketonaemia induced with the arginine salt of D-(-)-3-hydroxybutyric acid reduces the uptake of non-esterified fatty acids (NEFA) in the myocardial area distal to the inflated balloon [4]. The question arises as to whether the concomitant increase in ketone uptake in this area could be detrimental to the acutely ischaemic myocardium. Indeed, a previous study on isolated coronary ligated hearts from normal rats has shown that the rate of release of lactate dehydrogenase (LDH) during the first 90 min of ischaemia can be enhanced by replacing glucose (11 mM) in the perfusion fluid with either albumin-bound palmitate (0.9 mM) or sodium DL-3-hydroxybutyrate (10 mM) as the sole energy substrate [11]. This would suggest that the ketone might be as deleterious as its metabolic precursors for membrane integrity in the acutely ischaemic myocardium. In the present report, we examine the effect of arginine D-(-)-3-hydroxybutyrate on LDH release from ischaemic myocardium in our in vivo preparation. The dogs were treated with lidocaine in order to minimize the frequency and, hence, the adverse metabolic effects of ectopic beats.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  12. Empirical evaluation of a virtual laboratory approach to teach lactate dehydrogenase enzyme kinetics.

    Science.gov (United States)

    Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman

    2016-06-01

    Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.

  13. Stability and activity of lactate dehydrogenase on biofunctional layers deposited by activated vapor silanization (AVS) and immersion silanization (IS)

    Science.gov (United States)

    Calvo, Jorge Nieto-Márquez; Elices, Manuel; Guinea, Gustavo V.; Pérez-Rigueiro, José; Arroyo-Hernández, María

    2017-09-01

    The interaction between surfaces and biological elements, in particular, proteins is critical for the performance of biomaterials and biosensors. This interaction can be controlled by modifying the surface in a process known as biofunctionalization. In this work, the enzyme lactate dehydrogenase (LDH) is used to study the stability of the interaction between a functional protein and amine-functionalized surfaces. Two different functionalization procedures were compared: Activated Vapor Silanization (AVS) and Immersion Silanization (IS). Adsorption kinetics is shown to follow the Langmuir model for AVS-functionalized samples, while IS-functionalized samples show a certain instability if immersed in an aqueous medium for several hours. In turn, the enzymatic activity of LDH is preserved for longer times by using glutaraldehyde as crosslinker between the AVS biofunctional surface and the enzyme.

  14. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy.

    Science.gov (United States)

    Zhu, Rongrong; Wang, Zhaoqi; Liang, Peng; He, Xiaolie; Zhuang, Xizhen; Huang, Ruiqi; Wang, Mei; Wang, Qigang; Qian, Yechang; Wang, Shilong

    2017-11-01

    Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO 2 @LDH nanoparticles (SiO 2 @LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO 2 @LDH-DOX and SiO 2 @LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO 2 @LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO 2 @LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38μg/mg SiO 2 @LDH-Bev. SiO 2 @LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO 2 @LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. This paper explored that a novel core-shell structure nanomaterial SiO 2 @LDH and modified SiO 2 @LDH with

  15. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  16. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria

    2013-04-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged layers of layered double hydroxides (LDHs) modified with ionic liquids (ILs) and the negatively charged plasma treated polylactic acid leads to homogeneous, stable, and highly durable coatings. Deposition of the LDH coatings increases the surface hydrophobicity of the neat PLA, which results to a decrease in water permeability by about 35%. © 2013 Elsevier Inc.

  17. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  18. The effects of interaction between Nanoanatase TiO2 and bleomycin sulfateon the lactate dehydrogenase activity in vivo

    OpenAIRE

    Roshanak Ghafarian Zirak; Akram Lotfi; Masoud Saleh Moghadam

    2016-01-01

    Although it is known that Nano TiO2 can induce various toxicities, the effects of its interaction with organic and biological molecules are still unclear. In this study, the effects of Nanoanatase TiO2 on lactate dehydrogenase (LDH) alone and in the presence of bleomycin sulfate (BLM.S), as an organic chemical, were investigated. Three doses of Nano TiO2 (10, 100, 500 mg/Kg BW) were injected into the abdominal cavity of Balb/C mice for 24 h. In addition, a particular dose of BLM.S (120 mg/...

  19. Pectins filled with LDH-antimicrobial molecules: preparation, characterization and physical properties.

    Science.gov (United States)

    Gorrasi, Giuliana; Bugatti, Valeria; Vittoria, Vittoria

    2012-06-05

    Nanohybrids of layered double hydroxide (LDH) with intercalated active molecules: benzoate, 2,4-dichlorobenzoate, para-hydroxybenzoate and ortho-hydroxybenzoate, were incorporated into pectins from apples through high energy ball milling in the presence of water. Cast films were obtained and analysed. X-ray diffraction analysis showed a complete destructuration of all nanohybrids in the pectin matrix. Thermogravimetric analysis showed a better thermal resistance of pectin in the presence of fillers, especially para-hydroxybenzoate and ortho-hydroxybenzoate. Mechanical properties showed an improvement of elastic modulus in particular for LDH-para-hydroxybenzoate nanohybrid, due probably to a better interaction between pectin matrix and nanohybrid layers. Barrier properties (sorption and diffusion) to water vapour showed improvement in the dependence on the intercalated active molecule, the best improvement was achieved for composites containing para-hydroxybenzoate molecules, suggesting that the interaction between the filler phase and the polymer plays an important role in sorption and diffusion phenomena. Incorporation of these active molecules gave antimicrobial properties to the composite films giving opportunities in the field of active packaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of Ultraviolet Aging on Rheology and Chemistry of LDH-Modified Bitumen

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-08-01

    Full Text Available Layered double hydroxides (LDHs are an ultravioletlight (UV-resistant material. In this study, two types of LDHs (Mg-Al-LDHs and Zn-Al-LDHs were applied to modify bitumen by melt-blending. The effect of ultraviolet aging on the rheology and chemistry of LDH-modified bitumen was studied by means of dynamic shear rheometer (DSR, thin-layer chromatography with flame ionization detection (TLC-FID, Fourier transform infrared spectroscopy (FTIR, and Ultraviolet-Visible (UV-Vis spectrophotometry to reveal the mechanisms of action for LDHs and bitumen. The results showed that within the UV spectra (220–400 nm, the reflectance of Zn-Al-LDHs was larger than that of Mg-Al-LDHs. These two LDHs have different influences on the performance of bitumen. Mg-Al-LDHs had a more obvious influence on the physical and dynamic rheological properties of bitumen than Zn-Al-LDHs. Zn-Al-LDHs improved the UV-aging resistance of bitumen more. The reason can be that the reflectance of the Zn-Al-LDHs to the UV light is larger than that of the Mg-Al-LDHs. The Zn-Al-LDH-modified bitumen had more potential to improve the UV-aging resistance during the service life of asphalt pavement.

  1. Synthesis and adsorption properties of hierarchical Fe{sub 3}O{sub 4}@MgAl-LDH magnetic microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoge; Li, Bo; Wen, Xiaogang, E-mail: wenxg@scu.edu.cn [Sichuan University, School of Materials Science and Engineering (China)

    2017-04-15

    In this study, Fe{sub 3}O{sub 4} microspheres were prepared by a hydrothermal method, and then the synthesized Fe{sub 3}O{sub 4} microspheres were used as template to prepare Fe{sub 3}O{sub 4}@MgAl-LDH composite microspheres by a coprecipitation process. Morphology, composition, and crystal structure of synthesized nanomaterials were characterized by X-ray powder diffractometry, scanning electron microscopy, and Fourier transform infrared spectroscopy technologies. The composite hierarchical microspheres are composed of inner Fe{sub 3}O{sub 4} core and outer MgAl-LDH-nanoflake layer, and the average thickness of MgAl-LDH-nanoflake is about 70 nm. The adsorption property of the products toward congo red was also measured using UV–vis spectrometer. The result demonstrated that the Fe{sub 3}O{sub 4}@MgAl-LDH composite adsorbent could remove 99.8% congo red in 30 min, and the maximum adsorption capacity is about 404.6 mg/g, while congo red removal rate of pure MgAl-LDH and Fe{sub 3}O{sub 4} are only 86.3 and 53.1% in 40 min, respectively, and their adsorption capacity are 345.72 and 220.56 mg/g, respectively. It indicates the composite Fe{sub 3}O{sub 4}@ MgAl-LDH nanomaterials have better adsorption performance than pure Fe{sub 3}O{sub 4} and MgAl-LDH nanomaterials. In addition, the magnetic nanocomposites could be separated easily, and it demonstrated good cycle performance.

  2. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  3. High-Stacking-Density, Superior-Roughness LDH Bridged with Vertically Aligned Graphene for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Guo, Wei; Yu, Chang; Li, Shaofeng; Yang, Juan; Liu, Zhibin; Zhao, Changtai; Huang, Huawei; Zhang, Mengdi; Han, Xiaotong; Niu, Yingying; Qiu, Jieshan

    2017-10-01

    The high-performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high-stacking-density, superior-roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH-NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well-developed open structure for fast mass transport. Moreover, the high-stacking-density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH-NF@VG can deliver a high capacitance of 2920 F g -1 at a current density of 2 A g -1 , and the asymmetric supercapacitor with the LDH-NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg -1 at a power density of 260 W kg -1 , with a high specific capacitance retention rate of 87% even after 10 000 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. CELL DAMAGE, ANTIOXIDANT STATUS, AND CORTISOL LEVELS RELATED TO NUTRITION IN SKI MOUNTAINEERING DURING A TWO-DAY RACE

    Directory of Open Access Journals (Sweden)

    Elena Diaz

    2010-06-01

    Full Text Available The aim of this study was to measure the effect of nutrition on cell damage, antioxidant enzymes, and cortisol during a two-day ski mountaineering competition. Twenty-one male skiers participated in the study. Creatine kinase (CK, aspartate aminotransferase (AST, alanine aminotransferase (ALT, ?-glutamyl transpeptidase (GGT, lactate dehydrogenase (LDH, alkaline phosphatase (AP, cortisol and C-reactive protein (CRP, glutathione peroxidase (GPx and reductase activities (GR and C-reactive protein (CRP levels, total antioxidant status, and cortisol levels were measured in serum the day before and immediately after the race. Their diet was also analysed during the competition. Enzymes and cortisol levels significantly increased after the competition. CK and LDH and cortisol levels were negatively correlated to total energy, protein, and fat intake. Intake of vitamin A, B1, B2, B6 and niacin was negatively correlated to LDH and AP. A negative correlation was also found between CK activity and Na, Fe, and Zn intake. Cortisol levels were negatively correlated to the intake of vitamins C, B1 and B2, and niacin. A positive correlation was found between serum GPx and intake of energy, carbohydrates, proteins, A and B vitamins, and folic acid. Skiers with the lowest nutrient intake during the competition were the ones who showed greater cell damage and lower antioxidant enzyme activity and cortisol levels, which may impair performance and also cause injuries and accidents. Particularly, skiers should have high intakes of total energy, macronutrients, vitamins A and B, Na, Zn, and Fe in order to decrease the deleterious effect of strenuous exercise

  5. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  6. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  7. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  8. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  9. Optical and UV-Aging Properties of LDH-Modified Bitumen

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-07-01

    Full Text Available Layered double hydroxides (LDHs are an ultraviolet-light (UV resistant material. In this study, LDHs were used to modify bitumen. The optical and UV aging properties of LDHs modified bitumen were investigated. Firstly, the thin films of bitumen, with and without LDHs, were prepared. By using the UV-Vis spectrophotometer, absorbance, reflectance, and transmittance of bituminous thin film were evaluated. The morphology of LDHs-modified bitumen was observed by using fluorescence microscopy (FM. Finally, the aging resistance of LDH-modified bitumen was investigated by using the UV-aging oven. Results indicated that the LDHs, especially with 5 wt % in the bitumen, can effectively absorb and reflect the UV light and improve the UV-aging resistance of bitumen. This implied that the addition of LDHs into bitumen had the potential to prolong the service life of asphalt pavement.

  10. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  11. Synthesis and characterization of LDH/Ppi composite and its application as adsorbent of 2,4-dichlorophenoxyacetic (herbicide)

    International Nuclear Information System (INIS)

    Pacheco, I.S.; Oliveira, R.S.; Girotto, L.G.; Freitas, L.L. de; Amaral, F.A. do; Canobre, S.C.

    2016-01-01

    This work had as main objective the synthesis and characterization of LDH [Co-Al-Cl] method by hydrolysis of urea and then its synthesized polypyrrole coating by chemically targeting the application as adsorbent dichlorophenoxyacetic acid (2,4-D). The x-ray diffractogram of well defined showed diffraction peaks corresponding to the planes 003, 006, 009 and 110 which allow them to rhombohedral indexes and lamellar structure. The composite LDH / Ppi had a percentage of 49% herbicide retention in aqueous solution. From the investigated adsorption isotherm models that more fit the experimental data was the Freundlich, so it could be inferred that the interaction between the LDH / Ppi and the herbicide was physical, ie an rapid, reversible adsorption and does not specify. (author)

  12. Lactate dehydrogenase activity of rat epididymis and spermatozoa: Effect of constant light

    Directory of Open Access Journals (Sweden)

    RH Ponce

    2009-12-01

    Full Text Available During its passage through the epididymis, the gamete undergoes a process of “maturation” leading to the acquisition of its fertilizing ability. The epididymis displays regional variations in the morphology and metabolic properties of its epithelium which are relevant for the progressive development of mature sperm characteristics. The epididymis has spontaneous peristaltic contractions and receives sympathetic innervation that is modulated by melatonin, a hormone synthesized and released by the pineal gland. Constant lighting disrupts melatonin synthesis and secretion. We have studied the effect of constant light on lactate dehydrogenase (LDH; EC 1.1.1.27 and its isozyme C4 activities and protein content in whole epididymis, epididymal tissue and in spermatozoa from caput and cauda segments. Animals were exposed from birth to an illumination schedule of 14 h light: 10 h dark (group L:D. At 60 days of age one group of animals was submitted to constant light over 50 days (group L:L. In order to test the fertilizing ability, the rats of each group were mated with soliciting estrous females. The percentage of pregnancies in females mated with males maintained in L:L was remarkably lower than those in females mated with males maintained in the L:D photoperiod (44% and 88% respectively. Constant light increased protein concentration and LDH activity in caput as well as in cauda of total epididymis. On the contrary, in epididymal tissue, the protein content decreased in both epididymal sections compared with controls. When enzymatic activity was expressed in Units per spermatozoa, constant light induced a significant reduction of total LDH and LDHC4 in caput and cauda spermatozoa while LDH activity of epididymal tissue was not affected. In spite of the decrease in LDH per sperm cell when rats were exposed to constant light, in total epididymis (epididymis tissue plus sperm cells content and in spermatozoa, values of enzyme activities expressed per

  13. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    International Nuclear Information System (INIS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-01-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO 3 -layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn 2+ ions of Zn-Al-CO 3 -LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO 3 -LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO 3 -LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO 3 groups in ANTS-anchored on the surface of Zn-Al-CO 3 -LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO 3 -LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.

  14. Small-Sized Mg–Al LDH Nanosheets Supported on Silica Aerogel with Large Pore Channels: Textural Properties and Basic Catalytic Performance after Activation

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2018-02-01

    Full Text Available Layered double hydroxides (LDHs have been widely used as an important subset of solid base catalysts. However, developing low-cost, small-sized LDH nanoparticles with enhanced surface catalytic sites remains a challenge. In this work, silica aerogel (SA-supported, small-sized Mg–Al LDH nanosheets were successfully prepared by one-pot coprecipitation of Mg and Al ions in an alkaline suspension of crushed silica aerogel. The supported LDH nanosheets were uniformly dispersed in the SA substrate with the smallest average radial diameter of 19.2 nm and the thinnest average thickness of 3.2 nm, both dimensions being significantly less than those of the vast majority of LDH nanoparticles reported. The SA/LDH composites also showed large pore volume (up to 1.3 cm3·g and pore diameter (>9 nm, and therefore allow efficient access of reactants to the edge catalytic sites of LDH nanosheets. In a base-catalyzed Henry reaction of benzaldehyde with nitromethane, the SA/LDH catalysts showed high reactant conversions and favorable stability in 6 successive cycles of reactions. The low cost of the SA carrier and LDH precursors, easy preparation method, and excellent catalytic properties make these SA/LDH composites a competitive example of solid-base catalysts.

  15. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Science.gov (United States)

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  16. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Directory of Open Access Journals (Sweden)

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  17. Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Stacie A Brown

    Full Text Available Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a K(m of approximately 150 microM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans.

  18. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study

    NARCIS (Netherlands)

    Regelink, I.C.; Temminghoff, E.J.M.

    2011-01-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At

  19. Electrostatic Self-Assembly of Sandwich-Like CoAl-LDH/Polypyrrole/Graphene Nanocomposites with Enhanced Capacitive Performance.

    Science.gov (United States)

    Zhang, Yu; Du, Dongfeng; Li, Xuejin; Sun, Hongman; Li, Li; Bai, Peng; Xing, Wei; Xue, Qingzhong; Yan, Zifeng

    2017-09-20

    A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g -1 at 1 A g -1 ), high rate performance (75% retention at 20 A g -1 ), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg -1 at 1.2 kW kg -1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.

  20. Riboflavin-Responsive Multiple Acyl-CoA Dehydrogenase Deficiency Associated with Hepatoencephalomyopathy and White Matter Signal Abnormalities on Brain MRI.

    Science.gov (United States)

    Vieira, Päivi; Myllynen, Päivi; Perhomaa, Marja; Tuominen, Hannu; Keski-Filppula, Riikka; Rytky, Seppo; Risteli, Leila; Uusimaa, Johanna

    2017-06-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting both fatty acid and amino acid oxidation. It can manifest at any age, but riboflavin-responsiveness has mainly been described in less severely affected patients. We describe an infant with severe MADD presenting with profound hypotonia and hepatomegaly. Treatment with riboflavin improved his muscle strength, liver size, and biochemical markers. A homozygous mutation of electron transfer flavoprotein dehydrogenase ( ETFDH ) was found. His motor skills continued to progress until a fatal infection-triggered deterioration at the age of 34 months. We show changes in brain magnetic resonance imaging over the course of the disease, with profound white matter abnormalities during the deterioration phase. Aggregates of mitochondria with abnormal cristae in muscle electron microscopy were noticed already in infancy. An unusual lactate dehydrogenase (LDH) isoenzyme pattern with LDH-1 predominance was additionally observed. This case demonstrates riboflavin-responsiveness in a severely affected infant with both muscular and extramuscular involvement and further underlines the variable nature of this disease. Georg Thieme Verlag KG Stuttgart · New York.

  1. Synthesis of Co-Al-Cl LDH by cathodic material reprocessing from cellular phone batteries

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Fabio Augusto do; Machado, Erica Oliveira; Freitas, Leonardo Luis de; Santana, Laiane Kalita; Canobre, Sheila Cristina, E-mail: fabioamaral@yahoo.com.br, E-mail: fabioamaral@iqufu.ufu.br [Universidade Federal de Uberlandia (UFU/LAETE), (Brazil). Inst. de Quimica. Lab. de Armazenamento de Energia e Tratamento de Efluente

    2014-08-15

    The aim of this paper was the recovering of the cathodic material from discarded lithium ion batteries for obtainment of the lamellar double hydroxides (LDHs) by the co-precipitation method at variable pH in HCl and H{sub 2}O{sub 2} 1:1 (v/v) acid solution containing Co and Al (extracted from cathodic material composed of LiCoO{sub 2} and aluminum foil). These metals were precipitated in LiOH at pH 9 or 11, or NH{sub 4}OH at pH 9 and submitted to the hydrothermal treatment (HT) to improve the structural organization of the LDHs lamellae. After precipitation, the resulting solids were structurally characterized by XRD for phase identification and calculation of the unit cell parameter, thermally by TGA for the identification of the mass loss and morphologically by SEM. The sample obtained by precipitation with LiOH at pH 11 / hydrothermal treatment showed diffraction peaks similar to hydrotalcite, morphological and thermal characteristics similar to the pattern Co-Al-Cl LDH obtained by co-precipitation at constant pH 8. (author)

  2. Lactate dehydrogenase of Mugil sp. (Mugilidae, Perciformes. Lack of electrokinetic, thermostability and kinetic differences among individuals with different number of scales

    Directory of Open Access Journals (Sweden)

    Marcelo dos Santos

    2000-03-01

    Full Text Available The scale number in lateral sets (SNS of Mugil sp. (Mugilidae, Perciformes collected in the lagoon-estuarine region of Cananéia, State of São Paulo ranges from 33 to 39. Electrokinetic, kinetic and thermostability properties of lactate dehydrogenase (LDH were tested to determine if individuals with different SNS correspond to different species or populations of mullet. As in many other teleosts, LDH-A*, LDH-B*, and LDH-C* loci were detected. Through a two-fold serial dilution method applied to 10 different tissues of Mugil sp., a bidirectionally divergent expression of these loci was suggested. No association among LDH electrophoretic pattern, thermal inactivation, kinetic responses and different SNS was observed. The apparent Km (pyr values obtained here were similar to Km values obtained by other authors for muscle and heart LDH or their purified isoforms. The effect of NaCl on Km and Vmax values of Mugil sp. (35 and 39 SNS individuals indicates that this salt behaves as a competitive inhibitor, since it decreases enzyme-substrate affinity. Thus, electrokinetic and thermostability behavior, Km and Vmax values and the effect of NaCl do not permit us to consider these mullets, with SNS ranging from 33 to 39, as belonging to different populations or species.O número de escamas em séries laterais (SNS de exemplares de Mugil sp. (Mugilidae, Perciformes coletados na região estuarino-lagunar de Cananéia, Estado de São Paulo, varia de 33 a 39. A fim de tentar determinar se exemplares com diferentes SNS corresponderiam a diferentes espécies ou populações de tainhas, foram analisadas as propriedades eletrocinéticas, cinéticas e de termoestabilidade da sua lactato desidrogenase (LDH. A exemplo de muitos teleósteos, a LDH de Mugil sp. mostrou-se codificada por 3 locos gênicos: LDH-A*, LDH-B* e LDH-C*. Método de diluições seriadas aplicado a 10 diferentes tecidos dessa espécie sugeriu um padrão bidirecionalmente divergente de express

  3. A comparative study of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels in the saliva of diabetic and normal patients.

