WorldWideScience

Sample records for deformable nanolaminate optics

  1. Deformation twinning in a creep-deformed nanolaminate structure

    International Nuclear Information System (INIS)

    Hsiung, Luke L

    2010-01-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti 3 Al-(α 2 ) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α 2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  2. Deformation twinning in a creep-deformed nanolaminate structure

    Science.gov (United States)

    Hsiung, Luke L.

    2010-10-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  3. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    International Nuclear Information System (INIS)

    Alloatti, L.; Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.

    2015-01-01

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al 2 O 3 , B = TiO 2 , and C = HfO 2 . The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths

  4. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  5. Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating

    Directory of Open Access Journals (Sweden)

    Junbiao Peng

    2017-11-01

    Full Text Available In this paper, an alumina-zirconia (Al2O3-ZrO2 nanolaminate dielectric was fabricated by spin-coating and the performance was investigated. It was found that the properties of the dielectric can be adjusted by changing the content of Al2O3/ZrO2 in nanolaminates: when the content of Al2O3 was higher than 50%, the properties of nanolaminates, such as the optical energy gap, dielectric strength (Vds, capacitance density, and relative permittivity were relatively stable, while the change of these properties became larger when the content of Al2O3 was less than 50%. With the content of ZrO2 varying from 50% to 100%, the variation of these properties was up to 0.482 eV, 2.12 MV/cm, 135.35 nF/cm2, and 11.64, respectively. Furthermore, it was demonstrated that the dielectric strength of nanolaminates were influenced significantly by the number (n of bilayers. Every increment of one Al2O3-ZrO2 bilayer will enhance the dielectric strength by around 0.39 MV/cm (Vds ≈ 0.86 + 0.39n. This could be contributed to the amorphous alumina which interrupted the grain boundaries of zirconia.

  6. Measurement of Young's modulus variation with layer pair and interplanar spacing in gold–nickel nanolaminates using nanoindentation and the tapping mode

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H. S. Tanvir; Jankowski, Alan F. [Department of Mechanical Engineering, Texas Tech University, Box 41021, Lubbock, Texas 79409 (United States)

    2015-03-28

    The features of grain size and interface separation strengthen the mechanical behavior of metallic nanolaminates. In addition, the presence of interlayer lattice strains can lead to a superlattice structure within the nanolaminate. The superlattice affects intrinsic properties of technological interest including electronic, magnetic, and elastic. The complex elastic and plastic behaviors of gold–nickel nanolaminate superlattice coatings as studied using nanoindentation are revisited with the tapping mode of a force microscope. Young's modulus is determined with nanoindentation during the initial elastic unloading after plastic deformation at depths up to one-fifth the coating thickness. The tapping mode provides a measurement during the initial elastic deformation at depths of only a few nanometers. The tapping mode utilizes the shift in the resonant frequency of the probe-cantilever system as contact is made with the sample surface. Both of these nanoprobe test methods produce results for measurements conducted with loading normal to the surface plane. A softening in the Young's modulus of gold–nickel nanolaminate coatings occurs for samples with layer pair spacing between 1 and 9 nm. The magnitude of softening corresponds with a progressive increase in the tensile state as measured with the change of interplanar spacing along the growth direction.

  7. Anomalous fast diffusion in Cu-NiFe nanolaminates.

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Alan F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Energy Nanomaterials Dept.

    2017-09-01

    For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.

  8. Reactive Ni/Ti nanolaminates

    International Nuclear Information System (INIS)

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-01-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  9. Depth profiling of Al{sub 2}O{sub 3} + TiO{sub 2} nanolaminates by means of a time-of-flight energy spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, M., E-mail: mikko.i.laitinen@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Sajavaara, T., E-mail: timo.sajavaara@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Rossi, M., E-mail: mikko.rossi@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Julin, J., E-mail: jaakko.julin@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Puurunen, R.L., E-mail: riikka.puurunen@vtt.fi [VTT Technical Research Centre of Finland, Tietotie 3, FI-02150 Espoo (Finland); Suni, T., E-mail: tommi.suni@vtt.fi [VTT Technical Research Centre of Finland, Tietotie 3, FI-02150 Espoo (Finland); Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Ishida, T., E-mail: tadashii@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Fujita, H., E-mail: fujita@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Arstila, K., E-mail: kai.arstila@imec.be [Imec, Kapeldreef 75, Leuven 3001 (Belgium); Brijs, B., E-mail: bert.brijs@imec.be [Imec, Kapeldreef 75, Leuven 3001 (Belgium); Whitlow, H.J., E-mail: harry.j.whitlow@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland)

    2011-12-15

    Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al{sub 2}O{sub 3} + TiO{sub 2} nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyvaeskylae. In TOF-E measurements {sup 63}Cu, {sup 35}Cl, {sup 12}C and {sup 4}He ions with energies ranging from 0.5 to 10 MeV, were used and depth profiles of the whole nanolaminate film could be analyzed down to 5 nm individual layer thickness.

  10. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  11. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc–dc power conversion

    International Nuclear Information System (INIS)

    Kim, Jooncheol; Kim, Minsoo; Herrault, Florian; Kim, Jung-Kwun; Allen, Mark G

    2015-01-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300–1000 nm thick metallic alloys (i.e. Ni 80 Fe 20 or Co 44 Ni 37 Fe 19 ) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50–100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500–1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc–dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors. (fast track communication)

  12. Low to moderate temperature nanolaminate heater

    Science.gov (United States)

    Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  13. Electronic-structure origin of the anisotropic thermopower of nanolaminated Ti3SiC2 determined by polarized x-ray spectroscopy and Seebeck measurements

    DEFF Research Database (Denmark)

    Magnuson, Martin; Mattesini, Maurizio; Van Nong, Ngo

    2012-01-01

    Nanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, with large contemporary scientific and technological interest. Here we report on the anisotropic Seebeck coefficient in nanolaminated Ti3SiC2 single-crystal thin films and trace the origin to aniso......Nanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, with large contemporary scientific and technological interest. Here we report on the anisotropic Seebeck coefficient in nanolaminated Ti3SiC2 single-crystal thin films and trace the origin...... value of 4–6 μV/K. Employing a combination of polarized angle-dependent x-ray spectroscopy and density functional theory we directly show electronic structure anisotropy in inherently nanolaminated Ti3SiC2 single-crystal thin films as a model system. The density of Ti 3d and C 2p states at the Fermi...... level in the basal ab plane is about 40% higher than along the c axis. The Seebeck coefficient is related to electron and hole-like bands close to the Fermi level, but in contrast to ground state density functional theory modeling, the electronic structure is also influenced by phonons that need...

  14. Three dimensional (3D) microstructure-based finite element modeling of Al-SiC nanolaminates using focused ion beam (FIB) tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Carl R. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Molina-Aladareguia, Jon [IMDEA Materials Institute, c/Eric Kandel 2, Getafe, Madrid 28906 (Spain); Chawla, Nikhilesh, E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States)

    2016-10-15

    Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results. The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.

  15. Microstructural and magnetic characterization of Co/CN films fabricated by nanolamination

    International Nuclear Information System (INIS)

    Du, J.; Wang, S.; Zhou, J.N.; Harrell, J.W.; Barnard, J.A.

    2000-01-01

    Nanolamination combined with appropriate annealing treatment has been used to produce high coercivity, heterogeneous Co-CN films with nanostructures ranging from classical granular to an interconnected network. Transmission electron microscopy and electron diffraction have been used to quantify the nanostructural evolution and resulting grain size distributions. As-deposited nanolaminates with initial layer thicknesses of 1.3 and 2.7 nm are essentially superparamagnetic. Annealing leads to coercivities of >1100 Oe. Viscosity and irreversible susceptibility measurements have been used to calculate activation volumes of ∼(18 nm) 3 , in good agreement with grain size analysis. Measurements of the time dependence of coercivity have been used to calculate the thermal stability factor, KV/kT∼480, which is independent of initial geometry. Effective first-order uniaxial anisotropy constants determined using calculated activation volumes are at maximum ∼75% of the value expected for bulk α-Co. This result is consistent with Co present in both α and β phases, as confirmed by electron diffraction

  16. Boride-based nano-laminates with MAX-phase-like behaviour

    International Nuclear Information System (INIS)

    Telle, Rainer; Momozawa, Ai; Music, Denis; Schneider, Jochen M.

    2006-01-01

    MAX-phases being usually composed of transition metals, group A elements and carbon/nitrogen are considered interesting materials for many applications because of their tremendous bulk modulus, 'reversible' plasticity, and machinability. This is mainly due to their unique kind of bonding comprising covalent, ionic as well as metallic bonds providing 'easy' planes of rupture and deformability due to the layered crystal structures. In transition metal boride systems, similar types of bonding are available. In particular the W 2 B 5 -structure type and its stacking variations allow the synthesis of strongly layered crystal structures exhibiting unique delamination phenomena. The paper presents ab initio calculations showing the similarities of bonding between the ternary carbides and the corresponding ternary or quaternary borides. Formation of boride-based nano-laminates from auxiliary liquid phases, from the melt as well as during sintering and precipitation from supersaturated solid solutions will be discussed by means of SEM and TEM studies. The role of impurities weakening the interlayer bonding will be addressed in particular. The pronounced cleavage parallel to the basal plane gives rise for crack deflection and pull-out mechanisms if the laminates are dispersed in brittle matrices such as boron carbide, silicon carbide or other transition metal borides. - Graphical abstract: Some transition metal borides crystallise in a layered structure of alternating stacks of metal and boron atoms giving rise for strongly anisotropic properties. Their preferred cleavage parallel and the deformability perpendicular to the basal plan are similar to the peculiar mechanical behaviour recently described for MAX-phases. Ab initio calculations of the crystal structure prove the weak bonds between the layers for a variety of borides which can be used to reinforce ceramic materials on a nano-scale level

  17. Fabrication of Nanolaminates with Ultrathin Nanolayers Using Atomic Layer Deposition: Nucleation & Growth Issues

    Science.gov (United States)

    2009-02-01

    Tecnologia de Superficies y Materiales (SMCTSM), XXVII Congreso Nacional, Oaxaca, Oaxaca, Mexico, September 26, 2007. 26. "Atomic Layer Deposition of...Nanolaminates: Fabrication and Properties" (Plenary Lecture), Sociedad Mexicana de Ciencia y Tecnologia de Superficies y Materiales (SMCTSM), XXVII

  18. Overview of deformable mirror technologies for adaptive optics and astronomy

    Science.gov (United States)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  19. Numerical model for the deformation of nucleated cells by optical stretchers

    KAUST Repository

    Sraj, Ihab

    2015-07-01

    In this paper, we seek to numerically study the deformation of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational model, the dynamic ray-tracing method, to determine the force distribution induced by optical stretchers on a cell encapsulating a nucleus of different optical properties. These optical forces are shape dependent and can deform real non-rigid objects; thus resulting in dynamically changing distributions with cell and nucleus deformation. A Chinese hamster ovary (CHO) cell is a common biological cell that is of interest to the biomedical community because of its use in recombinant protein therapeutics and is an example of a nucleated cell. To this end, we model CHO cells as two concentric three-dimensional elastic capsules immersed in a fluid where the hydrodynamic forces are calculated using the immersed boundary method. We vary the inner capsule size to simulate different nucleus sizes. Our results show that the presence of a nucleus has a major effect on the force distribution on the cell surface and consequently on its net deformation. Scattering and gradient forces are reported for different nucleus sizes and the effect of nucleus size on the cell deformation is discussed quantitatively. © 2015 IOP Publishing Ltd.

  20. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.

  1. Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2012-01-01

    In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized

  2. Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM)

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, C. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Li, N.; Mara, N. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, NM (United States); Chawla, N., E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States)

    2015-01-05

    Nanolaminate composites show promise as high strength and toughness materials. However, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50 nm and 100 nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred close to the Al–SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.

  3. Deformation of phospholipid vesicles in an optical stretcher

    OpenAIRE

    Delabre , Ulysse; Feld , Kasper; Crespo , Eleonore; Whyte , Graeme; Sykes , Cecile; Seifert , Udo; Guck , Jochen

    2015-01-01

    International audience; Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelength...

  4. Terahertz adaptive optics with a deformable mirror.

    Science.gov (United States)

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  5. TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)]. E-mail: drm@ansto.gov.au; Attard, D.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Finnie, K.S. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Triani, G. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Barbe, C.J. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Depagne, C. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Bartlett, J.R. [Materials and Engineering Science, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2005-04-30

    Nanolaminate oxide layers consisting of TiO{sub 2} and Al{sub 2}O{sub 3} have been deposited on silicon using atomic layer deposition (ALD). Characterisation of these films has been achieved by use of a range of modern transmission electron microscopy (TEM)-based techniques, including plasmon loss imaging, energy filtered imaging and scanning TEM (STEM) X-ray line profiling. These have shown that the target thickness of the individual layers in the nanolaminate structures (20 nm) has been met with a high degree of accuracy, that the layers are extremely flat and parallel and that the interfaces between the layers are compositionally abrupt. Localised crystallisation within the stacks, and responses to electron beam irradiation point to the presence of a stress gradient within the layers. The performance of ellipsometry in characterising multilayer stacks has been benchmarked against the TEM measurements. Errors in determination of individual layer thicknesses were found to increase with growing stack size, as expected given the increasing number of interfaces incorporated in each model. The most sophisticated model gave maximum deviations of {+-}4 nm from the TEM determined values for the 5- and 10-layer stacks.

  6. Optical calibration and test of the VLT Deformable Secondary Mirror

    Science.gov (United States)

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Biasi, Roberto; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2013-12-01

    The Deformable Secondary Mirror (DSM) for the VLT (ESO) represents the state-of-art of the large-format deformable mirror technology with its 1170 voice-coil actuators and its internal metrology based on actuator co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the results of the optical characterization of the mirror unit with the ASSIST facility located at ESO-Garching and executed in a collaborative effort by ESO, INAF-Osservatorio Astrofisico di Arcetri and the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.). The main purposes of the tests are the optical characterization of the shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions. The results are used for the optical acceptance of the DSM and to allow the next test phase coupling the DSM with the wave-front sensor modules of the new Adaptive Optics Facility (AOF) of ESO.

  7. Modeling for deformable mirrors and the adaptive optics optimization program

    International Nuclear Information System (INIS)

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-01-01

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language

  8. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Zbib, Hussein M. [Washington State Univ., Pullman, WA (United States); Bahr, David F. [Purdue Univ., West Lafayette, IN (United States)

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  9. CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Bagcivan, N.; Bobzin, K.; Ludwig, A.; Grochla, D.; Brugnara, R.H.

    2014-01-01

    Nanolaminate coatings based on transition metal nitrides such as CrN, AlN and TiN deposited via physical vapor deposition (PVD) have shown great advantage as protective coatings on tools and components subject to high loads in tribological applications. By varying the individual layer materials and their thicknesses it is possible to optimize the coating properties, e.g. hardness, Young's modulus and thermal stability. One way for further improvement of coating properties is the use of advanced PVD technologies. High power pulsed magnetron sputtering (HPPMS) is an advancement of pulsed magnetron sputtering (MS). The use of HPPMS allows a better control of the energetic bombardment of the substrate due to the higher ionization degree of metallic species. It provides an opportunity to influence chemical and mechanical properties by varying the process parameters. The present work deals with the development of CrN/AlN nanolaminate coatings in an industrial scale unit by using two different PVD technologies. Therefore, HPPMS and mfMS (middle frequency magnetron sputtering) technologies were used. The bilayer period Λ, i.e. the thickness of a CrN/AlN double layer, was varied between 6.2 nm and 47.8 nm by varying the rotational speed of the substrate holders. In a second step the highest rotational speed was chosen and further HPPMS CrN/AlN coatings were deposited applying different HPPMS pulse lengths (40, 80, 200 μs) at the same mean cathode power and frequency. Thickness, morphology, roughness and phase composition of the coatings were analyzed by means of scanning electron microscopy (SEM), confocal laser microscopy, and X-ray diffraction (XRD), respectively. The chemical composition was determined using glow discharge optical emission spectroscopy (GDOES). Detailed characterization of the nanolaminate was conducted by transmission electron microscopy (TEM). The hardness and the Young's modulus were analyzed by nanoindentation measurements. The residual

  10. Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation

    Science.gov (United States)

    Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke

    2018-06-01

    We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.

