WorldWideScience

Sample records for deformation ice age

  1. Mars Ice Age, Simulated

    Science.gov (United States)

    2003-01-01

    December 17, 2003This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  2. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    Science.gov (United States)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  3. EASE-Grid Sea Ice Age

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides weekly estimates of sea ice age for the Arctic Ocean from remotely sensed sea ice motion and sea ice extent. The ice age data are derived from...

  4. Identification of deformation mechanisms in ice core samples

    OpenAIRE

    Kuiper, E.N.; Weikusat, I.; Drury, M.R.; Pennock, G.M.; de Winter, Matthijs

    2014-01-01

    To determine active deformation mechanisms in polar ice. We use LM and Electron BackScattered Diffraction to identify possible slip systems of subgrain boundaries in EDML (Antarctica) and NEEM (Greenland) ice cores.

  5. Deformation Studies of NEEM, Greenland Basal Folded Ice

    Science.gov (United States)

    Keegan, K.; Dahl-Jensen, D.; Montagnat, M.; Weikusat, I.

    2015-12-01

    Deep Greenland ice cores and airborne radio echo sounding (RES) images have recently revealed that basal ice flow of the Greenland Ice Sheet is very unstable. In many locations, a basal layer of disturbed ice is observed. At the NEEM, Greenland site this folding occurs at the boundary between the Eemian and glacial ice regimes, indicating that differences in physical properties of the ice play a role in the disturbance. Past work in metallurgy and ice suggests that impurity content controls grain evolution and therefore deformation. We hypothesize that the differences in ice flow seen deep in the NEEM ice core are controlled by differences in the impurity content of the ice layers. Here we present results of fabric, grain size, impurity content, and deformation studies from samples above and below this unstable boundary in the ice sheet.

  6. Deformation of Eemian and Glacial ice at NEEM, Greenland

    Science.gov (United States)

    Keegan, Kaitlin; Dahl-Jensen, Dorthe; Montagnat, Maurine; Weikusat, Ilka; Kipfstuhl, Sepp

    2015-04-01

    New findings from deep Greenland ice cores and airborne radio echo sounding (RES) images show that basal ice flow is very unstable, and a basal layer of disturbed ice is often observed. At NEEM, Greenland this folding occurs at the boundary between the Eemian and glacial ice regimes, suggesting that differences in physical properties of the ice play a role in the disturbance. Past work in metallurgy (Burke, 1957) and ice (Hammer et al., 1978; Langway et al., 1988; Dahl-Jensen et al., 1997), suggests that impurity content controls grain evolution, and therefore deformation, which we hypothesize to be analogous to the differences in ice flow seen deep in the NEEM ice core. Here we present results of fabric, grain size, impurity content, and deformation studies from samples above and below this unstable boundary in the ice sheet.

  7. Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.

    Science.gov (United States)

    Heorton, Harry; Feltham, Daniel; Tsamados, Michel

    2017-04-01

    The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.

  8. Ross sea ice motion, area flux, and deformation

    Science.gov (United States)

    kwok, Ron

    2005-01-01

    The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.

  9. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  10. Physically-based Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    Science.gov (United States)

    Li, Li; Gaiser, Peter; Allard, Richard; Posey, Pamela; Hebert, David; Richter-Menge, Jacqueline; Polashenski, Christopher; Claffey, Keran

    2016-04-01

    The observations of sea ice thickness and ice surface roughness are critical for our understanding of the state of the changing Arctic. Currently, the Radar and/or LiDAR data of sea ice freeboard are used to infer sea ice thickness via isostasy. The underlying assumption is that the LiDAR signal returns at the air/snow interface and radar signal at the snow/ice interface. The elevations of these interfaces are determined based on LiDAR/Radar return waveforms. However, the commonly used threshold-based surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice 'layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. Both the ice thickness and surface roughness retrievals are validated using in-situ data. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates

  11. Defining the Little Ice Age

    Directory of Open Access Journals (Sweden)

    Ø. Paasche

    2010-10-01

    Full Text Available The "Little Ice Age" (LIA is possibly the best-documented climatic anomaly of the past. A wide range of datasets portrays a harsh climate that worsened living conditions, primarily in terms of cooler temperatures, for people across Europe sometime during the last millennium. Regardless of the vast amount of data covering the LIA, there is presently no consensus concerning its spatial manifestation (was it regional or global?, its temporal constraints (when did it start and end?, or the broad-scale dynamics associated with it (what mechanisms did it involve?, although there is no shortage of suggestions. Based on a new compilation of data reflecting atmospheric circulation at both high and low latitudes, we show that the LIA lasted for roughly 400 years (∼1400–1800 AD. During this period at least four major atmospheric circulation systems on Earth co-varied on decadal to centennial timescales: Northern Annular Mode (NAM, Intertropical Convergence Zone (ITCZ, El Nino-Southern Oscillation (ENSO and West African Monsoon (WAM. This pattern of convergence suggests that a strong coupling between these circulation systems was an important pre-condition for the realisation of the LIA.

  12. Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation

    DEFF Research Database (Denmark)

    Ryser, Claudia; Luethi, Martin P.; Andrews, Lauren C.;

    2014-01-01

    Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high am...

  13. Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data

    Science.gov (United States)

    Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.

    2017-07-01

    A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  14. Sea-Ice Deformation in a Coupled Ocean-Sea Ice Model and in Satellite Remote Sensing Data

    Science.gov (United States)

    Spreen, G.; Kwok, R.; Menemenlis, D.; Nguyen, A. T.

    2016-12-01

    A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea ice mass balance. Simulated sea-ice deformation strain rates from model simulations with 4.5, 9, and 18-km horizontal grid spacing are compared with Synthetic Aperture Radar (SAR) satellite observations (RGPS). The used MITgcm model employs a viscous-plastic sea ice rheology. The figure below shows the ice thickness distributions for the three simulations on 15 November 1999. More ice fracturing and leads are visible in the 4.5 km solution. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features are not adequately reproduced. The mean sea-ice total deformation rate is about 50% lower in all model solutions than in the satellite observations, especially in the seasonal sea ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The spatial scaling and probability density functions of all three model solutions follow a power-law similar to the RGPS observations, and contrary to what is found in other studies. Overall, the 4.5-km simulation produces the lowest misfits in divergence, vorticity, and shear when compared with RGPS data. Model sensitivity experiments show a strong impact of the ice strength parametrization on the Arctic Basin sea ice volume, which increased by 7% and 35% for a decrease in ice strength of, respectively, 30% and 70%, after 8 years of model integration. This volume increase is caused by a combination of dynamic and thermodynamic processes: the ice thickness increased by enhanced deformation and ice growth in leads, which is followed by a decrease in ice export. The balance of these processes leads to a new equilibrium Arctic Basin ice volume. Not addressed in this study is whether the differences between simulated and observed deformation rates are an intrinsic limitation of the

  15. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity

    Science.gov (United States)

    Sauber, Jeanne; Stewart, Iain S.; Rose, James

    2000-01-01

    The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.

  16. Deformation, warming and softening of Greenland’s ice by refreezing meltwater

    Science.gov (United States)

    Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.

    2014-07-01

    Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.

  17. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf

    Directory of Open Access Journals (Sweden)

    C. P. Borstad

    2013-07-01

    Full Text Available Around the perimeter of Antarctica, much of the ice sheet discharges to the ocean through floating ice shelves. The buttressing provided by ice shelves is critical for modulating the flux of ice into the ocean, and the presently observed thinning of ice shelves is believed to be reducing their buttressing capacity and contributing to the acceleration and thinning of the grounded ice sheet. However, relatively little attention has been paid to the role that fractures play in the flow and stability of ice shelves and their capacity to buttress the flow of grounded ice. Here, we develop an analytical framework for describing the role that fractures play in the creep deformation and buttressing capacity of ice shelves. We apply principles of continuum damage mechanics to derive a new analytical relation for the creep of an ice shelf as a function of ice thickness, temperature, material properties, resistive backstress and damage. By combining this analytical theory with an inverse method solution for the spatial rheology of an ice shelf, both backstress and damage can be calculated. We demonstrate the applicability of this new theory using satellite remote sensing and Operation IceBridge data for the Larsen C ice shelf, finding damage associated with known crevasses and rifts. We find that increasing thickness of mélange between rift flanks correlates with decreasing damage, with some rifts deforming coherently with the ice shelf as if completely healed. We quantify the stabilizing backstress caused by ice rises and lateral confinement, finding high backstress associated with two ice rises that likely stabilize the ice front in its current configuration. Though overall the ice shelf appears stable at present, the ice in contact with the Bawden ice rise is weakened by fractures, and additional damage or thinning in this area could portend significant change for the shelf. Using this new approach, field and remote sensing data can be utilized to

  18. Using Sea Ice Age as a Proxy for Sea Ice Thickness

    Science.gov (United States)

    Stroeve, J. C.; Tschudi, M. A.; Maslanik, J. A.

    2014-12-01

    Since the beginning of the modern satellite record starting in October 1978, the Arctic sea ice cover has been shrinking, with the largest changes observed at the end of the melt season in September. Through 2013, the September ice extent has declined at a rate of -14.0% dec-1, or -895,300 km2 dec-1. The seven lowest September extents in the satellite record have all occurred in the past seven years. This reduction in ice extent is accompanied by large reductions in winter ice thicknesses that are primarily explained by changes in the ocean's coverage of multiyear ice (MYI). Using the University of Colorado ice age product developed by J. Maslanik and C. Fowler, and currently produced by M. Tschudi we present recent changes in the distribution of ice age from the mid 1980s to present. The CU ice age product is based on (1) the use of ice motion to track areas of sea ice and thus estimate how long the ice survives within the Arctic, and (2) satellite imagery of sea ice concentration to determine when the ice disappears. Age is assigned on a yearly basis, with the age incremented by one year if the ice survives summer melt and stays within the Arctic domain. Age is counted from 1 to 10 years, with all ice older than 10 years assigned to the "10+" age category. The position of the ice is calculated on weekly time steps on NSIDC's 12.5-km EASE-grid. In the mid-1980s, MYI accounted for 70% of total winter ice extent, whereas by the end of 2012 it had dropped to less than 20%. This reflects not only a change in ice type, but also a general thinning of the ice pack, as older ice tends to be thicker ice. Thus, with older ice being replaced by thinner first-year ice, the ice pack is more susceptible to melting out than it was in 1980's. It has been suggested that ice age may be a useful proxy for long-term changes in ice thickness. To assess the relationship between ice age and thickness, and how this may be changing over time, we compare the ice age fields to several

  19. Age characteristics in a multidecadal Arctic sea ice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth C [Los Alamos National Laboratory; Bitz, Cecllia M [UNIV. OF WASHINGTON

    2008-01-01

    Results from adding a tracer for age of sea ice to a sophisticated sea ice model that is widely used for climate studies are presented. The consistent simulation of ice age, dynamics, and thermodynamics in the model shows explicitly that the loss of Arctic perennial ice has accelerated in the past three decades, as has been seen in satellite-derived observations. Our model shows that the September ice age average across the Northern Hemisphere varies from about 5 to 8 years, and the ice is much younger (about 2--3 years) in late winter because of the expansion of first-year ice. We find seasonal ice on average comprises about 5% of the total ice area in September, but as much as 1.34 x 10{sup 6} km{sup 2} survives in some years. Our simulated ice age in the late 1980s and early 1990s declined markedly in agreement with other studies. After this period of decline, the ice age began to recover, but in the final years of the simulation very little young ice remains after the melt season, a strong indication that the age of the pack will again decline in the future as older ice classes fail to be replenished. The Arctic ice pack has fluctuated between older and younger ice types over the past 30 years, while ice area, thickness, and volume all declined over the same period, with an apparent acceleration in the last decade.

  20. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    Science.gov (United States)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  1. Force balance and deformation characteristics of anisotropic Arctic sea ice (a high resolution study)

    Science.gov (United States)

    Feltham, D. L.; Heorton, H. D.; Tsamados, M.

    2016-12-01

    The spatial distribution of Arctic sea ice arises from its deformation, driven by external momentum forcing, thermodynamic growth and melt. The deformation of Arctic sea ice is observed to have structural alignment on a broad range of length scales. By considering the alignment of diamond-shaped sea ice floes, an anisotropic rheology (known as the Elastic Anisotropic Plastic, EAP, rheology) has been developed for use in a climate sea ice model. Here we present investigations into the role of anisotropy in determining the internal ice stress gradient and the complete force balance of Arctic sea ice using a state-of-the-art climate sea ice model. Our investigations are focused on the link between external imposed dynamical forcing, predominantly the wind stress, and the emergent properties of sea ice, including its drift speed and thickness distribution. We analyse the characteristics of deformation events for different sea ice states and anisotropic alignment over different regions of the Arctic Ocean. We present the full seasonal stress balance and sea ice state over the Arctic ocean. We have performed 10 km basin-scale simulations over a 30-year time scale, and 2 km and 500 m resolution simulations in an idealised configuration. The anisotropic EAP sea ice rheology gives higher shear stresses than the more customary isotropic EVP rheology, and these reduce ice drift speed and mechanical thickening, particularly important in the Archipelago. In the central Arctic the circulation of sea ice is reduced allowing it to grow thicker thermodynamically. The emergent stress-strain rate correlations from the EAP model suggest that it is possible to characterise the internal ice stresses of Arctic sea ice from observable basin-wide deformation and drift patterns.

  2. Why could ice ages be unpredictable?

    CERN Document Server

    Crucifix, Michel

    2013-01-01

    It is commonly accepted that the variations of Earth's orbit and obliquity control the timing of Pleistocene glacial-interglacial cycles. Evidence comes from power spectrum analysis of palaeoclimate records and from inspection of the timing of glacial and deglacial transitions. However, we do not know how tight this control is. Is it, for example, conceivable that random climatic fluctuations could cause a delay in deglaciation, bad enough to skip a full precession or obliquity cycle and subsequently modify the sequence of ice ages? To address this question, seven previously published conceptual models of ice ages are analysed by reference to the notion of generalised synchronisation. Insight is being gained by comparing the effects of the astronomical forcing with idealised forcings composed of only one or two periodic components. In general, the richness of the astronomical forcing allows for synchronisation over a wider range of parameters, compared to periodic forcing. Hence, glacial cycles may conceivabl...

  3. Why could ice ages be unpredictable?

    Directory of Open Access Journals (Sweden)

    M. Crucifix

    2013-02-01

    Full Text Available It is commonly accepted that the variations of Earth's orbit and obliquity control the timing of Pleistocene glacial-interglacial cycles. Evidence comes from power spectrum analysis of palaeoclimate records and from inspection of the timing of glacial and deglacial transitions. However, we do not know how tight this control is. Is it, for example, conceivable that random climatic fluctuations could cause a delay in deglaciation, bad enough to skip a full precession or obliquity cycle and subsequently modify the sequence of ice ages?

    To address this question, seven previously published conceptual models of ice ages are analysed by reference to the notion of generalised synchronisation. Insight is being gained by comparing the effects of the astronomical forcing with idealised forcings composed of only one or two periodic components. In general, the richness of the astronomical forcing allows for synchronisation over a wider range of parameters, compared to periodic forcing. Hence, glacial cycles may conceivably have remained paced by the astronomical forcing throughout the Pleistocene.

    However, all the models examined here also show a range of parameters for which the structural stability of the ice age dynamics is weak. This means that small variations in parameters or random fluctuations may cause significant shifts in the succession of ice ages if the system were effectively in that parameter range. Whether or not the system has strong structural stability depends on the amplitude of the effects associated with the astronomical forcing, which significantly differ across the different models studied here. The possibility of synchronisation on eccentricity is also discussed and it is shown that a high Rayleigh number on eccentricity, as recently found in observations, is no guarantee of reliable synchronisation.

  4. Deformation of the Arctic Ocean Sea Ice Cover Between November 1996 and April 1997: A Survey

    Science.gov (United States)

    Kwok, R.

    2000-01-01

    Quasi-linear features of the scale of kilometers to hundreds of kilometers can be observed in the high-resolution deformation fields of the sea ice cover produced by the RADARSAT Geophysical Processor System.

  5. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    Science.gov (United States)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  6. Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation

    Science.gov (United States)

    Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.

    2014-01-01

    Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.

  7. Why could ice ages be unpredictable?

    Directory of Open Access Journals (Sweden)

    M. Crucifix

    2013-10-01

    Full Text Available It is commonly accepted that the variations of Earth's orbit and obliquity control the timing of Pleistocene glacial–interglacial cycles. Evidence comes from power spectrum analysis of palaeoclimate records and from inspection of the timing of glacial and deglacial transitions. However, we do not know how tight this control is. Is it, for example, conceivable that random climatic fluctuations could cause a delay in deglaciation, bad enough to skip a full precession or obliquity cycle and subsequently modify the sequence of ice ages? To address this question, seven previously published conceptual models of ice ages are analysed by reference to the notion of generalised synchronisation. Insight is being gained by comparing the effects of the astronomical forcing with idealised forcings composed of only one or two periodic components. In general, the richness of the astronomical forcing allows for synchronisation over a wider range of parameters, compared to periodic forcing. Hence, glacial cycles may conceivably have remained paced by the astronomical forcing throughout the Pleistocene. However, all the models examined here show regimes of strong structural dependence on parameters. This means that small variations in parameters or random fluctuations may cause significant shifts in the succession of ice ages. Whether the actual system actually resides in such a regime depends on the amplitude of the effects associated with the astronomical forcing, which significantly differ across the different models studied here. The possibility of synchronisation on eccentricity is also discussed and it is shown that a high Rayleigh number on eccentricity, as recently found in observations, is no guarantee of reliable synchronisation.

  8. Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles

    Science.gov (United States)

    Williams, G.; Maksym, T.; Wilkinson, J.; Kunz, C.; Murphy, C.; Kimball, P.; Singh, H.

    2015-01-01

    Satellites have documented trends in Antarctic sea-ice extent and its variability for decades, but estimating sea-ice thickness in the Antarctic from remote sensing data remains challenging. In situ observations needed for validation of remote sensing data and sea-ice models are limited; most have been restricted to a few point measurements on selected ice floes, or to visual shipboard estimates. Here we present three-dimensional (3D) floe-scale maps of sea-ice draft for ten floes, compiled from two springtime expeditions by an autonomous underwater vehicle to the near-coastal regions of the Weddell, Bellingshausen, and Wilkes Land sectors of Antarctica. Mean drafts range from 1.4 to 5.5 m, with maxima up to 16 m. We also find that, on average, 76% of the ice volume is deformed ice. Our surveys indicate that the floes are much thicker and more deformed than reported by most drilling and ship-based measurements of Antarctic sea ice. We suggest that thick ice in the near-coastal and interior pack may be under-represented in existing in situ assessments of Antarctic sea ice and hence, on average, Antarctic sea ice may be thicker than previously thought.

  9. Arctic sea ice thickness changes in terms of sea ice age

    Institute of Scientific and Technical Information of China (English)

    BI Haibo; FU Min; SUN Ke; LIU Yilin; XU Xiuli; HUANG Haijun

    2016-01-01

    In this study, changes in Arctic sea ice thickness for each ice age category were examined based on satellite observations and modelled results. Interannual changes obtained from Ice, Cloud, and Land Elevation Satellite (ICESat)-based results show a thickness reduction over perennial sea ice (ice that survives at least one melt season with an age of no less than 2 year) up to approximately 0.5–1.0 m and 0.6–0.8 m (depending on ice age) during the investigated winter and autumn ICESat periods, respectively. Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)-based results provide a view of a continued thickness reduction over the past four decades. Compared to 1980s, there is a clear thickness drop of roughly 0.50 m in 2010s for perennial ice. This overall decrease in sea ice thickness can be in part attributed to the amplified warming climate in north latitudes. Besides, we figure out that strongly anomalous southerly summer surface winds may play an important role in prompting the thickness decline in perennial ice zone through transporting heat deposited in open water (primarily via albedo feedback) in Eurasian sector deep into a broader sea ice regime in central Arctic Ocean. This heat source is responsible for enhanced ice bottom melting, leading to further reduction in ice thickness.

  10. Identifying deformation mechanisms in the NEEM ice core using EBSD measurements

    Science.gov (United States)

    Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.

    2015-04-01

    Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M

  11. Explosive ice age diversification of kiwi.

    Science.gov (United States)

    Weir, Jason T; Haddrath, Oliver; Robertson, Hugh A; Colbourne, Rogan M; Baker, Allan J

    2016-09-20

    Molecular dating largely overturned the paradigm that global cooling during recent Pleistocene glacial cycles resulted in a burst of species diversification although some evidence exists that speciation was commonly promoted in habitats near the expanding and retracting ice sheets. Here, we used a genome-wide dataset of more than half a million base pairs of DNA to test for a glacially induced burst of diversification in kiwi, an avian family distributed within several hundred kilometers of the expanding and retracting glaciers of the Southern Alps of New Zealand. By sampling across the geographic range of the five kiwi species, we discovered many cryptic lineages, bringing the total number of kiwi taxa that currently exist to 11 and the number that existed just before human arrival to 16 or 17. We found that 80% of kiwi diversification events date to the major glacial advances of the Middle and Late Pleistocene. During this period, New Zealand was repeatedly fragmented by glaciers into a series of refugia, with the tiny geographic ranges of many kiwi lineages currently distributed in areas adjacent to these refugia. Estimates of effective population size through time show a dramatic bottleneck during the last glacial cycle in all but one kiwi lineage, as expected if kiwi were isolated in glacially induced refugia. Our results support a fivefold increase in diversification rates during key glacial periods, comparable with levels observed in classic adaptive radiations, and confirm that at least some lineages distributed near glaciated regions underwent rapid ice age diversification.

  12. Anisotropy of ice Ih: Developement of fabric and effects of anisotropy on deformation

    Science.gov (United States)

    Thorsteinsson, Throstur

    The anisotropy arising from preferred crystal orientation of ice I h is examined. To understand plastic anisotropy of polycrystalline materials it is necessary to examine the behavior at the single crystal level. Ice crystals have extremely strong plastic anisotropy that strongly influences the bulk behavior. There are several ways to relate single crystal deformation to the bulk behavior. Two approaches are used here. The first one is to assume a homogeneous stress throughout the bulk, which allows us to derive analytical relations between stress and strain rate. The anisotropy affects the strain rate-stress relationship significantly. For example strongly anisotropic ice, with a vertically symmetric fabric, can deform transversely to the applied stress in pure shear, be nearly undeformable in vertical compression, and shear easily in simple shear. The second approach takes the interaction between neighboring crystals into account, and recrystallization processes are also considered. Comparison of fabric evolution using the model and fabric from the GRIP ice core indicates that nearest neighbor interaction is necessary to explain observations. Quantification of the interaction is complicated by recrystallization processes. A consistent method of characterizing measured fabric is needed to verify models of fabric development. Here the elastic anisotropy of ice plays a central role, and relations between fabric and elastic wave velocities are used to characterize fabric. As always, several other methods are possible, but comparison indicates that sonic measurements give an accurate estimate for deformation effects from vertically symmetric fabric especially in simple shear. The deformation of the borehole at Dye 3, Greenland, has been measured with borehole inclinometry. Sonic velocity measurements done in the borehole allow us to model the deformation using an anisotropic flow law. Anisotropy alone cannot explain all the deformation. The additional processes

  13. On the origin of the ice ages

    NARCIS (Netherlands)

    Oerlemans, J.

    1984-01-01

    Ice sheet dynamics provide a possible explanation for the 100 kyr power in climatic records. Some numerical experiments presented here show that even the transition from an essentially ice-free earth to a glacial can be produced by a northern hemisphere ice-sheet model, provided that a slow general

  14. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lebensohn, Ricardo A [Los Alamos National Laboratory; Montagnat, Maurine [LGGE (FRANCE); Mansuy, Philippe [MICHELIN (FRANCE); Duval, Paul [LGGE (FRANCE); Philip, A [LGGE (FRANCE)

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals. The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.

  15. Grain growth and experimental deformation of fine-grained ice aggregates

    Science.gov (United States)

    Diebold, Sabrina; de Bresser, Hans; Spiers, Chris; Durham, William B.; Stern, Laura

    2010-05-01

    Ice is one of the most abundant materials in our solar system. It is the principal constituent of most of the moons of the outer solar system. Thus, the flow behavior of ice is of great interest when studying geodynamic processes on icy moons. Grain growth is an elementary process that is assumed to be important in the ice sheet layering of planetary moons, where temperatures 100-273 K exist. We concentrate on the questions to what extent grain growth may influence the evolution of strength of deforming ice and if the grain growth process is independent or dependent of deformation. The answers to these questions will help us to quantitatively test the hypothesis that the progressive evolution of the grain (crystal) size distribution of deforming and recrystallizing ice directly affects its rheological behaviour in terms of composite grain-size-sensitive (GSS) and grain-size-insensitive (GSI) creep, and that this might, after time, result in a steady state balance between mechanisms of GSS and GSI creep. We performed static grain growth experiments at different temperatures and a pressure (P) of 1 atm, and deformation experiments at P = 30-100 MPa starting in the GSS-creep field. The starting material ice Ih has a grain size growth tests a Hart Scientific temperature bath was filled with d-Limonene as cooling medium. The ice specimens were put into sealed alumina cylinders. For the grain growth tests, temperatures (T) between 213 K and 268 K were chosen. The durations of these tests varied between one day and two weeks. For the deformation experiments, temperatures of > 170 K and strain rates between 10-8 s-1 and 10-4 s-1 were chosen. Grain sizes, grain size distributions and grain topologies were measured by cryogenic SEM and image analysis techniques. We found clear evidence of grain growth and a significantly T-dependent variation of grain size distributions. The observations allow us to calibrate values for the grain size exponent n and the activation energy Q

  16. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    Science.gov (United States)

    Lucchitta, B. K.

    1997-01-01

    Recent studies of ice streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the ice on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that ice was present in outflow channels on Mars and gave them their distinctive morphology. This ice may have slid like Antarctic ice streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the ice. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of ice-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross Ice Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of ice streams during the last glacial advance. Additional similarities of Antarctic ice streams with martian outflow channels are apparent. Antarctic ice streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. Ice stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the

  17. The genetic history of Ice Age Europe

    Science.gov (United States)

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit; Peltzer, Alexander; Rohland, Nadin; Slon, Viviane; Talamo, Sahra; Lazaridis, Iosif; Lipson, Mark; Mathieson, Iain; Schiffels, Stephan; Skoglund, Pontus; Derevianko, Anatoly P.; Drozdov, Nikolai; Slavinsky, Vyacheslav; Tsybankov, Alexander; Cremonesi, Renata Grifoni; Mallegni, Francesco; Gély, Bernard; Vacca, Eligio; González Morales, Manuel R.; Straus, Lawrence G.; Neugebauer-Maresch, Christine; Teschler-Nicola, Maria; Constantin, Silviu; Moldovan, Oana Teodora; Benazzi, Stefano; Peresani, Marco; Coppola, Donato; Lari, Martina; Ricci, Stefano; Ronchitelli, Annamaria; Valentin, Frédérique; Thevenet, Corinne; Wehrberger, Kurt; Grigorescu, Dan; Rougier, Hélène; Crevecoeur, Isabelle; Flas, Damien; Semal, Patrick; Mannino, Marcello A.; Cupillard, Christophe; Bocherens, Hervé; Conard, Nicholas J.; Harvati, Katerina; Moiseyev, Vyacheslav; Drucker, Dorothée G.; Svoboda, Jiří; Richards, Michael P.; Caramelli, David; Pinhasi, Ron; Kelso, Janet; Patterson, Nick; Krause, Johannes; Pääbo, Svante; Reich, David

    2016-01-01

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history. PMID:27135931

  18. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    Science.gov (United States)

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  19. RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES

    Directory of Open Access Journals (Sweden)

    Anastasia Gornostayeva

    2013-01-01

    Full Text Available We applied geothermal method for paleoclimatic reconstruction of the ground surface temperature history during the Little Ice Age and contemporary warming. We analyzed 83 borehole temperature profiles and estimated warming amplitudes and warming start dates after the Little Ice Age. The studied boreholes are situated in the Urals and Eastern Europe (Finland, Ukraine, and Belarus. Our investigation shows high degree of spatial variability of climatic changes in 18–19 centuries. Spatial distribution of amplitudes of paleoclimatic changes and warming start date testifies that warming following after the Little Ice Age was in progress in several steps and for different regions it started at different times.

  20. Palaeoclimate simulation of Little Ice Age

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; CHEN Xing; WANG Sumin; ZHENG Yiqun

    2004-01-01

    Little Ice Age (LIA) is a typical cold climate period in global scope with a profound impact upon human society. In this study, a coupled global atmospheric circulation model including the land processes (AGCM + SSiB) is used to perform the simulation of LIA climate. Under the control of solar radiation reduction mechanism, the decrease of temperature is more obvious in summer than in winter; meanwhile, there is regional difference in the change of winter temperature. But the temperature decrease is the main characteristic of the annual mean temperature. Volcanic dust has an evident effect on the winter temperature decrease, but to a less extent than the solar radiation. The synchronous function caused by the reduction of solar radiation and the increase of optic depth of volcanic dust has a superposed strengthening effect on the temperature decrease in large regions. Promotion of the vegetation cover rate profits the increase of temperature, and vise versa. Certain decrease of solar radiation will favor the increase of summer monsoon precipitation in East Asia. The increase of optic depth of volcanic dust does not have a significant effect on the annual precipitation in most parts of Eurasian continent. The composite effect of the decrease of solar radiation and the increase of volcanic dust makes the summer monsoon precipitation in East China increase, and that in South Asia decrease. Together with vegetation change, the result shows that precipitation increases with the increase of vegetation coverage (e.g. East Asia), and when the vegetation coverage reduces (e.g. North Africa) the precipitation will decrease, too.

  1. Amplification of European Little Ice Age by sea ice-ocean-atmosphere feedbacks

    Science.gov (United States)

    Lehner, Flavio; Born, Andreas; Raible, Christoph C.; Stocker, Thomas F.

    2013-04-01

    The transition from the Medieval Climate Anomaly (~950-1250 AD) to the Little Ice Age (~1400-1700 AD) is believed to have been driven by an interplay of external forcing and climate system-internal variability. While the hemispheric signal seems to have been dominated by solar irradiance and volcanic eruptions, the understanding of mechanisms shaping the climate on continental scale is less robust. Examining an ensemble of transient model simulations as well as a new type of sensitivity experiments with artificial sea ice growth, we identify a sea ice-ocean-atmosphere feedback mechanism that amplifies the Little Ice Age cooling in the North Atlantic-European region and produces the temperature pattern expected from reconstructions. Initiated by increasing negative forcing, the Arctic sea ice substantially expands at the beginning of the Little Ice Age. The excess of sea ice is exported to the subpolar North Atlantic, where it melts, thereby weakening convection of the ocean. As a consequence, northward ocean heat transport is reduced, reinforcing the expansion of the sea ice and the cooling of the Northern Hemisphere. In the Nordic Seas, sea surface height anomalies cause the oceanic recirculation to strengthen at the expense of the warm Barents Sea inflow, thereby further reinforcing sea ice growth in the Barents Sea. The absent ocean-atmosphere heat flux in the Barents Sea results in an amplified cooling over Northern Europe. The positive nature of this feedback mechanism enables sea ice to remain in an expanded state for decades to centuries and explain sustained cold periods over Europe such as the Little Ice Age. Support for the feedback mechanism comes from recent proxy reconstructions around the Nordic Seas.

  2. Siple Dome ice reveals two modes of millennial CO2 change during the last ice age.

    Science.gov (United States)

    Ahn, Jinho; Brook, Edward J

    2014-04-29

    Reconstruction of atmospheric CO2 during times of past abrupt climate change may help us better understand climate-carbon cycle feedbacks. Previous ice core studies reveal simultaneous increases in atmospheric CO2 and Antarctic temperature during times when Greenland and the northern hemisphere experienced very long, cold stadial conditions during the last ice age. Whether this relationship extends to all of the numerous stadial events in the Greenland ice core record has not been clear. Here we present a high-resolution record of atmospheric CO2 from the Siple Dome ice core, Antarctica for part of the last ice age. We find that CO2 does not significantly change during the short Greenlandic stadial events, implying that the climate system perturbation that produced the short stadials was not strong enough to substantially alter the carbon cycle.

  3. 500,000-year temperature record challenges ice age theory

    Science.gov (United States)

    Snow, K. Mitchell

    1994-01-01

    Just outside the searing heat of Death Valley lies Devils Hole (fig. 1), a fault-created cave that harbors two remnants of the Earth's great ice ages. The endangered desert pupfish (Cyprinodon diabolis) has long made its home in the cave. A 500,000-year record of the planet's climate that challenges a widely accepted theory explaining the ice ages also has been preserved in Devils Hole.

  4. Self-consistent ice-sheet properties: ice dynamics, temperature, accumulation, delta-age and chronologies for ice cores and radar isochrones

    Science.gov (United States)

    Lundin, J.; Waddington, E. D.; Conway, H.

    2011-12-01

    Ice sheet behavior has not previously been modeled to force self-consistency, to determine histories of accumulation, temperature, and ice dynamics that incorporate the ice-age/gas-age offset (delta-age) and sparse depth-age measurements from ice cores. An iterative scheme is used to combine several modular components into one self-consistent model. The goal is to determine a suite of histories constrained by the depth-age data from ice cores and ice radar that are part of a physically self-consistent ice sheet. The model is tested using a synthetic data set resembling WAIS divide. Using synthetic data provides proof of concept that histories of accumulation, temperature and ice dynamics can be recovered by the self-consistent model, and that the depth-age from ice cores and ice radar can be matched. Results from synthetic data show we can recover the ice-sheet properties used to generate the data and we can improve the depth-age chronologies by interpolating with an ice-flow model where data are sparse. When this self-consistent model can be applied to field data, results will (1) improve chronologies for ice cores and radar layers, (2) determine histories of accumulation for GCM modelling, and (3) improve estimates of past ice sheet configurations, incorporating data from ice cores and ice radar.

  5. Ice age plant refugia in East Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby

    1979-01-01

    evidence it is inferred that the flora in the refugia comprised mainly species which today occur over a wide geographical and ecological range. The "odd" occurrences that initiated the discussion may represent random.seed dispersal accumulated in the ice-free areas through long periods of time...

  6. A connectionist-geostatistical approach for classification of deformation types in ice surfaces

    Science.gov (United States)

    Goetz-Weiss, L. R.; Herzfeld, U. C.; Hale, R. G.; Hunke, E. C.; Bobeck, J.

    2014-12-01

    Deformation is a class of highly non-linear geophysical processes from which one can infer other geophysical variables in a dynamical system. For example, in an ice-dynamic model, deformation is related to velocity, basal sliding, surface elevation changes, and the stress field at the surface as well as internal to a glacier. While many of these variables cannot be observed, deformation state can be an observable variable, because deformation in glaciers (once a viscosity threshold is exceeded) manifests itself in crevasses.Given the amount of information that can be inferred from observing surface deformation, an automated method for classifying surface imagery becomes increasingly desirable. In this paper a Neural Network is used to recognize classes of crevasse types over the Bering Bagley Glacier System (BBGS) during a surge (2011-2013-?). A surge is a spatially and temporally highly variable and rapid acceleration of the glacier. Therefore, many different crevasse types occur in a short time frame and in close proximity, and these crevasse fields hold information on the geophysical processes of the surge.The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network can recognize. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we have developed a semi-automated pre-training software to adapt the Neural Net to chaining conditions.The method is applied to airborne and satellite imagery to classify surge crevasses from the BBGS surge. This method works well for classifying spatially repetitive images such as the crevasses over Bering Glacier. We expand the network for less repetitive images in order to analyze imagery collected over the Arctic sea ice, to assess the percentage of deformed ice for model calibration.

  7. The down-stress transition from cluster to cone fabrics in experimentally deformed ice

    Science.gov (United States)

    Qi, Chao; Goldsby, David L.; Prior, David J.

    2017-08-01

    During plastic deformation of polycrystalline ice 1h, ice crystals become crystallographically aligned due to dislocation glide, primarily on the basal slip system. Such crystallographic preferred orientation (CPO) introduces a viscous anisotropy in ice, and thus strongly influences the kinematics of the flow of glaciers and ice sheets. Two key mechanisms exert different controls on CPO. In axial compression, recrystallization dominated by lattice rotation yields a cluster of c-axes parallel to compression, and recrystallization dominated by grain boundary migration (GBM) yields a cone-shaped distribution of c-axes with the cone axis parallel to compression. The transition between these dominant mechanisms of CPO formation has not been well quantified. In this study, we explore how this transition varies with stress. Ice deformation experiments were conducted using a high-pressure, gas-medium apparatus to prevent fracturing of samples at relatively high stresses. Samples were deformed in uniaxial compression at a temperature of ∼-10 °C and a confining pressure of 10 MPa. Fabricated ice samples with starting average grain sizes of either ∼0.23 mm or ∼0.63 mm were each deformed to an axial strain of ∼0.2 at a nominally constant strain rate in the range 1.2 ×10-6 to 2.4 ×10-4 s-1, yielding flow stresses of 1.17 to 4.31 MPa. High-quality electron backscatter diffraction reveal the grain size, shape, subgrain structure, and CPOs formed at different stresses. All deformed samples have strong, non-random CPOs with c-axes concentrated in cones. The cone angle and CPO strength are observed to decrease with increasing stress. As stress increases, the fraction of grains with highly curved or lobate grain boundaries decreases and the fraction of polygonal grains with straight grain boundaries increases. Based on these observations, we propose that a transition in the dominant mechanism of CPO formation occurs with increasing stress, from GBM, which consumes grains

  8. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    . The areal fraction at C-band remains constant. The retrieved average distance between deformation features increases both at C- and L-bands, as the image resolution gets coarser. The influence of noise becomes noticeable if its level is equal or larger than the average intensity backscattered from the level......C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarization over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analysed....... The signal-to-noise ratio is varied between typical noise levels for airborne imagery and satellite data. Areal fraction of deformed ice and average deformation distance are determined for each image product. At L-band, the retrieved values of the areal fraction get larger as the image resolution is degraded...

  9. Did glacially induced TPW end the ice age? A reanalysis

    Science.gov (United States)

    Chan, Ngai-Ham; Mitrovica, Jerry X.; Daradich, Amy

    2015-09-01

    Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called `unidirectional TPW', that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.

  10. An additional planet as a model for the Pleistocene Ice Age

    CERN Document Server

    Wölfli, W; Nufer, R

    2002-01-01

    We propose a model for the Pleistocene Ice Age, assuming the following scenario: Between 3 Myr and 11.5 kyr BP a Mars-sized object existed which moved in a highly eccentric orbit. Originating from this object, gas clouds with a complex dynamics reduced Earth's insolation and caused a drop in the global temperature. In a close encounter, 11.5 kyr ago, tidal forces deformed the Earth. While the shape of the gyroscope Earth relaxed, the North Pole moved geographically from Greenland to its present position. During this close encounter, the object was torn to pieces, each of which subsequently evaporated or plunged into the sun. These events terminated the Ice Age Epoch.

  11. An ice age recorded in the polar deposits of Mars.

    Science.gov (United States)

    Smith, Isaac B; Putzig, Nathaniel E; Holt, John W; Phillips, Roger J

    2016-05-27

    Layered ice deposits at the poles of Mars record a detailed history of accumulation and erosion related to climate processes. Radar investigations measure these layers and provide evidence for climate changes such as ice advance and retreat. We present a detailed analysis of observational data showing that ~87,000 cubic kilometers of ice have accumulated at the poles since the end of the last ice age ~370,000 years ago; this volume is equivalent to a global layer of ~60 centimeters. The majority of the material accumulated at the north pole. These results provide both a means to understand the accumulation history of the polar deposits as related to orbital Milankovitch cycles and constraints for better determination of Mars' past and future climates.

  12. An ice age recorded in the polar deposits of Mars

    Science.gov (United States)

    Smith, Isaac B.; Putzig, Nathaniel E.; Holt, John W.; Phillips, Roger J.

    2016-05-01

    Layered ice deposits at the poles of Mars record a detailed history of accumulation and erosion related to climate processes. Radar investigations measure these layers and provide evidence for climate changes such as ice advance and retreat. We present a detailed analysis of observational data showing that ~87,000 cubic kilometers of ice have accumulated at the poles since the end of the last ice age ~370,000 years ago; this volume is equivalent to a global layer of ~60 centimeters. The majority of the material accumulated at the north pole. These results provide both a means to understand the accumulation history of the polar deposits as related to orbital Milankovitch cycles and constraints for better determination of Mars’ past and future climates.

  13. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness.

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10(13) Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus-Tidal deformation-Faults-Variable ice shell thickness-Tidal heating-Plume activity and timing. Astrobiology 17, 941-954.

  14. New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr

    Directory of Open Access Journals (Sweden)

    J. Chappellaz

    2007-08-01

    Full Text Available Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML ice core, both in the ice phase (using volcanic horizons and in the gas phase (using rapid methane variations. We also use the structured 10Be peak, occurring 41 kyr before present (BP and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage during this event. Our results seem to reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the Δage overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the Δage overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr seems to be overestimated.

  15. Mass loss of the Greenland Ice Sheet since the Little Ice Age, implications on sea level

    Science.gov (United States)

    Kjeldsen, K. K.; Kjaer, K.; Bjork, A. A.; Khan, S. A.; Korsgaard, N. J.; Larsen, N. K.; Long, A. J.; Woodroffe, S.; Milne, G. A.; Wahr, J. M.; Geruo, A.; Bamber, J. L.; van den Broeke, M. R.

    2013-12-01

    The impact of mass loss from the Greenland Ice Sheet (GrIS) on 20th Century sea level rise (SLR) has long been subject to intense discussions. While globally distributed tide gauges suggest a global mean SLR of 15-20 cm, quantifying the separate components is of great concern - in particular for modeling sea level projections into the 21st Century. Estimates of the past GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge found by in correlating SMB anomalies and calving rates. Here, we adopt a novel geometric approach to determine the post-Little Ice Age (LIA) mass loss of the GrIS. We use high quality aerial stereo photogrammetric imagery recorded between 1978 and 1987 to map morphological features such as trim lines (boundary between freshly eroded and non-eroded bedrock) and end moraines marking the ice extent of the LIA, which thereby enables us to obtain vertical point-based differences associated with changes in ice extent. These point measurements are combined with contemporary ice surface differences derived using NASA's Airborne Topographic Mapper (ATM) from 2002-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, and NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, to estimate mass loss throughout the 20th and early 21st Century. We present mass balance estimates of the GrIS since retreat commence from the maximum extent of the LIA to 2010 derived for three intervals, LIAmax (1900) - 1978/87, 1978/87 - 2002, and 2002 - 2010. Results suggest that despite highly spatially- and temporally variable post-LIA mass loss, the total mass loss and thus the contribution from the GrIS to global SLR has accelerated significantly during the 20th Century.

  16. New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr

    Directory of Open Access Journals (Sweden)

    J. Chappellaz

    2007-03-01

    Full Text Available Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage in the past. However, such models are not well tested on low accumulation and cold sites of the East Antarctic plateau, especially for periods with different climatic conditions. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML ice core, both in the ice phase (using volcanic horizons and in the gas phase (using rapid methane variations. We use the structured 10Be peak, occurring 41 kyr before present (BP and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage and Δdepth during this event. It allows us to evaluate the model and to link together climatic archives from EDC and EDML to NorthGRIP (Greenland. Our results reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Our finding suggests that the phase relationship between CO2 and EDC temperature inferred at the start of the last deglaciation (lag of CO2 by 800±600 yr is overestimated and that the CO2 increase could well have been in phase or slightly leading the temperature increase at EDC.

  17. Pacific winds preventing ice sheet buildup over Siberia during the Ice Age climax

    Science.gov (United States)

    Rogozhina, Irina; Bakker, Pepijn; Prange, Matthias

    2017-04-01

    At the culmination of the last Ice Age ( 21,000 years ago), vast portions of the Northern Hemisphere land areas were buried under several-kilometer-thick ice sheets. Surprisingly, one of the coldest regions in the modern world, Northern Siberia, escaped this fate and remained largely ice free. To date, two potential mechanisms have been proposed to explain this phenomenon: A regional precipitation deficit that would not allow for a sufficient snow accumulation and an increased dust deposition that would enhance snow melt during the summer ablation period. Here we use high-resolution climate and ice sheet simulations of the Last Glacial Maximum, land proxy data and paleoglacial reconstructions to link the absence of extensive glaciations to changes in the large-scale atmospheric circulation. Our analysis suggests that a reorganization of major stationary pressure systems resulted in strong seasonal winds from the Pacific Ocean that maintained warm spring and summer conditions over the Siberian coasts during the coldest stage of the last glacial period. Both our simulations and proxy data indicate snow-free summers over much of Northern Siberia, in particular due to a pronounced warming of the Arctic shelf placed above the sea level during the Last Glacial Maximum. Although of a regional nature, our finding presents a challenge to the polar amplification theory that cannot reconcile modern-like or even warmer Arctic summers during the Ice Age climax.

  18. Paleoclimates of Amazonia: An ice-age view

    NARCIS (Netherlands)

    Bush, M.B.; De Oliveira, P.E.; Raczka, M.F.; Gosling, W.D.; Mayle, F.E.; McMichael, C.H.; Urrego, D.H.; de Souza Carvalho, I.; Garcia, M.J.; Cunha Lana, C.; Strohschoen Jr., O.

    2014-01-01

    A growing body of evidence points to climatic complexity during the Ice-Ages. Amazonia does not respond uniformly to modern climatic forcing, and the same was true of the past. Although some climatic forcings were probably expressed everywhere, they were manifested differently. Consequently, climate

  19. Challenges for ice age dynamics: a dynamical systems perspective

    CERN Document Server

    Crucifix, Michel; Mitsui, Takahito

    2015-01-01

    This chapter is dedicated to the slow dynamics of the climate system, at time scales of one~thousand to one million years. We focus specifically on the phenomenon of ice ages that has characterised the slow evolution of climate over the Quaternary. Ice ages are a form of variability featuring interactions between different large-scale components and processes in the climate system, including ice sheet, deep-ocean and carbon cycle dynamics. This variability is also at least partly controlled by changes in the seasonal and latitudinal incoming solar radiation associated with the combined effects of changes in Earth's orbit shape, precession of equinoxes, and changes in obliquity. A number of possible mechanisms are reviewed in this chapter. We stress that the nature of the interactions between these slow dynamics and faster modes of variability, such as millennium and centennial modes of variability, are still poorly understood. For example, whether the time sequence of ice ages is robustly determined or not by...

  20. Mineral deformation and subglacial processes on ice-bedrock interface of Hailuogou Glacier

    Institute of Scientific and Technical Information of China (English)

    LIU GengNian; CHEN YiXin; ZHANG Yue; FU HaiRong

    2009-01-01

    Hailuogou Glacier is located in a warm and humid maritime environment. It is large and moves very fast.The bottom of the glacier slides intensively and the temperature at the bottom approaches the pressure melting point. Therefore,there are abundant melting water and debris which act as effective "grinding tools"for glacial abrasion. Polarizing microscope is used to observe the mineral deformation characteristics on the ice-bedrock interface. It is found that feldspar,quartz,hornblende and biotite are exposed to deformation,fracture and chemical alteration to various extents. Bending deformation is common for biotite,due to their lattice characteristics,and the bending orientations are mostly the same as the glacier flow. Bending deformation also occurs in a few hornblendes. High-angle tension fracture and low-angle shear fracture are common for quartz and feldspar,some of them are totally crushed (mylonizations) due to their rigidity. Thus,all the abrasion,quarrying,subglacial water action and subglacial dissolution processes at the bottom of the glacier are verified at the micro-scale level.Mineral deformation and fracture are the basic subglacial erosion mechanisms. The abrasion thickness is 30-90 μm for each time and the average is 50 μm. Most of the debris are silt produced by glacial abrasion. The extent of mineral deformation and fracture decreases drastically downwards beneath the bedrock surface. The estimated erosion rate is about 2.2-11.4 mm/a,which is similar to that of other maritime alpine glaciers,smaller than that of large-scale piedmont glaciers In Alaska (10-30 mm/a),and larger than that of continental glaciers (0.1-1.0 mm/a). The type and size of a glacier are the main factors that influence its erosion rate.

  1. Climatic variations since the Little Ice Age recorded in the Guliya Ice Core

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 焦克勤; 田立德; 杨志红; 施维林; Lonnie G. Thompson

    1996-01-01

    The climatic variations since the Little Ice Age recorded in the Guliya Ice Core are discussed based on glacial δ18O and accumulation records in the Guliya Ice Core. Several obvious climate fluctuation events since 1570 can be observed according to the records. In the past 400 years, the 17th and 19th centuries are relatively cool periods with less precipitation, and the 18th and 20th centuries are relatively warm periods with high precipitation. The study has also revealed the close relationship between temperature and precipitation on the plateau. Warming corresponds to high precipitation and cooling corresponds to less precipitation, which is related with the influence of monsoon on this region.

  2. Mass loss from the southern half of the Greenland Ice Sheet since the Little Ice Age

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Kjær, Kurt H.; Bjørk, Anders Anker

    Northern hemisphere temperatures reached their Holocene minimum and most glaciers reached their maximum during The Little Ice Age (LIA), but the timing of specific cold intervals is site-specific. In southern Greenland, we have compiled data from organic matter incorporated in LIA sediments, used...... as a signal for ice-free terrain being overridden by LIA glacier advances, and data from threshold lakes showing the onset of glacier-fed lakes, thus revealing the advance-maximum phase initiating the LIA. Finally, we have compiled lichenometry results indicating the onset of bedrock vegetation succeeding ice...... the Arctic. Furthermore, the glacier response seems to be mirrored by a oceanic cooling between 500-1000 AD, followed by onset of the LIA at 1150-1250 AD as seen in the relative strength of warm subsurface water and the influence of the East Greenland Current....

  3. Tidal deformation of Enceladus' ice shell with variable thickness and Maxwell rheology

    Science.gov (United States)

    Soucek, Ondrej; Behounkova, Marie; Cadek, Ondrej; Tobie, Gabriel; Choblet, Gael

    2017-04-01

    Tidal deformation of icy moons has been traditionally studied using the spectral approach which is very efficient for perfectly spherical bodies with radially dependent rheological structure. Measurements of Enceladus' topography (Nimmo et al., 2011) and low-degree gravity (Iess et al., 2014) indicate that the ice shell is significantly thinned in the southern hemisphere (Iess et al., 2014; McKinnon, 2015) and according to recent gravity, shape and libration inversion, it may be only a few kilometers thick at the south pole (Cadek et al., 2016). These variations may potentially have a significant effect on the amplitude and pattern of tidal deformation, stress and associated heating inside the shell, but cannot be straightforwardly incorporated into the existing spectral codes. In order to circumvent this difficulty and to quantify the effects of ice-shell thickness variations, we have developed a three-dimensional finite element code in the framework of FEniCS package (Alnaes et al., 2015). Using this numerical tool, we address the changes in tidally-induced deformation amplitude, stresses and tidal heating for structural models of Enceladus' ice shell of various complexity. Considering Maxwell viscoelastic rheology of the shell, we compare models with uniform thickness consistent with the libration data and with constant viscosity, synthetic models with analytically parameterized thinning in the south polar region and depth-dependent viscosity varying over several orders of magnitude, and finally, models with the shell topography and thickness based on the recent model of Cadek et al. (2016). We find that the thinning of the ice shell around the south pole may lead to amplification of the stress and displacement in this region region by a factor of up to 2 and 4, respectively, depending on the average ice shell thickness, the amplitude of thinning and the viscosity structure. Our results also suggest that lateral variations of ice thickness can induce significant

  4. Mass loss from the southern half of the Greenland Ice Sheet since the Little Ice Age

    Science.gov (United States)

    Kjeldsen, Kristian K.; Kjær, Kurt H.; Bjørk, Anders A.; Khan, Shfaqat A.; Korsgaard, Niels J.; Funder, Svend; Larsen, Nicolaj K.; Vinther, Bo; Andresen, Camilla S.; Long, Antony J.; Woodroffe, Sarah A.; Steen Hansen, Eric; Olsen, Jesper

    2013-04-01

    The impact of mass loss from the Greenland Ice sheet (GrIS) on the 20th Century sea level rise (SLR) has long been subject to immense discussions. While globally distributed tide gauges suggest SLR of 15-20 cm computing the input constituents is of great concern - in particular for modeling sea level projections into the 21st Century. Estimates of the GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge founded in correlating SMB anomalies and calving rates. Here, we show a novel geometric approach to determine the post-Little Ice Age (LIA) mass loss of the southern GrIS. We present mass balance estimates of the GrIS south of 71N since retreat commence from the maximum extent of the LIA to 2010. The mass loss estimates are derived for three intervals, LIAmax (1900) - 1981/85 (1), 1981/85 - 2002 (2), and 2002 - 2010 (3). We use high quality aerial stereo photogrammetric imagery recorded in 1981 and 1985 to map morphological features such as trim lines (boundary between freshly eroded and non-eroded bedrock) and end moraines marking the ice extent of the LIA, which thereby enables us to obtain vertical difference associated with former ice extent. We combine these with contemporary ice surface differences derived using NASA's Airborne Topographic Mapper (ATM) from 2002-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, and NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, to estimate mass loss throughout the 20th and early 21st Century. Using our novel approach we find mass loss rates for the above periods (1) to (3) of 53 Gt/yr, 46 Gt/yr, and 109 Gt/yr, respectively. In southeast GrIS we find substantial and extensive mass loss reaching the ice divide while in southwestern GrIS mass loss is less and mainly associated with marine outlet glaciers. Furthermore, post-LIA mass loss is found to be highly variable, even

  5. Sea-ice deformation state from synthetic aperture radar imagery - Part I: comparison of C- and L-band and different polarization

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2007-01-01

    In this paper, we present a quantitative comparison of L- and C-band airborne synthetic aperture radar imagery acquired at like- and cross-polarizations over deformed sea ice under winter conditions. The parameters characterizing the deformation state of the ice are determined at both radar bands...... and at different polarizations. The separation of deformed and level ice is based on a target detection technique. The threshold is set such that image pixels with intensities equal to or larger than the highest 2% of the level-ice intensity distribution are classified as deformed ice, independent of the radar...... are very sensitive to the radar frequency. Aeral fractions are larger, and average distances are smaller at L-band than at C-band because of the much higher intensity contrast between the deformed and level ice at L-band. The differences between polarizations at one radar band are smaller but not always...

  6. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea.

    Science.gov (United States)

    Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérôme I; Fortier, Louis

    2015-10-01

    A 13-month time series of Arctic Ocean noise from the marginal ice zone of the Eastern Beaufort Sea is analyzed to detect under-ice acoustic transients isolated from ambient noise with a dedicated algorithm. Noise transients due to ice cracking, fracturing, shearing, and ridging are sorted out into three categories: broadband impulses, frequency modulated (FM) tones, and high-frequency broadband noise. Their temporal and acoustic characteristics over the 8-month ice covered period, from November 2005 to mid-June 2006, are presented and their generation mechanisms are discussed. Correlations analyses showed that the occurrence of these ice transients responded to large-scale ice motion and deformation rates forced by meteorological events, often leading to opening of large-scale leads at main discontinuities in the ice cover. Such a sequence, resulting in the opening of a large lead, hundreds by tens of kilometers in size, along the margin of landfast ice and multiyear ice plume in the Beaufort-Chukchi seas is detailed. These ice transients largely contribute to the soundscape properties of the Arctic Ocean, for both its ambient and total noise components. Some FM tonal transients can be confounded with marine mammal songs, especially when they are repeated, with periods similar to wind generated waves.

  7. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival

    Science.gov (United States)

    Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Reanier, Richard E.; Gaglioti, Benjamin V.

    2013-01-01

    Radical restructuring of the terrestrial, large mammal fauna living in arctic Alaska occurred between 14,000 and 10,000 years ago at the end of the last ice age. Steppe bison, horse, and woolly mammoth became extinct, moose and humans invaded, while muskox and caribou persisted. The ice age megafauna was more diverse in species and possibly contained 6× more individual animals than live in the region today. Megafaunal biomass during the last ice age may have been 30× greater than present. Horse was the dominant species in terms of number of individuals. Lions, short-faced bears, wolves, and possibly grizzly bears comprised the predator/scavenger guild. The youngest mammoth so far discovered lived ca 13,800 years ago, while horses and bison persisted on the North Slope until at least 12,500 years ago during the Younger Dryas cold interval. The first people arrived on the North Slope ca 13,500 years ago. Bone-isotope measurements and foot-loading characteristics suggest megafaunal niches were segregated along a moisture gradient, with the surviving species (muskox and caribou) utilizing the warmer and moister portions of the vegetation mosaic. As the ice age ended, the moisture gradient shifted and eliminated habitats utilized by the dryland, grazing species (bison, horse, mammoth). The proximate cause for this change was regional paludification, the spread of organic soil horizons and peat. End-Pleistocene extinctions in arctic Alaska represent local, not global extinctions since the megafaunal species lost there persisted to later times elsewhere. Hunting seems unlikely as the cause of these extinctions, but it cannot be ruled out as the final blow to megafaunal populations that were already functionally extinct by the time humans arrived in the region.