    Science.gov (United States)

    Verma, M; Metgud, R; Madhusudan, A S; Verma, N; Saxena, M; Soni, A

    2014-10-01

    Diabetes has been reported to affect salivary glands adversely in humans and experimental models. Glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) are salivary enzymes that also are widely distributed in animal tissues. We determined GOT and GPT levels in saliva samples of 100 type 1 and 30 type 2 diabetic patients using reflectance spectrophotometry and compared them to 30 age and sex matched healthy controls. Statistically significant differences were observed in the mean values of GOT and GPT in type 1 diabetics compared to type 2 and control groups. Significantly higher GOT levels were found in the 1-20 year age group of type 1 diabetics. Our findings suggest that salivary gland damage is due to the same immunological attack that affects pancreatic β cells and results in type 1 diabetes.

  4. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    Science.gov (United States)

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  5. Effects of 60Co gamma-ray local irradiation on rat liver on alkaline phosphatase, lactate dehydrogenase and catalase in the liver and serum

    International Nuclear Information System (INIS)

    Hishikawa-Itoh, Youko; Ayakawa, Yoshio; Miyata, Nobuki

    1980-01-01

    Rats were given a single exposure of various doses (0, 5, 50, 500, and 5000 rads) to local irradiation of 60 Co γ-ray on liver. Activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and catalase in the serum and liver were measured at various time intervals after irradiation. These results were summarized as follows; 1. ALP activity in the serum had no effect on irradiation up to 500 rads, but in the case of 5000 rads irradiation exhibited a marked loss from 4 days after irradiation. ALP activity in the liver to 5000 rads exposure on 7 days after irradiation increased, on the other hand in the serum decreased, and the patterns of ALP activities in the liver and serum to the irradiation doses were opposite. 2. LDH activity in the serum by exposure to 5, 500 and 5000 rads increased at 4 days after irradiation, but at 7 days significantly decreased. LDH activity in the liver to the irradiation doses on 7 days after irradiation did not markedly change, but in the serum it tended to be low in inverse proportion to the irradiation doses. 3. Catalase activity in the serum to 50 and 500 rads exposure increased at 4 days after irradiation and decreased at 7 days, but to 5000 rads exposure it decreased in the course of time. Catalase activity in the liver and serum on 7 days after irradiation were inversely proportional to irradiation doses. It is difficult that catalase activity makes a index of clinical irradiation effects, because catalase activity decrease under the various conditions, such as cancer, anemia, infection of bacterias and so on. Since activities of ALP and LDH increase in almost disease, decrease of ALP activity and decrease following temporary increase of LDH activity by irradiation may be able to become a clinical indicator on irradiation effects. (author)

  6. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Lei, E-mail: lilei@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-09-15

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.

  7. Field evaluation of a PfHRP-2/pLDH rapid diagnostic test and light microscopy for diagnosis and screening of falciparum malaria during the peak seasonal transmission in an endemic area in Yemen.

    Science.gov (United States)

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Ali, Arwa A; Cheong, Fei-Wen; Tawfek, Rehab; Mahmud, Rohela

    2016-01-28

    Malaria is a public health threat in Yemen, with 149,451 cases being reported in 2013. Of these, Plasmodium falciparum represents 99%. Prompt diagnosis by light microscopy (LM) and rapid diagnostic tests (RTDs) is a key element in the national strategy of malaria control. The heterogeneous epidemiology of malaria in the country necessitates the field evaluation of the current diagnostic strategies, especially RDTs. Thus, the present study aimed to evaluate LM and an RDT, combining both P. falciparum histidine-rich protein-2 (PfHRP-2) and Plasmodium lactate dehydrogenase (pLDH), for falciparum malaria diagnosis and survey in a malaria-endemic area during the transmission season against nested polymerase chain reaction (PCR) as the reference method. A household-based, cross-sectional malaria survey was conducted in Mawza District, a malaria-endemic area in Taiz governorate. A total of 488 participants were screened using LM and PfHRP-2/pLDH RDT. Positive samples (160) and randomly selected negative samples (52) by both RDT and LM were further analysed using 18S rRNA-based nested PCR. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the RDT were 96.0% (95% confidence interval (CI): 90.9-98.3), 56.0% (95% CI: 44.7-66.8), 76.3% (95% CI: 69.0-82.3), and 90.4% (95% CI: 78.8-96.8), respectively. On the other hand, LM showed sensitivity of 37.6% (95% CI: 29.6-46.3), specificity of 97.6% (95% CI: 91.7-99.7), PPV of 95.9% (95% CI: 86.3-98.9), and NPV of 51.3% (95% CI: 43.2-59.2). The sensitivity of LM dropped to 8.5% for detecting asymptomatic malaria. Malaria prevalence was 32.8% (32.1 and 37.5% for ≥10 and <10 years, respectively) with the RDT compared with 10.7% (10.8 and 9.4% for age groups of ≥10 and <10 years, respectively) with LM. Among asymptomatic malaria individuals, LM and RDT-based prevalence rates were 1.6 and 25.6%, respectively. However, rates of 88.2 and 94.1% of infection with P. falciparum were found

  8. Use of inline measures of l-lactate dehydrogenase for classification of posttreatment mammary Staphylococcus aureus infection status in dairy cows

    DEFF Research Database (Denmark)

    Jørgensen, Carina; Kristensen, Anders Ringgaard; Østergaard, Søren

    2016-01-01

    An automated method for determining whether dairy cows with subclinical mammary infections recover after antibiotic treatment would be a useful tool in dairy production. For that purpose, online . l-lactate dehydrogenase (LDH) measurements was modeled using a dynamic linear model; the variance...... . Staphylococcus aureus infection from 4 herds collected in 2010. The uninfected data set came from 35 uninfected cows collected during 2013 from 2 herds. Bacteriological culturing was used as gold standard. To test the model, we collected data from the 48 infected cows 50 d after antibiotic treatment. As a result...

  9. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  10. High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes

    Science.gov (United States)

    Li, Shuoshuo; Cheng, Pengpeng; Luo, Jiaxian; Zhou, Dan; Xu, Weiming; Li, Jingwei; Li, Ruchun; Yuan, Dingsheng

    2017-07-01

    A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rGO) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g-1 at a current density of 1 A g-1. The rGO electrode as a negative electrode was synthesized by coating rGO on the CC via a simple dip-coating method and revealed a specific capacitance of 110.0 F g-1 at a current density of 2 A g-1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm-2 at 2 mA cm-2 and a high energy density of 0.71 mWh cm-2 at a power density of 17.05 mW cm-2, along with an excellent cycle stability (92.9% capacitance retention over 8000 charge-discharge cycles).

  11. Selective Oxidation of Glycerol with 3% H2O2 Catalyzed by LDH-Hosted Cr(III Complex

    Directory of Open Access Journals (Sweden)

    Gongde Wu

    2015-11-01

    Full Text Available A series of layered double hydroxides (LDHs –hosted sulphonato-salen Cr(III complexes were prepared and characterized by various physico-chemical measurements, such as Fourier transform infrared spectroscopy (FTIR, ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscope (TEM, scanning electron microscope (SEM and elemental analysis. Additionally, their catalytic performances were investigated in the selective oxidation of glycerol (GLY using 3% H2O2 as an oxidant. It was found that all the LDH-hosted Cr(III complexes exhibited significantly enhanced catalytic performance compared to the homogeneous Cr(III complex. Additionally, it was worth mentioning that the metal composition of LDH plates played an important role in the catalytic performances of LDH-hosted Cr(III complex catalysts. Under the optimal reaction conditions, the highest GLY conversion reached 85.5% with 59.3% of the selectivity to 1,3-dihydroxyacetone (DHA. In addition, the catalytic activity remained after being recycled five times.

  12. New DC conductivity spectra of Zn–Al layered double hydroxide (Zn–Al–NO3–LDH and its calcined product of ZnO phase

    Directory of Open Access Journals (Sweden)

    Abdullah Ahmed Ali Ahmed

    2017-05-01

    Full Text Available Zn–Al–NO3–LDH nanostructure was synthesized via the coprecipitation method at molar ratio Zn2+/Al3+ = 4 and pH = 7. The resultant sample was thermally treated at calcined temperatures of 50, 100, 150, 200, 250 and 300 °C. The layered structure of the Zn–Al–NO3–LDH samples was stable below the calcination temperature 200 °C as shown in powder X-ray diffraction (PXRD patterns of calcined samples. The calcination products showed a collapse of LDH structure and ZnO phase was formed at 200 °C and above. The dielectric spectroscopy of LDH was explained using anomalous low frequency dispersion (ALFD due to the low mobility of LDH carriers. The conductivity spectra of LDH can be theoretically described according to the effective phase within the calcination products of LDH. In the comparison with previously researches, this study presented higher values of DC conductivity for all studied samples.

  13. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  14. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  15. Novel 11β-hydroxysteroid dehydrogenase 1 inhibitors reduce cortisol levels in keratinocytes and improve dermal collagen content in human ex vivo skin after exposure to cortisone and UV.

    Directory of Open Access Journals (Sweden)

    Stéphanie M Boudon

    Full Text Available Activity and selectivity assessment of new bi-aryl amide 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1 inhibitors, prepared in a modular manner via Suzuki cross-coupling, are described. Several compounds inhibiting 11β-HSD1 at nanomolar concentrations were identified. Compounds 2b, 3e, 7b and 12e were shown to selectively inhibit 11β-HSD1 over 11β-HSD2, 17β-HSD1 and 17β-HSD2. These inhibitors also potently inhibited 11β-HSD1 activity in intact HEK-293 cells expressing the recombinant enzyme and in intact primary human keratinocytes expressing endogenous 11β-HSD1. Moreover, compounds 2b, 3e and 12e were tested for their activity in human skin biopsies. They were able to prevent, at least in part, both the cortisone- and the UV-mediated decreases in collagen content. Thus, inhibition of 11β-HSD1 by these compounds can be further investigated to delay or prevent UV-mediated skin damage and skin aging.

  16. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  17. Shikimate dehydrogenase from Pinu sylvestris L. needles

    International Nuclear Information System (INIS)

    Osipov, V.I.; Shein, I.V.

    1986-01-01

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP + , but also with NAD + . The values of K/sub m/ for shikimate, when NADP + and NAD + are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed

  18. Neurine, an acetylcholine autolysis product, elevates secreted amyloid-beta protein precursor and amyloid-beta peptide levels, and lowers neuronal cell viability in culture: a role in Alzheimer's disease?

    Science.gov (United States)

    Tweedie, David; Brossi, Arnold; Chen, DeMoa; Ge, Yuan-Wen; Bailey, Jason; Yu, Qian-Sheng; Kamal, Mohammad A; Sambamurti, Kumar; Lahiri, Debomoy K; Greig, Nigel H

    2006-09-01

    Classical hallmarks of Alzheimer's disease (AD) are a synaptic loss, cholinergic neuron death, and abnormal protein deposition, particularly of toxic amyloid-beta peptide (Abeta) that is derived from amyloid-beta protein precursor (AbetaPP) by the action of beta- and gamma-secretases. The trigger(s) initiating the biochemical cascades that underpin these hallmarks have yet to be fully elucidated. The typical forebrain cholinergic cell demise associated with AD brain results in a loss of presynaptic cholinergic markers and acetylcholine (ACh). Neurine (vinyl-trimethyl-ammonium hydroxide) is a breakdown product of ACh, consequent to autolysis and is an organic poison found in cadavre brain. The time- and concentration-dependent actions of neurine were assessed in human neuroblastoma (NB, SK-N-SH) cells in culture by quantifying cell viability by lactate dehydrogenase (LDH) and MTS assay, and AbetaPP and Abeta levels by Western blot and ELISA. NB cells displayed evidence of toxicity to neurine at > or = 3 mg/ml, as demonstrated by elevated LDH levels in the culture media and a reduced cell viability shown by the MTS assay. Using subtoxic concentrations of neurine, elevations in AbetaPP and Abeta1-40 peptide levels were detected in conditioned media samples.

  19. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  20. Function of muscle-type lactate dehydrogenase and citrate synthase of the Galápagos marine iguana, Amblyrhynchus cristatus, in relation to temperature.

    Science.gov (United States)

    Fields, Peter A; Strothers, Chad M; Mitchell, Mark A

    2008-05-01

    The Galápagos marine iguana, Amblyrhynchus cristatus, is unique among lizards in foraging subtidally, leading to activity across a broad range of ambient temperatures ( approximately 14-40 degrees C). To determine whether the marine iguana shows any biochemical changes consistent with maintaining enzyme function at both warm and cold body temperatures, we examined the function of the aerobic enzyme citrate synthase (CS) and the muscle isoform of the anaerobic enzyme lactate dehydrogenase (A(4)-LDH) in A. cristatus and a confamilial species, Iguana iguana, from 14 to 46 degrees C. We also deduced amino acid sequences from cDNA of each enzyme. In CS, despite two amino acid substitutions, we found no difference in the apparent Michaelis-Menten constant K(m) of oxaloacetate at any temperature, indicating that the substrate affinity of CS in A. cristatus has not adapted to changes in thermal environment. In A(4)-LDH, we used site-directed mutagenesis to show that the substitutions T9A and I283V (A. cristatus --> I. iguana) individually have no effect on kinetics, but together significantly decrease the K(m) of pyruvate and catalytic rate constant (k(cat)) of the A. cristatus ortholog. Thus, our data show that A. cristatus A(4)-LDH has not become cold adapted in response to this species' aquatic foraging behavior, and instead may be consistent with moderate warm adaptation with respect to the I. iguana ortholog.

  1. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  2. NAD(P-DEPENDENT DEHYDROGENASE ACTIVITY IN PERIPHERAL BLOOD LYMPHOCYTES OF INFANTS WITH ENLARGEMENT OF PHARYNGEAL TONSILS

    Directory of Open Access Journals (Sweden)

    L. M. Kurtasova

    2014-01-01

    Full Text Available We have observed and examined 57 children 1 to 3 years old diagnosed with enlargement of pharyngeal tonsils. A control group was presented by 35 healthy children. Bioluminescence technique was applied for studying NAD(P-dependent dehydrogenase activity in peripheral blood lymphocytes. Activation of aerobic respiration and increasing activity of pentose phosphate cycle-dependent plastic processes were registered in blood lymphocytes of children with hypertrophic pharyngeal tonsils; along with decreased function of malate-aspartate shunt in energy metabolism of the cells, diminished anaerobic reaction of NADHdependent LDH, lower interaction between Krebs cycle and reactions of amino acid metabolism, and reduced activity of glutathione reductase.

  3. The determination and arrangement of a combination of enzyme lactate dehydrogenase of bacteria Acinetobacter sp. as a device the identity important bacteria agent composts

    Science.gov (United States)

    Sukmawati, D.; Puspitaningrum, R.; Muzajjanah

    2017-07-01

    The number of garbage generated by the industry or society is a usual problem encountered by almost all urban centers, especially large cities such as Jakarta. Waste prevention strategy required quickly and accurately. One strategy for tackling the Junk was getting lactic acid-producing bacteria. It has been shown that lactic acid can increase the acceleration of organic matter such as an overhaul of lignin and cellulose as well as out causing toxic compounds arising from decay. This research will be conducted on the determination and characterization of the enzyme-producing compost bacteria LDH lactate dehydrogenase LDH - which in isolation from the garbage Landfill Rawasari. Methodology: Research carried out consists: isolation of lactic acid-producing bacteria; identification of microscopic, macroscopic and staining Gram; cellulose assay, and optimization of PCR conditions LDH enzymes producing bacteria. Isolation is performed by dilution method and the direct method. As many as 5-point sampling. Each stage is conducted from 10 grams of soil from the top surface of the compost. Isolation results obtained 100 isolate the bacteria. Base on the characteristic of macroscopic and microscopic observations retrieved 14 isolates of bacteria have shaped rods and brought forth a negative kind of Gram positive staining. Bacterial isolates with codes (BK1; BK3; BK4; BK5; BK6; BK7; BK8; BK9; BK10; BK11: BK12; BK 13). The potential bacteria with ability produce lactate dehydrogenase was BK1 and BK3. Base for analysis phylogenetic there was identification bacteria bak1 and bak3 where Acinetobacter sp.

  4. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of D-lactate dehydrogenase from Lactobacillus jensenii.

    Science.gov (United States)

    Kim, Sangwoo; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-08-01

    The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100 mM Tris-HCl pH 9, 200 mM magnesium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58 Å(3) Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative.

  5. The analysis of correlation between changes of myocardial enzymes level in serum before and after radiation and dose-volume histogram parameters of the heart

    International Nuclear Information System (INIS)

    Ding Xiuping; Li Hongjun; Li Baosheng; Wang Dongqing

    2012-01-01

    Objective: To analyze the correlation between the changes of myocardial enzyme level in serum before and after radiotherapy and dose - volume histogram (DVH) parameters of the heart. Methods: A total of 102 patients with 68 cases of lung cancer and 34 cases of esophageal cancer were recruited. All patients received three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), with the radiation beams passing through the heart. Aspartate aminotransferase (AST), creatine kinase (CK), creatine kinase isozyme (CK-MB), lactate dehydrogenase (LDH), α-hydroxybutyrate dehydrogenase (α-HBDH) were determined in the serum before and after radiotherapy. All the enzyme levels before and after radiotherapy were compared through paired t-test. Independent sample t-test was conducted between sub-groups. And the dose-volume histogram (DVH) parameters of the heart were calculated (the volume percentage of heart receiving dose equal to or exceeding x Gy (V x ). The correlation between myocardial enzyme level and DVH parameters was analyzed through Pearson method. Results: Serum AST, CK-MB, LDH, α-HBDH levels increased significantly after radiotherapy (19.42: 27.89, 14.72:19.57, 178.80 : 217.57, 140.32 : 176.25, t =-3.39 - -6.92, all P=0.000). In Group IMRT, significant correlations between the increase of myocardial enzyme concentration and DVH parameters of the heart are found, AST with V 20 , V 25 , V 30 of heart ( r=0.302 - 0.431, P =0.039 - 0.003), CK with V 30 of heart (r=0.345, P=0.013), and CK-MB, LDH, α-HBDH with V 25 , V 30 (r=0.465 -0.376, P=0.001-0.005). In Group CRT, there are significant correlations between changes of CK-MB, LDH level and V 30 of heart (r =0.330, 0.274, P=0.014, 0.033), α-HBDH and V 25 , V 30 , and V 35 of heart (r=0.270-0.331, P=0.046-0.014). When the irradiation dose was more than 50 Gy, significant correlations were found between the concentration changes of AST, LDH, α-HBDH and V 25 , V 30 of heart (r=0

  6. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  7. A novel platform designed by Au core/inorganic shell structure conjugated onto MTX/LDH for chemo-photothermal therapy.

    Science.gov (United States)

    Tian, De-Ying; Wang, Wei-Yuan; Li, Shu-Ping; Li, Xiao-Dong; Sha, Zhao-Lin

    2016-05-30

    A novel platform making up of methotrexate intercalated layered double hydroxide (MTX/LDH) hybrid doped with gold nanoparticles (NPs) may have great potential both in chemo-photothermal therapy and the simultaneous drug delivery. In this paper, a promising platform of Au@PDDA-MTX/LDH was developed for anti-tumor drug delivery and synergistic therapy. Firstly, Au NPs were coated using Layer-by-Layer (LbL) technology by alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and MTX molecules, and then the resulting core-shell structures (named as Au@PDDA-MTX) were directly conjugated onto the surface of MTX/LDH hybrid by electrostatic attraction to afford Au@PDDA-MTX/LDH NPs. Here MTX was used as both the agent for surface modification and the anti-tumor drug for chemotherapy. The platform of Au@PDDA-MTX/LDH NPs not only had a high drug-loading capacity, but also showed excellent colloidal stability and interesting pH-responsive release profile. In vitro drug release studies demonstrated that MTX released from Au@PDDA-MTX/LDH was relatively slow under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. Furthermore, the combined treatment of cancer cells by using Au@PDDA-MTX/LDH for synergistic hyperthermia ablation and chemotherapy was demonstrated to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of the platform for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  9. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  10. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  11. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  12. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  13. Characteristic LDH isozyme electrophoretic patterns in six flatfish species in the Trondheimsfjord, Norway and their utility for the detection of natural species hybrids

    KAUST Repository

    He, Song

    2014-11-19

    Abstract: LDH isozyme electrophoretic patterns among 621 specimens of six different flatfish species collected in the Trondheimsfjord, Norway, were characterized by using the isoelectric focusing in polyacrylamide gel (IFPAG) technique. The LDH locus appears to be a reliable tool for species identification in the Trondheimsfjord flatfishes. Hence, these patterns were used to detect and identify potential hybrids, together with morphological traits. Among all the specimens collected during this study no hybrids were detected. From the actual numbers analysed, the natural hybridization rate between European plaice and European flounder in the Trondheimsfjord can be roughly estimated to be less than 1%. This is substantially lower than corresponding values reported from Baltic and Danish waters.

  14. Characteristic LDH isozyme electrophoretic patterns in six flatfish species in the Trondheimsfjord, Norway and their utility for the detection of natural species hybrids

    KAUST Repository

    He, Song; Mork, Jarle

    2014-01-01

    Abstract: LDH isozyme electrophoretic patterns among 621 specimens of six different flatfish species collected in the Trondheimsfjord, Norway, were characterized by using the isoelectric focusing in polyacrylamide gel (IFPAG) technique. The LDH locus appears to be a reliable tool for species identification in the Trondheimsfjord flatfishes. Hence, these patterns were used to detect and identify potential hybrids, together with morphological traits. Among all the specimens collected during this study no hybrids were detected. From the actual numbers analysed, the natural hybridization rate between European plaice and European flounder in the Trondheimsfjord can be roughly estimated to be less than 1%. This is substantially lower than corresponding values reported from Baltic and Danish waters.