  11. Bridge continuous deformation measurement technology based on fiber optic gyro

    Science.gov (United States)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  12. Irradiation-induced creep in metallic nanolaminates characterized by In situ TEM pillar nanocompression

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Shen J., E-mail: sdillon@illinois.edu [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Bufford, Daniel C. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Jawaharram, Gowtham S.; Liu, Xuying; Lear, Calvin [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Hattar, Khalid [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Averback, Robert S. [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States)

    2017-07-15

    This work reports on irradiation-induced creep (IIC) measured on nanolaminate (Cu-W and Ni-Ag) and nanocrystalline alloys (Cu-W) at room temperature using a combination of heavy ion irradiation and nanopillar compression performed concurrently in situ in a transmission electron microscope. Appreciable IIC is observed in multilayers with 50 nm layer thicknesses at high stress, ≈½ the yield strength, but not in multilayers with only 5 nm layer thicknesses.

  13. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  14. Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S., E-mail: judy.kim@materials.ox.ac.uk [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Knepper, R.; Weihs, T.P. [Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Browning, N.D. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Campbell, G.H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2011-05-15

    Highlights: > Fast phase transformations are examined in Al/Ni reactive nanolaminates. > Results visible only by dynamic transmission electron microscopy at ns resolution. > NiAl forms under 15 ns after reaction front in all three stoichiometries studied. > DTEM imaging reveals a transient cellular morphology in nonequiatomic films. - Abstract: Phase transformations and transient morphologies are examined as exothermic formation reactions self-propagate across Al/Ni nanolaminate films. The rapid evolution of these phases and sub-micrometer morphological features requires nanoscale temporal and spatial resolution that is not available with traditional in situ electron microscopy. This work uses dynamic transmission electron microscopy to identify intermetallic products and phase morphologies, as exothermic formation reactions self-propagate in nanolaminate films grown with 3:2, 2:3 and 1:1 Al/Ni atomic ratios. Single-shot diffraction patterns with 15 ns temporal resolution reveal that the NiAl intermetallic forms within {approx}15 ns of the reaction front's arrival in all three types of films and is the only intermetallic phase to form, as the reactions self-propagate and quench very rapidly. Time-resolved imaging reveals a transient cellular morphology in the Al-rich and Ni-rich foils, but not in the equiatomic films. The cellular features in the Al-rich and Ni-rich films are attributed to a cooling trajectory through a two-phase field of liquid + NiAl.

  15. Piezoelectric deformable mirror for intra-cavity laser adaptive optics.

    CSIR Research Space (South Africa)

    Long, CS

    2008-03-01

    Full Text Available This paper describes the development of a deformable mirror to be used in conjunction with diffractive optical elements inside a laser cavity. A prototype piezoelectric unimorph adaptive mirror was developed to correct for time dependent phase...

  16. Horn–Schunck optical flow applied to deformation measurement of a birdlike airfoil

    Directory of Open Access Journals (Sweden)

    Gong Xiaoliang

    2015-10-01

    Full Text Available Current deformation measurement techniques suffer from limited spatial resolution. In this work, a highly accurate and high-resolution Horn–Schunck optical flow method is developed and then applied to measuring the static deformation of a birdlike flexible airfoil at a series of angles of attack at Reynolds number 100,000 in a low speed, low noise wind tunnel. To allow relatively large displacements, a nonlinear Horn–Schunck model and a coarse-to-fine warping process are adopted. To preserve optical flow discontinuities, a nonquadratic penalization function, a multi-cue driven bilateral filtering and a principle component analysis of local image patterns are used. First, the accuracy and convergence of this Horn–Schunck technique are verified on a benchmark. Then, the maximum displacement that can be reliably calculated by this technique is studied on synthetic images. Both studies are compared with the performance of a Lucas–Kanade optical flow method. Finally, the Horn–Schunck technique is used to estimate the 3-D deformation of the birdlike airfoil through a stereoscopic camera setup. The results are compared with those computed by Lucas–Kanade optical flow, image correlation and numerical simulation.

  17. Effects of thermal deformation on optical instruments for space application

    Science.gov (United States)

    Segato, E.; Da Deppo, V.; Debei, S.; Cremonese, G.

    2017-11-01

    Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment. In particular optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatations and misalignments of the optical elements, and can also lead to rise of dangerous stresses in the optics. Their displacements and the deformations degrade the quality of the sampled images. In this work a method for studying the effects of the temperature variations on the performance of imaging instrument is presented. The optics and their mountings are modeled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, then the output data, which describe the deformations of the optical element surfaces, are elaborated using an ad hoc MATLAB routine: a non-linear least square optimization algorithm is adopted to determine the surface equations (plane, spherical, nth polynomial) which best fit the data. The obtained mathematical surface representations are then directly imported into ZEMAX for sequential raytracing analysis. The results are the variations of the Spot Diagrams, of the MTF curves and of the Diffraction Ensquared Energy due to simulated thermal loads. This method has been successfully applied to the Stereo Camera for the BepiColombo mission reproducing expected operative conditions. The results help to design and compare different optical housing systems for a feasible solution and show that it is preferable to use kinematic constraints on prisms and lenses to minimize the variation of the optical performance of the Stereo Camera.

  18. Two strategies of lowering surface deformations of internally cooled X-ray optics

    International Nuclear Information System (INIS)

    Oberta, P.; Áč, V.; Hrdý, J.

    2013-01-01

    Internally cooled X-ray optics, like X-ray monochromators and reflecting X-ray mirrors, play a crucial role in defining a beamlines resolution, degree of coherence and flux. A great effort is invested in the development of these optical components. An important aspect of the functionality of high heat load optics is its cooling and its influence on surface deformation. The authors present a study of two different geometrical cooling approaches. Its influence on beam inhomogeneity due to the strain from the manufacturing process is presented. X-ray topographic images and FWHM measurements are presented. FEA simulations of cooling efficiency and surface deformations were performed. The best achieved results are under an enlargement of 0.4μrad of the measured rocking curve

  19. Atomic layer deposition of W{sub x}N/TiN and WN{sub x}C{sub y}/TiN nanolaminates

    Energy Technology Data Exchange (ETDEWEB)

    Elers, K.-E.; Saanila, V.; Li, W.-M.; Soininen, P.J.; Kostamo, J.T.; Haukka, S.; Juhanoja, J.; Besling, W.F.A

    2003-06-23

    Diffusion barrier materials, such as TiN, W{sub x}N, WN{sub x}C{sub y} and their nanolaminates were deposited by atomic layer deposition method. TiN film exhibited excellent properties, but W{sub x}N film exhibited high resistivity despite the low residue concentration. Both TiN and W{sub x}N films suffered from serious incompatibility with the copper metal. WN{sub x}C{sub y} film was deposited by introducing triethylboron as a reducing agent for tungsten. Excellent film properties were obtained, including very good compatibility with the copper metal, evident as strong adhesion and no pitting on the copper surface. Nanolaminate barrier stacks of W{sub x}N/TiN and WN{sub x}C{sub y}/TiN were successfully deposited. TiN deposition did not cause copper pitting when thin WN{sub x}C{sub y} film was deposited underneath.

  20. A study of red blood cell deformability in diabetic retinopathy using optical tweezers

    Science.gov (United States)

    Smart, Thomas J.; Richards, Christopher J.; Bhatnagar, Rhythm; Pavesio, Carlos; Agrawal, Rupesh; Jones, Philip H.

    2015-08-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) in which high blood sugar levels cause swelling, leaking and occlusions in the blood vessels of the retina, often resulting in a loss of sight. The microvascular system requires red blood cells (RBCs) to undergo significant cellular deformation in order to pass through vessels whose diameters are significantly smaller than their own. There is evidence to suggest that DM impairs the deformability of RBCs, and this loss of deformability has been associated with diabetic kidney disease (or nephropathy) - another microvascular complication of DM. However, it remains unclear whether reduced deformability of RBCs correlates with the presence of DR. Here we present an investigation into the deformability of RBCs in patients with diabetic retinopathy using optical tweezers. To extract a value for the deformability of RBCs we use a dual-trap optical tweezers set-up to stretch individual RBCs. RBCs are trapped directly (i.e. without micro-bead handles), so rotate to assume a `side-on' orientation. Video microscopy is used to record the deformation events, and shape analysis software is used to determine parameters such as initial and maximum RBC length, allowing us to calculate the deformability for each RBC. A small decrease in deformability of diabetes cells subject to this stretching protocol is observed when compared to control cells. We also report on initial results on three dimensional imaging of individual RBCs using defocussing microscopy.

  1. Optical Coherence Tomography for Tracking Canvas Deformation

    International Nuclear Information System (INIS)

    Targowski, P.; Gora, M.; Bajraszewski, T.; Szkulmowski, M.; Rouba, B.; Lekawa-Wyslouch, T.; Tyminska-Widmer, L.

    2006-01-01

    Preliminary results of the application of optical coherence tomography (OCT), in particular in its spectral mode (SOCT), to tracking of deformations in paintings on canvas caused by periodical humidity changes are presented. The setup is able to monitor the position of a chosen point at the surface of a painting with micrometre precision, simultaneously in three dimensions, every 100 seconds. This allows recording of deformations associated with crack formation. For the particular painting model examined, it was shown that the surface moves in-plane towards the corner, and bulges outwards (Z-direction) in response to a rise in humidity. Subsequent to the first humidification/drying cycle, translation in the Z-direction is decreased, whilst in-plane translations increase somewhat. It was also shown that the response of the painting on canvas begins immediately on changing the relative humidity in the surroundings.

  2. Design of an optimized adaptive optics system with a photo-controlled deformable mirror

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Bonora, Stefano; Lucianetti, Antonio; Jelínková, H.; Mocek, Tomáš

    2016-01-01

    Roč. 28, č. 13 (2016), s. 1422-1425 ISSN 1041-1135 Institutional support: RVO:68378271 Keywords : adaptive optics * closed loop systems * deformable mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  3. Validation of an optical system to measure acetabular shell deformation in cadavers.

    Science.gov (United States)

    Dold, Philipp; Bone, Martin C; Flohr, Markus; Preuss, Roman; Joyce, Tom J; Deehan, David; Holland, James

    2014-08-01

    Deformation of the acetabular shell at the time of surgery can result in poor performance and early failure of the hip replacement. The study aim was to validate an ATOS III Triple Scan optical measurement system against a co-ordinate measuring machine using in vitro testing and to check repeatability under cadaver laboratory conditions. Two sizes of custom-made acetabular shells were deformed using a uniaxial/two-point loading frame and measured at different loads. Roundness measurements were performed using both the ATOS III Triple Scan optical system and a co-ordinate measuring machine and then compared. The repeatability was also tested by measuring shells pre- and post-insertion in a cadaver laboratory multiple times. The in vitro comparison with the co-ordinate measuring machine demonstrated a maximum difference of 5 µm at the rim and 9 µm at the measurement closest to the pole of the shell. Maximum repeatability was below 1 µm for the co-ordinate measuring machine and 3 µm for the ATOS III Triple Scan optical system. Repeatability was comparable between the pre-insertion (below 2 µm) and post-insertion (below 3 µm) measurements in the cadaver laboratory. This study supports the view that the ATOS III Triple Scan optical system fulfils the necessary requirements to accurately measure shell deformation in cadavers. © IMechE 2014.

  4. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    Science.gov (United States)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  5. Optical dynamic deformation measurements at translucent materials.

    Science.gov (United States)

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  6. Numerical model for the deformation of nucleated cells by optical stretchers

    KAUST Repository

    Sraj, Ihab; Francois, Joshua; Marr, David W M; Eggleton, Charles D.

    2015-01-01

    In this paper, we seek to numerically study the deformation of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational model, the dynamic ray-tracing method, to determine the force distribution

  7. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    Science.gov (United States)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  8. Evaluation of the deformation value of an optical flat under gravity

    International Nuclear Information System (INIS)

    Kondo, Yohan; Bitou, Youichi

    2014-01-01

    The flatness of an optical surface can be evaluated using a Fizeau interferometer. There is strong demand for ensuring that the measurement uncertainty of flatness is of nanometer order over a measurement range of 300 mm or more; however, the measurement range and measurement uncertainty of flatness at the National Metrology Institute of Japan (NMIJ) are 300 mm and 10 nm, respectively. In a Fizeau flatness interferometer, the gap distance between the reference flat and the specimen is measured. To obtain the absolute profile of the specimen, the absolute profile of the reference flat should be measured in advance. The three-flat test is one of the methods used to measure the absolute profile of a reference flat. The reference flat, however, deforms under the force of gravity, and its absolute deformation value cannot be determined by the three-flat test. The deformation value of the reference flat can be corrected by the finite element method (FEM) analysis; however, it is difficult to ensure the validity of the analysis and there is a large uncertainty component of the Fizeau flatness interferometer. To verify the FEM analysis, we developed a scanning deflectometric profiler (SDP) that does not require a reference flat and can directly measure a profile. We calibrated an optical flat using a Fizeau flatness interferometer and the SDP. Finally, the deformation value of the reference flat under the force of gravity was evaluated by comparing the measurement results. (paper)

  9. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  10. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  11. Evaluation of fingerprint deformation using optical coherence tomography

    Science.gov (United States)

    Gutierrez da Costa, Henrique S.; Maxey, Jessica R.; Silva, Luciano; Ellerbee, Audrey K.

    2014-02-01

    Biometric identification systems have important applications to privacy and security. The most widely used of these, print identification, is based on imaging patterns present in the fingers, hands and feet that are formed by the ridges, valleys and pores of the skin. Most modern print sensors acquire images of the finger when pressed against a sensor surface. Unfortunately, this pressure may result in deformations, characterized by changes in the sizes and relative distances of the print patterns, and such changes have been shown to negatively affect the performance of fingerprint identification algorithms. Optical coherence tomography (OCT) is a novel imaging technique that is capable of imaging the subsurface of biological tissue. Hence, OCT may be used to obtain images of subdermal skin structures from which one can extract an internal fingerprint. The internal fingerprint is very similar in structure to the commonly used external fingerprint and is of increasing interest in investigations of identify fraud. We proposed and tested metrics based on measurements calculated from external and internal fingerprints to evaluate the amount of deformation of the skin. Such metrics were used to test hypotheses about the differences of deformation between the internal and external images, variations with the type of finger and location inside the fingerprint.

  12. The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results

    Science.gov (United States)

    Briguglio, Runa; Biasi, Roberto; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Angerer, Gerald; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2014-07-01

    The Deformable Secondary Mirror (DSM) for the VLT ended the stand-alone electro-mechanical and optical acceptance process, entering the test phase as part of the Adaptive Optics Facility (AOF) at the ESO Headquarter (Garching). The VLT-DSM currently represents the most advanced already-built large-format deformable mirror with its 1170 voice-coil actuators and its internal metrology based on co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the final results of the electro-mechanical and optical characterization of the DSM executed in a collaborative effort by the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.), INAF-Osservatorio Astrofisico di Arcetri and ESO. The electro-mechanical acceptance tests have been performed in the company premises and their main purpose was the dynamical characterization of the internal control loop response and the calibration of the system data that are needed for its optimization. The optical acceptance tests have been performed at ESO (Garching) using the ASSIST optical test facility. The main purpose of the tests are the characterization of the optical shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions.