  8. The deformation of ice-debris landforms in the Khumbu Region from InSAR

    Science.gov (United States)

    Schmidt, D. A.; Barker, A. D.; Hallet, B.

    2014-12-01

    We present new interferometric synthetic aperture radar (InSAR) results for the Khumbu region, Nepal, using PALSAR data from the ALOS1 satellite. Glaciers and ice-debris landforms represent a critical water resource to communities in the Himalayas and other relatively arid alpine environments. Changes in climate have impacted this resource as the volume of ice decreases. The monitoring of rock glaciers and debris covered glaciers is critical to the assessment of these natural resources and associated hazards (e.g. Glacial Lake Outburst Floods--GLOFs). Satellite data provide one means to monitor ice-containing landforms over broad regions. InSAR measures the subtle deformation of the surface, with mm precision, that is related to deformation or changes in ice volume within rock glaciers and debris-covered glaciers. While previous work in the region had used C-band (6 cm wavelength) SAR data from the ERS satellite, we utilize L-band data (24 cm) from the ALOS satellite, which provides better coherence, especially where the phase gradient is large. After processing 20 differential interferograms that span from 2008 to 2011, we focus on the 5 interferograms with the best overall coherence. Based on three 45-day interferograms and two 3-year interferograms, all of which have relatively small perpendicular baselines (glaciers. From the 3-year interferograms, we map the boundary of active movement along the perimeter of the debris-covered toe of Khumbu Glacier. Movement over this longer time period leads to a loss of coherence, clearly delimiting actively moving areas. Of particular note, active movement is detected in the glacier-moraine dam of Imja Lake, which has implications for GLOF hazard. The significant vertical relief in the Himalaya region poses a challenge for doing differential radar interferometry, as artifacts in the digital elevation model (DEM) can propagate into the differential interferograms. Additionally, large changes in topography or glacier surfaces

  9. Rheology, microstructure and crystallographic preferred orientation of matrix containing a dispersed second phase: Insight from experimentally deformed ice

    Science.gov (United States)

    Cyprych, Daria; Piazolo, Sandra; Wilson, Christopher J. L.; Luzin, Vladimir; Prior, David J.

    2016-09-01

    We utilize in situ neutron diffraction to continuously track the average grain size and crystal preferred orientation (CPO) development in ice, during uniaxial compression of two-phase and pure ice samples. Two-phase samples are composed of ice matrix and 20 vol.% of second phases of two types: (1) rheologically soft, platy graphite, and (2) rigid, rhomb-shaped calcite. The samples were tested at 10 °C below the ice melting point, ambient pressures, and two strain rates (1 ×10-5 and 2.5 ×10-6 s-1), to 10 and 20% strain. The final CPO in the ice matrix, where second phases are present, is significantly weaker, and ice grain size is smaller than in an ice-only sample. The microstructural and rheological data point to dislocation creep as the dominant deformation regime. The evolution and final strength of the CPO in ice depend on the efficiency of the recrystallization processes, namely grain boundary migration and nucleation. These processes are markedly influenced by the strength, shape, and grain size of the second phase. In addition, CPO development in ice is further accentuated by strain partitioning into the soft second phase, and the transfer of stress onto the rigid second phase.

  10. On the Role of Arctic Sea Ice Deformations: An Evaluation of the Regional Arctic System Model Results with Observations.

    Science.gov (United States)

    Osinski, Robert; Maslowski, Wieslaw; Roberts, Andrew

    2016-04-01

    The atmosphere - sea ice - ocean fluxes and their contribution to rapid changes in the Arctic system are not well understood and generally are not resolved by global climate models (GCMs). While many significant model refinements have been made in the recent past, including the representation of sea ice rheology, surface albedo and ice-albedo feedback, other processes such as sea ice deformations, still require further studies and model advancements. Of particular potential interest here are linear kinematic features (LKFs), which control winter air-sea heat exchange and affect buoyancy forces in the ocean. Their importance in Arctic climate change, especially under an increasing first-year ice cover, is yet to be determined and their simulation requires representation of processes currently at sub-grid scale of most GCMs. To address some of the GCM limitations and to better understand the role of LKFs in air-sea exchange we use the Regional Arctic System Model (RASM), which allows high spatio-temporal resolution and regional focus on the Arctic. RASM is a fully coupled regional climate model, developed to study dynamic and thermodynamic processes and their coupling across the atmosphere-sea ice-ocean interface. It consists of the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP), the Community Ice Model (CICE) and the Variable Infiltration Capacity (VIC) land hydrology model. The sea ice component has been upgraded to the Los Alamos Community Ice Model version 5.1 (CICE5.1), which allows either Elastic-Viscous-Plastic (EVP) or a new anisotropic (EPA) rheology. RASM's domain is pan-Arctic, with the ocean and sea ice components configured at an eddy-permitting horizontal resolution of 1/12-degree as well as 1/48-degree, for limited simulations. The atmosphere and land model components are configured at 50-km grids. All the components are coupled at a 20-minute time step. Results from multiple RASM simulations are analyzed and

  11. Timing of the Little Ice Age in southern Greenland

    Science.gov (United States)

    Kjær, Kurt H.; Kjeldsen, Kristian K.; Bjørk, Anders A.; Khan, Shfaqat A.; Korsgaard, Niels J.; Funder, Svend; Larsen, Nicolaj K.; Vinther, Bo; Andresen, Camilla S.; Long, Antony J.; Woodroffe, Sarah A.; Steen Hansen, Eric; Olsen, Jesper

    2013-04-01

    Northern hemisphere temperatures reached their Holocene minimum and most glaciers reached their maximum during The Little Ice Age (LIA), but the timing of specific cold intervals is site-specific. In southern Greenland, we have compiled data from organic matter incorporated in LIA sediments, used as a signal for ice-free terrain being overridden by LIA glacier advances, and data from threshold lakes showing the onset of glacier-fed lakes, thus revealing the advance-maximum phase initiating the LIA. Finally, we have compiled lichenometry results indicating the onset of bedrock vegetation succeeding ice retreat. Our results show that the advance of glaciers during the LIA occurs early after the Medieval Warm Period terminating soon after 1200 AD and culminates c. 1500-1600 AD. Historical maps also show that many glaciers on the western coast occupy a still-stand near the LIA maximum until 1900 AD before retreat commence. Thus in southern Greenland, we define LIA as the period between the first signs of Late Holocene glacier readvance and the latest onset of retreat - i.e. from ca. 1200 to c. 1900. During this period northern hemisphere annual mean temperatures, although fluctuating, were generally below the 1961-1990 average, with the coldest interval between c. 1600 and 1800. Even though winter temperatures may have dominated the cooling, also the summer temperatures which are most closely correlated with glacier mass balances, dropped, to c. 0.6° below the average in the northern hemisphere including the Arctic. Furthermore, the glacier response seems to be mirrored by a oceanic cooling between 500-1000 AD, followed by onset of the LIA at 1150-1250 AD as seen in the relative strength of warm subsurface water and the influence of the East Greenland Current.

  12. Evaluating sun-climate relationships since the Little Ice Age

    Energy Technology Data Exchange (ETDEWEB)

    Lean, J. [Naval Research Laboratory, Washington, DC (United States). E.O. Hulburt Center for Space Research; Rind, D. [Columbia University, GISS, New York, NY (United States)

    1999-01-01

    From the coldest period of the Little Ice Age to the present time, the surface temperature of the Earth increased by perhaps 0.8{sup o}C. Solar variability may account for part of this warming which, during the past 350 years, generally tracks fluctuating solar activity levels. While increases in greenhouse gas concentrations are widely assumed to be the primary cause of recent climate change, surface temperatures nevertheless varied significantly during pre-industrial periods, under minimal levels of greenhouse gas variations. A climate forcing of 0.3 W m{sup -2} arising from a speculated 0.13% solar irradiance increase can account for the 0.3{sup o}C surface warming evident in the paleoclimate record from 1650 to 1790, assuming that climate sensitivity is 1{sup o}C W{sup -1} m{sup -2} (which is within the IPCC range). The empirical Sun-climate relationship defined by these pre-industrial data suggests that solar variability may have contributed 0.25{sup o}C of the 0.6{sup o}C subsequent warming from 1900 to 1990, a scenario which time dependent GCM simulations replicate when forced with reconstructed solar irradiance. Thus, while solar variability likely played a dominant role in modulating climate during the Little Ice Age prior to 1850, its influence since 1900 has become an increasingly less significant component of climate change in the industrial epoch. It is unlikely that Sun-climate relationships can account for much of the warming since 1970, notwithstanding recent attempts to deduce long term solar irradiance fluctuations from the observational data base, which has notable occurrences of instrumental drifts. Empirical evidence suggests that Sun-climate relationships exist on decadal as well as centennial time scales, but present sensitivities of the climate system are insufficient to explain these short-term relationships. Still to be simulated over the time scale of the Little Ice Age to the present is the combined effect of direct radiative forcing

  13. The Little Ice Age in the tropical Andes

    Science.gov (United States)

    Jomelli, V.; Cooley, D.; Naveau, P.; Rabatel, A.

    2003-12-01

    The period known as the Little Ice Age, from the 17th to the 19th century, brought a cooling of around 0.5 degrees Celsius as well as varyingly humid episodes Eurasia and North America. Because of a lack of long paleoclimatic time series in the tropical Andes, it is still unclear if similar cooling occurred over these tropical and Southern Hemisphere regions. Furthermore, if changes did take place, it is currently not well established if they were temporally synchronous or shifted with respect of the variations in the Northern Hemisphere or the globe. To look into this important climatic question and for advancing our understanding of the past climate links between the tropics and higher latitudes, 25 glaciers located in Bolivia and in Peru were carefully selected. Glacial activity and environmental changes were analyzed using lichenometry. Largest lichen diameters were measured in the different glacial basins. To better analyze these maximum diameters and to more appropriately represent uncertainty and the character of this collected data, age estimates of the different moraine systems were derived using extreme value theory rather than the traditional averaging. The results reveal two particular phases of glacier growth, 1550-1600 and 1800-1850. These two phases have also been identified in other proxy records, such as ice-cores and documentary data (particularly from church chronicles). In order to understand the climatic changes that could have contributed to the glacial variations, a simple model based on both precipitations and temperatures is applied to estimate mass balance questions in the basins. A cooling of the order of 0.5 C seems to be the most consistent with the data. Finally, these findings are compared with the better-known histories of Northern Hemisphere mid-latitude glaciers.

  14. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    Science.gov (United States)

    Chou, C.; Kanji, Z. A.; Stetzer, O.; Tritscher, T.; Chirico, R.; Heringa, M. F.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.; Lohmann, U.

    2013-01-01

    A measurement campaign (IMBALANCE) conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, -30 °C, -35 °C and -40 °C. Freshly emitted diesel particles showed ice formation only at -40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi) and 92% relative humidity with respect to water (RHw), and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at -35 °C. Wood burning particles also act as ice nuclei (IN) at -40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at -35 °C whereas no ice nucleation was observed at -30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below -40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  15. Effect of photochemical aging on the ice nucleation properties of diesel and wood burning particles

    Science.gov (United States)

    Chou, C.; Stetzer, O.; Tritscher, T.; Chirico, R.; Heringa, M. F.; Kanji, Z. A.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.; Lohmann, U.

    2012-06-01

    A measurement campaign (IMBALANCE) was conducted in 2009 and aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro with no emission after-treatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, -30 °C, -35 °C and -40 °C. Freshly emitted diesel particles showed ice formation only at -40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi) and 92% relative humidity with respect to water (RHw), and photochemical aging did not play a role in modifying their ice nucleation behavior. Only one diesel experiment where α-pinene was added, showed an ice nucleation enhancement after the aging at -35 °C. Wood burning particles also act as ice nuclei (IN) at -40 °C in the deposition mode at the same conditions as for diesel particles and photochemical aging did also not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at -35 °C with no ice nucleation observed at -30 °C for wood burning particles. Photochemical aging did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below -30 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical aging on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  16. Influence of anisotropy on velocity and age distribution at Scharffenbergbotnen blue ice area

    Directory of Open Access Journals (Sweden)

    T. Zwinger

    2013-06-01

    Full Text Available We use a full-Stokes thermo-mechanically coupled ice-flow model to study the dynamics of the glacier inside Scharffenbergbotnen valley, Dronning Maud Land, Antarctica. The domain encompasses a high accumulation rate region and, downstream a sublimation-dominated bare ice ablation area. The ablation ice area is notable for having old ice at its surface since the vertical velocity is upwards, and horizontal velocities are almost stagnant there. We compare the model simulation with field observations of velocities and the age distribution of the surface ice. A satisfactory match with simulations using an isotropic flow law was not found because of too high horizontal velocities and too slow vertical ones. However, the existence of a pronounced ice fabric may explain the present day surface velocity distribution in the inner Scharffenbergbotnen blue ice area. Near absence of data on the temporal evolution of Scharffenbergbotnen since the Late Glacial Maximum necessitates exploration of the impact of anisotropy using prescribed ice fabrics: isotropic, single maximum, and linear variation with depth, in both two-dimensional and three dimensional flow models. The realistic velocity field simulated with a non-collinear orthotropic flow law, however produced surface ages in significant disagreement with the few reliable age measurements and suggests that the age field is not in a steady state and that the present distribution is a result of a flow reorganization at about 15 000 yr BP. In order to fully understand the surface age distribution a transient simulation starting from the Late Glacial Maximum including the correct initial conditions for geometry, age, fabric and temperature distribution would be needed. It is the first time that the importance of anisotropy has been demonstrated in the ice dynamics of a blue ice area. This is useful to understand ice flow in order to better interpret archives of ancient ice for paleoclimate research.

  17. Effect of photochemical aging on the ice nucleation properties of diesel and wood burning particles

    Directory of Open Access Journals (Sweden)

    C. Chou

    2012-06-01

    Full Text Available A measurement campaign (IMBALANCE was conducted in 2009 and aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro with no emission after-treatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi and 92% relative humidity with respect to water (RHw, and photochemical aging did not play a role in modifying their ice nucleation behavior. Only one diesel experiment where α-pinene was added, showed an ice nucleation enhancement after the aging at −35 °C. Wood burning particles also act as ice nuclei (IN at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical aging did also not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C with no ice nucleation observed at −30 °C for wood burning particles. Photochemical aging did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −30 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical aging on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  18. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    Directory of Open Access Journals (Sweden)

    C. Chou

    2013-01-01

    Full Text Available A measurement campaign (IMBALANCE conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi and 92% relative humidity with respect to water (RHw, and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at −35 °C. Wood burning particles also act as ice nuclei (IN at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C whereas no ice nucleation was observed at −30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  19. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-04-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulphate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. Additionally, these are also the first results to show a suppression of heterogeneous ice nucleation without the condensation of a coating of (inorganic material. In immersion mode, low exposure Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka whereas high exposure ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, where as high exposure ATD had ice active fractions up to a factor of 4 lower than untreated ATD. Based on our results, we present parameterizations in terms of ns(T that can represent ice nucleation of atmospherically aged and non-aged particles for both immersion and deposition mode. We find excellent agreement (to within less than a factor of 2 with field measurements when parameterizations derived from our results are used to

  20. Global deep-sea extinctions during the Pleistocene ice ages

    Science.gov (United States)

    Hayward, Bruce W.

    2001-07-01

    The dark, near-freezing environment of the deep oceans is regarded as one of the most stable habitats on Earth, and this stability is generally reflected in the slow turnover rates (extinctions and appearances) of the organisms that live there. By far the best fossil record of deep-sea organisms is provided by the shells of benthic foraminifera (Protista). A little-known global extinction of deep-sea benthic foraminifera occurred during the Pleistocene ice ages. In the southwest Pacific, it caused the disappearance of at least two families, 15 genera, and 48 species (˜15% 25% of the fauna) of dominantly uniserial, elongate foraminifera with distinctive apertural modifications. These forms progressively died back and became extinct during glacial periods in the late Pliocene to middle Pleistocene (ca. 2.5 0.6 Ma); most extinctions occurred between 1.0 and 0.6 Ma, at the time of the middle Pleistocene climatic revolution. This first high-resolution study of this extinction event indicates that it was far more significant for deep-sea diversity loss than previously reported (10 species). The middle Pleistocene extinction was the most dramatic last phase of a worldwide decline in the abundance of these elongate forms, a phase that began during cooling near the Eocene-Oligocene boundary and continued during the middle Miocene. Clearly these taxa declined when the world cooled, but the reason is yet to be resolved.

  1. Radiocarbon in tropical tree rings during the Little Ice Age

    Science.gov (United States)

    Hua, Q.; Barbetti, M.; Zoppi, U.; Fink, D.; Watanasak, M.; Jacobsen, G. E.

    2004-08-01

    Cross-dated tree-ring cores (Pinus merkusii) from north-central Thailand, spanning AD 1620-1780, were used to investigate atmospheric 14C for the tropics during the latter part of the Little Ice Age. In addition, a cross-dated section of Huon pine from western Tasmania, covering the same period of time, was investigated. A total of 16 pairs of decadal samples were extracted to alpha-cellulose for AMS 14C analysis using the ANTARES facility at ANSTO. The 14C results from Thailand follow the trend of the southern hemisphere, rather than that of the northern hemisphere. This is a surprising result, and we infer that atmospheric 14C for north-central Thailand, at 17° N, was strongly influenced by the entrainment of southern hemisphere air parcels during the southwest Asian monsoon, when the Inter-Tropical Convergence Zone moves to the north of our sampling site. Such atmospheric transport and mixing are therefore considered to be one of the principal mechanisms for regional 14C offsets.

  2. The WAIS-Divide deep ice core WD2014 chronology – Part 2: Methane synchronization (68–31 ka BP and the gas age-ice age difference

    Directory of Open Access Journals (Sweden)

    C. Buizert

    2014-08-01

    Full Text Available The West Antarctic Ice Sheet (WAIS-Divide ice core (WAIS-D is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ∼68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8–31.2 ka BP, which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WAIS-D gas age-ice age difference (Δage using a combination of firn densification modeling, ice flow modeling, and a dataset of δ15N-N2, a proxy for past firn column thickness. The largest Δage at WAIS-D occurs during the last glacial maximum, and is 525 ± 100 years. Internally consistent solutions can only be found when assuming little-to-no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WAIS-D chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05, which brings the age of Dansgaard-Oeschger (DO events into agreement with the U/Th absolutely dated Hulu speleothem record. The small Δage at WAIS-D provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the bipolar "seesaw".

  3. Numerical Modeling of the Last Glacial Maximum Yellowstone Ice Cap Captures Asymmetry in Moraine Ages

    Science.gov (United States)

    Anderson, L. S.; Wickert, A. D.; Colgan, W. T.; Anderson, R. S.

    2014-12-01

    The Last Glacial Maximum (LGM) Yellowstone Ice Cap was the largest continuous ice body in the US Rocky Mountains. Terminal moraine ages derived from cosmogenic radionuclide dating (e.g., Licciardi and Pierce, 2008) constrain the timing of maximum Ice Cap extent. Importantly, the moraine ages vary by several thousand years around the Ice Cap; ages on the eastern outlet glaciers are significantly younger than their western counterparts. In order to interpret these observations within the context of LGM climate in North America, we perform two numerical glacier modeling experiments: 1) We model the initiation and growth of the Ice Cap to steady state; and 2) We estimate the range of LGM climate states which led to the formation of the Ice Cap. We use an efficient semi-implicit 2-D glacier model coupled to a fully implicit solution for flexural isostasy, allowing for transient links between climatic forcing, ice thickness, and earth surface deflection. Independent of parameter selection, the Ice Cap initiates in the Absaroka and Beartooth mountains and then advances across the Yellowstone plateau to the west. The Ice Cap advances to its maximum extent first to the older eastern moraines and last to the younger western and northwestern moraines. This suggests that the moraine ages may reflect the timescale required for the Ice Cap to advance across the high elevation Yellowstone plateau rather than the timing of local LGM climate. With no change in annual precipitation from the present, a mean summer temperature drop of 8-9° C is required to form the Ice Cap. Further parameter searches provide the full range of LGM paleoclimate states that led to the Yellowstone Ice Cap. Using our preferred parameter set, we find that the timescale for the growth of the complete Ice Cap is roughly 10,000 years. Isostatic subsidence helps explain the long timescale of Ice Cap growth. The Yellowstone Ice Cap caused a maximum surface deflection of 300 m (using a constant effective elastic

  4. Mammoth interatrial septal aneurysm in the ICE age

    Directory of Open Access Journals (Sweden)

    Timperley John

    2007-09-01

    Full Text Available Abstract Background Intracardiac echocardiography (ICE is a useful imaging modality that is now being used more widely to assist in the percutaneous closure of atrial septal defects (ASD and patent foramen ovales (PFO. Case presentation A 42 year old lady with a history of transient ischaemic attacks and migraine underwent percutaneous closure of an ASD. Intraprocedural ICE demonstrated a mammoth billowing multiperforated interatrial septal aneurysm in association with a secondum ASD. Conclusion ICE provides excellent adjuvant imaging during percutaneous closure of intracardiac shunts, in this case demonstrating a 'mammoth' interatrial septal aneurysm.

  5. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Science.gov (United States)

    Kanji, Z. A.; Welti, A.; Chou, C.; Stetzer, O.; Lohmann, U.

    2013-09-01

    Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T) and relative humidity (RH), as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 < T < 263 K. Heterogeneous ice nucleation of untreated kaolinite (Ka) and Arizona Test Dust (ATD) particles is compared to corresponding aged particles that are subjected to ozone concentrations of 0.4-4.3 ppmv in a stainless steel aerosol tank. The portable ice nucleation counter (PINC) and immersion chamber combined with the Zurich ice nucleation chamber (IMCA-ZINC) are used to conduct deposition and immersion mode measurements, respectively. Ice active fractions as well as ice active surface site densities (ns) are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (in)organic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low

  6. Constraining age and rate of deformation in the northern Bolivian Andes from cross sections, cooling ages, and thermokinematic modeling

    Science.gov (United States)

    McQuarrie, N.; Ehlers, T. A.; Rak, A. J.

    2015-12-01

    A critical component in assessing the viability of proposed plate tectonic or geodynamic processes in regions of convergence is the expected or predicted age and rate of deformation in the overriding plate. Commonly, age of deformation is inferred through geochronology of foreland basin and wedge-top sedimentary rocks and bedrock thermochronometer cooling signals. In Bolivia the original pulse of deformation of the fold-thrust belt is argue to be as young as 38-25 Ma based on the age of synorogenic strata or as old as 65-45 Ma due to proposed foreland basin rocks deposited in the Bolivian Altiplano. The large discrepancies in proposed age, rate and magnitude of deformation through the Bolivian Andes limit our ability to relate age and rate of shortening to internal geodynamic or external plate tectonic processes. We evaluate permissible ranges in age of initiation and rate of deformation through a forward kinematic model of the northern Bolivian fold-thrust belt. Each step of deformation accounts for isostatic loading from thrust faults and subsequent erosional of structural highs. The kinematic model predicts an evolution of flexural basins into which synorogenic sediments are deposited allowing us to fully integrate age of exhumation and deposition to age and magnitude of deformation. By assigning an age to each deformation step, we create a range of velocity vectors that are input into the thermokinematic model Pecube, which predicts thermochronometer cooling histories based on kinematics, topography, thermal parameters and shortening rates. We match the pattern of predicted ages with the across strike pattern of measured zircon fission track, apatite fission track and apatite (U-Th)/ He cooling ages. The sensitivity of modeled thermochronologic data to the age at which deformation initiates indicate that northern Bolivian EC started deforming at 50 Ma and may have begun as early as 55 Ma. The acceptable velocity envelope for the modeled section permits either a

  7. Mass loss from the southern half of the Greenland Ice Sheet since the Little Ice Age Maximum

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Kjær, Kurt H.; Bjørk, Anders Anker

    Northern hemisphere temperatures reached their Holocene minimum and most glaciers reached their maximum during The Little Ice Age (LIA), but the timing of specific cold intervals is site-specific. In southern Greenland, we have compiled data from organic matter incorporated in LIA sediments, used...... as a signal for ice-free terrain being overridden by LIA glacier advances, and data from threshold lakes showing the onset of glacier-fed lakes, thus revealing the advance-maximum phase initiating the LIA. Finally, we have compiled lichenometry results indicating the onset of bedrock vegetation succeeding ice...... the Arctic. Furthermore, the glacier response seems to be mirrored by a oceanic cooling between 500-1000 AD, followed by onset of the LIA at 1150-1250 AD as seen in the relative strength of warm subsurface water and the influence of the East Greenland Current....

  8. The last forests in Greenland, and the age of the ice sheet

    Science.gov (United States)

    Funder, Svend; Schmidt, Astrid M. Z.; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder; Willerslev, Eske

    2014-05-01

    Recently ancient DNA (aDNA) studies of the basal ice in the Camp Century ice core, northern Greenland, have shown that mixed coniferous-deciduous forest grew here before the area was invaded and permanently covered by the ice sheet. The coring site is situated only 100 km from the present ice margin and more than 500 km from the ice divide, indicating that since this last inception the northern part of the ice sheet never receded more than 100 km from its present margin. Dating of the basal ice and obtaining an age for the forest and for the beginning of the ice sheet's permanency has been attempted by analyzing for optically stimulated luminescence (OSL), meteoric 10Be/36Cl cosmogenic nuclides, 234U/238U recoil. These methods all provide only minimum ages and show that the forest at Cap Century is older than 500 ka. Comparison with other Pleistocene "forest sites" in Greenland - the Kap København Formation in northernmost Greenland, the DYE-3 ice core in the south, the ODP boring 646 south of Greenland, as well as results from basal ice in the GRIP ice core - extends the minimum age to c. 1 ma. The maximum age is provided by the Kap København Formation, which must be older - or contemporaneous. The formation has recently been confirmed to date within the interval 2-2.5 ma, with a preferred age of 2.3-2.4 ma. Surprisingly, application of the molecular clock of insect COI sequences on the Camp Century aDNA now seem to push the minimum age just as far back - to 2.4 ma, suggesting that the timberline boreal forest at Kap København is contemporaneous with the mixed forest at Camp Century, 600 km to the south. From this we conclude that the northern ice sheet dome, which today contains 85% of the total ice sheet volume, has remained within 100 km of its present margin for at least 1 ma, and possibly may go back as far as 2.4 ma. The ice sheet has therefore survived both interglacials and "super interglacials" that were both warmer and longer than the present. This

  9. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  10. Little Ice Age Maximum Glacier Extent, Exit and Paradise Glaciers, Alaska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a single polyline file that depicts the boundary of the Little Ice Age maximum advance of the terminus of Exit and Paradise Glaciers. The data were...

  11. Mass loss of the Greenland Ice Sheet since the Little Ice Age, implications on sea level

    DEFF Research Database (Denmark)

    Kjeldsen, K. K.; Bjork, A. A.; Khan, Shfaqat Abbas

    The impact of mass loss from the Greenland Ice Sheet (GrIS) on 20th Century sea level rise (SLR) has long been subject to intense discussions. While globally distributed tide gauges suggest a global mean SLR of 15-20 cm, quantifying the separate components is of great concern - in particular...... for modeling sea level projections into the 21st Century. Estimates of the past GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge found by in correlating SMB anomalies and calving rates. Here...

  12. Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration

    Science.gov (United States)

    Edinburgh, Tom; Day, Jonathan J.

    2016-11-01

    In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897-1917), and in this study we compare these to satellite observations from the period 1989-2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.

  13. Weak chemical weathering during the Little Ice Age recorded by lake sediments

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Low magnetic susceptibility, low Sr content and hence high Rb/Sr ratio in the lake sediment sequence indicate a weak chemical weathering process under arid and cold climate of the Little Ice Age in a single closed lake watershed. According to different geochemical behavior between rubidium and strontium in earth surface processes, variation of Rb/Sr ratios in the lake sediment sequence can be used as an effective geochemical proxy with definite climatic significance of chemical weathering in watershed. Unlike chemical weathering process in tropic zone and modern temperate-humid climate, concordant changes in both Sr content and magnetic susceptibility with d18O values of Dunde ice core suggest that the weak chemical weathering was controlled by air temperature during the Little Ice Age maximum. After the Little Ice Age, chemical weathering intensity was controlled also gradually by precipitation with increasing in temperature.

  14. Morphological, Physiological and Skating Performance Profiles of Male Age-Group Elite Ice Hockey Players

    Directory of Open Access Journals (Sweden)

    Allisse Maxime

    2017-08-01

    Full Text Available The purpose of this study was to describe the evolution of morphological, physiological and skating performance profiles of elite age-group ice hockey players based on repeated measures spread over one season. In addition, the results of fitness tests and training programs performed in off-ice conditions and their relationship with skating performance were analyzed. Eighteen high level age-group ice hockey players (13.1 ± 0.6 years were assessed off and on-ice at the beginning and at the end of the hockey season. A third evaluation was also conducted at the beginning of the following hockey season. The players were taller, heavier, and showed bone breadths and muscle girths above the reference population of the same age. Muscular variables improved significantly during and between the two hockey seasons (p < 0.05. However, maximal aerobic power improved only during the off-season. All skating performance tests exhibited significant enhancements during the hockey season, but not during the off-season where some degradation was observed. Finally, weak observed variances (generally <20% of the explained variance between physiological variables measured off-ice and on-ice skating performance tests indicated important gaps, both in the choice of the off-ice assessment tools as well as in training methods conventionally used. The reflection on the best way to assess and train hockey players certainly deserves to be continued.

  15. Modelling the behavior of the Jakobshavn glacier since the end of the Little Ice Age

    DEFF Research Database (Denmark)

    Muresan, Ioana Stefania; Khroulev, Constantine; Khan, Shfaqat Abbas;

    2014-01-01

    Current model estimates of the Greenland Ice Sheet (GrIS) are almost entirely based on coarse grids (>10km) and constrained by climate models that span from 60s to present. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond decadal...... timescale is required. Here, we use a continuous 171 year reconstruction (since the end of the Little Ice Age) by J.E. Box of the Greenland Ice Sheet climatic surface mass balance and its sub-components to study the interaction between climate and the cryosphere originating in changes in the surface mass...... balance and dynamics of the GrIS over the last 171 years. Throughout our study, we use the Parallel Ice Sheet Model (PISM) capabilities. The initialization of the ice sheet is performed on a 5 km grid using paleo climatic forcing (-125 ka to present) based on a positive degree day (PDD) model...

  16. Cosmogenic 10Be Age Constraints on the Holocene Deglaciation of the Scandinavian Ice Sheet

    Science.gov (United States)

    Cuzzone, J. K.; Clark, P. U.; Wohlfarth, B.; Lunkka, J.

    2011-12-01

    An important question in climate science is how ice sheets will respond to a climate warmer than present. Because our understanding of how these changes will occur remains limited, reconstructing the deglaciation of former ice sheets allows for a better understanding of how past ice sheets responded to a climate warmer than present along with understanding their contribution to sea-level rise. We will present new cosmogenic 10Be ages from erratic boulders along three transects spanning southern to northern Sweden and Finland that improve our understanding of the deglaciation of the Scandinavian Ice Sheet (SIS) beginning ~ 11.7ka through its final demise during the early Holocene. By constraining the Holocene deglaciation of the SIS and its associated retreat rates, we will establish the SIS contribution to Holocene sea level rise, improving our understanding of ice-sheet response to warming climates.

  17. Effect of large cold deformation on characteristics of age-strengthening of 2024 aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    NING Ai-lin; LIU Zhi-yi; ZENG Su-min

    2006-01-01

    Effect of large cold deformation on the age-hardening characteristics of 2024 aluminum alloys was investigated. The results reveal: 1) the aging response is accelerated after large cold deformation, and the peak strength is attained after aging for 40 min; 2) double aging peaks can be found in the age-hardening curves, and the first peak appears when aged for 40 min. The corresponding peak tensile strength (σb) and elongation are up to 580 MPa and 9.2% respectively, the second peak appears when aged for 120 min, but the peak tensile strength (520 MPa) is lower than the first one; 3) in early stage of aging (<40 min), elongation slightly increases from 8% with prolonging aging time of the alloy. Elongation markedly decreases to 2% after aging for 60 min, and shows a plateau with the prolonging of aging time on the age-elongation curve. It is indicated that the high density of dislocation introduced by large deformation accelerates the precipitation of GP zones and the aging response of the alloy. The first aging peak is due to the formation of GP zones and the deformation strengthening caused by the high density of dislocation. And the second peak present in the aging curve is attributed to the nucleation and growth of S' phase. The offset between dislocation density decreases and precipitation S'-phase finally results in the phenomenon of double aging peaks when aged at 190 ℃. Moreover, it is suggested that the formation of PFZ and coarse equilibrium phase accompanied by the precipitation of S' phase decrease the elongation.

  18. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  19. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    Science.gov (United States)

    Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Robert G.

    2015-01-01

    The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10–100 ky BP), despite subsequent

  20. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    Science.gov (United States)

    Lukovich, Jennifer V.; Geiger, Cathleen A.; Barber, David G.

    2017-07-01

    A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ˜ 3) to ballistic (α ˜ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  1. Little Ice Age Glaciation in Alaska: A record of recent global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, P.E.; Wiles, G.C.

    1992-03-01

    General global cooling and temperature fluctuation accompanied by expansion of mountain glaciers characterized the Little Ice Age of about A.D. 1200 through A.D. 1900. The effects of such temperature changes appear first and are strongest at high latitudes. Therefore the Little Ice Age record of glacial fluctuation in Alaska may provide a good proxy for these events and a test for models of future climatic change. Holocene expansions began here as early as 7000 B.P. and locally show a periodicity of 350 years after about 4500 years B.P. The Little Ice Age followed a late Holocene interval of minor ice advance and a subsequent period of ice margin recession lasting one to seven centuries. The timing of expansions since about A.D. 1200 have often varied between glaciers, but these are the most pervasive glacial events of the Holocene in Alaska and frequently represent ice marginal maxima for this interval. At least two major expansions are, apparent in forefields of both land-terminating and fjord-calving glaciers, but the former display the most reliable and detailed climatic record. Major maxima occurred by the 16th century and into the mid-18th century. Culmination of advances occurred throughout Alaska during the 19th century followed within a few decades by general glacial retreat. Concurrently, equilibrium line altitudes have been raised 100-400 m, representing a rise of 2-3 deg C in mean summer temperature.

  2. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Ehrnsten, U.; Toivonen, A. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland); Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H. [Department of Mechanical Engineering, Helsinki University of Technology Puumiehenkuja 3, P.O. Box 4200, FIN-02015 HUT (Finland)

    2004-07-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  3. County-Level Climate Uncertainty for Risk Assessments: Volume 25 Appendix X - Forecast Sea Ice Age.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  4. County-Level Climate Uncertainty for Risk Assessments: Volume 24 Appendix W - Historical Sea Ice Age.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  5. Holocene glacial history of the west Greenland Ice Sheet inferred from cosmogenic exposure ages and threshold lakes

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, K. H.; Colding, Sune Oluf

    2011-01-01

    In this study, we use a combination of 10Be exposure ages and threshold lakes to constrain the ice sheet history in Godthåbs- and Buksefjorden, west Greenland (63-64°N) during the Holocene. The 10Be cosmogenic exposure ages have been used to quantify both the ice retreat and thinning of the west...... Greenland Ice Sheet in 3 transects from the coast to the present ice margin. Preliminary results (n=47) indicate initial deglaciation of coastal areas around 11 ka in concert with existing radiocarbon chronology, followed by a rapid retreat from the outer coast to the present ice margin around 10 ka....... Boulder samples from the highest peaks demonstrate that the ice was warm-based whereas bedrock samples often contain an inherited signal. These results may have implications for other studies in Greenland, which have inferred thin LGM ice based on 10Be ages of bedrock samples. The threshold lakes are used...

  6. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjeldsen, Kristian Kjellerup; Kjær, Kurt H.;

    2014-01-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve...... to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air...... the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion...

  7. Challenging ICES age estimation protocols: lessons learned from the eastern Baltic cod stock

    DEFF Research Database (Denmark)

    Hüssy, Karin; Radtke, Krzysztof; Plikshs, Maris;

    2016-01-01

    and within readers. Additionally, a wide range of alternative methods for deriving the age information necessary for stock assessment and for validation of the true age have been tested. However, these methods did not produce unbiased age estimates over the entire size and age range of the EBC stock. An age......Over the recent decades, the International Council for the Exploration of the Sea (ICES) has set guidelines for best practise quality control of age estimation procedures. The applicability of these guidelines is assessed by reviewing the ageing issues of eastern Baltic cod (EBC) as a case study....... Since the implementation of an age-based assessment of EBC in the beginning of the 1970s, the assessment has been hampered by the quality of the age composition data, in recent years to a degree that age-based assessment is no longer used. The reason for the age reading problems is the low visual...

  8. A New Ice Age? None Soon, Snow 2 Miles Deep Implies

    Institute of Scientific and Technical Information of China (English)

    Andrew C.Revkin; 李杨

    2004-01-01

    @@ Despite the recent trend toward global warming, scientists have long wondered whether the earth is nearing another ice age, an end to the 12,000-year temperate① spell② in which modern civilizations arose. Some have said such a transition is overdue③, given that each of the three temperate intervals that immediately preceded the current one lasted only about 10 ,000 years.

  9. Effect of pre-deformation on aging characteristics and mechanical properties of Mg-Gd-Nd-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of plastic deformation prior to artificial aging on the aging characteristics and mechanical properties of a Mg-11Gd-2Nd-0.5Zr (mass fraction,%) alloy was investigated. After solution treatment at 525 ℃ for 4 h, the alloy was subjected to cold stretching deformation of 0%, 5% and 10%, respectively. The as-deformed specimens possess high density of dislocations and mechanical twins, which increase with elevated deformation. As compared with non-stretched alloy, the stretched alloy shows accelerated age-hardening response and slightly enhanced peak hardness when aged at 200 ℃. Comparison of the microstructures in undeformed and deformed specimens after 200 ℃, 24 h aging reveals that pre-deformation induces the heterogeneous nucleation of precipitations at dislocations and twin boundaries in addition to the homogeneous precipitation in the matrix. Room and high temperature tensile test results show that pre-deformation enhances the strength of the alloy, especially at room temperature, though the ductility declines. The improvement in strength of deformed and aged alloy is attributed to the combined strengthening effect of precipitates, deformation structures and grain boundaries.

  10. End of the "Little Ice Age" in the Alps not forced by industrial black carbon

    Science.gov (United States)

    Sigl, Michael; Osmont, Dimtri; Gabrieli, Jacopo; Barbante, Carlo; Schwikowski, Margit

    2016-04-01

    Light absorbing aerosols present in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes radiative properties of these media, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations in these media and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of these aerosols through time. Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps (Painter et al. 2012). Basis for this hypothesis were model simulations using ice-core measurements of elemental carbon at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved, well replicated ice-core measurements of refractory black carbon (rBC; using a SP2 soot photometer), mineral dust (Fe, Ca), biomass burning (NH4, K) and distinctive industrial pollution tracers (Bi, Pb, SO4) from an ice core in the Alps covering the past 250 years. These reconstructions allow to precisely compare the timing of observed acceleration of glacier melt in the mid-19th century with that of the increase of soot deposition on ice-sheets caused by the industrialization of Western Europe. Our study suggests that at the time when European rBC emission rates started to significantly increase Alpine glaciers have already experienced more than 70% of their total 19th century length reduction. Industrial BC emissions can therefore not been considered as the primary forcing of the rapid deglaciation at the end of the Little Ice Age in the Alps. References: Painter, T. H., M. G. Flanner, G. Kaser, B. Marzeion, R. A. VanCuren, and W. Abdalati (2013), End of the Little Ice

  11. Past and future ice age initiation: the role of an intrinsic deep-ocean millennial oscillation

    Science.gov (United States)

    Johnson, R. G.

    2014-05-01

    This paper offers three interdependent contributions to studies of climate variation: (1) the recognition and analysis of an intrinsic millennial oceanic oscillation that affects both Northern and Southern high latitude climates, (2) The recognition of an oceanographic switch to ice-free seas west of Greenland that explains the initiation of the Last Ice Age, and (3) an analysis of the effect of increasing salinity in the seas east of Greenland that suggests the possibility of the initiation of an ice age threshold climate in the near future. In the first contribution the millennial oscillation in the flow of the North Atlantic Drift reported by Bond et al. (1997) is proposed to be part of a 1500 yr intrinsic deep ocean oscillation. This oscillation involves the exchange of North Atlantic intermediate-level deep water (NADW) formed in the seas east of Greenland with Antarctic Bottom Water formed in a shallow-water zone at the edge of the Antarctic continent. The concept of NADW formation is already well known, with details of the sinking water flowing out of the Greenland Sea observed by Smethie et al. (2000) using chlorofluorocarbon tracers. The concept of Antarctic Bottom Water formation is also already well established. However, its modulation by the changing fraction of NADW in the Southern Ocean, which I infer from the analysis of Weyl (1968), has not been previously discussed. The modulated lower-salinity Antarctic Bottom Water that reaches the northern North Atlantic then provides negative feedback for the cyclic variation of NADW formation as proposed here. This causes the 1500 yr bipolar oscillation. The feedback suggests the possible sinusoidal character of the proposed oscillation model. The model is consistent with the cooling of the Little Ice Age (Lamb, 1972, 1995), and it also correctly predicts NASA's observation of today's record maximum area of winter sea ice on the Southern Ocean and the present observed record low rate of Antarctic Bottom Water

  12. Little Ice Age in Romania in the Vision of a Syrian Traveler

    Directory of Open Access Journals (Sweden)

    Teodoreanu Elena

    2014-05-01

    Full Text Available Archdeacon Paul of Aleppo of Damascus accompanied the Patriarch Macarios of Antioch, in Moldavia, Wallachia, Dobrogea for nearly seven years (1652-1659, just in time considered one of the coldest during the Little Ice Age, Maunder Minimum namely (1645-1715. His journey is recorded in his travel diary, written in Arabic and translated into Romanian in 1900. Romanian historians were particularly concerned with the information provided by the passenger about the towns, monasteries, and farmhouses, aspects of daily life, customs, habits and Romanian economy countries. But Paul of Aleppo describe and climate issues, particularly cold winters with frost Danube, snowy, storm at sea, rain, floods, etc. It is a very rich source of information in this area, so far little taken into consideration, showing that the Little Ice Age was also evident in Eastern Europe.

  13. Impact of Ice Ages on the genetic structure of trees and shrubs.

    Science.gov (United States)

    Lascoux, Martin; Palmé, Anna E; Cheddadi, Rachid; Latta, Robert G

    2004-02-29

    Data on the genetic structure of tree and shrub populations on the continental scale have accumulated dramatically over the past decade. However, our ability to make inferences on the impact of the last ice age still depends crucially on the availability of informative palaeoecological data. This is well illustrated by the results from a recent project, during which new pollen fossil maps were established and the variation in chloroplast DNA was studied in 22 European species of trees and shrubs. Species exhibit very different levels of genetic variation between and within populations, and obviously went through very different histories after Ice Ages. However, when palaeoecological data are non-informative, inferences on past history are difficult to draw from entirely genetic data. On the other hand, as illustrated by a study in ponderosa pine, when we can infer the species' history with some certainty, coalescent simulations can be used and new hypotheses can be tested.

  14. The Great Ice Age cycles associated with the variation of the atmospheric heat engine efficiency

    Institute of Scientific and Technical Information of China (English)

    汤懋苍; 郭维栋

    2000-01-01

    Investigating all the Great Ice Age events throughout the Earth’s history, each was found to follow a strong mountain-making process. Therefore, a hypothesis was put forward with its causality chain as: strong mountain-making process→great disparity in topography on the Earth surface→introducing efficient atmospheric circulation system (plateau monsoon)→increase in global atmospheric heat engine efficiency →generating more atmospheric kinetic energy → enhancing the planetary westerly (under the condition that the huge relief is longitudinal on the whole )→widening the temperature difference between the equator and the polar regions (restrained by the thermal wind law)→sharp cooling in high latitudes and the polars (supposing the solar radiation was approximately constant)→forming a Great Ice Age event.

  15. The Great Ice Age cycles associated with the variation of the atmospheric heat engine efficiency

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Investigating all the Great Ice Age events throughout the Earth's history, each was found to follow a strong mountain-making process. Therefore, a hypothesis was put forward with its causality chain as: strong mountain-making process→great disparity in topography on the Earth surface→introducing efficient atmospheric circulation system (plateau monsoon)→increase in global atmospheric heat engine efficiency→generating more atmospheric kinetic energy→enhancing the planetary westerly (under the condition that the huge relief is longitudinal on the whole )→widening the temperature difference between the equator and the polar regions (restrained by the thermal wind law)→sharp cooling in high latitudes and the polars (supposing the solar radiation was approximately constant)→forming a Great Ice Age event.

  16. Rate and style of ice stream retreat constrained by new surface-exposure ages: The Minch, NW Scotland

    Science.gov (United States)

    Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono

    2016-04-01

    Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.

  17. Effects of sudden mixing in the solar core on solar neutrinos and ice ages.

    Science.gov (United States)

    Ezer, D.; Cameron, A. G. W.

    1972-01-01

    Some numerical experiments with a solar model have been conducted in connection with the hypothesis regarding the effects of mixing in the solar core. Questions concerning a plausible mechanism by which such a mixing could be produced are explored. The variation of solar luminosity throughout the numerical experiments is shown. In connection with a great change in luminosity after a second mixing, it is suggested that the earth is presently undergoing an ice age.

  18. Abrupt onset and intensification of the Little Ice Age in Arctic Canada linked to explosive volcanism and sea-ice/ocean feedbacks

    Science.gov (United States)

    Miller, G. H.; Refsnider, K. A.; Zhong, Y.; Otto-Bliesner, B. L.; Lehman, S. J.; Southon, J. R.

    2011-12-01

    At high northern latitudes the most reliable monitors of summer temperature are glaciers and ice caps. Small ice caps are multi-decadal integrators of climate. Precise 14C dates on rooted vegetation exposed by recent recession of more than 70 different ice caps that have remained perpetually frozen to their beds since their inception date ice-cap inception at that site. Unlike valley glacier moraines that are not formed until long after the initial climate shift, entombed plants date the moment of a persistent summer cooling. The composite probability density function of the 138 calibrated 14C ages indicates that ice caps expanded in four discrete intervals within the past 2 ka, with the most abrupt ice-cap growth ~1250 AD following three centuries of relative warmth, and intensified ice expansion ~1450 AD, with maximum ice cover ~1850 AD. These intervals of sudden and sustained ice expansion coincide with the three most volcanically perturbed half centuries of the past millennium. Separating the impacts of solar and volcanic forcings in the late Holocene has been vexing because decades of low solar irradiance largely coincide with decades of frequent explosive volcanism. Transient simulations with a fully coupled climate model show that the main features of our proxy data can be matched by decadally paced explosive volcanism alone, perpetuated by feedbacks related to consequent sea-ice expansion and export into the northern North Atlantic. Exported sea ice cools and freshens surface waters there, leading to a reduction in the AMOC and consequently perpetuation of an expanded sea ice state. The coincidence of low decadal solar irradiance with decades of explosive volcanism suggests that volcanic impacts may have been amplified by solar variability, but scaling the proxies of past solar irradiance remains uncertain. The persistence in the Eastern Canadian Arctic of some ice caps that formed 5000 years ago and remained intact until melting in the past decade

  19. Carbonate verse silicate Sr isotope in lake sediments and its response to Little Ice Age

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The 87Sr/86Sr ratios of silicate (acid-insoluble, AI) and carbonate (acid-soluble, AS) of the lake sediments from the Daihai Lake, Inner Mongolia, since the last 500 years are measured respectively, indicating that chemical weathering of silicate minerals was in an early stage since the Little Ice Age within the Daihai watershed by combination with mineral constitute, Rb/Sr ratio and CaCO3 content in the sediments. During the Little Ice Age maximum, an evident peak in the 87Sr/86Sr ratios of both silicate and carbonate in sediments suggests that a cold climate condition is unfavorable to dissolving radiogenic strontium from silicate minerals. Meanwhile, the variation of 87Sr/86Sr ratios of silicate and carbonate also reflects a projected warming climate favorable to intensifying chemical weathering after the Little Ice Age. Consequently, the 87Sr/86Sr ratio of both silicate and carbonate in inland lake sediments can be used as an effective proxy of the past climate in single watershed.

  20. Modulation of ice ages via precession and dust-albedo feedbacks

    Directory of Open Access Journals (Sweden)

    Ralph Ellis

    2016-11-01

    Full Text Available We present here a simple and novel proposal for the modulation and rhythm of ice-ages and interglacials during the late Pleistocene. While the standard Milankovitch-precession theory fails to explain the long intervals between interglacials, these can be accounted for by a novel forcing and feedback system involving CO2, dust and albedo. During the glacial period, the high albedo of the northern ice sheets drives down global temperatures and CO2 concentrations, despite subsequent precessional forcing maxima. Over the following millennia more CO2 is sequestered in the oceans and atmospheric concentrations eventually reach a critical minima of about 200 ppm, which combined with arid conditions, causes a die-back of temperate and boreal forests and grasslands, especially at high altitude. The ensuing soil erosion generates dust storms, resulting in increased dust deposition and lower albedo on the northern ice sheets. As northern hemisphere insolation increases during the next Milankovitch cycle, the dust-laden ice-sheets absorb considerably more insolation and undergo rapid melting, which forces the climate into an interglacial period. The proposed mechanism is simple, robust, and comprehensive in its scope, and its key elements are well supported by empirical evidence.

  1. Modulation of ice ages via precession and dust-albedo feedbacks

    Institute of Scientific and Technical Information of China (English)

    Ralph Ellis; Michael Palmer

    2016-01-01

    We present here a simple and novel proposal for the modulation and rhythm of ice-ages and interglacials during the late Pleistocene. While the standard Milankovitch-precession theory fails to explain the long intervals between interglacials, these can be accounted for by a novel forcing and feedback system involving CO2, dust and albedo. During the glacial period, the high albedo of the northern ice sheets drives down global temperatures and CO2 concentrations, despite subsequent precessional forcing maxima. Over the following millennia more CO2 is sequestered in the oceans and atmospheric con-centrations eventually reach a critical minima of about 200 ppm, which combined with arid conditions, causes a die-back of temperate and boreal forests and grasslands, especially at high altitude. The ensuing soil erosion generates dust storms, resulting in increased dust deposition and lower albedo on the northern ice sheets. As northern hemisphere insolation increases during the next Milankovitch cycle, the dust-laden ice-sheets absorb considerably more insolation and undergo rapid melting, which forces the climate into an interglacial period. The proposed mechanism is simple, robust, and comprehensive in its scope, and its key elements are well supported by empirical evidence.

  2. Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity

    Science.gov (United States)

    Strand Ødegård, Rune; Nesje, Atle; Isaksen, Ketil; Andreassen, Liss Marie; Eiken, Trond; Schwikowski, Margit; Uglietti, Chiara

    2017-01-01

    Despite numerous spectacular archaeological discoveries worldwide related to melting ice patches and the emerging field of glacial archaeology, governing processes related to ice patch development during the Holocene and their sensitivity to climate change are still largely unexplored. Here we present new results from an extensive 6-year (2009-2015) field experiment at the Juvfonne ice patch in Jotunheimen in central southern Norway. Our results show that the ice patch has existed continuously since the late Mesolithic period. Organic-rich layers and carbonaceous aerosols embedded in clear ice show ages spanning from modern at the surface to ca. 7600 cal years BP at the bottom. This is the oldest dating of ice in mainland Norway. The expanding ice patch covered moss mats appearing along the margin of Juvfonne about 2000 years ago. During the study period, the mass balance record showed a strong negative balance, and the annual balance is highly asymmetric over short distances. Snow accumulation is poorly correlated with estimated winter precipitation, and single storm events may contribute significantly to the total winter balance. Snow accumulation is approx. 20 % higher in the frontal area compared to the upper central part of the ice patch. There is sufficient meltwater to bring the permeable snowpack to an isothermal state within a few weeks in early summer. Below the seasonal snowpack, ice temperatures are between -2 and -4 °C. Juvfonne has clear ice stratification of isochronic origin.

  3. Duration of Greenland Stadial 22 and ice-gas Δage from counting of annual layers in Greenland NGRIP ice core

    Directory of Open Access Journals (Sweden)

    M. Bigler

    2012-11-01

    Full Text Available High-resolution measurements of chemical impurities and methane concentrations in Greenland ice core samples from the early glacial period allow the extension of annual-layer counted chronologies and the improvement of gas age-ice age difference (Δage essential to the synchronization of ice core records. We report high-resolution measurements of a 50 m section of the NorthGRIP ice core and corresponding annual layer thicknesses in order to constrain the duration of the Greenland Stadial 22 (GS-22 between Greenland Interstadials (GIs 21 and 22, for which inconsistent durations and ages have been reported from Greenland and Antarctic ice core records as well as European speleothems. Depending on the chronology used, GS-22 occurred between approximately 89 (end of GI-22 and 83 kyr b2k (onset of GI-21. From annual layer counting, we find that GS-22 lasted between 2696 and 3092 years and was followed by a GI-21 pre-cursor event lasting between 331 and 369 yr. Our layer-based counting agrees with the duration of stadial 22 as determined from the NALPS speleothem record (3250 ± 526 yr but not with that of the GICC05modelext chronology (2620 yr or an alternative chronology based on gas-marker synchronization to EPICA Dronning Maud Land ice core. These results show that GICC05modelext overestimates accumulation and/or underestimates thinning in this early part of the last glacial period. We also revise the possible ranges of NorthGRIP Δdepth (5.49 to 5.85 m and Δage (498 to 601 yr at the warming onset of GI-21 as well as the Δage range at the onset of the GI-21 precursor warming (523 to 654 yr, observing that temperature (represented by the δ15N proxy increases before CH4 concentration by no more than a few decades.

  4. Analysis of Deformation in Inconel 718 When the Stress Anomaly and Dynamic Strain Aging Coexist

    Science.gov (United States)

    Follansbee, Paul S.

    2016-09-01

    Deformation in Inconel 718 in the presence of combined effects of the stress anomaly and dynamic strain aging is analyzed according to an internal state variable model formulation. The analysis relies on the availability of experimental data in regimes of behavior where both the stress anomaly and dynamic strain aging are absent. A model that introduces two internal state variables—one characterizing interactions of dislocations with solute atoms and one characterizing interaction of dislocations with precipitates—is shown to adequately describe the temperature and strain-rate dependence of the yield stress in several superalloy systems. Strain hardening is then added with a third internal state variable to enable description of the full stress-strain curve. These equations are extrapolated into regimes where the stress anomaly and dynamic strain aging are present to identify signatures of their effects and to compare to similar analyses in a variety of metal systems. Dynamic strain aging in Inconel 718 follows similar trends to those observed previously. The magnitude of the stress anomaly tracks measurements of stress vs test temperature in pure Ni3Al. Several trends in the strain-rate sensitivity of elevated temperature deformation in superalloys are identified based on limited availability of measurements over a wide range of strain rates or tests using strain-rate changes.

  5. Holocene Deglaciation of the Scandinavian Ice Sheet: Preliminary 10Be Ages

    Science.gov (United States)

    Cuzzone, J. K.; Clark, P. U.; Marcott, S. A.; Lunkka, J.; Wohlfarth, B.; Caffee, M. W.; Carlson, A. E.