  15. Molecular cloing and bioinformatics analysis of lactate dehydrogenase from Taenia multiceps.

    Science.gov (United States)

    Guo, Cheng; Wang, Yu; Huang, Xing; Wang, Ning; Yan, Ming; He, Ran; Gu, Xiaobin; Xie, Yue; Lai, Weimin; Jing, Bo; Peng, Xuerong; Yang, Guangyou

    2017-10-01

    Coenurus cerebralis, the larval stage (metacestode or coenurus) of Taenia multiceps, parasitizes sheep, goats, and other ruminants and causes coenurosis. In this study, we isolated and characterized complementary DNAs that encode lactate dehydrogenase A (Tm-LDHA) and B (Tm-LDHB) from the transcriptome of T. multiceps and expressed recombinant Tm-LDHB (rTm-LDHB) in Escherichia coli. Bioinformatic analysis showed that both Tm-LDH genes (LDHA and LDHB) contain a 996-bp open reading frame and encode a protein of 331 amino acids. After determination of the immunogenicity of the recombinant Tm-LDHB, an indirect enzyme-linked immunosorbent assay (ELISA) was developed for preliminary evaluation of the serodiagnostic potential of rTm-LDHB in goats. However, the rTm-LDHB-based indirect ELISA developed here exhibited specificity of only 71.42% (10/14) and sensitivity of 1:3200 in detection of goats infected with T. multiceps in the field. This study is the first to describe LDHA and LDHB of T. multiceps; meanwhile, our results indicate that rTm-LDHB is not a specific antigen candidate for immunodiagnosis of T. multiceps infection in goats.

  16. Tumor markers in the early detection of tumor recurrence in breast cancer patients: CA 125, CYFRA 21-1, HER2 shed antigen, LDH and CRP in combination with CEA and CA 15-3.

    Science.gov (United States)

    Di Gioia, Dorit; Blankenburg, Irene; Nagel, Dorothea; Heinemann, Volker; Stieber, Petra

    2016-10-01

    Kinetics of CA 15-3 and CEA have a high specificity in the early detection of metastatic breast cancer (MBC). However, this high specificity is associated with a lack of sensitivity. To decrease the number of false negative patients, the additional diagnostic potential of an extended panel of biomarkers was evaluated. This analysis was performed as part of a large follow-up study (1998-2010) evaluating 813 patients with a median follow-up of 63months. After primary therapy, all patients underwent tumor marker monitoring for CEA and CA 15-3 at 6-week intervals. A reproducible previously defined increase (≥100%) based on the individual baseline value of each patient was considered as a strong indicator of MBC. For the present analysis, we retrospectively evaluated 1011 blood samples from 95 patients. Forty-seven of these had metastatic disease for the first time at the time of this evaluation, while the remaining 48 patients showed no evidence of disease. The sera of these patients were additionally assessed for the following parameters: cancer antigen (CA) 125, cytokeratin-19 soluble fragment (CYFRA 21-1), HER2 shed antigen, lactate-dehydrogenase (LDH) and C-reactive protein (CRP). 26 of 47 patients with MBC showed a reproducible tumor marker increase of at least CEA and/or CA 15-3 (55.3%, true-positive). The remaining 21 patients with MBC showed no increase in CEA or CA 15-3 (44.7%, false negative, FN). By combining all markers mentioned above, 41 of 47 patients with MBC showed a reproducible marker increase with a sensitivity of 87.2% and specificity of 100%. This retrospective analysis indicates that a panel of biomarkers can increase the sensitivity of the CA 15-3/CEA combination without loss of specificity. The combined use is therefore helpful for early detection of MBC. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  18. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  19. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    DEFF Research Database (Denmark)

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...

  20. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Ficarelli, A; Tassi, F; Restivo, F M

    1999-03-01

    We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.

  1. PREPARATION AND VISIBLE LIGHT RESPONSIVE PHOTOCATALYTIC ACTIVITY OF Fe3O4/Ni-Al-Ce LDH/Bi2WO6 COMPOSITES

    Directory of Open Access Journals (Sweden)

    Jiaqi Hao

    Full Text Available Novel Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were prepared through a hydrothermal method and co-precipitation method. The morphologies and structures of the photocatalysts were characterized by XRD, Raman, TEM, UV-vis-DRS, BET surface area and VSM techniques. The photocatalytic performances of the photocatalysts were investigated by the decolorization of methyl orange (MO under visible-light irradiation. The results showed that the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites exhibited greater photocatalytic activities compared to pure Bi2WO6 and the Ni-Al-Ce LDH; the decolorization rate of MO was 87% within 60 min under visible-light irradiation. The decolorization efficiency of the composite material remained at 71% after 4 recycling runs, showing improved stability. Furthermore, the experimental results also showed that the photocatalytic reactions for the composites followed first-order reaction kinetics. Therefore, the Fe3O4/Ni-Al-Ce LDH/Bi2WO6 composites were photocatalysts with high efficiencies and stabilities for a photocatalytic reaction of an organic pollutant, and this study provides a new, effective method for the development of wastewater treatment.

  2. Synthesis of MgAl-LDH/CoFe2O4 and MgAl-CLDH/CoFe2O4 ...

    Indian Academy of Sciences (India)

    School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, ... superior to other approaches because of its high efficiency and low cost to ... pounds such as organic dyes.6,7 However, as using LDH for removal of dye ... separation of the absorbent by simply applying an external.

  3. Pretreatment Serum Cystatin C Levels Predict Renal Function, but Not Tumor Characteristics, in Patients with Prostate Neoplasia

    Directory of Open Access Journals (Sweden)

    Feilong Yang

    2017-01-01

    Full Text Available To evaluate the role of Cystatin C (Cys-C in tumorigenesis and progression of prostate cancer (PCa, we retrospectively collected the clinical information from the records of 492 benign prostatic hyperplasia (BPH, 48 prostatic intraepithelial neoplasia (PIN, and 173 PCa patients, whose disease was newly diagnosed and histologically confirmed. Pretreatment serum Cys-C levels were compared across the various groups and then analyzed to identify relationships, if any, with clinical and pathological characteristics of the PCa patient group. There were no significant differences in serum Cys-C levels among the three groups (P > 0.05. In PCa patients with normal SCr levels, patient age was correlated with serum Cys-C level (P ≤ 0.001 but did not correlate with alkaline phosphatase (AKP, lactate dehydrogenase (LDH, prostate specific antigen (PSA, Gleason score, or bone metastasis status (P > 0.05. Age and SCr contributed in part to the variations in serum Cys-C levels of PCa patients (r = 0.356, P ≤ 0.001; r = 0.520, P ≤ 0.001. In conclusion, serum Cys-C levels predict renal function in patients with prostate neoplasia, but were not a biomarker for the development of prostate neoplasia, and were not correlated with the clinicopathological characteristics of PCa.

  4. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.

    Science.gov (United States)

    Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo

    2004-01-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.

  5. Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.

    Science.gov (United States)

    Lapierre, Catherine; Pilate, Gilles; Pollet, Brigitte; Mila, Isabelle; Leplé, Jean-Charles; Jouanin, Lise; Kim, Hoon; Ralph, John

    2004-02-01

    A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.

  6. Effects of Gram-negative Bacteria, E.coli and Cold Exposure on Free Radicals Production, Lactate Dehydrogenase and Glutathione Peroxidase Activity in the Lungs of Rats, Rattus norvigicus

    International Nuclear Information System (INIS)

    AlSaid, A Haffor

    2007-01-01

    The purpose of this study was to explore the effects of LPS-gram negative bacteria and low ambient temperature on free radicals (FR) production, the activities of lactate dehydrogenase (LDH) and glutathione peroxidase (GPx) in the lungs of rats, Rattus norvigisu. Twenty four male rats, matched with age and weigh, were divided randomly into four groups namely control (C), Bacteria (B), cold temperature (T), and bacteria plus cold (BT). The T group was exposed to 10-12degree C ambient temperature for 3 days. Animals of the BT was injected LPS bacteria (IP, 500 micron g/kg) during the last five hour of cold exposure to 10-12 degree C for 3 days. In comparison with C group FR increased significantly (p<0.05) in the experimental groups, indicating high rate of reactive oxygen species (ROS) accumulation. The activity of LDH increased significantly (p<0.05) in the T and BT groups, which demonstrated that bacteria and exposure to cold are causes for cellular injury in the lungs. The synergetic effect of both bacteria and cold on LDH was more intense, as compared with the single effect. The activity of GPx increased significantly (p<0.05) in the B and BT, as compared with the C group. The results of the present study is the first worldwide report to demonstrate that both cold exposure and bacteria infection are mediated by elevation in FR generation. (author)

  7. A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors.

    Science.gov (United States)

    Xing, Jiale; Du, Jing; Zhang, Xuan; Shao, Yubo; Zhang, Ting; Xu, Cailing

    2017-08-14

    Recently, transition metal-based nanomaterials have played a key role in the applications of supercapacitors. In this study, nickel phosphide (Ni-P) was simply combined with NiCo LDH via facile phosphorization of Ni foam and subsequent electrodeposition to form core-shell nanorod arrays on the Ni foam; the Ni-P@NiCo LDH was then directly used for a pseudocapacitive electrode. Owing to the splendid synergistic effect between Ni-P and NiCo LDH nanosheets as well as the hierarchical structure of 1D nanorods, 2D nanosheets, and 3D Ni foam, the hybrid electrode exhibited significantly enhanced electrochemical performances. The Ni-P@NiCo LDH electrode showed a high specific capacitance of 12.9 F cm -2 at 5 mA cm -2 (3470.5 F g -1 at a current density of 1.3 A g -1 ) that remained as high as 6.4 F cm -2 at a high current density of 100 mA cm -2 (1700 F g -1 at 27 A g -1 ) and excellent cycling stability (96% capacity retention after 10 000 cycles at 40 mA cm -2 ). Furthermore, the asymmetric supercapacitors (ASCs) were assembled using Ni-P@NiCo LDH as a positive electrode and activated carbon (AC) as a negative electrode. The obtained ASCs delivered remarkable energy density and power density as well as good cycling performance. The enhanced electrochemical activities open a new avenue for the development of supercapacitors.

  8. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Expressão do Mg+2, CK, AST e LDH em equinos finalistas de provas de enduro

    Directory of Open Access Journals (Sweden)

    Juliana V.F. Sales

    2013-01-01

    Full Text Available Nos últimos anos, o equino atleta vem sendo cada vez mais requerido. Dessa forma, as exigências por alto desempenho têm fomentado o interesse pelo estudo das afecções relacionadas com a fisiopatologia de diversas enfermidades dos equinos. A relação entre o íon magnésio e o exercício físico tem recebido atenção significativa visto que este íon está intimamente relacionado ao tecido muscular estriado esquelético. Além disso, dentre as principais estratégias para a detecção e acompanhamento clínico de lesões musculares, destacam-se a avaliação das atividades das enzimas creatino quinase (CK, lactato desidrogenase (LDH e aspartato aminotransferase (AST. A busca pelo estabelecimento de parâmetros que se relacionam entre si é um fator determinante na compreensão de alterações fisiológicas encontradas diante do esforço em equinos atletas. Desta forma, o presente trabalho teve como objetivo determinar como as concentrações sanguíneas do íon magnésio e as atividades enzimáticas das enzimas CK, LDH e AST comportaram-se em equinos Puro Sangue Árabe finalistas de provas de enduro de 90km e relacionar as possíveis alterações com o tipo de esforço físico desempenhado pelos animais. Foram avaliadas a atividade enzimática das enzimas CK, LDH, AST e a concentração do íon magnésio no exercício em relação ao repouso de 14 equinos clinicamente hígidos da raça Puro Sangue Árabe, sendo 9 machos e 5 fêmeas, com idades variando entre 6 a 12 anos, submetidos a treinamento para enduro e participantes de provas de 90 km. Pode-se observar que as variáveis acima mencionadas sofreram aumento com diferença estatística em relação ao repouso. O exercício físico de enduro determinou a ocorrência de alterações nas atividades enzimáticas das enzimas CK (p≤0,001, LDH (p=0,0001, AST (p=0,0007 e na concentração do íon magnésio (p=0,0004, no exercício em relação ao repouso (p≤0,05. Fato que determinou altera

  10. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    Science.gov (United States)

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (pnegative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.

  11. Neonatal jaundice and glucose-6-phosphate dehydrogenase

    OpenAIRE

    Leite, Amauri Antiquera [UNESP

    2010-01-01

    A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase...

  12. Dietary supplementation of extracts from a halophyte affects the level of the circulating enzymes in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. G.; Lee, B. H. [KAERI, Taejon (Korea, Republic of); Kim, J. H.; Youn, Y. D. [Hanyang Univ., Seoul (Korea, Republic of)

    2003-10-01

    Extracts from Salicornia herbacea with two extraction methods (using water or ethanol) were examined for their potential as a radioprotector. This plant accumulates a great amount of salt , Mg, Ca, Fe, and K and thus contains high levels of mineral in its body. It is famous as a remedial material for the constipation and glycosuria in folk medicine. The present study was designed to explore the in vivo antioxidant effects of water - and ethanol- extracts of S. herbacea. Both extracts of the plants were tested for their free radical scavenging activity with the DPPH assay. For the in vivo studies, male F344 rats (3 week- old) received po administration of both extracts 0.5 mg/ml during 5 days before whole- body irradiation. Six hours after irradiation, we measured the body and organ weight and collected blood. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) showed a similar pattern six hours after irradiation. In case of the water extract - dietary group after irradiation, the levels of all enzymes had a tendency to decrease toward to the base level. Therefore, the results reflects the antioxidant activity of S. herbacea extracts and its potential to protect against radiation damage.

  13. Elevated levels of circulating histones indicate disease activity in patients with hand, foot, and mouth disease (HFMD).

    Science.gov (United States)

    Li, Xiuhui; Li, Qin; Li, Junhong; Li, Ying; Chen, Yuping; Lv, Aiping; Zhang, Jian; Ding, Jianbo; Von Maltzan, Kristine; Wen, Tao

    2014-12-01

    Hand, foot, and mouth disease (HFMD) is a common infectious disease in children, characterized by acute viral infection accompanying acute inflammatory responses. Circulating histones are leading mediators of the inflammatory processes. This study aimed to elucidate whether circulating histones play a contributory role during HFMD. We measured plasma levels of histones, myeloperoxidase (MPO), lactate dehydrogenase (LDH), and cytokines in HFMD patients (n = 126) and compared the results with those of a control group (n = 30). Circulating histone levels were significantly increased in HFMD patients (3.794 ± 0.156 μg/ml) compared with healthy controls (0.238 ± 0.023 μg/ml, p histones correlated positively with plasma IL-6 and IL-10, whereas in severe HFMD, histones were associated with elevated IL-6 and TNF-ɑ levels. These data demonstrate that circulating histones are excessively released in patients with HFMD, which may indicate disease severity and contribute to systemic inflammation by promoting cytokine production (e.g. IL-6). We suggest that in mild HFMD, circulating histones may originate largely from neutrophil activation, whereas in severe HFMD, dying tissue cells and neutrophil activation may be synergistically involved in the increased levels of histones.

  14. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels.

    Science.gov (United States)

    Khalil, Md Ibrahim; Tanvir, E M; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  15. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Khalil

    2015-01-01

    Full Text Available The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO- induced myocardial infarction (MI in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI, triglycerides (TG, total cholesterol (TC, lipid peroxidation (LPO products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40 were pretreated orally with Tualang honey (3 g/kg/day for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB, lactate dehydrogenase (LDH, and aspartate transaminase (AST, cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO products (TBARS and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST. Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  16. Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting.

    Science.gov (United States)

    Chen, Qian-Qian; Hou, Chun-Chao; Wang, Chuan-Jun; Yang, Xiao; Shi, Rui; Chen, Yong

    2018-06-06

    NiFe-layered double hydroxide (NiFe LDH) is a state-of-the-art oxygen evolution reaction (OER) electrocatalyst, yet it suffers from rather poor catalytic activity for the hydrogen evolution reaction (HER) due to its extremely sluggish water dissociation kinetics, severely restricting its application in overall water splitting. Herein, we report a novel strategy to expedite the HER kinetics of NiFe LDH by an Ir4+-doping strategy to accelerate the water dissociation process (Volmer step), and thus this catalyst exhibits superior and robust catalytic activity for finally oriented overall water splitting in 1 M KOH requiring only a low initial voltage of 1.41 V delivering at 20 mA cm-2 for more than 50 h.

  17. H2S-induced S-sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells.

    Science.gov (United States)

    Untereiner, Ashley A; Oláh, Gabor; Módis, Katalin; Hellmich, Mark R; Szabo, Csaba

    2017-07-15

    Cystathionine-β-synthase (CBS) is upregulated and hydrogen sulfide (H 2 S) production is increased in colon cancer cells. The functional consequence of this response is stimulation of cellular bioenergetics and tumor growth and proliferation. Lactate dehydrogenase A (LDHA) is also upregulated in various colon cancer cells and has been previously implicated in tumor cell bioenergetics and proliferation. In the present study, we sought to determine the potential interaction between the H 2 S pathway and LDH activity in the control of bioenergetics and proliferation of colon cancer, using the colon cancer line HCT116. Low concentrations of GYY4137 (a slow-releasing H 2 S donor) enhanced mitochondrial function (oxygen consumption, ATP production, and spare respiratory capacity) and glycolysis in HCT116 cells. SiRNA-mediated transient silencing of LDHA attenuated the GYY4137-induced stimulation of mitochondrial respiration, but not of glycolysis. H 2 S induced the S-sulfhydration of Cys163 in recombinant LDHA, and stimulated LDHA activity. The H 2 S-induced stimulation of LDHA activity was absent in C163A LDHA. As shown in HCT116 cell whole extracts, in addition to LDHA activation, GYY4137 also stimulated LDHB activity, although to a smaller extent. Total cellular lactate and pyruvate measurements showed that in HCT116 cells LDHA catalyzes the conversion of pyruvate to lactate. Total cellular lactate levels were increased by GYY4137 in wild-type cells (but not in cells with LDHA silencing). LDHA silencing sensitized HCT116 cells to glucose oxidase (GOx)-induced oxidative stress; this was further exacerbated with GYY4137 treatment. Treatment with low concentrations of GYY4137 (0.3mM) or GOx (0.01U/ml) significantly increased the proliferation rate of HCT116 cells; the effect of GOx, but not the effect of GYY4137 was attenuated by LDHA silencing. The current report points to the involvement of LDHA in the stimulatory effect of H 2 S on mitochondrial respiration in colon

  18. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  19. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  20. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  1. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  2. Diurnal behaviour of some salivary parameters in patients with diabetes mellitus (flow rate, pH, thiocianat, LDH activity)--note II.

    Science.gov (United States)

    Ionescu, S; Bădiţă, D; Artino, M; Dragomir, M; Huidovici, E; Niţă, V; Chiţoi, E

    1998-01-01

    The study was performed on 31 diabetic patients of both sexes, divided in 2 groups: group I--17 patients with insulin-dependent diabetes (IDDM) and group II--14 patients with noninsulin-dependent diabetes (NIDDM) and compared with a control group of 16 non-diabetic subjects. Mixed saliva was sampled without stimulation during 2 periods of the day: 07:30-08:00 before breakfast and 17:30-18:00 before dinner. We determined: salivary flow rate, pH with Merck indicator and, after homogenization, the thiocianat with the FeCl3 method and LDH activity (the Norbert method adapted in our laboratory for saliva). Our study showed the same diurnal changes in flow rate and salivary pH in both diabetic and control groups: minimal values in the morning and maximal ones in the afternoon. In non-smoking diabetic patients the salivary thiocianat had maximal values in the morning and minimal ones in the afternoon; similar behaviour, but less obvious was observed in smoking diabetic patients and in the control group regardless of the smoking habit. LDH activity showed unsignificant diurnal variations in the diabetic patients. In the control group we found a significant decrease of LDH activity in the afternoon. The discussion is about the implication of these salivary parameters in the pathology of oral cavity: gingivitis, periodontitis and caries in diabetic patients.

  3. From nicotinate-containing layered double hydroxides (LDHs) to NAD coenzyme-LDH nanocomposites - Syntheses and structural characterization by various spectroscopic methods

    Science.gov (United States)

    Muráth, Szabolcs; Dudás, Csilla; Kukovecz, Ákos; Kónya, Zoltán; Sipos, Pál; Pálinkó, István

    2017-07-01

    The syntheses of nicotinate anion- and NAD coenzyme-layered double hydroxide (LDH) composites were performed with the aim of having the organic component among the layers. In-house prepared CaAl-LDHs were the host materials. Intercalation was attempted by direct ion exchange or by the dehydration-rehydration method applying aqueous solvent mixtures (containing ethanol, propanol, acetone, N,N-dimethylformamide). For structural characterization, beside X-ray diffractometry, X-ray photoelectron and IR spectroscopies, transmission and scanning electron microscopies as well as energy-dispersive X-ray analysis were used. Molecular modelling served for the visualization of the arrangements of the intercalated ions among the layers of the LDH samples. Although not all the intercalation methods and solvent mixtures led to intercalated composite materials, successful ones could be identified. The combination of spectroscopic methods helped in proposing sensible spatial arrangements for the intercalated anions. The NAD-CaAl-LDH composite proved to be an active catalyst in the oxidation of hydroquinone to 1,4-bezoquinoe in the presence of H2O2.

  4. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor

    Science.gov (United States)

    Liang, Haoyan; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Cao, Jian; Lin, Tiesong; Fei, Weidong; Feng, Jicai

    2018-02-01

    Constructing rational structure and utilizing distinctive components are two important keys to promote the development of high performance supercapacitor. Herein, we adopt a facile two-step method to develop an in-situ heterostructure with NiCo-LDH nanowire as core and NiOOH nanosheets as shell on carbon fiber cloth. The resultant NiCo-LDH@NiOOH electrode exhibites a high specific capacitance of about 2622 F g-1 at 1 A g-1 and good cycling stability (88.5% remain after 10000 cycles). This reinforced electrochemical performance is benefit from the distinct core-shell structure, and takes advantage of the synergetic effect to supply more electrochemical active spots and pathways to accelerate electron and ion transport. Furthermore, the fabricated asymmetric supercapacitor of optimized NiCo-LDH@NiOOH//AC device displays a high energy density of 51.7 Wh kg-1 while the power density is 599 W kg-1 and presents a satisfying cycling performance.