  13. Nano-laminate vs. direct deposition of high permittivity gadolinium scandate on silicon by high pressure sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Feijoo, P.C., E-mail: pedronska@fis.ucm.es [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Pampillón, M.A.; San Andrés, E. [Dpto. Física Aplicada III (Electricidad y Electrónica), Universidad Complutense de Madrid, Fac. de CC. Físicas. Av/Complutense S/N, E-28040 Madrid (Spain); Fierro, J.L.G. [Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, C/Marie Curie 2, E-28049 Cantoblanco (Spain)

    2015-10-30

    In this work we use the high pressure sputtering technique to deposit the high permittivity dielectric gadolinium scandate on silicon substrates. This nonconventional deposition technique prevents substrate damage and allows for growth of ternary compounds with controlled composition. Two different approaches were assessed: the first one consists of depositing the material directly from a stoichiometric GdScO{sub 3} target; in the second one, we anneal a nano-laminate of < 0.5 nm thick Gd{sub 2}O{sub 3} and Sc{sub 2}O{sub 3} films in order to control the composition of the scandate. Metal–insulator–semiconductor capacitors were fabricated with platinum gates for electrical characterization. Accordingly, we grew a Gd-rich Gd{sub 2−x}Sc{sub x}O{sub 3} film that, in spite of higher leakage currents, presents a better effective relative permittivity of 21 and lower density of defects. - Highlights: • GdScO is deposited on Si as a high permittivity dielectric by two procedures. • Films sputtered from GdScO{sub 3} target are Sc-rich and present thick interface SiO{sub x}. • Gd-rich GdScO is obtained from a nano-laminate sputtered from Sc{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. • Gd{sub 1.8}Sc{sub 0.2}O{sub 3} shows good effective permittivity and electrical properties.

  14. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    International Nuclear Information System (INIS)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El

    2008-01-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  15. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    Directory of Open Access Journals (Sweden)

    Schanila Nawaz

    Full Text Available The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.

  16. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    International Nuclear Information System (INIS)

    Choi, Bum Ho; Lee, Jong Ho

    2014-01-01

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10 −6 g/(m 2 day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are free from intermixed interface defects effectively block water vapor permeation into active layer

  17. Theoretical analysis for the optical deformation of emulsion droplets.

    Science.gov (United States)

    Tapp, David; Taylor, Jonathan M; Lubansky, Alex S; Bain, Colin D; Chakrabarti, Buddhapriya

    2014-02-24

    We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.

  18. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    Science.gov (United States)

    Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.

    2014-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  19. Application of optical deformation analysis system on wedge splitting test and its inverse analysis

    DEFF Research Database (Denmark)

    Skocek, Jan; Stang, Henrik

    2010-01-01

    . Results of the inverse analysis are compared with traditional inverse analysis based on clip gauge data. Then the optically measured crack profile and crack tip position are compared with predictions done by the non-linear hinge model and a finite element analysis. It is shown that the inverse analysis...... based on the optically measured data can provide material parameters of the fictitious crack model matching favorably those obtained by classical inverse analysis based on the clip gauge data. Further advantages of using of the optical deformation analysis lie in identification of such effects...

  20. The Impact of Ocular Pressures, Material Properties and Geometry on Optic Nerve Head Deformation

    Science.gov (United States)

    Feola, Andrew J.; Myers, Jerry G.; Raykin, Julia; Nelson, Emily S.; Samuels, Brian C.; Ethier C. Ross

    2017-01-01

    Alteration in intracranial pressure (ICP) has been associated with various diseases that cause visual impairment, including glaucoma, idiopathic intracranial hypertension and Visual Impairment and Intracranial Pressure (VIIP) syndrome. However, how changes in ICP lead to vision loss is unclear, although it is hypothesized to involve deformations of the tissues in the optic nerve head (ONH). Recently, understanding the effect of ICP alterations on ocular tissues has become a major concern for NASA, where 42 of astronauts that partake in long duration space missions suffer from VIIP syndrome. Astronauts with VIIP syndrome suffer from visual impairment and changes in ocular anatomy that persist after returning to earth (1). It is hypothesized that the cephalad fluid shift that occurs upon entering microgravity increases ICP, which leads to an altered biomechanical environment in the posterior globe and optic nerve sheath, and subsequently VIIP syndrome. Our goal was to develop a finite element (FE) model to simulate the acute effects of elevated ICP on the posterior eye. Here, we simulated how inter-individual differences affect the deformation of ONH tissues. Further, we examined how several different geometries influenced deformations when exposed to elevated ICP.

  1. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-01-01

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  2. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  3. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

    International Nuclear Information System (INIS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin; She, Jun-Kuan

    2014-01-01

    Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements. (paper)

  4. Dependence of laser radiation intensity on the elastic deformation of a revolving optical disk with a reflective coating

    Science.gov (United States)

    Gladyshev, V. O.; Portnov, D. I.

    2016-12-01

    The physical mechanism of alteration of intensity of linearly polarized monochromatic electromagnetic radiation with λ = 630 nm in a revolving dielectric disk with a mirror coating is examined. The effect is induced by elastic deformation due to the revolution and by thermoelastic deformation of the optically transparent disk. These deformations result in birefringence, the polarization plane rotation, and a 30-40% change in the intensity of reflected radiation.

  5. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  6. Skin surface and sub-surface strain and deformation imaging using optical coherence tomography and digital image correlation

    Science.gov (United States)

    Hu, X.; Maiti, R.; Liu, X.; Gerhardt, L. C.; Lee, Z. S.; Byers, R.; Franklin, S. E.; Lewis, R.; Matcher, S. J.; Carré, M. J.

    2016-03-01

    Bio-mechanical properties of the human skin deformed by external forces at difference skin/material interfaces attract much attention in medical research. For instance, such properties are important design factors when one designs a healthcare device, i.e., the device might be applied directly at skin/device interfaces. In this paper, we investigated the bio-mechanical properties, i.e., surface strain, morphological changes of the skin layers, etc., of the human finger-pad and forearm skin as a function of applied pressure by utilizing two non-invasive techniques, i.e., optical coherence tomography (OCT) and digital image correlation (DIC). Skin deformation results of the human finger-pad and forearm skin were obtained while pressed against a transparent optical glass plate under the action of 0.5-24 N force and stretching naturally from 90° flexion to 180° full extension respectively. The obtained OCT images showed the deformation results beneath the skin surface, however, DIC images gave overall information of strain at the surface.

  7. Fibre optical measuring network based on quasi-distributed amplitude sensors for detecting deformation loads

    International Nuclear Information System (INIS)

    Kul'chin, Yurii N; Kolchinskiy, V A; Kamenev, O T; Petrov, Yu S

    2013-01-01

    A new design of a sensitive element for a fibre optical sensor of deformation loads is proposed. A distributed fibre optical measuring network, aimed at determining both the load application point and the load mass, has been developed based on these elements. It is shown that neural network methods of data processing make it possible to combine quasi-distributed amplitude sensors of different types into a unified network. The results of the experimental study of a breadboard of a fibre optical measuring network are reported, which demonstrate successful reconstruction of the trajectory of a moving object (load) with a spatial resolution of 8 cm, as well as the load mass in the range of 1 – 10 kg with a sensitivity of 0.043 kg -1 . (laser optics 2012)

  8. Measuring structure deformations of a composite glider by optical means with on-ground and in-flight testing

    Science.gov (United States)

    Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf

    2016-12-01

    In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.

  9. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    Science.gov (United States)

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  10. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    Science.gov (United States)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  11. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    Science.gov (United States)

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  12. Optical zoom lens module using MEMS deformable mirrors for portable device

    Science.gov (United States)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  13. Non-invasive imaging of zebrafish with spinal deformities using optical coherence tomography: a preliminary study

    Science.gov (United States)

    Bernstein, Liane; Beaudette, Kathy; Patten, Kessen; Beaulieu-Ouellet, Émilie; Strupler, Mathias; Moldovan, Florina; Boudoux, Caroline

    2013-03-01

    A zebrafish model has recently been introduced to study various genetic mutations that could lead to spinal deformities such as scoliosis. However, current imaging techniques make it difficult to perform longitudinal studies of this condition in zebrafish, especially in the early stages of development. The goal of this project is to determine whether optical coherence tomography (OCT) is a viable non-invasive method to image zebrafish exhibiting spinal deformities. Images of both live and fixed malformed zebrafish (5 to 21 days postfertilization) as well as wild-type fish (5 to 29 days postfertilization) were acquired non-invasively using a commercial SD-OCT system, with a laser source centered at 930nm (λ=100nm), permitting axial and lateral resolutions of 7 and 8μm respectively. Using two-dimensional images and three-dimensional reconstructions, it was possible to identify the malformed notochord as well as deformities in other major organs at different stages of formation. Visualization of the notochord was facilitated with the development of a segmentation algorithm. OCT images were compared to HE histological sections and images obtained by calcein staining. Because of the possibility of performing longitudinal studies on a same fish and reducing image processing time as compared with staining techniques and histology, the use of OCT could facilitate phenotypic characterization in studying genetic factors leading to spinal deformities in zebrafish and could eventually contribute to the identification of the genetic causes of spinal deformities such as scoliosis.

  14. Oxidation behaviour of Ti2AIN films composed mainly of nanolaminated MAX phase.

    Science.gov (United States)

    Wang, Q M; Garkas, W; Renteria, A Flores; Leyens, C; Kim, K H

    2011-10-01

    In this paper, we reported the oxidation behaviour of Ti2AIN films on polycrystalline Al2O3 substrates. The Ti2AIN films composed mainly of nanolaminated MAX phase was obtained by first depositing Ti-Al-N films using reactive sputtering of two elemental Ti and Al targets in Ar/N2 atmosphere and subsequent vacuum annealing at 800 degrees C for 1 h. The Ti2AIN films exhibited excellent oxidation resistance and thermal stability at 600-900 degrees C in air. Very low mass gain was observed. At low temperature (600 degrees C), no oxide crystals were observed on film surface. Blade-like Theta-Al2O3 fine crystals formed on film surfaces at 700-800 degrees C. At high temperature (900 degrees C), firstly Theta-Al2O3 formed on film surface and then transformed into alpha-Al2O3. At 700-900 degrees C, a continuous Al2O3 layer formed on Ti2AIN films surface, acting as diffusion barrier preventing further oxidation attack. The mechanism of the excellent oxidation resistance of Ti2AIN films was discussed based on the experimental results.

  15. Zernike polynomial based Rayleigh-Ritz model of a piezoelectric unimorph deformable mirror

    CSIR Research Space (South Africa)

    Long, CS

    2012-04-01

    Full Text Available Piezoelectric bimorph- or unimorph-type deformable mirrors are commonly used in adaptive optics to correct for time-dependent phase aberrations. In the optics community, the surface deformations that deformable mirrors are required to achieve...

  16. Design of a self-calibration high precision micro-angle deformation optical monitoring scheme

    Science.gov (United States)

    Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da

    2018-03-01

    In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.

  17. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Science.gov (United States)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  18. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  19. Integrating optical, mechanical, and test software (with applications to freeform optics)

    Science.gov (United States)

    Genberg, Victor; Michels, Gregory; Myer, Brian

    2017-10-01

    Optical systems must perform under environmental conditions including thermal and mechanical loading. To predict the performance in the field, integrated analysis combining optical and mechanical software is required. Freeform and conformal optics offer many new opportunities for optical design. The unconventional geometries can lead to unconventional, and therefore unintuitive, mechanical behavior. Finite element (FE) analysis offers the ability to predict the deformations of freeform optics under various environments and load conditions. To understand the impact on optical performance, the deformations must be brought into optical analysis codes. This paper discusses several issues related to the integrated optomechanical analysis of freeform optics.

  20. High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography

    DEFF Research Database (Denmark)

    Männer, J.; Thrane, Lars; Norozi, K.

    2008-01-01

    The embryonic heart tube consists of an outer myocardial tube, a middle layer of cardiac jelly, and an inner endocardial tube. It is said that tubular hearts pump the blood by peristaltoid contractions. The traditional concept of cardiac peristalsis sees the cyclic deformations of pulsating heart...... tubes as concentric narrowing and widening of tubes of circular cross-section. We have visualized the cross-sectional deformations of contracting embryonic hearts in chick embryos (HH-stages 9-17) using real-time high-resolution optical coherence tomography. Cardiac contractions are detected from HH...... of the endocardial tube is the consequence of an uneven distribution of the cardiac jelly. Our data show that the cyclic deformations of pulsating embryonic heart tubes run other than originally thought. There is evidence that heart tubes of elliptic cross-section might pump blood with a higher mechanical efficiency...

  1. Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases

    KAUST Repository

    Kanoun, Mohammed

    2012-01-01

    In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized gradient approximation and the density functional theory approaches, to explore the existence of a steric effect on the M site in these compounds. The elastic properties are also reported in order to assess the mechanical stability. The substitution of oxygen for carbon in Ti 2 SnC M n +1 AX n, forming Ti 2 SnC 1- x O x, is examined next, where we simulated the effect of oxygen incorporation on mechanical and electronic properties using projector augmented wave method. We show that oxygen has interesting effects on both of elastic and electronic properties, that the bulk modulus decreases when oxygen concentration increases. The bonding in Ti 2 SnC 1- x O x has a tendency to a covalent-ionic nature with the presence of metallic character. © 2012 Woodhead Publishing Limited.

  2. Damage Tolerance and Mechanics of Interfaces in Nanostructured Metals

    Science.gov (United States)

    Foley, Daniel J.

    The concept of interface driven properties in crystalline metals has been one of the most intensely discussed topics in materials science for decades. Since the 1980s researchers have been exploring the concept of grain boundary engineering as route for tuning properties such as fracture toughness and irradiation resistance. This is especially true in ultra-fine grained and nanocrystalline materials where grain boundary mediated properties become dominant. More recently, materials composed of hierarchical nanostructures, such as amorphous-crystalline nanolaminates, have attracted considerable attention due to their favorable properties, ease of manufacture and highly tunable microstructure. While both grain boundary engineering and hierarchical nanostructures have shown promise there are still questions remaining regarding the role of specific attributes of the microstructure (such as grain boundaries, grain/layer size and inter/intralayer morphology) in determining material properties. This thesis attempts to address these questions by using atomistic simulations to perform deformation and damage loading studies on a series of nanolaminate and bicrystalline structures. During the course of this thesis the roles of layer thickness, interlayer structure and interlayer chemistry on the mechanical properties of Ni-NiX amorphous-crystalline nanolaminates were explored using atomistic simulations. This thesis found that layer thickness/thickness ratio and amorphous layer chemistry play a crucial role in yield strength and Young's modulus. Analysis of the deformation mechanisms at the atomic scale revealed that structures containing single crystalline, crystalline layers undergo plastic deformation when shear transformation zones form in the amorphous layer and impinge on the amorphous-crystalline interface, leading to dislocation emission. However, structures containing nanocrystalline, crystalline layers (both equiaxed and columnar nanocrystalline) undergo plastic

  3. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  4. Monitoring of pipeline deformations using optical fiber sensors based on Bragg lattices; Monitoracao de deformacoes em dutos utilizando sensores a fibra optica com base em redes de Bragg

    Energy Technology Data Exchange (ETDEWEB)

    Moszkowica, Viktor Nigri [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)]. E-mail: vnigri@bol.com.br

    2002-06-01

    In the petroleum sector there is a growing need for the use of pipelines as well as for their monitoring. A way to avoid leaks that can cause great damage to the environment is by the monitoring of deformations. In case failures can not be avoided through operational procedures, the monitoring of deformations can identify the initial moment and location of the leak, allowing for quick action on the part of the cleaning and depollution teams. Also important is the monitoring of slopes and soil movements. The same thing applies to production and transfer submarine pipelines subject to complex dynamic loadings that combine internal and external pressure, torsion, axial stress and, the most common of all, flexion loading. For this type of application, optical fiber sensors present a number of interesting features. Multiplexing, remote operation and long distance distribution of sensors are characteristics that attract their use in deformation monitoring systems. Presented herein are the research results of works that had the objective of developing deformation monitoring techniques in pipelines using optical fiber sensors based on Bragg grating. The technical feasibility of this technology is demonstrated through laboratorial tests. Also discussed herein are methods for field implementation of sensors, optical signal multiplexing techniques and potential advantages of applying this technology. (author)