    2013-12-01

    The response of ice sheets to a warming climate is not well understood. Because we are limited in our understanding of present dynamics, reconstructing the deglaciation of former ice sheets allows for a better understanding of how past ice sheets responded to a warming climate along with their contribution to sea-level rise. These reconstructions also serve as critical constraints for ice sheet modeling efforts. Here, we present a suite of new 10Be ages from erratic boulders along three transects spanning southern to northern Sweden and Finland, that improve our understanding of the deglaciation of the Scandinavian Ice Sheet (SIS) beginning ~ 11.7ka through its final demise during the early Holocene. Dates from southern Finland, beginning at the Salpausselka Younger Dryas moraine (11.5 × 0.7 ka, n=4), inland southern Finland near Jyvaskyla (11.5 × 0.5ka, n=2), and coastal Finland (~60km from Gulf of Bothnia) near Vimpeli (11.5 × 0.4ka, n=4) indicate a rapid retreat following the Younger Dryas for Southern Finland (~500km within uncertainty of ages). Preliminary dates also exist for Northern Finland, near Inari (10.8 × 0.5ka, n=4) and near Oulu (10.5 × 0.6 ka, n = 4) suggesting a later retreat in the north. Dates from southern Sweden, near Skovde (12.73 × 0.8ka, n=4) to Mora (10.41 × 0.6ka, n=5) suggest a slower retreat (over ~400km). Lastly, dates in Northwestern Sweden suggest a final termination of the SIS around 9.4 × 0.7ka (n = 3). Additional ages are now being processed at PRIME Lab, Purdue University, which will further strengthen our understanding of SIS retreat from all sampled sites. These new data will help to constrain the Holocene deglaciation of the SIS and its associated retreat rates, and establish the SIS contribution to Holocene sea level rise, which will improve our understanding of ice-sheet response to a warming climate.

  6. The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia

    Science.gov (United States)

    Holm, Kris; Bovis, Michael; Jakob, Matthias

    2004-02-01

    The role of post-Little Ice Age (LIA) Neoglacial retreat on landslide activity is investigated in 19 alpine basins along the upper Lillooet River Valley, British Columbia. We examine how Neoglacial scouring and glacial recession have modified hillslope form and slope stability, and construct a decision-making flowchart to identify landslide hazards associated with glacial retreat. This work is based on field mapping, GIS analysis, statistical associations between landslides and terrain attributes, and a comparison between Neoglaciated and non-Neoglaciated terrain within each basin. The bedrock landslide response to glacial retreat varies appreciably according to lithology and the extent of glacial scour below the LIA trimline. Valleys carved in weak Quaternary volcanics show significant erosional oversteepening and contain deep-seated slope movement features, active rock fall, rock slides, and rock avalanches near glacial trimlines. Basins in stronger granitic rock rarely show increased bedrock instability resulting from post-LIA retreat, except for shallow-seated rock slides along some trimlines and failures on previously unstable slopes. In surficial materials, landslides associated with post-LIA retreat originate in till or colluvium, as debris slides or debris avalanches, and are concentrated along lateral moraines or glacial trimlines. Significant spatial association was also observed between recent catastrophic failures, gravitational slope deformation, and slopes that were oversteepened then debuttressed by glacial erosion. Eight out of nine catastrophic rock slope failures occurred just above glacial trimlines and all occurred in areas with a previous history of deep-seated gravitational slope movement, implying that this type of deformation is a precursor to catastrophic detachment.

  7. Geochemical record of high emperor penguin populations during the Little Ice Age at Amanda Bay, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tao, E-mail: huangt@ahu.edu.cn [School of Resources and Environmental Engineering, Anhui University, Hefei 230601 (China); School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Yang, Lianjiao; Chu, Zhuding [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Sun, Liguang, E-mail: slg@ustc.edu.cn [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Yin, Xijie [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 (China)

    2016-09-15

    Emperor penguins (Aptenodytes forsteri) are sensitive to the Antarctic climate change because they breed on the fast sea ice. Studies of paleohistory for the emperor penguin are rare, due to the lack of archives on land. In this study, we obtained an emperor penguin ornithogenic sediment profile (PI) and performed geochronological, geochemical and stable isotope analyses on the sediments and feather remains. Two radiocarbon dates of penguin feathers in PI indicate that emperor penguins colonized Amanda Bay as early as CE 1540. By using the bio-elements (P, Se, Hg, Zn and Cd) in sediments and stable isotope values (δ{sup 15}N and δ{sup 13}C) in feathers, we inferred relative population size and dietary change of emperor penguins during the period of CE 1540–2008, respectively. An increase in population size with depleted N isotope ratios for emperor penguins on N island at Amanda Bay during the Little Ice Age (CE 1540–1866) was observed, suggesting that cold climate affected the penguin's breeding habitat, prey availability and thus their population and dietary composition. - Highlights: • Emperor penguin colonized at Amanda Bay, East Antarctic as early as AD 1540. • Populations of emperor penguin at Amanda Bay increase during the little ice age. • Depleted N isotope ratios of Emperor penguins during the LIA were observed.

  8. Little Ice Age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia

    Science.gov (United States)

    Rivera, A.; Koppes, M.; Bravo, C.; Aravena, J. C.

    2012-03-01

    Glaciar Jorge Montt (48°20' S/73°30' W), one of the main tidewater glaciers of the Southern Patagonian Icefield (SPI), has experienced the greatest terminal retreat observed in Patagonia during the past century, with a recession of 19.5 km between 1898 and 2011. This retreat has revealed trees laying subglacially until 2003. These trees were dated using radiocarbon, yielding burial ages between 460 and 250 cal yrs BP. The presence of old growth forest during those dates indicates that Glaciar Jorge Montt was upvalley of its present position before the commonly recognized Little Ice Age (LIA) period in Patagonia. The post-LIA retreat was most likely triggered by climatically induced changes during the 20th century; however, Glaciar Jorge Montt has responded more dramatically than its neighbours. The retreat of Jorge Montt opened a 19.5 km long fjord since 1898, which reaches depths in excess of 390 m. The bathymetry is well correlated with glacier retreat rates, suggesting that dynamic responses of the glacier are at least partially connected to near buoyancy conditions at the ice front, resulting in high calving fluxes, accelerating thinning rates and rapid ice velocities.

  9. Enhancement of volcanism and geothermal heat flux by ice-age cycling: A stress modeling study of Greenland

    Science.gov (United States)

    Stevens, Nathan T.; Parizek, Byron R.; Alley, Richard B.

    2016-08-01

    Ice-age cycling of the Greenland ice sheet likely contributed to locally elevated subglacial geothermal heat fluxes (GHFs), based on recent thermal modeling. Borehole and geophysical data indicate higher GHF in some areas than suggested by current knowledge of underlying geology, particularly at the head of the Northeast Greenland Ice Stream. Changes in lithospheric loading during ice-sheet growth and decay cycles produce large and geologically rapid changes in the effective stress state beneath and near the ice sheet. Oscillations in melt fraction from cyclic loading through multiple ice-age cycles will enhance upward magma migration through the nonlinear increase of melt migration velocity with melt fraction. We simulate periodic ice-sheet loading scenarios along an east-west transect across central Greenland on an Elastic Lithosphere, Relaxed Asthenosphere Earth model. Under likely parameter ranges, deviatoric stresses in the elastic lithosphere across widespread regions are sufficiently high to meaningfully enhance dike emplacement and also allow vug-wave propagation in some scenarios. Stress patterns migrate laterally in response to ice-sheet dynamics, favoring multistage magma ascent. If melt occurs at depth, our modeling suggests that ice-age cycling could help it migrate upward to shallow depth or erupt, contributing to the high observed GHF. Furthermore, shallow magma emplacement might feed hydrothermal systems exploiting enhanced faulting or fracturing from ice-age cycling, adding to elevated GHF. The preglacial passage of the Iceland-Jan Mayen hot spot could have sourced such magmas. Direct observations of these lithospheric processes needed to further constrain our models are limited, highlighting the value of more targeted geophysical studies informing future modeling.

  10. Educational intervention applied in children from 5 to 11 years of age with deforming oral habits

    Directory of Open Access Journals (Sweden)

    María de los Santos Haces Yanes

    2009-04-01

    Full Text Available Background: Habits are complex neuromuscular patterns learnt by frequent repetition and act as unnatural forces that may cause dental maxillofacial defects. Objective: To assess the intervention of educative measures applied to children with deforming buccal habits in the primary school Raúl Suárez Martínez from the zone “Rafaelito”. Methods: A cuasi-experimental study was developed, with before-after intervention without control group including 253 children from December 2006 to November 2007. We applied the program “To Happily Smile” with a weekly frequency. Surveys were applied to children, parents and teachers after the educational actions to achieve the reduction ofincorrect habits. The studied variables were: age, sex, deforming habits frequency before and after the intervention. Results: The knowledge level of children, parents and teachers was significantly improved. Risk factors were eradicated in more than 50% of the children being the most frequent: lingual protraction, baby bottle suction, mainly among females. Conclusions: The intervention was successful for the reduction of deforming oral habits, and the high level of knowledge acquired. After the intervention it was shown that the educative process is a key tool for the General Comprehensive Dentist.  

  11. Little Ice Age glaciers in Britain: Glacier–climate modelling in the Cairngorm Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Harrison; Ann V. Rowan; Neil F. Glasser; Jasper Knight; Mitchell A. Plummer; Stephanie C. Mills

    2014-02-01

    It is widely believed that the last glaciers in the British Isles disappeared at the end of the Younger Dryas stadial (12.9–11.7 cal. kyr BP). Here, we use a glacier–climate model driven by data from local weather stations to show for the first time that glaciers developed during the Little Ice Age (LIA) in the Cairngorm Mountains. Our model is forced from contemporary conditions by a realistic difference in mean annual air temperature of -1.5 degrees C and an increase in annual precipitation of 10%, and confirmed by sensitivity analyses. These results are supported by the presence of small boulder moraines well within Younger Dryas ice limits, and by a dating programme on a moraine in one cirque. As a result, we argue that the last glaciers in the Cairngorm Mountains (and perhaps elsewhere in upland Britain) existed in the LIA within the last few hundred years, rather than during the Younger Dryas.

  12. Holocene glacial history of the west Greenland Ice Sheet inferred from cosmogenic exposure ages and threshold lakes

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, K. H.; Colding, Sune Oluf

    2011-01-01

    In this study, we use a combination of 10Be exposure ages and threshold lakes to constrain the ice sheet history in Godthåbs- and Buksefjorden, west Greenland (63-64°N) during the Holocene. The 10Be cosmogenic exposure ages have been used to quantify both the ice retreat and thinning of the west ......) and this suggest that the ice sheet in this area may have been more retracted and probably more sensitive to climate change than other areas in south and west Greenland....

  13. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    Science.gov (United States)

    Moreno-Chamarro, Eduardo; Zanchettin, Davide; Lohmann, Katja; Jungclaus, Johann H.

    2017-02-01

    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset.

  14. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    Science.gov (United States)

    Khan, S. A.; Kjeldsen, K. K.; Kjær, K. H.; Bevan, S.; Luckman, A.; Aschwanden, A.; Bjørk, A. A.; Korsgaard, N. J.; Box, J. E.; van den Broeke, M.; van Dam, T. M.; Fitzner, A.

    2014-08-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40-50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss.

  15. Deep Ocean Circulation Changes During the Transition to the Last Ice Age

    Science.gov (United States)

    Zylberberg, D. R.; Piotrowski, A. M.; Goldstein, S. L.; Hemming, S. R.

    2003-12-01

    The transition between marine isotope stages (MIS) 5a and 4 appears in the stacked benthic foraminferal δ 18O SPECMAP record as a gradual increase in ice volume. In contrast, the transition occurs in the Greenland ice core δ 18O records with two well-developed interstadial events (I19 and I20), which are the first Dansgaard-Oescheger events of the last ice age. The MIS 5b/5a transition appears as a much more rapid warming in both the Greenland ice and benthic δ 18O records. Recent work (Lehmann et al. 2002, Chapman et al. 1999) indicates that climate variability in MIS 5 as indicated in the Greenland ice record was closely interconnected with iceberg discharges, surface temperature changes, and deep ocean circulation in the North Atlantic. In order to determine the response of deep ocean circulation to climate changes from late in MIS 5 to full glacial MIS 4, we have measured Nd isotope ratios from the Fe-Mn portion of core TNO57-21 from the Cape Basin in the South Atlantic. Nd isotopes, unlike nutrient water mass proxies, are not affected by biological fractionation, and reflect the strength of the North Atlantic Deep Water (NADW) signal in the seawater above the core site. Results from cores TNO57-21 and RC11-83 (also from the Cape Basin) indicate that the NADW export to the Southern Ocean has varied on time scales reflecting glacial-interglacial cycles through MIS 4 (Rutberg et al. 2000) and during interstadial events through MIS 3 (Piotrowski et al. Fall AGU), and was stronger and weaker during warmer and colder Northern Hemisphere climate intervals, respectively. The extension of the Nd isotope record to MIS 5a and 5b indicates an increased NADW signal during MIS 5, therefore the long-term pattern of strong and weak NADW export during warm and cold periods persists beyond the last ice age. The Nd isotope pattern during MIS 4 through 5b generally corresponds to the benthic foraminferal δ 13C record from Cape Basin cores (Ninnemann et al. 1999), indicating

  16. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments.

    Science.gov (United States)

    La Farge, Catherine; Williams, Krista H; England, John H

    2013-06-11

    Across the Canadian Arctic Archipelago, widespread ice retreat during the 20th century has sharply accelerated since 2004. In Sverdrup Pass, central Ellesmere Island, rapid glacier retreat is exposing intact plant communities whose radiocarbon dates demonstrate entombment during the Little Ice Age (1550-1850 AD). The exhumed bryophyte assemblages have exceptional structural integrity (i.e., setae, stem structures, leaf hair points) and have remarkable species richness (60 of 144 extant taxa in Sverdrup Pass). Although the populations are often discolored (blackened), some have developed green stem apices or lateral branches suggesting in vivo regrowth. To test their biological viability, Little Ice Age populations emerging from the ice margin were collected for in vitro growth experiments. Our results include a unique successful regeneration of subglacial bryophytes following 400 y of ice entombment. This finding demonstrates the totipotent capacity of bryophytes, the ability of a cell to dedifferentiate into a meristematic state (analogous to stem cells) and develop a new plant. In polar ecosystems, regrowth of bryophyte tissue buried by ice for 400 y significantly expands our understanding of their role in recolonization of polar landscapes (past or present). Regeneration of subglacial bryophytes broadens the concept of Ice Age refugia, traditionally confined to survival of land plants to sites above and beyond glacier margins. Our results emphasize the unrecognized resilience of bryophytes, which are commonly overlooked vis-a-vis their contribution to the establishment, colonization, and maintenance of polar terrestrial ecosystems.

  17. Little Ice Age glacial geomorphology and sedimentology of Portage Glacier, South-Central Alaska

    Directory of Open Access Journals (Sweden)

    Carlos Córdova

    2009-06-01

    Full Text Available The study of glacial landforms and deposits is important, as it isdifficult to observe processes under modern glaciers and ice-sheets. Thus landscapes and sediments that are the product of present glaciation can give insight into processes that occurred during Pleistocene times. This study investigates the genesis of little ice age glacial landforms present in Portage Glacier, South-Central Alaska. The present day moraine morphology and sedimentology in Portage Glacier valley reveals the presence of two types of till and moraines. The clast-rich sandy diamicton present on the 1852 moraine is interpreted to be a basal till indicating this feature is a pushmoraine representing an advance or a standstill position of Portage Glacier in 1852. The moderately sorted gray sandy boulder gravel present on the 1900 and 1922 moraines is interpreted to be an ice-marginal deposit (ablation till with a mixture of supraglacial and glaciofluvial sediments deposited by slumping and stream sortingprocesses. All of these features are interpreted to be ablation moraines representing glacier retreat and moraine building in 1900 and1922.

  18. Paraglacial dynamics in Little Ice Age glaciated environments in the Iberian Peninsula

    Science.gov (United States)

    Oliva, Marc; Serrano, Enrique; Ruiz-Fernández, Jesús; Gómez-Ortiz, Antonio; Palacios, David

    2017-04-01

    Three Iberian mountain ranges encompassed glaciers during the Little Ice Age (LIA): the Pyrenees, Cantabrian Mountains and Sierra Nevada. The gradual warming trend initiated during the second half of the XIX century promoted the progressive shrinking of these glaciers, which completely melted during the first half of the 20th century in the Cantabrian Mountains and Sierra Nevada and reduced by 80% of their LIA extent in the Pyrenees. Currently, the formerly glaciated environments are located within the periglacial belt and still present to a major or lesser degree signs of paraglacial activity. LIA moraines are devoid of vegetation and composed of highly unstable sediments that are being intensely mobilized by slope processes. Inside the moraines, different landforms and processes generated following LIA glacial retreat have generated: (i) buried ice trapped within rock debris supplied from the cirque walls, which has also generated rock glaciers and protalus lobes; (ii) semi-permanent snow fields distributed above the ice-patches remnants of the LIA glaciers, and (iii) small periglacial features such as frost mounds, sorted circles and solifluction landforms generated by processes such as solifluction and cryoturbation. Present-day morphodynamics is mostly related to seasonal frost conditions, though patches of permafrost have formed in some areas in contact with the buried ice. This 'geomorphic permafrost' is undergoing a process of degradation since it is not balanced with present-day climate conditions. This is reflected in the occurrence of multiple collapses and subsidences of the debris cover where the frozen bodies sit. In the highest areas of the Pyrenees there is a permafrost belt next to the small glaciated environments in the highest massifs. Finally, we propose a model for paraglacial activity in Iberian mountain ranges and compare it to other mid-latitude mountain environments as well as to other past deglaciation stages.

  19. Iron fertilization of the Subantarctic Ocean during the last ice age

    Science.gov (United States)

    Martinez-Garcia, A.

    2015-12-01

    Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. The scarcity of iron limits marine productivity and carbon uptake in one-quarter of the world ocean where the concentration of major nutrients (phosphorus and nitrogen) is perennially high. The Southern Ocean is the region where variations in iron availability can have the largest effect on Earth's carbon cycle through its fertilizing effect on marine ecosystems. Paleoceanographic records from the Subantarctic Atlantic have revealed a remarkable correlation between phytoplankton productivity and aeolian iron flux during glacial periods supporting the iron fertilization hypothesis. In addition, a recent study has shown that peak glacial times and millennial cold events were nearly universally associated not only with increases in dust flux and export production, but also with an increase in nutrient consumption (the last indicated by higher foraminifera-bound δ15N) (Martinez-Garcia et al. 2014). This combination of changes is uniquely consistent with ice age iron fertilization of the Subantarctic Atlantic. The strengthening of the biological pump associated with the observed increase in Subantarctic nutrient consumption during the high-dust intervals of the last two ice ages can explain up to ~40 ppm of the CO2 decrease that characterizes the transitions from mid-climate states to full ice age conditions. However, the impact of iron fertilization in other sectors of the Southern Ocean characterized by lower ice age dust fluxes than the Atlantic remains unclear. A series of recently published records from the Subantarctic Pacific indicate that dust deposition and marine export production were three times higher during glacial periods than during interglacials (Lamy et al. 2014). Here we present new measurements of foraminifera-bound nitrogen isotopes in a sediment core located in the

  20. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    Science.gov (United States)

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  1. Climate hazards, adaptation and "resilience" of societies (early Little Ice Age, west of France).

    Science.gov (United States)

    Athimon, Emmanuelle; Maanan, Mohamed

    2016-04-01

    Over the past ten to fifteen years, climate hazards and adaptation have received more attention due to the current climate change. Climate historians have gathered strong evidence that the world's climate has evolved over the past millennium and one of the most significant changes took place during the Little Ice Age. Recently, a set of questions has emerged: what were the effects of the Little Ice Age on human's societies? How did humans adapt to these climate changes? How did they react to extreme weather-related events? Using examples of climate hazards from the West of France during the beginning of the Little Ice Age (xivth-xviith centuries) such as storms, flooding, drought, harsh winters, the poster aims at showing how the past societies can constitute a source of inspiration for present ones. Through schemas, this research exposes the system's rebound capacity, points out the importance of the historical depth in research on human's adaptation and resilience and shows the value of integrating a historical approach. It reveals that History contributes to the knowledge of the relationship between societies and climate hazards. Data on climate hazards and adaptation of societies stem from historical sources such as chronicles, diaries, books of accounts, records of cities repairs. To protect themselves and their goods, medieval and modern societies had developed specific skills, practices and strategies. From the xivth to the xviiith century, there is an increase of defense by dikes in the low Loire, as for example the construction of those amongst Longué and Ponts-de-Cé between the early xivth century and 1407. The French kingdom's authorities also tried increasingly to provide technical, material, logistical and fiscal support: for instance, during the winter 1564-1565, several bridges have been destroyed by a river flooding in Nantes. The King Charles IX then offered to people of Nantes part of the funds from taxes on the main activities such as the

  2. Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics

    Science.gov (United States)

    Small, David; Rinterknecht, Vincent; Austin, William E. N.; Bates, Richard; Benn, Douglas I.; Scourse, James D.; Bourlès, Didier L.; Hibbert, Fiona D.

    2016-10-01

    Geochronological constraints on the deglaciation of former marine based ice streams provide information on the rates and modes by which marine based ice sheets have responded to external forcing factors such as climate change. This paper presents new 36Cl cosmic ray exposure dating from boulders located on two moraines (Glen Brittle and Loch Scavaig) in southern Skye, northwest Scotland. Ages from the Glen Brittle moraines constrain deglaciation of a major marine terminating ice stream, the Barra-Donegal Ice Stream that drained the former British-Irish Ice Sheet, depending on choice of production method and scaling model this occurred 19.9 ± 1.5-17.6 ± 1.3 ka ago. We compare this timing of deglaciation to existing geochronological data and changes in a variety of potential forcing factors constrained through proxy records and numerical models to determine what deglaciation age is most consistent with existing evidence. Another small section of moraine, the Scavaig moraine, is traced offshore through multibeam swath-bathymetry and interpreted as delimiting a later stillstand/readvance stage following ice stream deglaciation. Additional cosmic ray exposure dating from the onshore portion of this moraine indicate that it was deposited 16.3 ± 1.3-15.2 ± 0.9 ka ago. When calculated using the most up-to-date scaling scheme this time of deposition is, within uncertainty, the same as the timing of a widely identified readvance, the Wester Ross Readvance, observed elsewhere in northwest Scotland. This extends the area over which this readvance has potentially occurred, reinforcing the view that it was climatically forced.

  3. No iron fertilization in the equatorial Pacific Ocean during the last ice age

    Science.gov (United States)

    Costa, K. M.; McManus, J. F.; Anderson, R. F.; Ren, H.; Sigman, D. M.; Winckler, G.; Fleisher, M. Q.; Marcantonio, F.; Ravelo, A. C.

    2016-01-01

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP)—but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  4. Episodic Neoglacial Cryosphere Expansion Reconstructed from 14C Ages of Ice-Entombed Plants on Svalbard

    Science.gov (United States)

    Miller, G. H.; Lehman, S.; Landvik, J. Y.

    2015-12-01

    The Northern Hemisphere cryosphere's response to the monotonic decline in summer insolation through the Holocene has been irregular expansion, interrupted by periods of retreat, culminating in the Little Ice Age, when most glaciers attained their maximum late Holocene dimensions. This non-linear response to near-linear forcing implies other factors modulate the radiative effects of the regular insolation decline. Understanding how the Earth system accomplishes this modulation is relevant to the development of reliable models for future climate change. Accurately dating the onset of persistent summer coolings across the Arctic is a first step toward developing this understanding. Here we report 52 precise radiocarbon dates on rooted plants emerging from beneath receding glaciers on Svalbard that define times when colder summers led to snowline depression and an expanded cryosphere. The earliest persistent depression of snowline documented by our dates occurred between 4.0 and 3.4 ka, but with little additional summer cooling until early in the first millennium AD. Episodes of subsequent summer cooling were centered on 240-340, 410-540 and 670-770 AD, followed by additional cooling between 1000 and 1230 AD, and between 1300 and 1470 AD. Cooling that occurred after 1470 AD, includes of the Little Ice Age when the Svalbard cryosphere reached its maximum Neoglacial dimensions. We suggest that in addition to insolation forcing, irregular reductions in the strength of the North Atlantic Current and expansions of Arctic Ocean sea ice were dominant factors that led to episodic snowline depression over Svalbard, but the extent to which these changes are linked to radiative forcing from volcanism or solar irradiance as opposed to unforced variability remains unclear. The widespread exposure of entombed plants dating from the first millennium AD suggests that Svalbard's average summer temperatures of the past century now exceed those of any century since at least 700 AD

  5. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    Science.gov (United States)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    than the rather fresh dust at Izaña. This suggests that atmospheric aging and processing decreases the ice nucleation efficiency of Saharan dust during advection to Central Europe.

  6. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    Science.gov (United States)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  7. The Asian monsoon over the past 640,000 years and ice age terminations

    Science.gov (United States)

    Cheng, Hai; Edwards, R. Lawrence; Sinha, Ashish; Spötl, Christoph; Yi, Liang; Chen, Shitao; Kelly, Megan; Kathayat, Gayatri; Wang, Xianfeng; Li, Xianglei; Kong, Xinggong; Wang, Yongjin; Ning, Youfeng; Zhang, Haiwei

    2016-06-01

    Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record’s length and temporal precision allow us to test the idea that insolation changes caused by the Earth’s precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record’s timing, the terminations are separated by four or five precession cycles, supporting the idea that the ‘100,000-year’ ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and ‘unfinished terminations’.

  8. A permafrost glacial hypothesis – Permafrost carbon might help explaining the Pleistocene ice ages

    Directory of Open Access Journals (Sweden)

    Roland Zech

    2012-05-01

    Full Text Available Over the past several ~100 ka glacial-interglacial cycles, the concentration of atmospheric CO2 was closely coupled to global temperature, which indicates the importance of CO2 as a greenhouse gas. The reasons for changes in atmospheric CO2 have mainly been sought in the ocean, but remain elusive. Moreover, the mid-Pleistocene transition from the ‘41 ka world’ during the early Pleistocene before ~0.7 Ma to the ~100 ka ice age cycles is poorly understood. The classical Milankovitch theory of summer insolation forcing at high northern latitudes can not fully explain the Pleistocene ice age rhythm. Based on the recent findings that the amount of soil organic carbon stored in high-latitude permafrost regions has been greatly underestimated and the simple logic that permafrost regions and respective carbon pools were likely much larger during glacials than during interglacials, a ‘permafrost glacial hypothesis’ is proposed: (i Gradual sequestration of CO2 in permafrost soils during coolings and rapid release of CO2 and methane during terminations, respectively, provide important positive feedbacks for the climate. (ii Integrated annual insolation at the southern and thus most sensitive permafrost boundary may act as a trigger for global climate changes. (iii The mid-Pleistocene transition might be readily explained with permafrost extents reaching ~45°N during the long-term Pleistocene cooling, resulting in a transition from high-latitude obliquity (~41 ka to mid-latitude eccentricity (~100 ka forcing.

  9. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering

    Science.gov (United States)

    Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent

    2017-04-01

    The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.

  10. The Impact of the Little Ice Age on Coccolithophores in the Central Mediterranea Sea

    Directory of Open Access Journals (Sweden)

    A. Incarbona

    2010-12-01

    Full Text Available The Little Ice Age (LIA is the last episode of a series of Holocene climatic anomalies. There is still little knowledge on the response of the marine environment to the pronounced cooling of the LIA and to the transition towards the 20th century global warming. Here we present decadal-scale coccolithophore data from four short cores recovered from the central Mediterranean Sea (northern Sicily Channel and Tyrrhenian Sea, which on the basis of 210Pb activity span the last 200–350 years. The lowermost part of the record of one of the cores from the Sicily Channel, Station 407, which extends down to 1650 AD, is characterized by drastic changes in productivity. Specifically, below 1850 AD, the decrease in abundance of F. profunda and the increase of placoliths, suggest increased productivity. The chronology of this change is related to the main phase of the Little Ice Age, which might have impacted the hydrography of the southern coast of Sicily and promoted vertical mixing in the water column. The comparison with climatic forcings points out the importance of stronger and prolonged northerly winds, together with decreased solar irradiance.

  11. Mount Logan Ice Core Evidence for Secular Changes in the Climate of the North Pacific Following the End of the Little Ice Age

    Science.gov (United States)

    Moore, K.; Alverson, K.; Holdsworth, G.

    2003-12-01

    The relatively short length of most instrumental climate datasets restricts the study of variability and trends that exists in the climate system. This is particularly true regarding the atmosphere where high quality spatially dense data exists only since the late 1940s. With this data, the Pacific North America pattern (PNA) has been identified as one of the dominant modes of variability in the atmosphere that plays an important role in the climate of North America. This pattern consists of alternating regions of high and low geopotential height anomalies in the middle and upper troposphere arching from the tropical Pacific to North America. It is thought to be the result of a standing Rossby wave pattern forced by the upper-atmospheric convergence associated with the descending branch of the regional Hadley Circulation. We will describe the climate signal contained in a 301-year ice core record from a high elevation site on Mount Logan in the Yukon. This record has a statistically significant and accelerating positive trend in snow accumulation from the middle of the 19th century, the end of the Little Ice Age. As we will show, this record contains an expression of the Pacific North America (PNA) teleconnection as well as the regional Hadley and Walker circulations in the Pacific. We argue that the positive trend in snow accumulation in the ice core is a reflection of secular changes in the intensities of these circulations that has ongoing since the end of the Little Ice Age.

  12. Spatial pattern of mass loss processes across the Greenland Ice Sheet from the Little Ice Age to 2010

    Science.gov (United States)

    Kjaer, K.; Korsgaard, N. J.; Kjeldsen, K. K.; Bjork, A. A.; Khan, S. A.; Funder, S.; Nuth, C.; Larsen, N. K.; Vinther, B.; Andresen, C. S.; Long, A. J.; Woodroffe, S.; Hansen, E. S.; Odgaard, B. V.; Olsen, J.; Bamber, J. L.; van den Broeke, M. R.; Box, J. E.; Willerslev, E.

    2013-12-01

    The Greenland Ice Sheet loses mass through surface meltwater runoff and discharge from marine terminating outlet glaciers. The spatial variability and magnitude of these processes have been studied and described in detail for the past decades. Here, we combine the mass loss between the LIA to 2010 with a SMB model extending back to ~1900 in order to investigate the spatial distribution of mass loss processes. We use high quality aerial stereo photogrammetric imagery recorded between 1978 and 1987 to map morphological features such as trim lines and end moraines marking the maximum ice extent of the LIA, which enables us to obtain vertical point-based differences associated with former ice extent. These point measurements are combined with contemporary ice surface differences derived using NASA's Airborne Topographic Mapper (ATM) from 2003-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, and ASTER (Silcast AST14DMO) co-registered to ICESat, to estimate mass loss throughout the 20th and early 21st Century. The mass balance estimates of the GrIS since retreat from maximum LIA is combined with a SMB model for the period for three intervals, LIAmax (~1900) - 1978/87, 1978/87 - 2003, and 2003 - 2010. Across the GrIS the total mass loss if found to be spatially- and temporally variable. However, when assessing the mass loss due to SMB and mass loss due to dynamic ice loss, we find that that the ratios between these components are variable between the different sectors of the GrIS, e.g. in the southeast sector of the GrIS we find substantial mass loss, possibly driven by high precipitation rates but also the presence of a large number of marine terminating glaciers. Furthermore many areas currently undergoing changes correspond to those that experienced considerable thinning throughout the 20th century. Consequently, comparing the 20th century thinning pattern to that of the last decade

  13. Duration of Greenland Stadial 22 and ice-gas Δage from counting of annual layers in Greenland NGRIP ice core

    Directory of Open Access Journals (Sweden)

    P. Vallelonga

    2012-07-01

    Full Text Available The NorthGRIP ice core chronology GICC05modelext is composed of the annual-layer counted GICC05 chronology to 60 kyr before 2000 AD (b2k, and an ice flow model dating the deepest part of the ice core to 123 kyr b2k. Determination of annual strata in ice beyond 60 kyr b2k has been challenged by the thinning of annual layers to <1 cm and the appearance of microfolds in some early glacial strata. We report high-resolution measurements of a 50 m section of the NorthGRIP ice core and corresponding annual layer thicknesses, constraining the duration of the Greenland Stadial (GS-22 between Greenland Interstadials (GIs 21 and 22 which occurred between approximately 89 (end of GI-22 and 83 kyr b2k (onset of GI-21 depending on the chronology used. Multiple analytes (insoluble dust particles, electrolytic conductivity, ammonium and sodium were determined in annual layers of ice often thinner than 1 cm. From annual layer counting, we find that GS-22 lasted 2894 ± 198 yr and was followed by a GI-21 pre-cursor event lasting 350 ± 19 yr. Our layer-based counting agrees with the duration of GS-22 determined from the NALPS speleothem record (3250 ± 526 yr but not with that of the GICC05modelext chronology (2620 yr. These results show that GICC05modelext overestimates accumulation and/or underestimates thinning in this early part of the last glacial period. We also revise the NorthGRIP ice depth-gas depth (5.67 ± 0.18 m and ice age-gas age (550 ± 52 yr differences at the warming onset of GI-21, observing that δ15N increases before CH4 concentration by no more than a few decades.

  14. Dust Provenance and Radiometric U-Series Ages as Evidence for an Eemian Ice Sheet in Greenland

    Science.gov (United States)

    Aciego, S.; Bourdon, B.; Schwander, J.; Stocker, T. F.

    2009-12-01

    The mineralogy and geochemistry of air-transported mineral particles, dust, reflect the prior history of the source material as well as influence the chemistry of the settling locations (rivers, ice sheets and ultimately the oceans). When applied to ice sheets, the atmospheric circulation patterns gleaned from the chemical characteristics of the dust may provide some additional constraints on size and shape of paleo-ice sheets. Furthermore, the ice bound dust grains can be used to determine the age of the ice by using uranium series recoil as a radiometric dating method, provided there is sufficient information about the size and shape of the dust grains and the [U] concentration and isotopic (234U/238U) composition of the ice and dust. The Dye3 ice core is the southern-most deep ice core in Greenland, so should provide a minimum estimate of ice sheet size in the past: the existence of ice is evidence for an ice sheet at any given time. A series of samples from 200 m to 2030 m in depth were analyzed by MC-ICPMS and TIMS for U concentrations and 234U/238U as well as 176Hf/177Hf, 87Sr/86Sr, and 143Nd/144Nd. The radiogenic isotopic compositions of the insoluble dust found in the upper 1800 m falls within the range of previously measured Greenland dust samples: 87Sr/86Sr = 0.7108 - 0.7174, ɛNd = -9.7 - -13.6, and ɛHf = -2 - -5. However, the data trends toward significantly more unradiogenic Nd and Hf and radiogenic Sr values in the lower 100 m: 87Sr/86Sr = 0.7167 - 0.7200, ɛNd = -15.62 - -17.36, and ɛHf = -21 - -25; the deepest sample containing basal sediments having the most extreme values: 87Sr/86Sr = 0.7349 - 0.7785 ɛNd = -37.48 - -41.61, and ɛHf = -24.8 - -39.54. The calculated 234U/238U radiometric age for the deepest ice ranges from 90 to 110 ± 50 ka, in the same range as two possible age models for the Dye3 location, indicating the deepest ice is in the range of 40-60 ka or 85-120 ka. However, based on the radiogenic isotopes, while the dust in the

  15. Spatial pattern of mass loss processes across the Greenland Ice Sheet from the Little Ice Age to 2010

    DEFF Research Database (Denmark)

    Kjaer, K. H.; Korsgaard, N. J.; Kjeldsen, K. K.

    The Greenland Ice Sheet loses mass through surface meltwater runoff and discharge from marine terminating outlet glaciers. The spatial variability and magnitude of these processes have been studied and described in detail for the past decades. Here, we combine the mass loss between the LIA to 2010...

  16. The episodic influx of tin-rich cosmic dust particles during the last ice age

    Science.gov (United States)

    LaViolette, Paul A.

    2015-12-01

    This paper presents evidence of the first detection of interstellar dust in ice age polar ice. Neutron activation analysis (NAA) results are reported for 15 elements found in dust filtered from eight samples of Camp Century Greenland ice dating from 40 to 78 kyrs BP. High concentrations of Sn, Sb, Au, Ag, Ir, and Ni were found to be present in three out of these eight samples. One compositionally anomalous dust sample from an ice core depth of 1230.5 m (age ∼49 kyrs BP, near the beginning of D/O stadial No. 13) was found to contain tin with an average weight percent of 49% as determined by energy dispersive X-ray analysis (EDS). This sample was also found to contain high concentrations of Pb with an average weight abundance of 8.4% and matching the Sn:Pb ratio observed in interstellar spectra. Dust particles in this sample generally have a platy morphology and range from submicron size up to a size as large as 120 μm, a particle consisting almost entirely of SnO2 and being the largest monomineralic extraterrestrial dust particle so far discovered. One porous aggregate tin-bearing particle was found to contain nanometer sized chondrules indicating an extraterrestrial origin. The extraterrestrial origin for the tin is also indicated by the presence of isotopic anomalies in the 114Sn, 115Sn and 117Sn isotopes. Follow up isotopic measurements of this tin-rich dust need to be performed to improve confidence in the anomalies reported here. High abundances of the low melting point elements Ag, Au, and Sb are also present in this tin-rich sample along with elevated abundances of the siderophiles Ir, Ni, Fe, and Co, the latter being present in chondritic proportions and indicating that about 9% of the dust has a C1 chondrite component. Measurements indicate that about 97% of this dust is of extraterrestrial origin with a 3% residual being composed of terrestrial windblown dust. EDS analysis of another tin-rich Camp Century ice core dust sample dating to ∼130 kyrs BP

  17. Humid Little Ice Age in arid central Asia documented by Bosten Lake,Xinjiang,China

    Institute of Scientific and Technical Information of China (English)

    CHEN Fahu; HUANG Xiaozhong; ZHANG Jiawu; J.A.Holmes; CHEN Jianhui

    2006-01-01

    Short sediment cores retrieved from Bosten Lake,the largest inland freshwater lake in China,were used to explore humidity and precipitation variations in arid central Asia during the past millennium.The chronology of the cores was established using 137Cs,210Pb and AMS 14C dating results.Multi-proxy high-resolution analysis,including pollen ratios of Artemisia and Chenopodiaceae (A/C),carbonate content and grain size,indicates that the climate during the past millennium can be divided into three stages: a dry climate between 1000-1500 AD,a humid climate during the Little Ice Age (LIA) (c.1500-1900 AD),and a warm dry period after 1900 AD.On centennial timescales,the climate change in northwestern China during the past 1000 years is characterized by oscillations between warm-dry and cold-humid climate conditions.All the proxies changed significantly and indicate increased precipitation during the LIA,including increased pollen A/C ratios and pollen concentrations,decreased carbonate content and increased grain size.The humid period during the LIA recorded by the Bosten Lake sediments is representative of arid central Asia and is supported by numerous records from other sites.During the LIA,the water runoff into the Keriya River and Tarim River in the Tarim Basin increased,while the ice accumulation in the Guliya ice core increased.Additionally,the lake levels of the Aral and Caspian Sea also rose,while tree-ring analysis indicates that precipitation increased.We hypothesize that both the lower temperature within China and the negative anomalies of North Atlantic Oscillation (NAO) during this period may have contributed to the humid climate within this area during LIA.

  18. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    Directory of Open Access Journals (Sweden)

    S. A. Khan

    2014-02-01

    Full Text Available Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance at the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG and Kangerdlugssuaq glacier (KG from 10 to more than 150 yr. We show that although the frontal portion of HG thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, KG was stable from 1981 to 1998 and experienced major thinning only after 2003. Extending the record back to the end of the Little Ice Age (ca. 1850 shows no significant thinning of HG from 1850 to 1981, while KG underwent substantial thinning of ~265 m. Analyses of their sensitivity to sub-surface water temperature anomalies and variations in air temperature suggest that both HG and KG are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. At century time-scales, however, multiple external parameters (e.g. outlet shape dominate the mass change. These findings undermine attempts to use measurements over the last decade as initial conditions to project future dynamic ice loss.

  19. Time-slice maps showing age, distribution, and style of deformation in Alaska north of 60° N.

    Science.gov (United States)

    Moore, Thomas E.; Box, Stephen E.

    2016-08-29

    The structural architecture of Alaska is the product of a complex history of tectonism that occurred along the Cordilleran and Arctic margins of North America through interactions with ancient and modern ocean plates and with continental elements derived from Laurentia, Siberia, and Baltica. To unravel the tectonic history of Alaska, we constructed maps showing the age, distribution, structural style, and kinematics of contractional and penetrative extensional deformation in Alaska north of latitude 60° N. at a scale of 1:5,000,000. These maps use the Geologic Map of the Arctic (Harrison and others, 2011) as a base map and follow the guidelines in the Tectonic Map of the Arctic project (Petrov and others, 2013) for construction, including use of the International Commission on Stratigraphy time scale (Cohen and others, 2013) divided into 20 time intervals. We find evidence for deformation in 14 of the 20 time intervals and present maps showing the known or probable extent of deformation for each time interval. Maps and descriptions of deformational style, age constraints, kinematics, and information sources for each deformational episode are discussed in the text and are reported in tabular form. This report also contains maps showing the lithologies and structural geology of Alaska, a terrane map, and the distribution of tectonically important units including post-tectonic sedimentary basins, accretionary complexes, ophiolites, metamorphic rocks.These new maps show that most deformational belts in Alaska are relatively young features, having developed during the late Mesozoic and Cenozoic. The oldest episode of deformation recognized anywhere in Alaska is found in the basement of the Farewell terrane (~1.75 Ga). Paleozoic and early Mesozoic deformational events, including Devonian deformation in the Arctic Alaska terrane, Pennsylvanian deformation in the Alexander terrane, Permian deformation in the Yukon Composite (Klondike orogeny) and Farewell terranes (Browns

  20. Geochemical record of high emperor penguin populations during the Little Ice Age at Amanda Bay, Antarctica.

    Science.gov (United States)

    Huang, Tao; Yang, Lianjiao; Chu, Zhuding; Sun, Liguang; Yin, Xijie

    2016-09-15

    Emperor penguins (Aptenodytes forsteri) are sensitive to the Antarctic climate change because they breed on the fast sea ice. Studies of paleohistory for the emperor penguin are rare, due to the lack of archives on land. In this study, we obtained an emperor penguin ornithogenic sediment profile (PI) and performed geochronological, geochemical and stable isotope analyses on the sediments and feather remains. Two radiocarbon dates of penguin feathers in PI indicate that emperor penguins colonized Amanda Bay as early as CE 1540. By using the bio-elements (P, Se, Hg, Zn and Cd) in sediments and stable isotope values (δ(15)N and δ(13)C) in feathers, we inferred relative population size and dietary change of emperor penguins during the period of CE 1540-2008, respectively. An increase in population size with depleted N isotope ratios for emperor penguins on N island at Amanda Bay during the Little Ice Age (CE 1540-1866) was observed, suggesting that cold climate affected the penguin's breeding habitat, prey availability and thus their population and dietary composition.

  1. Risk factors associated with deforming oral habits in children aged 5 to 11: a case-control study

    Directory of Open Access Journals (Sweden)

    Daniel Enrique Reyes Romagosa

    2014-03-01

    Full Text Available Introduction Dental and maxillofacial anomalies have multiple and complex causes. Most frequent among these are poor oral habits. A large number of children present with oral malocclusions, most of which are caused by deforming oral habits. It is important to learn about risk factors for this condition in order to institute preventive measures, early detection and treatment, and identification of low- and high-risk groups. Objectives To identify risk factors associated with deforming oral habits, which, if maintained over time, are responsible for occlusion defects, speech disorders, and can affect physical and emotional child development. Methods A case-control study of children presenting with deforming oral habits in the municipality of Manzanillo in Granma province was conducted between January and August 2013. 540 children aged 5 to 11 were included of which 180 had deforming oral habits and were asked to fill out a survey to identify specific type of habits leading to malocclusion. The case group was composed of children with deforming habits, and the remaining 360 children without poor oral habits were the control group. Each case was randomly matched to two control cases. The children’s mothers were also surveyed to gather supplemental information. Results Children with deforming oral habits were mostly female. At age 10, onychophagia was the predominant oral deforming habit. Risk factors detected for these habits were sociobiological maternal and child variables such as low and high birth weight, maternal breastfeeding inexperience, and discord in the family. Conclusions The study identified likely risk factors associated with deforming oral habits. These are discord in the family, birth weight, and lack of breastfeeding experience.

  2. Mount Logan Ice Core Evidence For Changes In The Hadley And Walker Circulations Following The End Of The Little Ice Age

    Science.gov (United States)

    Holdsworth, G.; Moore, K.; Alverson, K.

    2004-12-01

    The Hadley and Walker circulations dominate the climate of the tropics and contribute to extra-tropical climate variability through the forcing of planetary waves that result in the long-range correlation of atmospheric circulation patterns known as teleconnections. Previous work showed that an annually resolved 301-year ice core record of annual snow accumulation from a high elevation site on Mount Logan in northwestern North America contains an expression of one such teleconnection, the Pacific North America (PNA) pattern. Here we show that this record contains a related signal associated with the regional Hadley and Walker circulations in the Pacific. We argue that the positive trend in snow accumulation in the ice core that started in the middle of the 19th century is a reflection of changes in the intensities of these circulations that has been ongoing since the end of the Little Ice Age. This change may also be associated with the observed jump in δ 18O that occurred in the ice core as well as in a number of widely spaced tropical coral records around the same time.

  3. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...... as Dansgaard-Oeschger (DO) events would add to our knowledge of the climatic system and – hopefully – enable better forecasts. Likewise, to forecast possible future sea level rise it is crucial to correctly model the large ice sheets on Greenland and Antarctica. This project is divided into two parts...

  4. Recent Contractile Deformation in the Forearc of Southern Peru: A Geomorphologic Analysis And 10Be Surface Exposure Ages

    Science.gov (United States)

    Hall, S.; Farber, D. L.; Audin, L.; Finkel, R.

    2007-12-01

    . Cosmogenic 10Be surface exposure ages from a set of three distinct abandoned terraces in the Pampa Cabeza de Vaca region yield ages ranging from ~35-550ky and incision rates of ~0.04-0.09mm/yr. Thus, the contractile deformation within this region has been active for at least the last 500ky and is plausibly presently active. The documentation of recent contractile deformation within the forearc of southern Peru stylistically contrasts with previously held view active deformation in this region is dominated by extensional topographic collapse. Moreover, active shortening within the Peruvian forearc bears on our models of how the Altiplano plateau is currently being maintained along the western margin. Indeed, by identifying and quantifying active deformation within the Peruvian forearc, we can begin to address the potential links between surface processes related to climate and active tectonics, and the dynamics of the lithosphere.

  5. Permafrost response to the post Little Ice Age climate variability in the Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Răzvan POPESCU

    2014-11-01

    Full Text Available The geomorphological evidences along with the range of methods recently (since 2008 applied in the Romanian Carpathians indicate that most of the rock glaciers are relict or inactive in the present. Only a few cases of active or complex rock glaciers (active only across their upper parts are supposed to exist in the highest granitic massifs of Southern Carpathians (Retezat and Parâng, but contemporary inactivation trends seem to take place as indicated by growth of vegetation (especially Pinus mugo on their fronts. On the other hand, most of the inactive rock glaciers present distinct signs of activity in the recent past that followed the Little Ice Age colder period which in the Romanian Carpathians had its last maximum between 1820 and 1840 (Popa and Kern, 2008.

  6. The Medieval Warm Period and Little Ice Age in the Daihai Area,North China

    Institute of Scientific and Technical Information of China (English)

    金章东; 王苏民

    2003-01-01

    Rb/Sr ratio,CaCO3 content,organic carbon ( Cog ) concentration,magnetic suscep-tibility and clay mineralogy of 4.0 m sediments samples recovered from Daihai Lake,northern China,are presented in the paper. Weathering and paleoclimatic change history during the last2300 years is reconstructed in terms of the variations of Rb/Sr ratios in the sediment sequence,including the Little Ice Age and Medieval Warm Period. Our results suggest that the evolution processes of weathering and paleoclimate can be rebuilt in terms of the variations of Rb/Sr ratios in the lake sediment sequence,in combination with magnetic susceptibility,Corg,CaCO3 contents and clay mineralogy.

  7. Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity

    Science.gov (United States)

    Rial

    1999-07-23

    Evidence from power spectra of deep-sea oxygen isotope time series suggests that the climate system of Earth responds nonlinearly to astronomical forcing by frequency modulating eccentricity-related variations in insolation. With the help of a simple model, it is shown that frequency modulation of the approximate 100,000-year eccentricity cycles by the 413,000-year component accounts for the variable duration of the ice ages, the multiple-peak character of the time series spectra, and the notorious absence of significant spectral amplitude at the 413,000-year period. The observed spectra are consistent with the classic Milankovitch theories of insolation, so that climate forcing by 100,000-year variations in orbital inclination that cause periodic dust accretion appear unnecessary.

  8. Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age

    Directory of Open Access Journals (Sweden)

    D. Gutiérrez

    2008-09-01

    Full Text Available Climate and ocean ecosystem variability has been well recognized during the twentieth century but it is unclear if modern ocean biogeochemistry is susceptible to the large, abrupt shifts that characterized the Late Quaternary. Time series from marine sediments off Peru show an abrupt centennial-scale biogeochemical regime shift in the early nineteenth century, of much greater magnitude and duration than present day multi-decadal variability. A rapid expansion of the subsurface nutrient-rich, oxygen-depleted waters resulted in higher biological productivity, including pelagic fish. The shift was likely driven by a northward migration of the Intertropical Convergence Zone and the South Pacific Subtropical High to their present day locations, coupled with a strengthening of Walker circulation, towards the end of the Little Ice Age. These findings reveal the potential for large reorganizations in tropical Pacific climate with immediate effects on ocean biogeochemical cycling and ecosystem structure.

  9. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire

    Science.gov (United States)

    Putnam, Aaron E.; Putnam, David E.; Andreu-Hayles, Laia; Cook, Edward R.; Palmer, Jonathan G.; Clark, Elizabeth H.; Wang, Chunzeng; Chen, Feng; Denton, George H.; Boyle, Douglas P.; Bassett, Scott D.; Birkel, Sean D.; Martin-Fernandez, Javier; Hajdas, Irka; Southon, John; Garner, Christopher B.; Cheng, Hai; Broecker, Wallace S.

    2016-01-01

    The degree to which warming of the planet will alter Asia's water resources is an important question for food, energy, and economic security. Here we present geological evidence, underpinned by radiometric dating and dendrochronology, and bolstered by hydrological modeling, indicating that wetter-than-present conditions characterized the core of the inner Asian desert belt during the Little Ice Age, the last major Northern Hemispheric cold spell of the Holocene. These wetter conditions accompanied northern mid-latitude cooling, glacier expansion, a strengthened/southward-shifted boreal jet, and weakened south Asian monsoons. We suggest that southward migration of grasslands in response to these wetter conditions aided the spread of Mongol Empire steppe pastoralists across Asian drylands. Conversely, net drying over the 20th century has led to drought that is unprecedented for the past ∼830 years, and that could intensify with further heating of the Asian continent.

  10. Risk Factors for Deformational Plagiocephaly at Birth and at 7 Weeks of Age: A Prospective Cohort Study

    NARCIS (Netherlands)

    Vlimmeren, van Leo A.; Graaf, van der Jolanda; Boere-Boonekamp, Magda M.; L'Hoir, Monique P.; Helders, Paul J.M.; Engelbert, Raoul H.H.

    2007-01-01

    OBJECTIVE. The purpose of this work was to identify risk factors for deformational plagiocephaly within 48 hours of birth and at 7 weeks of age. PATIENTS AND METHODS. This was a prospective cohort study in which 380 healthy neonates born at term in Bernhoven Hospital in Veghel were followed at bir

  11. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants

    Science.gov (United States)

    Miller, Gifford H.; Landvik, Jon Y.; Lehman, Scott J.; Southon, John R.

    2017-01-01

    The response of the Northern Hemisphere cryosphere to the monotonic decline in summer insolation and variable radiative forcing during the Holocene has been one of irregular expansion culminating in the Little Ice Age, when most glaciers attained their maximum late Holocene dimensions. Although periods of intervening still-stand or ice-retreat can be reconstructed by direct dating of ice-recessional features, defining times of Neoglacial ice growth has been limited to indirect proxies preserved in distal archives. Here we report 45 precise radiocarbon dates on in situ plants emerging from beneath receding glaciers on Svalbard that directly date the onset of snowline descent and glacier expansion, entombing the plants. Persistent snowline lowering occurred between 4.0 and 3.4 ka, but with little additional persistent lowering until early in the first millennium AD. Populations of individual 14C calendar age results and their aggregate calendar age probabilities define discrete episodes of vegetation kill and snowline lowering 240-340 AD, 410-540 AD and 670-750 AD, each with a lower snowline than the preceding episode, followed by additional snowline lowering between 1000 and 1220 AD, and between 1300 and 1450 AD. Snowline changes after 1450 AD, including the maximum ice extent of the Little Ice Age are not resolved by our collections, although snowlines remained lower than their 1450 AD level until the onset of modern warming. A time-distance diagram derived from a 250-m-long transect of dated ice-killed plants documents ice-margin advances ∼750, ∼1100 and after ∼1500 AD, concordant with distributed vegetation kill ages seen in the aggregate data set, supporting our central thesis that vegetation kill ages provide direct evidence of snowline lowering and cryospheric expansion. The mid- to late-Holocene history of snowline lowering on Svalbard is similar to ELA reconstructions of Norwegian and Svalbard cirque glaciers, and consistent with a cryospheric response

  12. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    Science.gov (United States)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  13. The deglaciaton of the Pyreenes: from the Oldest Dryas to the Little Ice Age

    Science.gov (United States)

    Palacios, David; de Andrés, Nuria; López-Moreno, Juan I.; García-Ruiz, José M.

    2014-05-01

    The main purpose of the paper is to study the deglaciation process, including the retreat of the glaciers and the occurrence of short advances with the deposition of new, relatively recent tills in two head valleys of the central-southern Pyrenees: The Upper Gállego Valley, with the main peak Balaitus (42°46'0' N, 0° 15'0'W, 3151 m), and the Marbore Cirque, at the head of the Cinca Valley, on the north face of the Monte Perdido Peak (42º400' N; 0.5º0'W; 3355 m). The deglaciation process was studied through geomorphological mapping and 36Cl cosmogenic exposure ages obtained from morainic and rock glacier boulders and polished bedrocks. Even though the exact position of the front glacier during the global Last Glacial Maximum is not known, there is evidence that the different ice tongues retreated until headwater positions, causing the subdivision of the main glaciers into various individual glaciers. Two clear climate reversals within the general trend to deglaciation have been detected: First of all, the Oldest Dryas, coinciding with the Heinrich Event 1 (ca 17-15 ka) and, secondly, the Younger Dryas (ca 13-11.7 ka). Between both stadials, the Bølling/Allerød Interstadial (ca 15-13 ka) represented an intense glacial retreat up to the cirque headwalls. During the Bølling/Allerød Interstadial the retreat was very rapid, although the occurrence of a short readvance of small glaciers during the Older Dryas must not be ruled out. The Younger Dryas is represented by a new glacial push with the deposition of distinct types of tills. During these late glacier advances, small glaciers and rock glaciers developed close to the cirque headwalls, and coexisted under the same climatic conditions. After the Younger Dryas, new glacial advances has not been detected until the Little Ice Age, except in the Marbore Cirque, where glacial expansion occurred during the Mid and Late Holocene (5.1 ± 0.1 ka), represented by a large push moraine. A melting phase occurred at

  14. Impact of Dentofacial Deformity on Quality of Life: Age and Gender Differences Evaluated Through OQLQ, OHIP and SF36

    Directory of Open Access Journals (Sweden)

    Marcelo Carlos Bortoluzzi

    2015-09-01

    Full Text Available Objectives: The aim of this study was to verify the impact of dentofacial deformity on quality of life and explore gender and age differences. Material and Methods: The impact of dentofacial deformity (DD on quality of life was evaluated through questionnaires; Short Form Health Survey (SF36, Oral Health Impact Profile Questionnaire (OHIP, Orthognathic Quality of Life Questionnaire (OQLQ and a single question answered by a Visual Analogue Scale. Results: Significant differences between male and female patients were observed in domains of OQLQ (oral function, P = 0.006; awareness of facial deformity, P = 0.018; and facial aesthetics, P < 0.001 and OHIP (physical pain, P = 0.006; psychological discomfort, P = 0.007; psychological disability, P = 0.006; and handicap, P = 0.01. Conclusions: The impact of dentofacial deformity was more pronounced in female Brazilian population. Age of patients with dentofacial deformity produced impacts over quality of life in different ways and according to the applied questionnaire and the interaction between age and gender may also produce different impacts in patients with dentofacial deformity. The domains of Orthognathic Quality of Life Questionnaire, Oral Health Impact Profile Questionnaire and Short Form Health Survey showed unaccepted distances in the pattern of answer rising doubts of their ability to assess quality of life as a generic and broad concept. There is a necessity to create a single quality of life instrument capable to measure impacts with sensitivity and specificity and from a generic concept to condition-specific health problem.