  5. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    International Nuclear Information System (INIS)

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-01-01

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg 2+ and Al 3+ or Mg 2+ , Al 3+ and Fe 3+ in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  6. Comparative Study of Ni-Zn LHS and Mg-Al LDH Adsorbents of Navy Blue and Yellow F3G Dye

    Directory of Open Access Journals (Sweden)

    Idha Yulia Ikhsani

    2016-03-01

    Full Text Available Adsorption of disperse dyes from wastewater onto Ni-Zn LHS (layered hydroxide salts and Mg-Al LDH (layered double hydroxides has been compared in this study. Effects of initial pH solution, contact time and initial dye concentration were investigated. The ability of the adsorbent to be reused was also studied. The results showed that acidic condition was favorable for the adsorption of each dyes onto both adsorbent. The adsorption kinetics was studied using pseudo-first-order, pseudo-second-order and Santosa’s kinetics models. The experimental data fits well with the pseudo-second order kinetic model. The equilibrium adsorption data were analyzed using Langmuir and Freundlich isotherm models. The results showed that adsorption of navy blue onto both adsorbent followed Freundlich isotherm adsorption, while yellow F3G followed Langmuir isotherm adsorption. In the application for the adsorption the wastewater containing dyes, Ni-Zn LHS has a better adsorption capacity of 52.33 mg/g than that of Mg-Al LDH that 30.54 mg/g. Calcination of the adsorbent which has already been used increased the adsorption capacity of Mg-Al LDH to 84.75 mg/g, but decreased the adsorption capacity of the Ni-Zn LHS to 42.65 mg/g.

  7. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    Background and Objectives: There is the recognition of a pattern of elevations of serum enzymes in hyperthyroid and hypothyroid patients. The aims of this study were to determine the activities of serum creatine kinase (CK) and lactate deydrogenase (LDH) in thyroid disorders, and to evaluate the relationship between CK, ...

  8. PSA levels as a predictor of 68Ga PSMA PET/CT positivity in patients with prostate cancer?

    Science.gov (United States)

    Soydal, Cigdem; Urun, Yuksel; Suer, Evren; Nak, Demet; Ozkan, Elgin; Kucuk, Ozlem N

    2018-05-10

    The aim of this study is to evaluate predictive factors of 68Gallium (68Ga) Prostate-Specific Membrane Antigen (PSMA) Positron Emission Tomography (PET)/Computed Tomography (CT) positivity. Relationships between serum Prostate Specific Antigen (PSA), Lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels, Gleason Score (GS) and positivity of 68Ga PSMA PET in patients who underwent 68Ga PSMA PET/CT for restaging for PCa were evaluated retrospectively. One hundred and four (median age: 67; range: 51-88) patients were included in this study. Of these patients, PSMA PET was positive in 75 (72%) patients. Mean serum PSA levels for PET negative and positive groups were 0.76±1.00 and 180.85±324.93 ng/ml (pPSA cut-off and 92% and 90%, respectively, for the 2 ng/ml PSA cut-off values. The positivity rates for patients with PSA levels PSA recurrence. Patients with higher GS and early PSA recurrence could benefit from 68Ga PSMA PET/CT.

  9. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  10. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  11. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  12. Physiological covalent regulation of rat liver branched-chain alpha-ketoacid dehydrogenase

    International Nuclear Information System (INIS)

    Harris, R.A.; Powell, S.M.; Paxton, R.; Gillim, S.E.; Nagae, H.

    1985-01-01

    A radiochemical assay was developed for measuring branched-chain alpha-ketoacid dehydrogenase activity of Triton X-100 extracts of freeze-clamped rat liver. The proportion of active (dephosphorylated) enzyme was determined by measuring enzyme activities before and after activation of the complex with a broad-specificity phosphoprotein phosphatase. Hepatic branched-chain alpha-ketoacid dehydrogenase activity in normal male Wistar rats was 97% active but decreased to 33% active after 2 days on low-protein (8%) diet and to 13% active after 4 days on the same diet. Restricting protein intake of lean and obese female Zucker rats also caused inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex. Essentially all of the enzyme was in the active state in rats maintained for 14 days on either 30 or 50% protein diets. This was also the case for rats maintained on a commercial chow diet (minimum 23% protein). However, maintaining rats on 20, 8, and 0% protein diets decreased the percentage of the active form of the enzyme to 58, 10, and 7% of the total, respectively. Fasting of chow-fed rats for 48 h had no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e., 93% of the enzyme remained in the active state compared to 97% for chow-fed rats. However, hepatic enzyme of rats maintained on 8% protein diet was 10% active before starvation and 83% active after 2 days of starvation. Thus, dietary protein deficiency results in inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex, presumably as a consequence of low hepatic levels of branched-chain alpha-ketoacids

  13. Action of sulphite on plant malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I.

    1974-01-01

    SO/sub 3//sup 2 -/ acts on NAD- and NADP-dependent malate dehydrogenase in several ways. Firstly, SO/sub 3//sup 2 -/ favours the appearance of low MW species (65000 and 39000 daltons) in Sephadex gel chromatography. Secondly, the enzyme from which is obtained by gel chromatography with dithioerythritol plus nucleotide cofactor is changed in the presence of SO/sub 3//sup 2 -/. This is indicated by the appearance of a linear reaction (instead of curvilinear), and by the abolition of the biphasic sigmoidal kinetics on varying substrate and cofactor concentrations. Thus the inhibition of initial velocity at high substrate or cofactor concentrations is even more marked than at lower ones. Thirdly, SO/sub 3//sup 2 -/ strongly reduces the activity in substrate saturating conditions.

  14. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    Science.gov (United States)

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    OpenAIRE

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisia...

  16. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  17. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  18. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P.

    2005-01-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  19. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    OpenAIRE

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2008-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expressio...

  20. The activity of dehydrogenases in the uterus of C57B mice after X-irradiation and serotonin treatment

    International Nuclear Information System (INIS)

    Mazur, L.

    1978-01-01

    In C57B female mice, irradiated with 500 R and/or treated with serotonin (5-hydroxytryptamine), the activity of dehydrogenases in the uterus was studied on the fourth day of pregnancy. The reduction of 2,3,5-triphenyltetrazolium chloride to formazane by the uterine tissue was taken as the measure of such activity. The activity of dehydrogenases in the uterus of irradiated mice was distinctly lower than in non-irradiated controls. This activity was also depressed after serotonin treatment, the level of enzyme activity being dose-dependent. In females injected with serotonin and then irradiated, the activity of dehydrogenases was higher than in those irradiated only. The radioprotective effect was more pronounced in mice injected with serotonin alone on the third day of pregnancy i.e. shortly before irradiation, than in those injected on the second and the third day. (author)

  1. Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2 adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol synthesis.

    Science.gov (United States)

    Ezeh, Collins I; Huang, Xiani; Yang, Xiaogang; Sun, Cheng-Gong; Wang, Jiawei

    2017-11-01

    To improve CO 2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO 2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO 2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO 2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Jiang, Danli; Wu, Yubo; Huang, Di; Ren, Xing; Wang, Yan

    2017-10-01

    Stress has a considerable impact on welfare and productivity of fish, and blood glucose level of fish may be a factor modulating stress response. This study evaluated the effect of blood glucose level and handling on acute stress response of grass carp Ctenopharyngodon idella. Fish were intraperitoneally injected with glucose at 0, 0.2, 0.5, and 1.0 mg g -1 body mass (BM) and then were exposed to handling for 5 min. Glucose injection resulted in increase of plasma glucose level and liver glycogen content and decrease of plasma lactate level. Handling resulted in increase of plasma levels of cortisol, glucose, and lactate and plasma lactic dehydrogenase (LDH) activity and decrease of liver glycogen content. At 1 h post-stress, the plasma cortisol level was lower in the stressed fish injected with glucose at 0.5 mg g -1 BM than the stressed fish injected with glucose at 0, 0.2, and 1.0 mg g -1 BM. No significant differences were found in the activities of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) in the liver between the stressed and unstressed fish, regardless of the dose of glucose injection. At 1 h post-stress, the liver glucose-6-phosphatase (G6Pase) activity was higher in the fish without glucose injection than in the fish injected with glucose. This study reveals that blood glucose level can affect stress response of grass carp by modulating cortisol release and glucose homeostasis through glycogen metabolism and gluconeogenesis in the liver.

  3. SERUM ACTIVITIES OF ASPARTATE AMINOTRANSFERASE, CREATINE KINASE AND LACTATE DEHYDROGENASE IN HORSES WITH COLIC ATIVIDADE SÉRICA DAS ENZIMAS ASPARTATO AMINOTRANSFERASE, CREATINA QUINASE E LACTATO DESIDROGENASE EM EQÜINOS COM CÓLICA

    Directory of Open Access Journals (Sweden)

    Aureo Evangelista Santana

    2008-12-01

    Full Text Available Seventy equines distributed in two experimental groups were used, G1 (20 healthy equines, and G2 (50 equines with colic. Blood samples were obtained by jugular vein puncture in ten different moments. The variables aspartate aminotransferase (AST, creatine kinase (CK, and lactate dehydrogenase (LDH were determined by spectrophotometric assay using specific reagents. The average values presented by the animals of the G2 for variables CK, AST, and LDH were higher (P<0.05 than the values presented by the animals of the G1 in all the evaluation moments. The results showed for G2 animals suggest the existence of acute muscle injury. The muscle injuries in equines with colic were attributed to the tissue hypoperfusion, and the muscular damage.

    KEY WORDS: Acute abdomen, horses, muscles enzyme. De setenta eqüinos, distribuídos em dois grupos experimentais – G1 (vinte eqüinos hígidos e G2 (cinqüenta eqüinos com cólica –, colheram-se amostras de sangue em dez diferentes momentos, mediante punção da jugular, para a determinação da atividade sérica das enzimas aspartato aminotransferase (AST, creatina quinase (CK e lactato desidrogenase (LDH. Os valores médios apresentados pelos animais do G2, para as variáveis CK, AST e LDH, foram superiores (P<0,05 aos valores médios apresentados pelos animais do G1 em todos os momentos de avaliação. Os resultados apresentados pelos animais com cólica (G2 sugerem a existência de lesão muscular aguda, porém com tendência a cura, e foram atribuídos a hipoperfusão tecidual e a traumas musculares. A análise seriada das enzimas CK, AST e LDH auxilia tanto no diagnóstico de lesões musculares em eqüinos com cólica como no acompanhamento da evolução do processo de cura.

    PALAVRAS-CHAVES: Abdômen agudo, cavalos, enzimas musculares.

  4. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    Science.gov (United States)

    ... for This Page Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, Castro-Magana ... A, Copeland KC, Chang YT, Lutfallah C, Mason JI. Carriers for type II 3beta-hydroxysteroid dehydrogenase (HSD3B2) ...

  5. Properties of glucoside 3-dehydrogenase and its potential applications

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... dehydrogenase has attracted considerable attention in recent years due to broad substrate specificity and excellent ... site-selective oxidation of the C-3 hydroxyl group. .... single peptide with a molecular mass of 67 kDa in.

  6. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver... marrow) leukemia. (b) Classification. Class I (general controls). The device is exempt from the premarket...

  7. Modeling of NAD+ analogues in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Beijer, N.A.; Buck, H.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1990-01-01

    So far, the interactions of nicotinamide adenine dinucleotide (NAD+) derivatives with dehydrogenases are not very well understood. This hampers the introduction of NAD+ analogues with improved characteristics concerning industrial application. We have developed an AMBER molecular mechanics model in

  8. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  9. Genetics Home Reference: 17-beta hydroxysteroid dehydrogenase 3 deficiency

    Science.gov (United States)

    ... 000 newborns. It is more common in the Arab population of Gaza, where it affects 1 in ... fetus, resulting in the abnormalities in the external sex organs that occur in 17-beta hydroxysteroid dehydrogenase ...

  10. Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Pitts, William J; Guo, Junqing; Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Watterson, Scott H; Bednarz, Mark S; Chen, Bang Chi; Barrish, Joel C; Bassolino, Donna; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-08-19

    A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared. The synthesis and the structure-activity relationships (SAR) derived from in vitro studies are described.

  11. Novel amide-based inhibitors of inosine 5'-monophosphate dehydrogenase.

    Science.gov (United States)

    Watterson, Scott H; Liu, Chunjian; Dhar, T G Murali; Gu, Henry H; Pitts, William J; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-10-21

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  12. Glucose-6-phosphate dehydrogenase deficiency in Singapore.

    Science.gov (United States)

    Quak, S H; Saha, N; Tay, J S

    1996-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) in man is an X-linked enzyme. The deficiency of this enzyme is one of the most common inherited metabolic disorders in man. In Singapore, three clinical syndromes associated with G6PD deficiency had been described: severe haemolysis in neonates with kernicterus, haemoglobinuria and "viral hepatitis"-like syndrome. The human G6PD monomer consists of 515 amino acids. Only the tetrameric or dimeric forms composed of a single type subunit are catylitically active. The complete amino acid sequence of G6PD had been elucidated in man and various other animals. The region of high homology among the enzymes of various animals is presumably functionally active. Among the Chinese in Singapore, three common molecular variants had been identified: Canton (nt 1376 G --> T), Kaiping (nt 1388 G --> A) and Mediterranean (nt 563 C --> T) in frequencies of 24%, 21% and 10% respectively. In addition, two common mutants (Gaozhou, nt 95 A --> G and Chinese 5, nt 1024 C --> T) have been detected in Singapore Chinese in low frequencies. In Malays, 6 different deficient variants are known in Singapore (3 new, 1 Mahidol, 1 Indonesian and 1 Mediterranean).

  13. Human liver aldehyde dehydrogenase: coenzyme binding

    International Nuclear Information System (INIS)

    Kosley, L.L.; Pietruszko, R.

    1987-01-01

    The binding of [U- 14 C] NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of [U- 14 C] NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction

  14. Glucose 6 phosphate dehydrogenase deficiency in adults

    International Nuclear Information System (INIS)

    Khan, M.

    2004-01-01

    Objective: To determine the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in adults presented with anemia. Subjects and Methods: Eighteen months admission data was reviewed for G6PD deficiency as a cause of anemia. Anemia was defined by world health organization (WHO) criteria as haemoglobin less than 11.3 gm%. G6PD activity was measured by Sigma dye decolorisation method. All patients were screened for complications of hemolysis and its possible cause. Patients with more than 13 years of age were included in the study. Results: Out of 3600 patients admitted, 1440 were found anaemic and 49 as G6PD deficient. So the frequency of G6PD deficiency in anaemic patients was 3.4% and the overall frequency is 1.36%. G6PD deficiency among males and females was three and six percent respectively. Antimalarials and antibiotics containing sulphonamide group were the most common precipitating factors for hemolysis. Anemia and jaundice were the most common presentations while malaria was the most common associated disease. Acute renal failure was the most severe complication occurring in five patients with two deaths. Conclusion: G6PD deficiency is a fairly common cause of anemia with medicine as common precipitating factor for hemolysis. Such complications can be avoided with early recognition of the disease and avoiding indiscriminate use of medicine. (author)

  15. Glucose 6-phosphate dehydrogenase variants in Japan.

    Science.gov (United States)

    Miwa, S

    1980-01-01

    Fifty-four cases of glucose 6-phosphate dehydrogenase (G6PD) deficiency have so far been reported in Japan. Among them, 21 G6PD variants have been characterized. Nineteen out of the 21 variants were characterized in our laboratory and G6PD Heian and "Kyoto" by others. G6PD Tokyo, Tokushima, Ogikubo, Kurume, Fukushima, Yokohama, Yamaguchi, Wakayama, Akita, Heian and "Kyoto" were classified as Class 1, because all these cases showed chronic hemolytic anemia and severe enzyme deficiency. All these variants showed thermal instability. G6PD Mediterranean-like, Ogori, Gifu and Fukuoka were classified as Class 2, whereas G6PD Hofu, B(-) Chinese, Ube, Konan, Kamiube and Kiwa belonged to Class 3. All the 6 Class 3 variants were found as the results of the screening tests. The incidence of the deficiency in Japanese seems to be 0.1-0.5% but that of the cases which may slow drug-induced hemolysis would be much less. G6PD Ube and Konan appear to be relatively common in Japan.

  16. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  17. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  18. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; Johannes C. G. Ottow

    2011-01-01

    The objective of this research was to determine the effects of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD) which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA),in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT). The toxicity and dose response curve of...

  19. Changes of the lactate dehydrogenase in the tissue fraction with Walker carcinoma under irradiation

    International Nuclear Information System (INIS)

    Schultheis, W.

    1972-01-01

    The behaviour of LDH, GOT and GPT of one and the same tissue with and without irradiation treatment as a means of cancer diagnosis is presented. Parallel to this, the corresponding blood values are determined, and an agar-gel isoenzyme separation of the LDH is carried out. In the 11 day-old Walker carcinoma of the rat, total tumour LDH as well as total serum LDH are increased. The X-radiation does not affect the result. The M 4 isoenzyme is mainly found in the tumour tissue, to whose benefit the tumour sera also change. In tissue processing, LDH, GOT and GPT behave corresponding to their occurence in the cell compartments. The enzymes, however, appear to differ in their solution behaviour. X-radiation leeds to an early removal of these enzymes in the sense of an 'enzyme release'. (BSC/LH) [de

  20. Concentrações de creatino quinase, aspartato aminotransferase e desidrogenase lática em potros do nascimento até os seis meses de idade Concentration of creatine kinase, aspartate aminotransferase and lactate dehydrogenase in foals from birth up to sixth month

    Directory of Open Access Journals (Sweden)

    Elisiane Lourdes Da Cás

    2001-12-01

    Full Text Available Dez potros da raça Puro Sangue de Corrida (PSC, de ambos os sexos, foram avaliados quanto à concentração das enzimas séricas creatino quinase (CK, aspartato aminotransferase (AST e deshidrogenase lática (DHL. Foram colhidas amostras sangüíneas diariamente do 1º ao 7ºdia de vida e depois aos 15, 30, 60, 90, 120, 150 e 180 dias de idade. A concentração da CK mostrou um decréscimo significativo (pTen Thoroughbred foals, male and female, had the seric concentration of creatine kinase (CK, aspartate aminotransferase (AST and lactate dehydrogenase (LDH determined. Blood samples were collected every day from days 1 to 7 and on days 15, 30, 60, 90, 120, 150 and 180 of age. CK activity decreased significantly (p< 0.0003 in the first week and showed significant variation between day 15 and 6 months of age. AST showed a significant (p< 0.0001 increase in its values until 102 days of age, decreasing subsequently until 6 months of age. LDH values decreased significantly (p< 0.0002 between days 15 and 120, increasing subsequently until 6 months of age. At 6 months of age CK, AST and LDH activities were close to those of adult horses.

  1. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4

    International Nuclear Information System (INIS)

    Rademakers, Saskia E; Lok, Jasper; Kogel, Albert J van der; Bussink, Johan; Kaanders, Johannes HAM

    2011-01-01

    The cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics. 20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis. MCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both). Colocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences

  2. 11β-Hydroxysteroid Dehydrogenase 2 in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Katarzyna Kosicka

    2016-01-01

    Full Text Available Preeclampsia is a serious medical problem affecting the mother and her child and influences their health not only during the pregnancy, but also many years after. Although preeclampsia is a subject of many research projects, the etiology of the condition remains unclear. One of the hypotheses related to the etiology of preeclampsia is the deficiency in placental 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2, the enzyme which in normal pregnancy protects the fetus from the excess of maternal cortisol. The reduced activity of the enzyme was observed in placentas from pregnancies complicated with preeclampsia. That suggests the overexposure of the developing child to maternal cortisol, which in high levels exerts proapoptotic effects and reduces fetal growth. The fetal growth restriction due to the diminished placental 11β-HSD2 function may be supported by the fact that preeclampsia is often accompanied with fetal hypotrophy. The causes of the reduced function of 11β-HSD2 in placental tissue are still discussed. This paper summarizes the phenomena that may affect the activity of the enzyme at various steps on the way from the gene to the protein.

  3. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum

    Science.gov (United States)

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-01

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30C, and interestingly, it could utilize NAD+ and NADP+ as coenzymes with similar efficiency and showed no obvious difference toward NAD+ and NADP+. In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum. PMID:25622822

  4. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  5. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  6. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  7. Evidence of redox imbalance in a patient with succinic semialdehyde dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Anna-Kaisa Niemi

    2014-01-01

    Full Text Available The pathophysiology of succinic semialdehyde dehydrogenase (SSADH deficiency is not completely understood. Oxidative stress, mitochondrial pathology, and low reduced glutathione levels have been demonstrated in mice, but no studies have been reported in humans. We report on a patient with SSADH deficiency in whom we found low levels of blood reduced glutathione (GSH, and elevations of dicarboxylic acids in urine, suggestive of possible redox imbalance and/or mitochondrial dysfunction. Thus, targeting the oxidative stress axis may be a potential therapeutic approach if our findings are confirmed in other patients.

  8. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  9. Computational NMR, IR/RAMAN calculations in sodium pravastatin: Investigation of the Self-Assembled Nanostructure of Pravastatin-LDH (Layered Double Hydroxides) Systems

    Science.gov (United States)

    Petersen, Philippe; Cunha, Vanessa; Gonçalves, Marcos; Petrilli, Helena; Constantino, Vera; Instituto de Física, Departamento de Física de Materiais e Mecânica Team; Instituto de Química, Departamento de Química Fundamental Team

    2013-03-01

    Layered double hydroxides (LDH) can be used as nanocontainers for immobilization of Pravastatin, in order to obtain suitable drug carriers. The material's structure and spectroscopic properties were analyzed by NMR, IR/RAMAN and supported by theoretical calculations. Density Functional Theory (DFT) calculations were performed using the Gaussian03 package. The geometry optimizations were performed considering the single crystal X-ray diffraction data of tert-octylamonium salt of Pravastatin. Tetramethylsilane (TMS), obtained with the same basis set, was used as reference for calculating the chemical shift of 13C. A scaling factor was used to compare theoretical and experimental harmonic vibrational frequencies. Through the NMR and IR/RAMAN spectra, we were able to make precise assignments of the NMR and IR/RAMAN of Sodium Pravastatin. We acknowledge support from CAPES, INEO and CNPQ.