  5. Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test

    Science.gov (United States)

    Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance

    2011-01-01

    A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included

  6. Calculation of the Huang-Rhys parameter in spherical quantum dots: the optical deformation potential effect

    International Nuclear Information System (INIS)

    Hamma, M; Miranda, R P; Vasilevskiy, M I; Zorkani, I

    2007-01-01

    An accurate calculation of the exciton-phonon interaction matrix elements and Huang-Rhys parameter for nearly spherical nanocrystals (NCs) of polar semiconductor materials is presented. The theoretical approach is based on a continuum lattice dynamics model and the effective mass approximation for electronic states in the NCs. A strong confinement regime is considered for both excitons and optical phonons, taking into account both the Froehlich-type and optical deformation potential (ODP) mechanisms of the exciton-phonon interaction. The effects of exchange electron-hole interaction and possible hexagonal crystal structure of the underlying material are also taken into account. The theory is applied to CdSe and InP quantum dots. It is shown that the ODP mechanism, almost unimportant for CdSe, dominates the exciton-phonon coupling in small InP dots. The effect of the non-diagonal interaction, not included in the Huang-Rhys parameter, is briefly discussed

  7. Rheo-optical two-dimensional (2D) near-infrared (NIR) correlation spectroscopy for probing strain-induced molecular chain deformation of annealed and quenched Nylon 6 films

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-04-01

    A rheo-optical characterization technique based on the combination of a near-infrared (NIR) spectrometer and a tensile testing machine is presented here. In the rheo-optical NIR spectroscopy, tensile deformations are applied to polymers to induce displacement of ordered or disordered molecular chains. The molecular-level variation of the sample occurring on short time scales is readily captured as a form of strain-dependent NIR spectra by taking an advantage of an acousto-optic tunable filter (AOTF) equipped with the NIR spectrometer. In addition, the utilization of NIR with much less intense absorption makes it possible to measure transmittance spectra of relatively thick samples which are often required for conventional tensile testing. An illustrative example of the rheo-optical technique is given with annealed and quenched Nylon 6 samples to show how this technique can be utilized to derive more penetrating insight even from the seemingly simple polymers. The analysis of the sets of strain-dependent NIR spectra suggests the presence of polymer structures undergoing different variations during the tensile elongation. For instance, the tensile deformation of the semi-crystalline Nylon 6 involves a separate step of elongation of the rubbery amorphous chains and subsequent disintegration of the rigid crystalline structure. Excess amount of crystalline phase in Nylon 6, however, results in the retardation of the elastic deformation mainly achieved by the amorphous structure, which eventually leads to the simultaneous orientation of both amorphous and crystalline structures.

  8. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  9. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics.

    Science.gov (United States)

    Morzinski, Katie; Macintosh, Bruce; Gavel, Donald; Dillon, Daren

    2009-03-30

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-microm-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r(0) =10-15 cm. The MEMS when solitary suffered saturation approximately 4% of the time. Simulating a woofer DM with approximately 5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

  10. Different Rols of Modified Organoclay in Deformation Mechanism Control of Polymeric Matrices

    Directory of Open Access Journals (Sweden)

    Babak Akbari

    2014-04-01

    Full Text Available The effect of organically modified clay on the structure and deformation mechanism of polymeric matrices was investigated. For this purpose, the role of organoclay in deformation control of polymeric matrices, with different deformation mechanisms, has been studied methodically in order to determine a relationship between the structure and deformation mechanisms. In this respect polypropylene and polystyrene composites systems were designed using montmorillonite through melt intercalation technique using a twin, co-rotating extruder with starve feeding system. Also an epoxy was employed to design a nanocomposite system prepared by in-situ polymerization technique. The structure and deformation mechanism of nanocomposites were investigated using appropriate techniques. X-Ray diffraction and transmission electron microscopy were used to explore the structure of various systems while, the reflection and transmission optical microscopy were used in order to study their corresponding deformation mechanisms. The bulk polymer was also studied for its deformation mechanism by reflection optical microscopy and the notch tip of the samples were examined by transmission optical microscopy. The results of experiments showed that organoclays acted as initiator sites for shear yielding mechanism as the dominant deformation mechanism in epoxies. It may be noted that, these particles may act as initiator sites for crazing, the dominant deformation mechanism of polystyrene, and alter the mechanism from local to massive. In polypropylene systems, which may exhibit both shear yielding and crazing organoclays can facilitate or postpone both mechanisms in different conditions, related to PP morphology and other conditions.

  11. Viscoelastic deformation of lipid bilayer vesicles†

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.

    2015-01-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612

  12. Enzyme-assisted growth of nacreous CaCO3/polymer hybrid nanolaminates via the formation of mineral bridges

    Science.gov (United States)

    Yeom, Bongjun; Char, Kookheon

    2016-06-01

    Laminated nanostructures in nacre have been adopted as models in the fabrication of strong, tough synthetic nanocomposites. However, the utilization of CaCO3 biominerals in these composites is limited by the complexity of the synthesis method for nanosized biominerals. In this study, we use the enzymatic reaction of urease to generate a nanoscale CaCO3 thin film to prepare CaCO3/polymer hybrid nanolaminates. Additional layers of CaCO3 thin film are consecutively grown over the base CaCO3 layer with the intercalation of organic layers. The morphology and crystallinity of the added CaCO3 layers depend strongly on the thickness of the organic layer coated on the underlying CaCO3 layer. When the organic layer is less than 20 nm thick, the amorphous CaCO3 layer is spontaneously transformed into crystalline calcite layer during the growth process. We also observe crystalline continuity between adjacent CaCO3 layers through interconnecting mineral bridges. The formation of these mineral bridges is crucial to the epitaxial growth of CaCO3 layers, similar to the formation of natural nacre.

  13. Three-dimensional deformation of orthodontic brackets

    OpenAIRE

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire?bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are c...

  14. Control Demonstration of a Thin Deformable In-Plane Actuated Mirror

    National Research Council Canada - National Science Library

    Peterson, Gina A

    2006-01-01

    .... The primary goal of this research is to demonstrate that an in-plane actuated membrane-like deformable optical mirror can be controlled to optical wavelength tolerances in a closed-loop system...

  15. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    Science.gov (United States)

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  16. Surface deformation and friction characteristic of nano scratch at ductile-removal regime for optical glass BK7.

    Science.gov (United States)

    Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei

    2016-08-20

    Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.

  17. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Science.gov (United States)

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  18. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  19. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  20. Specification of optical components using Wigner distribution function

    International Nuclear Information System (INIS)

    Xu Jiancheng; Li Haibo; Xu Qiao; Chai Liqun; Fan Changjiang

    2010-01-01

    In order to characterize and specify small-scale local wavefront deformation of optical component, a method based on Wigner distribution function has been proposed, which can describe wavefront deformation in spatial and spatial frequency domain. The relationship between Wigner distribution function and power spectral density is analyzed and thus the specification of small-scale local wavefront deformation is obtained by Wigner distribution function. Simulation and experiment demonstrate the effectiveness of the proposed method. The proposed method can not only identify whether the optical component meets the requirement of inertial confinement fusion (ICF), but also determine t he location where small-scale wavefront deformation is unqualified. Thus it provides an effective guide to the revision of unqualified optical components. (authors)

  1. Optimization of electrode geometry and piezoelectric layer thickness of a deformable mirror

    Directory of Open Access Journals (Sweden)

    Nováková Kateřina

    2013-05-01

    Full Text Available Deformable mirrors are the most commonly used wavefront correctors in adaptive optics systems. Nowadays, many applications of adaptive optics to astronomical telescopes, high power laser systems, and similar fast response optical devices require large diameter deformable mirrors with a fast response time and high actuator stroke. In order to satisfy such requirements, deformable mirrors based on piezoelectric layer composite structures have become a subject of intense scientific research during last two decades. In this paper, we present an optimization of several geometric parameters of a deformable mirror that consists of a nickel reflective layer deposited on top of a thin lead zirconate titanate (PZT piezoelectric disk. Honeycomb structure of gold electrodes is deposited on the bottom of the PZT layer. The analysis of the optimal thickness ratio between the PZT and nickel layers is performed to get the maximum actuator stroke using the finite element method. The effect of inter-electrode distance on the actuator stroke and influence function is investigated. Applicability and manufacturing issues are discussed.

  2. Distributed sensing signal analysis of deformable plate/membrane mirrors

    Science.gov (United States)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2017-11-01

    Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.

  3. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng [Department of Physics, Institute of Astrophysics, and Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Liu, Guo-Chin [Department of Physics, Tamkang University, 251-37 Tamsui, New Taipei City, Taiwan (China); Molnar, Sandor M. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Yu-Yen, E-mail: ywliao@asiaa.sinica.edu.tw, E-mail: jhpw@phys.ntu.edu.tw [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  4. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    International Nuclear Information System (INIS)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng; Liu, Guo-Chin; Molnar, Sandor M.; Chang, Yu-Yen

    2013-01-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  5. Platform Deformation Phase Correction for the AMiBA-13 Coplanar Interferometer

    Science.gov (United States)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Proty Wu, Jiun-Huei; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Cheng, Tai-An; Fu, Szu-Yuan; Liu, Guo-Chin; Molnar, Sandor M.; Umetsu, Keiichi; Wang, Fu-Cheng; Chang, Yu-Yen; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter

    2013-05-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  6. Opto-mechanical design of optical window for aero-optics effect simulation instruments

    Science.gov (United States)

    Wang, Guo-ming; Dong, Dengfeng; Zhou, Weihu; Ming, Xing; Zhang, Yan

    2016-10-01

    A complete theory is established for opto-mechanical systems design of the window in this paper, which can make the design more rigorous .There are three steps about the design. First, the universal model of aerodynamic environment is established based on the theory of Computational Fluid Dynamics, and the pneumatic pressure distribution and temperature data of optical window surface is obtained when aircraft flies in 5-30km altitude, 0.5-3Ma speed and 0-30°angle of attack. The temperature and pressure distribution values for the maximum constraint is selected as the initial value of external conditions on the optical window surface. Then, the optical window and mechanical structure are designed, which is also divided into two parts: First, mechanical structure which meet requirements of the security and tightness is designed. Finally, rigorous analysis and evaluation are given about the structure of optics and mechanics we have designed. There are two parts to be analyzed. First, the Fluid-Solid-Heat Coupled Model is given based on finite element analysis. And the deformation of the glass and structure can be obtained by the model, which can assess the feasibility of the designed optical windows and ancillary structure; Second, the new optical surface is fitted by Zernike polynomials according to the deformation of the surface of the optical window, which can evaluate imaging quality impact of spectral camera by the deformation of window.

  7. Deformable mirror study. Final report, 21 July 1980-15 May 1981

    International Nuclear Information System (INIS)

    Budgor, A.B.

    1981-03-01

    The beam quality of a baseline system similar to the Helios system at Los Alamos Scientific Laboratory was analyzed with a two-dimensional beam train code based on a Fresnel propagator. The other components of the code include: (a) characterization of phase aberrations either in terms of Zernike polynomials synthesized directly from optical component interferograms when available, or by constructing a random wave front with specified statistics; (b) non-diffractive linear amplification via the Frantz-Nodvik equations; and (c) correction of accumulated phase aberration with continuous deformable mirrors whose surface is modeled by bicubic splines through the actuator points. The technical contents of this report will be presented in 4 sections. Section II will describe the physical optics of beam train propagation. A heuristic physical argument defining the zeroth order efficacy of adaptive optics to correct phase aberration is then derived. The results of applying the diffraction computer code to one beam line of the Helios laser system are described. The wave length scalability of deformable mirrors and efficacy of deformable mirror adaptive optics to correct phase aberration at UV wave lengths are then described

  8. Quantifying 3D Deformation in the 14 November 2016 MW 7.8 Kaikoura, New Zealand Earthquake Using COSI-Corr Optical Satellite Image Correlation

    Science.gov (United States)

    Zinke, R. W.; Hollingsworth, J.; Dolan, J. F.; Van Dissen, R. J.

    2017-12-01

    We determined the 3D surface deformation field for 14 November 2016 MW 7.8 Kaikoura, New Zealand earthquake using a novel version of COSI-Corr optical image correlation software on 20 sets of WorldView satellite images. Our results provide high-precision (better than 1 m) measurements of horizontal and vertical displacement resulting from this event, over areas of 100's of square km. As such, our data set "bridges the gap" between the numerous, high-quality field and lidar-based measurements collected in the very near-field vicinity of the fault (but which may not account for far-field, distributed deformation), and other space-borne techniques such as InSAR that survey a wide spatial aperture but typically decorrelate near the fault. Our results thus provide a clear picture of how surface deformation was manifested in the Kaikoura rupture at a variety of spatial scales, and can aid in understanding how near-fault field measurements reflect broader patterns of strain release in earthquakes, and help us develop a better understanding of the controls on the 3D distribution of near-surface deformation in large earthquakes.

  9. Red blood cell-deformability measurement: review of techniques.

    Science.gov (United States)

    Musielak, M

    2009-01-01

    Cell-deformability characterization involves general measurement of highly complex relationships between cell biology and physical forces to which the cell is subjected. The review takes account of the modern technical solutions simulating the action of the force applied to the red blood cell in macro- and microcirculation. Diffraction ektacytometers and rheoscopes measure the mean deformability value for the total red blood cell population investigated and the deformation distribution index of individual cells, respectively. Deformation assays of a whole single cell are possible by means of optical tweezers. The single cell-measuring setups for micropipette aspiration and atomic force microscopy allow conducting a selective investigation of deformation parameters (e.g., cytoplasm viscosity, viscoelastic membrane properties). The distinction between instrument sensitivity to various RBC-rheological features as well as the influence of temperature on measurement are discussed. The reports quoted confront fascinating possibilities of the techniques with their medical applications since the RBC-deformability has the key position in the etiology of a wide range of conditions.

  10. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  11. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  12. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  13. Deformation potentials in AlGaN and InGaN alloys and their impact on optical polarization properties of nitride quantum wells

    DEFF Research Database (Denmark)

    Łepkowski, S. P.; Gorczyca, I.; Stefańska-Skrobas, K.

    2013-01-01

    The deformation potentials acz−D1, act−D2, D3, D4, and D5 are determined for random AlGaN and InGaN alloys using electronic band structure calculations based on the density functional theory. A sublinear composition dependence is obtained for acz−D1 and D3 in AlGaN, and D3 in InGaN, whereas...... superlinear behavior on composition is found foract−D2, D4, and D5 in AlGaN, and act−D2and D5 in InGaN. The optical polarization properties of nitride quantum wells are very well described by the k·p method when the obtained deformation potentials are included. In m-plane AlGaN/AlN and InGaN/GaN quantum wells...

  14. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  15. Analysis and experimental investigation for collimator reflective mirror surface deformation adjustment

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chan

    2017-01-01

    Full Text Available Collimator design is essential for meeting the requirements of high-precision telescopes. The collimator diameter should be larger than that of the target for alignment. Special supporting structures are required to reduce the gravitational deformation and control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors (M1. A ZERODURÂŽ mirror 620 mm in diameter for a collimator was analyzed using the finite element method to obtain the deformation induced by the supporting structures and adjustment mechanism. Zernike polynomials were also adopted to fit the optical surface and separate corresponding aberrations. The computed and measured wavefront aberration configurations for the collimator M1 were obtained complementally. The wavefront aberrations were adjusted using fine adjustment screws using 3D optical path differences map of the mirror surface. Through studies using different boundary conditions and inner ring support positions, it is concluded that the optical performance was excellent under a strong enough supporter. The best adjustment position was attained and applied to the actual collimator M1 to prove the correctness of the simulation results.