  15. DETERMINANTS OF RED-BLOOD-CELL DEFORMABILITY IN RELATION TO CELL AGE

    NARCIS (Netherlands)

    BOSCH, FH; WERRE, JM; ROERDINKHOLDERSTOELWINDER, B; HULS, T; WILLEKENS, FLA; WICHERS, G; HALIE, MR

    1994-01-01

    Red blood cell (RBC) deformability was determined with an ektacytometer in fractions separated on the basis of differences in cell volume or density. Deformability was measured with ektacytometry (rpm-scan and osmo-scan). We studied three groups of RBC fractions:l. By counterflow centrifugation we o

  16. The formation of glacial lakes in Austria since the Little Ice Age

    Science.gov (United States)

    Buckel, Johannes; Otto, Jan-Christoph; Prasicek, Günther

    2017-04-01

    The global temperature rise in the 20th and 21st centuries led to massive deglaciation and the formation of numerous glacial lakes. Glacier lake development and lifetime are controlled by the complex interplay of climate and geological boundary conditions, geomorphological process activity and glacier dynamics. New lakes in formerly glaciated alpine areas significantly contribute to changing geomorphologic, hydrologic and ecologic conditions at high altitudes. Here we present an inventory of lakes in the Austrian Alps. The inventory is a central part of the project FUTURELAKES that aims at understanding and modelling the development of glacier lakes in Austria. We intersect glacier lake locations with glacier inventory data to understand how deglaciation controls lake evolution. The timing of lake formation is reconstructed by comparing emerged lake area with vanished glacier area at five points in time from Little Ice Age (LIA) to 2014 - the longest time period covered by a glacier lake inventory. We discuss lake formation with respect to temperature records at high-alpine climate stations in the study area. The lake inventory contains 1389 mapped lakes with a minimum size of 1000 m2 covering an area of more than 17 km2. Lakes are classified by the damming mechanisms: (a) glacial debris dammed (49.5%), (b) bedrock dammed (49%), (c) glacier ice dammed (0.4%), and (d) debris dammed (1.1%). In Austria, 243 lakes above 1700 m have formed since LIA. Both the total number of glacial lakes and total lake area increased exponentially from LIA to 2014, while glacier area shrunk correspondingly. The number of new lakes per year grew from 0.6 (±0.1, LIA-1920) to 5.8 (2006-2014) and new lake area per year increased from 6,877 ± 513 m2 (LIA-1920) to 74,129 m2 (2006-2014). This development can be linked to rising air temperatures in the Austrian Alps which show an accelerated increase since the 1980s.

  17. Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling

    Science.gov (United States)

    Crawford, I.; Bower, K. N.; Choularton, T. W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P. J.; Dorsey, J. R.; Gallagher, M. W.; Williams, P.; Trembath, J.; Cui, Z.; Blyth, A.

    2012-06-01

    In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than -8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (-7.5 °C). The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L-1) could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L-1) was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice. Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM). These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them to freeze and form instant large riming particles. The

  18. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    Science.gov (United States)

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  19. Examining the relationship between relative age, competition level, and dropout rates in male youth ice-hockey players.

    Science.gov (United States)

    Lemez, S; Baker, J; Horton, S; Wattie, N; Weir, P

    2014-12-01

    The relative age effect suggests that athletes born in the first two quartiles of a given selection year experience a selection advantage and therefore a greater opportunity for success. We describe two studies examining the relationship between relative age, competition level, and dropout rates of Ontario Minor Hockey Association male ice-hockey players from ages 10 to 15 years (n = 14 325). In Study 1, dropout was highest among players born in quartiles three and four [χ(2) (3) = 16.32, P less movement between competition levels compared to retained players. This study confirms a relationship between relative age and dropout from ice-hockey and adds further depth to our understanding of this persistent phenomenon.

  20. Little Ice Age to modern climate transition of Meso-American climate derived from speleothems

    Science.gov (United States)

    Winter, A.; Miller, T.; Kushnir, Y.; Black, D. E.; Estrella, J.; Burnett, A.; Haug, G. H.; Breitenbach, S.; Beaufort, L.; Edwards, R.

    2011-12-01

    We present a high-resolution (annual) reconstruction of hydrological variability from a speleothem located in a cave under the Guatemala/Belize (G/B) border. Our age model is highly constrained by annual layering in the speleothem and nine U/Th MC ICPMS dates. Our δ18O record from 1640 to 2005 A.D. shows two large, abrupt decreases in inferred precipitation rates that appear to coincide with historical, large volcanic eruptions, superimposed on a general drying trend. The first abrupt increase in aridity occurred synchronously with the Tambora eruption in 1815, followed by another sharp decrease in Meso-American precipitation coincident with the eruption of Krakatau in 1883. Both drying events extend for thirty to forty years after the initial eruption, in good agreement with the 19th century drying and the "volcanic dust veil index" from Lamb (1970). Preliminary analysis indicates that the Meso-Americas may be highly sensitive to volcanic forcing because they receive considerable climate input from both Atlantic (primary) and Pacific (secondary) influences. Past volcanic aerosol model loading patterns from the Mt. Pinatubo eruption produced global and in particular, North Atlatic cooling. This could have moved the Atlantic ITCZ southwards and caused drying in Meso-America. Wavelet analysis of the speleothem data also shows ENSO scale variability. Our results highlight the need for better understanding of the consequences of volcanic eruptions and their patterns of climate variability, in particular during the transition from the Little Ice Age to the modern industrial era.

  1. Aging Behaviour of Al-Mg-Si Alloys Subjected to Severe Plastic Deformation by ECAP and Cold Asymmetric Rolling

    Directory of Open Access Journals (Sweden)

    S. Farè

    2011-01-01

    Full Text Available A study was carried out on aging behaviour of a 6082 alloy processed by two different severe plastic deformation techniques: ECAP and asymmetric rolling. Both techniques were able to generate an ultrafine-grained structure in samples processed at room temperature. It was stated that severe straining promotes marked changes in the postdeformation aging kinetics. The peaks of β′′/β′ transition phases were anticipated and of progressively reduced intensity over the coarse grained alloy. A further peak accounting for onset of recrystallization also appeared in the most severely deformed samples. Full consistency in peak shape and position was found when comparing materials processed by ECAP and asymmetric rolling. Isothermal aging treatments performed at 180°C revealed that in the severely deformed samples, aging became so fast that the hardness curves continuously decreased due to overwhelming effects of structure restoration. On the contrary, aging at 130°C offers good opportunities for fully exploiting the precipitate hardening effects in the ultrafine-grained alloy.

  2. Ice formation and development in aged, wintertime cumulus over the UK : observations and modelling

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-11-01

    Full Text Available In-situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of Radar and Lidar as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE project. A narrow but extensive line (~100 km long of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than ~−8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed near cloud top temperatures (~−7 °C. The role of biological particles, consistent with concentrations observed near the surface, acting as potential efficient high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1 could be produced by powerful secondary ice particle production emphasising the importance of understanding primary ice formation in slightly supercooled clouds.

    Aircraft penetrations at −3.5 °C, showed peak ice crystal concentrations of up to 100 L−1 which together with the characteristic ice crystal habits observed (generally rimed ice particles and columns suggested secondary ice production had occurred. To investigate whether the Hallett-Mossop (HM secondary ice production process could account for these observations, ice splinter production rates were calculated. These calculated rates and observations could only be reconciled provided the constraint that only droplets >24 μm in diameter could lead to splinter production, was relaxed slightly by 2 μm.

    Model simulations of the case study were also performed with the WRF

  3. Simple energy balance model resolving the seasons and the continents - Application to the astronomical theory of the ice ages

    Science.gov (United States)

    North, G. R.; Short, D. A.; Mengel, J. G.

    1983-01-01

    An analysis is undertaken of the properties of a one-level seasonal energy balance climate model having explicit, two-dimensional land-sea geography, where land and sea surfaces are strictly distinguished by the local thermal inertia employed and transport is governed by a smooth, latitude-dependent diffusion mechanism. Solutions of the seasonal cycle for the cases of both ice feedback exclusion and inclusion yield good agreements with real data, using minimal turning of the adjustable parameters. Discontinuous icecap growth is noted for both a solar constant that is lower by a few percent and a change of orbital elements to favor cool Northern Hemisphere summers. This discontinuous sensitivity is discussed in the context of the Milankovitch theory of the ice ages, and the associated branch structure is shown to be analogous to the 'small ice cap' instability of simpler models.

  4. Global warming and ice ages: I. prospects for physics based modulation of global change

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E.; Wood, L.; Hyde, R.

    1996-08-15

    It has been suggested that large-scale climate changes, mostly due to atmospheric injection of greenhouse gases connected with fossil-fired energy production, should be forestalled by internationally-agreed reductions in, e.g., electricity generation. The potential economic impacts of such limitations are obviously large: greater than or equal to $10{sup 11}/year. We propose that for far smaller - less than 1% - the mean thermal effects of greenhouse gases may be obviated in any of several distinct ways, some of them novel. These suggestions are all based on scatterers that prevent a small fraction of solar radiation from reaching all or part of the Earth. We propose research directed to quite near-term realization of one or more of these inexpensive approaches to cancel the effects of the greenhouse gas injection. While the magnitude of the climatic impact of greenhouse gases is currently uncertain, the prospect of severe failure of the climate, for instance at the onset of the next Ice Age, is undeniable. The proposals in this paper may lead to quite practical methods to reduce or eliminate all climate failures.

  5. Ecological changes in Coyotes (Canis latrans in response to the ice age megafaunal extinctions.

    Directory of Open Access Journals (Sweden)

    Julie A Meachen

    Full Text Available Coyotes (Canis latrans are an important species in human-inhabited areas. They control pests and are the apex predators in many ecosystems. Because of their importance it is imperative to understand how environmental change will affect this species. The end of the Pleistocene Ice Age brought with it many ecological changes for coyotes and here we statistically determine the changes that occurred in coyotes, when these changes occurred, and what the ecological consequences were of these changes. We examined the mandibles of three coyote populations: Pleistocene Rancho La Brean (13-29 Ka, earliest Holocene Rancho La Brean (8-10 Ka, and Recent from North America, using 2D geometric morphometrics to determine the morphological differences among them. Our results show that these three populations were morphologically distinct. The Pleistocene coyotes had an overall robust mandible with an increased shearing arcade and a decreased grinding arcade, adapted for carnivory and killing larger prey; whereas the modern populations show a gracile morphology with a tendency toward omnivory or grinding. The earliest Holocene populations are intermediate in morphology and smallest in size. These findings indicate that a niche shift occurred in coyotes at the Pleistocene/Holocene boundary - from a hunter of large prey to a small prey/more omnivorous animal. Species interactions between Canis were the most likely cause of this transition. This study shows that the Pleistocene extinction event affected species that did not go extinct as well as those that did.

  6. The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean

    Science.gov (United States)

    Cronin, T. M.; Hayo, K.; Thunell, R.C.; Dwyer, G.S.; Saenger, C.; Willard, D.A.

    2010-01-01

    A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16-17. ??C between 600 and 950. CE (Common Era), centuries before the classic European Medieval Warm Period (950-1100. CE) and peak warming in the Nordic Seas (1000-1400. CE). A series of centennial warm/cool cycles began about 1000. CE with temperature minima of ~. 8 to 9. ??C about 1150, 1350, and 1650-1800. CE, and intervening warm periods (14-15. ??C) centered at 1200, 1400, 1500 and 1600. CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200. CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800. CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean-atmosphere processes. ?? 2010.

  7. On the choice of ingredients for a theory of the Ice Ages

    CERN Document Server

    Baltensperger, Walter

    2013-01-01

    "With five parameters one can fit an elephant". This provocative statement expresses the fact that when a theory has several adjustable parameters, an agreement with empirical data can be of modest value. What about a theory which contains unobserved objects? This is the subject of this paper. It is motivated by a model of the Ice Ages of the Pleistocene, which postulates a hot planet in an extremely eccentric orbit. This object has many consequences. It is rather well defined by the requirements, that it must not be in conflict with laws of nature, nor with empirical data. It must have sufficient mass to produce a rapid geographic pole shift on Earth after a close flyby at the end of the Pleistocene, and also be small enough to disintegrate at this occasion and to evaporate during the Holocene. These requirements leave hardly any adaptable parameters. In this situation, the agreement with further data, in particular the reverse Dansgaard-Oeschger events of the Holocene, represents a significant support of th...

  8. Conference Summary: First International Conference on Global Warming and the Next Ice Age

    Science.gov (United States)

    Wetzel, Peter J.; Chylek, Petr; Lesins, Glen; Starr, David OC. (Technical Monitor)

    2002-01-01

    The First International Conference on Global Warming and the Next Ice Age was convened in Halifax, Nova Scotia, August 19-24, 2001. The conference program began each day with a 30 minute live classical music performances of truly international quality before the beginning business. Ample time for panel discussions was also scheduled. The general public was invited to attend and participate in a special evening panel session on the last day of the conference. The unusual and somewhat provocative title of the conference was designed to attract diverse views on global climate change. This summary attempts to accurately reflect the tone and flavor of the lively discussions which resulted. Presentations ranged from factors forcing current climate to those in effect across the span of time from the Proterozoic "snowball Earth" epoch to 50,000 years in the future. Although, as should be expected, attendees at the conference arrived with opinions on some of the controversial issues regarding climate change, and no-one openly admitted to a 'conversion' from their initial point of view, the interdisciplinary nature of the formal presentations, poster discussions, panels, and abundant informal discourse helped to place the attendees' personal perspectives into a broader, more diversified context.

  9. A permafrost glacial hypothesis to explain atmospheric CO2 and the ice ages during the Pleistocene

    Directory of Open Access Journals (Sweden)

    R. Tarozo

    2010-10-01

    Full Text Available Over the past several 100 ka glacial-interglacial cycles, the concentration of atmospheric CO2 was closely coupled to global temperature, which indicates the importance of CO2 as a greenhouse gas. The reasons for changes in atmospheric CO2 have mainly been sought in the ocean, yet proxy evidence does not support the notion of increased oceanic carbon storage during glacials. Here we present results from the first permafrost loess sequence in Siberia spanning two glacial cycles (~240 ka, which reveal that permafrost soils repeatedly sequestered huge amounts of terrestrial carbon during glacial periods. This can be explained with permafrost favouring more intensive waterlogging conditions and better preservation of soil organic matter. Terrestrial carbon stored in permafrost soils was released upon warming and provided a powerful feedback mechanism for the glacial terminations. We outline a "permafrost glacial hypothesis" building on integrated annual insolation forcing, which readily explains the observed succession of the ice ages during the Pleistocene, including the mid-Pleistocene transition.

  10. Global Warming and Ice Ages: I. Prospects For Physics Based Modulation of Global Change

    Science.gov (United States)

    Teller, E.; Wood, L.; Hyde, R.

    1996-08-15

    It has been suggested that large-scale climate changes, mostly due to atmospheric injection of greenhouse gases connected with fossil-fired energy production, should be forestalled by internationally-agreed reductions in, e.g., electricity generation. The potential economic impacts of such limitations are obviously large: greater than or equal to $10{sup 11}/year. We propose that for far smaller - less than 1% - the mean thermal effects of greenhouse gases may be obviated in any of several distinct ways, some of them novel. These suggestions are all based on scatterers that prevent a small fraction of solar radiation from reaching all or part of the Earth. We propose research directed to quite near-term realization of one or more of these inexpensive approaches to cancel the effects of the greenhouse gas injection. While the magnitude of the climatic impact of greenhouse gases is currently uncertain, the prospect of severe failure of the climate, for instance at the onset of the next Ice Age, is undeniable. The proposals in this paper may lead to quite practical methods to reduce or eliminate all climate failures.

  11. Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica.

    Science.gov (United States)

    Lozano-García, Ma del Socorro; Caballero, Margarita; Ortega, Beatriz; Rodríguez, Alejandro; Sosa, Susana

    2007-10-09

    The causes of late-Holocene centennial to millennial scale climatic variability and the impact that such variability had on tropical ecosystems are still poorly understood. Here, we present a high-resolution, multiproxy record from lowland eastern Mesoamerica, studied to reconstruct climate and vegetation history during the last 2,000 years, in particular to evaluate the response of tropical vegetation to the cooling event of the Little Ice Age (LIA). Our data provide evidence that the densest tropical forest cover and the deepest lake of the last two millennia were coeval with the LIA, with two deep lake phases that follow the Spörer and Maunder minima in solar activity. The high tropical pollen accumulation rates limit LIA's winter cooling to a maximum of 2 degrees C. Tropical vegetation expansion during the LIA is best explained by a reduction in the extent of the dry season as a consequence of increased meridional flow leading to higher winter precipitation. These results highlight the importance of seasonal responses to climatic variability, a factor that could be of relevance when evaluating the impact of recent climate change.

  12. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Science.gov (United States)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  13. Ice Age Reboot: Thermohaline Circulation Crisis during the Mid-Pleistocene Transition

    Science.gov (United States)

    Pena, L.; Goldstein, S. L.

    2014-12-01

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41- to 100-kyr cycles and developed higher amplitude climate variability. Because it took place without significant changes in the Milankovitch forcing, this fundamental change must reflect either non-linear responses of the climate system to these external forcings, or internal changes in the ocean-atmosphere-cryosphere system that led to longer periodicities and more intense glacial periods. We document using Nd isotopes a major disruption of the ocean thermohaline circulation (THC) system during the MPT between MIS 25-21 at ~950-860 ka, which effectively marks the first 100-kyr cycle, including an exceptional weakening through critical interglacial MIS 23 at ~900 ka. The data are from ODP Sites 1088 (41°8.163'S, 13°33.77'E, 2082m) and 1090 (42°54.82'S, 8°53.98E', 3702m) in the SE Atlantic Subantarctic Zone, near the upper and lower boundaries of NADW and Circumpolar Deep Water (CDW). Given evidence for nearly stable NADW and North Pacific Water (NPW) ɛNd-values over the last 2 Ma, we interpret the ɛNd variations to reflect changes in the NADW:NPW mixing fractions. During the studied pre-MPT 41-kyr world (MIS 31-25, 1,100-950 ka), at both sites the differences in glacial and interglacial ɛNd-values are small, indicating strong glacial as well as interglacial export of NADW. A major weakening of NADW export occurred during MIS 24-22, including MIS 23, which is unique as the only known interglacial in which the THC did not strengthen, and thus can be considered as a 'trans-glacial' period. The recovery into the post-MPT 100-kyr world is characterized by continued weak glacial THC. We conclude that the MPT ocean circulation crisis 'rebooted' the pacing and intensity of ice ages and facilitated the coeval drawdown of atmospheric CO2 and high latitude ice sheet growth, generating the conditions that stabilized 100-kyr cycles.

  14. Architecture and structural evolution of an early Little Ice Age terminal moraine at the surge-type glacier Múlajökull, Iceland

    Science.gov (United States)

    Benediktsson, Ívar &Oum; lrn; Schomacker, Anders; Johnson, Mark D.; Geiger, Alessa J.; Ingólfsson, Ólafur; Gudmundsdóttir, Esther Ruth

    2015-09-01

    The internal architecture and structural evolution of the Arnarfellsmúlar terminal moraine at Múlajökull, a surge-type glacier in central Iceland, is described in order to demonstrate submarginal and proglacial glaciotectonic processes during glacier surging, as well as constraining the age of the maximum extent of the glacier. The moraine is 4-7 m high, 50-100 m wide, and composed of a highly deformed sequence of loess, peat, and tephra that is draped by till up to the crest. The internal architecture is dominated by steep, high-amplitude overturned folds and thrusts in the crest zone but open, low-amplitude folds on the distal slope. Section balancing suggests a basal detachment (décollement) depth of 1.4 m and a total horizontal shortening of around 59%. This implies that the glacier coupled to the foreland about 70 m up glacier from its terminal position to initiate the formation of the moraine. The structural evolution is polyphase in that the formation commenced with low-amplitude open folding of the foreland, followed by overfolding and piggyback thrusting. Radiocarbon dating and analysis of tephra layers, along with historical references, indicate that the most likely time of moraine formation was between A.D. 1717 and 1760, which suggests that Múlajökull had its Little Ice Age maximum and most extensive surge earlier than many other surge-type glaciers in Iceland.

  15. Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2012-06-01

    Full Text Available In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE project. A narrow but extensive line (~100 km long of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than −8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (−7.5 °C.

    The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1 could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L−1 was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM is the likely source of the secondary ice.

    Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM. These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them

  16. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    Science.gov (United States)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  17. Coupling between atmospheric CO2 and temperature during the onset of the Little Ice Age

    OpenAIRE

    Hoof, T.B. van

    2004-01-01

    Present day global warming is primarily caused by the greenhouse effect of the increased CO2 emissions since the onset of the industrial revolution. A coupling between temperature and the greenhouse gas CO2 has also been observed in several ice-core records on a glacial-interglacial timescale as well as on a millennial timescale during the glacials. In marked contrast, no significant ice-derived CO2 fluctuations occur on centennial time scales contemporaneously with well-documented cooling ev...

  18. Historical reconstruction of storms in the West of France in the early Little Ice Age.

    Science.gov (United States)

    Athimon, Emmanuelle; Maanan, Mohamed

    2016-04-01

    This research offers to : 1) identify, as accurately as possible, the storms and the coastal flooding in the early Little Ice Age, 2) expose their impacts on the environment and populations, 3) query the « resilience » and adaptation of medieval and modern coastal societies in the West of France by presenting their perceptions and reactions. The space-time frame of the study is located in France, from Brittany to Gascony, between the xivth and the xvith century. Sensitive and brittle, this area is regularly battered by violent winds. It also undergoes episodic sea flooding that can cause ruptures of balance. Hence, the historical reconstruction and analysis of storms and coastal flooding in a long period appear fundamental. A thorough knowledge of past meteo-marine hazards allows to recreate a link with the territory, particularly through the (re)construction of an effective memory of these phenomena. This process is essential however difficult because of many documentary gaps. They are due to historical contingencies such as wars, French Revolution, or archival disasters like the fire of the Chamber of Accounts in Paris in 1737. Many limits must also be taken into account and discussed as inaccurate dates, exaggerated or undervalued descriptions, strict spatial demarcation almost impossible to achieve for the xivth-xvith centuries. Furthermore, during this period, no death toll, material and economic balance was done after a climate disaster. Yet, many historical records - especially narrative sources, books of accounts or cities repairs - expose the impacts of storms and marine submersion on agriculture, environment, infrastructures, etc. For instance, a violent storm hit the coast on June 24th 1452. It washed away part of the roof of a castle on Noirmoutier island and knocked down the bell towers of two churches in Angers. Storms and sea flooding have affected activities, constructions and populations' lives. They have therefore forced societies to adapt

  19. Frequency of angular deformities of the knee joint of school children in relation to sex and ages

    Directory of Open Access Journals (Sweden)

    Jovović Veselin

    2012-01-01

    Full Text Available The subject of this research is the angular deformity of the knee joint of younger adolescents. The aim of the research was to measure the frequency, structure and size of static disorders of the knee joint in the frontal plane, depending on sex and calendar age. The sample comprised 251 respondents, primary school pupils, 10, 12 and 14 years of age. This is one of the most sensitive periods in the development of young pupils. It is characterized by a sudden change in the dynamics of living and also by an increased occurrence of postural disorders (Radisavljević, 2001; Kosinac, 2005. To estimate the status of the knee joint, we selected two variables: X-shaped legs (Genua valga and O-shaped legs (Genua vara. Variables for estimating the status and structure of existing deformities were subjected to the somatoscopy method and to the test of 'voluntary' muscle contraction (Radisavljević, 2001; Jovović, 1999. The greatest angular frequency of knee joint disorders is at the age of 12 for girls and at the age of 14 for boys. O-shaped legs are present in a slightly higher percentage in both sexes and all three age groups. The greatest frequencies of deviations from normal are functional disorders, which can be successfully corrected in a large extent by using active and passive measures.

  20. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age

    Science.gov (United States)

    Sherwood, Owen A.; Guilderson, Thomas P.; Batista, Fabian C.; Schiff, John T.; McCarthy, Matthew D.

    2014-01-01

    The North Pacific subtropical gyre (NPSG) plays a major part in the export of carbon and other nutrients to the deep ocean. Primary production in the NPSG has increased in recent decades despite a reduction in nutrient supply to surface waters. It is thought that this apparent paradox can be explained by a shift in plankton community structure from mostly eukaryotes to mostly nitrogen-fixing prokaryotes. It remains uncertain, however, whether the plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. Here we analyse records of bulk and amino-acid-specific 15N/14N isotopic ratios (δ15N) preserved in the skeletons of long-lived deep-sea proteinaceous corals collected from the Hawaiian archipelago; these isotopic records serve as a proxy for the source of nitrogen-supported export production through time. We find that the recent increase in nitrogen fixation is the continuation of a much larger, centennial-scale trend. After a millennium of relatively minor fluctuation, δ15N decreases between 1850 and the present. The total shift in δ15N of -2 per mil over this period is comparable to the total change in global mean sedimentary δ15N across the Pleistocene-Holocene transition, but it is happening an order of magnitude faster. We use a steady-state model and find that the isotopic mass balance between nitrate and nitrogen fixation implies a 17 to 27 per cent increase in nitrogen fixation over this time period. A comparison with independent records suggests that the increase in nitrogen fixation might be linked to Northern Hemisphere climate change since the end of the Little Ice Age.

  1. The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast

    Directory of Open Access Journals (Sweden)

    I. Polovodova Asteman

    2012-10-01

    Full Text Available We discuss the climatic and environmental changes during the last millennium in NE Europe based on a ca. 8-m long high-resolved and well-dated marine sediment record from the deepest basin of Gullmar Fjord (SW Sweden. According to the 210Pb- and 14C-datings, the record includes the period of the late Holocene characterised by anomalously cold summers and well known as the Little Ice Age (LIA. Using benthic foraminiferal stratigraphy, lithology, bulk sediment geochemistry and stable carbon isotopes we reconstruct various phases of this cold period, identify its timing in the study area and discuss the land-sea interactions occurring during that time. The onset of the LIA is indicated by an increase in cold-water foraminiferal species Adercotryma glomerata at ~ 1350 AD. The first phase of the LIA was characterised by a stormy but milder climate, which is indicated by a presence of Nonionella iridea. Maximum abundances of this species are likely to mirror a short and abrupt warming event at ~ 1600 AD. It is likely that due to land use changes in the second part of the LIA there was an increased input of terrestrial organic matter to the fjord, which is indicated by lighter δ13C values and an increase of detritivorous and omnivorous species as Textularia earlandi and Eggerelloides scaber. The climate deterioration during the climax of the LIA (1675–1704 AD, as suggested by the agglutinated species, caused some carbonate dissolution, variations in primary productivity and a decline of N. iridea dependant on fresh phytodetritus. It is also assumed that an increase of Hyalinea balthica could be indicative of climate warming trends at 1600–1743 and 1813–1940 AD.

  2. The Little Ice Age and its Spatial Variability across the Balkans

    Science.gov (United States)

    Kulkarni, C.; Peteet, D. M.; Boger, R. A.

    2015-12-01

    Using biological proxies (pollen, spores, and charcoal), geochemical signals through X-ray fluorescence, and AMS 14C based chronology, we present a correlation between two new high resolution Little Ice Age (LIA) records from the Central Balkans that are part of one of the least studied regions of Europe. The sediments extracted from a western sinkhole and central Serbian oxbow lake are analyzed at 8-10-cm intervals to capture the nature and magnitude of the LIA at a resolution of 20 years. During the 15th-19th CE, indigenous tree (e.g. Quercus, Acer, Pinus) and herbaceous (e.g. Poaceae, Chenopodiaceae, Artemisia) pollen from these records demonstrate fluctuations in woodland-grassland dynamics. While tree populations from Central Serbia remain comparatively stable (40-60%), the trees of western Serbia vacillate drastically between 15% and 50%. Similarly, central Serbian grasses show variations of ~18-36% whereas the western Serbian grass populations exhibit abrupt oscillations between high (55%) and low (19%) percentages. As a proxy for surface erosion and clastic input into the lakes, the 1-cm resolution potassium and titanium counts are in strong agreement with varying herbaceous taxa. These variations in ecological signals across the cores can account for local factors including altitude, terrain exposure, soils etc., however, the dynamic human component of the landscape is evident through crop pollen (e.g. Cerealia, Juglans) and microscopic charcoal highlighting the dominant role of people in ecological changes. Although the two sites show certain differences in charcoal concentration, extremely high charcoal indicates accelerated land clearance between the 15th and 17th CE. Until the beginning of 18th CE, the cultivars (e.g. Secale, Triticum) occur with very low percentages and then peak to suggest improved agriculture in the region. In the post-LIA era, the 20th CE exhibits increased arboreal percentages and declining grasslands in both the two Central

  3. DEVELOPMENT OF GLACIERS OF MOUNT ELBRUS AFTER THE LITTLE ICE AGE

    Directory of Open Access Journals (Sweden)

    E. A. Zolotarev

    2012-01-01

    Full Text Available SummaryThe results of remote monitoring of the greatest inEuropemountain glaciation of Elbrus are covered for 120 years by instrumental survey (1887–2007 and lichenometric survey in 1986. The materials of stereoscopic digital photo survey of the whole glaciation with terrain resolution of2.5 metersproduced by space imaging system Cartosat-1 (IRS-P5 in 2007 were compared with the same year materials of phototheodolite survey of south glaciation slope (6 glaciers in total. Results of comparison showed that the data received from Cartosat-1 can be used for monitoring of glaciers with long enough interval of time between repeated surveys (from 10 years and more, and also is suitable for updating 1:25 000 topographic maps of mountain areas. The leading role of Dzhikiugankez plateau in changes was revealed. Over the last 50 years (1957–2007 the Dzhikiugankez share in change of the glaciation area as a whole has reached 45 %. The method of glacier dynamics research, based on digital technologies of image processing and assuming first of all visual deciphering of changes and in the second – measurement of parameters of changes is offered. The quantitative data of Elbrus glaciation reduction since the middle of the XIX century do not confirm the hypothesis of the global climate warming beginning just in the second half of XX century as a result of anthropogenic greenhouse gases effect. Contrarily in 1970s, many Elbrus glaciers advanced. Elbrus glaciation area reduction is occurring practically evenly through time and is alternated with short-term periods of stationary state and advance. These facts suggest that global climate warming, which alternated with short-term cooling periods, began after the end of the Little Ice Age and was most likely due to natural rather than anthropogenic causes.

  4. Morphological changes in Alpine rivers following the end of the Little Ice Age

    Science.gov (United States)

    Marchese, Enrico; Scorpio, Vittoria; Fuller, Ian; McColl, Samuel; Comiti, Francesco

    2017-10-01

    This work investigates the channel changes of Alpine rivers from the end of the Little Ice Age (1850s) to the 1950s, with the aim to determine the possible role of climatic variations occurred in this period before the onset of anthropic pressures (i.e., dams, check-dams, bank protections, and gravel mining). The research was conducted on 17 river catchments of South Tyrol (northern Italy), glaciated and unglaciated. A multitemporal GIS analysis approach was adopted to assess the morphological changes (in terms of channel width and pattern) from three different sources: (i) Austrian cadastral map (1858), (ii) maps from the Italian Institute of Military Geography (1917-1925), and (iii) two aerial photo sets taken in 1945 and 1954. The analysed river network (a total of 480 km) was subdivided into 162 morphologically homogeneous reaches (76 confined, 81 partly confined, and 5 unconfined), with lengths ranging from 630 to 5500 m, slope from 0.3 to 24%, and drained area from 20 to 4000 km2. The statistical relationships among morphological changes and reach- and basin-scale factors were analysed by univariate and multivariate methods, and the relationships between width changes and 36 controlling factors were explored using Principal Component Analysis. The variability in width and morphological pattern changes were very pronounced between and within single rivers, highlighting the value of such a large data set. Overall, the analysed rivers varied their morphological pattern, mostly exhibiting a shift from multithread/transitional to single-thread patterns, but unchanged planform types were also common. Variations in channel width varied substantially among the analysed rivers, which featured narrowing (slightly prevailing) and widening (the least common) as well as many cases of very limited changes. Channel width variations appear statistically, although weakly, related to some morphometric variables; and significant differences emerge comparing glaciated vs

  5. Microstructural study of thermally aged duplex stainless steel deformation and fracture modes; Etude microstructurale des modes de deformation et de rupture d`un acier austenoferritique vieilli thermiquement

    Energy Technology Data Exchange (ETDEWEB)

    Verhaeghe, B. [Institut national polytechnique, 38 - Grenoble (France)

    1996-12-31

    The aim of this work is to study the micro mechanisms of deformation and rupture of an austeno ferritic stainless steel (Z 3 CND 22-10 M) with 33 % of ferrite. It is studied after ageing 1 000 h at 400 deg. C and 8 000 h at 350 deg. C and compared to the `as received` state. During ageing the ferritic phase undergoes microstructural evolutions which affects its properties. The two ageing treatments lead to roughly the same level of embrittlement. Microstructural characterisation shows that both phases percolate and exhibit orientation relationships close to Kurdjumov-Sachs ones. Mechanical properties of the steel were characterised for different ageing treatments at room temperature and at 320 deg. C. The interface is particularly strong and ensures the load transfer to ferrite even if this phase contains cleavage cracks. Moreover the interface does not oppose slip transmission which is instead controlled by localised glide in the ferritic phase. If activated slip systems of austenite are common with ferrite, slip transmission from austenite to ferrite indeed occurs through the=e interface. If they are not common, dislocations cross-slip back into the austenite. At 320 deg. C cross-slip occurs even far from the interface. Damage starts by nucleation in ferrite of cleavage cracks which propagate between austenite islands. Crack propagation is controlled by stretching of austenite ligaments. The material breaks by ductile tearing of austenite islands when the crack eventually percolates in the ferritic phase. The ductility of the material can be correctly describer using a simple model that takes into account the tearing-off the ductile-phase. (author). 153 refs.

  6. Increase in spinal deformity surgery in patients age 60 and older is not associated with increased complications.

    Science.gov (United States)

    Sing, David C; Berven, Sigurd H; Burch, Shane; Metz, Lionel N

    2017-05-01

    Surgical treatment for adult spinal deformity improves patient quality of life; however, trends in surgical utilization in the elderly, who may be at higher risk for complications, remain unclear. To identify trends in the utilization of adult deformity and determine complication rates among older patients. This is a retrospective database analysis. The Nationwide Inpatient Sample database was queried from 2004 to 2011 to identify adult patients who underwent spinal fusion of eight or more levels using International Classification of Diseases, Ninth Revision (ICD-9) coding. Incidence of surgery, complication rates, length of stay, and total hospital charges. The incidence of surgery was normalized to United States census data by age group. Trends in complications, length of stay, and inflation-adjusted hospital charges were determined using linear regression and Cochran-Armitage trend testing. An estimated 29,237 patients underwent adult spinal deformity surgery with an increase from 2,137 to 5,030 cases per year from 2004 to 2011. Surgical incidence among patients 60 years and older increased from 1.9 to 6.5 cases per 100,000 people from 2004 to 2011 (pincreased from 0.59 to 0.93. Linear regression revealed that the largest increase in surgical utilization was for patients aged 65-69 years with an increase of 0.68 patients per 100,000 people per year (pincreased with age (≥60 vs. increased from $171,517 in 2004 to $303,479 in 2011 (pincreased 3.4-fold among patients ≥60 years from 2004 to 2011, with an associated 1.8-fold increase in hospital charges. Although the exact reasons for the striking increase in hospital charges remain unclear, some of the increase is likely related to decreasing reimbursement of charges by payors over the same period of time. The large majority of cases were performed in large academic centers, and growth in deformity trained spine specialists in these centers may have contributed to this trend. Despite the increased utilization of

  7. Little ice age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia, recorded in maps, air photographs and dendrochronology

    Directory of Open Access Journals (Sweden)

    A. Rivera

    2011-10-01

    Full Text Available Glaciar Jorge Montt (48°20' S/73°30' W, one of the main tidewater glaciers of the Southern Patagonian Icefield (SPI, has experienced the fastest frontal retreat observed in Patagonia during the past century, with a recession of 19.5 km between 1898 and 2011. This record retreat uncovered trees overridden during the Little Ice Age (LIA advance of the glacier. Samples of these trees were dated using radiocarbon methods, yielding burial ages between 460 and 250 cal yr BP. The dendrochronology and maps indicate that Glaciar Jorge Montt was at its present position before the beginning of the LIA, in concert with several other glaciers in Southern Patagonia, and reached its maximum advance position between 1650 and 1750 AD. The post-LIA retreat is most likely triggered by climatically induced changes during the 20th century, however, Glaciar Jorge Montt has responded more dramatically than its neighbours. The retreat of Jorge Montt opened a new fjord 19.5 km long, and up to 391 m deep, with a varied bathymetry well correlated with glacier retreat rates, suggesting that dynamic responses of the glacier are at least partially connected to near buoyancy conditions at the ice front, resulting in high calving fluxes, accelerating thinning rates and rapid ice velocities.

  8. Spatial Distribution of Firn Close-Off Depth, Delta Age, and Depth-Integrated Porosity in the Greenland Ice Sheet

    Science.gov (United States)

    Vo, H.; Stevens, C. M.; Yoon, M.; Waddington, E. D.

    2014-12-01

    Ice cores in dry snow zones can provide a unique record of Earth's past climate history and atmospheric composition for up to 800,000 years. However, in order to interpret ice-core data accurately, scientists must understand the entire firnification process. In addition, satellite-based measurements of ice-sheet elevation changes must be accompanied by estimates of the air content, or depth-integrated porosity of the firn, in order to infer rates of mass gain or loss. The firn physics group at University of Washington is developing an open source Community Firn Model to simulate firn densification and gas-transport processes. We have calculated the spatial distribution of depth and age of the firn at pore close-off, as well as the depth-integrated porosity, using gridded mean-annual temperature over Greenland over a 173 year period together with gridded snow accumulation-rate data (Box). Our results can contribute to a better understanding of past climate changes, and knowing the close-off depth and age will provide guidelines for future core sites for investigation of pre-industrial levels of trace gases. Knowing the depth-integrated porosity will allow more accurate mass-loss estimates, and to future sea-level predictions.

  9. Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA

    Science.gov (United States)

    Rech, Jason A.; Nekola, Jeffrey C.; Pigati, Jeffrey S.

    2012-01-01

    Analysis of terrestrial gastropods that underlie the late Pleistocene Two Creeks forest bed (~ 13,800–13,500 cal yr BP) in eastern Wisconsin, USA provides evidence for a mixed tundra-taiga environment prior to formation of the taiga forest bed. Ten new AMS 14C analyses on terrestrial gastropod shells indicate the mixed tundra-taiga environment persisted from ~ 14,500 to 13,900 cal yr BP. The Twocreekan climatic substage, representing ice-free conditions on the shore of Lake Michigan, therefore began near the onset of peak warming conditions during the Bølling–Allerød interstadial and lasted ~ 1000 yr, nearly 600 yr longer than previously thought. These results provide important data for understanding the response of continental ice sheets to global climate forcing and demonstrate the potential of using terrestrial gastropod fossils for both environmental reconstruction and age control in late Quaternary sediments.

  10. Net ecosystem production in a Little Ice Age moraine: the role of plant functional traits

    Science.gov (United States)

    Varolo, E.; Zanotelli, D.; Tagliavini, M.; Zerbe, S.; Montagnani, L.

    2015-07-01

    Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C) budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco), Gross Primary Production (GPP), annual cumulated Net Ecosystem Exchange (NEE), and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy) was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of -46.4 ± 35.5 g C m-2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m-2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m-2, while CAM rosettes showed 2.06 ± 0.23 kg C m-2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species determine large differences in

  11. Net ecosystem production in a Little Ice Age moraine: the role of plant functional traits

    Directory of Open Access Journals (Sweden)

    E. Varolo

    2015-07-01

    Full Text Available Current glacier retreat allows vast mountain ranges available for vegetation establishment and growth. Little is known about the effective carbon (C budget of these new ecosystems and how the presence of different vegetation communities, characterized by their specific physiology and life forms influences C fluxes. In this study, using a comparative analysis of the C fluxes of two contrasting vegetation types, we intend to evaluate if the different physiologies of the main species have an effect on Ecosystem Respiration (Reco, Gross Primary Production (GPP, annual cumulated Net Ecosystem Exchange (NEE, and long-term carbon accumulation in soil. The NEE of two plant communities present on a Little Ice Age moraine in the Matsch glacier forefield (Alps, Italy was measured over two growing seasons. They are a typical C3 grassland, dominated by Festuca halleri All. and a community dominated by CAM rosettes Sempervivum montanum L. on rocky soils. Using transparent and opaque chambers, we extrapolated the ecophysiological responses to the main environmental drivers and performed the partition of NEE into Reco and GPP. Soil samples were collected from the same site to measure long-term C accumulation in the ecosystem. The two communities showed contrasting GPP but similar Reco patterns and as a result significantly different in NEE. The grassland acted mainly as a carbon sink with a total cumulated value of −46.4 ± 35.5 g C m−2 NEE while the plots dominated by the CAM rosettes acted as a source with 31.9 ± 22.4 g C m−2. In spite of the NEE being different in the two plant communities, soil analysis did not reveal significant differences in carbon accumulation. Grasslands showed 1.76 ± 0.12 kg C m−2, while CAM rosettes showed 2.06 ± 0.23 kg C m−2. This study demonstrates that carbon dynamics of two vegetation communities can be distinct even though the growing environment is similar. The physiological traits of the dominant species

  12. The Medieval Climate Anomaly and the Little Ice Age in the Eastern Ecuadorian Andes

    Directory of Open Access Journals (Sweden)

    M.-P. Ledru

    2012-09-01

    Full Text Available To better characterize the climate variability of the last millennium in the high Andes, we analysed the pollen content of a 1100-yr-old sediment core collected in a bog located at 3800 m a.s.l. in the páramo in the Eastern Cordillera in Ecuador. An upslope convective index based on the ratio between cloud transported pollen from the andean forest to the bog (T and Poaceae pollen frequencies, related to the edaphic moisture of the páramo (P, was defined to distinguish the atmospheric moisture from the soil moisture content of the páramo. Results showed that between 900 AD and 1230 AD, the Medieval Climate Anomaly interval was warm and moist with high T/P index linked to a high ENSO variability and a weak South American Summer Monsoon (SASM activity. Between 1230 and 1650 AD, a dry climate prevailed characterized by an abrupt decrease in the T/P index related to lower ENSO variability with significant impact on the floristic composition of the páramo. During the Little Ice Age, two phases were observed, first a wet phase between 1650 and 1750 AD linked to low ENSO variability in the Pacific and warm south equatorial Atlantic SSTs favored the return of a wet páramo, and a cold and dry phase between 1750 and 1810 AD associated with low ENSO variability and weak SASM activity resulting in drying of the páramo. The Current Warm Period marks the beginning of a climate characterized by high convective activity, the highest in the last millennium, and weaker SASM activity modifying the water stock of the páramo. Our results show that the páramo is progressively loosing its capacity for water storage and that the variability of both tropical Pacific and Atlantic SSTs matters for Andean climate patterns although many teleconnection mechanisms are still poorly understood.

  13. The Medieval Climate Anomaly and the Little Ice Age in the eastern Ecuadorian Andes

    Directory of Open Access Journals (Sweden)

    M.-P. Ledru

    2013-02-01

    Full Text Available To better characterize the climate variability of the last millennium in the high Andes, we analyzed the pollen content of a 1150-yr-old sediment core collected in a bog located at 3800 m a.s.l. in the páramo in the eastern Cordillera in Ecuador. An upslope convective index based on the ratio between cloud transported pollen from the Andean forest to the bog (T and Poaceae pollen frequencies, related to the edaphic moisture of the páramo (P, was defined. This index was used to distinguish changes in the atmospheric moisture from the soil moisture content of the páramo and their associated patterns of interdecadal El Niño–Southern Oscillation (ENSO variability and South American summer monsoon (SASM activity. Results show that between 850 and 1250 AD, the Medieval Climate Anomaly interval was warm and moist with a high transported pollen/Poaceae pollen (T/P index linked to high ENSO variability and weak SASM activity. Between 1250 and 1550 AD, a dry climate prevailed, characterized by an abrupt decrease in the T/P index and therefore no upslope cloud convection, related to lower ENSO variability and with significant impact on the floristic composition of the páramo. During the Little Ice Age, two phases were observed: first, a wet phase between 1550 and 1750 AD linked to low ENSO variability in the Pacific and warm south equatorial Atlantic sea surface temperatures (SSTs favored the return of a wet páramo, and then a cold and dry phase between 1750 and 1800 AD associated with low ENSO variability and weak SASM activity resulted in drying of the páramo. The current warm period marks the beginning of a climate characterized by high convective activity – the highest in the last millennium – and weaker SASM activity modifying the water storage of the páramo. Our results show that the páramo is progressively losing its capacity for water storage and that the interdecadal variability of both tropical Pacific and Atlantic SSTs matter for

  14. A refined TALDICE-1a age scale from 55 to 112 ka before present for the Talos Dome ice core based on high-resolution methane measurements

    Directory of Open Access Journals (Sweden)

    S. Schüpbach

    2011-09-01

    Full Text Available A precise synchronization of different climate records is indispensable for a correct dynamical interpretation of paleoclimatic data. A chronology for the TALDICE ice core from the Ross Sea sector of East Antarctica has recently been presented based on methane synchronization with Greenland and the EDC ice cores and δ18Oice synchronization with EDC in the bottom part (TALDICE-1. Using new high-resolution methane data obtained with a continuous flow analysis technique, we present a refined age scale for the age interval from 55–112 thousand years (ka before present, where TALDICE is synchronized with EDC. New and more precise tie points reduce the uncertainties of the age scale from up to 1900 yr in TALDICE-1 to below 1100 yr over most of the refined interval and shift the Talos Dome dating to significantly younger ages during the onset of Marine Isotope Stage 3. Thus, discussions of climate dynamics at sub-millennial time scales are now possible back to 110 ka, in particular during the inception of the last ice age. Calcium data of EDC and TALDICE are compared to show the impact of the refinement to the synchronization of the two ice cores not only for the gas but also for the ice age scale.

  15. Coupling between atmospheric CO2 and temperature during the onset of the Little Ice Age

    NARCIS (Netherlands)

    Hoof, T.B. van

    2004-01-01

    Present day global warming is primarily caused by the greenhouse effect of the increased CO2 emissions since the onset of the industrial revolution. A coupling between temperature and the greenhouse gas CO2 has also been observed in several ice-core records on a glacial-interglacial timescale as we

  16. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    NARCIS (Netherlands)

    Khan, S. A.; Kjeldsen, K. K.; Kjaer, K. H.; Bevan, S.; Luckman, A.; Aschwanden, A.; Bjork, A. A.; Korsgaard, N. J.; Box, J. E.; van den Broeke, M.; van Dam, T. M.; Fitzner, A.

    2014-01-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the

  17. Excess heat in the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-10-01

    Full Text Available Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this excess heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  18. Excess heat in the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Science.gov (United States)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2014-10-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this excess heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  19. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Science.gov (United States)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-02-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  20. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    Science.gov (United States)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern

  1. A refined TALDICE-1a age scale from 55 to 112 ka before present for the Talos Dome ice core based on high-resolution methane measurements

    Directory of Open Access Journals (Sweden)

    S. Schüpbach

    2011-04-01

    Full Text Available A precise synchronization of different climate records is indispensable for a correct dynamical interpretation of paleoclimatic data. A chronology for the TALDICE ice core from the Ross Sea sector of East Antarctica has recently been presented based on methane synchronization with Greenland and the EDC ice cores and δ18Oice synchronization with EDC in the bottom part (TALDICE-1. By the use of new high-resolution methane data, obtained with a continuous flow analysis technique, we present a refined age scale for the age interval from 55–112 ka before present where TALDICE is synchronized with EDC. New and more precise tie points reduce the uncertainties of the age scale from up to 2000 yr in TALDICE-1 to below 1000 yr over most of the refined interval. Thus, discussions of climate dynamics at sub-millennial time scales are now possible back to 110 ka, in particular during the inception of the last ice age. Calcium data of EDC and TALDICE are compared to show the impact of the refinement to the synchronization of the two ice cores not only for the gas but also for the ice age scale.

  2. A volcanically triggered regime shift in the subpolar North Atlantic ocean as a possible origin of the Little Ice Age

    Directory of Open Access Journals (Sweden)

    C. F. Schleussner

    2012-12-01

    Full Text Available Among the climatological events of the last millennium, the Northern Hemisphere Medieval Climate Anomaly (MCA, succeeded by the Little Ice Age (LIA are of exceptional importance. The origin of these regional climate anomalies remains however a subject of debate and besides external influences like solar and volcanic activity, internal dynamics of the climate system might have also played a dominant role. Here, we present transient last millennium simulations of the fully-coupled model Climber 3α forced with stochastically reconstructed wind fields. Our results indicate that short-lived volcanic eruptions might have triggered a cascade of sea-ice – ocean feedbacks in the North Atlantic, ultimately leading to a persistent regime shift in the ocean circulation. We find that an increase in the Nordic Sea sea-ice extent on decadal timescales as a consequence of major volcanic eruptions leads to a spin-up of the subpolar gyre (SPG and a weakened Atlantic Meridional Overturning Circulation, eventually causing a persistent, basin-wide cooling. These results highlight the importance of regional climate feedbacks such as a regime shift in the subpolar gyre circulation for past and future climate.

  3. Cleft deformities in adults and children aged over six years in Nigeria: Reasons for late presentation and management challenges

    Directory of Open Access Journals (Sweden)

    Wasiu L Adeyemo

    2009-11-01

    Full Text Available Wasiu L Adeyemo1, Mobolanle O Ogunlewe1, Ibironke Desalu2, Akinola L Ladeinde1, Bolaji O Mofikoya3, Michael O Adeyemi4, Adegbenga A Adepoju4, Olufemi O Hassan41Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, 2Department of Anaesthesia, 3Department of Surgery, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria; 4Department of Oral and Maxillofacial Surgery, Lagos University Teaching Hospital, Lagos, NigeriaAbstract: In developing countries, untreated cleft lips and palates are found with increasing frequency and patients often present to the surgeon far past the optimal time for closure of the cleft deformities. A prospective study was conducted between March 2007 and September 2009, to identify the reasons and treatment challenges of delayed presentation of cleft lip and palate deformities at the Lagos University Teaching Hospital, Nigeria. Out of a total of 150 patients with cleft defects during the period, 43 (28.7% were adults and children aged over six years. The mean age of these patients at the time of presentation was 17.3 years. The most common reasons for late presentation were lack of money (56.7%, lack of health care services nearby (18.4%, and lack of awareness of treatment availability (13.3%. Common challenges in these patients included surgical, orthodontic, speech, anesthetic, and psychological. Although adult clefts were significantly enlarged in three dimensions the anatomic landmarks were easier to discern than in an infant. However, extensive soft tissue dissection in adult cleft lip repair resulted in significant postoperative edema. Closure of wide palatal cleft often required the use of adjunct intraoral flaps. Despite late presentation, surgical outcome of these patients was satisfactory and comparable to cleft repair in infants.Keywords: cleft deformities, adults, adolescents, late presentation, management, challenges

  4. THE SAND WEDGE AND MIRABILITE OF THE LAST ICE AGE AND THEIR PALEOCLIMATIC SIGNIFICANCE IN HEXI CORRIDOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sand wedges in Hexi Corridor occur in the alluvial gravel stratum of bajada and high terraces. The 14C ages of eolian sand in sand wedges prove that they formed during the Last Ice Age, with the mean annual air temperature about 5.6℃. The common 14C and AMS 14C dating ages of terrestrial branch relicts in Huahai clay-mirabilite interlayer are ( 11 600 ±280) a B. P. and (1118 ±54) a B.P. respectively, proving that the mirabilite formed at the cold episode of the Last Glacial Maximum(LGM) and Younger Dryers(YD) in Huahai Lake. It is pointed out that the mean annual air temperature in Hexi Corridor during LGM was about - 3℃ - - 7℃ ,11℃ - 15℃ lower than that of present, and that during YD was about 0℃ - 2℃,6℃ - 8℃ lower than at present. This decreasing temperature values are generally coincident with those inferred by pollen, sand wedge and ice core in the northern China, and also with the research on temperature-falling amplitude of middle and high latitude on the Northern Hemisphere recently.

  5. Excitability, mixed-mode oscillations and transition to chaos in a stochastic ice ages model

    Science.gov (United States)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2017-03-01

    Motivated by an important geophysical significance, we consider the influence of stochastic forcing on a simple three-dimensional climate model previously derived by Saltzman and Sutera. A nonlinear dynamical system governing three physical variables, the bulk ocean temperature, continental and marine ice masses, is analyzed in deterministic and stochastic cases. It is shown that the attractor of deterministic model is either a stable equilibrium or a limit cycle. We demonstrate that the process of continental ice melting occurs with a noise-dependent time delay as compared with marine ice melting. The paleoclimate cyclicity which is near 100 ky in a wide range of model parameters abruptly increases in the vicinity of a bifurcation point and depends on the noise intensity. In a zone of stable equilibria, the 3D climate model under consideration is extremely excitable. Even for a weak random noise, the stochastic trajectories demonstrate a transition from small- to large-amplitude stochastic oscillations (SLASO). In a zone of stable cycles, SLASO transitions are analyzed too. We show that such stochastic transitions play an important role in the formation of a mixed-mode paleoclimate scenario. This mixed-mode dynamics with the intermittency of large- and small-amplitude stochastic oscillations and coherence resonance are investigated via analysis of interspike intervals. A tendency of dynamic paleoclimate to abrupt and rapid glaciations and deglaciations as well as its transition from order to chaos with increasing noise are shown.

  6. Sr Isotopes at the Onset of the Ice Ages at the Northern Apennines

    Science.gov (United States)

    Fuchs, Rita; Lazar, Boaz; Angiolini, Lucia; Crippa, Gaia; Stein, Mordechai

    2017-04-01

    Sr isotopes can be used to constrain the marine Sr budget. The temporal variations in the 87Sr/86Sr ratios (radiogenic Sr) have been reconstructed over the past few decades based on marine macro and micro fossils data (e.g. brachiopods and foraminifera). It is used to constrain the sources and amounts of strontium that dictate the temporal variations in oceanic Sr throughout the Phanerozoic. On the other hand, the study of processes controlling the composition stable Sr isotopes (δ88/86Sr) is very new and only limited research was conducted on this topic during the past few years. Up to date, no δ88/86Sr data are available for considerable parts of Earth's history and the contribution of the potential Sr sources to the oceans is poorly constrained. Here, we set to examine the behavior of radiogenic and stable Sr isotopes in the marine environment of the northern Apennines (Italy) during the time interval of the late Pliocene to early-Middle Pleistocene - upon the onset of ice ages in the northern latitudes. We collected fossil mollusks from outcrops of the Arda and Stirone Rivers that are rich in bivalves, brachiopods, foraminifera (that were used for establishing the chronostratigraphy of the sections) and other genera. Ecological and sedimentological analysis of the section suggest a normal marine environment of depth range of several tens of meters that existed on the southern flanks of the large Po embayment. In order to evaluate the potential of the fossil assemblages in the Arda and Stirone sections to serve as reliable recorders of the marine δ88/86Sr of seawater during the desired period, we examined mineralogical and chemical properties of the fossils (e.g. distribution of trace elements like Sr and Mg in the skeletons, microstructures like secondary fillings of punctate shells in brachiopod) and measured the 87Sr/86Sr ratios. Among the species analyzed, Aequipecten opercularis (bivalve) and Glycymeris inflata (bivalve) have aragonite skeletons that

  7. Age of the Pineo Ridge System: Implications for behavior of the Laurentide Ice Sheet in eastern Maine, U.S.A., during the last deglaciation

    Science.gov (United States)

    Hall, Brenda L.; Borns, Harold W.; Bromley, Gordon R. M.; Lowell, Thomas V.