  10. Synthesis and characterization of LDH/Ppi composite and its application as adsorbent of 2,4-dichlorophenoxyacetic (herbicide); Sintese e caracterizacao do composito HDL/Ppi e sua aplicacao como adsorvente do 2,4-diclorofenoxiacetico (herbicida)

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, I.S.; Oliveira, R.S.; Girotto, L.G.; Freitas, L.L. de; Amaral, F.A. do; Canobre, S.C., E-mail: ingrid_1194@hotmail.com [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Quimica

    2016-07-01

    This work had as main objective the synthesis and characterization of LDH [Co-Al-Cl] method by hydrolysis of urea and then its synthesized polypyrrole coating by chemically targeting the application as adsorbent dichlorophenoxyacetic acid (2,4-D). The x-ray diffractogram of well defined showed diffraction peaks corresponding to the planes 003, 006, 009 and 110 which allow them to rhombohedral indexes and lamellar structure. The composite LDH / Ppi had a percentage of 49% herbicide retention in aqueous solution. From the investigated adsorption isotherm models that more fit the experimental data was the Freundlich, so it could be inferred that the interaction between the LDH / Ppi and the herbicide was physical, ie an rapid, reversible adsorption and does not specify. (author)

  11. Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH

    Science.gov (United States)

    Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine

    2018-05-01

    The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.

  12. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  13. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    Science.gov (United States)

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  14. Effects of Cinnamon extract on biochemical enzymes, TNF-α and NF-κB gene expression levels in liver of broiler chickens inoculated with Escherichia coli

    Directory of Open Access Journals (Sweden)

    Seyed Mahmoud Tabatabaei

    2015-09-01

    Full Text Available Abstract: Infection with Escherichia coli (E. coli is a common disease in poultry industry. The use of antibiotics to treat diseases is facing serious criticism and concerns. The medicinal plants may be effective alternatives because of their multiplex activities. The aim of this study was to investigate the effects of cinnamon extract on the levels of liver enzymes, tumor necrosis factor-alpha (TNF-α and nuclear factor-kappa B (NF-κB gene expressions in liver of broiler chickens infected with E. coli. Ninety Ross-308 broilers were divided into healthy or E. coli-infected groups, receiving normal or cinnamon extract (in concentrations of 100 or 200mg/kg of food supplemented diets. E. coli suspension (108cfu was injected subcutaneously after 12 days cinnamon administration. Seventy-two hours after E. coli injection, the blood samples were taken for biochemical analysis of liver enzymes in serum (spectrophotometrically, and liver tissue samples were obtained for detection of gene expression of inflammatory markers TNF-α and NF-κB, using real-time PCR. Infection with E. coli significantly increased the levels of TNF-α and NF-κB gene expressions as well as some liver enzymes including creatine-kinase (CK, lactate-dehydrogenase (LDH, alanine-transferase (ALT and aspartate-transferase (AST as compared with control group (P<0.05. Pre-administration of cinnamon extract in broilers diet (in both concentrations significantly reduced the tissue levels of TNF-α and NF-κB gene expressions and enzymes CK and ALT in serum of broiler chickens inoculated with E. coli in comparison with E. coli group (P<0.05 and P<0.01. The levels of LDH and AST were significantly decreased only by 200mg/kg cinnamon extract in infected broilers. The level of alkaline-phosphatase (ALP was not affected in any groups. Pre-administration of cinnamon extract in diets of broiler chickens inoculated with E. coli could significantly reduce the gene expression levels of pro

  15. Genetic variation in 15-hydroxyprostaglandin dehydrogenase and colon cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Cheryl L Thompson

    Full Text Available 15-Hydroxyprostaglandin dehydrogenase (15-PGDH is a metabolic antagonist of COX-2, catalyzing the degradation of inflammation mediator prostaglandin E2 (PGE2 and other prostanoids. Recent studies have established the 15-PGDH gene as a colon cancer suppressor.We evaluated 15-PDGH as a colon cancer susceptibility locus in a three-stage design. We first genotyped 102 single-nucleotide polymorphisms (SNPs in the 15-PGDH gene, spanning ∼50 kb up and down-stream of the coding region, in 464 colon cancer cases and 393 population controls. We then genotyped the same SNPs, and also assayed the expression levels of 15-PGDH in colon tissues from 69 independent patients for whom colon tissue and paired germline DNA samples were available. In the final stage 3, we genotyped the 9 most promising SNPs from stages 1 and 2 in an independent sample of 525 cases and 816 controls (stage 3.In the first two stages, three SNPs (rs1365611, rs6844282 and rs2332897 were statistically significant (p<0.05 in combined analysis of association with risk of colon cancer and of association with 15-PGDH expression, after adjustment for multiple testing. For one additional SNP, rs2555639, the T allele showed increased cancer risk and decreased 15-PGDH expression, but just missed statistical significance (p-adjusted = 0.063. In stage 3, rs2555639 alone showed evidence of association with an odds ratio (TT compared to CC of 1.50 (95% CI = 1.05-2.15, p = 0.026.Our data suggest that the rs2555639 T allele is associated with increased risk of colon cancer, and that carriers of this risk allele exhibit decreased expression of 15-PGDH in the colon.

  16. Very long-chain acyl-coenzyme A dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2014-01-01

    Full Text Available The paper describes a case of a baby with a severe infant form of very long-chain acyl-coenzyme A dehydrogenase deficiency, a very rare genetic disorder. The basis for the disease is a disorder of mitochondrial β-oxidation of long-chain fatty acids. Accumulation of acyl-CoA-derived fatty acids causes a toxic effect on the myocardium and cardiac conduction system, liver, skeletal muscles, and other organs. The development of hypoglycemia is typical. Treatment in the acute period involves the immediately ceased delivery of long-chain triglycerides, the provision of the body with medium-chain triglycerides, and the correction of glycemia. In our observation the baby was born at term with a satisfactory condition in a family with a poor history (the first baby had suddenly died at the age of 3,5 months. The disease manifested itself as bradyarrhythmia and cardiac arrest on day 2 of life. The clinical symptom complex also included hepatomegalia, hypoglycemic episodes, lactate acidosis, and elevated blood levels of cytolytic enzymes and creatine phosphokinase. The diagnosis was suspected on the basis of the high blood values of acylcarnitines (primarily C14:1 and verified by a molecular genetic examination. Syndrome therapy and dietotherapy resulted in the abolishment of the abnormality. At the age of 2 years of life, the infant’s physical, motor, mental, and speech development corresponded to his age although he had mild right-sided hemiparesis. Thus, timely therapy determines the favorable prognosis of the disease even in its severe infant forms. 

  17. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  18. Function of C-terminal hydrophobic region in fructose dehydrogenase

    International Nuclear Information System (INIS)

    Sugimoto, Yu; Kawai, Shota; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2015-01-01

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  19. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  20. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabolic...... and their consequences for the understanding of electron transport and redundancy of electron paths...... requirements. In plants, specialised components have been known for a long time. However, recently, the known number of plant respiratory chain dehydrogenases has increased, including both components specific to plants and those with mammalian counterparts. This review will highlight the novel branches...

  1. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  2. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  3. Glucose-6-phosphate dehydrogenase deficiency; the single most ...

    African Journals Online (AJOL)

    Introduction: Glucose- 6-phosphate dehydrogenase deficiency is the most common enzymatic disorder of the red cell and an important risk factor for neonatal jaundice. Methodology: The aim of the study was to determine the incidence of G-6-PD deficiency among jaundiced neonates, and describe the associated morbidity ...

  4. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol degrad...

  5. Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency

    NARCIS (Netherlands)

    Tabatabaie, L; Klomp, L W J; Rubio-Gozalbo, M E; Spaapen, L J M; Haagen, A A M; Dorland, L; de Koning, T J

    UNLABELLED: 3-Phosphoglycerate dehydrogenase (3-PGDH) deficiency is considered to be a rare cause of congenital microcephaly, infantile onset of intractable seizures and severe psychomotor retardation. Here, we report for the first time a very mild form of genetically confirmed 3-PGDH deficiency in

  6. Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria

    NARCIS (Netherlands)

    Hektor, Harm J.; Kloosterman, Harm; Dijkhuizen, Lubbert

    2000-01-01

    A novel type of alcohol dehydrogenase enzyme has been characterized from Gram-positive methylotrophic (Bacillus methanolicus, the actinomycetes Amycolatopsis methanolica and Mycobacterium gastri) and non-methylotrophic bacteria (Rhodococcus strains). Its in vivo role is in oxidation of methanol and

  7. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    African Journals Online (AJOL)

    Identification of glucose 6 phosphate dehydrogenase mutations by single strand conformation polymorphism and gene sequencing analysis. ... Subject: Six DNA samples from Turkish males confirmed to have G-6-PD deficiency where available for the study. Results: One subject was found to have an abnormal mobility shift ...

  8. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  9. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 whi...

  10. Cloning and expression of chicken 20-hydroxysteroid dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Bryndová, Jana; Klusoňová, Petra; Kučka, Marek; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 37, č. 3 (2006), s. 453-462 ISSN 0952-5041 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant - others:GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z50110509 Keywords : 20-hydroxysteroid dehydrogenase * SDR family Subject RIV: CE - Biochemistry Impact factor: 2.988, year: 2006

  11. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for

  12. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  13. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein Expression Defines the Proliferative Nature of Cervical Cancer Stem Cells. ... of cervical cancer stem cells and also to validate them in initial and advanced stages of cervical cancer. Keywords: Cervical cancer, ALDH1, BALB/c-nu/nu, HeLa cells, RKIP, Sox2 ...

  14. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  15. Crystallization behaviour of glyceraldehyde dehydrogenase from Thermoplasma acidophilum

    Czech Academy of Sciences Publication Activity Database

    Lermark, L.; Degtjarik, Oksana; Steffler, F.; Sieber, V.; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 71, č. 12 (2015), s. 1475-1480 ISSN 2053-230X Institutional support: RVO:67179843 Keywords : TaAlDH * Thermoplasma acidophilum * bioproduction * cell-free enzyme cascade * glyceraldehyde dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 0.647, year: 2015

  16. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Nisler, Jaroslav; Kopečný, D.; Končitíková, R.; Zatloukal, Marek; Bazgier, Václav; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, Miroslav; Spíchal, Lukáš

    2016-01-01

    Roč. 92, 1-2 (2016), s. 235-248 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S Institutional support: RVO:61389030 Keywords : Cytokinin oxidase/dehydrogenase * Crystal structure * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  17. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    DEFF Research Database (Denmark)

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...

  18. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood

    NARCIS (Netherlands)

    Lapalme-Remis, S.; Lewis, E.C.; De Meulemeester, C.; Chakraborty, P.; Gibson, K.M.; Torres, C.; Guberman, A.; Salomons, G.; Jakobs, C.; Ali-Ridha, A.; Parviz, M.; Pearl, P.L.

    2015-01-01

    Objective: The natural history of succinic semialdehyde dehydrogenase (SSADH) deficiency in adulthood is unknown; we elucidate the clinical manifestations of the disease later in life. Methods: A 63-year-old man with long-standing intellectual disability was diagnosed with SSADH deficiency following

  19. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    ... in thyroid function are common endocrine disorders affecting 5-10% of individuals over ... Key words: Hyperthyroidism, hypothyroidism, lactate dehydrogenase, serum creatine kinase ... individuals depends on age, race, lean body mass and physical activity. ... measured by radioimmunoassay on AXSYM System (Abbott.

  20. Novel guanidine-based inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Iwanowicz, Edwin J; Watterson, Scott H; Liu, Chunjian; Gu, Henry H; Mitt, Toomas; Leftheris, Katerina; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L

    2002-10-21

    A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  1. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects approximately 400 million people worldwide.

  2. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in patients ...

    African Journals Online (AJOL)

    This is a study of Glucose-6-phosphate dehydrogenase(G6PD) deficiency in sickle cell anaemia patients attending the haematology clinic of the Jos University Teaching Hospital (JUTH), Jos- Nigeria. The prevalence of G6PD deficiency among the 130 sickle cell anaemia patients studied was found to be 18.5%. G6PD ...

  3. Cytophotometry of glucose-6-phosphate dehydrogenase activity in individual cells

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.; Vogels, I. M.

    1983-01-01

    With the aid of thin films of polyacrylamide gel containing purified glucose-6-phosphate dehydrogenase subjected to cytochemical procedures for the enzyme using tetranitro blue tetrazolium, arbitrary units of integrated absorbance obtained with a Barr & Stroud GN5 cytophotometer were converted into

  4. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    Science.gov (United States)

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  5. Low-level laser irradiation protects the chick embryo chorioallantoic membrane from UV cytotoxicity

    Directory of Open Access Journals (Sweden)

    Hammami Amira

    2018-01-01

    Full Text Available Low-level laser therapy or photobiomodulation is the medical use of a very low intensity light in the red to near infrared (wavelengths in the range of 630-940 nm. The present work was conducted to explore the effects of both UV and low-level laser irradiation (LLLI on microcirculation using the in vivo model of the chick embryo chorioallantoic membrane (CAM. The effects were assessed by measuring lipid peroxidation and antioxidant enzyme activity. Cell cytotoxicity, survival and intracellular reactive oxygen species (ROS of the CAM were also evaluated. We found that UV irradiation induced alterations of the vessels, leading to bleeding and extravasation. This effect was intensified after 60 min of exposure to UV irradiation, leading to marked edema. UVA irradiation increased cell cytotoxicity as assessed by lactate dehydrogenase (LDH release (56.23% of control and reduced cell viability as assessed by decreased fluorescein diacetate (FDA fluorescence (56.23% of control. Pretreatment with LLLI prior to UV exposure protected the CAM tissue from UV-mediated cell death. This protective effect was supported by the observation of significantly inhibited lipid peroxidation (from 0.3±0.004 for UV, to 0.177±0.012 after LLLI pretreatment, ROS and O2 -production, as indicated by respective dihydrorhodamine (DHR and dihydroethidium (DHE intensities (from 132.78% of control for UVA, to 95.90% of control for L-UV (DHR, and from 127.34% of control for UVA, to 82.03% of control for L-UV (DHE, and by preventing the increase in oxidative activities. LLLI efficiently protected CAM cells from UV-induced oxidative stress and appeared as a safe protective pretreatment against UV irradiation.

  6. Preparation and visible light responsive photocatalytic activity of Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiaqi; Qu, Ting; Wang, Qiufeng; Zhao, Zhenbo, E-mail: zhaozhenbo@ccut.edu.cn [School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin (China)

    2017-09-15

    Novel Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites were prepared through a hydrothermal method and co-precipitation method. The morphologies and structures of the photocatalysts were characterized by XRD, Raman, TEM, UV-vis-DRS, BET surface area and VSM techniques. The photocatalytic performances of the photocatalysts were investigated by the decolorisation of methyl orange (MO) under visible-light irradiation. The results showed that the Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites exhibited greater photocatalytic activities compared to pure Bi{sub 2}WO{sub 6} and the Ni-Al-Ce LDH; the decolorisation rate of MO was 87% within 60 min under visible-light irradiation. The decolorisation efficiency of the composite material remained at 71% after 4 recycling runs, showing improved stability. Furthermore, the experimental results also showed that the photocatalytic reactions for the composites followed first-order reaction kinetics. Therefore, the Fe{sub 3}O{sub 4}/Ni-Al-Ce LDH/Bi{sub 2}WO{sub 6} composites were photocatalysts with high efficiencies and stabilities for a photocatalytic reaction of an organic pollutant, and this study provides a new, effective method for the development of wastewater treatment. (author)

  7. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non-diab......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  8. Potential benefits of some antioxidant nutrients in reducing the high levels of some biochemical variables associated with induced hypertension in rats

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Abdel-Moneim, A.E.

    2005-01-01

    In a preliminary trial, the changes in selected biochemical blood variables which are thought to represent risk factors coincident with hypertension were compared between a group of normal control male albino rats (normotensive) and other group suffered from hypertension induced artificially by N-nitro-L-arginine methyl ester (L-NAME). Also, in this study, the effects of four antioxidant nutrients on the same variables were tested in order to show to what extent these nutrients are valid to control the levels of these variables without any deleterious effects after treatment. Co-enzyme Q 10 , taurine or carnitine were daily injected intraperitoneally for two weeks to three groups of hypertensive rats with doses of 50, 500 and 50 mg/kg, respectively. Garlic oil (200 mg / kg) was given to another hypertensive rats by oral intubation. The fourth group received a combination of all the above mentioned nutrients. Another hypertensive group was left without any treatment and served as recovery group. Fasting blood samples were drawn at 2 and 4 weeks after the terminal of the treatments. The results obtained revealed that the induced hypertension caused significant (P<0.001) increase of blood lactate dehydrogenase (LDH), creatin phosphokinase (CPK), aspartate aminotransferase (AST), total nitric oxide (NO), endothelin-1, angiotensin- II, total cholesterol (T Chol), triglycerides (TG), high density lipoprotein (HDL) and low density lipoprotein (LDL) as compared with their relevant levels in the control normotensive rats which injected with normal saline. All nutrients used had significant (P<0.05) lowering effects on the activities of serum cardiac enzymes (LDH and CPK) besides AST, but the reduction was more evident when a combination of all nutrients was used as compared with their corresponding levels of the recovery hypertensive group. As a function of interval, the activities of all enzymes were declined significantly (P<0.05) with the advancement of time. The same

  9. Cloning, characterization and functional expression of Taenia solium 17 beta-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Aceves-Ramos, A; de la Torre, P; Hinojosa, L; Ponce, A; García-Villegas, R; Laclette, J P; Bobes, R J; Romano, M C

    2014-07-01

    The 17β-hydroxysteroid dehydrogenases (17β-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17β-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17β-HSD although significant similarities were also found with other invertebrate and vertebrate 17β-HSD sequences. The T. solium Tsol-17βHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17β-HSD induced expression of Tsol17β-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17β-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    Science.gov (United States)

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  11. Cellular defense against UVB-induced phototoxicity by cytosolic NADP+-dependent isocitrate dehydrogenase

    International Nuclear Information System (INIS)

    Jo, Seung-Hee; Lee, So-Hyun; Suk Chun, Hang; Min Lee, Su; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-01-01

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury

  12. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  13. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  14. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production.

    Science.gov (United States)

    Huang, Yanna; You, Chunping; Liu, Zhenmin

    2017-07-01

    Lactobacillus delbrueckii subsp. bulgaricus is a heterogenous lactic acid bacterium that converts pyruvate mainly to D-lactic acid using D-lactate dehydrogenases (D-LDHs), whose functional properties remain poorly characterized. Here, the D-LDHs genes (ldb0101, ldb0813, ldb1010, ldb1147 and ldb2021) were cloned and overexpressed in Escherichia coli JM109 from an inducible pUC18 vector, respectively, and the resulting strains were compared in terms of D-lactic acid production. The strain expressing ldb0101 and ldb1010 gene individually produced more D-lactate than other three strains. Further study revealed that Ldb0101 activity was down-regulated by the oxygen and, therefore, achieved a highest titer of D-lactate (1.94 g/L) under anaerobic condition, and introduction of ldb1010 gene enhanced D-lactate formation (0.94 and 0.85 g/L, respectively) both in aerobic and anaerobic conditions due to a relatively stable q d-lactate . Our results suggested that the enzyme Ldb0101 and Ldb1010 played a role of more importance in D-lactate formation. To the best of our knowledge, we demonstrate for the first time the roles of different D-LDH homologs from L. bulgaricus in D-lactic acid production.

  15. Fabrication of a Co(OH)2/ZnCr LDH "p-n" Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light-Driven H2 and O2 Evolution.

    Science.gov (United States)

    Sahoo, Dipti Prava; Nayak, Susanginee; Reddy, K Hemalata; Martha, Satyabadi; Parida, Kulamani

    2018-04-02

    Photocatalytic generation of H 2 and O 2 by water splitting remains a great challenge for clean and sustainable energy. Taking into the consideration promising heterojunction photocatalysts, analogous energy issues have been mitigated to a meaningful extent. Herein, we have architectured a highly efficient bifunctional heterojunction material, i.e., p-type Co(OH) 2 platelets with an n-type ZnCr layered double hydroxide (LDH) by an ultrasonication method. Primarily, the Mott-Schottky measurements confirmed the n- and p-type semiconductive properties of LDH and CH material, respectively, with the construction of a p-n heterojunction. The high resolution transmission electron microscopy results suggest that surface modification of ZnCr LDH by Co(OH) 2 hexagonal platelets could form a fabulous p-n interfacial region that significantly decreases the energy barrier for O 2 and H 2 production by effectively separating and transporting photoinduced charge carriers, leading to enhanced photoreactivity. A deep investigation into the mechanism shows that a 30 wt % Co(OH) 2 -modified ZnCr LDH sample liberates maximum H 2 and O 2 production in 2 h, i.e., 1115 and 560 μmol, with apparent conversion efficiencies of H 2 and O 2 evolution of 13.12% and 6.25%, respectively. Remarkable photocatalytic activity with energetic charge pair transfer capability was illustrated by electrochemical impedance spectroscopy, linear sweep voltammetry, and photoluminescence spectra. The present study clearly suggests that low-cost Co(OH) 2 platelets are the most crucial semiconductors to provide a new p-n heterojunction photocatalyst for photocatalytic H 2 and O 2 production on the platform of ZnCr LDH.

  16. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate.