  16. Design of compressors for FEL pulses using deformable gratings

    Science.gov (United States)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  17. Respiratory monitoring system based on fiber optic macro bending

    Science.gov (United States)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  18. Control of thermal deformation in dielectric mirrors using mechanical design and atomic layer deposition.

    Science.gov (United States)

    Gabriel, Nicholas T; Kim, Sangho S; Talghader, Joseph J

    2009-07-01

    A mechanical design technique for optical coatings that simultaneously controls thermal deformation and optical reflectivity is reported. The method requires measurement of the refractive index and thermal stress of single films prior to the design. Atomic layer deposition was used for deposition because of the high repeatability of the film constants. An Al2O3/HfO2 distributed Bragg reflector was deposited with a predicted peak reflectivity of 87.9% at 542.4 nm and predicted edge deformation of -360 nm/K on a 10 cm silicon substrate. The measured peak reflectivity was 85.7% at 541.7 nm with an edge deformation of -346 nm/K.

  19. Optical design of the adaptive optics laser guide star system

    Energy Technology Data Exchange (ETDEWEB)

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  20. The in-plane deformation of a tire carcass: analysis and measurement

    OpenAIRE

    Xiong, Yi; Tuononen, Ari

    2015-01-01

    The deformation of parts of a tire is the direct result of tire–road interactions, and therefore is of great interest in tire sensor development. This case study focuses on the analysis of the deformation of the tire carcass and investigates its potential for the estimation of the in-plane tire force. The deformation of the tire carcass due to applied steady-state in-plane forces is first analyzed with the flexible ring model and then validated through optical tire sensor measurements. Couple...

  1. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    Science.gov (United States)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  2. Optical measurement of thermal deformation of multilayer optics under synchrotron radiation

    International Nuclear Information System (INIS)

    Revesz, P.; Kazimirov, A.; Bazarov, I.

    2007-01-01

    An in situ optical technique to visualize surface distortions of the first monochromator crystal under synchrotron beam heat loading has been developed and applied to measure surface profiles of multilayer optics under white wiggler beam at the CHESS A2 beamline. Two identical multilayer structures deposited on Si and SiC substrates have been tested. Comparison of the reconstructed 3D heatbump profiles showed the surface distortions of the multilayer on SiC a factor of two smaller than the same multilayer on a Si substrate

  3. Optical measurement of thermal deformation of multilayer optics under synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, P. [Cornell University, CHESS, Ithaca, NY 14850 (United States)], E-mail: pr20@cornell.edu; Kazimirov, A.; Bazarov, I. [Cornell University, CHESS, Ithaca, NY 14850 (United States)

    2007-11-11

    An in situ optical technique to visualize surface distortions of the first monochromator crystal under synchrotron beam heat loading has been developed and applied to measure surface profiles of multilayer optics under white wiggler beam at the CHESS A2 beamline. Two identical multilayer structures deposited on Si and SiC substrates have been tested. Comparison of the reconstructed 3D heatbump profiles showed the surface distortions of the multilayer on SiC a factor of two smaller than the same multilayer on a Si substrate.

  4. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications

    International Nuclear Information System (INIS)

    Choi, Jin-Hwan; Kim, Young-Min; Park, Young-Wook; Park, Tae-Hyun; Jeong, Jin-Wook; Choi, Hyun-Ju; Song, Eun-Ho; Ju, Byeong-Kwon; Lee, Jin-Woo; Kim, Cheol-Ho

    2010-01-01

    The present study demonstrates a flexible gas-diffusion barrier film, containing an SiO 2 /Al 2 O 3 nanolaminate on a plastic substrate. Highly uniform and conformal coatings can be made by alternating the exposure of a flexible polyethersulfone surface to vapors of SiO 2 and Al 2 O 3 , at nanoscale thickness cycles via RF-magnetron sputtering deposition. The calcium degradation test indicates that 24 cycles of a 10/10 nm inorganic bilayer, top-coated by UV-cured resin, greatly enhance the barrier performance, with a permeation rate of 3.79 x 10 -5 g m -2 day -1 based on the change in the ohmic behavior of the calcium sensor at 20 deg. C and 50% relative humidity. Also, the permeation rate for 30 cycles of an 8/8 nm inorganic bilayer coated with UV resin was beyond the limited measurable range of the Ca test at 60 deg. C and 95% relative humidity. It has been found that such laminate films can effectively suppress the void defects of a single inorganic layer, and are significantly less sensitive against moisture permeation. This nanostructure, fabricated by an RF-sputtering process at room temperature, is verified as being useful for highly water-sensitive organic electronics fabricated on plastic substrates.

  5. Advanced Actuator Concepts for High Precision Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop a variety of single crystal actuators for adaptive optics deformable mirrors. Single crystal piezoelectric actuators are...

  6. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  7. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  8. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  9. A Study on Distribution Measurement and Mechanism of Deformation due to Water Loss of Overburden Layer in Vertical Shaft

    Directory of Open Access Journals (Sweden)

    Chunde Piao

    2015-01-01

    Full Text Available Based on FBG fiber Bragg grating technology and BOTDA distributed optical fiber sensing technology, this study uses fine sand to simulate overburden layer in vertical shaft model equipment. It studies the placing technique and test method for optical fiber sensors in the overburden layer, combined with MODFLOW software to simulate the change of the water head value when the overburden layer is losing water, and obtains the deformation features of overburden layer. The results show, at the beginning of water loss, the vertical deformation increases due to larger hydraulic pressure drop, while the deformation decreases gradually and tends to be stable with the hydraulic pressure drop reducing. The circumferential deformation is closely related to such factors as the distance between each drainage outlet, the variations of water head value, and the method of drainage. The monitoring result based on optical fiber sensing technology is consistent with the characteristics of water loss in overburden layer simulated by MODFLOW software, which shows that the optical fiber sensing technology applied to monitor shaft overburden layer is feasible.

  10. Deformation behaviour of {gamma}+{alpha}{sub 2} Ti aluminide processed through reaction synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K., E-mail: rohitkumar_gupta@vssc.gov.in [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Pant, Bhanu [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India); Kumar, Vinod [SAIL-RDCIS, Ranchi (India); Agarwala, Vijaya [Indian Institute of Technology, Roorkee 247 667 (India); Sinha, P.P. [Vikram Sarabhai Space Centre, ISRO, Trivandrum, Kerala 695 022 (India)

    2013-01-01

    {gamma}+{alpha}{sub 2} titanium aluminide alloys made through reaction synthesis have been used for deformation study. Hot isothermal compression test is carried out to study the deformation characteristics of the alloys using Gleeble thermomechanical simulator. Three alloys based on Ti48Al2Cr2Nb0.1B (at%) are tested at different temperatures and at different strain rates. True stress-true strain plots are analyzed along with analysis of tested specimens. Tested specimens are observed under optical and electron microscopes. Presence of various deformation morphologies and phases were confirmed. Microhardness evaluation and transmission electron microscopic examination are used to confirm the presence of different phases. It is found that dynamic recrystallization is mainly playing role in deformation of these alloys. Presence of dynamically recrystallized (DRX) grains and lamellar microstructures is confirmed at the intergranular area and inside the grains, respectively. A nucleation model is suggested for DRX and lamellar grain nucleation during deformation. Attempt has been made to quantify the presence of various phases through optical microscopy. Hot workability map is also suggested on the basis of microstructural and visual observation of compression tested specimens.

  11. Measurement of copper vapour laser-induced deformation of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... Laser & Plasma Technology Division, Beam Technology Development Group,. Bhabha Atomic ... of dielectric-coated mirror, caused by an incident repetitive pulsed laser beam with high average power. Minimum ... the optical surface deformation, caused by irradiation by a copper vapour laser (CVL) beam.

  12. Deformable and durable phantoms with controlled density of scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Charles-Etienne; Lamouche, Guy; Dufour, Marc; Monchalin, Jean-Pierre [Industrial Materials Institute, National Research Council Canada, 75 de Mortagne, Boucherville, Quebec J4B 6Y4 (Canada); Maciejko, Romain [Optoelectronics Laboratory, Engineering Physics, Ecole Polytechnique de Montreal, PO Box 6079, Station ' Centre-ville' Montreal, Quebec H3C 3A7 (Canada)], E-mail: charles-etienne.bisaillon@cnrc-nrc.gc.ca, E-mail: guy.lamouche@cnrc-nrc.gc.ca, E-mail: marc.dufour@cnrc-nrc.gc.ca, E-mail: jean-pierre.monchalin@cnrc-nrc.gc.ca, E-mail: romain.maciejko@polytml.ca

    2008-07-07

    We have developed deformable and durable optical tissue phantoms with a simple and well-defined microstructure including a novel combination of scatterers and a matrix material. These were developed for speckle and elastography investigations in optical coherence tomography, but should prove useful in many other fields. We present in detail the fabrication process which involves embedding silica microspheres in a silicone matrix. We also characterize the resulting phantoms with scanning electron microscopy and optical measurements. To our knowledge, no such phantoms were proposed in the literature before. Our technique has a wide range of applicability and could also be adapted to fabricate phantoms with various optical and mechanical properties. (note)

  13. Optical image hiding based on chaotic vibration of deformable moiré grating

    Science.gov (United States)

    Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas

    2018-03-01

    Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.

  14. Adaptive Optics for Industry and Medicine

    Science.gov (United States)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  15. Design of the deformable mirror demonstration CubeSat (DeMi)

    Science.gov (United States)

    Douglas, Ewan S.; Allan, Gregory; Barnes, Derek; Figura, Joseph S.; Haughwout, Christian A.; Gubner, Jennifer N.; Knoedler, Alex A.; LeClair, Sarah; Murphy, Thomas J.; Skouloudis, Nikolaos; Merck, John; Opperman, Roedolph A.; Cahoy, Kerri L.

    2017-09-01

    The Deformable Mirror Demonstration Mission (DeMi) was recently selected by DARPA to demonstrate in-space operation of a wavefront sensor and Microelectromechanical system (MEMS) deformable mirror (DM) payload on a 6U CubeSat. Space telescopes designed to make high-contrast observations using internal coronagraphs for direct characterization of exoplanets require the use of high-actuator density deformable mirrors. These DMs can correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and allow leaking starlight to contaminate coronagraphic images. DeMi is provide on-orbit demonstration and performance characterization of a MEMS deformable mirror and closed loop wavefront sensing. The DeMi payload has two operational modes, one mode that images an internal light source and another mode which uses an external aperture to images stars. Both the internal and external modes include image plane and pupil plane wavefront sensing. The objectives of the internal measurement of the 140-actuator MEMS DM actuator displacement are characterization of the mirror performance and demonstration of closed-loop correction of aberrations in the optical path. Using the external aperture to observe stars of magnitude 2 or brighter, assuming 3-axis stability with less than 0.1 degree of attitude knowledge and jitter below 10 arcsec RMSE, per observation, DeMi will also demonstrate closed loop wavefront control on an astrophysical target. We present an updated payload design, results from simulations and laboratory optical prototyping, as well as present our design for accommodating high-voltage multichannel drive electronics for the DM on a CubeSat.

  16. Sea-ice deformation state from synthetic aperture radar imagery - Part I: comparison of C- and L-band and different polarization

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2007-01-01

    configuration and ice conditions. Optical imagery of sufficient quality for comparison is available only in a very few cases. To characterize the deformation state, the areal fraction of deformation features and the average distance between these features are evaluated. The values obtained for both parameters...... negligible. In comparison to optical images, it was observed that deformed-ice areas can be distinguished from level ice over their whole length and extension at L-band, whereas at C-band, often, only prominent parts are visible....

  17. Morphology, deformation, and defect structures of TiCr2 in Ti-Cr alloys

    International Nuclear Information System (INIS)

    Chen, K.C.; Allen, S.M.; Livingston, J.D.

    1992-01-01

    The morphologies and defect structures of TiCr 2 in several Ti-Cr alloys have been examined by optical metallography, x-ray diffraction, and transmission electron microscopy (TEM), in order to explore the room-temperature deformability of the Laves phase TiCr 2 . The morphology of the Laves phase was found to be dependent upon alloy composition and annealing temperature. Samples deformed by compression have also been studied using TEM. Comparisons of microstructures before and after deformation suggest an increase in twin, stacking fault, and dislocation density within the Laves phase, indicating some but not extensive room-temperature deformability

  18. The morphological difference between glaucoma and other optic neuropathies

    Science.gov (United States)

    Burgoyne, Claude

    2016-01-01

    The clinical phenomenon of cupping has two principal pathophysiologic components in all optic neuropathies: prelaminar thinning and laminar deformation. We define prelaminar thinning to be the portion of cup enlargement that results from thinning of the prelaminar tissues due to physical compression and/or loss of Retinal Ganglion Cell axons. We define laminar deformation or laminar cupping to be the portion of cup enlargement that results from permanent, intraocular pressure-(IOP) induced deformation of the lamina cribrosa and peripapillary scleral connective tissues following damage and/or remodeling. We propose that the defining phenomenon of glaucomatous cupping is deformation and/or remodeling of the neural and connective tissues of the optic nerve head (ONH), which is governed by the distribution of IOP-related connective tissue stress and strain, regardless of the mechanism of insult or the level of IOP at which that deformation and/or remodeling occurs. Said in another way, “glaucomatous cupping” is the term clinicians use to describe the clinical appearance and behavior the ONH assumes as its neural and connective tissues deform, remodel or mechanically fail: 1) in a pattern and 2) by the several pathophysiologic processes governed by IOP-related connective tissue stress and strain. ONH Biomechanics explains why a given optic nerve head will demonstrate a certain form of “cupping” and at what level of IOP that might happen. Animal models are allowing us to tease apart the important components of cupping in IOP-related and non-IOP-related forms of optic neuropathy. A paradigm change in spectral domain optical coherence tomography ONH, retinal nerve fiber layer and Macular imaging should improve our ability to phenotype all forms of damage to the visual system including glaucoma. PMID:26274837

  19. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  20. Structure, deformation, and failure of flow-oriented semicrystalline polymers

    NARCIS (Netherlands)

    Schrauwen, B.A.G.; Breemen, van L.C.A.; Spoelstra, A.B.; Govaert, L.E.; Peters, G.W.M.; Meijer, H.E.H.

    2004-01-01

    This study deals with the influence of processing induced crystalline orientation on the macroscopic deformation and failure behavior of thin samples of polyethylene and polypropylene. Distribution and structure of flow-induced orientations were characterized by optical microscopy, X-ray diffraction

  1. Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects.

    Science.gov (United States)

    Wong, Ronnie; Jivraj, Jamil; Vuong, Barry; Ramjist, Joel; Dinn, Nicole A; Sun, Cuiru; Huang, Yize; Smith, James A; Yang, Victor X D

    2015-01-01

    Gas assisted laser machining of materials is a common practice in the manufacturing industry. Advantages in using gas assistance include reducing the likelihood of flare-ups in flammable materials and clearing away ablated material in the cutting path. Current surgical procedures and research do not take advantage of this and in the case for resecting osseous tissue, gas assisted ablation can help minimize charring and clear away debris from the surgical site. In the context of neurosurgery, the objective is to cut through osseous tissue without damaging the underlying neural structures. Different inert gas flow rates used in laser machining could cause deformations in compliant materials. Complications may arise during surgical procedures if the dura and spinal cord are damaged by these deformations. We present preliminary spinal deformation findings for various gas flow rates by using optical coherence tomography to measure the depression depth at the site of gas delivery.

  2. Deformation bands and dislocation structures of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation

    International Nuclear Information System (INIS)

    Li, Y.; Li, S.X.; Li, G.Y.