    2017-08-01

    The Laurentide Ice Sheet was a major driver of global sea-level change during the last deglaciation and may have impacted both atmospheric and oceanic circulation. An understanding of past changes in the ice sheet is important for constraining its interaction with other components of the climate system. Here, we present the geologic context and chronology for ice-sheet fluctuations in eastern Maine, adjacent to the North Atlantic Ocean, thought to be a key player in the termination of the last ice age. Retreat of the Laurentide Ice Sheet through coastal Maine first produced a series of lobate grounding-line moraines, followed by deposition of the prominent Pineo Ridge System, which crosscut the earlier moraine set and which is characterized by extensive ice-contact deltas, closely spaced parallel moraines, and association with eskers. Our new 10Be surface exposure ages indicate that the Pineo Ridge System, which extends for more than 100 km in eastern Maine and Atlantic Canada, dates to ∼15.3 ka, ∼800 years older than recent estimates. Our data are in accord with inboard minimum-limiting radiocarbon ages of terrestrial materials, which indicate deglaciation as early as 15.3 ka, as well as of marine shells that are as old as 15.0 ka. Both the deglaciation that produced the lobate moraines and the short-lived readvance that led to the Pineo Ridge System occurred during Heinrich Stadial 1. Given that faunal and isotopic evidence indicates that the ocean remained cold during deglaciation of coastal Maine, we infer that ice recession was due to rising summer air temperatures that gave way briefly to cooling to allow minor readvance. Glacial deposits north of the Pineo Ridge System display evidence of ice stagnation and downwasting, suggesting rapid ice retreat following deposition of the delta-moraine complex, coincident with the onset of the Bølling.

  8. Depth-dependent variations in Achilles tendon deformations with age are associated with reduced plantarflexor performance during walking.

    Science.gov (United States)

    Franz, Jason R; Thelen, Darryl G

    2015-08-01

    The anatomical arrangement of the Achilles tendon (AT), with distinct fascicle bundles arising from the gastrocnemius and soleus muscles, may facilitate relatively independent behavior of the triceps surae muscles. A reduced capacity for sliding between adjacent tendon fascicles with age may couple gastrocnemius and soleus muscle behavior, thereby potentially contributing to diminished plantarflexor performance commonly observed in old adults. Nine healthy young (mean age, 23.9 yr) and eight healthy old (69.9 yr) adults walked at three speeds (0.75, 1.00, and 1.25 m/s) on a force-sensing treadmill. We coupled dynamic ultrasound imaging of the free AT with motion capture and inverse dynamic analyses to compute, in part: 1) depth-dependent variations in AT tissue displacements and elongations and 2) net ankle joint kinetics during push-off. The difference in displacements between superficial and deep AT regions, and in their corresponding elongations, did not differ between old and young adults at the slower two walking speeds (P > 0.61). However, old adults walked with 41% smaller depth-dependent variations in free AT displacements and elongations at 1.25 m/s (P = 0.02). These more uniform tendon deformations in old adults most strongly correlated with reduced peak ankle moment (R(2) = 0.40), but also significantly correlated with reduced peak power generation (R(2) = 0.15) and positive ankle work during push-off (R(2) = 0.19) (P > 0.01). Our findings: 1) demonstrate a potential role for nonuniform AT deformations in governing gastrocnemius and soleus muscle-tendon function and 2) allude to altered tendon behavior that may contribute to the age-related reduction in plantarflexor performance during walking.

  9. Amazonian-aged fluvial system and associated ice-related features in Terra Cimmeria, Mars

    Science.gov (United States)

    Adeli, Solmaz; Hauber, Ernst; Kleinhans, Maarten; Le Deit, Laetitia; Platz, Thomas; Fawdon, Peter; Jaumann, Ralf

    2016-10-01

    The Martian climate throughout the Amazonian is widely believed to have been cold and hyper-arid, very similar to the current conditions. However, ubiquitous evidence of aqueous and glacial activity has been recently reported, including channels that can be tens to hundreds of kilometres long, alluvial and fluvial deposits, ice-rich mantles, and glacial and periglacial landforms. Here we study a ∼340 km-long fluvial system located in the Terra Cimmeria region, in the southern mid-latitudes of Mars. The fluvial system is composed of an upstream catchment system with narrow glaciofluvial valleys and remnants of ice-rich deposits. We observe depositional features including fan-shaped deposits, and erosional features such as scour marks and streamlined islands. At the downstream section of this fluvial system is an outflow channel named Kārūn Valles, which displays a unique braided alluvial fan and terminates on the floor of the Ariadnes Colles basin. Our observations point to surface runoff of ice/snow melt as the water source for this fluvial activity. According to our crater size-frequency distribution analysis the entire fluvial system formed during early to middle Amazonian, between ∼ 1.8-0.2+0.2 Ga to 510-40+40 Ma. Hydraulic modelling indicates that the Kārūn Valles and consequently the alluvial fan formation took place in geologically short-term event(s). We conclude that liquid water was present in Terra Cimmeria during the early to middle Amazonian, and that Mars during that time may have undergone several episodic glacial-related events.

  10. A link between an ice age era and a rapid polar shift

    CERN Document Server

    Wölfli, W

    2004-01-01

    The striking asymmetry of the ice cover during the Last Global Maximum suggests that the North Pole was in Greenland and then rapidly shifted to its present position in the Arctic See. A scenario which causes such a rapid geographic polar shift is physically possible. It involves an additional planet, which disappeared by evaporation within the Holocene. This is only possible within such a short period, if the planet was in an extremely eccentric orbit and hot. Then, since this produced an interplanetary gas cloud, the polar shift had to be preceded by a cold period with large global temperature variations during several million years.

  11. A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements

    Directory of Open Access Journals (Sweden)

    Carl Bergeron

    2012-01-01

    Full Text Available The calorimetric and infrared (IR spectroscopy measurements of polyethylene oxide (PEO are used to evaluate the deformation and relaxation that films experience during a temperature cycle (30°C–90°C–30°C. After melting, the intensity of some bands decreases by 10 to 70%. During the temperature cycle, the C–O band in the 1100 cm−1 region and the C–C–O deformation bands at 650 and 500 cm−1 show some new features. A network of cooperative oxygen-hydrogen interactions between the PEO chains form in films with special history, namely, in thermally treated films, in thin films prepared from gel forming solutions, and in thick films after aging. The interchain interaction network is suggested from the IR absorption bands in the 1200 and 900 cm−1 region and also from small bands at 1144 and 956 cm−1. The network seems absent or reduced in thin films. IR spectroscopy appears a sensitive technique to study chain conformations in PEO films and in other materials where order, disorder, and the formation of intermolecular interactions coexist.

  12. The effect of signal leakage and glacial isostatic rebound on GRACE-derived ice mass changes in Iceland.

    Science.gov (United States)

    Sørensen, Louise Sandberg; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna; Barletta, Valentina R.; Forsberg, René; Pálsson, Finnur; Björnsson, Helgi; Jóhannesson, Tómas

    2017-01-01

    Monthly gravity field models from the GRACE satellite mission are widely used to determine ice mass changes of large ice sheets as well as smaller glaciers and ice caps. Here, we investigate in detail the ice mass changes of the Icelandic ice caps as derived from GRACE data. The small size of the Icelandic ice caps, their location close to other rapidly changing ice covered areas, and the low viscosity of the mantle below Iceland, makes this especially challenging. The mass balance of the ice caps is well constrained by field mass balance measurements, making this area ideal for such investigations. We find that the ice mass changes of the Icelandic ice caps derived from GRACE gravity field models are influenced by both the large gravity change signal resulting from ice mass loss in southeast Greenland, as well as by mass redistribution within the Earth mantle due to glacial isostatic adjustment since the Little Ice Age (˜1890 AD). To minimize the signal that leaks towards Iceland from Greenland, we employ an independent mass change estimate of the Greenland Ice Sheet derived from satellite laser altimetry. We also estimate the effect of post Little Ice Age glacial isostatic adjustment, from knowledge of the ice history and GPS network constrained crustal deformation data. We find that both the leakage from Greenland and the post Little Ice Age glacial isostatic adjustment are important to take into account, in order to correctly determine Iceland ice mass changes from GRACE, and when applying these an average mass balance of the Icelandic ice caps of -11.4 ± 2.2 Gt/yr for the period 2003-2010 is found. This number corresponds well with available mass balance measurements.

  13. Comparative Study of Probiotic Ice Cream and Probiotic Drink on Salivary Streptococcus mutans Levels in 6-12 Years Age Group Children.

    Science.gov (United States)

    Mahantesha, Taranatha; Reddy, K M Parveen; Kumar, N H Praveen; Nara, Asha; Ashwin, Devasya; Buddiga, Vinutna

    2015-09-01

    Dental caries is one of the most common health problems in the world. Probiotics are one the various preventive methods to reduce dental caries. The aim of this study is to compare the effectiveness of probiotic ice cream and drink on salivary Streptococcus mutans levels in children of 6-12 years age group. A three phase study was carried out in children (n = 50) of 6-12 years age with zero decayed missing filled teeth (dmft)/DMFT. They were randomly divided into two equal groups. Saliva samples were collected before the consumptions of probiotic ice cream and probiotic drink. Colony count obtained was recorded as baseline data. For both groups probiotic ice cream and drink was given randomly for 7 days and a washout period of 90 days were given and then the saliva samples were collected and colony counting was done. Statistical analysis was performed using Student's paired t-test and multiple comparisons by Tukey's honest significant difference test which showed, there is a significant reduction in salivary S. mutans level in both groups after 7 days period. However, after washout period only probiotic ice cream showed reduction whereas drink did not. Also, there was no significant difference between probiotic ice cream and drink. Probiotic organisms definitely have a role in reducing the salivary S. mutans level and ice cream would be a better choice than drink. However, the prolonged use of the agents and their effects on caries is still to be determined.

  14. Evaluating the Age of Buried Ice in Antarctica Using Ashfall Deposits: New Insights from Deposit Morphology, Grain Shape, and LA-ICP-MS Trace-Element Geochemistry

    Science.gov (United States)

    Lewis, A. R.; Marchant, D. R.

    2003-12-01

    Dating of buried ice in the western Dry Valleys region relies on 40Ar/39Ar analysis of ashfall deposits within sublimation tills that rest directly on stagnant glacier ice. The oldest ice so dated is >8.1 Ma. The fundamental assumption is that dated ashes are in-situ and have not been transported from surface deposits elsewhere in the Dry Valleys region. Given that the surface of sublimation tills shows well-developed patterned ground, the presumption of ground stability and long-term preservation of in-situ ashfall is questioned. As a test of ground stability, we examined ash-deposit morphology, grain shape, and glass-shard trace-element geochemistry from several ashfall deposits used to provide limiting ages on buried ice and tills in the western Dry Valleys. Detailed field analyses show that ashfall that collects in sublimation tills over buried ice occurs in one of three morphologic settings: surface troughs that delineate sand-wedge polygons, void spaces in gravel-and-cobble lags that overlie active sand wedges, and 1 to 2-cm-wide thermal contraction cracks. Post-depositional sublimation of underlying ice may distort initial deposit morphology through uneven surface lowering. Microscopic analyses of concentrated ashfall deposits that lack detrital sand grains show highly angular glass shards that preserve delicate hair-like spires and thin bubble-wall vesicles. Grain edges are sharp with no chipped, fractured, or pitted surfaces. In contrast, ash deposits containing detrital sand grains show subangular to subrounded shard morphologies with concave fractures and pits on grain edges, all of which are suggestive of abrasion during transport. In such deposits, grains preserving delicate bubble walls and hair-like spires are conspicuously absent. Laser ablation-inductively coupled plasma-mass spectrometry shows that glass shards within each ashfall deposit have uniform trace-element geochemical signatures. If ashfall were eroded and transported after initial

  15. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjeldsen, Kristian Kjellerup; Kjær, Kurt H.;

    2014-01-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve...... the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion...... of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40–50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back...

  16. Greenhouse effect and ice ages: historical perspective; Effet de serre et glaciations, une perspective historique

    Energy Technology Data Exchange (ETDEWEB)

    Bard, E. [College de France, Chaire d' Evolution du Climat et de l' Ocean, 75 - Paris (France); CEREGE (UMR 6635), 13 - Aix en Provence (France)

    2004-06-01

    This article provides a brief historical perspective on the first scientific research on the greenhouse effect and glaciations. While these two aspects of our climate can be investigated separately, naturalists, physicists and chemists during the 19. century were interested jointly in both issues, as well as the possible relationship between them. The contributions of famous pioneers are mentioned, ranging from scholars with encyclopedic knowledge such as Horace-Benedict de Saussure, to modern scientists like Svante Arrhenius, who was first to predict global warming as a consequence of using fossil fuels. Despite fragmentary observations, these pioneers had prophetic insights. Indeed, the main fundamental concepts used nowadays have been developed during the 19. century. However, we must wait until the second half of the 20. century to see a true revolution of investigative techniques in the Earth Sciences, enabling full access to previously unknown components of the climate system, such as deep oceans and the interior of the polar ice caps. (author)

  17. A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age

    Directory of Open Access Journals (Sweden)

    C. F. Schleussner

    2013-06-01

    Full Text Available Among the climatological events of the last millennium, the Northern Hemisphere Medieval Climate Anomaly succeeded by the Little Ice Age are of exceptional importance. The origin of these regional climate anomalies remains a subject of debate and besides external influences like solar and volcanic activity, internal dynamics of the climate system might have also played a dominant role. Here, we present transient last millennium simulations of the fully coupled model of intermediate complexity Climber 3α forced with stochastically reconstructed wind-stress fields. Our results indicate that short-lived volcanic eruptions might have triggered a cascade of sea ice–ocean feedbacks in the North Atlantic, ultimately leading to a persistent regime shift in the ocean circulation. We find that an increase in the Nordic Sea sea-ice extent on decadal timescales as a consequence of major volcanic eruptions in our model leads to a spin-up of the subpolar gyre and a weakened Atlantic meridional overturning circulation, eventually causing a persistent, basin-wide cooling. These results highlight the importance of regional climate feedbacks such as a regime shift in the subpolar gyre circulation for understanding the dynamics of past and future climate.

  18. Seasonally asymmetric transition of the Asian monsoon in response to ice age boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Hiroaki; Kuroki, Harumitsu; Kamae, Youichi [University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Ibaraki (Japan); Ohba, Masamichi [Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, Abiko (Japan)

    2011-12-15

    Modulation of a monsoon under glacial forcing is examined using an atmosphere-ocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air-sea-land interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21 ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer

  19. Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum

    Science.gov (United States)

    Gabrielli, Paolo; Barbante, Carlo; Bertagna, Giuliano; Bertó, Michele; Binder, Daniel; Carton, Alberto; Carturan, Luca; Cazorzi, Federico; Cozzi, Giulio; Dalla Fontana, Giancarlo; Davis, Mary; De Blasi, Fabrizio; Dinale, Roberto; Dragà, Gianfranco; Dreossi, Giuliano; Festi, Daniela; Frezzotti, Massimo; Gabrieli, Jacopo; Galos, Stephan P.; Ginot, Patrick; Heidenwolf, Petra; Jenk, Theo M.; Kehrwald, Natalie; Kenny, Donald; Magand, Olivier; Mair, Volkmar; Mikhalenko, Vladimir; Lin, Ping Nan; Oeggl, Klaus; Piffer, Gianni; Rinaldi, Mirko; Schotterer, Ulrich; Schwikowski, Margit; Seppi, Roberto; Spolaor, Andrea; Stenni, Barbara; Tonidandel, David; Uglietti, Chiara; Zagorodnov, Victor; Zanoner, Thomas; Zennaro, Piero

    2016-11-01

    In 2011 four ice cores were extracted from the summit of Alto dell'Ortles (3859 m), the highest glacier of South Tyrol in the Italian Alps. This drilling site is located only 37 km southwest from where the Tyrolean Iceman, ˜ 5.3 kyrs old, was discovered emerging from the ablating ice field of Tisenjoch (3210 m, near the Italian-Austrian border) in 1991. The excellent preservation of this mummy suggested that the Tyrolean Iceman was continuously embedded in prehistoric ice and that additional ancient ice was likely preserved elsewhere in South Tyrol. Dating of the ice cores from Alto dell'Ortles based on 210Pb, tritium, beta activity and 14C determinations, combined with an empirical model (COPRA), provides evidence for a chronologically ordered ice stratigraphy from the modern glacier surface down to the bottom ice layers with an age of ˜ 7 kyrs, which confirms the hypothesis. Our results indicate that the drilling site has continuously been glaciated on frozen bedrock since ˜ 7 kyrs BP. Absence of older ice on the highest glacier of South Tyrol is consistent with the removal of basal ice from bedrock during the Northern Hemisphere Climatic Optimum (6-9 kyrs BP), the warmest interval in the European Alps during the Holocene. Borehole inclinometric measurements of the current glacier flow combined with surface ground penetration radar (GPR) measurements indicate that, due to the sustained atmospheric warming since the 1980s, an acceleration of the glacier Alto dell'Ortles flow has just recently begun. Given the stratigraphic-chronological continuity of the Mt. Ortles cores over millennia, it can be argued that this behaviour has been unprecedented at this location since the Northern Hemisphere Climatic Optimum.

  20. An investigation into the use of color as a device to convey memes during the Little Ice Age

    Science.gov (United States)

    White, Peter A.

    Color is used as a tool in visual communication to express ideas in a symbolic fashion. It can also be used as a guide to assist the viewer in the visual narrative. Artwork created in the period of time between 1300 to 1850 in northern and central Europe provides a comprehensive perspective in the use of color as symbol and color as an elucidative devise. This period of time is known as the Little Ice Age, the duration of which spans European history between the Medieval period and the Romantic era. The extreme climatic conditions of this era caused profound changes in society on many levels and influenced the use of color in paintings throughout this chapter in history. The new paradigm of the science of ideas, called memetics, provides a framework to analyze the expression of ideas through the use of color within this span of time.

  1. The onset of the Little Ice Age in Andalusia (southern Spain: detection and characterization from documentary sources

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigo

    Full Text Available In this work the onset of the "Little Ice Age" period in Andalusia (southern Spain is analysed from documentary data, focusing attention on the evolution of the climate during the 16th and 17th centuries. It is shown that changes in the rainfall regime have been more important than those in the temperature in studying the Andalusian climate change. Analysis of the total annual precipitation is carried out by codifying the documentary data and establishing an ordinal index. Several statistical methods are used to detect and characterize climate changes in the region. The results suggest a fluctuating evolution, without trends or abrupt changes, with a prevailing wet period from 1550 to 1650 AD. Cycles of ~17, 3.5 and 2.1 years are detected. Some possible causal mechanisms are suggested.

  2. Current long-term negative average annual energy balance of the earth leads to the new little ice age

    Directory of Open Access Journals (Sweden)

    Abdussamatov Habibullo

    2015-01-01

    Full Text Available The average annual decreasing rate of the total solar irradiance (TSI is increasing from the 22-nd to the 23-rd and 24-th cycles, because the Sun since the 1990 is in the phase decline of quasi-bicentennial variation. The portion of the solar energy absorbed by the Earth is decreasing. Decrease in the portion of TSI absorbed by the Earth since 1990 remains uncompensated by the Earth's radiation into space at the previous high level over a time interval determined by the thermal inertia of the Ocean. A long-term negative deviation of the Earth’s average annual energy balance from the equilibrium state is dictating corresponding variations in it’s the energy state. As a result, the Earth will have a negative average annual energy balance also in the future. This will lead to the beginning of the decreasing in the Earth's temperature and of the epoch of the Little Ice Age after the maximum phase of the 24-th solar cycle approximately since the end of 2014. The influence of the consecutive chain of the secondary feedback effects (the increase in the Bond albedo and the decrease in the concentration of greenhouse gases in the atmosphere due to cooling will lead to an additional reduction of the absorbed solar energy and reduce the greenhouse effect. The start of the TSI’s Grand Minimum is anticipated in the solar cycle 27±1 in 2043±11 and the beginning of the phase of deep cooling of the 19th Little Ice Age for the past 7,500 years around 2060±11.

  3. Influence of dynamic strain aging on tensile deformation behavior of alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Ekaputra, I. M. W. [Pukyong National University, Busan (Korea, Republic of); Kim, Woo Gon; Park, Jae Young; Kim, Seon Jin; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of 10{sup -}3{sup /}s, 10{sup -4}/s, and 10{sup -5}/s from 24°C to 950°C. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress–strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from 200°C to 700°C. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above 700°C was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

  4. Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-04-01

    Full Text Available Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.

  5. Molecular evidence of the survival of subterranean amphipods (Arthropoda) during Ice Age underneath glaciers in Iceland.

    Science.gov (United States)

    Kornobis, Etienne; Pálsson, Snaebjörn; Kristjánsson, Bjarni K; Svavarsson, Jörundur

    2010-06-01

    A Two endemic groundwater arthropod crustacean species, Crangonyx islandicus and Crymostygius thingvallensis, were recently discovered on the mid-Atlantic volcanic island of Iceland. The extent of morphological differences from closest relatives, endemism, along with the geographic isolation of Iceland and its complete coverage by glaciers 21,000 years ago, suggests that these two species have survived glaciation periods in sub-glacial refugia. Here we provide strong support for this hypothesis by an analysis of mitochondrial genetic variation within Crangonyx islandicus. Our results show that the species is divided into several distinct monophyletic groups that are found along the volcanic zone in Iceland, which have been separated by 0.5 to around 5 million years. The genetic divergence between groups reflects geographic distances between sampling sites, indicating that divergence occurred after the colonization of Iceland. The genetic patterns, as well as the dependency of genetic variation on distances from the tectonic plate boundary and altitude, points to recent expansion from several refugia within Iceland. This presents the first genetic evidence of multicellular organisms as complex as crustacean amphipods which have survived glaciations beneath an ice sheet. This survival may be explained by geothermal heat linked to volcanic activities, which may have maintained favourable habitats in fissures along the tectonic plate boundary in Iceland during glaciations.

  6. Islands in the ice

    DEFF Research Database (Denmark)

    Jørgensen, Tina; Kjær, Kurt H.; Haile, James Seymour

    2012-01-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated ...

  7. Episodic expansion of Drangajökull, Vestfirðir, Iceland, over the last 3 ka culminating in its maximum dimension during the Little Ice Age

    Science.gov (United States)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Anderson, Leif

    2016-11-01

    Non-linear climate change is often linked to rapid changes in ocean circulation, especially around the North Atlantic. As the Polar Front fluctuated its latitudinal position during the Holocene, Iceland's climate was influenced by both the warm Atlantic currents and cool, sea ice-bearing Arctic currents. Drangajökull is Iceland's fifth largest ice cap. Climate proxies in lake sediment cores, dead vegetation emerging from beneath the ice cap, and moraine segments identified in a new DEM constrain the episodic expansion of the ice cap over the past 3 ka. Collectively, our data show that Drangajökull was advancing at ∼320 BCE, 180 CE, 560 CE, 950 CE and 1400 CE and in a state of recession at ∼450 CE, 1250 CE and after 1850 CE. The Late Holocene maximum extent of Drangajökull occurred during the Little Ice Age (LIA), occupying 262 km2, almost twice its area in 2011 CE and ∼20% larger than recent estimates of its LIA dimensions. Biological proxies from the sediment fill in a high- and low-elevation lake suggest limited vegetation and soil cover at high elevations proximal to the ice cap, whereas thick soil cover persisted until ∼750 CE at lower elevations near the coast. As Drangajökull expanded into the catchment of the high-elevation lake beginning at ∼950 CE, aquatic productivity diminished, following a trend of regional cooling supported by proxy records elsewhere in Iceland. Correlations between episodes of Drangajökull's advance and the documented occurrence of drift ice on the North Icelandic Shelf suggest export and local production of sea ice influenced the evolution of NW Iceland's Late Holocene climate.

  8. X-ray screening of the artificially deformed skulls from the Middle Bronze Age of the Low Volga region (paleopathology aspect

    Directory of Open Access Journals (Sweden)

    Pererva Evgenii Vladimirovich

    2013-11-01

    Full Text Available The impact of the deforming structure on the human skull is one of the most challenging and debated questions in modern archeology and anthropology related to artificial deformation of the skull. This is precisely why the present study attempts to study the pathological artificially deformed skulls of representatives of the Catacomb culture originating from burial mound in the Lower Volga region. The analysis of the bone material was carried out with the use of X-ray method of the frontal and lateral views. Thirteen radiographs of skulls with traces of deliberate artificial deformation were examined. The skull shapes, structure of the skull calvarial bones, state of the cranial sutures, signs of intracranial hypertension, and symptoms of vascular and endocrine pathologies were explored and evaluated. The study discovered that Catacomb culture bearers used a variety of methods of skull deformation. Front occipital, occipital ring strain and conventional acrocephaly deformation modes were revealed. The viability and compatibility with normal human activity of artificial skull deformation was observed. In the childhood and newborn periods, individuals have applied constrictive and restrictive devices, trusses andother appliancesfor a few years, their impact couldresultin the intracranial hypertension syndrome, as well as in problems with cranial sutures obliteration. It is very much likely that the use of strain could stimulate the development of the internal frontal hyperostosis (Morgagni's disease which contributed to the emergence of endocrine abnormities in humans. The increased trauma rate of skeleton bones was observed in population of the Middle Bronze Age, as well as ear diseases which makes us once again address the issue of social and cultural phenomenon of intentional artificial deformation of the head tradition.

  9. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic)

    Science.gov (United States)

    Wetterich, Sebastian; Tumskoy, Vladimir; Rudaya, Natalia; Kuznetsov, Vladislav; Maksimov, Fedor; Opel, Thomas; Meyer, Hanno; Andreev, Andrei A.; Schirrmeister, Lutz

    2016-09-01

    Ice Complex deposits (locally known as the Buchchagy Ice Complex) are exposed at both coasts of the East Siberian Dmitry Laptev Strait and preserved below the Yedoma Ice Complex that formed during MIS3 and MIS2 (Marine Isotope Stage) and lateglacial-Holocene thermokarst deposits (MIS1). Radioisotope disequilibria (230Th/U) of peaty horizons date the Buchchagy Ice Complex deposition to 126 + 16/-13 kyr and 117 + 19/-14 kyr until 98 ± 5 kyr and 89 ± 5 kyr. The deposit is characterised by poorly-sorted medium-to-coarse silts with cryogenic structures of horizontal ice bands, lens-like, and lens-like reticulated segregation ice. Two peaty horizons within the Buchchagy Ice Complex and syngenetic ice wedges (2-4 m wide, up to 10 m high) are striking. The isotopic composition (δ18O, δD) of Buchchagy ice-wedge ice indicates winter conditions colder than during the MIS3 interstadial and warmer than during MIS2 stadial, and similar atmospheric winter moisture sources as during the MIS2 stadial. Buchchagy Ice Complex pollen spectra reveal tundra-steppe vegetation and harsher summer conditions than during the MIS3 interstadial and rather similar vegetation as during the MIS2 stadial. Short-term climatic variability during MIS5 is reflected in the record. Even though the regional chronostratigraphic relationship of the Buchchagy Ice Complex to the Last Interglacial remains unclear because numerical dating is widely lacking, the present study indicates permafrost (Ice Complex) formation during MIS5 sensu lato, and its preservation afterwards. Palaeoenvironmental insights into past climate and the periglacial landscape dynamics of arctic lowlands in eastern Siberia are deduced from the record.

  10. Modeling Pluto's Ice-Rich Surface and Its Interaction with Atmosphere

    Science.gov (United States)

    Wei, Q.; Hu, Y.

    2016-12-01

    Recent discoveries made available through NASA's New Horizon mission revealed a new world on Pluto with a plateau of "young" surface, the Sputnik Planum. It is a gigantic reservoir of volatile ice on top of an impact basin. The reason of such a high level of concentration of volatile ice is yet unknown. We are actively looking into explanations through atmospheric models and ice sheet models. Apart from the quantity of ice on SP, its surface age constrained by impact flux models to under 10Myr is significantly different from other parts of Pluto. Convection of solid nitrogen ice has been proposed as a viable cause. We endeavor to explore other possibilities that may have jointly contributed to this phenomena, including atmospheric condensation, ice sheet evolution, etc. Unique rheological properties of nitrogen ice, which is thought to dominate the Sputnik Planum, may hold the key to answering our questions. They are soft and easy to deform under its own weight even at Pluto's surface temperature of around 40K. Based on our initial simulations with numerical ice sheet models, we propose that once a crater is created on the Sputnik Planum, deformation under internal stress kicks in as a primary mechanism to flatten out craters. This could be done in a time scale of 100,000 years, significantly shorter than the maximum surface age contrained by crater densitiess models. As the surface arpproaches a flat state, such mechanism becomes weaker. The surface feature is then dominated by convection.

  11. Top Sounder Ice Penetration

    Science.gov (United States)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  12. The effect of low-temperature aging on the microstructure and deformation of uranium- 6 wt% niobium: An in-situ neutron diffraction study

    Science.gov (United States)

    Brown, D. W.; Bourke, M. A. M.; Clarke, A. J.; Field, R. D.; Hackenberg, R. E.; Hults, W. L.; Thoma, D. J.

    2016-12-01

    The mechanical properties of uranium-niobium alloys evolve with aging at relatively low temperatures due to subtle microstructural changes. In-situ neutron diffraction measurements during aging of a monoclinic U-6Nb alloy at temperatures to 573 K were performed to monitor these changes. Further, in-situ neutron diffraction studies during deformation of U-6Nb in the as-quenched state and after aging for two and eight hours at 473 K were completed to assess the influence of microstructural evolution on mechanical properties. With heating, large anisotropic changes in lattice parameter were observed followed by relaxation with time at the aging temperature. The lattice parameters return to nearly their initial values with cooling. The active plastic deformation mechanisms including, in order of occurrence, shape-memory de-twinning, mechanical twinning, and slip-mediated deformation do not change with prior aging. However, the resistance to motion of the as-quenched martensitic twin boundaries increases following aging, resulting in the observed increase in initial yield strength.

  13. Glacial recession in the Tropical Andes from the Little Ice Age: the case of Ampato Volcanic Complex (Southern Peru

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.

    2010-03-01

    Data published over the last decade reveal substantial glacial recession in the tropical Andes since the Little Ice Age (LIA), (Ramirez, et al., 2001; Rabatel, et al., 2005; Rabatel, et al., 2008; Vuille, et al., 2008; Hastenrath, 2009; Jomelli, et al., 2009), and a growing rate of recession since the 1980’s caused by global warming (Ramirez, et al., 2001; Vuille, et al., 2008). Today there is great interest in the evolution of these ice masses due to heightened awareness of climate change and of the strategic importance that glaciers have as a hydrologic resource for communities in arid climate zones in the tropical Andes (Mark, 2008; Vuille et al., 2008). Cordillera Blanca forms part of the Andes Mountains of northern Peru, and is a chosen site for many studies on glacier evolution. Vuille et al. 2008 determined that a considerable area of ice mass was lost at Huascarán-Chopicalqui glacier (18% from 1920-1970) and Astesonraju glacier (20% from 1962-2003). Studies at Coropuna volcano, which has the most extensive glacier field in the western range of southern Peru, also report a strong melting trend that began with only minimal recession from 1955-1986 (4%), but increased to 14% from 1986-2007 (Úbeda et al., 2009). Only a few of the Andes glaciers are consistently monitored, and the most comprehensive data are for Chacaltaya and Zongo glaciers (16º S) in Bolivia. Since the maximum LIA, Chacaltaya has lost 89% of its surface area, particularly in recent years. By 1983, the totaled loss was five times the shrinkage for the period 1940-1963 (Ramirez, et al., 2001). Zongo glacier maintained equilibrium from 1956-1975, but later experienced a period dominated by continuous recession (Soruco, et al., 2009). This study expands current knowledge of glacier evolution since the LIA in the Central Volcanic Zone (CVZ; 14º - 27º S) (Stern, 2004) of the Andes. The study site was chosen in an area that had never been used for preliminary research of this type, concretely

  14. Ice Mass Fluctuations and Earthquake Hazard

    Science.gov (United States)

    Sauber, J.

    2006-01-01

    In south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing ice wastage over the last 100-150 years [Sauber et al., 2000; Sauber and Molnia, 2004]. In this study we focus on the region referred to as the Yakataga segment of the Pacific-North American plate boundary zone in Alaska. In this region, the Bering and Malaspina glacier ablation zones have average ice elevation decreases from 1-3 meters/year (see summary and references in Molnia, 2005). The elastic response of the solid Earth to this ice mass decrease alone would cause several mm/yr of horizontal motion and uplift rates of up to 10-12 mm/yr. In this same region observed horizontal rates of tectonic deformation range from 10 to 40 mm/yr to the north-northwest and the predicted tectonic uplift rates range from -2 mm/year near the Gulf of Alaska coast to 12mm/year further inland [Savage and Lisowski, 1988; Ma et al, 1990; Sauber et al., 1997, 2000, 2004; Elliot et al., 2005]. The large ice mass changes associated with glacial wastage and surges perturb the tectonic rate of deformation at a variety of temporal and spatial scales. The associated incremental stress change may enhance or inhibit earthquake occurrence. We report recent (seasonal to decadal) ice elevation changes derived from data from NASA's ICESat satellite laser altimeter combined with earlier DEM's as a reference surface to illustrate the characteristics of short-term ice elevation changes [Sauber et al., 2005, Muskett et al., 2005]. Since we are interested in evaluating the effect of ice changes on faulting potential, we calculated the predicted surface displacement changes and incremental stresses over a specified time interval and calculated the change in the fault stability margin using the approach given by Wu and Hasegawa [1996]. Additionally, we explored the possibility that these ice mass fluctuations altered the seismic rate of background seismicity. Although we primarily focus on

  15. Effect of artificial aging on the deformation behavior of an Al-1.01Mg-0.68Si-1.78Cu alloy

    Institute of Scientific and Technical Information of China (English)

    HE Lizi; CHEN Yanbo; ZHANG Haitao; CUI Jianzhong

    2008-01-01

    The influences of artificial aging on the microstructures and mechanical properties of an AI-1.01Mg-0.68Si-1.78Cu alloy were investigated.The detailed fracture surfaces,precipitates,and dislocation structures were also examined through scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The results show that the tensile strengths exhibit two peak values and reach saturated values with increasing aging time,while the elongation decreases sharply to the minimum value and changes slightly later.The deformation and fracture behaviors arc also closely related to the aging conditions.

  16. Medieval Warm Period and Little Ice Age Impacts on Prehistoric Human Migrations in the Eastern North American Arctic

    Science.gov (United States)

    Friesen, M.; Finkelstein, S. A.

    2014-12-01

    The eastern North American Arctic has a complex 5,000-year prehistory, during which many human population movements occurred over large distances. Archaeologists have interpreted these movements as resulting from many factors, however the effects of climate change are often hypothesized as primary drivers that can "push" human groups to leave some regions, or "pull" them to move to others. In this paper, we will examine climate change over the past millennium-and-a-half, and in particular at the two widespread, though variable, climate change events known as the Medieval Warm Period and Little Ice Age. We synthesize the latest paleoclimatological information on the timing and magnitude of these periods across the eastern Arctic, and assess the degree to which they coincide with current understanding of major population movements. In particular, we assess climate's potential impact on 1) the expansion of Late Dorset Paleo-Inuit to the High Arctic; 2) the migration of Thule Inuit from Alaska to the eastern Arctic; and 3) the abandonment of northern regions and new settlement of southern regions by Inuit in the mid-second millennium AD.

  17. Paraglacial and postglacial debris flows on a Little Ice Age terminal moraine: Jamapa Glacier, Pico de Orizaba (Mexico)

    Science.gov (United States)

    Palacios, David; Parrilla, Gemma; Zamorano, Jose J.

    1999-05-01

    The study area is located on the northern face of Pico de Orizaba (Mexico, 5700 m ASL), on the terminal moraine of Jamapa Glacier, which dates from the Little Ice Age. Large debris flows are recurrent on the proglacial ramp. The comparison of lichen colonies growing on the deposits of the flows reveals that two generations of flows are present: an old one and a very recent one that occurred between 1994 and 1995. Studies were made of the sedimentologic characteristics of the flows and ground temperatures were recorded to a depth of 70 cm on the floor of the channels. Comparison of the lichen-growth on the exposed surfaces of the deposits led to the relative dating of the older debris flow, which is associated with the beginning of the retreat of the glacier and the saturation of the terminal moraine deposits by meltwater. The more recent flow has less transport capacity and is identified with the formation of an impermeable layer of permafrost that covers the bottom of the channel of the old debris flow. The permafrost layer formed when snow accumulations on the bottom of the channel were covered by ash that fell from the slopes.

  18. Vegetation response to southern California drought during the Medieval Climate Anomaly and early Little Ice Age (AD 800–1600)

    Science.gov (United States)

    Heusser, Linda E.; Hendy, Ingrid L.; Barron, John A.

    2015-01-01

    High-resolution studies of pollen in laminated sediments deposited in Santa Barbara Basin (SBB) core SPR0901-02KC reflect decadal-scale fluctuations in precipitation spanning the interval from AD 800–1600. From AD 800–1090 during the Medieval Climate Anomaly (MCA) SBB sediments were dominated by xeric vegetation types (drought-resistant coastal sagebrush and chaparral) implying reduced precipitation in the southern California region. Drought-adapted vegetation abruptly decreased at AD 1090 and was rapidly replaced by mesic oak (Quercus) woodlands associated with an increased pollen flux into the basin. After a mesic interval lasting ∼100 years, pollen flux and the relative abundance of Quercus pollen dropped abruptly at AD 1200 when the rapid rise of chaparral suggests a significant drought similar to that of the MCA (∼AD 800–1090). This brief resurgence of drought-adapted vegetation between AD 1200–1270 marked the end of the MCA droughts. A gradual increase in mesic vegetation followed, characterizing cool hydroclimates of the Little Ice Age (LIA) in coastal southern California.

  19. Seasonal variability in Northern Hemisphere atmospheric circulation during the Medieval Climate Anomaly and the Little Ice Age

    Science.gov (United States)

    Edwards, Thomas W. D.; Hammarlund, Dan; Newton, Brandi W.; Sjolte, Jesper; Linderson, Hans; Sturm, Christophe; St. Amour, Natalie A.; Bailey, Joscelyn N.-L.; Nilsson, Anders L.

    2017-06-01

    Here we report new reconstructions of winter temperature and summer moisture during the past millennium in southeastern Sweden, based on stable-isotope data from a composite tree-ring sequence, that further enhances our knowledge and understanding of seasonal climate variability in the Northern Hemisphere over the past millennium. Key features of these new climate proxy records include evidence for distinctive fluctuations in winter temperature in SE Sweden, superimposed upon the general pattern of cooling between the so-called Medieval Climate Anomaly (MCA) of the early millennium and the Little Ice Age (LIA) of the late millennium, as well as evidence for sustained summer wetness during the MCA, followed by drier and less variable conditions during the LIA. We also explore these new records within a circumpolar spatial context by employing self-organizing map analysis of meteorological reanalysis data to identify potential modern analogues of mid-tropospheric synoptic circulation types in the Northern Hemisphere extratropics that can reconcile varying seasonal climate states during the MCA and LIA in SE Sweden with less variable conditions in southwestern Canada, as portrayed by paleoclimate records developed in the same manner in an earlier study.

  20. Interannual climate variability change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 last millennium simulations

    Science.gov (United States)

    Yang, Kaiqing; Jiang, Dabang

    2017-04-01

    In this study, we analyzed numerical experiments undertaken by 10 climate models participating in PMIP3 (Paleoclimate Modelling Intercomparison Project Phase 3) to examine the changes in interannual temperature variability and coefficient of variation (CV) of interannual precipitation in the warm period of the Medieval Climate Anomaly (MCA) and the cold period of the Little Ice Age (LIA). With respect to the past millennium period, the MCA temperature variability decreases by 2.0% on average over the globe, and most of the decreases occur in low latitudes. In the LIA, temperature variability increases by a global average of 0.6%, which occurs primarily in the high latitudes of Eurasia and the western Pacific. For the CV of interannual precipitation, regional-scale changes are more significant than changes at the global scale, with a pattern of increased (decreased) CV in the midlatitudes of Eurasia and the northwestern Pacific in the MCA (LIA). The CV change ranges from -7.0% to 4.3% (from -6.3% to 5.4%), with a global average of -0.5% (-0.07%) in the MCA (LIA). Also, the variability changes are considerably larger in December-January-February with respect to both temperature and precipitation.

  1. Winter precipitation changes during the Medieval Climate Anomaly and the Little Ice Age in arid Central Asia

    Science.gov (United States)

    Fohlmeister, Jens; Plessen, Birgit; Dudashvili, Alexey S.; Tjallingii, Rik; Wolff, Christian; Cheng, Hai

    2017-04-01

    The strength of the North Atlantic Oscillation (NAO) is considered to be the main driver of centennial to decadal climate changes over the European and western Asian continents throughout the last Millennium. Over Europe, the predominantly warm Medieval Climate Anomaly (MCA) and the following cold period of the Little Ice Age (LIA) have been associated with long-lasting positive and negative NAO modes, respectively. The climatic imprints of these NAO modes are especially pronounced in European winter seasons. However, little is known about the eastern extent of the NAO anomalies over the Eurasian continent. The speleothem records of Mount Keklik-Too (Kyrgyzstan, Central Asia) presented here reveal past climate variations during the last millennium. Present-day climate characteristics and seasonal changes of the cave environment suggest that winter and spring conditions govern the isotopic and Sr/ Ca variations of the stalagmite. The Keklik-Too records shows strong and simultaneous changes in these geochemical proxies that give evidence for severe variations in winter precipitation in the region over the last 900 years. Winter precipitation during the MCA was generally higher than during the LIA, which is in line with climatic changes linked to the strength of the NAO over Europe. Furthermore, several events of strongly reduced winter precipitation are observed during the LIA. These dry winter events can be related to phases of a strongly reduced strength of the NAO. These results reveal that winter precipitation over the central Eurasian continent is tightly linked to atmospheric NAO modes by the westerly wind systems.

  2. Phylogeographic analysis elucidates the influence of the ice ages on the disjunct distribution of relict dragonflies in Asia.

    Directory of Open Access Journals (Sweden)

    Sebastian Büsse

    Full Text Available Unusual biogeographic patterns of closely related groups reflect events in the past, and molecular analyses can help to elucidate these events. While ample research on the origin of disjunct distributions of different organism groups in the Western Paleartic has been conducted, such studies are rare for Eastern Palearctic organisms. In this paper we present a phylogeographic analysis of the disjunct distribution pattern of the extant species of the strongly cool-adapted Epiophlebia dragonflies from Asia. We investigated sequences of the usually more conserved 18 S rDNA and 28 S rDNA genes and the more variable sequences of ITS1, ITS2 and CO2 of all three currently recognised Epiophlebia species and of a sample of other odonatan species. In all genes investigated the degrees of similarity between species of Epiophlebia are very high and resemble those otherwise found between different populations of the same species in Odonata. This indicates that substantial gene transfer between these populations occurred in the comparatively recent past. Our analyses imply a wide distribution of the ancestor of extant Epiophlebia in Southeast Asia during the last ice age, when suitable habitats were more common. During the following warming phase, its range contracted, resulting in the current disjunct distribution. Given the strong sensitivity of these species to climatic parameters, the current trend to increasing global temperatures will further reduce acceptable habitats and seriously threaten the existences of these last representatives of an ancient group of Odonata.

  3. Phylogeographic analysis elucidates the influence of the ice ages on the disjunct distribution of relict dragonflies in Asia.

    Science.gov (United States)

    Büsse, Sebastian; von Grumbkow, Philipp; Hummel, Susanne; Shah, Deep Narayan; Tachamo Shah, Ram Devi; Li, Jingke; Zhang, Xueping; Yoshizawa, Kazunori; Wedmann, Sonja; Hörnschemeyer, Thomas

    2012-01-01

    Unusual biogeographic patterns of closely related groups reflect events in the past, and molecular analyses can help to elucidate these events. While ample research on the origin of disjunct distributions of different organism groups in the Western Paleartic has been conducted, such studies are rare for Eastern Palearctic organisms. In this paper we present a phylogeographic analysis of the disjunct distribution pattern of the extant species of the strongly cool-adapted Epiophlebia dragonflies from Asia. We investigated sequences of the usually more conserved 18 S rDNA and 28 S rDNA genes and the more variable sequences of ITS1, ITS2 and CO2 of all three currently recognised Epiophlebia species and of a sample of other odonatan species. In all genes investigated the degrees of similarity between species of Epiophlebia are very high and resemble those otherwise found between different populations of the same species in Odonata. This indicates that substantial gene transfer between these populations occurred in the comparatively recent past. Our analyses imply a wide distribution of the ancestor of extant Epiophlebia in Southeast Asia during the last ice age, when suitable habitats were more common. During the following warming phase, its range contracted, resulting in the current disjunct distribution. Given the strong sensitivity of these species to climatic parameters, the current trend to increasing global temperatures will further reduce acceptable habitats and seriously threaten the existences of these last representatives of an ancient group of Odonata.

  4. Geochronology Constraints on Transformation Age from Ductile to Brittle Deformation of the Shangma Fault and Its Tectonic Significance, Dabieshan, Central China

    Institute of Scientific and Technical Information of China (English)

    Wang Guocan; Wang Pu; Liu Chao; Wang An; Ye Runqing

    2008-01-01

    By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山),three different crust levels of extension movement have been recognized in sequence from the deep to the shallow:① low-angle ductile detachment shearing with top to the NW; ② low-angle normal fault with top to the NW or NWW in brittle or brittle-ductile transition domain; ③high-angle brittle normal fault with top to the W or NWW. Two samples were chosen for zircon U-Pb age dating to constrain the activity age of the Shangma fault. A bedding intrusive granitoid pegmatite vein that is parallel to the foliation of the low-angle ductile detachment shear zone of the country rock exhibits a lotus-joint type of boudinage deformation,showing syn-tectonic emplacing at the end of the ductile deformation period and deformation in the brittle-ductile transition domain. The zircon U-Pb dating of this granitoid pegmatite vein gives an age of (125.9±4.2) Ma,which expresses the extension in the brittle-ductile transition domain of the Shangma fault. The other sample,which is collected from a granite pluton cutting the foliation of the low-angle ductile detachment shear zone, gives a zircon U-Pb age of (118.8±4.1) Ma,constraining the end of the ductile detachment shearing. Then the transformation age from ductile to brittle deformation can be constrained between 126-119 Ma.Combined with the previous researches,the formation of the Luotian (罗田) dome,which is located to the east of the Shangma fault,can beconstrained during 150-126 Ma. This study gives a new time constraint to the evolution of the Dabie orogenic belt.

  5. The Maximum Ice Age Glaciation between the Karakorum Main Ridge (K2) and the Tarim Basin and its Influence on Global Energy Balance

    Institute of Scientific and Technical Information of China (English)

    Matthias Kuhle

    2005-01-01

    A modern research approach and working techniques in hitherto unexamined areas, produced the following results: 1). The tongues of decakilometre long Karakorum glaciers belong to temperate ice-streams with an annual meltwater output. The short Aghil glaciers on the contrary are continental, arid and cold. 2). The present-day oscillations of the Karakorum glaciers are related to their own mass, and are contrary to and independent of the actual climate. Only the short glaciers, with steep tongue fronts, show a present-day positive balance. 3). 14C- dated Late Glacial moraines indicate a 400~800 m thick valley glacier at the former confluence point of the K2-, Sarpo Laggo- and Skamri glaciers. 4). From the evidence of transfluence passes with roches moutonnées, striae and the limits of glacial polishing, as well as moraines and erratics, a High Glacial at least 1200 m thick ice-stream network between the Karakorums and the Kuen Lun north slopes was reconstructed. The Shaksgam and Yarkand valleys were occupied by glaciers coming from west Tibet. The lowest-lying moraines are to be found in the foreland down to 2000 m, indicating a depression of the High Glacial (LGM) snowline (ELA) by 1300 m.5). The approximately 10,000 measurements of the radiation balance at up to heights of 5500 m on K2indicate that with incoming energy near the solar constant the reflection from snow- covered ice is up to 70% greater than from rock and rock waste surfaces.6).These results confirm for the very dry western margins of Tibet an almost complete ice sheet cover in an area with subtropical energy balance, conforming with the Ice Age hypothesis of the author which is based upon the presence of a 2.4 million km2 Tibetan inland ice sheet. This inland ice developed for the first time when Tibet was uplifted over the snowline during the early Pleistocene. As the measured subtropical radiation balance shows, it was able to trigger the Quaternary Ice Ages.

  6. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska

    Science.gov (United States)

    Moore, Thomas E.; Box, Stephen E.

    2016-11-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America involving oceanic plates, subduction zones and strike-slip faults and with continental elements of Laurentia, Baltica, and Siberia. We use geological constraints to assign regions of deformation to 14 time intervals and to map their distributions in Alaska. Alaska can be divided into three domains with differing deformational histories. Each domain includes a crustal fragment that originated near Early Paleozoic Baltica. The Northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collision, followed by mid-Cretaceous extension. Early Cretaceous opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second (Southern) domain consists of Neoproterozoic and younger crust of the amalgamated Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prism facing the Pacific Ocean basin. The third (Interior) domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the large continental Yukon Composite and Farewell terranes having different Permian deformational episodes. Although a shared deformation that might mark their juxtaposition by collisional processes is unrecognized, sedimentary linkage between the two terranes and depositional overlap of the boundary with the Northern domain occurred by early Late Cretaceous. Late Late Cretaceous deformation is the first deformation shared by all three domains and correlates temporally with emplacement of the Southern domain against the remainder of Alaska. Early Cenozoic shortening is mild across interior Alaska but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction and counter-clockwise rotation of southern Alaska. Late Cenozoic

  7. Rheology of water ices V and VI

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1996-01-01

    We have measured the mechanical strength (??) of pure water ices V and VI under steady state deformation conditions. Constant displacement rate compressional tests were conducted in a gas apparatus at confining pressures from 400 250 K. Ices V and VI are thus Theologically distinct but by coincidence have approximately the same strength under the conditions chosen for these experiments. To avoid misidentification, these tests are therefore accompanied by careful observations of the occurrences and characteristics of phase changes. One sample each of ice V and VI was quenched at pressure to metastably retain the high-pressure phase and the acquired deformation microstructures; X ray diffraction analysis of these samples confirmed the phase identification. Surface replicas of the deformed and quenched samples suggest that ice V probably deforms largely by dislocation creep, while ice VI deforms by a more complicated process involving substantial grain size reduction through recrystallization.

  8. Using Ice Predictions to Guide Submarines

    Science.gov (United States)

    2016-01-01

    prevented the use of several airfields used for transporting personnel and equipment to the ice camp. The rapidly changing conditions of the ice ...of the ice cover. The age of the sea ice serves as an indicator of its physical properties including surface roughness, melt pond coverage, and...Sailors and members of the Applied Physics Laboratory Ice Station clear ice from the hatch of the submarine USS Connecticut (SSN 22) during Ice

  9. Analysis of the Arctic sea ice total deformation rates based on SAR remote sensing%基于合成孔径雷达遥感的北极海冰总形变率分析

    Institute of Scientific and Technical Information of China (English)

    谢涛; 方贺; 赵尚卓; 于文金; 王召民; 何宜军

    2015-01-01

    基于 RADARSAT 地球物理处理器系统(RGPS)的北极海冰运动散度、旋度和剪切产品,本文计算了北极海冰总形变率,给出了所有 RGPS 产品时空覆盖范围的总形变率空间分布和时间平均总形变率大于0.01 d-1的概率分布。结果表明:对整个 RGPS 数据库而言(时间跨度从1996年11月至2008年4月),平均总形变率为0.0204 d-1,总形变率大于0.01 d-1的数据样本为总样本的45.89%。总形变率高值主要分布在近岸海域,靠近北极点附近的总形变率相对较小。北极海冰总形变率随季节变化,夏季平均总形变率及总形变率大于0.01 d-1发生概率要比冬季大,其中,夏季总形变率大于0.01 d-1发生概率为59%,而冬季要比夏季低18%。其可能机制主要是,夏季北极地区温度升高,形成海冰融化-破碎-更易融化-更易破碎的放大效果,导致北极海冰总形变率变大。%Total sea ice deformation rates are produced based on RADARSAT Geophysical Processer System (RGPS)dataset (divergence,vorticity and shear)in this paper,as well as the probability distribution of samples whose value of total sea ice deformation rate are lager than 0.01/d in the Arctic Ocean.The results show that mean value of total deformation rates (TDR)of whole dataset (from November 1996 to April 2008)is 0.020 4/d. There are 45.89% samples whose value of TDR are lager than 0.01/d.TDR in coast area are larger than those near North Polar.There are statistically significant differences in the average TDR between summer and winter. Both average TDR and occurrence probabilities of samples whose value of TDR are lager than 0.01/d in summer are larger than those in winter.Where probability of occurrence in summer is 59% which has 18% more than that in winter.It may be lead by the amplify effect of sea ice melting-broken-easier melting-easier broken in summer, and than it makes the Arctic sea ice

  10. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2013-09-30

    ice age, and iv) onset dates of melt and freezeup . 4. Assess the magnitude of the contribution from ice-albedo feedback to the observed decrease of...the impact on albedo evolution of ice concentration and melt and freezeup onset dates. This effort will expand on previous work by i) examining...radiation, ice concentration, ice type, and melt and freezeup onset dates on a 25 x 25 km equal area scalable grid. We have daily values of these parameters

  11. Multi-Centennial Record of North Atlantic Freshwater Variability since the Little Ice Age Archived in Coralline Algal Ba/Ca

    Science.gov (United States)

    Chan, P. T. W.; Halfar, J.; Adey, W.; Zack, T.

    2014-12-01

    Declining Arctic sea-ice cover in recent decades has driven large-scale freshwater transport into the North Atlantic, possibly influencing the strength of the Meridional Overturning Circulation and even global climate. However, due to the lack of long-term oceanographic observations, little is known about the natural freshwater variability of the Northwestern Atlantic. Crustose coralline algae Clathromorphum compactum are extremely long-lived shallow marine calcareous plants that are abundant along the subarctic eastern Canadian coastline. They are particularly well-suited as recorders of paleoclimate signals due to the formation of annual growth increments, allowing for the precise calendar dating and geochemical sampling of hard tissue. Here, we provide the first annually-resolved multi-centennial record of coralline algal Ba/Ca from Labrador, Canada, as a proxy for North Atlantic freshwater variability extending well into the Little Ice Age (LIA) (1665 AD). Barium-to-calcium ratios (Ba/Ca) from coralline algae have previously been used as an indicator of freshwater runoff. This is because barium-rich clay sediments are transported by terrestrial runoff into coastal waters, and barium is released from the clay minerals upon encountering more alkaline elements present in seawater. We observe higher algal barium concentrations during the LIA, followed by a steady decline to recent times. In addition, coralline algal Ba/Ca shows significant positive relationships to Hudson Strait runoff, as well as Canadian Arctic and North Atlantic sea-ice extent. This suggests that more riverine Ba is transported from the Hudson Strait into the Labrador Sea during periods of increased sea-ice cover. Multiyear sea-ice can block incoming solar radiation thereby diminishing the effects of nutrient scavenging by phytoplankton, resulting in a more conservative transport of Ba into northern Labrador. However as sea-ice continues to thin, more sunlight is able to penetrate through the

  12. Deriving hydrologic conditions in the southern Caucasus region during the Little Ice Age using different geomorphological and paleoenvironmental archives

    Science.gov (United States)

    von Suchodoletz, Hans; Benito, Dario Martin; Pederson, Neil; Faust, Dominik

    2016-04-01

    From the 15th century to ca. 1850 AD, the Little Ice Age (LIA), was one of the most prominent climatic fluctuations during the Holocene. It was characterized by negative temperature anomalies evidenced for many regions of the Northern Hemisphere (Mann 2002). During the LIA, many of these regions showed significant changes of their landscape dynamics such as glacier advances and an intensified hydrological cycle. Although glacier advances and reduced pine growth are reported from the Greater Caucasus for parts of the LIA (Solomina 2005), little is known about the hydrological conditions of the humid to semi-arid Lesser Caucasus and Transcaucasus region during the LIA. Existing pollen records are so strongly disturbed by anthropogenic activity during the last millenia that the LIA is not resolved in the only existing pollen-based precipitation reconstruction for the region (Connor & Kvavadze 2008). Here, we present data derived from different kinds of geomorphological archives from the southern Caucasus region (fluvial sediments, indicators for the timing of incision of recently dry valleys). These data demonstrate intensive geomorphic activity during the LIA obviously caused by a strongly intensified hydrological cycle. Given the rather low temporal resolution of these geomorphological archives, however, more highly-resolved palaeoenvironmental data are needed to better understand also minor climatic and hydrologic fluctuations around the LIA period. To this end, we intend to use a recently developed multispecies tree-ring network from living trees (Martin-Benito et al., in revision). This tree-ring network will be expanded both in space and time using subfossil wood material (stems) found embedded into fluvial LIA-terrace deposits and radiocarbon-dated to the end of the 15th century AD. By overlapping these samples with the living tree network, we will be able to better characterize sub-ordinate climatic and hydrologic fluctuations during the LIA period. References

  13. Episodes of aeolian sand movement on a large spit system (Skagen Odde, Denmark) and North Atlantic storminess during the Little Ice Age

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Glad, Aslaug Clemmensen; Hansen, Kristian W T;

    2015-01-01

    Late Holocene coastal dune successions in north-western Europe contain evidence of episodic aeolian sand movement in the recent past. If previous periods of increased sand movement can be dated sufficiently precisely and placed in a correct cultural and geomorphological context, they may add to o...... moderate storminess. These findings are important as they indicate three major periods of aeolian sand movement and storminess during the Little Ice Age...... recognized. Optically stimulated luminescence (OSL) dating indicates that aeolian sand movement took place in four phases: around AD 1460, between AD 1730 and 1780, around AD 1870, and since about AD 1935. The first phase of sand movement occurred during cooling in the first part of the Little Ice Age...... movement during the Little Ice Age also took place in periods of increased storminess, but during these events it appears that negative NAO values were coupled with positive AMO values. The final phase of sand movement is intimately linked to the modern formation of frontal dunes which takes place during...