    Science.gov (United States)

    Xu, He N; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim; Li, Lin Z

    2016-02-01

    Clinically translatable hyperpolarized (HP) (13)C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP (13)C-pyruvate into the subject, which is converted to (13)C labeled lactate by the enzyme. Parameters such as (13)C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP (13)C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP (13)C-NMR data and investigate if they can be potential predictors of lung inflammation. Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP (13)C-pyruvate for injecting into the lungs. A 20 mm (1)H/(13)C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the (13)C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of (13)C labeled pyruvate and lactate. The apparent forward rate constant kp =(3.67±3.31)×10(-4) s(-1), reverse rate constant kl =(4.95±2.90)×10(-2) s(-1), rate constant ratio kp /kl =(7.53±5.75)×10(-3) for the control lungs; kp =(11.71±4.35)×10(-4) s(-1), kl =(9.89±3.89)×10(-2) s(-1), and kp /kl =(12.39±4.18)×10(-3) for the inflamed lungs at the 7(th) day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  17. Sudden onset of facial edema and serum LDH elevation after radiation therapy for malignant lymphoma of the left parotid gland. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Gen; Ogo, Etuyo; Toda, Yukihiro; Suefuji, Hiroaki; Hayabuchi, Naofumi [Kurume Univ., Fukuoka (Japan). School of Medicine

    2001-12-01

    A report of a 48 year-old male with non-Hodgkin's lymphoma of the left parotid gland (clinical stage I EA, follicular medium-sized B cell type) is presented. He was solely treated with 30 Gy of radiation to the whole neck region, bilateral paraclavicular region and the left axilla, and 10.6 Gy boost was given to the primary lesion. Five months later, facial edema and serum LDH elevation developed suddenly. Relapse of the malignant lymphoma was suspected, but a whole body CT scan failed to show this. On the contrary, the CT scan showed a diffuse hypoattenuated area of the thyroid gland. In addition to positive antibodies, i.e, antithyroglobulin and antimicrosomal antibodies, total cholesterol and other serum markers also suggested hypofunction of the thyroid due to acute exacerbation of chronic thyroiditis. Immediately after hormone-replacement therapy, his symptoms disappeared and the abnormal serum data improved. Although the relationship between chronic thyroiditis and radiation injury has not been clearly demonstrated, it seems necessary to evaluate thyroid function before radiotherapy for head and neck tumors. Patients with chronic thyroiditis should be followed carefully after radiotherapy. (author)

  18. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through porcine sperm capacitation.

    Science.gov (United States)

    Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi

    2018-02-26

    In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  20. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  1. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    International Nuclear Information System (INIS)

    Small, Juan E.; Gonzalez, Guido E.; Nagao, Karina E.; Walton, David S.; Caruso, Paul A.

    2009-01-01

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  2. Bioelectrochemical fuel cell and sensor based on quinoprotein alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G; Hill, H A.O.; Aston, W J; Higgins, I J; Turner, A P.F.

    1983-09-01

    A biofuel cell, yielding a stable and continuous low-power output, based on the enzymatic oxidation of methanol to formic acid has been designed and investigated. The homogeneous kinetics of the electrochemically-coupled enzymatic oxidation reaction were investigated and optimized. The biofuel cell also functioned as a sensitive method for the detection of primary alcohols. A method for medium-scale preparation of the enzyme alcohol dehydrogenase (alcohol: (acceptor) oxidoreductase, EC 1.1.99.8) is described. (Refs. 14).

  3. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  4. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  5. Preparation of nano composite latex of poly(butyl acrylate-co-methyl methacrylate) P (BA-co-MMA) and layered double hydroxide (LDH) by mini emulsion polymerization; Preparacao de latex nanocomposito de poli(acrilato de butila-co-metacrilato de metila) P (BA-co-MMA) e hidroxido duplo lamelar (HDL) por meio da tecnica de polimerizacao em miniemulsao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rodrigo D; Lona, Liliane M.F., E-mail: liliane@feq.unicamp.br [Universidade Estadual de Campinas - Unicamp, Faculdade de Engenharia Quimica, SP (Brazil); Dube, Marc A [Universidade de Ottawa. Departamento de Engenharia Quimica e Biologica, Ottawa, ON (Canada)

    2011-07-01

    In the present work, the synthesis of polymeric nonconsumption (PNCs) of P(BA-coMMA) and layered LDH through mini emulsion polymerization (MEP) was studied. The commercial organically modified LDH Perkalite F100S was used as filler and octadecyl acrylate (ODA) as costabilizer of the mini emulsions. Two types of surfactant, a cationic and nonionic one, were investigated and the cationic one could not stabilize the system when the LDH was present. The polymerization kinetics was not significantly affected by the presence of LDH which kept the pH of the system constant during the reaction. The dispersion of the inorganic material in the polymeric matrix was evaluated by X-ray diffraction which suggested exfoliation of the LDH. (author)

  6. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati...

  7. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer's disease: Partners in crime? The hypothesis.

    Science.gov (United States)

    Ulusu, N Nuray

    2015-08-01

    Alzheimer's disease is a multifaceted brain disorder which involves various coupled irreversible, progressive biochemical reactions that significantly reduce quality of life as well as the actual life expectancy. Aging, genetic predispositions, head trauma, diabetes, cardiovascular disease, deficiencies in insulin signaling, dysfunction of mitochondria-associated membranes, cerebrovascular changes, high cholesterol level, increased oxidative stress and free radical formation, DNA damage, disturbed energy metabolism, and synaptic dysfunction, high blood pressure, obesity, dietary habits, exercise, social engagement, and mental stress are noted among the risk factors of this disease. In this hypothesis review I would like to draw the attention on glucose-6-phosphate dehydrogenase deficiency and its relationship with Alzheimer's disease. This enzymopathy is the most common human congenital defect of metabolism and defined by decrease in NADPH+H(+) and reduced form of glutathione concentration and that might in turn, amplify oxidative stress due to essentiality of the enzyme. This most common enzymopathy may manifest itself in severe forms, however most of the individuals with this deficiency are not essentially symptomatic. To understand the sporadic Alzheimer's disease, the writer of this paper thinks that, looking into a crystal ball might not yield much of a benefit but glucose-6-phosphate dehydrogenase deficiency could effortlessly give some clues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  9. Kinetic Behaviour of Glucose 6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase in Different Tissues of Rainbow Trout (Oncorhynchus mykiss Exposed to Non-Lethal Concentrations of Cadmium

    Directory of Open Access Journals (Sweden)

    Olcay Hisar

    2009-01-01

    Full Text Available The effects of cadmium (Cd on the enzymatic activities of glucose 6-phosphate dehydrogenase (G6PD and 6-phosphogluconate dehydrogenase (6PGD were investigated in the gill, liver and kidney tissues of rainbow trout (Oncorhynchus mykiss. Three test groups of fish were subjected to increasing concentrations (1, 3 and 5 mg/l of cadmium (Cd in vivo, respectively. The G6PD and 6PGD activities in the gill, liver, and kidney tissues of each group of fish were measured on days 1, 3, 5 and 7. G6PD and 6PGD enzyme activities, measured in gill, liver and kidney homogenates, were stimulated by various concentrations (1, 3, and 5 mg/l of cadmium. Although the dose-response pattern of G6PD enzyme activities in liver and kidney tissue was very similar, that in gill was different from both other tissues. The enzyme activity of G6PD enzyme was significantly stimulated after three days (Day 3 in liver and kidney tissues at a dose of 1 mg/l Cd (p p p p p p < 0.05 in liver and kidney tissues at the doses of 3 and 1 mg/l Cd. The stimulation effect of cadmium on the three tissues studied was also calculated; for both of the enzymes (G6PD and 6PGD, the enzyme activity levels were stimulated by approximately 60% and 38% in gills, 68% and 44% in liver, and 67% and 41% in kidneys, respectively, over the base-line enzyme activity of the control groups during the sevenday experimental period. These findings indicate that tissue G6PD and 6PGD enzymes function to protect against cadmium toxicity.

  10. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  11. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    Science.gov (United States)

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  12. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    Science.gov (United States)

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  13. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  14. Spherical LDH-Ag°-montmorillonite heterocoagulated system with a pH-dependent sol-gel structure for controlled accessibility of AgNPs immobilized on the clay lamellae.

    Science.gov (United States)

    Deák, Ágota; Janovák, László; Tallósy, Szabolcs Péter; Bitó, Tamás; Sebők, Dániel; Buzás, Norbert; Pálinkó, István; Dékány, Imre

    2015-02-17

    Aqueous suspensions of spherical ZnMgAl-layered double hydroxides [LDH(sph)] and antibacterial silver nanoparticles (AgNPs) deposited on the lamellae of montmorillonite were used for the synthesis of composites, which behave like coherent gels at low pH (≲4.5) and incoherent sols at higher pH (≳4.5). The composition of the composite was chosen as LDH(sph)/Ag°-montm. = 25:75 wt % in order to ensure a sol-gel transition that can also be characterized by viscometry. This pH-sensitive heterocoagulated system consisting of oppositely charged colloid particles was suitable for the release of antimicrobial AgNPs immobilized on the clay lamellae via a pH-controlled gel-sol transition. The heterocoagulation process was also characterized by surface charge titration measurements. Spherical LDH/Ag°-montmorillonite composite samples were identified by X-ray diffraction (XRD) measurements. The morphological properties of the composites were studied, and the presence of the heterocoagulated structure was confirmed by scanning electron microscopy (SEM). The nanoscale structure of the LDH(sph)-Ag°-montmorillonite composite obtained was also verified by small-angle X-ray scattering (SAXS), and the rheological characteristics were studied at various pH values. The viscosity and yield value of the composite decreased by an order of magnitude upon increasing the pH from 3.0 to 5.5. The sol-gel transition of the composite suspension was reversible in the previously mentioned pH range.

  15. Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method.

    OpenAIRE

    Stanley, C J; Perham, R N

    1980-01-01

    A new method is described that allows the parallel purification of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart without the need for prior isolation of mitochondria. All the assayable activity of the 2-oxo acid dehydrogenase complexes in the disrupted tissue is made soluble by the inclusion of non-ionic detergents such as Triton X-100 or Tween-80 in the buffer used for the initial extraction of the enzyme complexes. The yields of the pyruvate...

  16. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  17. Multivariate optimization of process parameters in the synthesis of calcined Ca‒Al (NO3) LDH for defluoridation using 3(3) factorial, central composite and Box-Behnken design.

    Science.gov (United States)

    Ghosal, Partha S; Gupta, Ashok K; Sulaiman, Ayoob

    2016-01-01

    Response surface methodology was applied for the first time in the optimization of the preparation of layered double hydroxide (LDH) for defluoridation. The influence of three vital process parameters (viz. pH, molar ratio and calcination temperature) in the synthesis of the adsorbent 'Calcined Ca‒Al (NO3) LDH' was thoroughly examined to maximize its fluoride scavenging potential. The process parameters were optimized using the 3(3) factorial, face centered central composite and Box-Behnken designs and a comparative assessment of the methods was conducted. The maximum fluoride removal efficiency was achieved at a calcination temperature of approximately 500ºC; however, the efficiency decreased with increasing pH and molar ratio. The outcome of the comparative assessment clearly delineates the case specific nature of the models. A better predictability over the entire experimental domain was obtained with the 3(3) factorial method, whereas the Box-Behnken design was found to be the most efficient model with lesser number of experimental runs. The desirability function technique was performed for optimizing the response, wherein face centered central composite design exhibited a maximum desirability. The calcined Ca‒Al (NO3) LDH, synthesized under the optimum conditions, demonstrated the removal efficiencies of 95% and 99% for the doses of 3 g L(-1) and 5 g L(-1), respectively.

  18. Determinação das atividades séricas de creatina quinase, lactato desidrogenase e aspartato aminotransferase em eqüinos de diferentes categorias de atividade Determination of serum activities of creatine kinase, lactate dehydrogenase, and aspartate aminotransferase in horses of different activities classes

    Directory of Open Access Journals (Sweden)

    I.A. Câmara e Silva

    2007-02-01

    Full Text Available The creatine kinase (CK, lactate dehydrogenase (LDH, and aspartate aminotransferase (AST seric activities in horses of different activity classes (athlete, traction, and reproduction, were compared. Fifty-eight horses were alloted into three groups - group 1 with 20 athletes, "vaquejada" competitors; group 2 with 20 breeding horses; and group 3 with 18 draft horses, averaging 10 working hours daily. The average values for CK serum activity were 80.2, 83.9, and 94.4 U/l in groups 1, 2, and 3, respectively. Result of group 3 was significantly different from the other groups. The averages values for LDH were 102.5, 98.6, and 112.8 U/l in groups 1, 2, and 3, respectively, with no statistical difference between groups. The AST averages were 56.8, 33.0, and 50.1 U/l in groups 1, 2, and 3, respectively, with group 2 significantly differing from the others. Clinical biochemistry values of muscular function in horses varied according to activity category.

  19. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  1. Lactate dehydrogenase predicts combined progression-free survival after sequential therapy with abiraterone and enzalutamide for patients with castration-resistant prostate cancer.

    Science.gov (United States)

    Mori, Keiichiro; Kimura, Takahiro; Onuma, Hajime; Kimura, Shoji; Yamamoto, Toshihiro; Sasaki, Hiroshi; Miki, Jun; Miki, Kenta; Egawa, Shin

    2017-07-01

    An array of clinical issues remains to be resolved for castration-resistant prostate cancer (CRPC), including the sequence of drug use and drug cross-resistance. At present, no clear guidelines are available for the optimal sequence of use of novel agents like androgen-receptor axis-targeted (ARAT) agents, particularly enzalutamide, and abiraterone. This study retrospectively analyzed a total of 69 patients with CRPC treated with sequential therapy using enzalutamide followed by abiraterone or vice versa. The primary outcome measure was the comparative combined progression-free survival (PFS) comprising symptomatic and/or radiographic PFS. Patients were also compared for total prostate-specific antigen (PSA)-PFS, overall survival (OS), and PSA response. The predictors of combined PFS and OS were analyzed with a backward-stepwise multivariate Cox model. Of the 69 patients, 46 received enzalutamide first, followed by abiraterone (E-A group), and 23 received abiraterone, followed by enzalutamide (A-E group). The two groups were not significantly different with regard to basic data, except for hemoglobin values. In a comparison with the E-A group, the A-E group was shown to be associated with better combined PFS in Kaplan-Meier analysis (P = 0.043). Similar results were obtained for total PSA-PFS (P = 0.049), while OS did not differ between groups (P = 0.62). Multivariate analysis demonstrated that pretreatment lactate dehydrogenase (LDH) values and age were significant predictors of longer combined PFS (P < 0.05). Likewise, multivariate analysis demonstrated that pretreatment hemoglobin values and performance status were significant predictors of longer OS (P < 0.05). The results of this study suggested the A-E sequence had longer combined PSA and total PSA-PFS compared to the E-A sequence in patients with CRPC. LDH values in sequential therapy may serve as a predictor of longer combined PFS. © 2017 Wiley Periodicals, Inc.

  2. Two different dihydroorotate dehydrogenases from yeast Saccharomyees kluyveri

    DEFF Research Database (Denmark)

    Zameitat, E.; Knecht, Wolfgang; Piskur, Jure

    2004-01-01

    Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces klujveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family...... for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to he selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics....

  3. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  4. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  5. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  6. Effects of Al(III and Nano-Al13 Species on Malate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Rong Fu Chen

    2011-05-01

    Full Text Available The effects of different aluminum species on malate dehydrogenase (MDH activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT modified glass carbon electrode (GCE. The results showed that Al(III and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III and Al13 concentration increase. Our study also found that the effects of Al(III and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  7. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    Science.gov (United States)

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  8. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir

    2016-01-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (Rdh......10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis...... and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early...

  9. Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways

    Directory of Open Access Journals (Sweden)

    Chen J

    2014-07-01

    Full Text Available Jiezhong Chen,1,2 Renfu Shao,3 Li Li,4 Zhi Ping Xu,4 Wenyi Gu4 1School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 2Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, 3GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia Abstract: Colon cancer is the third most common cancer and the third largest cause of cancer-related death. Fluorouracil (5-FU is the front-line chemotherapeutic agent for colon cancer. However, its response rate is less than 60%, even in combination with other chemotherapeutic agents. The side effects of 5-FU also limit its application. Nanoparticles have been used to deliver 5-FU, to increase its effectiveness and reduce side effects. Another common approach for colon cancer treatment is targeted therapy against the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway. A recently-invented inhibitor of this pathway, BEZ-235, has been tested in several clinical trials and has shown effectiveness and low side effects. Thus, it is a very promising drug for colon cancer treatment. The combination of these two drugs, especially nanoparticle-packed 5-FU and BEZ-235, has not been studied. In the present study, we demonstrated that nanoparticles of layered double hydroxide (LDH loaded with 5-FU were more effective than a free drug at inhibiting colon cancer cell growth, and that a combination treatment with BEZ-235 further increased the sensitivity of colon cancer cells to the treatment of LDH-packed 5-FU (LDH-5-FU. BEZ-235 alone can decrease colon cancer HCT-116 cell viability to 46% of the control, and the addition of LDH-5-FU produced a greater effect, reducing cell survival to 8% of the control. Our data indicate that the combination therapy of

  10. Coenzyme- and His-tag-induced crystallization of octopine dehydrogenase

    International Nuclear Information System (INIS)

    Smits, Sander H. J.; Mueller, Andre; Grieshaber, Manfred K.; Schmitt, Lutz

    2008-01-01

    The crystal structure of octopine dehydrogenase revealed a specific role of the His 5 tag in inducing the crystal contacts required for successful crystallization. Over the last decade, protein purification has become more efficient and standardized through the introduction of affinity tags. The choice and position of the tag, however, can directly influence the process of protein crystallization. Octopine dehydrogenase (OcDH) without a His tag and tagged protein constructs such as OcDH-His 5 and OcDH-LEHis 6 have been investigated for their crystallizability. Only OcDH-His 5 yielded crystals; however, they were multiple. To improve crystal quality, the cofactor NADH was added, resulting in single crystals that were suitable for structure determination. As shown by the structure, the His 5 tag protrudes into the cleft between the NADH and l-arginine-binding domains and is mainly fixed in place by water molecules. The protein is thereby stabilized to such an extent that the formation of crystal contacts can proceed. Together with NADH, the His 5 tag obviously locks the enzyme into a specific conformation which induces crystal growth

  11. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    International Nuclear Information System (INIS)

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  12. Idiopathic intracranial hypertension, hormones, and 11ß-hydroxysteroid dehydrogenases

    Directory of Open Access Journals (Sweden)

    Markey KA

    2016-04-01

    Full Text Available Keira A Markey,1 Maria Uldall,2 Hannah Botfield,1 Liam D Cato,1 Mohammed A L Miah,1 Ghaniah Hassan-Smith,1 Rigmor H Jensen,2 Ana M Gonzalez,1 Alexandra J Sinclair1 1Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; 2Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark Abstract: Idiopathic intracranial hypertension (IIH results in raised intracranial pressure (ICP leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11ß-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. Keywords: 11beta-hydroxysteroid dehydrogenase type 1, steroid and adipokines, obesity, leptin

  13. The Alcohol Dehydrogenase Isoenzyme as a Potential Marker of Pancreatitis.

    Science.gov (United States)

    Jelski, Wojciech; Piechota, Joanna; Orywal, Karolina; Szmitkowski, Maciej

    2018-05-01

    Human pancreas parenchyma contains various alcohol dehydrogenase (ADH) isoenzymes and also possesses aldehyde dehydrogenase (ALDH) activity. The altered activities of ADH and ALDH in damaged pancreatic tissue in the course of pancreatitis are reflected in the human serum. The aim of this study was to investigate a potential role of ADH and ALDH as markers for acute (AP) and chronic pancreatitis (CP). Serum samples were collected for routine biochemical investigations from 75 patients suffering from acute pancreatitis and 70 patients with chronic pancreatitis. Fluorometric methods were used to measure the activity of class I and II ADH and ALDH activity. The total ADH activity and activity of class III and IV isoenzymes were measured by a photometric method. There was a significant increase in the activity of ADH III isoenzyme (15.06 mU/l and 14.62 mU/l vs. 11.82 mU/l; ppancreatitis or chronic pancreatitis compared to the control. The diagnostic sensitivity for ADH III was about 84%, specificity was 92 %, positive and negative predictive values were 93% and 87% respectively in acute pancreatitis. Area under the Receiver Operating Curve (ROC) curve for ADH III in AP and CP was 0.88 and 0.86 respectively. ADH III has a potential role as a marker of acute and chronic pancreatitis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  15. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    Science.gov (United States)

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-02-22

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.

  16. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  17. Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not

    NARCIS (Netherlands)

    Sombogaard, Ferdi; Peeters, Annemiek M. A.; Baan, Carla C.; Mathot, Ron A. A.; Quaedackers, Monique E.; Vulto, Arnold G.; Weimar, Willem; van Gelder, Teun

    2009-01-01

    Measurement of the pharmacodynamic biomarker inosine monophosphate dehydrogenase (IMPDH) activity in renal transplant recipients has been proposed to reflect the biological effect better than using pharmacokinetic parameters to monitor mycophenolate mofetil therapy. The IMPDH assays are however

  18. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  19. In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant.

    Science.gov (United States)

    Karna, Sandeep

    2017-01-01

    Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD + -dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE 2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE 2 levels, like wound healing. Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE 2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE 2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. 15-PGDH inhibitors elevated PGE 2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC 50 = 0.62 µg/mL) with least cytotoxicity (IC 50 = 670 µg/ml), elevated both intracellular and extracellular PGE 2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. EEAH might apply to treat dermal wounds by elevating PGE 2 levels via COX-1 induction and 15-PGDH inhibition. Biological inactivation of 15-PGDH causes elevated level of PGE 2 which will be useful for the management of disease that requires elevated level of PGE 2 . Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol extract of Artocarpus heterophyllus, MRP4

  20. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    Science.gov (United States)

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  1. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Czech Academy of Sciences Publication Activity Database

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123 ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2015

  2. The Diagnostic Significance of Serum Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase Activity in Urinary Bladder Cancer Patients.