    2004-01-01

    The features of surface morphology and dislocation structure of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation at a constant plastic shear strain amplitude of 2x10 -3 were studied using optical microscope (OP) and electron channelling contrast imaging (ECCI) in the scanning electron microscope (SEM). Experimental results show that there are two sets of the secondary type of deformation band (DBII) formed in the specimen. The geometry relationship of the two sets of deformation bands (DBs) and slip band (SB) are given. The habit planes of DBIIs are close to (1-bar 0 1) and (1-bar 1 0) plane, respectively. The surface dislocation structures in the specimen including vein, irregular dislocation cells and dislocation walls were also observed. The typical dislocation structure in DBII is the dislocation walls

  3. A Brief Overview of a Scale Independent Deformation Theory and Application to Diagnosis of Deformational Status of Solid-State Materials

    International Nuclear Information System (INIS)

    Yoshida, Sanichiro

    2012-01-01

    A field theoretical approach to deformation and fracture of solid-state material is outlined, and its application to diagnosis of deformational status of metal specimens is discussed. Being based on a fundamental physical principle known as local symmetry, this approach is intrinsically scale independent, and capable of describing all stages of deformation on the same theoretical foundation. This capability enables us to derive criteria that can be used to diagnose transitions from the elastic to plastic regime, and the plastic to fracturing regime. For practical applications of these criteria, an optical interferometric technique known as electronic speckle-pattern interferometry is proved to be quite powerful; it is able to visualize the criteria as a whole image of the object on a real-time basis without numerical processing. It is demonstrated that this method is able to reveal loading hysteresis as well

  4. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    International Nuclear Information System (INIS)

    Abdelaziz, K Ben; Bouazzi, Y; Kanzari, M

    2015-01-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization.The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x 1+k . Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra. (paper)

  5. Fluid Surface Deformation by Objects in the Cheerios Effect

    Science.gov (United States)

    Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team

    2012-11-01

    Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.

  6. Thermo-elastic optical coherence tomography.

    Science.gov (United States)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  7. Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging

    Science.gov (United States)

    Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao

    2017-09-01

    The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.

  8. Soliton robustness in optical fibers

    International Nuclear Information System (INIS)

    Menyuk, C.R.

    1993-01-01

    Simulations and experiments indicate that solitons in optical fibers are robust in the presence of Hamiltonian deformations such as higher-order dispersion and birefringence but are destroyed in the presence of non-Hamiltonian deformations such as attenuation and the Raman effect. Two hypotheses are introduced that generalize these observations and give a recipe for when deformations will be Hamiltonian. Concepts from nonlinear dynamics are used to make these two hypotheses plausible. Soliton stabilization with frequency filtering is also briefly discussed from this point of view

  9. Actuators of 3-element unimorph deformable mirror

    Science.gov (United States)

    Fu, Tianyang; Ning, Yu; Du, Shaojun

    2016-10-01

    Kinds of wavefront aberrations exist among optical systems because of atmosphere disturbance, device displacement and a variety of thermal effects, which disturb the information of transmitting beam and restrain its energy. Deformable mirror(DM) is designed to adjust these wavefront aberrations. Bimorph DM becomes more popular and more applicable among adaptive optical(AO) systems with advantages in simple structure, low cost and flexible design compared to traditional discrete driving DM. The defocus aberration accounted for a large proportion of all wavefront aberrations, with a simpler surface and larger amplitude than others, so it is very useful to correct the defocus aberration effectively for beam controlling and aberration adjusting of AO system. In this study, we desired on correcting the 3rd and 10th Zernike modes, analyze the characteristic of the 3rd and 10th defocus aberration surface distribution, design 3-element actuators unimorph DM model study on its structure and deformation principle theoretically, design finite element models of different electrode configuration with different ring diameters, analyze and compare effects of different electrode configuration and different fixing mode to DM deformation capacity through COMSOL finite element software, compare fitting efficiency of DM models to the 3rd and 10th Zernike modes. We choose the inhomogeneous electrode distribution model with better result, get the influence function of every electrode and the voltage-PV relationship of the model. This unimorph DM is suitable for the AO system with a mainly defocus aberration.

  10. Effect of zinc crystals size on galvanized steel deformation and electrochemical behavior

    Directory of Open Access Journals (Sweden)

    José Daniel Culcasi

    2009-09-01

    Full Text Available Hot-dip galvanized steel sheets with different spangle sizes were deformed by means of rolling and tension. The change of preferential crystallographic orientation and of superficial characteristics due to the deformation was analyzed by means of both X-rays diffraction and optical and scanning electronic microscopy. A correlation between such changes and the involving deformation modes was intended to be done and the spangle size influence on these modes was studied. Coating reactivity change due to the deformation was investigated by means of quasi-steady DC electrochemical tests. The results allow to infer that, in great spangle samples, the main deformation mechanism is twinning whereas in small spangle ones, pyramidal slip systems happen as well. The increase of the reactivity with the deformation is greater in tension than in rolling and it is more important in small than in great spangle samples.

  11. Optimization of freeform surfaces using intelligent deformation techniques for LED applications

    Science.gov (United States)

    Isaac, Annie Shalom; Neumann, Cornelius

    2018-04-01

    For many years, optical designers have great interests in designing efficient optimization algorithms to bring significant improvement to their initial design. However, the optimization is limited due to a large number of parameters present in the Non-uniform Rationaly b-Spline Surfaces. This limitation was overcome by an indirect technique known as optimization using freeform deformation (FFD). In this approach, the optical surface is placed inside a cubical grid. The vertices of this grid are modified, which deforms the underlying optical surface during the optimization. One of the challenges in this technique is the selection of appropriate vertices of the cubical grid. This is because these vertices share no relationship with the optical performance. When irrelevant vertices are selected, the computational complexity increases. Moreover, the surfaces created by them are not always feasible to manufacture, which is the same problem faced in any optimization technique while creating freeform surfaces. Therefore, this research addresses these two important issues and provides feasible design techniques to solve them. Finally, the proposed techniques are validated using two different illumination examples: street lighting lens and stop lamp for automobiles.

  12. Severe plastic deformation of copper and Al-Cu alloy using multiple channel-die compression

    International Nuclear Information System (INIS)

    Parimi, A.K.; Robi, P.S.; Dwivedy, S.K.

    2011-01-01

    Research highlights: → SPD of copper and Al-Cu alloy by multiple channel-die compression tests.→ Extensive grain refinement resulting in nano-sized grains after SPD. → Investigation of micro-structure using optical microscope and SEM. → Shear band formation as the failure mechanism in the two phase Al-Cu alloy. → Difficulty in obtaining SPD for Al-Cu alloy in this method. -- Abstract: Severe plastic deformation studies of copper and Al-Cu alloy by multiple channel-die compression tests were investigated. The materials were tested under plane strain condition by maintaining a constant strain rate of 0.001/s. Extensive grain refinement was observed resulting in nano-sized grains after severe plastic deformation with concomitant increase in flow stress and hardness. The microstructural investigation of the severely deformed materials was investigated using optical microscope and scanning electron microscope. Shear band formation was identified as the failure mechanism in the two phase Al-Cu alloy. The results indicate difficulty in obtaining severe plastic deformation for alloys having two phase micro-structure.

  13. Statistical behaviour of optical vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2009-09-01

    Full Text Available ) Density limitation→ effective profile for point vortex (remove evanescent field) . – p.10/37 Scintillated optical beams Optical beam in a turbulent atmosphere: → index variations cause random phase modulations → leads to distortion of the optical beam.... Weak scintillation→ continuous phase distortions that can be corrected by an adaptive optical system: Wavefront sensor Beam splitter Scintillated beam Corrected beam Deformable mirror Control signal . – p.11/37 Strong scintillation Strong scintillation...

  14. Performance through Deformation and Instability

    Science.gov (United States)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  15. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic

  16. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  17. An investigation into hot deformation of aluminum alloy 5083

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinipour, S.J. [Manufacturing Engineering Department, School of Mechanical Engineering, Nushirvani Institute of Technology, University of Mazandaran, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of)], E-mail: j.hosseini@nit.ac.ir

    2009-02-15

    In this paper the hot deformation behavior of Al-5083 commercial alloy is studied. For this purpose, hot tensile tests have been carried out at various temperatures and strain rates. Velocity jump tests have been performed to determine stress-strain rate curves at various temperatures and strains. The microstructures have been studied by optical and electron microscopy (SEM). It is found that continuous recrystallization occurs during hot deformation of the AA5083. Maximum elongation about 250% is obtained at 450 deg. C and strain rate of 0.005 s{sup -1}. The failure surface is narrow and failure occurs by necking.

  18. An investigation into hot deformation of aluminum alloy 5083

    International Nuclear Information System (INIS)

    Hosseinipour, S.J.

    2009-01-01

    In this paper the hot deformation behavior of Al-5083 commercial alloy is studied. For this purpose, hot tensile tests have been carried out at various temperatures and strain rates. Velocity jump tests have been performed to determine stress-strain rate curves at various temperatures and strains. The microstructures have been studied by optical and electron microscopy (SEM). It is found that continuous recrystallization occurs during hot deformation of the AA5083. Maximum elongation about 250% is obtained at 450 deg. C and strain rate of 0.005 s -1 . The failure surface is narrow and failure occurs by necking

  19. Nucleation of recrystallization at selected sites in deformed fcc metals

    DEFF Research Database (Denmark)

    Xu, Chaoling

    The objective of this thesis is to explore nucleation of recrystallization at selected sites in selected face-centered-cubic (FCC) metals, namely cold rolled columnar-grained nickel and high purity aluminum further deformed by indenting. Various techniques, including, optical microscopy, electron...... backscattered diffraction (EBSD), electron channeling contrast (ECC) and synchrotron X-ray technique, differential-aperture X-ray microscopy (DAXM), were used to characterize the microstructures, to explore nucleation sites, orientation relationships between nuclei and deformed microstructures, and nucleation...... mechanisms. In the cold rolled nickel samples, the preference of triple junctions (TJs) and grain boundaries (GBs) as nucleation sites is observed. The majorities of the nuclei have the same orientations as the surrounding matrix or are twin-related to a surrounding deformed grain. Only a few nuclei...

  20. Static thermo-optic instability in double-pass fiber amplifiers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2016-01-01

    A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers, is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency...... between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power...... for the static deformation is found to be several times lower than what is typically found for the dynamic modal instabilities observed in single-pass amplifiers. (C) 2016 Optical Society of America...

  1. Frobenius–Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics

    International Nuclear Information System (INIS)

    Kullig, Julius; Wiersig, Jan

    2016-01-01

    In optical microdisk cavities with boundary deformations the backscattering between clockwise and counter-clockwise propagating waves is in general asymmetric. The striking consequence of this asymmetry is that these apparently weakly open systems show pronounced non-Hermitian phenomena. The optical modes appear in non-orthogonal pairs, where both modes copropagate in a preferred sense of rotation, i.e. the modes exhibit a finite chirality. Full asymmetry in the backscattering results in a non-Hermitian degeneracy (exceptional point) where the deviation from closed system evolution is strongest. We study the effects of asymmetric backscattering in ray dynamics. For this purpose, we construct a finite approximation of the Frobenius–Perron operator for deformed microdisk cavities, which describes the dynamics of intensities in phase space. Eigenstates of the Frobenius–Perron operator show nice analogies to optical modes: they come in non-orthogonal copropagating pairs and have a finite chirality. We introduce a new cavity system with a smooth asymmetric boundary deformation where we demonstrate our results and we illustrate the main aspects with the help of a simple analytically solvable 1D model. (paper)

  2. Deformable mirrors : Design fundamentals for force actuation of continuous facesheets

    NARCIS (Netherlands)

    Ravensbergen, S.K.; Hamelinck, R.F.H.M.; Rosielle, P.C.J.N.; Steinbuch, M.

    2009-01-01

    Adaptive Optics is established as essential technology in current and future ground based (extremely) large telescopes to compensate for atmospheric turbulence. Deformable mirrors for astronomic purposes have a high number of actuators (> 10k), a relatively large stroke (> 10µm) on a small spacing

  3. Corrosion resistance after mechanical deformation of the Ti30Ta experimental alloy for using in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Kerolene Barboza da; Konatu, Reginaldo Toshihiro; Oliveira, Liliane Lelis de; Nakazato, Roberto Zenhei; Claro, Ana Paula Rosifini Alves, E-mail: rosifini@feg.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratinguetá, SP (Brazil). Departamento de Engenharia de Materiais

    2017-10-15

    In this study the corrosion resistance of Ti30Ta experimental alloy was evaluated when submitted to different deformation rates. Alloys were processed in arc melting, furnace, forged and treated. The samples were machined in accordance with ASTME9-09 standard to carry out compression tests. The influence of deformation was evaluated by optical microscopy and XRD, and Electrochemical parameters were analyzed in the most severe condition of deformation (22%). Corrosion resistance exhibited the same behavior for two conditions, 22% and without deformation. (author)

  4. A novel methodology for 3D deformable dosimetry.

    Science.gov (United States)

    Yeo, U J; Taylor, M L; Dunn, L; Kron, T; Smith, R L; Franich, R D

    2012-04-01

    Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as

  5. A novel methodology for 3D deformable dosimetry

    International Nuclear Information System (INIS)

    Yeo, U. J.; Taylor, M. L.; Dunn, L.; Kron, T.; Smith, R. L.; Franich, R. D.

    2012-01-01

    Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all

  6. Cold deformation of ADI castings: Martensitic transformation

    International Nuclear Information System (INIS)

    Navea, Lilian R; Mannheim, Rodolfo M; Garin, Jorge L

    2004-01-01

    Research and applications in austempered ductile iron (ADI castings) have recently undergone noticeable progress in the industrialized world, becoming a highly competitive engineering material. The notable properties of these castings derive from their austenitic matrix stabilized by carbon, a thermally stable austenite during the austenizing process but possibly turning into martensite when undergoing plastic deformation. This work aims to study the changing structure of an ADI casting caused by one directional cold lamination. The samples that were studied were obtained from two nodular castings, one without alloying and the other alloyed with Cu, Ni and Mo. The samples were austenized in the first stage of the austempering process at 910 o C for 80 min. Then in the second stage the unalloyed samples were austempered at 410 o C for 10 min and the alloyed samples for 120 min. After the thermal treatment, the test pieces were deformed 0% to 25% by cold lamination. The quantification of the phases was performed using x-ray diffraction and the metallographic study using optic and Scanning Electronic Microscopy. The results show that the martensitic phase obtained by deformation is a very fine structure that evolves into a thicker one when the deformation of the samples increases (CW)

  7. Apparatus and method for determining stress and strain in pipes, pressure vessels, structural members and other deformable bodies

    International Nuclear Information System (INIS)

    Vachon, R.I.; Ranson, W.F.

    1987-01-01

    A method and apparatus for measuring stress and strain associated with a pipe, pressurized vessel, structural member or deformable body containing a flaw or stress concentration utilizes a laser beam to illuminate a surface being analyzed and an optical data digitizer to sense a signal provided by a speckle pattern produced by the light beam reflected from the illuminated surface. One signal is received from the surface in a reference condition and subsequent signals are received from the surface after surface deformation. The optical data digitizer provides the received signal to an image processor, and the processor stores the signals and correlates the deformed image received with the reference image and then sends this correlated information to a minicomputer which performs mathematical analyses of the signal to determine stress and strain associated with the surface. The apparatus is constructed as one integral unit, and further includes a digital and tape display, as well as a television monitor and an electro-optic range indicator. (author) 15 figs

  8. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  9. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  10. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    Science.gov (United States)

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  11. The physics of large deformation of crystalline solids

    CERN Document Server

    Bell, James F

    1968-01-01

    Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led...

  12. Opto-mechanical design of ShaneAO: the adaptive optics system for the 3-meter Shane Telescope

    Science.gov (United States)

    Ratliff, C.; Cabak, J.; Gavel, D.; Kupke, R.; Dillon, D.; Gates, E.; Deich, W.; Ward, J.; Cowley, D.; Pfister, T.; Saylor, M.

    2014-07-01

    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.