  14. Hydrological evidence for a North Atlantic oscillation during the Little Ice Age outside its range observed since 1850

    Directory of Open Access Journals (Sweden)

    C. Martín-Puertas

    2011-12-01

    Full Text Available An annual-resolved precipitation reconstruction for the last 800 yr in Southern Spain has been performed using stable carbon isotope (δ13C of Pinus nigra tree rings. The reconstruction exhibits high- to low-frequency variability and distinguishes a Little Ice Age (LIA, AD 1350–1850 characterized by lower averaged rainfall than both in the transition from the Medieval Climate Anomaly to the LIA and in the 20th century. The driest conditions are recorded during the Maunder solar Minimum (mid 17th–early 18th centuries, in good agreement with the Spanish documentary archive. Similar linkage between solar activity (maximum/minimum and precipitation (increase/decrease is observed throughout the entire LIA. Additionally, the relationship between the hydrological pattern in the Iberian Peninsula and Morocco during the LIA suggests different spatial distribution of precipitation in the south-eastern sector of the North Atlantic region such as it is known currently. Whereas in the instrumental record the precipitation evolves similarly in both regions and opposite to the North Atlantic oscillation (NAO index, the coldest periods of the LIA shows a contrasting pattern with drier conditions in the South of Spain and wetter in Northern Africa. We suggest an extreme negative NAO conditions, accompanied by a southward excursion of the winter rainfall band beyond that observed in the last century, can explain this contrast. The sustained NAO conditions could have been triggered by solar minima and higher volcanic activity during the LIA.

  15. Palaeoclimate science: Pulsating ice sheet

    Science.gov (United States)

    Vieli, Andreas

    2017-02-01

    During the last ice age, huge numbers of icebergs were episodically discharged from an ice sheet that covered North America. Numerical modelling suggests that these events resulted from a conceptually simple feedback cycle. See Letter p.332

  16. Radiocarbon dating of glacier ice: overview, optimisation, validation and potential

    Science.gov (United States)

    Uglietti, Chiara; Zapf, Alexander; Jenk, Theo Manuel; Sigl, Michael; Szidat, Sönke; Salazar, Gary; Schwikowski, Margit

    2016-12-01

    High-altitude glaciers and ice caps from midlatitudes and tropical regions contain valuable signals of past climatic and environmental conditions as well as human activities, but for a meaningful interpretation this information needs to be placed in a precise chronological context. For dating the upper part of ice cores from such sites, several relatively precise methods exist, but they fail in the older and deeper parts, where plastic deformation of the ice results in strong annual layer thinning and a non-linear age-depth relationship. If sufficient organic matter such as plant, wood or insect fragments were found, radiocarbon (14C) analysis would have thus been the only option for a direct and absolute dating of deeper ice core sections. However such fragments are rarely found and, even then, they would not be very likely to occur at the desired depth and resolution. About 10 years ago, a new, complementary dating tool was therefore introduced by our group. It is based on extracting the µg-amounts of the water-insoluble organic carbon (WIOC) fraction of carbonaceous aerosols embedded in the ice matrix for subsequent 14C dating. Since then this new approach has been improved considerably by reducing the measurement time and improving the overall precision. Samples with ˜ 10 µg WIOC mass can now be dated with reasonable uncertainty of around 10-20 % (variable depending on sample age). This requires about 300 to 800 g of ice for WIOC concentrations typically found in midlatitude and low-latitude glacier ice. Dating polar ice with satisfactory age precision is still not possible since WIOC concentrations are around 1 order of magnitude lower. The accuracy of the WIOC 14C method was validated by applying it to independently dated ice. With this method, the deepest parts of the ice cores from Colle Gnifetti and the Mt Ortles glacier in the European Alps, Illimani glacier in the Bolivian Andes, Tsambagarav ice cap in the Mongolian Altai, and Belukha glacier in the

  17. Strength evolution and deformation behaviour of cemented paste backfill at early ages:Effect of curing stress, filling strategy and drainage

    Institute of Scientific and Technical Information of China (English)

    Ghirian Alireza; Fall Mamadou⇑

    2016-01-01

    In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill (CPB) when subjected to various loading condi-tions under different curing scenarios. The different curing scenarios that are simulated include: (1) drained and undrained conditions, (2) different filling rates, (3) different filling sequences, and (4) differ-ent curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drai-nage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress. Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition.

  18. Large scale facies change in the middle Eocene South-Pyrenean foreland basin: The role of tectonics and prelude to Cenozoic ice-ages

    Science.gov (United States)

    Huyghe, Damien; Castelltort, Sébastien; Mouthereau, Frédéric; Serra-Kiel, Josep; Filleaudeau, Pierre-Yves; Emmanuel, Laurent; Berthier, Benoît; Renard, Maurice

    2012-05-01

    The present study reports a sedimentological analysis of the Guara Limestone Formation deposited during the Lutetian in the Sierras Exteriores, in the South-Pyrenean foreland basin. We provide a detailed facies analysis of the carbonates to precise the paleoenvironmental context during their deposition. We show that those limestones are mainly composed of shallow-water foraminifers and were deposited in relative shallow-water environments (Jaca basin, this event correlates with a marked increase in subsidence rate. However, this deformation event is local and the carbonate systems in the Pyrenean foreland resisted to many deformation events during the whole basin history before. Paleobathymetric reconstructions in the Jaca basin, where shallow marine sections outcrop, suggest an increase of the amplitude of high-frequency sea-level cycles. This increase is contemporaneous with several climatic evidences, which suggest the appearance of early ice-sheets near the Lutetian-Bartonian boundary. The demise of carbonate producers seems, therefore, to be the result of a major environmental shift in the basin accompanying increased subsidence rates, switching from low nutrient oligotrophic conditions - favourable for shallow water benthic foraminifers - to eutrophic conditions due to the increase of erosion and terrigenous nutrient input associated with higher-frequency sea-level changes and river destabilization.

  19. Age constraints on deformation of the eastern Hodgkinson Province, north Queensland: new perspectives on the evolution of the northern Tasman Orogenic Zone

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetto, R.G.; Henderson, R.A.; Davis, B.K. [James Cook University, Townsville, QLD (Australia). Department of Earth Sciences; Wysoczanski, R. [Australian National University, Canberra, ACT (Australia). Research School of Earth Sciences

    1999-02-01

    Granitic plutons of the Wangetti and Mt Formartine Supersuites intrude the Hodgkinson Formation of the Macalister Range district of the eastern Hodgkinson Province, north Queensland, Australia. Field and microstructural analyses of country-rock fabrics and those of the granites show four deformational events (D{sub 1}-D{sub 4}) for the district, in common with other sectors of the Hodgkinson Province. Structural relationships show that plutons of the two supersuites were emplaced at different times. The Wangetti Granite lacks fabric development, but the deflection of country-rock cleavage trends around it and the microscale crenulation of S{sub 2} on the rims of D{sub 4} porphyroblasts within its aureole indicate syn-D{sub 4} emplacement, consistent with the Early Permian crystallisation age attributed to this pluton from isotopic evidence. Plutons of the Mt Formartine Supersuite show the effects of multiple (D{sub 2}-D{sub 4}) deformation. An emplacement age of 357 {+-} 6 Ma (latest Devonian) was obtained for this granite by SHRIMP U-Pb analyses of zircon. This identifies an early episode of plutonism for the Hodgkinson Province, most granites from which are of Permian age. The new date constrains the age of D{sub 2} for the Macalister Range district and the age of the protolith of the Hodgkinson Formation as pre-Carboniferous. It matches the age previously determined for one of several small, related granitic stocks in the southeastern Camel Creek Subprovince of the Broken River Province. Structural relationships for granites of this age suggest that their emplacement was broadly associated with the first episode of regional-scale orogenesis and the development of penetrative fabrics in the Hodgkinson - Broken River Fold Belt. Copyright (1999) Blackwell Science Pty Ltd 31 refs., 8 figs.

  20. Mechanical sea-ice strength parameterized as a function of ice temperature

    Science.gov (United States)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  1. Recent glacierization of the Tsambagarav ridge (North‑Western Mongolia and its changes since the Little Ice Age maximum

    Directory of Open Access Journals (Sweden)

    D. A. Ganyushkin

    2016-01-01

    Full Text Available Characteristics of glacierization of the Tsambagarav mountain ridge were determined on the basis of images obtained from satellites Corona, Landsat‑5, Spot‑4, Landsat‑8 together with results of field investigations. Inventories of glaciers located on the ridge had been prepared for three time periods: 1968, 2006, and 2015. Glacierization of the ridge during the Little Ice Age (LIA maximum was then reconstructed. In 2015, 67 glaciers formed the ridge glacierization with their total area 68.41 km2. Mean weighed altitude of the firn line averaged 3748 m. The flat‑top glaciers accounted for almost 40% of the glacierization area, and the glaciers composed 6 complexes. For the period of the LIA maximum, 73 glaciers had been reconstructed, their total area was 128.4 km2, and the calculated firn line altitude – 3583 м; these glaciers were combined into two complexes where the flat‑top glaciers predominated as well. By 1968, the area of the glacierization decreased by 36%, and the firn line altitude increased by 89 m. By 2006, area of glaciers decreased down to 71.32 km2, and the firn line altitude increased more by 60 m. Finally, in 2006–2015, area of the glacierization contracted additionally by 2.91 km2, and the firn line altitude still more increased by 16 m. Over the whole period from the LIA maximum, the flat‑top glaciers reduced the most. The general rate of contraction of glaciers tends to increase. Reconstructed rates of retreating of the valley glaciers of the Tsambagarav ridge are similar to estimates of other researchers made for the nearest centers of glacierization. Continuation of the current trend to a rise of summer temperature and a growth of precipitation should result in primary fast degradation of the flat‑top glaciers and reorganization of morphological structure of the glacierization.

  2. The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach

    Science.gov (United States)

    Lorrey, Andrew; Fauchereau, Nicolas; Stanton, Craig; Chappell, Petra; Phipps, Steven; Mackintosh, Andrew; Renwick, James; Goodwin, Ian; Fowler, Anthony

    2014-06-01

    Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of -0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the `HSE'-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the `T'- and `SW'-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes

  3. Calcareous nannofossil assemblages from the Central Mediterranean Sea over the last four centuries: the impact of the little ice age

    Directory of Open Access Journals (Sweden)

    A. Incarbona

    2010-05-01

    Full Text Available We present decadal-scale calcareous nannofossil data from four short cores (Station 272, 37° 17' N, 12° 48' E, 226 m depth; St 342, 36° 42' N, 13° 55' E, 858.2 m depth; St 407, 36° 23' N, 14° 27' E, 345.4 m depth; C90-1M, 40° 36' N, 14° 42' E, 103.4 m depth recovered in the central Mediterranean Sea (northern Sicily Channel and Tyrrhenian Sea, which, on the basis of 210Pb activity span the last 200–350 years. Assemblages are dominated by placoliths, mostly Emiliania huxleyi, while, at least in the Sicily Channel sediments, Florisphaera profunda was an important part of the coccolithophore community.

    The paleoenvironmental reconstruction, based on ecological preference of species and groups, suggests that the Tyrrhenian core C90-1M maintained higher productivity levels over recent centuries, with respect to the Sicily Channel sites, possibly because of more pronounced winter phytoplankton blooms, in agreement with modern primary productivity variations over the last ten years.

    The lowermost part of the record of one of the cores from the Sicily Channel, Station 407, which extends down to 1650 AD, is characterized by drastic changes in productivity. Specifically, below 1850 AD, the decrease in abundance of F. profunda and the increase of placoliths, suggest increased productivity. The chronology of this change is related to the main phase of the Little Ice Age, which might have impacted the hydrography of the southern coast of Sicily and promoted vertical mixing in the water column. The comparison with climatic forcings points out the importance of stronger and prolonged northerlies, together with decreased solar irradiance. The identification of the LIA in the northern Sicily Channel cover the Bond cycle BO that was missing in a previous study of Holocene climatic anomalies in the Sicily Channel.

    Finally, we suggest that major abundance changes in reworked nannofossil specimens

  4. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms

    Science.gov (United States)

    Chen, Jianhui; Chen, Fahu; Feng, Song; Huang, Wei; Liu, Jianbao; Zhou, Aifeng

    2015-01-01

    Investigating hydroclimatic changes during key periods such as the Medieval Climate Anomaly (MCA, 1000-1300 AD) and the Little Ice Age (LIA, 1400-1900 AD) is of fundamental importance for quantifying the responses of precipitation to greenhouse gas-induced warming on regional and global scales. This study synthesizes the most up-to-date and comprehensive proxy moisture/precipitation records during the past 1000 years in China and surroundings. The proxy data collected include 34 records from arid central Asia (ACA) and 37 records from monsoonal Asia. Our results demonstrate a pattern of generally coherent regional moisture variations during the MCA and LIA. In mid-latitude Asia north of 30°N, monsoonal northern China (North China and Northeast China) was generally wetter, while ACA (Northwest China and Central Asia) was generally drier during the MCA than in the LIA (a West-East mode). The boundary between wetter northern China and drier ACA was roughly consistent with the modern summer monsoon boundary. In monsoonal China to the east of 105°E, the northern part was generally wetter, while the southern part was generally drier during the MCA than in the LIA (a North-South mode), with a boundary roughly along the Huai River at about 34°N. These spatial patterns of moisture/precipitation variations are also identified by instrumental data during the past 50 years. In order to understand the possible mechanisms related to the moisture variations during the MCA and LIA, we investigate the major SST and atmospheric modes (e.g. the El Niño/Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO)) which affect the moisture/precipitation variations in the study region using both the instrumental data and the reconstructed time series. It is found that the ENSO may play an important role in determining hydroclimatic variability over China and surroundings on a multi-centennial time-scale; and that the foregoing

  5. Hydroclimatic changes in Asia during the Medieval Climate Anomaly and Little Ice Age: Basic facts and possible mechanisms

    Science.gov (United States)

    Chen, J.; Chen, F.; Feng, S.

    2011-12-01

    Understanding the hydroclimatic changes during key periods, such as the Medieval Climate Anomaly (MCA, 900~1300 AD) and Little Ice Age (LIA, 1400~1900 AD) is one of the fundamental requirements for quantifying the responses of precipitation to greenhouse gas induced warming on regional and global scales. This study synthesized the most updated and comprehensive proxy moisture (or precipitation) records during the past 1000 years in Asia. The proxy data collected include 21 records from the arid central Asia and 25 records from monsoonal East and South Asia. Our results showed coherent regional moisture variations during the MCA and LIA in the study region. In the mid-latitude Asia (areas north 30N), the North China is generally wetter while the Northwest China and Central Asia are generally dryer during the MT than in the LIA. The boundary between the wetter North China and drier Northwest China is roughly close to the modern summer monsoon boundary. Additionally, the out-of-phase moisture variations during MCA and LIA are also evident between the North and South China with a boundary around the 30N. This pattern of moisture variations is also identified using instrumental data during the past 50 years. To understand the possible mechanisms related to the moisture variations during the MWP and LIA, the major SST and atmospheric modes (e.g. ENSO, AMO, PDO and NAO) that affecting the precipitation/moisture variations in Asia were analyzed. Comparing and contrasting the variations of ENSO and AMO during the past 1000 years suggested that the colder (warmer) SST in the eastern tropical Pacific and warmer (colder) SST in the North Atlantic during the MCA (LIA) have played important roles on the moisture variations in Asia during the MCA (LIA). Our interpretation is further supported by the simulations made by 5 global climate models. When forced by a colder eastern tropical Pacific, a warmer North Atlantic Ocean, or combination of a colder eastern tropical Pacific and a

  6. Current glaciation of the Chikhachev ridge (South-Eastern Altai and its dynamics after maximum of the Little Ice Age

    Directory of Open Access Journals (Sweden)

    D. A. Ganyushkin

    2016-01-01

    Full Text Available Glaciation of the Chikhachev ridge (South-Eastern Altai remains poorly known: field observations were not performed since the mid-twentieth century, available schemes and estimates of the glaciation and its scale made on the basis of remote sensing cover only a part of the glaciers, reconstructions of the Little Ice Age (LIA glaciations are absent. This research was based on interpretation of the satellite images: Landsat-4 (1989, Landsat-7 (2001, and Spot-5 (2011, as well as with the use of data of the field season of 2015. Characteristics of glaciations of the Chikhachev ridge as the whole and of its individual centers (Talduair massif, Mongun-Taiga-Minor massif, and southern part of the Chikhachev ridge were determined for the first time. Recent glaciation is represented by 7 glaciers with their total area of 1.12 km2 in the Talduair massif, by 5 glaciers with total area of 0.75 km2 in the Mongun-Taiga-Minor massif, and by 85 glaciers with total area of 29 km2 in the southern part of the Chikhachev ridge. Since the LIA maximum, areas of glaciers decreased by 61% in the Talduair massif, by 74% in the Mongun-Taiga-Minor massif, by 56% in the southern part of the Chikhachev ridge with simultaneous lifting of the firn line by 50 m, 65 m, and 70 m, respectively.The largest rates of the glacier contractions were determined for the period 1989–2011. Different mechanisms of the glacier retreats were shown by the example of the glacier complexes Burgastyn-Gol (one-sided retreat and disintegration and the Grigorjev glacier (gradual retreat of the tongue. Retreat of the Grigorjev glacier has been reconstructed for the period from the LIA maximum until 2015. Average rate of the retreat increased from 1,6 m/year in 1957–1989 up to 11,3 m/year in 2011–2015. The present-day scales of the glaciers and rates of their retreating do not significantly differ from estimations made by other researchers for the nearest centers of glaciation of the

  7. High-resolution sedimentary effects of post-Little Ice Age glacial recession in Hornsund (Svalbard) - insights from chirp and core data

    Science.gov (United States)

    Dominiczak, Aleksander; Szczuciński, Witold; Moskalik, Mateusz; Forwick, Matthias

    2017-04-01

    As a result of global warming from the end of the Little Ice Age a fast withdrawal and loss of mass of many glaciers have been observed. The retreat has been particularly rapid in case of tidewater glaciers of Spitsbergen, where in an effect a new bays were formed and serve as glaciomarine sediment accumulation areas. The new depocenters in emerging bays are characterized by high sediment accumulation rates. Analysis and quantitative assessment of the processes occurring in these bays can enhance a better understanding of the dynamics of glaciers recession and bio-geochemical processes occurring in the fjords. This is particularly important because the subpolar fjords may be important storage for organic carbon on a global scale (Smith at al. 2015). In order to obtain a detailed high-resolution record of sedimentation history in the post Little Ice Age bays, 30 gravity cores and 18 box cores were collected along with detail seism acoustic surveys (Chirp) during three cruises on board of R/V Helmar Hansen in 2007, 2014 and 2015. The sediment cores revealed two major types of sediments: subglacial till and overlying laminated glacimarine mud with abundant ice rafted debris. The sediment accumulation rate of the latter is estimated to be on average in order of 1 to 5 cm per year. The periods of increase ice rafting are likely related to surge events. The dense Chirp survey grid spatial changeability in the post-Little Ice Age sediment cover. The amount and lithology of sediments in different parts of the bays also helped to link glacier dynamics with sedimentary effect. Our results confirms that despite similarities in lithology there are significant differences in sediment accumulation rates, probably driven by changes in accommodation spaces and sediment delivery. The record is also affected by effects of glacier surges. However, analyses of historical data enhanced the interpretation of sedimentary record and provide hints to identify the specific processes and

  8. Study on microstructure evolution of deformed Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloys after solid solution and ageing

    Directory of Open Access Journals (Sweden)

    Jianmin Yu

    2016-01-01

    Full Text Available The microstructure evolution of Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloy after deformation and T5 or T6 treatment were studied. In thermoplastic deformation, dynamic recrystallization and dynamic precipitation has been taken place at the same time. The dynamic precipitation reduces the recrystallization nucleation driving force in the grain; it will prevent to occur dynamic recrystallization partially. Solid solution temperature was 530oC and hold 4h. Age hardening treatments were performed at 225oC and hold 16h. The alloy showed the comprehensive properties are obviously improved from T6 to T5 heat treatment. After T5 heat treatment the tensile strength of alloy increased to 359.3 MPa, increased by around 48.5%; Elongation is increasing from 5.17% to 6.5%. After peak ageing treatment, the main precipitation is β' phase, the precipitation phase have obvious pinning effect to grain boundary of the alloy, it will prevent the grain growth ageing for a long-time. At the same time, strengthening role of precipitate phase make its strength increased significantly.

  9. Reconstruction of the Ice Age Glaciation in the Southern Slopes of Mt. Everest, Cho Oyu, Lhotse and Makalu (Himalaya) (Part 1)

    Institute of Scientific and Technical Information of China (English)

    Matthias Kuhle

    2006-01-01

    In the Khumbu- and Khumbakarna Himalaya an ice stream network and valley glacier system has been reconstructed for the last glacial 18 Ka BP, Stage o) with glaciogeomorphological and sedimentological methods. It was a part of the glacier system of the Himalaya and has communicated across transfluence passes with the neighbouring ice stream networks toward the W and E. The ice stream network has also received inflow from the N, from a Tibetan ice stream network, by the Kyetrak-Nangpa-Bote Koshi Drangka (Valley) in the W, by the W-Rongbuk glacier valley into the Ngozumpa Drangka (Valley), by the Central Rongbuk glacier valley into the Khumbu Drangka (Valley) and by the antecedent Arun Nadi transverse-valley in the E of the investigation area.The ice thickness of the valley glacier sections, the surface of which was situated above the snow-line,amounted to 1000~1450 m. The most extended parent valley glaciers have been measured approx. 70 km in length (Dudh Koshi glacier), 67 km (BarunArun glacier) and 80 km (Arun glacier). The tongue end of the Arun glacier has flowed down to c. 500 m and that of the Dudh Koshi glacier to c. 900 m asl. At heights of the catchment areas of 8481 (or 8475) m (Makalu), i.e., 8848 (or 8872) m (Mt. Everest,Sagarmatha, Chogolungma) this is a vertical distance of the Ice Age glaciation of c. 8000 m. The steep faces 6000~7000 m-high surfaces of the ice stream network were located 2000~5000 m above the ELA.Accordingly, their temperatures were so low, that their rock surfaces were free of flank ice and ice balconies. From the maximum past glacier extension up to the current glacier margins, 13 (altogether 14)glacier stages have been differentiated and in part 14C-dated. They were four glacier stages of the late glacial period, three of the neoglacial period and six of the historical period. By means of 130 medium-sized valley glaciers the corresponding ELA-depressions have been calculated in comparison with the current courses of the

  10. Derivation of deformation characteristics in fast-moving glaciers

    Science.gov (United States)

    Herzfeld, Ute C.; Clarke, Garry K. C.; Mayer, Helmut; Greve, Ralf

    2004-04-01

    Crevasse patterns are the writings in a glacier's history book—the movement, strain and deformation frozen in ice. Therefore by analysis of crevasse patterns we can learn about the ice-dynamic processes which the glacier has experienced. Direct measurement of ice movement and deformation is time-consuming and costly, in particular for large glaciers; typically, observations are lacking when sudden changes occur. Analysis of crevasse patterns provides a means to reconstruct past and ongoing deformation processes mathematically. This is especially important for fast-moving ice. Ice movement and deformation are commonly described and analyzed using continuum mechanics and measurements of ice velocities or strain rates. Here, we present a different approach to the study of ice deformation based on principles of structural geology. Fast ice movement manifests itself in the occurrence of crevasses. Because crevasses remain after the deformation event and may be transported, overprinted or closed, their analysis based on aerial videography and photography or satellite data gives information on past deformation events and resulting strain states. In our treatment, we distinguish (A) continuously fast-moving glaciers and ice streams, and (B) surge-type glaciers, based on observations of two prototypes, Jakobshavns Isbræ, Greenland, for (A), and Bering Glacier, Alaska, during the 1993-1995 surge, for (B). Classes of ice-deformation types are derived from aerial images of ice surfaces using structural geology, i.e. structural glaciology. For each type, the deformation gradient matrix is formed. Relationships between invariants used in structural geology and continuum mechanics and the singular value decomposition are established and applied to ice-surface classification. Deformation during a surge is mostly one of the extensional deformation types. Continuously, or infinitesimally repeated, deformation acting in continuously fast-moving ice causes different typical

  11. 明朝灭亡与“小冰期”%The Demise of Ming Dynasty and the Little Ice Age

    Institute of Scientific and Technical Information of China (English)

    易山明

    2015-01-01

    历史上每次气候变迁都会对人类历史进程产生一定影响。以明朝为例,身处“小冰期”鼎盛时期的晚明,气候的冷变使得灾害多发,对农牧业造成巨大冲击,而社会秩序、军事战争等都与“小冰期”这一气候大背景有着直接或间接地联系。因此,有必要从“小冰期”时期气候变迁这一角度来分析明朝灭亡的原因,以期对研究王朝更替与气候变迁之间的关系做出更加全面、合理地解读。%In the history, each climate change produces a certain influence on human historical development. Take the Ming Dy-nasty for an example. The late Ming is in the Little Ice Age heyday. The climate changes to be cold making the disaster-prone and producing tremendous impact on agriculture and animal husbandry. What’ s more, social order, military, war and other aspects have a direct or indirect contacts with the climatic background of Little Ice Age. Therefore, it is necessary to analyze the reasons for the de-mise of the Ming Dynasty, from the perspective of the climate change in Little Ice Age period in order to make a more comprehensive and reasonable interpretation for the study of relationships between the switch of dynasties and climate changes.

  12. Age and origin of ice-rich Yedoma silts at Duvanny Yar, northeast Siberia: a record of Beringian environmental change since the last interglacial

    Science.gov (United States)

    Murton, J.; Edwards, M. E.; Murton, D.; Bateman, M.; Haile, J.

    2010-12-01

    Silty Yedoma deposits at the important Beringian site of Duvanny Yar (68o,37’ N; 159o08’ E) in northeast Siberia, have been interpreted before as both loess and nival deposits. The yedoma deposits form a stratigraphic unit more than 30 m thick that comprises sandy silts which are generally massive and rich in ground ice and organic material. The ground ice includes pore ice, segregated ice and wedge ice (both syngenetic and epigenetic), and much of it accumulated more or less coevally with deposition of the silt and upward growth of permafrost. Organic material includes pervasive rootlets of former steppe-tundra vegetation (e.g. grasses), vertebrate bones (e.g. mammoth, bison, horse), pollen, insect remains, and plant macrofossils. A number of cryoturbated organic horizons within the silts are interpreted as incipient palaeosols. The sedimentary properties of the silts (particle size and magnetic susceptibility) and the palaeocological characteristics of the contained organic material are both consistent with deposition of silts primarily as loess and loess-sand intergrades, sedimentologically similar to known aeolian deposits in northwest Europe (e.g. Pegwell Bay, UK). Deposition primarily by snow meltwater is unlikely because the nearest uplands where snow could have accumulated and hillslopes could have provided runoff sites are many kilometers distant. The remnants of the original landsurface—prior to thermokarst activity during the late-glacial and Holocene—indicate an essentially flat landscape during dust deposition. Radiocarbon dating of mainly in situ rootlets indicates a complete record of dust deposition during the Last Glacial Maximum (LGM), potentially one of the best terrestrial records of LGM palaeoenvironments. Older radiocarbon dates suggest at least two periods of soil formation between the LGM and about 40,000 radiocarbon years BP (within Marine Isotope Stage 3). Optical dating is currently being undertaken to constrain the ages of older

  13. Evaluation of the Permanent Deformations and Aging Conditions of Batu Pahat Soft Clay-Modified Asphalt Mixture by Using a Dynamic Creep Test

    Directory of Open Access Journals (Sweden)

    Al Allam A. M.

    2016-01-01

    Full Text Available This study aimed to evaluate the permanent deformation and aging conditions of BatuPahat soft clay–modified asphalt mixture, also called BatuPahat soft clay (BPSC particles; these particles are used in powder form as an additive to hot-mix asphalt mixture. In this experiment, five percentage compositions of BPSC (0%, 2%, 4%, 6%, and 8% by weight of bitumen were used. A novel design was established to modify the hot-mix asphalt by using the Superpave method for each additive ratio. Several laboratory tests evaluating different properties, such as indirect tensile strength, resilient stiffness modulus, and dynamic creep, was conducted to assess the performance of the samples mixed through the Superpave method. In the resilient modulus test, fatigue and rutting resistance were reduced by the BPSC particles. The added BPSC particles increased the indirect tensile strength. Among the mixtures, 4% BPSC particles yielded the highest performance. In the dynamic creep test, 4% BPSC particles added to the unaged and short-term aged specimens also showed the highest performance. Based on these results, our conclusion is that the BPSC particles can alleviate the permanent deformation (rutting of roads.

  14. Adaptation and rise: Little Ice Age challenges and social responses on the Trans-Tisza Region (Hungary)

    Science.gov (United States)

    Pinke, Zsolt; Romhányi, Beatrix F.; Gábris, Gyula; Gyulai, Ferenc; Mravcsik, Zoltán; Pósa, Patricia; Ferenczi, László

    2016-04-01

    The studied 4.128 km2 Central European lowland region includes the Hortobágy landscape, a UNESCO World Heritage site and one of the most extensive protected natural grasslands of Europe. In the evolution of this semi-natural landscape human-nature interactions were characterised by gradual but extremely serious settlement abandonment during the 13th-17th centuries. The identification of the agents shaping this process has been widely discussed in the Hungarian landscape historiography. The statistical analysis of medieval archaeological sites indicating settlements showed that elevation means in the early period of the Little Ice Age (LIA) (mid-13th - mid-16th centuries) were significantly higher than in the Medieval Warm Epoch (MWE) (mid-10th - mid-13th centuries) (p≤0.01; n=549; α=0.05). This result supported our hypothesis that waterside settlements of the plain displaced vertically from the MWE to the LIA. Secondly, a GIS based zonal analysis suggested a strong spatial connection between the geomorphological zones (riparian, deep floodplain and sand plateau), the agro-ecological suitability zones (good-excellent, medium and low) and the population zones (with stable settlement pattern, deserted and uninhabited). E.g. the elevation means of archaeological sites in deserted zones proved significantly lower than those with stable settlement pattern (p≤0.01; n=381; α=0.05). Similarly, a statistical investigation of grain remains (narchaeologicalsite=79; ntaxon=751; nfindings=4.8 millions) of the Great Hungarian Plain (GHP) indicated that the early phase of the LIA saw the spreading of moorland plants and rye, the cereal most resistant to humidity and cool. When the relation of settlement patterns to soil conditions was analysed by ANOVA linear model, a significant spatial correlation appeared between the extension of the high and medium agro-ecological suitability zones and the number of settlements in each population zone of the five microregions (R2

  15. Tempering/ageing in region 50 – 600 °C of quenched and cold deformed 585 GOLD alloy for jewelry production

    Directory of Open Access Journals (Sweden)

    R. Perić

    2014-04-01

    Full Text Available Numerous gold alloys posses the ability for thermal hardening, and this property is attractive for improving jewels strength, because the most noble alloys are weak. The thermal treating below the recrystallization temperature, is kind of tempering but also age-hardening. In this paper is made an attempt for studying the possibility for thermal hardening of 585 golden alloy. The goal is to increase the mechanical properties. Those demands could be reached by metallurgical controlling of phase transformations аnd proper thermal treating. Here is studied behavior of quenched and cold deformed gold alloy 585 after tempering/ageing in temperature region 50 - 600 °C, in intervals of 50 °C. The highest hardness values are obtained at temperatures about 200 °C for both initial states.

  16. Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    Science.gov (United States)

    Langone, Antonio; José Alberto, Padrón-Navarta; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2016-04-01

    correlation between internal zircon structures, chemistry, U-Pb isotope ratios and mylonitic fabric. U-Pb data return highly discordant and variable ages: in particular, the 206Pb/238U ages range from Carboniferous to Triassic within the same zircon grain. The youngest 206Pb/238U data derive from narrow axial stripes oriented parallel or at low angle with respect to the foliation planes. These stripes are characterized by an overall HREE, Y, U and Th enrichment possibly reflecting deformation of the grain in presence of interstitial fluid phases, likely related to a concomitant magmatic activity. Deformation related structures (cracks and fractures) within zircon grains acted as fast-diffusion pathways allowing fluids to modify the geochemistry and isotopic systems of zircon. Our results suggest that fluid-assisted brittle-ductile deformation can severely modify the trace elements and isotopic composition of zircon with unexpected patterns constrained by stress regime. In similar cases, our observations suggest that, for a more appropriate interpretation of the petrologic evolution and age variability, a direct characterization of the internal structures of zircons still placed in their microtextural site is highly recommended.

  17. Effect of Probiotic Containing Ice-cream on Salivary Mutans Streptococci (SMS) Levels in Children of 6-12 Years of Age: A Randomized Controlled Double Blind Study with Six-months Follow Up.

    Science.gov (United States)

    Ashwin, Devasya; Ke, Vijayaprasad; Taranath, Mahanthesh; Ramagoni, Naveen Kumar; Nara, Asha; Sarpangala, Mythri

    2015-02-01

    To evaluate the caries risk based on the salivary levels of streptococcus mutans in children of 6-12 years of age group before and after consuming probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5. A double blind, placebo controlled trial was carried out in 60 children aged between 6 to 12 years with zero decayed, missing, and filled teeth (DMFT). They were randomly divided into two equal groups. Saliva sample were collected before the consumption of ice-cream and Streptococcus mutans count was calculated and recorded as baseline data. For the next seven days both the groups were given ice creams marked as A and B. Saliva samples were collected after ice-cream consumption at the end of study period and also after a washout period of 30 days and again after six months. Samples were inoculated and colonies were counted. On statistical evaluation by students paired t-test, probiotic ice-cream brought significant reduction in the Streptococcus mutans count after seven days of ice-cream ingestion (pice-cream consumption. After six months of the study period in both the groups the salivary levels of Streptococcus mutans was similar to the baseline. Probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 can cause reduction in caries causative organism. The dosage of the probiotic organisms for the long term or synergetic effect on the oral health are still needed to be explored.

  18. Recent summer sea ice thickness surveys in the Fram Strait and associated volume fluxes

    Directory of Open Access Journals (Sweden)

    T. Krumpen

    2015-09-01

    Full Text Available Fram Strait is the main gateway for sea ice export out of the Arctic Ocean, and therefore observations there give insight into composition and properties of Arctic sea ice in general and how it varies over time. An extensive data set of ground-based and airborne electromagnetic ice thickness measurements collected between 2001 and 2012 is presented here, including long transects well into the southern part of the Transpolar Drift obtained using fixed-wing aircrafts. The source area for the surveyed ice is primarily the Laptev Sea, and the estimated age is consistent with a decreased from 3 to 2 years between 1990 and 2012. The data consistently also show a general thinning for the last decade, with a decrease in modal thickness of second year and multiyear ice, and a decrease in mean thickness and fraction of ice thicker than 3 m. Local melting in the strait was investigated in two surveys performed in the downstream direction, showing a decrease of 0.19 m degree−1 latitude south of 81° N probably driven by bottom melting from warm water of Atlantic origin. Further north variability in ice thickness is more related to differences in age and deformation. The thickness observations were combined with ice area export estimates to calculate summer volume fluxes of sea ice. This shows that it is possible to determine volume fluxes through Fram Strait during summer when satellite based sea ice thickness information is missing. While the ice area export based on satellite remote sensing shows positive trends since 2001, the mean fluxes during summer (July and August are small (18 km3, and long-term trends are uncertain due to the limited surveys available.

  19. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Aixiang Wu

    2016-01-01

    Full Text Available Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperature of CPB. Additionally, the relationship between the modulus of elasticity and unconfined compressive strength (UCS and the degree of hydration was evaluated and discussed. The increase of UCS and hydration degree leads to an increase in the modulus of elasticity, which is not significantly affected by the initial temperature.

  20. Applying Knowledge from Terrestrial Debris-Covered Glaciers to Constrain the Evolution of Martian Debris-Covered Ice

    Science.gov (United States)

    Koutnik, M. R.; Pathare, A. V.; Todd, C.; Waddington, E.; Christian, J. E.

    2016-09-01

    We will discuss the application of terrestrial knowledge on debris emplacement, the effects of debris on glacier-surface topography, debris transport by ice flow, deformation of debris-laden ice, and atmosphere-glacier feedbacks to Mars ice.

  1. Style and age of late Oligocene-early Miocene deformation in the southern Stillwater Range, west central Nevada: Paleomagnetism, geochronology, and field relations

    Science.gov (United States)

    Hudson, Mark R.; John, David A.; Conrad, James E.; McKee, Edwin H.

    2000-01-01

    Paleomagnetic and geochronologic data combined with geologic mapping tightly restrict the timing and character of a late Oligocene to early Miocene episode of large magnitude extension in the southern Stillwater Range and adjacent regions of west central Nevada. The southern Stillwater Range was the site of an Oligocene to early Miocene volcanic center comprising (1) 28.3 to 24.3 Ma intracaldera ash flow tuffs, lava flows, and subjacent plutons associated with three calderas, (2) 24.8 to 20.7 Ma postcaldera silicic dikes and domes, and (3) unconformably overlying 15.3 to 13.0 Ma dacite to basalt lava flows, plugs, and dikes. The caldera-related tuffs, lava flows, and plutons were tilted 60°-70° either west or east during the initial period of Cenozoic deformation that accommodated over 100% extension. Directions of remanent magnetization obtained from these extrusive and intrusive, caldera-related rocks are strongly deflected from an expected Miocene direction in senses appropriate for their tilt. A mean direction for these rocks after tilt correction, however, suggests that they were also affected by a moderate (33.4° ± 11.8°) component of counterclockwise vertical axis rotation. Paleomagnetic data indicate that the episode of large tilting occurred during emplacement of 24.8 to 20.7 Ma postcaldera dikes and domes. In detail, an apparent decrease in rotation with decreasing age of individual, isotopically dated bodies of the postcaldera group indicates that most tilting occurred between 24.4 and 24.2 Ma. The onset of tilting immediately following after the final caldera eruptions suggests that the magmatism and deformation were linked. Deformation was not driven by magma buoyancy, however, because tilting equally affected the caldera systems of different ages, including their plutonic roots. It is more likely that regional extension was focused in the southern Stillwater Range due to magmatic warming and reduction of tensile strength of the brittle crust

  2. Icing modelling in NSMB with chimera overset grids

    Energy Technology Data Exchange (ETDEWEB)

    Pena, D. [Ècole Polytechnique de Montréal (Canada); ICUBE, Strasbourg University (France); Deloze, T.; Laurendeau, E. [Ècole Polytechnique de Montréal (Canada); Hoarau, Y. [ICUBE, Strasbourg University (France)

    2015-03-10

    In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

  3. Cosmogenic 10Be and 26Al exposure ages of glaciations in the Frankland Range, southwest Tasmania reveal a limited MIS-2 ice advance

    Science.gov (United States)

    Kiernan, Kevin; Fink, David; McConnell, Anne

    2017-02-01

    New mapping of the glacial geomorphology coupled with 10Be and 26Al exposure age dating of moraines on the flanks of the Frankland Range in south west Tasmania indicate that glacier extent during MIS-2 was far smaller than during earlier glaciations with the ice cover being confined to only the uppermost cirques of the range. Moraines further down the range flanks, ∼50-150 m lower in altitude than the MIS-2 dated advance, indicate that glaciers were only slightly larger during earlier glaciations and, depending on the interpretation of their exposure ages, may range from MIS 7 to MIS 12. These older moraines are nested inside the maximum ice limits of an even more ancient and extensive glaciation, defined by degraded valley floor moraines and coalescing glacio-fluvial fans that remain undated but appear no younger than MIS 12. Patterns of glacial erosion and moraine deposition on the Frankland Range suggest that the more recent glaciations were increasingly influenced by the erosional morphology initiated by earlier glaciers. Microclimatic differences resulting from this earlier glacial topography were particularly influential determinants of glaciation during MIS 2. These results are consistent with emerging evidence from studies of other ranges in southwest Tasmania.

  4. Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age

    Institute of Scientific and Technical Information of China (English)

    Joy K. Ward; David A. Myers; Richard B. Thomas

    2008-01-01

    During the last Ice age, CO2 concentration ([CO2]) was 180-200 μmol/mol compared with the modern value of 380 μmol/mol,and global temperatures were ~8 ℃ cooler. Relatively little is known about the responses of C3 and C4 species to longterm exposure to glacial conditions. Here Abutilon theophrasti Medik. (C3) and Amaranthus retroflexus L. (C4) were grown at 200 μmol/mol CO2 with current (30/24 ℃) and glacial (22/16 ℃) temperatures for 22 d. Overall, the C4 species exhibited a large growth advantage over the C3 species at low [CO2]. However, this advantage was reduced at low temperature, where the C4 species produced 5× the total mass of the C3 species versus 14× at the high temperature.This difference was due to a reduction In C4 growth at low temperature, since the C3 species exhibited similar growth between temperatures. Physiological differences between temperatures were not detected for either species, although photorespirationlnet photosynthesis was reduced in the C3 species grown at low temperature, suggesting evidence of improved carbon balance at this treatment. This system suggests that C4 species had a growth advantage over C3 species during low [CO2] of the last ice age, although concurrent reductions in temperatures may have reduced this advantage.

  5. Modelling sea ice dynamics

    Science.gov (United States)

    Murawski, Jens; Kleine, Eckhard

    2017-04-01

    Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.

  6. Making Ice Creep in the Classroom

    Science.gov (United States)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  7. Recent changes in the dynamic properties of declining Arctic sea ice: A model study

    Science.gov (United States)

    Zhang, Jinlun; Lindsay, Ron; Schweiger, Axel; Rigor, Ignatius

    2012-10-01

    Results from a numerical model simulation show significant changes in the dynamic properties of Arctic sea ice during 2007-2011 compared to the 1979-2006 mean. These changes are linked to a 33% reduction in sea ice volume, with decreasing ice concentration, mostly in the marginal seas, and decreasing ice thickness over the entire Arctic, particularly in the western Arctic. The decline in ice volume results in a 37% decrease in ice mechanical strength and 31% in internal ice interaction force, which in turn leads to an increase in ice speed (13%) and deformation rates (17%). The increasing ice speed has the tendency to drive more ice out of the Arctic. However, ice volume export is reduced because the rate of decrease in ice thickness is greater than the rate of increase in ice speed, thus retarding the decline of Arctic sea ice volume. Ice deformation increases the most in fall and least in summer. Thus the effect of changes in ice deformation on the ice cover is likely strong in fall and weak in summer. The increase in ice deformation boosts ridged ice production in parts of the central Arctic near the Canadian Archipelago and Greenland in winter and early spring, but the average ridged ice production is reduced because less ice is available for ridging in most of the marginal seas in fall. The overall decrease in ridged ice production contributes to the demise of thicker, older ice. As the ice cover becomes thinner and weaker, ice motion approaches a state of free drift in summer and beyond and is therefore more susceptible to changes in wind forcing. This is likely to make seasonal or shorter-term forecasts of sea ice edge locations more challenging.

  8. EBSD in Antarctic and Greenland Ice

    Science.gov (United States)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain

  9. Little Ice Age mapping as a tool for identifying hazard in the paraglacial environment: The case study of Trentino (Eastern Italian Alps)

    Science.gov (United States)

    Zanoner, Thomas; Carton, Alberto; Seppi, Roberto; Carturan, Luca; Baroni, Carlo; Salvatore, Maria Cristina; Zumiani, Matteo

    2017-10-01

    The Little Ice Age (LIA) is a well-recognized climatic event during which the glaciers in the Alps advanced and reached their maximum Holocene extent. During their retreat following the LIA, the glaciers left large areas of loose or poorly consolidated glacial deposits in their forelands, which are subject to paraglacial reworking and may represent potential hazards for human infrastructures. In this study, we present a regional scale mapping of the LIA and post-LIA glacial deposits and a reconstruction of the maximum LIA extents of glaciers in the same area. This work is motivated by a local law requiring the classification of areas subject to natural hazards in Trentino (Italian Alps). Results highlight that glaciers shrunk by 63% from the LIA maximum, leaving 30 km2 of unconsolidated deposits, which are subject to geomorphic paraglacial processes. Potentially hazardous consequences can occur, in particular, during high-magnitude instantaneous events, causing debris and mud flows, mass wasting from debris-covered ice, and floods from small moraine-dammed lakes.

  10. On the nature of the dirty ice at the bottom of the GISP2 ice core

    Science.gov (United States)

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-01-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  11. On the nature of the dirty ice at the bottom of the GISP2 ice core

    Science.gov (United States)

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-11-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040 m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053 m depth. We also present data for the abundance and isotopic composition of O 2 and N 2, and abundance of Ar, in the basal dirty ice. The Ar/N 2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O 2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/ 38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250 ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH 4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  12. Autonomous Sea-Ice Thickness Survey

    Science.gov (United States)

    2016-06-01

    measurements , assesses the merits of au- tonomous surveys relative to manual ones, and describes potential future applications. DISCLAIMER: The contents...estimated that, compared with borehole measurements , their errors averaged 0.05 m for 2 m of level sea ice. They attributed most of the...average errors of 6% or 0.12 m for 2 m of ice, although their measurements included deformed and ridged ice that probably increased average errors

  13. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  14. Episodes of brittle deformation within the Dien Bien Phu Fault zone, Vietnam: Evidence from K-Ar age dating of authigenic illite

    Science.gov (United States)

    Bui, Hoang Bac; Ngo, Xuan Thanh; Khuong, The Hung; Golonka, Jan; Nguyen, Tien Dung; Song, Yungoo; Itaya, Tetsumaru; Yagi, Koshi

    2017-01-01

    Constraining the timing of fault zone origin and movement history is of fundamental geotectonic importance to understand the evolution and processes of the brittle fault structures. The authors present in this paper authigenic illite K-Ar age data from the fault gouge samples, collected from the Dien Bien Phu Fault (DBPF) in the Dien Bien province, Vietnam as well as in a major strike-slip fault zone in South-East Asia; all of which played important roles in the structural formation and geotectonic development of northwestern Vietnam. The gouge fault samples were separated into four grain-size fractions (groups, from 26 to 29 Ma and 130 Ma. The timing of the fault movements is defined at 26 ± 0.24 Ma, 29 ± 0.61 Ma, 130.1 ± 1.27 Ma and 130.7 ± 1.29 Ma. This indicates that the Dien Bien Phu Fault underwent two movements, first in the Early Cretaceous, with an age of about 130 Ma and second in the Oligocene (Paleogene), with an age of about 26-29 Ma. The ductile deformation of the DBPF terminated during the Early Cretaceous. These studies also indicate slow exhumation of the Dien Bien granitoid complex during the Cretaceous times. The Oligocene ages indicate that the DBPF had been reactivated by the SE extrusion and clock-wise rotation of the Indochina block, caused by the collision of the Indian and Eurasian plates. This tectonic event led to the DBPF brittle-sinistral movement, causing the exhumation phase along the fault. This movement period (ca. 26-29 Ma) is coexistent with 600-700 km sinistral shearing along the Red River-Ailao Shan fault. This is the first report determining the absolute age constraints of multi-activated tectonic events, affecting the Dien Bien Phu Fault using the K-Ar dating method for the gouge samples.

  15. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  16. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  17. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  18. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which res

  19. Approaching sediment dynamics on Little Ice Age (LIA) lateral moraines in Upper Kaunertal valley, Austria using long-lived radionuclide 129I

    Science.gov (United States)

    Kamleitner, Sarah; Czarnowsky, Verena; Lachner, Johannes; Steier, Peter; Morche, David; Kraushaar, Sabine

    2016-04-01

    The Upper Kaunertal, as many other valleys situated in the Eastern Alps, has recently undergone large deglaciation processes as a result of global warming, leaving behind large moraines exposed to geomorphic processes. Steep lateral moraines represent large and easily erodible sources of material within an Alpine sediment cascade. In order to quantify the amount of sediments provided by the moraines, methods of surface change detection such as aerial and terrestrial laser scanning or sfm (structure from motion) generated Digital Elevation Models (DEM) are being applied. However, morphological changes due to the melt out of persisted ice are overlain by processes of mass movement, slope wash, and fluvial erosion, and therefore often remain unnoticed. Yet melting alone could account for a volume reduction in the sediment matrix of up to 13%, the additional leaching of water to a further unknown amount. Hence, the hydrological situation on the lateral moraines needs to be clarified. Previous investigations of springs evolving from the LIA lateral moraine were showing light isotope signatures comparable to those of glacier ice, and resulted in first assumption about the presence of ice lenses within the moraines (Kraushaar et al. 2014). Stable isotope measurements applied by Czarnowsky et al. 2015 confirm former findings. However, fail to distinguish between recently developed ice and dead ice lenses originating from former glacial maxima. This study therefore aims to date evolving spring waters on lateral moraines of the Gepatschferner, sampled between May and October 2015, using the radioactive isotope iodine-129. The environmental abundance of this long-lived radionuclide has been, analogue to tritium, significantly altered due to human activity since Nuclear Age, and is therefore believed to provide feasible relative age estimations. Hence, measurements will allow the clarification of the hydrological situation on site and the specification of processes causing

  20. Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14

    Science.gov (United States)

    Cronin, Thomas M.; Wingard, Georgiana L.; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica

    2012-01-01

    An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.

  1. Tectonic evolution of the Irtysh collision belt: New zircon U-Pb ages of deformed and collisional granitoids in the Kalaxiangar area, NW China

    Science.gov (United States)

    Tao, Hong; Jun, Gao; Xingwang, Xu; Klemd, Reiner

    2016-04-01

    The CAOB is thought to have formed by multiple accretion and collision of various microcontinents, island arcs, oceanic plateaus and accretionary wedges due to the closure of the Paleo-Asia Ocean [1, 2, 3]. The Irtysh collision belt is located at the middle-western part of the CAOB and generally thought to be the result of the collision of the Sawuer Island arc and the Altay Terrane, subsequent to the consumption of the Early Paleozoic Junggar Ocean, a branch of Paleo-Asia Ocean. Therefore, the exact timing of the Irtysh collision belt is crucial for a better understanding of the tectonic evolution of this collision belt and will provide constraints on the evolution of the CAOB. Recently, we discovered various collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh collision belt. In this contribution, we report new geochemical whole-rock, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our new results reveal that 1) the arc-related granodioritic porphyries formed at ca. 374 Ma. Furthermore, recrystallized zircons from the granodioritic mylonite and ultramylonite of the Laoshankou ductile deformation zone have a similar U-Pb age of ca. 360 Ma; 2) the syn-collisional granodioritic porphyries, which distribute along cleavege, were emplaced at ca. 355 Ma; 3) the post-collisional A-type granodioritic porphyry, which cuts the NW-NNW trending schistosity at a low angle, has an age of ca. 323 Ma, ɛHf(t) values from + 7.5 to + 14.4, and young Hf model ages between 387 and 658 Ma; 4) the post-collisional A-type granite dykes, which are exposed along strike-slip faults, have ages between 282.5 and 279.2Ma, ɛHf(t) values from + 4.8 to + 12.6, and Hf model ages between 436 and 729 Ma; 5) the A-type biotite granite dykes that intruded along conjugate tension joints have ages between 273.9 and 271.4 Ma, ɛHf(t) values from + 1.1 to + 12.8, and Hf model ages between 393 and 979 Ma. In

  2. El registro de la pequena edad de hielo en lagunas pampeanas The record of the Little Ice Age in the Pampean lakes

    Directory of Open Access Journals (Sweden)

    Cecilia Laprida

    2009-12-01

    Full Text Available Se conoce como Pequeña Edad de Hielo (LIA al episodio acontecido entre el siglo 16 y mediados del siglo 19, durante el cual el clima en Europa se tornó frío y ocasionalmente tormentoso. En ciertas partes de Europa, las observaciones instrumentales lo abarcan parcialmente, pero para Sudamérica no se dispone de registros instrumentales contemporáneos a dicho evento. Con el objetivo de obtener nuevas evidencias para el período comprendido por la Pequeña Edad de Hielo en la llanura pampeana, se analizaron testigos cortos de la laguna de Chascomús y de la laguna del Monte los que, de acuerdo a dataciones AMS, abarcan los últimos 500 años. Ambos testigos constan de tres secuencias granodecrecientes. El análisis del registro de la laguna de Chascomús ha permitido reconocer un período benigno desde fines del siglo 15 hasta alrededor del 1700, cuando se evidencia una retracción de la laguna que inaugura un período seco. Este episodio habría continuado por casi 150 años y se revierte alrededor de 1850, momento a partir del cual los eventos de excesos hídricos comenzaron a dominar el escenario pampeano. La base del testigo de la laguna de Monte fue datada en 1441-1494 AD. Si bien el modelo de edades para este testigo aún no ha podido ser bien establecido, los eventos de Chascomús y Monte podrían ser correlacionables y expresar tendencias seculares regionales de la humedad.The Little Ice Age (LIA is a climate episode between the 16th and middle 19th centuries, characterized in Europe by colder temperatures and occasionally stormy weather. In certain areas of Europe, long instrumental observations record the Little Ice Age partially; however, in the pampean region meteorological data only started about one hundred years ago. The objective of this contribution is to provide new evidences about the Little Ice Age in the Pampean plain based on lake cores. Short cores of Chascomús and Monte lakes were analyzed and, according to AMS data

  3. A NEW STUDY ON QINGHAI-TIBET PLATEAU IN ICE AGES%冰期之青藏高原新研究

    Institute of Scientific and Technical Information of China (English)

    周尚哲; 李吉均

    2001-01-01

    Many technologies have been used to date moraines in recentyears. The 36Cl dating of bottom of ice core of Guliya ice cap, western Kunlun and the ESR dating of moraine at Kunlun pass indicate that the Qinghai-Tibet Plateau had grown up into the Cryosphere at 0.7 Ma B.P.The recent work on moraine ESR dating shows that glaciation occurred at least at 0.46 Ma B.P. ( stage 12 of oxygen isotope of deep sea ) in the Qilian Mountains. The same situation was also shown in the Tianshan Mountains. Recent studies indicate again that Quaternary glaciations occurred just around the high mountains over the Plateau. The clear bounds and limited scales of multiple glaciations are incompatible with imagining a successive ice sheet on the Plateau. The very deeply weathered moraine with 2.42 of w(SiO2)/w(Al2O3) and 2.35 of w(SiO2)/w(R2O3) at the southern margin (3 850m) of Daocheng ice cap and the red crust in Litang Basin (4 100m) show that they are of considerable age and never suffered mopping-up operations of an ice sheet. The present and ice age snowlines of Qinghai-Tibetan Plateau have been distributed with an ascendant trend (the difference is about 1 500m) from the surrounding margin to the hinterland Qiangtang, describing vividly its function of “The Dry Pole of Asia” suggested by some scientists early. The lakes mean that Qiangtang Plateau is an interior drainage area where the big rivers have not yet stretched in, showing an younger Qinghai-Tibetan Plateau rather than an ice covered Plateau!%冰碛测年技术近些年有很大进展。古里雅冰芯底部36Cl测年和昆仑山垭口老冰碛ESR测年已表明,青藏高原在昆仑黄河运动之后的70万年前就进入了当时的冰冻圈,与全球性的冰期旋回相耦合,发生了最早的冰川作用。最近的冰碛ESR测年表明,高原东北边缘的祁连山地区至少在40多万年前的氧同位素12阶段发生了冰川作用,天山高望峰冰碛测年显示了同样的结果

  4. Glacial-interglacial variability in Tropical Pangaean Precipitation during the Late Paleozoic Ice Age: simulations with the Community Climate System Model

    Directory of Open Access Journals (Sweden)

    N. G. Heavens

    2012-05-01

    Full Text Available The Late Paleozoic Ice Age (LPIA, the Earth's penultimate "icehouse climate", was a critical time in the history of biological and ecological evolution. Many questions remain about the connections between high-latitude glaciation in Gondwanaland and low-latitude precipitation variability in Pangaea. We have simulated the Earth's climate during Asselian-Sakmarian time (299–284 Ma with the Community Climate System Model version 3 (CCSM3, a coupled dynamic atmosphere-ocean-land-sea-ice model. Our simulations test the sensitivity of the model climate to direct and indirect effects of glaciation as well as variability in the Earth's orbit. Our focus is on precipitation variability in tropical (30° S–30° N Pangaea, where there has been the most interpretation of glacial-interglacial climate change during the LPIA. The results of these simulations suggest that glacials generally were drier than interglacials in tropical Pangaea, though exceptional areas may have been wetter, depending on location and the mode of glaciation. Lower sea level, an indirect effect of changes in glacial extent, appears to reduce tropical Pangaean precipitation more than the direct radiative/topographic effects of high-latitude glaciation. Glaciation of the Central Pangaean Mountains would have greatly reduced equatorial Pangaean precipitation, while perhaps enhancing precipitation at higher tropical latitudes and in equatorial rain shadows. Variability evident in strata with 5th order stratigraphic cycles may have resulted from precipitation changes owing to precession forcing of monsoon circulations and would have differed in character between greenhouse and icehouse climates.