    Science.gov (United States)

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2017-07-01

    The aim of this study was to investigate a potential role of alcohol dehydrogenase and aldehyde dehydrogenase as tumor markers for urinary bladder cancer. Serum samples were obtained from 41 patients with bladder cancer and 52 healthy individuals. Class III and IV of ADH and total ADH activity were measured by the photometric method. For measurement of class I and II ADH and ALDH activity, the fluorometric method was employed. Significantly higher total activity of ADH was found in sera of both, low-grade and high-grade bladder cancer patients. The diagnostic sensitivity for total ADH activity was 81.5%, specificity 98.1%, positive (PPV) and negative (NPV) predictive values were 97.4% and 92.3% respectively. Area under ROC curve for total ADH activity was 0.848. A potential role of total ADH activity as a marker for bladder cancer, is herein proposed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  4. Regulation of human cerebrospinal fluid malate dehydrogenase 1 in sporadic Creutzfeldt-Jakob disease patients.

    Science.gov (United States)

    Schmitz, Matthias; Llorens, Franc; Pracht, Alexander; Thom, Tobias; Correia, Ângela; Zafar, Saima; Ferrer, Isidre; Zerr, Inga

    2016-11-14

    The identification of reliable diagnostic biomarkers in differential diagnosis of neurodegenerative diseases is an ongoing topic. A previous two-dimensional proteomic study on cerebrospinal fluid (CSF) revealed an elevated level of an enzyme, mitochondrial malate dehydrogenase 1 (MDH1), in sporadic Creutzfeldt-Jakob disease (sCJD) patients. Here, we could demonstrate the expression of MDH1 in neurons as well as in the neuropil. Its levels are lower in sCJD brains than in control brains. An examination of CSF-MDH1 in sCJD patients by ELISA revealed a significant elevation of CSF-MDH1 levels in sCJD patients (independently from the PRNP codon 129 MV genotype or the prion protein scrapie (PrP Sc ) type) in comparison to controls. In combination with total tau (tau), CSF-MDH1 detection exhibited a high diagnostic accuracy for sCJD diagnosis with a sensitivity of 97.5% and a specificity of 95.6%. A correlation study of MDH1 level in CSF with other neurodegenerative marker proteins revealed a significant positive correlation between MDH1 concentration with tau, 14-3-3 and neuron specific enolase level. In conclusion, our study indicated the potential of MDH1 in combination with tau as an additional biomarker in sCJD improving diagnostic accuracy of tau markedly.

  5. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells

    Directory of Open Access Journals (Sweden)

    Paolo Bollella

    2018-04-01

    Full Text Available Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  6. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase

  7. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    Science.gov (United States)

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  8. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh....... Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel...

  9. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  10. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases

    Science.gov (United States)

    Markey, Keira A; Uldall, Maria; Botfield, Hannah; Cato, Liam D; Miah, Mohammed A L; Hassan-Smith, Ghaniah; Jensen, Rigmor H; Gonzalez, Ana M; Sinclair, Alexandra J

    2016-01-01

    Idiopathic intracranial hypertension (IIH) results in raised intracranial pressure (ICP) leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11β-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. PMID:27186074

  11. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

    DEFF Research Database (Denmark)

    Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen

    2014-01-01

    Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been...... prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered...... hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense...

  12. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Keiki Nagaharu

    2016-01-01

    Full Text Available Over the past decades, 5-Fluorouracil (5-FU has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.

  13. 17 beta-hydroxysteroid dehydrogenase activity in canine pancreas

    International Nuclear Information System (INIS)

    Mendoza-Hernandez, G.; Lopez-Solache, I.; Rendon, J.L.; Diaz-Sanchez, V.; Diaz-Zagoya, J.C.

    1988-01-01

    The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively

  14. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  15. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Gerszon, Joanna; Serafin, Eligiusz; Buczkowski, Adam; Michlewska, Sylwia; Bielnicki, Jakub Antoni; Rodacka, Aleksandra

    2018-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme's active site (Cys149). Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer's disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9). Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.

  16. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Joanna Gerszon

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme's active site (Cys149. Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer's disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9. Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149 which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.

  17. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    OpenAIRE

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from thes...

  18. Naturally occurring genetic variation affecting the expression of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster.

    Science.gov (United States)

    Laurie-Ahlberg, C C; Bewley, G C

    1983-10-01

    Genetic variation among second and third chromosomes from natural populations of Drosophila melanogaster affects the activity level of sn-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8; GPDH) at both the larval and the adult stages. The genetic effects, represented by differences among chromosome substitution lines with coisogenic backgrounds, are very repeatable over time and are generally substantially larger than environmental and measurement error effects. Neither the GPDH allozyme, the geographic origin, nor the karyotype of the chromosome contributes significantly to GPDH activity variation. The strong relationship between GPDH activity level and GPDH-specific CRM level, as well as our failure to find any thermostability variation among the lines, indicates that most, if not all, of the activity variation is due to variation in the steady-state quantity of enzyme rather than in its catalytic properties. The lack of a strong relationship between adult and larval activity levels suggests the importance of stage- or isozyme-specific effects.

  19. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  20. Aldehyde dehydrogenase expression in Metaphire posthuma as a bioindicator to monitor heavy metal pollution in soil.

    Science.gov (United States)

    Panday, Raju; Bhatt, Padam Shekhar; Bhattarai, Tribikram; Shakya, Kumudini; Sreerama, Lakshmaiah

    2016-11-21

    Soil contamination and associated pollution plays a detrimental role in soil flora and fauna. Soil is processed and remodeled by subterranean earthworms, accordingly are referred to as soil chemical engineers. These worms, besides processing carbon and nitrogen, serve as minors for processing metals. In heavy metal contaminated soils, they accumulate heavy metals, which in turn cause altered gene expression, including aldehyde dehydrogenase (ALDH) enzymes. This study explores the possibility of ALDH expression in earthworms as a novel biomarker for the heavy metal contamination of soil. Earthworms cultured in contaminated soils accumulated significantly higher levels of Pb and Cd. Similarly, significantly higher levels of ALDH enzyme activities were observed in earthworms cultured in soils contaminated with Pb and Cd. The ALDH activity was found to be highest in worms cultured in 5 ppm heavy metal contaminated soils. Although, ALDH activities decreased as the heavy metal concentration in soil increased, they were significantly higher when compared to control worms cultured in uncontaminated soils. The accumulation of heavy metal in earthworms measured after 28 days decreased as the heavy metal concentration in soil increased. Levels of ALDH expression correlated with total Pb and Cd concentration in the earthworm tissue. This study showed that the ALDH activity in earthworms could potentially be used as a biomarker to show heavy metal pollution in soil.

  1. 17Beta-hydroxysteroid dehydrogenase (17beta-HSD) in scleractinian corals and zooxanthellae.

    Science.gov (United States)

    Blomquist, Charles H; Lima, P H; Tarrant, A M; Atkinson, M J; Atkinson, S

    2006-04-01

    Steroid metabolism studies have yielded evidence of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activity in corals. This project was undertaken to clarify whether there are multiple isoforms of 17beta-HSD, whether activity levels vary seasonally, and if zooxanthellae contribute to activity. 17Beta-HSD activity was characterized in zooxanthellate and azooxanthellate coral fragments collected in summer and winter and in zooxanthellae cultured from Montipora capitata. More specifically, 17beta-HSD activity was characterized with regard to steroid substrate and inhibitor specificity, coenzyme specificity, and Michaelis constants for estradiol (E2) and NADP+. Six samples each of M. capitata and Tubastrea coccinea (three summers, three winters) were assayed with E2 and NADP+. Specific activity levels (pmol/mg protein) varied 10-fold among M. capitata samples and 6-fold among T. coccinea samples. There was overlap of activity levels between summer and winter samples. NADP+/NAD+ activity ratios varied from 1.6 to 22.2 for M. capatita, 2.3 to 3.8 for T. coccinea and 0.7 to 1.1 for zooxanthellae. Coumestrol was the most inhibitory of the steroids and phytoestrogens tested. Our data confirm that corals and zooxanthellae contain 17beta-HSD and are consistent with the presence of more than one isoform of the enzyme.

  2. 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors.

    LENUS (Irish Health Repository)

    Yan, Min

    2009-06-09

    Pharmacologic inhibitors of the prostaglandin-synthesizing COX-2 oncogene prevent the development of premalignant human colon adenomas. However, resistance to treatment is common. In this study, we show that the adenoma prevention activity of the COX-2 inhibitor celecoxib requires the concomitant presence of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) tumor suppressor gene, and that loss of 15-PGDH expression imparts resistance to celecoxib\\'s anti-tumor effects. We first demonstrate that the adenoma-preventive activity of celecoxib is abrogated in mice genetically lacking 15-PGDH. In FVB mice, celecoxib prevents 85% of azoxymethane-induced tumors >1 mm in size, but is essentially inactive in preventing tumor induction in 15-PGDH-null animals. Indeed, celecoxib treated 15-PGDH null animals develop more tumors than do celecoxib naive WT mice. In parallel with the loss of tumor prevention activity, celecoxib-mediated suppression of colonic PGE(2) levels is also markedly attenuated in 15-PGDH-null versus WT mice. Finally, as predicted by the murine models, humans with low colonic 15-PGDH levels also exhibit celecoxib resistance. Specifically, in a colon adenoma prevention trial, in all cases tested, individuals who developed new adenomas while receiving celecoxib treatment were also found as having low colonic 15-PGDH levels.

  3. Glucose-6-phosphate dehydrogenase deficiency in neonatal hyperbilirubinaemia: Hacettepe experıence.

    Science.gov (United States)

    Celik, H Tolga; Günbey, Ceren; Unal, Sule; Gümrük, Fatma; Yurdakök, Murat

    2013-05-01

    The aim of this study was to investigate the prevalence of glucose-6-phospate dehydrogenase (G6PD) deficiency in newborn infants with neonatal hyperbilirubinaemia and to compare the clinical features of G6PD-deficient and G6PD-normal newborn infants. A total of 4906 term and preterm neonates with indirect hyperbilirubinaemia were retrospectively evaluated according to demographic, neonatal features, bilirubin levels, erythrocyte G6PD levels, other risk factors and treatments. Among 4906 newborn infants with indirect hyperbilirubinaemia, 55 (1.12%) neonates were G6PD-deficient. In our study, no statistically significant difference was detected between G6PD-deficient and G6PD-normal infants in relation to the time of onset of jaundice, bilirubin levels and duration of phototherapy. However, the incidence of exchange transfusion in G6PD-deficient infants was 16.4% while it was only 3.3% in G6PD normal infants (P G6PD must be ordered to all newborns who are receiving phototherapy and especially to those who are coming from the high incident geographical regions and less responsive to phototherapy. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  5. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    International Nuclear Information System (INIS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  6. A case of pyruvate dehydrogenase deficiency with low density areas in white matter noticed by CT scan

    International Nuclear Information System (INIS)

    Kimura, Akiko; Kyoya, Seizo; Matsushima, Akihiro; Irimichi, Hideki; Koike, Yoshiko.

    1985-01-01

    The patient was a 4-month-old boy, the first child of healthy, non-consanguineous patient. He was mildly asphyxiated at birth and developed severe convulsions at two days of age. At 4 months of age, he was referred to us because of infantile spasms and motor retardation. The EEG showed hypsarhythmia, ACTH and anticonvulsants were started, but his seizures were not controlled completely. At 8 months of age, the CT scan demonstrated a cerebral atrophy with enlarged ventricles and a diffuse low density of cerebral white matter, and lactic acidosis was first noticed. The glucose, glucagon, fructose, and alanine tolerance tests revealed almost normal responses in blood glucose levels and elevation of lactate levels above the initial value. Enzyme studies revealed a severe deficiency of pyruvate dehydrogenase complex and pyruvate dehydrogenase (E 1 ), and a normal activity of pyruvate carboxylase in liver obtained by biopsy. In biopsied muscle, mitochondria appeared normal. Treatment with thiamine, lipoic acid and anticonvulsants was not effective. The clinical picture of PDC deficiency has been correlated with the amount of the residual activity, and this case confirmed to the ''severe'' category. Several pathologic entities may be associated with PDHC deficiency, and CT findings in our case demonstrated the demyelinating condition. The precise relationship between the defect and the pathogenesis remains to be elucidated. (author)

  7. Accumulation of methylglyoxal increases the advanced glycation end-product levels in DRG and contributes to lumbar disk herniation-induced persistent pain.

    Science.gov (United States)

    Liu, Cui-Cui; Zhang, Xin-Sheng; Ruan, Yu-Ting; Huang, Zhu-Xi; Zhang, Su-Bo; Liu, Meng; Luo, Hai-Jie; Wu, Shao-Ling; Ma, Chao

    2017-08-01

    Lumbar disk herniation (LDH) with discogenic low back pain and sciatica is a common and complicated musculoskeletal disorder. The underlying mechanisms are poorly understood, and there are no effective therapies for LDH-induced pain. In the present study, we found that the patients who suffered from LDH-induced pain had elevated plasma methylglyoxal (MG) levels. In rats, implantation of autologous nucleus pulposus (NP) to the left lumbar 5 spinal nerve root, which mimicked LDH, induced mechanical allodynia, increased MG level in plasma and dorsal root ganglion (DRG), and enhanced the excitability of small DRG neurons (DRG neurons ex vivo increased the number of action potentials evoked by depolarizing current pulses. Furthermore, inhibition of MG accumulation by aminoguanidine attenuated the enhanced excitability of small DRG neurons and the mechanical allodynia induced by NP implantation. In addition, NP implantation increased levels of advanced glycation end products (AGEs) in DRG, and intrathecal injection of MG-derived AGEs induced the mechanical allodynia and DRG neuronal hyperactivity. Intrathecal injection of MG also significantly increased the expression of AGEs in DRG. Importantly, scavenging of MG by aminoguanidine also attenuated the increase in AGEs induced by NP implantation. These results suggested that LDH-induced MG accumulation contributed to persistent pain by increasing AGE levels. Thus generation of AGEs from MG may represent a target for treatment of LDH-induced pain. NEW & NOTEWORTHY Our study demonstrates that methylglyoxal accumulation via increasing advanced glycation end-product levels in dorsal root ganglion contributes to the persistent pain induced by lumbar disk herniation, which proposed potential targets for the treatment of lumbar disk herniation-induced persistent pain. Copyright © 2017 the American Physiological Society.

  8. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  9. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    Energy Technology Data Exchange (ETDEWEB)

    Chapalamadugu, Kalyan C.; Panguluri, Siva K. [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States); Bennett, Eric S. [Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL (United States); Kolliputi, Narasaiah [Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (United States); Tipparaju, Srinivas M., E-mail: stippara@health.usf.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States)

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD{sub 90}; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co

  10. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    International Nuclear Information System (INIS)

    Chapalamadugu, Kalyan C.; Panguluri, Siva K.; Bennett, Eric S.; Kolliputi, Narasaiah; Tipparaju, Srinivas M.

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD 90 ; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co-regulated in

  11. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    Science.gov (United States)

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  12. Atividade da catalase e da lactato desidrogenase em tilápias submetidas a estresse de confinamento: efeito da cor do ambiente Catalase and lactate dehydrogenase activity in tilapia subjected to contention stress: effect of the background color

    Directory of Open Access Journals (Sweden)

    Elyara Maria Pereira-da-Silva

    2012-05-01

    Full Text Available Avaliaram-se os efeitos da cor do ambiente sobre o crescimento e a atividade da enzima antioxidante catalase (CAT e da lactato desidrogenase (LDH em tilápias do Nilo (n=24; 36,2±3,6g. Oito exemplares foram mortos para determinação da atividade basal das enzimas e os demais permaneceram isolados durante 14 dias sob espectro de luz branca ou azul (n=8 peixes/tratamento. A seguir os peixes foram submetidos a um estresse diário de confinamento de 90 minutos (15° ao 28° dia e pesados semanalmente para cálculo da taxa de crescimento específico (TCE. A TCE negativa confirmou que o confinamento provocou estresse nos peixes, independentemente da cor do ambiente. O aumento da atividade da LDH no músculo vermelho dos peixes mantidos sob luz branca ou azul indicou mudança do metabolismo aeróbio para anaeróbio. O estresse reduziu a atividade da CAT no músculo branco dos peixes mantidos sob a luz branca ou azul. Na musculatura vermelha, esta redução ocorreu apenas nos animais mantidos sob a luz branca. O confinamento aumenta os processos metabólicos anaeróbios e é adequado para estudos sobre os efeitos do estresse. O espectro de luz azul não evita a redução do crescimento e a demanda energética anaeróbia em situações de estresse, mas preserva a atividade da CAT, contribuindo para o bem-estar da tilápia.We assess the effects of the background color on the growth and antioxidant enzyme catalase (CAT and lactate dehydrogenase (LDH in Nile tilapia (n=24; 36.2±3.6g. Eight fish were killed for assessment of basal activity of the enzymes and the others remained isolated for 14 days under white or blue light spectrum (n=8 fish/treatment. Then each animal were subjected to a daily stress of confinement of 90 minutes (15th to 28th day and weighed to calculate the specific growth rate (SGR. The negative SGR confirmed that the confinement stressed in fish, regardless of the background color. The increased activity of LDH in red muscle of fish

  13. Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin.

    Science.gov (United States)

    Barnard, Dale L; Day, Craig W; Bailey, Kevin; Heiner, Matthew; Montgomery, Robert; Lauridsen, Larry; Winslow, Scott; Hoopes, Justin; Li, Joseph K-K; Lee, Jongdae; Carson, Dennis A; Cottam, Howard B; Sidwell, Robert W

    2006-08-01

    Because of the conflicting data concerning the SARS-CoV inhibitory efficacy of ribavirin, an inosine monophosphate (IMP) dehydrogenase inhibitor, studies were done to evaluate the efficacy of ribavirin and other IMP dehydrogenase inhibitors (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR), mizoribine, and mycophenolic acid) in preventing viral replication in the lungs of BALB/c mice, a replication model for severe acute respiratory syndrome (SARS) infections (Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shieh, W.J., Zaki, S., Murphy, B., 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in the respiratory tract of mice. J. Virol. 78, 3572-3577). Ribavirin given at 75 mg/kg 4 h prior to virus exposure and then given twice daily for 3 days beginning at day 0 was found to increase virus lung titers and extend the length of time that virus could be detected in the lungs of mice. Other IMP dehydrogenase inhibitors administered near maximum tolerated doses using the same dosing regimen as for ribavirin were found to slightly enhance virus replication in the lungs. In addition, ribavirin treatment seemed also to promote the production of pro-inflammatory cytokines 4 days after cessation of treatment, although after 3 days of treatment ribavirin inhibited pro-inflammatory cytokine production in infected mice, significantly reducing the levels of the cytokines IL-1alpha, interleukin-5 (IL-5), monocyte chemotactic protein-1 (MCP-1), and granulocyte-macrophage colony stimulating factor (GM-CSF). These findings suggest that ribavirin may actually contribute to the pathogenesis of SARS-CoV by prolonging and/or enhancing viral replication in the lungs. By not inhibiting viral replication in the lungs of infected mice, ribavirin treatment may have provided a continual source of stimulation for the inflammatory response

  14. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.

    Directory of Open Access Journals (Sweden)

    Lu Chen

    Full Text Available Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA followed by reduction to 1,3-propandiol (1,3-PDO with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP. The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7 belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and

  15. Aminolevulinate dehydrogenase polymorphisms did not modified lead serum and memory relationship

    Directory of Open Access Journals (Sweden)

    Lantip Rujito

    2015-12-01

    Full Text Available BACKGROUND Lead accumulation in the blood widely known affecting the formation of heme and oxygen transport processes in vital organs, Leading to organ failure including the brain synapses. Lead affinity has been recognized influenced by constitutional genotype of aminolevulinate dehydrogenase (ALAD, which encodes for heme synthesis. This research aimed to determine the relationship between plumbum (Pb and short term memory on each ALAD gene genotyping (ALAD 1-1, ALAD 1-2 or ALAD 2-2 in gas station workers. METHODS Seventy six probands from gas station workers were recruited to participate in this research. Each probands was carried out ALAD genotyping using polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP method, lead serum level using atomic absorbent spectrophotometer (AAS, and short term memory was measurement by intelligence structure test (IST. RESULTS Proportion of δ ALAD 1-1, 1-2, and 2-2 were 91.8%, 8.2% and 0% respectively. Lead serum showed 15.84 ppb in homozygous 1-1, and 20.79 ppb in heterozygous. Short term memory in the probands varied from 85 until 117, with average in 99.71. There was significant negative relationship between lead serum and short term memory (r=-0.24; p=0.038. However, we could not find any significant correlation in each δ ALAD genotypes. CONCLUSION The δ ALAD genotypes did not modified the relationship between serum lead level and short term memory in gas station workers.

  16. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Juan M Sandoval

    Full Text Available The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH, which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH. Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P, suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH, better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress.

  17. Regulation of the ald Gene Encoding Alanine Dehydrogenase by AldR in Mycobacterium smegmatis

    Science.gov (United States)

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon

    2013-01-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding l-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of l-alanine. The purified AldR protein exists as a homodimer in the absence of l-alanine, while it adopts the quaternary structure of a homohexamer in the presence of l-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by l-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N2-ATC-N2-TC and one putative AldR binding site with the sequence GA-N2-GTT-N2-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of l-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine. PMID:23749971

  18. Dual enzymatic dynamic kinetic resolution by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase and Candida antarctica lipase B

    KAUST Repository

    Karume, Ibrahim; Musa, Musa M.; Bsharat, Odey; Takahashi, Masateru; Hamdan, Samir; El Ali, Bassam

    2016-01-01

    The immobilization of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (TeSADH) using sol–gel method enables its use to racemize enantiopure alcohols in organic media. Here, we report the racemization of enantiopure phenyl

  19. Kernicterus by glucose-6-phosphate dehydrogenase deficiency: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Cossio de Gurrola Gladys

    2008-05-01

    Full Text Available Abstract Introduction Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. This deficiency is the most common human innate error of metabolism, affecting more than 400 million people worldwide. Case presentation Here, we present the first documented case of kernicterus in Panama, in a glucose-6-phosphate dehydrogenase-deficient newborn clothed in naphthalene-impregnated garments, resulting in reduced psychomotor development, neurosensory hypoacousia, absence of speech and poor reflex of the pupil to light. Conclusion Mutational analysis revealed the glucose-6-phosphate dehydrogenase Mediterranean polymorphic variant, which explained the development of kernicterus after exposition of naphthalene. As the use of naphthalene in stored clothes is a common practice, glucose-6-phosphate dehydrogenase testing in neonatal screening could prevent severe clinical consequences.