  13. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  14. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  15. Formation Flying and Deformable Instruments

    Science.gov (United States)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  16. Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Kumar, Amit, E-mail: chaudhary65amit@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, Satish K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2016-11-01

    In the present investigation, ultra low carbon steel samples were deformed in plane strain compression mode in a deformation simulator. The deformation was carried out at four different temperatures in the warm rolling region (293, 473, 673 and 873 K) upto 70% strain at two different strain rates (0.1/s and 1/s). Subsequently, all the deformed samples were fully recrystallized at 1073 K. Afterwards, all the deformed and fully recrystallized samples were subjected to detailed microstructural characterization using optical microscope, scanning electron microscope and electron backscattered diffraction. Bulk texture was measured for all the samples by X-ray diffraction. In-grain misorientation developments (kernel average misorientations) were estimated for the deformed γ-fibre (ND//<111>) and α-fibre (RD//<110>). Deformed γ-fibre showed an increase in in-grain misorientation at intermediate deformation temperatures. This increase was explained by using the plastic instability criterion. After complete recrystallization, the γ-fibre strengthened for deformation at lower temperatures (293 K and 473 K), while Goss texture developed for samples deformed at higher temperatures (673 K and 873 K). - Highlights: • ULC steel samples were deformed in near plane strain condition. • Microstructural developments were characterized using EBSD. • Increase in in-grain misorientation at intermediate deformation temperatures. • γ-fibre strengthened for low temperature deformation. • Goss texture developed for high temperature deformation.

  17. Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator.

    Science.gov (United States)

    Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol

    2018-05-09

    The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3

  18. Orientation and structure development in poly(lactide) under uniaxial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Y.S. [School of Materials Science and Engineering, Nanyang Technological University, N4.1-02-06 Nanyang Avenue, Singapore 639798 (Singapore); Stachurski, Z.H. [Department of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Venkatraman, S.S. [School of Materials Science and Engineering, Nanyang Technological University, N4.1-02-06 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: assubbu@ntu.edu.sg

    2008-10-15

    Semicrystalline poly(L-lactide), or PLLA, is used in many biomedical applications, including self-expanding stents. A network model is applied to describe the deformation behaviour of semicrystalline poly(L-lactide) obtained at different drawing temperatures. Based on the present results, it is suggested that the deformation behaviour of PLLA appears to follow pseudo-affine model at the macroscopic level, but it does not follow it at the molecular level. The development of molecular orientation during drawing in both crystalline and amorphous phases was characterized by means of optical birefringence and wide-angle X-ray diffraction (WAXD). In general, high orientation is achieved at the higher drawing temperature and it is found that the crystalline and amorphous phases respond differently to network deformation. At moderate deformation temperature, the development of crystalline orientation increases slowly at a low stretch ratio followed by a rapid rise in the degree of orientation as a result of crystal rotation and crystal slip, while the amorphous chains deform in pseudo-affine manner. Drawing at a high temperature shows rapid crystalline orientation development, even at a low stretch ratio of 1.5, while molecular alignment develops steadily in the amorphous phase.

  19. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  20. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  1. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  2. Experimental study on the deformation of erythrocytes under optically trapping and stretching

    International Nuclear Information System (INIS)

    Liu, Y.P.; Li Chuan; Lai, A.C.K.

    2006-01-01

    The mechanical behavior of erythrocytes is studied experimentally and numerically. In the experiment, prepared silica microbeads are attached to the surface of spherically swollen erythrocytes (red blood cells, RBCs) at room temperature (25 deg. C). The cells are then stretched by single laser beam via the microbeads. The relation of deformation and stretching force is quantitatively assessed by the image processing of digital pictures. Meanwhile, a physical model for an axisymmetric cell is introduced to study its deformation by different level of stretching force. By comparing the experimental and numerical data, stiffness of the cell membrane can be determined and the optimal values are found to agree with other studies by different techniques such as micropipette aspiration or high frequency electric field

  3. Modelling and optimization of a deformable mirror for laser beam control

    CSIR Research Space (South Africa)

    Loveday, PW

    2008-03-01

    Full Text Available for this application. The unimorph consists of a metallic disc, with a mirror finish, bonded to a piezoelectric disc. In adaptive optics the deformations that the mirror is required to perform are described by the Zernike polynomials, which are a complete set...

  4. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.

  5. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    International Nuclear Information System (INIS)

    Zhang, Lin; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel

    2014-01-01

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν 12 and ν 13 as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%

  6. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: zhang@esrf.fr; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble (France)

    2014-04-04

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν{sub 12} and ν{sub 13} as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%.

  7. Application of the digital image correlation method in the study of cohesive coarse soil deformations

    Science.gov (United States)

    Kogut, Janusz P.; Tekieli, Marcin

    2018-04-01

    Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.

  8. Surface Deformation Associated With a Historical Diking Event in Afar From Correlation of Space and Air-Borne Optical Images

    Science.gov (United States)

    Harrington, J.; Peltzer, G.; Leprince, S.; Ayoub, F.; Kasser, M.

    2011-12-01

    We present new measurements of the surface deformation associated with the rifting event of 1978 in the Asal-Ghoubbet rift, Republic of Djibouti. The Asal-Ghoubbet rift forms a component of the Afar Depression, a broad extensional region at the junction between the Nubia, Arabia, and Somalia plates, which apart from Iceland, is the only spreading center located above sea-level. The 1978 rifting event was marked by a 2-month sequence of small to moderate earthquakes (Mb ~3-5) and a fissural eruption of the Ardukoba Volcano. Deformation in the Asal rift associated with the event included the reactivation of the main bordering faults and the development of numerous open fissures on the rift floor. The movement of the rift shoulders, measured using ground-based geodesy, showed up to 2.5 m of opening in the N40E direction. Our data include historical aerial photographs from 1962 and 1984 (less than 0.8 m/pixel) along the northern border fault, three KH-9 Hexagon(~8 m/pixel) satellite images from 1973, and recently acquired ASTER (15 m/pixel) and SPOT5 (2.5 m/pixel) data. The measurements are made by correlating pre- and post-event images using the COSI-Corr (Co-registration of Optically Sensed Images and Correlation) software developed at Caltech. The ortho-rectification of the images is done with a mosaic of a 10 m resolution digital elevation model, made by French Institut Geographique National (IGN), and the SRTM and GDEM datasets. Correlation results from the satellite images indicate 2-3 meters of opening across the rift. Preliminary results obtained using the 1962 and 1984 aerial photographs indicate that a large fraction of the opening occurred on or near Fault γ, which borders the rift to the North. These preliminary results are largely consistent with the ground based measurements made after the event. A complete analysis of the aerial photograph coverage will provide a better characterization of the spatial distribution of the deformation throughout the rift.

  9. FEM-based evaluation of deformable image registration for radiation therapy

    International Nuclear Information System (INIS)

    Zhong Hualiang; Peters, Terry; Siebers, Jeffrey V

    2007-01-01

    This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived energy indicates the quality of the DVF in its neighborhood. The new voxel-based evaluation approach is compared with three other validation criteria: landmark measurement, a finite element approach and visual comparison, for deformable registrations performed with the optical-flow-based 'demons' algorithm as well as thin-plate spline interpolation. This analysis was performed on three pairs of prostate CT images. The results of the analysis show that the four criteria give mutually comparable quantitative assessments on the six registration instances. As an objective concept, the unbalanced energy presents no requirement on boundary constraints in its calculation, different from traditional mechanical modeling. This method is automatic, and at voxel level suitable to evaluate deformable registration in a clinical setting

  10. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-05-01

    Full Text Available The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  11. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    Science.gov (United States)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  12. Micro-deformation measurement on the concrete roadway surface slabs using Fiber Bragg Grating and analysis by computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, C M; Gomez, N D [Instituto Tecnologico Metropolitano Institucion Universitaria (ITM), Medellin A. A. 54954 (Colombia); Velez, F J, E-mail: claudiaserpa@itm.edu.co [Universidad EAFIT, Medellin (Colombia)

    2011-01-01

    This work shows a non-invasive method for micro-deformation measurements on concrete structures using Bragg grating sensors in optical fibers adhered to the surface. We present the measurements on roadway slabs under a load of 10 kN, and we find an approximated ratio of 2:1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for structural monitoring of the slabs and this installation shape for avoiding bends that can damage the edges in the optical fiber in embebed sensors in vertical shape.

  13. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  14. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  15. Method of determining effects of heat-induced irregular refractive index on an optical system.

    Science.gov (United States)

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  16. 3D scanning applied in the evaluation of large plastic deformation

    Directory of Open Access Journals (Sweden)

    Márcio Eduardo Silveira

    2012-01-01

    Full Text Available Crash test are experimental studies demanded by specialized agencies in order to evaluate the performance of a component (or entire vehicle when subjected to an impact. The results, often highly destructive, produce large deformations in the product. The use of numerical simulation in initial stages of a project is essential to reduce costs. One difficulty in validating numerical results involves the correlation between the level and the deformation mode of the component, since it is a highly nonlinear simulation in which various parameters can affect the results. The main objective of this study was to propose a methodology to correlate the result of crash tests of a fuel tank with the numerical simulations, using an optical 3D scanner. The results are promising, and the methodology implemented would be used for any products that involve large deformations.

  17. Simulated annealing in adaptive optics for imaging the eye retina

    International Nuclear Information System (INIS)

    Zommer, S.; Adler, J.; Lipson, S. G.; Ribak, E.

    2004-01-01

    Full Text:Adaptive optics is a method designed to correct deformed images in real time. Once the distorted wavefront is known, a deformable mirror is used to compensate the aberrations and return the wavefront to a plane wave. This study concentrates on methods that omit wave front sensing from the reconstruction process. Such methods use stochastic algorithms to find the extremum of a certain sharpness function, thereby correcting the image without any information on the wavefront. Theoretical work [l] has shown that the optical problem can be mapped onto a model for crystal roughening. The main algorithm applied is simulated annealing. We present a first hardware realization of this algorithm in an adaptive optics system designed to image the retina of the human eye

  18. Effects of annealing and deforming temperature on microstructure and deformation characteristics of Ti-Ni-V shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    He Zhirong, E-mail: hezhirong01@163.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China); Liu Manqian [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003 (China)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer The deformation behaviors of annealed Ti-50.8Ni-0.5V shape memory alloy (SMA) were given. Black-Right-Pointing-Pointer The effect of annealing temperature on microstructure and deformation characteristics of Ti-50.8Ni-0.5V SMA was shown. Black-Right-Pointing-Pointer The effect of deforming temperature on deformation characteristics of Ti-50.8Ni-0.5V SMA was given. - Abstract: Effects of annealing temperature T{sub an} and deforming temperature T{sub d} on microstructure and deformation characteristics of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of optical microscopy and tensile test. With increasing T{sub an}, the microstructure of Ti-50.8Ni-0.5V alloy wire changes from fiber style to equiaxed grain, and the recrystallization temperature of the alloy is about 580 Degree-Sign C; the critical stress for stress-induced martensite {sigma}{sub M} of the alloy decreases first and then increases, and the minimum value 382 MPa is got at T{sub an} = 450 Degree-Sign C; the residual strain {epsilon}{sub R} first increases, then decreases, and then increases, and its maximum value 2.5% is reached at T{sub an} = 450 Degree-Sign C. With increasing T{sub d}, a transformation from shape memory effect (SME) to superelasticity (SE) occurs in the alloy annealed at different temperatures, and the SME {yields} SE transformation temperature was affected by T{sub an}; the {sigma}{sub M} of the alloy increases linearly; the {epsilon}{sub R} of the alloy annealed at 350-600 Degree-Sign C decreases first and then tends to constant, while that of the alloy annealed at 650 Degree-Sign C and 700 Degree-Sign C decreases first and then increases. To get an excellent SE at room temperature for Ti-50.8Ni-0.5V alloy, T{sub an} should be 500-600 Degree-Sign C.

  19. Wavelet based free-form deformations for nonrigid registration

    Science.gov (United States)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  20. Thermal deformation analysis and test of electron gun for high power klystron

    International Nuclear Information System (INIS)

    Zhou Zusheng; Chinese Academy of Sciences, Beijing; Dong Dong

    2006-01-01

    A 120 MW pulsed electron gun has been developed for 50 MW China-made klystron. It has a Pierce type dispenser cathode and it scans with a diameter of 85 mm. This paper describes the temperature field distribution in the gun and the gun deformation caused by this distribution by using ANSYS. According to the real complex structure and the energy conversion inside the electron gun, the authors took the thermal conduction as the main energy conversion form and got the temperature field. The coincidence between the temperature field and the structural deformation is also described. The beam optics simulated by EGUN with and without considering deformation is discussed, and the valuable results have been obtained. The high power test results and simulation results are analyzed and compared. (authors)

  1. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y., E-mail: haiyanzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, S.H., E-mail: shzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cheng, M. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Z.X. [Beijing Institute of Aeronautica1 Materials, Beijing 100095 (China)

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  2. Vertebral deformity arising from an accelerated "creep" mechanism.

    Science.gov (United States)

    Luo, Jin; Pollintine, Phillip; Gomm, Edward; Dolan, Patricia; Adams, Michael A

    2012-09-01

    Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. Vertebral body creep was measurable in specimens with BMD Creep was greater anteriorly than posteriorly (p creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p creep to such an extent that it makes a substantial contribution to vertebral deformity.

  3. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  4. Payload characterization for CubeSat demonstration of MEMS deformable mirrors

    Science.gov (United States)

    Marinan, Anne; Cahoy, Kerri; Webber, Matthew; Belikov, Ruslan; Bendek, Eduardo

    2014-08-01

    Coronagraphic space telescopes require wavefront control systems for high-contrast imaging applications such as exoplanet direct imaging. High-actuator-count MEMS deformable mirrors (DM) are a key element of these wavefront control systems yet have not been flown in space long enough to characterize their on-orbit performance. The MEMS Deformable Mirror CubeSat Testbed is a conceptual nanosatellite demonstration of MEMS DM and wavefront sensing technology. The testbed platform is a 3U CubeSat bus. Of the 10 x 10 x 34.05 cm (3U) available volume, a 10 x 10 x 15 cm space is reserved for the optical payload. The main purpose of the payload is to characterize and calibrate the onorbit performance of a MEMS deformable mirror over an extended period of time (months). Its design incorporates both a Shack Hartmann wavefront sensor (internal laser illumination), and a focal plane sensor (used with an external aperture to image bright stars). We baseline a 32-actuator Boston Micromachines Mini deformable mirror for this mission, though the design is flexible and can be applied to mirrors from other vendors. We present the mission design and payload architecture and discuss experiment design, requirements, and performance simulations.

  5. Quantifying cortical surface harmonic deformation with stereovision during open cranial neurosurgery

    Science.gov (United States)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2012-02-01

    Cortical surface harmonic motion during open cranial neurosurgery is well observed in image-guided neurosurgery. Recently, we quantified cortical surface deformation noninvasively with synchronized blood pressure pulsation (BPP) from a sequence of stereo image pairs using optical flow motion tracking. With three subjects, we found the average cortical surface displacement can reach more than 1 mm and in-plane principal strains of up to 7% relative to the first image pair. In addition, the temporal changes in deformation and strain were in concert with BPP and patient respiration [1]. However, because deformation was essentially computed relative to an arbitrary reference, comparing cortical surface deformation at different times was not possible. In this study, we extend the technique developed earlier by establishing a more reliable reference profile of the cortical surface for each sequence of stereo image acquisitions. Specifically, fast Fourier transform (FFT) was applied to the dynamic cortical surface deformation, and the fundamental frequencies corresponding to patient respiration and BPP were identified, which were used to determine the number of image acquisitions for use in averaging cortical surface images. This technique is important because it potentially allows in vivo characterization of soft tissue biomechanical properties using intraoperative stereovision and motion tracking.