  5. EFFECTS OF RIVER ICE ON STAGE——DISCHARGE RELATIONSHIPS

    Institute of Scientific and Technical Information of China (English)

    Jueyi SUI; Ronald THRING; Bryan W. KARNEY; Jun WANG

    2007-01-01

    Using field observations at four gauging stations along the Inner Mongolia Reach of the Yellow River in China, this paper explores effects of the ice on the hydraulics of this river reach for four different conditions, namely: under open channel flow, during ice-running period, the ice-covered period, and the river break-up period. The rating curves were found to be well recognized under open channel situations, but were sometimes poorly defined and extremely variable under ice conditions. The results also show that the water level is insensitive to flowing ice prior to freeze-up. However, significant, but hardly surprising, variations were observed during ice-covered conditions. The rating curves for both the ice covered condition and river ice breakup period are developed and some related hydraulic issues are examined. Additionally, the impacts of the ice accumulation and associated riverbed deformation during ice period on the rating curves are discussed.

  6. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    The idealised land|water dichotomy is most obviously challenged by ice when ‘land practice’ takes place on ice or when ‘maritime practice’ is obstructed by ice. Both instances represent disparity between the legal codification of space and its social practice. Logically, then, both instances call...... for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...... the interesting conversations during the workshop, however, made me think that much of the concern with the Polar Regions in general, and the presence of ice in particular, reverberates around the question of how to accommodate various geographical presences and practices within the regulatory framework that we...

  7. Cultural Implications of Out-of-Phase Weather across northern Alaska after 500 CE: Regional Variability during the Medieval Climate Anomaly and Little Ice Age

    Science.gov (United States)

    Mason, O. K.; Alix, C. M.; Bigelow, N. H.; Hoffecker, J. F.

    2014-12-01

    From a global perspective, a diverse mélange of paleoclimate data reveal that Northwest Alaska is partially out of phase with northwest Europe, witnessing cooler periods during the Medieval Climate Anomaly ca. CE 1000 and warmer conditions in the 16th and 17th centuries. The search for climatic forcers in northern Alaska relies on integration of data drawn from tree-rings, lacustrine varves and moraines, diatoms, beach ridges and dunes. At Cape Espenberg, northern Seward Peninsula, a 1500-year reconstruction of settlement, landscape evolution and climatic variability employs >100 14C ages from accreting dunes with shell-laden storm beds, intercalated driftwood and superimposed soils, archaeological sites and marsh peats within swale ponds. Large storms occurred along the Chukchi Sea from Cape Espenberg and Deering (Kotzebue Sound) to Point Barrow prior to 1000 CE, and at decadal intervals during the Little Ice Age (LIA) from 1300 to 1700. Architecural driftwood logs from several excavated houses capped by sand dunes yield several 14C dated floating chronologies covering intervals from 700 to 1700, suggest the identification of cooler intervals 800 to 1000 and intermittently after 1300. Peat aggradation followed isolation from the sea from 500 onward, and was interrupted by two pulses of fresh water, one ca. 1300 and a second ca. 1800, with diatoms suggesting relative aridity during the LIA. The occupation history of Cape Espenberg generally follows dune growth, and may be inversely related to cooler temperatures.

  8. Contracture deformity

    Science.gov (United States)

    Deformity - contracture ... Contracture can be caused by any of the following: Brain and nervous system disorders, such as cerebral ... Follow your health care provider's instructions for treating contracture at home. Treatments may include: Doing exercises and ...

  9. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  10. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden))

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  11. From the Holocene Thermal Maximum to the Little Ice Age: 11000 years of high resolution marine and terrestrial paleoclimate reconstruction using biomarkers

    Science.gov (United States)

    Moossen, H. M.; Abell, R.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2011-12-01

    Holocene climate change is of significantly smaller amplitude than the Pleistocene Glacial-Interglacial cycles, but climatic variations have affected humans over at least the last 4000 years. Studying Holocene climate variations is important to disentangle climate change caused by anthropogenic influences from natural climate change. Sedimentary records stemming from fjords afford the opportunity to study marine and terrestrial paleo-climatic changes and linking the two together. Typically high sediment accumulation rates of fjordic environments facilitate resolution of rapid climate change (RCC) events. The fjords of Northwest Iceland are ideal for studying Holocene climate change as they receive warm water from the Irminger current, but are also influenced by the east Greenland current which brings polar waters to the region (Jennings et al., 2011). In the Holocene, Nordic Seas and the Arctic have been sensitive to climate change. The 8.2 ka event, a cool interval, highlights the sensitivity of that region. Recent climate variations such as the Little Ice Age have been detected in sedimentary records around Iceland (Sicre et al., 2008). We reconstruct Holocene marine and terrestrial climate change producing high resolution (1sample/ 30 years) records from 10700 cal a BP to 300 cal a BP using biomarkers. Alkenones, terrestrial leaf wax components, GDGTs and C/N ratios from a sediment core (MD99-2266) from the mouth of the Ìsafjardardjúp fjord were studied. For more information on the core and evolution of the fjord during the Holocene consult Quillmann et al., (2010) The average chain length (ACL) of terrestrial n-alkanes indicates changes in aridity, and the alkenone unsaturation index represents changes in sea surface temperature. These independent records exhibit similar trends over the studied time period. Our alkenone derived SST record shows the Holocene Thermal Maximum, Holocene Neoglaciation as well as climate change associated with the Medieval Warm

  12. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  13. Interstellar Ices

    CERN Document Server

    Boogert, A C A

    2003-01-01

    Currently ~36 different absorption bands have been detected in the infrared spectra of cold, dense interstellar and circumstellar environments. These are attributed to the vibrational transitions of ~17 different molecules frozen on dust grains. We review identification issues and summarize the techniques required to extract information on the physical and chemical evolution of these ices. Both laboratory simulations and line of sight studies are essential. Examples are given for ice bands observed toward high mass protostars, fields stars and recent work on ices in disks surrounding low mass protostars. A number of clear trends have emerged in recent years. One prominent ice component consists of an intimate mixture between H2O, CH3OH and CO2 molecules. Apparently a stable balance exists between low temperature hydrogenation and oxidation reactions on grain surfaces. In contrast, an equally prominent ice component, consisting almost entirely of CO, must have accreted directly from the gas phase. Thermal proc...

  14. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf

    Science.gov (United States)

    Borstad, Chris; Khazendar, Ala; Scheuchl, Bernd; Morlighem, Mathieu; Larour, Eric; Rignot, Eric

    2016-03-01

    The increasing contribution of the Antarctic Ice Sheet to sea level rise is linked to reductions in ice shelf buttressing, driven in large part by basal melting of ice shelves. These ocean-driven buttressing losses are being compounded as ice shelves weaken and fracture. To date, model projections of ice sheet evolution have not accounted for weakening ice shelves. Here we present the first constitutive framework for ice deformation that explicitly includes mechanical weakening, based on observations of the progressive degradation of the remnant Larsen B Ice Shelf from 2000 to 2015. We implement this framework in an ice sheet model and are able to reproduce most of the observed weakening of the ice shelf. In addition to predicting ice shelf weakening and reduced buttressing, this new framework opens the door for improved understanding and predictions of iceberg calving, meltwater routing and hydrofracture, and ice shelf collapse.

  15. Headwater valley response to climate and land use changes during the Little Ice Age in the Massif Central (Yzeron basin, France)

    Science.gov (United States)

    Delile, Hugo; Schmitt, Laurent; Jacob-Rousseau, Nicolas; Grosprêtre, Loïc; Privolt, Grégoire; Preusser, Frank

    2016-03-01

    The geomorphological response of valley bottoms in eastern France to climatic fluctuations of the Little Ice Age (LIA) was investigated using sedimentological analysis together with optically stimulated luminescence (OSL) and radiocarbon dating. Diachronic mapping of land use since the beginning of the nineteenth century was also carried out. Since A.D. 1500, the valley bottoms experienced three cycles of aggradation and subsequent incision, each characterized by paired periods of high and low detritic activity. While the impact of human activity on the aggradation of the alluvial plain is observed, the vertical dynamics of the valley bottom deposits seemingly were also linked to the hydroclimatic fluctuations during the LIA. The sensitivity to these fluctuations was increased by human activity at the scale of the basin. Variations of the winter North Atlantic Oscillation (NAO) and solar activity from the last five centuries correlate with wet and cold phases during which valley bottoms accumulated, and dry and warm phases during which the streams incised into the valley floors. This fluvial sensitivity to the meteorological conditions induced temporal variations in sedimentary supply originating from either direct input from remnants of periglacial alluvial sheets or local rocky outcrops and/or from indirect input from the erosion of alluvial and colluvial deposits. These two components, combined with the sheet runoff over the ploughlands, express the complex coupling between hillslopes and valley bottoms in the headwater catchments. This caused a cascade-shaped transit of the sediments characterized by alternating phases of storage and removal.

  16. A warm and wet Little Climatic Optimum and a cold and dry Little Ice Age in the southern Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, K.L.

    1992-05-01

    In the next century, increases in atmospheric trace gas concentration could warm the global average temperature beyond what it has ranged during the past century. Examination of larger-than-historic climatic changes that have occurred in the past in specific regions provides realistic context for evaluating such potential future changes. This paper has contrasted the climatic manifestation of the Little Climatic Optimum or Medieval Warm Period (AD 900--1300) with that of the Little Ice Age (AD 1300--1850) in the northern Colorado Plateau region of the southwestern USA. The zenith of the Anasazi occupation coincides with the former and their demise coincides with the latter, when conditions became too cold and especially dry (in the summer) to support upland dry farming. During the height of the Little Climatic Optimum the region was characterized by a relatively long growing season and greater winter and summer precipitation than that of today. This resulted in a relatively rapid development of a potential dry-farming belt that was twice as wide as the present and areas that cannot be dry farmed today were routinely farmed by the Anasazi. Such conditions would be beneficial to dry farmers in the Four Corners region if those conditions were repeated in the near future.

  17. U-Pb-Hf zircon study of two mylonitic granite complexes in the Talas-Fergana fault zone, Kyrgyzstan, and Ar-Ar age of deformations along the fault

    Science.gov (United States)

    Konopelko, D.; Seltmann, R.; Apayarov, F.; Belousova, E.; Izokh, A.; Lepekhina, E.

    2013-09-01

    A 2000 km long dextral Talas-Fergana strike-slip fault separates eastern terranes in the Kyrgyz Tien Shan from western terranes. The aim of this study was to constrain an age of dextral shearing in the central part of the fault utilizing Ar-Ar dating of micas. We also carried out a U-Pb-Hf zircon study of two different deformed granitoid complexes in the fault zone from which the micas for Ar dating were separated. Two samples of the oldest deformed Neoproterozoic granitoids in the area of study yielded U-Pb zircon SHRIMP ages 728 ± 11 Ma and 778 ± 11 Ma, characteristic for the Cryogenian Bolshoi Naryn Formation, and zircon grains analyzed for their Lu-Hf isotopic compositions yielded εHf(t) values from -11.43 to -16.73, and their calculated tHfc ages varied from 2.42 to 2.71 Ga. Thus varying Cryogenian ages and noticeable heterogeneity of Meso- to Paleoproterozoic crustal sources was established for mylonitic granites of the Bolshoi Naryn Formation. Two samples of mylonitized pegmatoidal granites of the Kyrgysh Complex yielded identical 206Pb/238U ages of 279 ± 5 Ma corresponding to the main peak of Late-Paleozoic post-collisional magmatism in the Tien Shan (Seltmann et al., 2011), and zircon grains analyzed for their Lu-Hf isotopic compositions yielded εHf(t) values from -11.43 to -16.73, and calculated tHfc ages from 2.42 to 2.71 Ga indicating derivation from a Paleoproterozoic crustal source. Microstructural studies showed that ductile/brittle deformation of pegmatoidal granites of the Kyrgysh Complex occurred at temperatures of 300-400 °C and caused resetting of the K-Ar isotope system of primary muscovite. Deformation of mylonitized granites of the Bolshoi Naryn Formation occurred under high temperature conditions and resulted in protracted growth and recrystallization of micas. The oldest Ar-Ar muscovite age of 241 Ma with a well defined plateau from a pegmatoidal granite of the Kyrgysh Complex is considered as a “minimum” age of dextral motions

  18. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  19. Possible Evidence for Enhanced Seasonality During the Little Ice Age Indicated by Multiple Isotopes from Kepler Lake, South-Central Alaska

    Science.gov (United States)

    Gonyo, A.; Yu, Z.; Bebout, G.

    2008-12-01

    We present multiple-proxy data from two short cores (85 cm and 101 cm) from Kepler Lake, an evaporation- insensitive, groundwater-fed marl lake in South-Central Alaska to reconstruct climate and environmental changes in the recent centuries. The proxies used include calcite C and O isotopes, organic matter (OM) C and N isotopes, and loss on ignition (LOI) analysis. Two cores can be visually correlated based upon LOI results. A 600 year chronology was established based on 3 calibrated AMS 14C dates of terrestrial macrofossils and 210Pb analysis. δ18OVPDB values of inorganic calcite range from - 17.0‰ to -15.7‰, with the highest values between 1470 and 1840 AD during the Little Ice Age (LIA). The relatively high δ18O values during the cold LIA contrast with the conventional temperature interpretation of O isotopes. Therefore, the isotopic shifts around the LIA were likely caused by a shift in atmospheric circulation. A weakening of the wintertime Aleutian Low pressure system residing over the Gulf of Alaska would result in enriched 18O in precipitation as well as a colder winter climate in SC Alaska. During the LIA period CaCO3 contents were elevated by ~15% to >80%. Calcite precipitation in freshwater lakes is primarily a function of summer temperature; we propose that the LIA in SC Alaska represents a period of colder winters and warmer summers. This interpretation is also supported by C isotopes, reflecting aquatic productivity. Both δ13C OM and δ13Ccalcite (relative to VPDB) exhibit relatively high values at 1600 to 1840 AD, after which δ13COM remains constant throughout the rest of the record and δ13Ccalcite declines after the LIA. The delayed increase in δ13C of OM and calcites at 1600 AD may reflect the differential responses of calcite precipitation and aquatic productivity. The negative shift of ~1‰ in δ18O in the 1840s has also been documented in ice cores from Mt. Logan and in marl lake sediments from the southern Yukon, suggesting a broad

  20. Effects of deliquescent salts in soils of polar Mars on the flow of the Northern Ice Cap

    Science.gov (United States)

    Fisher, D. A.; Hecht, M. H.; Kounaves, S.; Catling, D.

    2008-12-01

    The discovery of substantial amounts of magnesium and perchlorate by Phoenix' "Wet Chemistry Lab" (WCL) in the soil of Polar Mars suggests that magnesium perchlorate could be the dominant salt in the polar region's soils. This prospect opens some unexpected doors for moving liquid water around at temperatures as low as -68C. In its fully hydrated form ,this salt water mixture has a high density (~ 1700 kgm /cubic meter) (Besley and Bottomley,1969) and a freezing point of -68C (Pestova et al., 2005).This perchlorate is very deliquescent and gives off heat as it melts ice. About 1.8 gram of ice can be 'melted' by 1 gm of pure magnesium perchlorate . If the reported 1 percent perchlorate is typical of polar soils and if 5 percent of the Northern Permanent Ice Cap is soil then the perchorate , makes up about 0.0005 the of the ice cap. Given the average thickness of the ice cap is about 2000 meters,this suggests there enough perchorate in the ice cap to generate about 2m of salty water at the bed. Because of its density the perclorate salty water would pool over impervious layers and make the bed into a perchorate sludge that could be mobilized and deformed by the overburden of ice. The deformation of mobile beds is a well known phenomenon on some terrestrial glaciers presently and was thought to have played a major role during the Wisconsinan ice age (Fisher et al., 1985) . The perchorate sludge would be deformed and moved outwards possibly resulting its re-introduction to the polar environment. Having a deliquescent salt sludge at the bed whose melting point is -68C would mean that the ice cap could slide on its deformable bed while the ice itself was still very cold and stiff . This possibility has been modeled with a 2D time varying model . Adding the deformable bed material allows ice cap motion even at ice temperatures cold enough to generate and preserve the scarp/trough features. When the perchlorate formation mechanisms and rates are known the ultimate

  1. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  2. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  3. Application of DDA Approach to Simulation of Ice Breaking Process and Evaluation of Ice Force Acting on A Structure

    Institute of Scientific and Technical Information of China (English)

    张运良; 林皋; 李志军; 王永学

    2002-01-01

    The sea ice is idealized as an elastic-brittle material. When an ice sheet moves toward a structure, the dynamic in-teraction between ice and the structure is analyzed by the DDA (Discontinuous Deformation Analysis) approach, wherethe ice sheet and the structure are considered as assemblages of blocky masses. This has the advantages that the wholeprocess of collision between the ice and structure can be shown visually with a series of pictures. Meanwhile, the dynamicresponse of the structure at each time step after the bumping of the ice against the structure is calculated. And with theaid of inverse analysis developed by the authors, the time history of the resultant ice force exerting on the structure isevaluated. A numerical example shows that the proposed approach is suitable to the simulation of the ice-breaking processand reasonable result of ice force acting on the structure can be obtained.

  4. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  5. Archimedean Ice

    CERN Document Server

    Eloranta, Kari

    2009-01-01

    The striking boundary dependency (the Arctic Circle phenomenon) exhibited in the ice model on the square lattice extends to other planar set-ups. We present these findings for the triangular and the Kagome lattices. Critical connectivity results guarantee that ice configurations can be generated using the simplest and most efficient local actions. Height functions are utilized throughout the analysis. At the end there is a surprise in store: on the remaining Archimedean lattice for which the ice model can be defined, the 3.4.6.4. lattice, the long range behavior is completely different from the other cases.

  6. A vertically integrated treatment of ice stream and ice shelf thermodynamics

    Science.gov (United States)

    Sergienko, O. V.

    2014-04-01

    The extremely small vertical shear in ice stream and ice shelf flow simplifies the equations, which govern their thermodynamic evolution. Complemented by the widely used shallow shelf approximation used to simplify the ice flow momentum balance, a vertically integrated formulation of heat transfer presented here reduces the dimensionality of the thermodynamic problem from three to two (plan view) dimensions and thus significantly reduces the computational cost of treating ice stream and ice shelf thermodynamics in models. For realistic conditions, errors in ice stiffness parameter, ice thickness, and speed caused by the vertically integrated treatment of heat transfer are less than 5% of magnitudes of these values compared to the standard three-dimensional thermomechanical computations. In addition, for the specific case of ice shelves with strong bottom melting, the governing equation describing evolution of the vertically integrated ice stiffness parameter is derived, which further reduces computational cost. The presented error analysis and formulations of ice stream and ice shelf thermodynamics in terms of the vertically integrated temperature allow the thermodynamic effects on ice deformation to be easily incorporated into studies that traditionally disregard them.

  7. Haglund's Deformity

    Science.gov (United States)

    ... to follow the surgeon’s instructions for postsurgical care. Prevention To help prevent a recurrence of Haglund’s deformity: wear appropriate shoes; avoid shoes with a rigid heel back use arch supports or orthotic devices perform stretching exercises to prevent the Achilles tendon from tightening ...

  8. The consolidation of rafted sea ice

    Science.gov (United States)

    Bailey, E.; Feltham, D.; Sammonds, P.

    2009-04-01

    Rafting is an important process in the deformation of sea ice that occurs when two ice sheets collide. This process is particularly common in the North Caspian Sea, where ice floes override one another multiple times to produce thick sea ice features. To date, rafting has received little attention in the literature perhaps because in most regions pressure ridges produce the greatest loads on offshore structures. In the North Caspian Sea the shallow waters constrain the size to which pressure ridges can grow and the low salinity seems to favor rafting over ridging. Therefore it is likely that multiply-rafted sea ice may be the governing design feature for ice loads in the Caspian Sea. Here we present a one-dimensional, thermal-consolidation model for rafted sea ice. This is of interest because the degree of consolidation will affect the strength of a rafted structure, and therefore may be of value for modeling rafted ice loads. Results show that the thickness of the liquid layers reduces asymptotically with time, such that there always remains a thin liquid layer. We propose that when the liquid layer is equal to the surface roughness the adjacent layers can be considered consolidated. Using parameters specific to the North Caspian Sea, calculations show that it took 1hr, 14mins for the ice sheets to consolidate. To test the accuracy of the model concurrent experiments were carried out in the HSVA ice basin. During an experiment, equally sized portions of level ice were manually piled on top of one another to produce a rafted section. The rate of consolidation or bonding of the layers was then monitored by coring and using thermistors that were frozen into the level ice prior to rafting. Once consolidated, strength tests were carried out on the rafted ice and compared with those of level ice.

  9. Kinetic Friction Coefficient of Ice,

    Science.gov (United States)

    1985-03-01

    For the hardest ice tested (xi = 0.33 described by Rabinowicz (1965), where To is inter- mm, H, = 1525 kPa), the calculated values of a preted as...material with a low elastic pressures. The frictional force was measured at modulus ( Rabinowicz 1965). It has been observed the application point of...tion 10, pp. 8-16. Barnes, P. and D. Tabor (1966) Plastic flow and Rabinowicz , E. (1965) Friction and Wear of Mate- pressure melting in the deformation

  10. A comparison of the climates of the Medieval Climate Anomaly, Little Ice Age, and Current Warm Period reconstructed using coral records from the northern South China Sea

    Science.gov (United States)

    Deng, Wenfeng; Liu, Xi; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Xie, Luhua; Zhao, Jian-xin

    2017-01-01

    For the global oceans, the characteristics of high-resolution climate changes during the last millennium remain uncertain because of the limited availability of proxy data. This study reconstructs climate conditions using annually resolved coral records from the South China Sea (SCS) to provide new insights into climate change over the last millennium. The results indicate that the climate of the Medieval Climate Anomaly (MCA, AD 900-1300) was similar to that of the Current Warm Period (CWP, AD 1850-present), which contradicts previous studies. The similar warmth levels for the MCA and CWP have also been recorded in the Makassar Strait of Indonesia, which suggests that the MCA was not warmer than the CWP in the western Pacific and that this may not have been a globally uniform change. Hydrological conditions were drier/saltier during the MCA and similar to those of the CWP. The drier/saltier MCA and CWP in the western Pacific may be associated with the reduced precipitation caused by variations in the Pacific Walker Circulation. As for the Little Ice Age (LIA, AD 1550-1850), the results from this study, together with previous data from the Makassar Strait, indicate a cold and wet period compared with the CWP and the MCA in the western Pacific. The cold LIA period agrees with the timing of the Maunder sunspot minimum and is therefore associated with low solar activity. The fresher/wetter LIA in the western Pacific may have been caused by the synchronized retreat of both the East Asian Summer Monsoon and the Australian Monsoon.

  11. Was the Little Ice Age more or less El Niño-like than the Mediaeval Climate Anomaly? Evidence from hydrological and temperature proxy data

    Science.gov (United States)

    Henke, L. M. K.; Lambert, F. H.; Charman, D. J.

    2015-11-01

    The El Niño-Southern Oscillation (ENSO), an ocean-atmosphere coupled oscillation over the equatorial Pacific, is the most important source of global climate variability on inter-annual time scales. It has substantial environmental and socio-economic consequences such as devastation of South American fish populations and increased forest fires in Indonesia. The instrumental ENSO record is too short for analysing long-term trends and variability, hence proxy data is used to extend the record. However, different proxy sources have produced varying reconstructions of ENSO, with some evidence for a temperature-precipitation divergence in ENSO trends over the past millennium, in particular during the Mediaeval Climate Anomaly (MCA; AD 800-1300) and the Little Ice Age (LIA; AD 1400-1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using EOF-based weighting to create two new large-scale ENSO reconstructions derived independently from precipitation proxies and temperature proxies respectively. The method is developed and validated using pseudoproxy experiments that address the effects of proxy dating error, resolution and noise to improve uncertainty estimations. The precipitation ENSO reconstruction displays a significantly more El Niño-like state during the LIA than the MCA, while the temperature reconstruction shows no significant difference. The trends shown in the precipitation ENSO reconstruction are relatively robust to variations in the precipitation EOF pattern. However, the temperature reconstruction suffers significantly from a lack of high-quality, favourably located proxy records, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite and model representations of ENSO are needed to fully resolve the discrepancies found

  12. Increasing dust fluxes on the northeastern Tibetan Plateau linked with the Little Ice Age and recent human activity since the 1950s

    Science.gov (United States)

    Wan, Dejun; Jin, Zhangdong; Zhang, Fei; Song, Lei; Yang, Jinsong

    2016-12-01

    Arid and semi-arid areas in inner Asia contribute lots of mineral dust in the northern hemisphere, but dust flux evolution in the past is poorly constrained. Based on particle sizes and elemental compositions of a sediment core from Lake Qinghai on the northeastern Tibetan Plateau, dust fluxes during ∼1518-2011 A.D. were reconstructed based on 18-100 μm fractions of the lake sediment. The dust fluxes during the past ∼500 years ranged between 100 and 300 g/m2/yr, averaging 202 g/m2/yr, experiencing four stages: Stage 1 (∼1518-1590s), the flux was averaged 165 g/m2/yr, much lower than that in the Stage 2 (1590s-1730s, 254 g/m2/yr); similarly, an average flux of 169 g/m2/yr in the Stage 3 (1730s-1950s) was followed by an increased flux of 259 g/m2/yr in the Stage 4 (1950s-2011). During the first three stages the fluxes were dominated by natural dust activities in arid inner Asia, having a positive relation with wind intensity but a poor correlation with effective moisture (or precipitation) and temperature. The high dust flux in Stage 2 was due to relatively strong wind during the maximum Little Ice Age, whereas the remarkably high flux in 1950s-2011 was resulted from recent increasing human activities in northwestern China. The dust record not only documents past dust fluxes on the northeastern Tibetan Plateau but also reflects evolutions and mechanisms of dust activity/emission in inner Asia during the past ∼500 years.

  13. Uranium-series dating of antarctic ice

    Energy Technology Data Exchange (ETDEWEB)

    Fireman, E.L.

    1986-01-01

    It is very interesting to date polar ice radiometrically. Bands of dust imbedded in ice are frequently observed in antarctic ice fields. This work focuses on dating ice samples with high dust contents by the uranium-series method. The author obtained uranium-series ages of 325 thousand (+/- 75) and 100 thousand (+/- 20) years for dusty ice samples from two sites in the main Allan Hills ice field. The dust-banded ice was collected from 50- to 100-centimeter depth at two sites, called Cul de Sac 100 and Cul de Sac 150. The particles in these samples were examined with an optical microscope and found to consist essentially (more than 95% of the particulates) of fine volcanic glass shards full of vesicles and microvesicles. Evidently the fine volcanic glass shards were deposited on snow, became incorporated in the ice, and moved with the ice to the Allan Hills sites. Ice samples with other types of particulates, such as terrestrial morraine, may also be amenable to uranium-series dating; however, it is difficult to date ice with less than 0.03 gram of fine particulates per kilogram of ice with their present technique. The uranium-series method can cover the age range from 10,000 to 600,000 years.

  14. Effect of ageing temperature after tensile pre deformation on shape memory effect and precipitation process of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.Z. [College of Manufacturing Science and Engineering, Sichuan University, 24, South Section 1, Yihuan Road, Chengdu 610065, Sichuan (China); College of Material Science and Engineering, Xihua University, Chengdu 610039 (China); Li, N., E-mail: yangshizhou@163.com [College of Manufacturing Science and Engineering, Sichuan University, 24, South Section 1, Yihuan Road, Chengdu 610065, Sichuan (China); Wen, Y.H.; Peng, H.B. [College of Manufacturing Science and Engineering, Sichuan University, 24, South Section 1, Yihuan Road, Chengdu 610065, Sichuan (China)

    2011-11-25

    Highlights: {yields} Precipitation process of Cr{sub 23}C{sub 6} particles depends on diffusion capacity of Cr atom. {yields} Directional segregation of carbon atom can act as aligned Cr{sub 23}C{sub 6} in improving SME. {yields} Ageing temperature and ageing time greatly affect precipitation process of Cr{sub 23}C{sub 6}. {yields} NbC carbides in a FeMnSiCrNiNbC alloy are prone to dispersively precipitate. - Abstract: Researches showed that the shape memory effect (SME) of FeMnSiCrNiC alloys can be remarkably improved through aligned Cr{sub 23}C{sub 6} particles or carbon atom segregation inside grains. To further study on influencing factors in improving SME and aligned precipitation process of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy, effect of ageing temperature after tensile pre deformation on shape memory effect and precipitation process of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy was studied. The results showed that aligned precipitation of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy mainly depends on diffusion capacity and directional segregation of carbon and chromium atoms, namely on ageing temperature, ageing time and the amount of tensile pre deformation.

  15. The use of jointing to infer deformation episodes and relative ages of minor Cretaceous intrusives in the western part of Ikom - Mamfe basin, southeastern Nigeria

    Science.gov (United States)

    Oden, Michael I.; Umagu, Charles I.; Udinmwen, Efosa

    2016-09-01

    The most fundamental joint sets in a region are those oriented normal to the fold axis ('ac'- extension fractures) and those oriented parallel to the fold axis ('bc'- tensile fractures). Four sets of joints were observed in deformed igneous intrusives of the study area, representing two phases of Cretaceous deformation. In the Ikom -Mamfe basin, the stronger ('ac'- extension) fractures are oriented NW - SE and NNE - SSW while the weaker sets were oriented NE - SW and ESE - WNW, representing the first and second phases of Cretaceous deformation respectively. The study of the growth of the 'ac'- and 'bc' fracture sets observed on the intrusives at different locations reveals that generally the 'ac'- fracture set has a dominant percentage frequency over the 'bc'- fracture set. The high percentage frequency of the 'ac'-sets in locations with insignificant or absence of the 'bc'- set implies that the 'ac'- extension fractures are the first to initiate and probably propagated with greater ease during any episode of compression, than the 'bc'- tensile fractures. Mineralized veins hosted by the intrusives are also more pronounced in the 'ac'-sets than the 'bc'- sets. Also because of the extensive development of deformation structures in the intrusives, this study proposes the idea of syn-tectonic, rather than post-tectonic magmatic emplacement for the nine intrusives studied.

  16. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  17. A spongy icing model for aircraft icing

    Institute of Scientific and Technical Information of China (English)

    Li Xin; Bai Junqiang; Hua Jun; Wang Kun; Zhang Yang

    2014-01-01

    Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter-ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes:rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  18. A spongy icing model for aircraft icing

    Directory of Open Access Journals (Sweden)

    Li Xin

    2014-02-01

    Full Text Available Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when entering clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  19. Ongoing deformation of Antarctica following recent Great Earthquakes

    Science.gov (United States)

    King, Matt; Santamaría-Gómez, Alvaro

    2016-04-01

    The secular motion of Antarctica is thought to be almost everywhere governed by horizontal rigid plate rotation plus three-dimensional deformations due to past and present changes in ice-ocean loading, known as glacial isostatic adjustment (GIA). We use geodetic data to investigate deformation following the 1998 magnitude ~8.1 Antarctic intra-plate Earthquake, and show sustained three-dimensional deformation along East Antarctica's coastline, 600 km from the rupture location. Using a model of viscoelastic deformation we are able to match observed northward velocity changes, and either east or height, but not all three directions simultaneously, apparently partly due to lateral variations in mantle rheology. Our modeling predicts much of Antarctica may still be deforming, with further deformation possible from the 2004 Macquarie Ridge Earthquake. This previously unconsidered mode of Antarctic deformation affects geodetic estimates of plate motion and GIA; its viscous nature raises the prospect of further present-day deformation due to earlier Great Earthquakes.

  20. Linking scales in sea ice mechanics

    Science.gov (United States)

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of ice'.

  1. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  2. Zonal assessment of environmental driven settlement abandonment in the Trans-Tisza region (Central Europe) during the early phase of the Little Ice Age

    Science.gov (United States)

    Pinke, Zsolt; Ferenczi, László; F. Romhányi, Beatrix; Gyulai, Ferenc; Laszlovszky, József; Mravcsik, Zoltán; Pósa, Patricia; Gábris, Gyula

    2017-02-01

    This investigation focuses on the transformation of the settlement pattern of a lowland landscape as a social response to the hydrological challenges emerging in the late 13th century (c.) overture of the Little Ice Age (LIA). Results of the applied zonal analysis suggested a strong spatial connection between the geomorphological conditions, the agro-ecological suitability (good-excellent, medium and low) and the stability or instability of settlement patterns. The elevation means of archaeological sites in the deserted zones proved significantly lower than those in zones with permanent settlement pattern (Brunner-Munzel test p ≤ 0.01; n = 377). Additionally, the late medieval (14th-mid-16th centuries) site group was situated, on average, significantly higher than the high medieval (late 10th-13th centuries) site group within the permanent zones (Brunner-Munzel test p ≤ 0.01; n = 219). These outcomes statistically confirm that not only did low-lying inhabited areas shrink significantly, but they also displaced vertically in the first phase of the LIA. When analysing the relation of settlement pattern to soil conditions, the proportion of areas with good-excellent agro-ecological suitability proved 1.5-2 times higher in the permanent zones than in the deserted and uninhabited settlement suitability zones. Using the linear model, different regression coefficients appeared between the extension of the high and medium agro-ecological suitability zones and the number of high and late medieval settlements. The different coefficients in the studied two periods suggest that the issue of agroecological suitability in the High Middle Ages did not bear such importance as in the late Middle Ages. The findings of the paper may contribute to answering the question why the relatively dense settlement pattern of the deserted zones was abandoned almost completely by the end of the 13th c. in areas where flood proneness and weak agro-ecological suitability both meant a serious

  3. Historical Glacier Variations in Southern South America since the Little Ice Age: Examples from Lago Viedma (Southern Patagonia) and Mendoza (Central Andes), Argentina

    Science.gov (United States)

    Nussbaumer, S. U.; Masiokas, M.; Pitte, P.; Berthier, E.; Guerrido, C.; Luckman, B. H.; Villalba, R.

    2013-12-01

    similar event is reported to have occurred in 1786 according to historical records. Finally we compare the observed glacier fluctuations of the two regions with other available glacier reconstructions to give an overview of glacier evolution in southern South America since the Little Ice Age.

  4. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Helama, S.; Holopainen, J.; Eronen, M. [Department of Geology, University of Helsinki, (Finland); Makarenko, N.G. [Russian Academy of Sciences, St. Petersburg (Russian Federation). Pulkovo Astronomical Observatory; Karimova, L.M.; Kruglun, O.A. [Institute of Mathematics, Almaty (Kazakhstan); Timonen, M. [Finnish Forest Research Institute, Rovaniemi Research Unit (Finland); Merilaeinen, J. [SAIMA Unit of the Savonlinna Department of Teacher Education, University of Joensuu (Finland)

    2009-07-01

    Tree-rings tell of past climates. To do so, tree-ring chronologies comprising numerous climate-sensitive living-tree and subfossil time-series need to be 'transferred' into palaeoclimate estimates using transfer functions. The purpose of this study is to compare different types of transfer functions, especially linear and nonlinear algorithms. Accordingly, multiple linear regression (MLR), linear scaling (LSC) and artificial neural networks (ANN, nonlinear algorithm) were compared. Transfer functions were built using a regional tree-ring chronology and instrumental temperature observations from Lapland (northern Finland and Sweden). In addition, conventional MLR was compared with a hybrid model whereby climate was reconstructed separately for short- and long-period timescales prior to combining the bands of timescales into a single hybrid model. The fidelity of the different reconstructions was validated against instrumental climate data. The reconstructions by MLR and ANN showed reliable reconstruction capabilities over the instrumental period (AD 1802-1998). LCS failed to reach reasonable verification statistics and did not qualify as a reliable reconstruction: this was due mainly to exaggeration of the low-frequency climatic variance. Over this instrumental period, the reconstructed low-frequency amplitudes of climate variability were rather similar by MLR and ANN. Notably greater differences between the models were found over the actual reconstruction period (AD 802-1801). A marked temperature decline, as reconstructed by MLR, from the Medieval Warm Period (AD 931-1180) to the Little Ice Age (AD 1601-1850), was evident in all the models. This decline was approx. 0.5 C as reconstructed by MLR. Different ANN based palaeotemperatures showed simultaneous cooling of 0.2 to 0.5 C, depending on algorithm. The hybrid MLR did not seem to provide further benefit above conventional MLR in our sample. The robustness of the conventional MLR over the calibration

  5. Was the Little Ice Age more or less El Niño-like than the Medieval Climate Anomaly? Evidence from hydrological and temperature proxy data

    Science.gov (United States)

    Henke, Lilo M. K.; Lambert, F. Hugo; Charman, Dan J.

    2017-03-01

    The El Niño-Southern Oscillation (ENSO) is the most important source of global climate variability on interannual timescales and has substantial environmental and socio-economic consequences. However, it is unclear how it interacts with large-scale climate states over longer (decadal to centennial) timescales. The instrumental ENSO record is too short for analysing long-term trends and variability and climate models are unable to accurately simulate past ENSO states. Proxy data are used to extend the record, but different proxy sources have produced dissimilar reconstructions of long-term ENSO-like climate change, with some evidence for a temperature-precipitation divergence in ENSO-like climate over the past millennium, in particular during the Medieval Climate Anomaly (MCA; AD ˜ 800-1300) and the Little Ice Age (LIA; AD ˜ 1400-1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using weighting based on empirical orthogonal function (EOF) to create two new large-scale reconstructions of ENSO-like climate change derived independently from precipitation proxies and temperature proxies. The method is developed and validated using model-derived pseudo-proxy experiments that address the effects of proxy dating error, resolution, and noise to improve uncertainty estimations. We find no evidence that temperature and precipitation disagree over the ENSO-like state over the past millennium, but neither do they agree strongly. There is no statistically significant difference between the MCA and the LIA in either reconstruction. However, the temperature reconstruction suffers from a lack of high-quality proxy records located in ENSO-sensitive regions, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite, and model representations of

  6. Impact of the Medieval Climate Anomaly, Little Ice Age, and Recent Warming on Hydrology and Carbon Accumulation in the James Bay Lowland

    Science.gov (United States)

    Holmquist, J. R.; Booth, R. K.; MacDonald, G. M.

    2013-12-01

    Reconstructing late-Holocene hydroclimatic variations can be useful to understand the sensitivity of peatland soil carbon (C) to climate change (Bunbury et al., 2012). We reconstructed water table depth (WTD), using testate amoebae, for a four-core north to south transect of the James Bay Lowland and Boreal Shield of Ontario, Canada, and compared WTD to long-term apparent rate of C accumulation (LARCA). The three southern sites indicate that WTD fluctuated relative to the mean, with a wetter Medieval Climate Anomaly (MCA) and drier Little Ice Age (LIA) (Fig. 1). However, the most northern site recorded a wet LIA and dry MCA (Fig. 1). All four cores recorded drying coincident with modern warming (Fig. 1). Increased Medieval moisture detected in the three southern sites is consistent with a geographic pattern of precipitation anomalies associated with La Niña-like conditions, which cause drought in the American southwest and central plains regions coupled with increased moisture in the Pacific Northwest and north of the Great Lakes (Feng et al., 2008; Seager et al., 2008). Despite the hydroclimatic sensitivity of the region, we observed no consistent relationship between variations in WTD and LARCA from the same cores. At these particular sites, at least, C accumulation has not been sensitive to the range of climatic variability associated with the MCA, LIA and recent warming. Bunbury, J., Finkelstein, S. A., & Bollmann, J. (2012). Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Quaternary Research: 275-284. Feng, S., Oglesby, R. J., Rowe, C. M., Loope, D. B., & Hu, Q. (2008). Atlantic and Pacific SST influences on Medieval drought in North America simulated by the Community Atmospheric Model. Journal of Geophysical Research: Atmospheres (1984-2012), 113(D11). Seager, R., Burgman, R., Kushnir, Y., Clement, A., Cook, E., Naik, N., & Miller, J. (2008). Tropical

  7. Climatic variability and human impact during the last 2000 years in western Mesoamerica: evidences of late Classic and Little Ice Age drought events

    Directory of Open Access Journals (Sweden)

    A. Rodríguez-Ramírez

    2015-05-01

    Full Text Available Results are presented from biological (diatoms and ostracodes and non-biological (Ti, Ca/Ti, total inorganic carbon, magnetic susceptibility proxy analyses from an 8.8 m long laminated, high resolution (~20 yr sample−1 sediment sequence from lake Santa María del Oro (SMO, in western Mexico. This lake is at a sensitive location between the dry climates of northern Mexico, under the influence of the north Pacific High Pressure Subtropical Cell and the moister climates of central Mexico, under the influence of the seasonal migration of the Intertropical Convergence Zone and the North American Monsoon (NAM. The sequence covers that last 2000 years and gives evidence of two periods of human impact in the lake, shown by increases in Achnanthidium minutissimum, the first related with the Shaft and Chamber Tombs Cultural Tradition from 100 BC to AD 300 and a second late Postclassic occupation from AD 1100 to 1300. Both periods correspond to relatively wet conditions. The sequence also gives evidence of three dry intervals with high carbonates, ostracodes and aerophilous Eolimna minima concentrations. The first, from AD 500 to 1000 (most intense from AD 600 to 800, correlates with the end of the Shaft and Chamber Tradition after ca. AD 600. This late Classic dry period is the most important climatic signal for the Mesoamerican region during the last 2000 years, as it has been recorded at several sites from Yucatan to the Pacific coast. In the Yucatan area this dry interval has been related with the demise of the Maya culture between AD 850 and 950. The last two dry events correspond with the onset and late Little Ice Age (1400 to 1550 and 1690 to 1770, and follow the Spörer and Maunder minima in solar radiation. The first of these intervals (1400–1550 shows the most intense signal over western Mexico, however this pattern changes at other sites. Dry/wet intervals in the SMO record are related with lower/higher intensity of the NAM over this region.

  8. ENSO Variability during the Little Ice Age from the Perspective of a Long Coral Record from the Western Pacific Warm Pool

    Science.gov (United States)

    Hereid, K. A.; Quinn, T. M.; Taylor, F. W.; Shen, C.; Banner, J. L.

    2010-12-01

    The Little Ice Age (LIA, ~1400-1700 CE) is a period of cool temperatures generally best expressed in records from Northern Hemisphere high latitudes, but which is variably expressed in the tropics. In particular, the nature of short-term tropical variability, such as the El Niño-Southern Oscillation (ENSO), is obscured by contradictory evidence. Although central Pacific corals and some South American sedimentary records indicate an increase in ENSO activity during the LIA, tree ring records from ENSO teleconnected regions are highly variable, and lake records from the Galápagos Islands and Ecuador show reduced ENSO activity in the LIA. However, the differing resolutions, physical means for recording ENSO events, and dynamical connections to the ENSO system complicate efforts to form a coherent interpretation of these conflicting proxy records. This study addresses the need for additional LIA proxy records that resolve individual ENSO events, record climate parameters directly impacted by ENSO, and are located in core ENSO-affected regions. We investigate the nature of ENSO during the LIA by generating high-resolution climate time series from corals from Misima Island, Papua New Guinea (10.6°S, 152.8°E). Misima Island is located at the southern edge of the Western Pacific Warm Pool (WPWP), an important heat and moisture source for the climate system that is highly sensitive to ENSO events. Our monthly resolved fossil coral record of δ18O and Sr/Ca variations spans the interval from ~1414-1645 CE, which we compare with similar variations in a near modern coral record (~1915-1945 CE) from this location. The fossil Misima coral δ18O record, bandpass filtered to highlight ENSO frequencies, contains multidecadal variations in ENSO amplitude, consistent with what is observed in the modern instrumental record of ENSO variability. However, the standard deviation of the fossil δ18O record is significantly reduced relative to that observed in the modern Misima coral

  9. Reducing uncertainty in high-resolution sea ice models.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  10. Enhancing calculation of thin sea ice growth

    Science.gov (United States)

    Appel, Igor

    2016-12-01

    The goal of the present study is to develop, generate, and integrate into operational practice a new model of ice growth. The development of this Sea Ice Growth Model for Arctic (SIGMA), a description of the theoretical foundation, the model advantages and analysis of its results are considered in the paper. The enhanced model includes two principal modifications. Surface temperature of snow on ice is defined as internal model parameter maintaining rigorous consistency between processes of atmosphere-ice thermodynamic interaction and ice growth. The snow depth on ice is naturally defined as a function of a local snowfall rate and linearly depends on time rather than ice thickness. The model was initially outlined in the Visible Infrared Radiometer Suite (VIIRS) Sea Ice Characterization Algorithm Theoretical Basis Document (Appel et al., 2005) that included two different approaches to retrieve sea ice age: reflectance analysis for daytime and derivation of ice thickness using energy balance for nighttime. Only the latter method is considered in this paper. The improved account for the influence of surface temperature and snow depth increases the reliability of ice thickness calculations and is used to develop an analytical Snow Depth/Ice Thickness Look up table suitable to the VIIRS observations as well as to other instruments. The applicability of SIGMA to retrieve ice thickness from the VIIRS satellite observations and the comparison of its results with the One-dimensional Thermodynamic Ice Model (OTIM) are also considered. The comparison of the two models demonstrating the difference between their assessments of heat fluxes and radical distinction between the influences of snow depth uncertainty on errors of ice thickness calculations is of great significance to further improve the retrieval of ice thickness from satellite observations.

  11. Ancient ice streams and their megalineated beds

    Science.gov (United States)

    Eyles, Nick; Ross, Martin

    2016-06-01

    Ice streams are corridors of fast-flowing (~ 800 m yr- 1) ice inset within otherwise sluggish-moving ice sheets. According to reported estimates, as much as 90% of the total discharge of the Antarctic Ice Sheet, for example, occurs through such corridors. Recognition of ice stream records in paleo-ice sheet research has profoundly changed the discipline of glacial geology. The key has been identification of the distinctive corrugated or 'megalineated' geomorphology of their beds, consisting of elongate ridges that are parallel to ice flow direction and often transitional to drumlins. Access to new satellite imagery has enabled mapping of megascale glacial lineations (MSGLs) over large swaths of terrain and the recognition of regional-scale ice stream flow paths and origins. At the peak of the last ice age, just after 20,000 years ago, there were more than 100 ice streams within the Laurentide Ice Sheet. Only now are we beginning to fully appreciate the fundamental role that such streams (which have been called the 'arteries' of ice sheets) have had on glaciated landscapes, by moving enormous volumes of sediment and releasing armadas of floating ice to the Arctic and Atlantic oceans. There is also a growing awareness of the erosional role of ice streams in overdeepening of lakes, fiords and other troughs along coastlines. Much remains to be learnt and new discoveries surely await. The picture of past ice sheets, like the Laurentide and Fennoscandian Ice Sheets, that is emerging today is very different from that of 20 years ago.

  12. Effects of Prior Aging at 316 deg C in Argon on Inelastic Deformation Behavior of PMR-15 Polymer at 316 deg C : Experiment and Modeling

    Science.gov (United States)

    2009-03-01

    after their original formation and decompose thermally at high temperatures [28,30]. Unsaturated polyesters , epoxies, vinylesters, and polyimides are...the VBOP is 48 selected as a suitable choice of constitutive model to represent the inelastic behavior of the PMR-15 neat resin at 316 ◦C. 7.2 Review ...Schoeppner (Member) date AFIT/GSS/ENY/09-M06 Abstract The inelastic deformation behavior of PMR-15 neat resin , a high-temperature polymer, was investigated at

  13. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    Science.gov (United States)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  14. 预变形结合人工时效对Al-Mg-Si合金力学性能的影响%Combined effect of deformation and artificial aging on mechanical properties of Al-Mg-Si Alloy

    Institute of Scientific and Technical Information of China (English)

    Michal KOLAR; Ketill Olav PEDERSEN; Sverre GULBRANDSEN-DAHL; Knut MARTHINSEN

    2012-01-01

    研究预变形结合人工时效处理对AA6060铝合金强度和韧性的影响.对经过均匀化热处理和挤压加工的AA6060铝合金进行固溶处理,然后对材料实施0-10%的预变形并再进行时效处理或者在人工时效过程中进行同步变形.通过对不同时效处理后的合金的显微硬度和拉伸性能分析,发现预变形对材料的时效行为和力学性能有显著影响,它可以使合金的时效速度明显加快.比较预变形和同步变形对人工时效的影响发现,同步变形结合人工时效可以使该合金在更短的时间内得到更好的力学性能.对两种变形对时效行为的影响机理进行了探讨.%The effect of pre-deformation followed by or together with artificial aging on the mechanical properties as strength and ductility of an AA6060 aluminium alloy was studied.AA6060 was initially cast,homogenized and extruded according to standard industrial practice.The extruded material was then subjected to a solution heat treatment and subsequently artificial aging after (sequential mode) and during (simultaneous mode) various combinations of deformation (0-10%) and heat treatments.The aging behaviour and mechanical properties were characterized in terms of Vickers hardness and tensile testing.It is found that precipitation kinetics and associated mechanical response,in terms of hardness and tensile properties are strongly affected by pre-deformations.In terms of aging behaviour,kinetics is accelerated and the peak strength generally increases.Comparing sequential mode and simultaneous mode,the latter seems to give overall better mechanical properties and after considerably shorter aging times.The results of the two modes of pre-deformation are compared and discussed in view of differences in processing conditions and microstructure characteristics.

  15. Cold-season patterns of reserve and soluble carbohydrates in sugar maple and ice-damaged trees of two age classes following drought

    Science.gov (United States)

    B. L. Wong; K. L. Baggett; A. H. Rye

    2009-01-01

    This study examines the effects of summer drought on the composition and profiles of cold-season reserve and soluble carbohydrates in sugar maple (Acer saccharum Marsh.) trees (50-100 years old or ~200 years old) in which the crowns were nondamaged or damaged by the 1998 ice storm. The overall cold season reserve...

  16. Basal Dynamics and Internal Structure of Ice Sheets

    Science.gov (United States)

    Wolovick, Michael J.

    The internal structure of ice sheets reflects the history of flow and deformation experienced by the ice mass. Flow and deformation are controlled by processes occurring within the ice mass and at its boundaries, including surface accumulation or ablation, ice rheology, basal topography, basal sliding, and basal melting or freezing. The internal structure and basal environment of ice sheets is studied with ice-penetrating radar. Recently, radar observations in Greenland and Antarctica have imaged large englacial structures rising from near the bed that deform the overlying stratigraphy into anticlines, synclines, and overturned folds. The mechanisms that may produce these structures include basal freeze-on, travelling slippery patches at the ice base, and rheological contrasts within the ice column. In this thesis, I explore the setting and mechanisms that produce large basal stratigraphic structures inside ice sheets. First, I use radar data to map subglacial hydrologic networks that deliver meltwater uphill towards freeze-on structures in East Antarctica. Next, I use a thermomechanical flowline model to demonstrate that trains of alternating slippery and sticky patches can form underneath ice sheets and travel downstream over time. The disturbances to the ice flow field produced by these travelling patches produce stratigraphic folds resembling the observations. I then examine the overturned folds produced by a single travelling sticky patch using a kinematic flowline model. This model is used to interpret stratigraphic measurements in terms of the dynamic properties of basal slip. Finally, I use a simple local one-dimensional model to estimate the thickness of basal freeze-on that can be produced based on the supply of available meltwater, the thermal boundary conditions, ice sheet geometry, and the ice flow regime.

  17. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  18. Evidence for Subglacial Deformation and Deposition during a Complete Advance-Stagnation Cycle of Kötlujökull, Iceland – A Case Study

    DEFF Research Database (Denmark)

    Klint, K E S; Richardt, N; Krüger, Johannes

    2010-01-01

    deformation and deposition from dynamically active ice, (4) subglacial deposition from stagnant ice and (5) supraglacial re-deposition in dead-ice environment during de-icing. This complete sedimentary sequence represents a single glacier advance-stagnation cycle. The melt-out till displays moderate...

  19. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  20. On sea level - ice sheet interactions

    Science.gov (United States)

    Gomez, Natalya Alissa

    This thesis focuses on the physics of static sea-level changes following variations in the distribution of grounded ice and the influence of these changes on the stability and dynamics of marine ice sheets. Gravitational, deformational and rotational effects associated with changes in grounded ice mass lead to markedly non-uniform spatial patterns of sea-level change. I outline a revised theory for computing post-glacial sea-level predictions and discuss the dominant physical effects that contribute to the patterns of sea-level change associated with surface loading on different timescales. I show, in particular, that a large sea-level fall (rise) occurs in the vicinity of a retreating (advancing) ice sheet on both short and long timescales. I also present an application of the sea-level theory in which I predict the sea-level changes associated with a new model of North American ice sheet evolution and consider the implications of the results for efforts to establish the sources of Meltwater Pulse 1A. These results demonstrate that viscous deformational effects can influence the amplitude of sea-level changes observed at far-field sea-level sites, even when the time window being considered is relatively short (≤ 500 years). Subsequently, I investigate the feedback of sea-level changes on marine ice-sheet stability and dynamics by coupling a global sea-level model to ice-sheet models of increasing complexity. To begin, I incorporate gravitationally self-consistent sea-level changes into an equilibrium marine ice-sheet stability theory to show that the sea-level changes have a stabilizing influence on ice-sheet retreat. Next, I consider the impact of the stabilizing mechanism on the timescale of ice-sheet retreat using a 1D dynamic coupled ice sheet - sea level model. Simulations with the coupled model, which incorporate viscoelastic deformation of the solid Earth, show that local sea-level changes at the grounding line act to slow, and in some cases, halt

  1. Diversity of cultured bacteria from the perennial ice block of Scarisoara Ice Cave, Romania

    Directory of Open Access Journals (Sweden)

    Corina Iţcuş

    2016-01-01

    Full Text Available Cave ice ecosystems represent a poorly investigated glacial environment. Diversity of cave ice bacteria and their distribution in perennial ice deposits of this underground glacial habitat could constitute a proxy for microbial response to climatic and environmental changes. Scarisoara Ice Cave (Romania hosts one of the oldest and largest cave ice blocks worldwide. Here we report on cultured microbial diversity of recent, 400, and 900 years-old perennial ice from this cave, representing the first characterization of a chronological distribution of cave-ice bacteria. Total cell density measured by SYBR Green I epifluorescence microscopy varied in the 2.4 x 104 – 2.9 x 105 cells mL-1 range. The abundance of cultured bacteria (5 x 102 – 8 x 104 CFU mL-1 representing 0.3-52% of the total cell number decreased exponentially with the ice age, and was higher in organic rich ice sediments. Cultivation at 4˚C and 15˚C using BIOLOG EcoPlates revealed a higher functional diversity of cold-active bacteria, dependent on the age, sediment content and physicochemical properties of the ice. The composition dissimilarity of ice microbiota across the ice block was confirmed by growth parameter variations when cultivated in different liquid media at low and high temperatures. PCR-DGGE and sequencing of bacterial 16S rRNA gene fragments from the cultured ice samples led to the identification of 77 bacterial amplicons belonging to Gammaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, showing variation in distribution across the ice layers. Several identified OTUs were homologous to those identified in other glacial and karst environments and showed partial conservation across the ice block. Moreover, our survey provided a glimpse on the cave-ice hosted bacteria as putative biomarkers for past climate and environmental changes.