  20. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  1. Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Holton, Simon J; Anandhakrishnan, Madhankumar; Geerlof, Arie; Wilmanns, Matthias

    2013-02-01

    Hydroxyacid dehydrogenases, responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids in lactic acid producing bacteria, have a range of biotechnology applications including antibiotic synthesis, flavor development in dairy products and the production of valuable synthons. The genome of Lactobacillus delbrueckii ssp. bulgaricus, a member of the heterogeneous group of lactic acid bacteria, encodes multiple hydroxyacid dehydrogenases whose structural and functional properties remain poorly characterized. Here, we report the apo and coenzyme NAD⁺ complexed crystal structures of the L. bulgaricusD-isomer specific 2-hydroxyacid dehydrogenase, D2-HDH. Comparison with closely related members of the NAD-dependent dehydrogenase family reveals that whilst the D2-HDH core fold is structurally conserved, the substrate-binding site has a number of non-canonical features that may influence substrate selection and thus dictate the physiological function of the enzyme. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Immobilisation and characterisation of glucose dehydrogenase immobilised on ReSyn: a proprietary polyethylenimine support matrix

    CSIR Research Space (South Africa)

    Twala, BV

    2010-01-01

    Full Text Available Immobilisation of enzymes is of considerable interest due to the advantages over soluble enzymes, including improved stability and recovery. Glucose Dehydrogenase (GDH) is an important biocatalytic enzyme due to is ability to recycle the biological...

  3. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function

    Directory of Open Access Journals (Sweden)

    Bhubanananda Sahu

    2016-11-01

    Full Text Available The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases.

  4. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    Science.gov (United States)

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  5. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.

    Science.gov (United States)

    Radianingtyas, Helia; Wright, Phillip C

    2003-12-01

    Many studies have been undertaken to characterise alcohol dehydrogenases (ADHs) from thermophiles and hyperthermophiles, mainly to better understand their activities and thermostability. To date, there are 20 thermophilic archaeal and 17 thermophilic bacterial strains known to have ADHs or similar enzymes, including the hypothetical proteins. Some of these thermophiles are found to have multiple ADHs, sometimes of different types. A rigid delineation of amino acid sequences amongst currently elucidated thermophilic ADHs and similar proteins is phylogenetically apparent. All are NAD(P)-dependent, with one exception that utilises the cofactor F(420) instead. Within the NAD(P)-dependent group, the thermophilic ADHs are orderly clustered as zinc-dependent ADHs, short-chain ADHs, and iron-containing/activated ADHs. Distance matrix calculations reveal that thermophilic ADHs within one type are homologous, with those derived from a single genus often showing high similarities. Elucidation of the enzyme activity and stability, coupled with structure analysis, provides excellent information to explain the relationship between them, and thermophilic ADHs diversity.

  6. [Glucose-6-phosphate dehydrogenase deficiency in children: a case report].

    Science.gov (United States)

    Verdugo L, Patricia; Calvanese T, Marlene; Rodríguez V, Diego; Cárcamo C, Cassandra

    2014-02-01

    Glucose-6-phosphate dehydrogenase deficiency (G6PD deficiency) is the most common red blood cell (RBC) enzyme disorder. The decrease as well as the absence of the enzyme increase RBC vulnerability to oxidative stress caused by exposure to certain medications or intake of fava beans. Among the most common clinical manifestations of this condition, acute hemolysis, chronic hemolysis, neonatal hyperbilirubinemia, and an asymptomatic form are observed. To analyze the case of a child who presented hemolytic crisis due to favism. A 2 year and 7 month old boy with a history of hyperbilirubinemia during the newborn period with no apparent cause, no family history of hemolytic anemia or parental consanguinity. He presented a prolonged neonatal jaundice and severe anemia requiring RBC transfusion. An intake of fava beans 48 h prior to onset of symptoms was reported. G6PD qualitative determination was compatible with this enzyme deficiency. G6PD deficiency can be highly variable in its clinical presentation, so it is necessary to keep it in mind during the diagnosis of hemolytic anemia at any age.

  7. Leucaena sp. recombinant cinnamyl alcohol dehydrogenase: purification and physicochemical characterization.

    Science.gov (United States)

    Patel, Parth; Gupta, Neha; Gaikwad, Sushama; Agrawal, Dinesh C; Khan, Bashir M

    2014-02-01

    Cinnamyl alcohol dehydrogenase is a broad substrate specificity enzyme catalyzing the final step in monolignol biosynthesis, leading to lignin formation in plants. Here, we report characterization of a recombinant CAD homologue (LlCAD2) isolated from Leucaena leucocephala. LlCAD2 is 80 kDa homo-dimer associated with non-covalent interactions, having substrate preference toward sinapaldehyde with Kcat/Km of 11.6×10(6) (M(-1) s(-1)), and a possible involvement of histidine at the active site. The enzyme remains stable up to 40 °C, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 0.002 and 5h, respectively. LlCAD2 showed optimal activity at pH 6.5 and 9 for reduction and oxidation reactions, respectively, and was stable between pH 7 and 9, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 7.5×10(-4) and 15 h, respectively. It is a Zn-metalloenzyme with 4 Zn(2+) per dimer, however, was inhibited in presence of externally supplemented Zn(2+) ions. The enzyme was resistant to osmolytes, reducing agents and non-ionic detergents. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  9. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Felicia Stefania Falvella

    2015-04-01

    Full Text Available Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD, a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T, fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C, conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.

  10. Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site.

    Science.gov (United States)

    Jin, Yanhong; Li, Di; Lu, Shiying; Zhao, Han; Chen, Zhao; Hou, Wei; Ruan, Benfang Helen

    Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.

  11. CHANGES IN SERUM ENZYMES LEVELS ASSOCIATED WITH LIVER FUNCTIONS IN STRESSED MARWARI GOAT

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2011-03-01

    Full Text Available Serum enzyme levels were determined in goats of Marwari breed belonging to farmers’ stock of arid tract of Rajasthan state, India. The animals were grouped into healthy and stressed comprising of gastrointestinal parasiticised, pneumonia affected, and drought affected. The serum enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gamma-glutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. In stressed group the mean values of all the enzymes increased significantly (p≤0.05 as compared to respective healthy mean value. All the enzymes showed highest values in the gastrointestinal parasiticised animals and least values in the animals having pneumonia. In gastrointestinal parasiticised animals maximum change was observed in G-6-Pase activity and minimum change was observed in malate dehydrogenase mean value. It was concluded that Increased activity of all the serum enzymes was due to modulation of liver functions directly or indirectly.

  12. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  13. Interaction between alcohol dehydrogenase II gene, alcohol consumption, and risk for breast cancer

    OpenAIRE

    St?rmer, T; Wang-Gohrke, S; Arndt, V; Boeing, H; Kong, X; Kreienberg, R; Brenner, H

    2002-01-01

    MaeIII Restriction Fragment Length Polymorphism in exon 3 of the alcohol dehydrogenase II was assessed in serum from 467 randomly selected German women and 278 women with invasive breast cancer to evaluate the interaction between a polymorphism of the alcohol dehydrogenase II gene, alcohol consumption and risk for breast cancer. In both groups, usual consumption of different alcoholic beverages was asked for using semiquantitative food frequency questionnaires. We used multivariable logistic ...

  14. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    OpenAIRE

    Gideon C. Okpokwasili; Christian Okechukwu Nweke

    2010-01-01

    The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibi...

  15. Molecular Basis for Converting (2S-Methylsuccinyl-CoA Dehydrogenase into an Oxidase

    Directory of Open Access Journals (Sweden)

    Simon Burgener

    2017-12-01

    Full Text Available Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to dioxygen. Dehydrogenases react with electron transfer flavoproteins as terminal electron acceptors and do not show a considerable reactivity with dioxygen, whereas dioxygen serves as a bona fide substrate for oxidases. We recently engineered (2S-methylsuccinyl-CoA dehydrogenase towards oxidase activity by rational mutagenesis. Here we characterized the (2S-methylsuccinyl-CoA dehydrogenase wild-type, as well as the engineered (2S-methylsuccinyl-CoA oxidase, in detail. Using stopped-flow UV-spectroscopy and liquid chromatography-mass spectrometry (LC-MS based assays, we explain the molecular base for dioxygen reactivity in the engineered oxidase and show that the increased oxidase function of the engineered enzyme comes at a decreased dehydrogenase activity. Our findings add to the common notion that an increased activity for a specific substrate is achieved at the expense of reaction promiscuity and provide guidelines for rational engineering efforts of acyl-CoA dehydrogenases and oxidases.

  16. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  17. In vitro modeling of experimental succinic semialdehyde dehydrogenase deficiency (SSADHD using brain-derived neural stem cells.

    Directory of Open Access Journals (Sweden)

    Kara R Vogel

    Full Text Available We explored the utility of neural stem cells (NSCs as an in vitro model for evaluating preclinical therapeutics in succinic semialdehyde dehydrogenase-deficient (SSADHD mice. NSCs were obtained from aldh5a1+/+ and aldh5a1-/- mice (aldh5a1 = aldehyde dehydrogenase 5a1 = SSADH. Multiple parameters were evaluated including: (1 production of GHB (γ-hydroxybutyrate, the biochemical hallmark of SSADHD; (2 rescue from cell death with the dual mTOR (mechanistic target of rapamycin inhibitor, XL-765, an agent previously shown to rescue aldh5a1-/- mice from premature lethality; (3 mitochondrial number, total reactive oxygen species, and mitochondrial superoxide production, all previously documented as abnormal in aldh5a1-/- mice; (4 total ATP levels and ATP consumption; and (5 selected gene expression profiles associated with epilepsy, a prominent feature in both experimental and human SSADHD. Patterns of dysfunction were observed in all of these parameters and mirrored earlier findings in aldh5a1-/- mice. Patterns of dysregulated gene expression between hypothalamus and NSCs centered on ion channels, GABAergic receptors, and inflammation, suggesting novel pathomechanisms as well as a developmental ontogeny for gene expression potentially associated with the murine epileptic phenotype. The NSC model of SSADHD will be valuable in providing a first-tier screen for centrally-acting therapeutics and prioritizing therapeutic concepts of preclinical animal studies applicable to SSADHD.

  18. Succinate Dehydrogenase Activity Assay in situ with Blue Tetrazolium Salt in Crabtree-Positive Saccharomyces cerevisiae Strain

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2008-01-01

    Full Text Available A spectrophotometric method for determining succinate dehydrogenase (SDH activity assay in azide-sensitive yeast Saccharomyces cerevisiae has been developed. The permeabilization of yeast cells by 0.05 % digitonin permitted to study yeast enzymatic activity in situ. The reduction of blue tetrazolium salt (BT to blue tetrazolium formazan (BTf was conducted in the presence of phenazine methosulphate (PMS as an exogenous electron carrier, and sodium azide (SA as an inhibitor of cytochrome oxidase (Cyt pathway. Various factors such as type of substrate, BT concentration, cell number, temperature and time of incubation, and different Cyt pathway blockers were optimized. In earlier studies, dimethyl sulfoxide (DMSO had been selected as the best solvent for extraction of BTf from yeast cells. The linear correlation between permeabilized yeast cell density and amount of formed formazan was evidenced in the range from 9·10^7 to 5·10^8 cells per sample solution. Below the yeast cell concentration of 10^7 the absorbance values were too low to detect formazans with good precision. This standarized procedure allows the estimation of SDH activity in whole cells, depending on vitality level of yeast populations. Significant increases of succinate dehydrogenase activities were observed in sequential passages as the result of the increase of activity of the strain and adaptation to cultivation conditions.

  19. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase.

    Science.gov (United States)

    Li, L; Cheng, X F; Leshkevich, J; Umezawa, T; Harding, S A; Chiang, V L

    2001-07-01

    Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) has been thought to mediate the reduction of both coniferaldehyde and sinapaldehyde into guaiacyl and syringyl monolignols in angiosperms. Here, we report the isolation of a novel aspen gene (PtSAD) encoding sinapyl alcohol dehydrogenase (SAD), which is phylogenetically distinct from aspen CAD (PtCAD). Liquid chromatography-mass spectrometry-based enzyme functional analysis and substrate level-controlled enzyme kinetics consistently demonstrated that PtSAD is sinapaldehyde specific and that PtCAD is coniferaldehyde specific. The enzymatic efficiency of PtSAD for sinapaldehyde was approximately 60 times greater than that of PtCAD. These data suggest that in addition to CAD, discrete SAD function is essential to the biosynthesis of syringyl monolignol in angiosperms. In aspen stem primary tissues, PtCAD was immunolocalized exclusively to xylem elements in which only guaiacyl lignin was deposited, whereas PtSAD was abundant in syringyl lignin-enriched phloem fiber cells. In the developing secondary stem xylem, PtCAD was most conspicuous in guaiacyl lignin-enriched vessels, but PtSAD was nearly absent from these elements and was conspicuous in fiber cells. In the context of additional protein immunolocalization and lignin histochemistry, these results suggest that the distinct CAD and SAD functions are linked spatiotemporally to the differential biosynthesis of guaiacyl and syringyl lignins in different cell types. SAD is required for the biosynthesis of syringyl lignin in angiosperms.

  20. Erroneous glucose recordings while using mutant variant of quinoprotein glucose dehydrogenase glucometer in a child with galactosemia

    Directory of Open Access Journals (Sweden)

    Vivek Mathew

    2013-01-01

    Full Text Available We report a 2-month-old child with galactosemia and falsely high glucose readings with a glucometer using mutant variant of quinoprotein glucose dehydrogenase (MutQ-GDH chemistry. Potentially fatal hypoglycemia could have been induced in the child if insulin infusion had been initiated as per glycemic management protocol. Even though, the product information with the glucometer carries warning regarding interference by high galactose levels, the awareness regarding this interaction is generally poor in many practice settings. Although, false readings have been reported with glucose dehydrogenase pyrroloquinoline quinone (GDH-PQQ glucometers, to our knowledge this is the first case report of a falsely high glucose reading due to high galactose in a proven case of galactosemia with a glucometer using the MutQ-GDH chemistry (a modified GDH-PQQ chemistry. Our experience has prompted us to write this case report and we suggest avoiding these glucometers in neonates and infants when a metabolic disease is suspected.

  1. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death.

    Science.gov (United States)

    Landry, Greg M; Dunning, Cody L; Conrad, Taylor; Hitt, Mallory J; McMartin, Kenneth E

    2013-08-29

    Diethylene glycol (DEG) is a solvent used in consumer products allowing the increased risk for consumer exposure. DEG metabolism produces two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA has been shown to be the toxic metabolite responsible for the proximal tubule cell necrosis seen in DEG poisoning. The mechanism of DGA toxicity in the proximal tubule cell is not yet known. The chemical structure of DGA is very similar to citric acid cycle intermediates. Studies were designed to assess whether its mechanism of toxicity involves disruption of cellular metabolic pathways resulting in mitochondrial dysfunction. First, DGA preferentially inhibited succinate dehydrogenase, including human kidney cell enzyme, but had no effect on other citric acid cycle enzyme activities. DGA produces a cellular ATP depletion that precedes cell death. Human proximal tubule (HPT) cells, pre-treated with increasing DGA concentrations, showed significantly decreased oxygen consumption. DGA did not increase lactate levels, indicating no effect on glycolytic activity. DGA increased reactive oxygen species (ROS) production in HPT cells in a concentration and time dependent manner. These results indicate that DGA produced proximal tubule cell dysfunction by specific inhibition of succinate dehydrogenase and oxygen consumption. Disruption of these processes results in decreased energy production and proximal tubule cell death. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Characterization of phosphorylated isocitrate dehydrogenase and purification of the isocitrate dehydrogenase kinase/phosphatase of Escherichia coli

    International Nuclear Information System (INIS)

    Malloy, P.J.

    1985-01-01

    NADP + -specific isocitrate dehydrogenase (IDH; EC 1.1.1.42) was shown to be phosphorylated with ( 32 P)-orthophosphate in vivo in several strains of Escherichia coli. In strain KC 13, an adenylate cyclase deficient mutant, the specific activity of IDH decreased 70% when acetate was added to stationary phase cultures grown on glucose. The enzyme was immunoprecipitated from sonic extracts and shown to contain 32 P by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The results demonstrate that unlike many eukaryotic protein kinases, the protein kinase involved in the phosphorylation of IDH in E. coli does not require cyclic adenosine monophosphate for catalysis. Similarly, the phosphorylation of IDH was demonstrated in E. coli mutants deficient in either isocitrate lyase or malate synthase. The incorporation of 32 P in IDH was demonstrated following SDS-PAGE and autoradiography of the immunoprecipitated enzyme. These results suggest that the conditions required for the phosphorylation of IDH do not depend on the functioning of the glyoxylate shunt. Following in vivo 32 P-labeling of E. coli strain F143/KL259 in the presence of acetate, 32 P-labeled IDH was isolated from sonicated extracts of the cells. The 32 P-enzyme was carboxylmethylated and digested with trypsin. A single 32 P-labeled peptide was isolated from the tryptic digest. Amino acid analysis of the purified 32 P-labeled peptide showed that the peptide contains seven amino acids, including a single phosphorylated serine residue

  3. Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission

    DEFF Research Database (Denmark)

    Frigerio, Francesca; Karaca, Melis; De Roo, Mathias

    2012-01-01

    Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain GDH...... was questioned here by generation of CNS-specific GDH-null mice (CnsGlud1(-/-)); which were viable, fertile and without apparent behavioral problems. GDH immunoreactivity as well as enzymatic activity were absent in Cns-Glud1(-/-) brains. Immunohistochemical analyses on brain sections revealed that the pyramidal...... oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up-regulation of astrocyte-type glutamate and glutamine...

  4. Late-onset 3 beta-hydroxysteroid dehydrogenase deficiency with virilization induced by a large ovarian cyst.

    Science.gov (United States)

    Heinrich, U; Eberlein-Gonska, M; Benz, G; Haack, D; Otto, H F

    1993-01-01

    A midpubertal girl presented with secondary amenorrhea and a rapidly progressive deepening of her voice as the only signs of virilization. Diagnostic work-up yielded an extremely elevated plasma testosterone (289 ng/dl), low estradiol (29 pg/ml) levels and a large solitary cyst of the right ovary, which was totally removed. Pathohistology was in keeping with a granulosa cyst with mild luteinization. Normalization of testosterone (to 27.3 ng/dl) and estradiol (to 62 pg/ml) and resumption of regular menses after 2 months clearly indicated an autonomous function of the cyst. A malignant tumor was unequivocally excluded. Basal and ACTH stimulated levels of adrenal androgens pointed to a late-onset 3 beta-hydroxysteroid dehydrogenase deficiency, which per se is known to induce polycystic ovarian changes, but to date has never been described to be accompanied with a large and autonomous follicular cyst.

  5. Assessement of glycaemia and serum activities of aspartate aminotransferase, creatinekinase, gamma glutamyltransferase and lactate dehydrogenase in thoroughbred horses submitted to exercise of different intensities/ Avaliação da glicemia e da atividade sérica de aspartato aminotransferase, creatinoquinase, gama-glutamiltransferase e lactato desidrogenase em eqüinos puro sangue inglês (PSI submetidos a exercícios de diferentes intensidades

    Directory of Open Access Journals (Sweden)

    Joandes Henrique Fonteque

    2005-06-01

    Full Text Available In order to evaluate the influence of exercise of different intensities on biochemical parameters in Thoroughbred horses blood was collected from 60 animals, 30 males and 30 females.The animals were subdivided in two groups : 30 horses, 15 males and 15 females with 24 to 36 months of age and not in training, and after 12 months of training; 30 horses, 15 males and 15 females with 36 to 48 months of age in training. Blood samples were collected before and after trot and gallop. Plasmatic glucose was analyzed through a colorimetric method, while aspartate aminotransferase (AST, creatine kinase (CK, lactate dehydrogenase (LDH and gammaglutamyltransferase (GGT were analyzed through kinetic methods. Results show a statistically significant increase in plasmatic glucose after trot and gallop independent of gender, while the increases in CK and LDH were different for males and females. Variations for AST and GGT were not statistically significant.O objetivo do presente estudo foi avaliar as alterações na bioquímica sérica em eqüinos PSI submetidos a exercícios de diferentes intensidades. Foram colhidas amostras de sangue de 60 eqüinos PSI, distribuídos nos seguintes grupos: 30 animais sendo 15 machos e 15 fêmeas, com idade de 24 a 36 meses, não submetidos a treinamento e após um período de 12 meses de treinamento e 30 eqüinos de 36 a 48 meses, em fase de treinamento, antes e após o trote . Dos animais de 36 a 48 meses foram selecionados 20 machos e 10 fêmeas e colhido sangue antes e após o galope. Determinou-se, por métodos colorimétricos, os valores da glicose plasmática e, por métodos cinéticos, as enzimas aspartato aminotransferase (AST, creatinoquinase (CK, lactato desidrogenase (LDH e gama-glutamiltransferase (GGT. A análise estatística dos resultados comprovou a ocorrência de aumento significativo (p < 0,05 dos valores da glicose plasmática após o trote e galope para ambos os sexos. Para as enzimas CK e LDH ocorreram

  6. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

    Directory of Open Access Journals (Sweden)

    Bo Fu

    2015-12-01

    Full Text Available The in vitro maturation (IVM efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+ oocytes with low glucose-6-phosphate dehydrogenase (G6PDH activity have shown superior quality than BCB negative (− oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9 and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB− oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

  7. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    International Nuclear Information System (INIS)

    Fu, Yuejun; Huang, Rui; Zheng, Yali; Zhang, Zhiyun; Liang, Aihua

    2011-01-01

    Highlights: → IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. → IDH2 mutations are not required for the tumorig