  2. River Ice Data Instrumentation

    Science.gov (United States)

    1997-06-01

    edge in the field of ice engineering expands. For example, ice concentration and freezeup stage are not considered by the survey respondents to...im- pacts both freezeup and breakup jam formation Table 2. Ice parameters currently monitored, by Divisions (as of 1995). Ice parameters currently...V V V V Date of ice in V V V V Ice concentration V V V V Freezeup stage V V V V V Note: Southwestern Division does not currently monitor ice

  3. The Founding and Evolution of Astronomical Theory of Ice Age%冰期天文理论的创立与演变

    Institute of Scientific and Technical Information of China (English)

    周尚哲

    2014-01-01

    冰期天文理论是运用地球轨道偏心率、地轴倾角和地转轴进动的3种参数的变化幅度与周期来解释上新世-第四纪期间冰期-间冰期交替变化的一种理论.该理论1842年由Adhemar提出,经过Croll发展到Milankovitch最终完成,经历了整100年的时间.上世纪60年代开始,深海、黄土、冰芯等大量的地质记录都揭示出3种周期变化,证实冰期天文理论的正确性,同时也对冰期天文理论带来了一些概念上的修正.但是, Berger 计算的天文曲线至少从6 Ma以来展示同一规律的变化,然而地质记录却显示清晰的分段响应模式:41 kyr的地轴倾角周期在5.3~1.4 Ma期间一直是记录曲线的主要特征;北半球冰川作用只是在2.7 Ma BP才开始大规模出现;0.8 Ma开始100 ka周期转变为主要周期,称之为中更新世转型( MPT).还有:11阶段和全新世是2个偏心率很低的时期,但记录中却是冰期-间冰期振幅最大的时期,即大的间冰期为何出现于低偏心时期;由间冰期进入冰期比由冰期进入间冰期时来得迅速,意味大冰盖建造需要很长的时间,而消融则比较迅速.这些都是冰期天文理论本身不能解释的问题,正在由地球响应系统的研究来探索答案.%The astronomical theory of ice age provides an update solution to Quaternary glacial-interglacial cycles based on the long-term variations of three earth ’ s orbital parameters , eccentricity , obliquity and precession .This theory had been under modification over one hundred years since it was suggested by Adlhemar in 1842 , developed by Croll and finished by Milankovitch in 1941.Since 1960s, numerous geological records from sea , loess and ice core have been exhibiting the three different cycles of 100kyr, 41kyr and 21kyr, demonstrating the validity of the theory , and meanwhile , brought some revisions to the theory .However , there are still a lot of

  4. Analysis and discussion of different methods of artificial ice-high specimen preparation

    Institute of Scientific and Technical Information of China (English)

    ShuJuan Zhang; Wei Ma; ZhiZhong Sun; HaiMin Du

    2014-01-01

    Because ice-high foundation soil is widely distributed in permafrost regions, the correct preparation of ice-high specimens is of critical interest in engineering design for foundation stability. Past research has shown that the uniaxial compression strength of ice-high frozen soils changes as the ice or total water content increases;the differences of different methods of specimen preparation are analyzed here and the advantages and disadvantages of them are presented. It is confirmed that the role of crushed ice is significantly different from that of naturally frozen ice in frozen soils, and the size and amount of crushed ice will influence the strength and deformation mechanism of frozen soils. Therefore, it is strongly recommended that when a ice-high specimen is artificially prepared, the ice should be frozen through natural means and not be replaced with crushed ice.

  5. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  6. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Intercomparison Between Modeled and Measured Sea Ice Brightness Temperatures

    Science.gov (United States)

    Stroeve, J.; Markus, T.; Cavalieri, D. J.; Maslanik, J.; Sturm, M.; Henrichs, J.; Gasiewski, A.; Klein, M.

    2004-01-01

    During March 2003, an extensive field campaign was conducted near Barrow, Alaska to validate AQUA Advanced Microwave Scanning Radiometer (AMSR) sea ice products. Field, airborne and satellite data were collected over three different types of sea ice: 1) first year ice with little deformation, 2) first year ice with various amounts of deformation and 3) mixed first year ice and multi-year ice with various degrees of deformation. The validation plan relies primarily on comparisons between satellite, aircraft flights and ground-based measurements. Although these efforts are important, key aspects such as the effects of atmospheric conditions, snow properties, surface roughness, melt processes, etc on the sea ice algorithms are not sufficiently well understood or documented. To improve our understanding of these effects, we combined the detailed, in-situ data collection from the 2003 field campaign with radiance modeling using a radiative transfer model to simulate the top of the atmosphere AMSR brightness temperatures. This study reports on the results of the simulations for a variety of snow and ice types and compares the results with the National Oceanographic and Atmospheric Administration Environmental Technology Laboratory Polarimetric Scanning Radiometer (NOAA) (ETL) (PSR) microwave radiometer that was flown on the NASA P-3.

  7. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site

    Science.gov (United States)

    Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-05-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  8. Observations of grain boundary structures and inclusions in the NEEM ice core by combination of light and scanning electron microscopy

    Science.gov (United States)

    Shigeyama, Wataru; Nagatsuka, Naoko; Homma, Tomoyuki; Takata, Morimasa; Goto-Azuma, Kumiko; Weikusat, Ilka; Drury, Martyn R.; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Mateiu, Ramona V.; Azuma, Nobuhiko; Dahl-Jensen, Dorthe

    2017-04-01

    Dynamics of ice sheets is governed by the flow of the ice and this flow results from the internal deformation of the ice aggregate. The deformation properties of the ice are known to be dependent on several factors, such as microstructure (e.g. crystal grain size and orientation) and impurities. It is well known that ice from glacial periods in ice sheets has a high impurity concentration, and the deformation is reported to be faster than that of non-glacial ice (Faria et al., 2014). However, the mechanisms of the deformation are still not well understood. For a better understanding of ice sheet dynamics, it is a prerequisite to elucidate deformation mechanisms of such impurity-rich ice. The microstructure of a material is a factor that influences mechanical properties and is also an indicator of the dominant deformation mechanisms. The effects of impurities on the deformation and the microstructure depend on chemical compositions, states (viz. insoluble inclusions or soluble ions) and locations of the impurities in the crystal lattice. Therefore, in order to better understand the deformation mechanisms in ice, investigation of relationship between the microstructure and characteristics of the impurities is important. We examined the relationship between grain boundaries and inclusions. Light microscopy (LM) is commonly used to map grain boundary structures on a large area of the ice samples (up to 10 × 10 cm); however, observation of small inclusions NEEM glacial ice (1548 m depth, 19.2 kyr BP). The initial results show inclusions observed by LM formed aggregates of sub-micrometer-sized particles, whose main constituents were silicates. Reference Faria, S. H., I. Weikusat and N. Azuma (2014). The microstructure of polar ice. Part II: State of the art, Journal of Structural Geology 61: 21-49.

  9. Rock glacier ice as a microbial habitat

    Science.gov (United States)

    Florentine, C. E.; Skidmore, M. L.; Montross, S. N.

    2010-12-01

    Rock glaciers are ubiquitous geomorphic features in alpine environments, recognizable by a talus mantle, steep-toe, lobate shape and that flow due to the inferred presence of internal ice. Rock glaciers consist of both ice and debris, and are abundant in mountain ranges such as the Rocky Mountains, the Andes and the European Alps. Rock glacier ice has not previously been considered as a microbial habitat. However, given recent research showing debris-rich basal layers in glaciers harbor viable microbes, the debris-rich ice in a rock glacier has potential as a microbial habitat. The glacier research has demonstrated increased cell numbers in the debris rich basal ice relative to the clean glacier ice, and the finely-ground debris is considered to be a source of nutrients for the microbes. In August 2009 3 m of surface talus was excavated from the Lone Peak rock glacier, one of ~ 380 in Southwest Montana, to expose the underlying rock glacier ice. The ice contained numerous large rocks making sampling difficult, but 25 cm thick blocks with layers of clean and amber (~ 0.01% debris) ice were sampled. The isotopic, microbiological, and geochemical composition of the clean and amber ice was analyzed. The isotopic data provides some relative age dating for the ice and the geochemical data information on nutrient availability. Differences were observed between the microbial communities in the clean and amber ice by both cell counts and culturing techniques suggesting that as in glacier ice the debris-rich (amber) ice is a more amenable habitat for microbes.

  10. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  11. Using Antifreeze Proteins to understand ice microstructure evolution

    Science.gov (United States)

    Bayer-Giraldi, Maddalena; Azuma, Nobuhiko; Takata, Morimasa; Weikusat, Christian; Kondo, Hidemasa; Kipfstuhl, Sepp

    2017-04-01

    Polar ice sheets are considered a unique climate archive. The chemical analysis of its impurities and the development of its microstructure with depth give insight in past climate conditions as well as in the development of the ice sheet with time and deformation. Microstructural patterns like small grain size observed in specific depths are thought to be linked to the retarding effect of impurities on ice grain growth. Clear evidence of size or chemical composition of the impurities causing this effect is missing, but in this context a major role of nanoparticles has been suggested. In order to shed light on different mechanisms by which nanoparticles can control microstructure development we used antifreeze proteins (AFPs) as proxies for particles in ice. These proteins are small nanoparticles, approx. 5 nm in size, with the special characteristics of firmly binding to ice through several hydrogen bonds. We used AFPs from the sea-ice microalgae Fragilariopsis cylindrus (fcAFPs) in bubble-free, small-grained polycrystalline ice obtained by the phase-transition size refinement method. We explain how fcAFP bind to ice by presenting the 3-D-protein structure model inferred by X-ray structure analysis, and show the importance of the chemical interaction between particles and ice in controlling normal grain growth, comparing fcAFPs to other protein nanoparticles. We used modifications of fcAFPs for particle localization through fluorescence spectroscopy. Furthermore, the effect of fcAFPs on the driving factors for ice deformation during creep, i.e. on internal dislocations due to incorporation within the lattice and on the mobility of grain boundaries due to pinning, makes these proteins particularly interesting in studying the process of ice deformation.

  12. Variability and changes of Arctic sea ice draft distribution – submarine sonar measurements revisited

    Directory of Open Access Journals (Sweden)

    J. Haapala

    2011-10-01

    Full Text Available Changes in the mean sea ice thickness and concentration in the Arctic are well known. However, quantitative information about changes in the ice thickness distribution and the composition of the pack ice is lacking. In this paper we determine the ice draft distributions, mean and modal thicknesses, and their regional and seasonal variability in the Arctic for the time period 1975–2000. We compare characteristics of the Arctic pack ice for the years 1975–1987 and 1988–2000. These periods represent different large-scale atmospheric circulation modes and sea ice circulation patterns, most evident in clearly weaker Beaufort Gyre and stronger as well as westward shifted Transpolar Drift during the later period. The comparison of these two periods reveals that the peak of sea ice draft distributions has narrowed and shifted toward thinner ice, with reductions in both mean and modal ice draft. These noticeable changes are attributed to the loss of thick, mostly deformed ice. Springtime, loss of ice volume with draft greater than 5 m exceeds 35 % in all regions except the Nansen Basin, with as much as 45 % or more at the North Pole and in the Eastern Arctic. Autumn volume reduction, mostly of deformed ice, exceeds 40 % in the Canada Basin only, but is above 30 % also in the Beaufort and Chukchi Seas. During the later period, the volume of ice category consisting thin, mostly level first-year ice, is clearly larger than during the former period, especially in the spring. In the Beaufort Sea region, changes in the composition of ice cover have resulted in a shift of modal draft from level multiyear ice draft range to values of level first-year ice. The regional and seasonal variability of sea ice draft has decreased, since the thinning has been most pronounced in regions with the thickest pack ice (the Western Arctic, and during the spring (0.6–0.8 m per decade.

  13. PROGRESS IN STUDIES ON ICE ACCUMULATION IN RIVER BENDS

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; CHEN Pang-pang; SUI Jue-yi

    2011-01-01

    River ice is an important hydraulic element in temperate and polar environments and would affect hydrodynamic conditions of rivers through changes both in the boundary conditions and the thermal regime.The river bend has been reported as the common location for the initiation of ice jams because the water flow along a river bend is markedly affected by the channel curvature.In this article,the experimental studies about the ice accumulation in a river bend are reviewed.Based on experiments conducted so far,the criteria for the formation of ice jams in the river bend,the mechanisms of the ice accumulation in the river bend and the thickness profile of the ice accumulation in the river bend are discussed.The k- ε two-equation turbulence model is used to simulate the ice accumulation under an ice cover along a river bend.A formula is proposed for describing the deformation of the ice jam bottom.Our results indicate that all simulated thickness of the ice accumulation agrees reasonably well with the measured thickness of the ice accumulation in the laboratory.

  14. Investigation of strength properties of freshwater ice

    Directory of Open Access Journals (Sweden)

    Bragov A.

    2015-01-01

    Full Text Available A study of the strength and deformation properties of freshwater ice under compression, tension and shear in a wide range of strain rates (10−4 − 3 ⋅ 103 s−1 and temperatures of − 5∘ C, − 20∘ C, − 40∘ C and − 60∘ C was performed. Static stress-strain curves of ice under compression were obtained on which the identified strength properties of ice as well as compressive modulus. To determine the mechanical properties of ice at high-speed loading the Kolsky method was used with various embodiments of split Hopkinson bar. The deformation curves were obtained at various loading conditions. Thereon breaking points were defined as well as their dependence on the strain rate and temperature. Also static and dynamic strength properties of ice at splitting and circular shear were defined. Increase in the dynamic strength properties upon the static ones for all loading conditions was marked.

  15. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

    Directory of Open Access Journals (Sweden)

    R. E. M. Riva

    2017-06-01

    Full Text Available Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.

  16. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

    Science.gov (United States)

    Riva, Riccardo E. M.; Frederikse, Thomas; King, Matt A.; Marzeion, Ben; van den Broeke, Michiel R.

    2017-06-01

    Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.

  17. Ice Crystal Icing Research at NASA

    Science.gov (United States)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  18. Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization

    Science.gov (United States)

    Stern, L.A.; Durham, W.B.; Kirby, S.H.

    1997-01-01

    Grain-size-dependent flow mechanisms tend to be favored over dislocation creep at low differential stresses and can potentially influence the rheology of low-stress, low-strain rate environments such as those of planetary interiors. We experimentally investigated the effect of reduced grain size on the solid-state flow of water ice I, a principal component of the asthenospheres of many icy moons of the outer solar system, using techniques new to studies of this deformation regime. We fabricated fully dense ice samples of approximate grain size 2 ?? 1 ??m by transforming "standard" ice I samples of 250 ?? 50 ??m grain size to the higher-pressure phase ice II, deforming them in the ice II field, and then rapidly releasing the pressure deep into the ice I stability field. At T ??? 200 K, slow growth and rapid nucleation of ice I combine to produce a fine grain size. Constant-strain rate deformation tests conducted on these samples show that deformation rates are less stress sensitive than for standard ice and that the fine-grained material is markedly weaker than standard ice, particularly during the transient approach to steady state deformation. Scanning electron microscope examination of the deformed fine-grained ice samples revealed an unusual microstructure dominated by platelike grains that grew normal to the compression direction, with c axes preferentially oriented parallel to compression. In samples tested at T ??? 220 K the elongation of the grains is so pronounced that the samples appear finely banded, with aspect ratios of grains approaching 50:1. The anisotropic growth of these crystallographically oriented neoblasts likely contributes to progressive work hardening observed during the transient stage of deformation. We have also documented remarkably similar microstructural development and weak mechanical behavior in fine-grained ice samples partially transformed and deformed in the ice II field.

  19. Crustal displacements in Greenland caused by ice mass variability

    DEFF Research Database (Denmark)

    Nielsen, Karina

    The climate of the Earth is changing. A consequence of this is observed at the polar regions such as Greenland, where the ice sheet is melting with an increasing rate. The unloading of ice causes the Earth to respond elastically in terms of uplift and an outward horizontal deformation of the crust....... This motion can be measured by permanent Global Positioning System (GPS) receivers. Hence, the rates of crustal displacement are an indirect measure of the occurring mass changes. Currently, 55 GPS sites are located around the margin of the Greenland ice sheet, continuously providing information about...... the state of the ice sheet. However, the Earth is also adjusting viscoelastically to variations in the late Pleistocene ice sheets i.e. glacial isostatic adjustment (GIA). Observed rates of crustal displacement therefor contain signals from both past and present ice mass variations. Hence, to interpret...

  20. Changes in the modeled ice thickness distribution near the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp

    Science.gov (United States)

    Lindsay, R. W.

    2003-06-01

    In the polar oceans the ice thickness distribution controls the exchange of heat between the ocean and the atmosphere and determines the strength of the ice. The Surface Heat Budget of the Arctic Ocean (SHEBA) experiment included a year-long field program centered on a drifting ice station in the Beaufort and Chukchi Seas in the Arctic Ocean from October 1997 through October 1998. Here we use camp observations and develop methods to assimilate ice thickness and open water observations into a model in order to estimate the evolution of the thickness distribution in the vicinity of the camp. A thermodynamic model is used to simulate the ice growth and melt, and an ice redistribution model is used to simulate the opening and ridging processes. Data assimilation procedures are developed and then used to assimilate observations of the thickness distribution. Assimilated observations include those of the thin end of the distribution determined by aircraft surveys of the surface temperature and helicopter photographic surveys and aircraft microwave estimates of the open water fraction. The deformation of the ice was determined primarily from buoy and RADARSAT Geophysical Processor System (RGPS) measurements of the ice velocity. Because of the substantial convergence and ridging observed in the spring and summer, the estimated mean ice thickness increases by 59%, from 1.53 to 2.44 m, over the year in spite of a net thermodynamic ice loss for most multiyear ice.

  1. NEW BIOSTRATIGRAPHIC DATA ON THE FRAZZANO' FORMATION (LONGI-TAORMINA UNIT: CONSEQUENCES ON DEFINING THE DEFORMATION AGE OF THE CALABRIA-PELORITANI ARC SOUTHERN SECTOR

    Directory of Open Access Journals (Sweden)

    PAOLA DE CAPOA

    1997-11-01

    Full Text Available New biostratigraphic data on the Frazzanò Flysch Formation are presented. This unit is the topmost formation of the stratigraphic succession characterizing the Longi-Taormina Unit, which in turn represents the lowest tectonic unit of the Peloritani Mountains and the only unit in the entire southern sector of the Calabria-Peloritani Arc in which cenozoic terrains have been recognized. The age of the Frazzanò Fm., which as yet has not been well defined, is essential to ascertain the time period during which the tectogenetic phase responsible for the stacking (superposition of the nappes in the Peloritani Mountains occurred . Coltro (1967 reported foraminiferal assemblages of Late Eocene age, but subsequently ages ranging between the Middle Eocene and the Oligocene have been pro posed, none of them supported by new biostratigraphic data. The identification of some coccolithid taxa which appear in the Late Oligocene and Early Miocene allowed us to attribute an age not older than Upper Oligocene to the levels that mark the transition between the Frazzanò Fm.and the underlying Militello Formation, and an age not older than Early Aquitanian to the most recent beds of the Frazzanò Formation. Therefore, the tectogenetic phase responsible for the superposition of the nappes in the Peloritani Mountains, very likely started during the Aquitanian. While these data agree with the evolution of homologous units recognised in the Betic and Rifian sectors, they challenge the Late Oligocene age ascribed to the basal levels of the Stilo-Capo d'Orlando Formation, which lies unconformably over all the tectonic units of the Calabria-Peloritani Arc and pro vides a chronological upper limit to their overthrusting.    

  2. Ice-dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Bjørk, Anders

    2017-01-01

    Ice-dammed lakes drain frequently in Greenland, but the impacts of these events differ between sites. Here we study the quasi-cyclic behavior of the ~40 km2 Lake Tininnilik in west Greenland and its impact on ice flow and crustal deformation. Data reveal rapid drainage of 1.83 ± 0.17 km3 of water...... in less than 7 days in 2010, leading to a speedup of the damming glacier, and an instantaneous modeled elastic bedrock uplift of 18.6 ± 0.1 mm confirmed by an independent lakeside GPS record. Since ice-dammed lakes are common on Greenland, our results highlight the importance of including other sources...... of surface loading in addition to ice mass change, when assessing glacial isostatic adjustment or elastic rebound using geodetic data. Moreover, the results illustrates a linkage between subglacial discharge and ice surface velocity, important for assessing ice flux, and thus mass balance, in a future...

  3. Measurement of sea ice and icebergs topography using satellite imagery

    Science.gov (United States)

    Zakharov, I.; Power, D.; Prasad, S.

    2016-12-01

    Sea ice topography represents geospatial information on the three-dimensional geometrical attributes of the ice surface including height and shape of various ice features. The features interest consist of deformed (pressure ridges, rubbles and hummocks) and level sea ice as well as glacial ice. Sea ice topography is important for scientific research and climate studies because it helps characterise ice volume and thickness and it influences the near-surface atmospheric transport by impacting the drag coefficients. It also represents critical information to marine operational applications, such as ships navigation and risks assessment for offshore infrastructures. The several methods were used to measure sea ice topography from a single satellite image as well as multiple images. The techniques based on the single image, acquired by optical or synthetic aperture radar (SAR) satellites, derive the height and shape information from shadow and shading. Optical stereo images acquired by very high resolution (0.5 m) satellites were used to extract highly detailed digital elevation model (DEM). SAR imagery allowed extraction of DEM using stereo-radargrammetry and interferometry. The images from optical satellites WorldView, Pleiades, GeoEye, Spot, and Landsat-8 were used to measure topography of sea ice deformation features and glacial ice including icebergs and ice islands. These features were mapped in regions of the Central Arctic, Baffin Bay and the coast of Greenland. SAR imagery including interferometric TanDEM-X data and full polarimetric Radarsat-2 were used to extract ridge frequency and measure spatial parameters of glacial features. The accuracy was evaluated by comparison of the results from different methods demonstrating their strengths and limitations. Ridge height and frequency were also compared with the high resolution results from the Los Alamos sea ice model (CICE), regionally implemented for Baffin Bay and the Labrador Sea.

  4. On the characteristics of sea ice divergence/convergence in the Southern Beaufort Sea

    Directory of Open Access Journals (Sweden)

    J. V. Lukovich

    2014-07-01

    Full Text Available An understanding of spatial gradients in sea ice motion, or deformation, is essential to understanding of ocean-sea-ice-atmosphere interactions and realistic representations of sea ice in models used for the purposes of prediction. This is particularly true for the southern Beaufort Sea, where significant offshore hydrocarbon resource development increases the risk of oil and other contaminants dispersing into the marginal ice zone. In this study, sea ice deformation is examined through evaluation of ice beacon triplets from September to November 2009 in the southern Beaufort Sea (SBS, defined according to distance from the coastline on deployment. Results from this analysis illustrate that ice beacon triplets in the SBS demonstrate spatiotemporal differences in their evolution at the periphery and interior of the ice pack. The time rate of change in triplet area highlights two intervals of enhanced divergence and convergence in fall, 2009. Investigation of sea ice and atmospheric conditions during these intervals shows that until mid-September, all triplets respond to northerly flow, while during the second interval of enhanced divergence/convergence in October only one triplet responds to persistent northeasterly flow due to its proximity to the ice edge, in contrast to triplets located at the interior of the pack. Differences in sea ice deformation and dispersion near the pack ice edge and interior are further demonstrated in the behavior of triplets B and C in late October/early November. The results from this analysis highlight differences in dispersion and deformation characteristics based on triplet proximity to the southernmost ice edge and coastline, with implications for modeling studies pertaining to sea ice dynamics and dispersion.

  5. Ductile-brittle deformation effects on crystal-chemistry and U-Pb ages of magmatic and metasomatic zircons from a dyke of the Finero Mafic Complex (Ivrea-Verbano Zone, Italian Alps)

    Science.gov (United States)

    Langone, Antonio; Padrón-Navarta José, Alberto; Ji, Wei-Qiang; Zanetti, Alberto; Mazzucchelli, Maurizio; Tiepolo, Massimo; Giovanardi, Tommaso; Bonazzi, Mattia

    2017-07-01

    correlation between internal zircon structures, chemistry, U-Pb isotope ratios and mylonitic fabric. U-Pb data return highly discordant and variable ages. The 206Pb/238U ages may range from ca. 297 to 198 Ma within the same zircon grain from the leucocratic layers, whereas 206Pb/238U younger than 250 Ma were systematically obtained from zircon within the melanocratic layers. The 206Pb/238U data younger than ca. 240 Ma from zircon grains within the leucocratic layers were obtained from narrow axial stripes observed in CL images and oriented parallel or at low-angle with respect to the foliation planes. These stripes are characterized by an overall HREE, Y, U and Th enrichment possibly reflecting deformation of the grain in presence of interstitial fluid phases. Combining U-Pb data, microstructure and zircon CL features, we suggest a multistage evolution of the dykes whereby the melanocratic layers are the result of a Late Permian metasomatic event promoting modification of the pre-existing mineral assemblage of the (Late Carboniferous-Early Permian?) dykes and deformation and partial resetting of zircon porphyroclasts. This has important implications in the geology of the Ivrea-Verbano Zone because, having the dyke intruded the External Gabbro unit before Triassic (probably during Carboniferous-Permian), the latter cannot be considered a Triassic intrusion. At least part of the External Gabbro unit is Carboniferous-Permian as the other mafic bodies of the Ivrea-Verbano Zone.

  6. Structures and fabrics in glacial ice: A review

    Science.gov (United States)

    Hudleston, Peter J.

    2015-12-01

    Glaciers, ice sheets and ice caps represent tectonic systems driven by gravity. Their movement can be studied in real time and the rheological properties and strength of ice determined from laboratory experiments and field measurements. All glacial ice has primary stratification, exhibited by variations in grain size, bubble content and debris content. As it deforms, with deformation dominated by plastic flow and recrystallization, accompanied locally by fracture under tension, a suite of structures develops that reflects the primary fabric of the ice and the anisotropy that develops as a result of cumulative deformation. Initial variations in solid impurity content and strain dependent anisotropy as a result of a crystallographic fabric give rise to effective viscosity increases or decreases compared to isotropic polycrystalline ice of about a factor of ten. Foliation develops from inherited (mostly stratification) or introduced (mostly ice veins or fracture traces) fabric elements and from dynamic recrystallization. It is largely dependent on the accumulated strain, which is highest at the base and near the margins of glaciers, ice sheets and ice streams. Folds develop largely passively due to initial amplification of irregularities in the primary stratification, to variations in flow with time or to inhomogeneous flow associated with shear zones and ductile accommodation around open fractures. Buckle folds and boudinage, mostly on a small scale, occur where viscosity contrast is large, mostly in basal ice. Thrusting and wrench faulting are documented in surging glaciers but theoretically most unlikely and rare or absent elsewhere. Many structures interpreted as faults are not due to shear failure but rather result from shear displacements during opening and closing of tensile fractures.

  7. Subglacial Sediment Deformation: An Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Fischer, U. H.; Iverson, N. R.; Hooyer, T. S.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    A detailed study of sediment deformation processes was carried out beneath Engabreen, Norway, by taking advantage of unique access to the bed of the glacier beneath 230 m of temperate ice via the Svartisen Subglacial Laboratory. One of the strengths of this novel approach is that many interpretive limitations caused by un- certainties inherent in similarly motivated borehole investigations are eliminated. A trough (approx. 2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 per cent sand and gravel, 20 per cent silt, 5 per cent clay). Instruments were placed in the sediment to record shear deformation, dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding wa- ter to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sed- iment, shear deformation and volume change stopped, and total normal stress became constant at 2.1 MPa. Pump tests conducted subsequently, which lasted several hours, induced pore-water pressures > 70 per cent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice sep- arated from the sediment when effective pressure was lowest, and shear deformation stopped. Velocity profiles averaged over the duration of pump tests indicate that rates of shear strain increase upward toward the glacier sole.

  8. Ice Lithography for Nanodevices

    DEFF Research Database (Denmark)

    Han, Anpan; Kuan, A.; Wang, J.

    Water vapor is condensed onto a cold sample, coating it with a thin-film of ice. The ice is sensitive to electron beam lithography exposure. 10 nm ice patterns are transferred into metals by “melt-off”. Non-planar samples are coated with ice, and we pattern on cantilevers, AFM tips, and suspended...

  9. Characterization of sea-ice kinematic in the Arctic outflow region using buoy data

    Directory of Open Access Journals (Sweden)

    Ruibo Lei

    2016-01-01

    Full Text Available Data from four ice-tethered buoys deployed in 2010 were used to investigate sea-ice motion and deformation from the Central Arctic to Fram Strait. Seasonal and long-term changes in ice kinematics of the Arctic outflow region were further quantified using 42 ice-tethered buoys deployed between 1979 and 2011. Our results confirmed that the dynamic setting of the transpolar drift stream (TDS and Fram Strait shaped the motion of the sea ice. Ice drift was closely aligned with surface winds, except during quiescent conditions, or during short-term reversal of the wind direction opposing the TDS. Meridional ice velocity south of 85°N showed a distinct seasonal cycle, peaking between late autumn and early spring in agreement with the seasonality of surface winds. Inertia-induced ice motion was strengthened as ice concentration decreased in summer. As ice drifted southward into the Fram Strait, the meridional ice speed increased dramatically, while associated zonal ice convergence dominated the ice-field deformation. The Arctic atmospheric Dipole Anomaly (DA influenced ice drift by accelerating the meridional ice velocity. Ice trajectories exhibited less meandering during the positive phase of DA and vice versa. From 2005 onwards, the buoy data exhibit high Arctic sea-ice outflow rates, closely related to persistent positive DA anomaly. However, the long-term data from 1979 to 2011 do not show any statistically significant trend for sea-ice outflow, but exhibit high year-to-year variability, associated with the change in the polarity of DA.

  10. The geomorphic impact of catastrophic glacier ice loss in mountain regions

    Science.gov (United States)

    Evans, S. G.

    2006-12-01

    Perhaps the most dramatic manifestation of global warming is catastrophic glacier ice loss in mountain regions. The geomorphic impact of this process was first outlined by Evans and Clague in 1994 and includes mountain slope instability, glacier avalanching, the formation and failure of moraine dammed lakes, and the formation and failure of ice dammed lakes. The present paper is an update of the 1994 publication and has three components. First, a global review of recent glacier-related geomorphic events is undertaken. Second, an analysis of two cases from the Coast Mountains of British Columbia - the 1975 Devastation Glacier landslide and the 1983 Nostetuko Lake outburst resulting from the failure of a moraine dam illustrates the interaction of glacier ice loss and related geomorphic events. At Devastation Glacier, approximately 13 M m3 of altered Quaternary volcanic rock and glacier ice was lost from the west flank of Pylon Peak in the Mount Meager volcanic complex. The events were initiated by a catastrophic rockslide, involving altered Quaternary pyroclastic rocks, which continued down Devastation Creek valley as a high velocity debris avalanche. The overall length of the slide path was 7 km and the vertical height of the path was 1220 m yielding a fahrboschung of 10°. Other large landslides occurred in Devastation Creek valley in 1931 and 1947. Stability analysis of the initial failure shows that the 1975 rockslide was the result of a complex history of glacial erosion, loading and unloading of the toe of the slide mass caused by the Little Ice Age advance and subsequent retreat of Devastation Glacier. The shearing resistance along the base of the rockslide mass was reduced prior to 1975 by substantial previous slope displacements related to glacial ice loss. Some of this displacement is likely to have occurred as subglacial slope deformation since ice fall and crevasse patterns suggest the presence of slide like shearing displacements below the base of

  11. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  12. Metaplectic Ice

    CERN Document Server

    Brubaker, Ben; Chinta, Gautam; Friedberg, Solomon; Gunnells, Paul E

    2010-01-01

    Spherical Whittaker functions on the metaplectic n-fold cover of GL(r+1) over a nonarchimedean local field containing n distinct n-th roots of unity may be expressed as the partition functions of statistical mechanical systems that are variants of the six-vertex model. If n=1 then in view of the Casselman-Shalika formula this fact is related to Tokuyama's deformation of the Weyl character formula. It is shown that various properties of these Whittaker functions may be expressed in terms of the commutativity of row transfer matrices for the system. Potentially these properties (which are already proved by other methods, but very nontrivial) are amenable to proof by the Yang-Baxter equation.

  13. One-Hundred-km-Scale Basins on Enceladus: Evidence for an Active Ice Shell

    Science.gov (United States)

    Schenk, Paul M.; McKinnon, William B.

    2009-01-01

    Stereo-derived topographic mapping of 50% of Enceladus reveals at least 6 large-scale, ovoid depressions (basins) 90-175 km across and 800-to-1500 m deep and uncorrelated with geologic boundaries. Their shape and scale are inconsistent with impact, geoid deflection, or with dynamically supported topography. Isostatic thinning of Enceladus ice shell associated with upwellings (and tidally-driven ice melting) can plausibly account for the basins. Thinning implies upwarping of the base of the shell of 10-20 km beneath the depressions, depending on total shell thickness; loss of near-surface porosity due to enhanced heat flow may also contribute to basin lows. Alternatively, the basins may overly cold, inactive, and hence denser ice, but thermal isostasy alone requires thermal expansion more consistent with clathrate hydrate than water ice. In contrast to the basins, the south polar depression (SPD) is larger (350 wide) and shallower (0.4-to-0.8 km deep) and correlates with the area of tectonic deformation and active resurfacing. The SPD also differs in that the floor is relatively flat (i.e., conforms roughly to the global triaxial shape, or geoid) with broad, gently sloping flanks. The relative flatness across the SPD suggests that it is in or near isostatic equilibrium, and underlain by denser material, supporting the polar sea hypothesis of Collins and Goodman. Near flatness is also predicted by a crustal spreading origin for the "tiger stripes (McKinnon and Barr 2007, Barr 2008); the extraordinary, high CIRS heat flows imply half-spreading rates in excess of 10 cm/yr, a very young surface age (250,000 yr), and a rather thin lithosphere (hence modest thermal topography). Topographic rises in places along the outer margin of the SPD correlate with parallel ridges and deformation along the edge of the resurfaced terrain, consistent with a compressional, imbricate thrust origin for these ridges, driven by the spreading.

  14. Challenges in validating model results for first year ice

    Science.gov (United States)

    Melsom, Arne; Eastwood, Steinar; Xie, Jiping; Aaboe, Signe; Bertino, Laurent

    2017-04-01

    In order to assess the quality of model results for the distribution of first year ice, a comparison with a product based on observations from satellite-borne instruments has been performed. Such a comparison is not straightforward due to the contrasting algorithms that are used in the model product and the remote sensing product. The implementation of the validation is discussed in light of the differences between this set of products, and validation results are presented. The model product is the daily updated 10-day forecast from the Arctic Monitoring and Forecasting Centre in CMEMS. The forecasts are produced with the assimilative ocean prediction system TOPAZ. Presently, observations of sea ice concentration and sea ice drift are introduced in the assimilation step, but data for sea ice thickness and ice age (or roughness) are not included. The model computes the age of the ice by recording and updating the time passed after ice formation as sea ice grows and deteriorates as it is advected inside the model domain. Ice that is younger than 365 days is classified as first year ice. The fraction of first-year ice is recorded as a tracer in each grid cell. The Ocean and Sea Ice Thematic Assembly Centre in CMEMS redistributes a daily product from the EUMETSAT OSI SAF of gridded sea ice conditions which include "ice type", a representation of the separation of regions between those infested by first year ice, and those infested by multi-year ice. The ice type is parameterized based on data for the gradient ratio GR(19,37) from SSMIS observations, and from the ASCAT backscatter parameter. This product also includes information on ambiguity in the processing of the remote sensing data, and the product's confidence level, which have a strong seasonal dependency.

  15. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  16. Considering thermal-viscous collapse of the Greenland ice sheet

    Science.gov (United States)

    Colgan, William; Sommers, Aleah; Rajaram, Harihar; Abdalati, Waleed; Frahm, Joel

    2015-07-01

    We explore potential changes in Greenland ice sheet form and flow associated with increasing ice temperatures and relaxing effective ice viscosities. We define "thermal-viscous collapse" as a transition from the polythermal ice sheet temperature distribution characteristic of the Holocene to temperate ice at the pressure melting point and associated lower viscosities. The conceptual model of thermal-viscous collapse we present is dependent on: (1) sufficient energy available in future meltwater runoff, (2) routing of meltwater to the bed of the ice sheet interior, and (3) efficient energy transfer from meltwater to the ice. Although we do not attempt to constrain the probability of thermal-viscous collapse, it appears thermodynamically plausible to warm the deepest 15% of the ice sheet, where the majority of deformational shear occurs, to the pressure melting point within four centuries. First-order numerical modeling of an end-member scenario, in which prescribed ice temperatures are warmed at an imposed rate of 0.05 K/a, infers a decrease in ice sheet volume of 5 ± 2% within five centuries of initiating collapse. This is equivalent to a cumulative sea-level rise contribution of 33 ± 18 cm. The vast majority of the sea-level rise contribution associated with thermal-viscous collapse, however, would likely be realized over subsequent millennia.

  17. Considering thermal-viscous collapse of the Greenland ice sheet.

    Science.gov (United States)

    Colgan, William; Sommers, Aleah; Rajaram, Harihar; Abdalati, Waleed; Frahm, Joel

    2015-07-01

    We explore potential changes in Greenland ice sheet form and flow associated with increasing ice temperatures and relaxing effective ice viscosities. We define "thermal-viscous collapse" as a transition from the polythermal ice sheet temperature distribution characteristic of the Holocene to temperate ice at the pressure melting point and associated lower viscosities. The conceptual model of thermal-viscous collapse we present is dependent on: (1) sufficient energy available in future meltwater runoff, (2) routing of meltwater to the bed of the ice sheet interior, and (3) efficient energy transfer from meltwater to the ice. Although we do not attempt to constrain the probability of thermal-viscous collapse, it appears thermodynamically plausible to warm the deepest 15% of the ice sheet, where the majority of deformational shear occurs, to the pressure melting point within four centuries. First-order numerical modeling of an end-member scenario, in which prescribed ice temperatures are warmed at an imposed rate of 0.05 K/a, infers a decrease in ice sheet volume of 5 ± 2% within five centuries of initiating collapse. This is equivalent to a cumulative sea-level rise contribution of 33 ± 18 cm. The vast majority of the sea-level rise contribution associated with thermal-viscous collapse, however, would likely be realized over subsequent millennia.

  18. Relationship between Postural Deformities and Frontal Function in Parkinson's Disease.

    Science.gov (United States)

    Ninomiya, Satoko; Morita, Akihiko; Teramoto, Hiroko; Akimoto, Takayoshi; Shiota, Hiroshi; Kamei, Satoshi

    2015-01-01

    Postural deformities and executive dysfunction (ED) are common symptoms of Parkinson's disease (PD); however, the relationship between postural deformities and ED in patients with PD remains unclear. This study assessed the relationship between postural deformities and ED in patients with PD. Sixty-five patients with sporadic PD were assessed for the severity of postural deformities and executive function. The severity of postural deformities was scored using the United Parkinson's Disease Rating Scale item 28 score: no postural deformity (0), mild postural deformities (1), or severe postural deformities (2-4). Executive function was assessed using the Behavioral Assessment of the Dysexecutive Syndrome (BADS) and an age-controlled standardized BADS score <70 was defined as ED. Age-controlled standardized BADS scores were compared across the three groups using the Kruskal-Wallis test. Relationship between ED and the severity of postural deformities was assessed using the Mann-Whitney U test. Age-controlled standardized BADS score significantly differed among the three groups (P = 0.005). ED was significantly related to the severity of postural deformities (P = 0.0005). The severity of postural deformities was associated with a lower age-controlled standardized BADS score and ED, and these findings suggest that postural deformities were associated with frontal dysfunction in patients with PD.

  19. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM

    NARCIS (Netherlands)

    Weikusat, I.; Winter, D.A.M. de; Pennock, G.M.; Hayles, M.; Schneijdenberg, C.T.W.M.; Drury, M.R.

    2011-01-01

    Naturally deformed ice contains subgrains with characteristic geometries that have recently been identified in etched surfaces using high-resolution light microscopy (LM). The probable slip systems responsible for these subgrain boundary types can be determined using electron backscattered diffracti

  20. Arctic ice islands

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  1. New IceTracker Tool Depicts Forward and Backward Arctic Sea Ice Trajectories

    Science.gov (United States)

    Pfirman, S. L.; Campbell, G.; Tremblay, B.; Newton, R.; Meier, W.

    2013-12-01

    The IceTracker allows researchers, educators and the public to depict the forward drift trajectories of sea ice, as well as back trajectories showing the path the ice took to the specified location. Users enter in the location and date of an ice parcel - or parcels -- of interest, then select a later or earlier date, depending on whether they want to see the forward or the backward trajectory. The database for the IceTracker contains ice motion vectors based upon a pattern recognition algorithm applied to images of sea ice derived from microwave satellite data. Ice motion vector plots are single day motion estimates. The available database starts November 1978 and runs to the present with ca. 1 month delay. IceTracker output includes both an image of the ice motion path as well as a data file that has quasi-daily date, latitude, longitude, estimated sea ice age, ice drift speed, mean air temperature, and water depth. One can overlay different days on the same plot in different colors for comparing different seasons. This presentation highlights research, education, and outreach applications of the tool. Research applications include estimating the origin and melt location of sediment and contaminants sampled on or in sea ice, assessing potential trajectories oil spilled in ice-infested waters, documenting seasonal and interannual variability in ice drift trajectories from specific locations, defining the typical origins of ice that tend to melt in an area of interest, such as a polynya, and assessing the deviation from drift of polar bear foraging. The IceTracker can also be used in the social sciences, for example recreating Nansen's historic 1893-1896 trans-Arctic drift with the Fram under modern conditions and considering the implications of alternative fates. Educational purposes include teaching students about ice dynamics and interannual variability by setting up team competitions to be the first to reach the North Pole or some other location. Applications

  2. Deformations of crystal frameworks

    CERN Document Server

    Borcea, Ciprian S

    2011-01-01

    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite.

  3. Deformed General Relativity

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Deformed special relativity is embedded in deformed general relativity using the methods of canonical relativity and loop quantum gravity. Phase-space dependent deformations of symmetry algebras then appear, which in some regimes can be rewritten as non-linear Poincare algebras with momentum-dependent deformations of commutators between boosts and time translations. In contrast to deformed special relativity, the deformations are derived for generators with an unambiguous physical role, following from the relationship between canonical constraints of gravity with stress-energy components. The original deformation does not appear in momentum space and does not give rise to non-locality issues or problems with macroscopic objects. Contact with deformed special relativity may help to test loop quantum gravity or restrict its quantization ambiguities.

  4. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: New results

    Science.gov (United States)

    Muto, Atsuhiro; Peters, Leo E.; Gohl, Karsten; Sasgen, Ingo; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.

    2016-01-01

    little sediments and instead a rough interface over which ice flows mainly by deformation. We hypothesize that the post-Last Glacial Maximum retreat of PIG stabilized at this location because of the spatial transition in basal conditions. This in turn supports the hypothesis that the recent retreat of PIG was strongly forced, probably by changes in ocean circulation, rather than occurring because of ongoing response to the end of the ice age or other changes inland of or beneath PIG.

  5. Inhomogeneous deformation in INCONEL 718 during monotonic and cyclic loadings

    Science.gov (United States)

    Worthem, D. W.; Robertson, I. M.; Socie, D. F.; Altstetter, C. J.; Leckie, F. A.

    1990-01-01

    The paper concentrates on the relation between microstructural observations of the dislocation structures and the macroscopic deformation responses of both aged and homogenized precipitate-hardened alloys at room temperature. The deformation responses are compared to the cyclic deformation response of an aged precipitate-hardened alloy. Early in the deformation, one deformation band per grain and little evidence of work hardening are observed; with increased deformation, work hardening begins, more bands nucleate, and their spacing becomes similar to that in the aged material. It is pointed out that the degree of coarseness of inhomogeneous deformation is not a result of a softening process within the bands due to precipitate shearing, but it is a function of the amount of work hardening within the bands.

  6. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  7. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-12-01

    Full Text Available In the Arctic, global warming is particularly pronounced so that we need to monitor its development continuously. On the other hand, the vast and hostile conditions make in situ observation difficult, so that available satellite observations should be exploited in the best possible way to extract geophysical information. Here, we give a résumé of the sea ice remote sensing efforts of the European Union's (EU project DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies. In order to better understand the seasonal variation of the microwave emission of sea ice observed from space, the monthly variations of the microwave emissivity of first-year and multi-year sea ice have been derived for the frequencies of the microwave imagers like AMSR-E (Advanced Microwave Scanning Radiometer on EOS and sounding frequencies of AMSU (Advanced Microwave Sounding Unit, and have been used to develop an optimal estimation method to retrieve sea ice and atmospheric parameters simultaneously. In addition, a sea ice microwave emissivity model has been used together with a thermodynamic model to establish relations between the emissivities from 6 GHz to 50 GHz. At the latter frequency, the emissivity is needed for assimilation into atmospheric circulation models, but is more difficult to observe directly. The size of the snow grains on top of the sea ice influences both its albedo and the microwave emission. A method to determine the effective size of the snow grains from observations in the visible range (MODIS is developed and demonstrated in an application on the Ross ice shelf. The bidirectional reflectivity distribution function (BRDF of snow, which is an essential input parameter to the retrieval, has been measured in situ on Svalbard during the DAMOCLES campaign, and a BRDF model assuming aspherical particles is developed. Sea ice drift and deformation is derived from satellite observations with the scatterometer

  8. Influence of Degree of Deformation and Aging Time on Mechanical Properties and Microstructure of Aluminium Alloy with Zinc / Wpływ Stopnia Odkształcenia I Czasu Starzenia Na Właściwośi Mechaniczne I Mikrostrukturę Stopu Aluminium Z Cynkiem

    Directory of Open Access Journals (Sweden)

    Jarzębska A.

    2015-12-01

    Full Text Available In order to investigate the influence of the deformation degree and aging time on the mechanical properties and microstructure of AA7050 alloy static tensile test, microhardness measurements, calorimetric analysis and observations of the microstructure in the transmission and scanning electron microscope were carried out. For study a series of cylindrical specimens with an initial diameter of about 3 mm were used. The samples were saturated at a temperature of 470° C for 1 hour and quenched in water. The samples were then subjected to deformation up to the three levels: 0%, 5% and 10%. Deformed samples was artificially aged at 120°C for 6 hours, 12 hours, 24 hours and 72 hours. The results showed that the increase in the degree of deformation caused an increase in yield strength and a decrease in ductility. The longer aging time influenced on an increase in tensile strength, yield stress and microhardness and a decrease in ductility. An analysis of the precipitates present in the material was conducted. The highest value of yield strength equal 538 MPa with elongation 9.2% were obtained for sample pre-strained to 10% and aged for 24 hours. The obtained results showed that prolongation in aging time and use of pre-strain were beneficial for precipitation processes courses, consequently, for optimal mechanical properties of alloy 7050.

  9. 冰区老龄平台整体时变可靠性分析与更新%Analyzing and updating on the global time-dependent reliability for ageing platforms in ice zones

    Institute of Scientific and Technical Information of China (English)

    陈团海; 陈国明; 林红

    2011-01-01

    建立了冰区老龄平台整体时变可靠性分析模型,并基于Bayes理论研究平台时变可靠性更新方法.根据现场实测冰力时程曲线,将冰载过程简化为具有随机强度和时间间隔的脉冲序列,利用泊松点过程描述冰载发生次数;采用平台极限状态时的基底剪力作为平台整体抗力指标,运用Weibull函数腐蚀模型预测平台抗力衰减;基于条件概率与载荷-强度干涉理论,建立冰区老龄平台整体时变可靠性微分方程,导出时变可靠性与失效率函数分析模型;给出基于Bayes理论对平台抗力衰减影响因子进行修正的方法,通过修正抗力衰减模型对老龄平台可靠性进行更新.分析渤海一冰区平台的时变可靠性,并利用检测数据进行可靠性更新.研究结果表明,随着服役时间的增加,平台可靠性迅速下降,失效率在初期缓慢增大,达到一定服役期后迅速上升.抗力衰减模型对平台可靠性与失效率的评估均有较大影响.随着更新次数的增加,平台抗力衰减函数概率分散性减小,可靠性与失效率准确度提高.%Since the number of ageing platforms increased rapidly and ageing effects would imperil the safety and service ability of structures, the present paper brought forward an analysis model for the global time-dependent reliability of ageing platforms in ice zones and investigated update ways of the time-variation reliability based on the Bayesian theory. The ice-load process was simplified to be a pulse sequence with random intensity and intervals and the occurrence number of ice loads was described by the Poisson point process according to probabilistic characteristics of load intervals. The base shear force in the ultimate limit state was taken as a whole resistant index for offshore platforms and a corrosion model with the Weibull function expression was employed to study the resistance degradation of platforms. Based on the conditional probability model and

  10. A Sub-Decadal Continental Margin Record of Little Ice Age-to-Modern Climate-Induced Changes in Sediment Delivery and Transport in the Gulf of Alaska

    Science.gov (United States)

    Jaeger, J. M.; Viene, W.; Finney, B.; Stoner, J.; Evans, H.

    2003-12-01

    The Gulf of Alaska (GOA) margin is one of the few locations on Earth where orogenic processes, glacial climate, and continental margin sedimentation can be studied and quantitatively modeled in unison. Climatic changes control glacial dynamics, erosion, and sediment/meltwater fluxes to the ocean, and GOA margin strata appear to preserve a strong record of terrestrial climate (i.e., temperature and precipitation) as well as paleoceanographic signals on seasonal to tectonic time scales. In collaboration with the GOA-NEP GLOBEC program, gravity cores were collected at key sampling sites under the influence of the climatically sensitive Alaska Coastal Current (ACC). Chronologies for the past 400-y were established using Pb-210/Cs-137, coupled with paleo-and-environmental magnetism analyzed from u-channel samples at one-cm intervals. The sedimentary paleomagnetic record is correlated to the Sitka geomagnetic observatory record for the last century and extended using the Jackson et al. 400-yr global field model. Carbon and nitrogen stable isotopes, C/N ratios and opal concentrations were analyzed to determine OM source and paleoproductivity. Proximal to large sediment sources, high (>1 cm/y) sediment accumulation rates vary over decadal times scales and appear to be directly tied to the amount of coastal precipitation and the corresponding strength of the ACC. Distal shelf cores have sedimentation rates that vary over longer time scales and are 2-3 x higher during glacial melting from LIA maxima. High-resolution grain size analyses and core logging of bulk density and environmental magnetic parameters including magnetic susceptibility vary at LIA, pentadecadal, and decadal time scales and are strongly correlated with variability in regional precipitation as seen in the nearby Mt. Logan ice core record. Preliminary results suggest that the amount of freshwater discharge and corresponding strength of the ACC was substantially higher during the LIA.

  11. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  12. A Maxwell elasto-brittle rheology for sea ice modelling

    Science.gov (United States)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  13. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation.

    Science.gov (United States)

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-18

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼ 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  14. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    Science.gov (United States)

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif G.; Backman, Jan; Bjork, Goran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Macho, Natalia Barrientos; Cherniykh, Dennis; Coxall, Helen; Eriksson, Bjorn; Floden, Tom; Gemery, Laura; Gustafsson, Orjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  15. A new methodology to simulate subglacial deformation of water saturated granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Piotrowski, Jan A.

    2015-01-01

    or weakening components, depending on the rate of deformation, the material state, clay mineral content, and the hydrological properties of the material. The influence of the fluid phase is negligible when relatively permeable sediment is deformed. However, by reducing the local permeability, fast deformation...... on the hydraulic conductivity at the ice-bed interface. Grain-fluid feedbacks can cause complex material properties that vary over time, and which may be of importance for glacier stick-slip behavior....

  16. Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling

    NARCIS (Netherlands)

    Auriac, A.; Spaans, K.H.; Sigmundsson, F.; Hooper, A.; Schmidt, P.; Lund, B.

    2013-01-01

    A broad uplift occurs in Iceland in response to the retreat of ice caps, which began circa 1890. Until now, this deformation signal has been measured primarily using GPS at points some distance away from the ice caps. Here, for the first time we use satellite radar interferometry (interferometric sy

  17. Deformable Nanolaminate Optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  18. Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia

    Science.gov (United States)

    Downes, Peter J.; Dunkley, Daniel J.; Fletcher, Ian R.; McNaughton, Neal J.; Rasmussen, Birger; Jaques, A. Lynton; Verrall, Michael; Sweetapple, Marcus T.

    2016-04-01

    In situ SHRIMP U-Pb dating of zirconolite in clinopyroxenite from the Cummins Range Carbonatite Complex, situated in the southern Halls Creek Orogen, Kimberley region, Western Australia, has provided a reliable 207Pb/206Pb age of emplacement of 1009 ± 16 Ma. Variably metamict and recrystallised zircons from co-magmatic carbonatites, including a megacryst ~1.5 cm long, gave a range of ages from ~1043-998 Ma, reflecting partial isotopic resetting during post-emplacement deformation and alteration. Monazite-(Ce) in a strongly foliated dolomite carbonatite produced U-Th-Pb dates ranging from ~900-590 Ma. Although the monazite-(Ce) data cannot give any definitive ages, they clearly reflect a long history of hydrothermal alteration/recrystallisation, over at least 300 million years. This is consistent with the apparent resetting of the Rb-Sr and K-Ar isotopic systems by a post-emplacement thermal event at ~900 Ma during the intracratonic Yampi Orogeny. The emplacement of the Cummins Range Carbonatite Complex probably resulted from the reactivation of a deep crustal structure within the Halls Creek Orogen during the amalgamation of Proterozoic Australia with Rodinia over the period ~1000-950 Ma. This may have allowed an alkaline carbonated silicate magma that was parental to the Cummins Range carbonatites, and generated by redox and/or decompression partial melting of the asthenospheric mantle, to ascend from the base of the continental lithosphere along the lithospheric discontinuity constituted by the southern edge of the Halls Creek Orogen. There is no evidence of a link between the emplacement of the Cummins Range Carbonatite Complex and mafic large igneous province magmatism indicative of mantle plume activity. Rather, patterns of Proterozoic alkaline magmatism in the Kimberley Craton may have been controlled by changing plate motions during the Nuna-Rodinia supercontinent cycles (~1200-800 Ma).

  19. The Paleozoic Dust Bowl: Dust Deposition in Tropical Western Pangaea (Midcontinent U.S.) at the Terminus of the Late Paleozoic Ice Age

    Science.gov (United States)

    Soreghan, G. S.; Heavens, N. G.; Benison, K. C.; Soreghan, M. J.; Mahowald, N. M.; Foster, T.; Zambito, J.; Sweet, A.; Kane, M.

    2012-12-01

    Atmospheric dust is well recognized and studied as both an archive and agent of climate change in Earth's relatively recent past. Archives of past dust include loess deposits and dust recovered from ocean- and ice-cores. Dust remains poorly known in Earth's past prior to the Cenozoic, but is increasingly recognized in the form of paleo-loess deposits, and (epeiric) marine strata that accumulated isolated from fluvio-deltaic influx. Here, we report on the growing recognition of voluminous dust deposits preserved in the Permian record of the U.S. Midcontinent (western tropical Pangaea). Fine-grained redbeds predominate in Permian strata throughout the U.S. Midcontinent, but notably in a swath extending from Oklahoma through South Dakota. These units consist predominantly of red mudstone and siltstone in commonly massive units, but sedimentary structures and bedding that signal aqueous processes (e.g. laminations, ripples) have led most to infer deltaic or tidal deposition. The absence of channel systems to deliver the sediment, as well as the predominantly massive and laterally continuous character and the uniform fine grain size signal wind transport, implying that these units record sustained dust deposition overprinted at times by sub-aqueous deposition in lakes, including ephemeral saline and acid lakes that led to evaporite cementation. Detrital zircon geochronology indicates that much of the dust originated in the relatively distant Appalachian-Ouachita orogenic systems, which formed part of the central Pangaean mountains (CPM), the collisional zone that sutured the supercontinent. Within the Anadarko basin of Oklahoma, Permian redbeds record >2 km of predominantly dust deposition, some of the thickest dust deposits yet documented in Earth's record. Yet the tropical setting is remarkably non-uniformitarian, as much Quaternary loess occurs in mid- to high-latitude regions, commonly linked to glacial genesis. We are currently investigating with both data and

  20. Intervención educativa en escolares de 5 y 6 años con hábitos bucales deformantes Educative intervention in children aged 5-6 with deforming oral habits

    Directory of Open Access Journals (Sweden)