  6. Nanolaminated TiN/Mo2N hard multilayer coatings

    International Nuclear Information System (INIS)

    Martev, I N; Dechev, D A; Ivanov, N P; Uzunov, T S D; Kashchieva, E P

    2010-01-01

    The paper presents results on the synthesis of hard multilayer coatings consisting of titanium nitride and molybdenum nitride thin films with thickness of several nm. The TiN and Mo 2 N films were successively deposited by reactive DC magnetron sputtering. These multilayer structures were investigated by Auger electron spectroscopy (AES), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), cross-section scanning electron microscopy (CSSEM) and cross-section electron probe microanalysis (CSEPMA). The mechanical properties of the multilayer coatings, namely, hardness, Young's modulus and the coefficient of plastic deformation were measured. The adhesion was evaluated by the Rockwell-C-impact test. Coatings with different total thickness were examined with respect to adhesion to substrates of tool materials.

  7. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  8. Characterization of deformed pearlitic rail steel

    Science.gov (United States)

    Nikas, Dimitrios; Meyer, Knut Andreas; Ahlström, Johan

    2017-07-01

    Pearlitic steels are commonly used for railway rails because they combine good strength and wear properties. During service, the passage of trains results in a large accumulation of shear strains in the surface layer of the rail, leading to crack initiation. Knowledge of the material properties in this region is therefore important for fatigue life prediction. As the strain is limited to a thin surface layer, very large strain gradients can be found. This makes it very difficult to quantify changes in material behavior. In this study hardness measurements were performed close to the surface using the Knoop hardness test method. The orientation of the pearlitic lamellas was measured to give an overview of the deformed microstructure in the surface of the rail. Microstructural characterization of the material was done by optical microscopy and scanning electron microscopy to evaluate the changes in the microstructure due to the large deformation. A strong gradient can be observed in the top 50 μm of the rail, while deeper into the rail the microstructure of the base material is preserved.

  9. Seismic damage identification for steel structures using distributed fiber optics.

    Science.gov (United States)

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  10. Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications.

    Science.gov (United States)

    Lee, Seung Ho; Ryu, Yong-Tak; Son, Dong Hoon; Jeong, Seongmook; Kim, Youngwoong; Ju, Seongmin; Kim, Bok Hyeon; Han, Won-Taek

    2015-08-10

    We report a novel radial-firing optical fiber tip containing a conical-shaped air-pocket fabricated by deforming a hollow optical fiber using electric arc-discharge process. The hollow optical fiber was fusion spliced with a conventional optical fiber, simultaneously deforming into the intagliated conical-shaped region along the longitudinal fiber-axis of the fiber due to the gradual collapse of the cavity of the hollow optical fiber. Then the distal-end of the hollow optical fiber was sealed by the additional arc-discharge in order to obstruct the inflow of an external bio-substance or liquid to the inner air surface during the surgical operations, resulting in the formation of encased air-pocket in the silica glass fiber. Due to the total internal reflection of the laser beam at the conical-shaped air surface, the laser beam (λ = 632.8 nm) was deflected to the circumferential direction up to 87 degree with respect to the fiber-axis.

  11. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  12. An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation

    Directory of Open Access Journals (Sweden)

    Chia-Hung Dylan Tsai

    2016-10-01

    Full Text Available An on-chip deformability checker is proposed to improve the velocity–deformation correlation for red blood cell (RBC evaluation. RBC deformability has been found related to human diseases, and can be evaluated based on RBC velocity through a microfluidic constriction as in conventional approaches. The correlation between transit velocity and amount of deformation provides statistical information of RBC deformability. However, such correlations are usually only moderate, or even weak, in practical evaluations due to limited range of RBC deformation. To solve this issue, we implemented three constrictions of different width in the proposed checker, so that three different deformation regions can be applied to RBCs. By considering cell responses from the three regions as a whole, we practically extend the range of cell deformation in the evaluation, and could resolve the issue about the limited range of RBC deformation. RBCs from five volunteer subjects were tested using the proposed checker. The results show that the correlation between cell deformation and transit velocity is significantly improved by the proposed deformability checker. The absolute values of the correlation coefficients are increased from an average of 0.54 to 0.92. The effects of cell size, shape and orientation to the evaluation are discussed according to the experimental results. The proposed checker is expected to be useful for RBC evaluation in medical practices.

  13. Detection of radiation deformation in crystalline polymers using the speckle photography technique

    International Nuclear Information System (INIS)

    El-Ghandoor, H.; Hashem, A.A.; Sharaf, F.

    1995-01-01

    In order to measure the resulting deformation due to gamma irradiation of polymers, a new optical technique, namely speckle-photography, was established and used. Thin films of tetrafluoroethene, with constant thickness were irradiated by different doses of gamma rays and the diffraction patterns of a laser beam passing through these films were recorded using the speckle photography technique. This technique has been applied to detect the radiation deformation in (Teflon) TFE, which is a crystalline polymer. A diffraction pattern due to the TFE thin layer is obtained and superimposed on the interference pattern displaying the speckle pattern pairs recorded on the same emulsion. (author)

  14. Press forging and optical properties of lithium fluoride

    Science.gov (United States)

    Ready, J. F.; Vora, H.

    1980-07-01

    Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.

  15. Press forging and optical properties of lithium fluoride

    International Nuclear Information System (INIS)

    Ready, J.F.; Vora, H.

    1979-01-01

    Lithium fluoride is an important candidate material for windows on high-power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals have been press forged in one step over the temperature range 300 to 600 0 c to obtain fine-grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40% at 400 0 C to 65% at 600 0 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 0 C, to total deformations of 69-76%, with intermediate annealing at 700 0 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one-step forging. The results of characterization of various optical and mechanical properties of single-crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described

  16. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    Science.gov (United States)

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  17. The optical system of the proposed Chinese 12-m optical/infrared telescope

    Science.gov (United States)

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  18. Thermomechanical characterization of a membrane deformable mirror

    International Nuclear Information System (INIS)

    Morse, Kathleen A.; McHugh, Stuart L.; Fixler, Jeff

    2008-01-01

    A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 deg. C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 deg. C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 deg. C

  19. Wavefront measurement using computational adaptive optics.

    Science.gov (United States)

    South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A

    2018-03-01

    In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

  20. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  1. q-deformed Weinberg-Salam model and q-deformed Maxwell equations

    International Nuclear Information System (INIS)

    Alavi, S.A.; Sarbishaei, M.; Mokhtari, A.

    2000-01-01

    We study the q-deformation of the gauge part of the Weinberg-Salam model and show that the q-deformed theory involves new interactions. We then obtain q-deformed Maxwell equations from which magnetic monopoles appear naturally. (author)

  2. Two strategies of lowering surface deformations of internally cooled X-ray optics

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2013-01-01

    Roč. 729, NOV (2013), s. 302-306 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional support: RVO:68378271 Keywords : internal cooling * X-ray optics * monochromator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013

  3. Deformation of the Early Glaucomatous Monkey Optic Nerve Head Connective Tissue after Acute IOP Elevation in 3-D Histomorphometric Reconstructions

    Science.gov (United States)

    Yang, Hongli; Thompson, Hilary; Roberts, Michael D.; Sigal, Ian A.; Downs, J. Crawford

    2011-01-01

    Purpose. To retest the hypothesis that monkey ONH connective tissues become hypercompliant in early experimental glaucoma (EEG), by using 3-D histomorphometric reconstructions, and to expand the characterization of EEG connective tissue deformation to nine EEG eyes. Methods. Trephinated ONH and peripapillary sclera from both eyes of nine monkeys that were perfusion fixed, with one normal eye at IOP 10 mm Hg and the other EEG eye at 10 (n = 3), 30 (n = 3), or 45 (n = 3) mm Hg were serial sectioned, 3-D reconstructed, 3-D delineated, and quantified with 3-D reconstruction techniques developed in prior studies by the authors. Overall, and for each monkey, intereye differences (EEG eye minus normal eye) for each parameter were calculated and compared by ANOVA. Hypercompliance in the EEG 30 and 45 eyes was assessed by ANOVA, and deformations in all nine EEG eyes were separately compared by region without regard for fixation IOP. Results. Hypercompliant deformation was not significant in the overall ANOVA, but was suggested in a subset of EEG 30/45 eyes. EEG eye deformations included posterior laminar deformation, neural canal expansion, lamina cribrosa thickening, and posterior (outward) bowing of the peripapillary sclera. Maximum posterior laminar deformation and scleral canal expansion co-localized to either the inferior nasal or superior temporal quadrants in the eyes with the least deformation and involved both quadrants in the eyes achieving the greatest deformation. Conclusions. The data suggest that, in monkey EEG, ONH connective tissue hypercompliance may occur only in a subset of eyes and that early ONH connective tissue deformation is maximized in the superior temporal and/or inferior nasal quadrants. PMID:20702834

  4. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  5. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  6. Acousto-optic modulation of III-V semiconductor multiple quantum wells

    International Nuclear Information System (INIS)

    Smith, D.L.; Kogan, S.M.; Ruden, P.P.; Mailhiot, C.

    1996-01-01

    We present an analysis of the effect of surface acoustic waves (SAW close-quote s) on the optical properties of III-V semiconductor multiple quantum wells (MQW close-quote s). Modulation spectra at the fundamental and second harmonic of the SAW frequency are presented. The SAW modulates the optical properties of the MQW primarily by changing optical transition energies. The SAW generates both strains, which modulate the transition energies by deformation potential effects, and electric fields, which modulate the transition energies by the quantum confined Stark effect. We find that modulation of the transition energies by strain effects is usually more important than by electric-field effects. If large static electric fields occur in the MQW, the SAW-generated electric field can mix with the static field to give optical modulation, which is comparable in magnitude to modulation from the deformation potential effect. If there are no large static electric fields, modulation by the SAW-generated fields is negligible. A large static electric field distributes oscillator strength among the various optical transitions so that no single transition is as strong as the primary allowed transitions without a static electric field. To achieve the maximum modulation for fixed SAW parameters, it is best to modulate a strong optical transition. Thus optimum modulation occurs when there are no large static electric fields present and that modulation is primarily from deformation potential effects. We specifically consider Ga x In 1-x As/Ga x Al 1-x As MQW close-quote s grown on (100) and (111) oriented substrates, but our general conclusions apply to other type I MQW close-quote s fabricated from III-V semiconductors. copyright 1996 The American Physical Society

  7. Use of results from microscopic methods in optical model calculations

    International Nuclear Information System (INIS)

    Lagrange, C.

    1985-11-01

    A concept of vectorization for coupled-channel programs based upon conventional methods is first presented. This has been implanted in our program for its use on the CRAY-1 computer. In a second part we investigate the capabilities of a semi-microscopic optical model involving fewer adjustable parameters than phenomenological ones. The two main ingredients of our calculations are, for spherical or well-deformed nuclei, the microscopic optical-model calculations of Jeukenne, Lejeune and Mahaux and nuclear densities from Hartree-Fock-Bogoliubov calculations using the density-dependent force D1. For transitional nuclei deformation-dependent nuclear structure wave functions are employed to weigh the scattering potentials for different shapes and channels [fr

  8. Vertebroplasty reduces progressive ׳creep' deformity of fractured vertebrae.

    Science.gov (United States)

    Luo, J; Pollintine, P; Annesley-Williams, D J; Dolan, P; Adams, M A

    2016-04-11

    Elderly vertebrae frequently develop an "anterior wedge" deformity as a result of fracture and creep mechanisms. Injecting cement into a damaged vertebral body (vertebroplasty) is known to help restore its shape and stiffness. We now hypothesise that vertebroplasty is also effective in reducing subsequent creep deformations. Twenty-eight spine specimens, comprising three complete vertebrae and the intervening discs, were obtained from cadavers aged 67-92 years. Each specimen was subjected to increasingly-severe compressive loading until one of its vertebrae was fractured, and the damaged vertebral body was then treated by vertebroplasty. Before and after fracture, and again after vertebroplasty, each specimen was subjected to a static compressive force of 1kN for 1h while elastic and creep deformations were measured in the anterior, middle and posterior regions of each adjacent vertebral body cortex, using a 2D MacReflex optical tracking system. After fracture, creep in the anterior and central regions of the vertebral body cortex increased from an average 4513 and 885 microstrains, respectively, to 54,107 and 34,378 microstrains (both increases: Pcreep in the anterior and central cortex by 61% (P=0.006) and 66% (P=0.017) respectively. Elastic strains were reduced by less than half this amount. Results suggest that the beneficial effects of vertebroplasty on the vertebral body continue long after the post-operative radiographs. Injected cement not only helps to restore vertebral shape and elastic properties, but also reduces subsequent creep deformation of the damaged vertebra. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Rock mass deformation properties of closely jointed basalt

    International Nuclear Information System (INIS)

    Kim, K.; Cramer, M.L.

    1982-12-01

    The deformational behavior of the Columbia River basalt is being investigated as part of a comprehensive site characterization program intended to determine the feasibility of constructing a nuclear waste repository in basalt at Hanford, Washington. Direct field measurements were conducted in a 2-m cube of basalt to obtain truly representative rock mass deformation properties. Load was applied to the test block in three orthogonal directions through the use of flat jacks in two perpendicular planes and a cable anchor system in the third. This configuration allowed the block to be placed in a simulated triaxial stress state at stress levels up to 12.5 MPa. The deformation at the center of the test block was monitored through the use of an optical measurement system developed for this project. The results indicate that the vertically oriented columnar joints have a significant influence on the deformation behavior of the basalt. The modulus in the direction parallel to the column axis was approx. 30 GPa, while the modulus value perpendicular to the columns was approx. 20 GPa. Laboratory measurements of intact specimens taken from this area yielded a value of 80 GPa with no indication of anisotropy. Hysteresis was observed in all loading cycles, but was distinctly more pronounced perpendicular to the column axis, indicative of significant joint displacement in this direction. The results of this test represent the first true rock mass modulus data obtained in closely jointed rock on a large scale. These measurement methods have eliminated many of the ambiguities associated with borehole jacking and surface measurement techniques

  10. Optical analysis and alignment applications using the infrared Smartt interferometer

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Bolen, P.D.; Liberman, I.; Seery, B.D.

    1981-01-01

    The possibility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail

  11. Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation

    International Nuclear Information System (INIS)

    Yeo, U. J.; Supple, J. R.; Franich, R. D.; Taylor, M. L.; Smith, R.; Kron, T.

    2013-01-01

    .5 mm across algorithms for scenarios I to III, respectively. The greatest accuracy was exhibited by the original Horn and Schunck optical flow algorithm. In this case, for scenario III (erased FMs not contributing to driving the DIR calculation), the mean error was half that of the modified demons algorithm (which exhibited the greatest error), across all deformations. Some algorithms failed to reproduce the geometry at all, while others accurately deformed high contrast features but not low-contrast regions—indicating poor interpolation between landmarks.Conclusions: The accuracy of DIR algorithms was quantitatively evaluated using a tissue equivalent, mass, and density conserving DEFGEL phantom. For the model studied, optical flow algorithms performed better than demons algorithms, with the original Horn and Schunck performing best. The degree of error is influenced more by the magnitude of displacement than the geometric complexity of the deformation. As might be expected, deformation is estimated less accurately for low-contrast regions than for high-contrast features, and the method presented here allows quantitative analysis of the differences. The evaluation of registration accuracy through observation of the same high contrast features that drive the DIR calculation is shown to be circular and hence misleading

  12. Last results of MADRAS, a space active optics demonstrator

    Science.gov (United States)

    Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Devilliers, Christophe; Liotard, Arnaud; Lopez, Céline; Chazallet, Frédéric

    2017-11-01

    The goal of the MADRAS project (Mirror Active, Deformable and Regulated for Applications in Space) is to highlight the interest of Active Optics for the next generation of space telescope and instrumentation. Wave-front errors in future space telescopes will mainly come from thermal dilatation and zero gravity, inducing large lightweight primary mirrors deformation. To compensate for these effects, a 24 actuators, 100 mm diameter deformable mirror has been designed to be inserted in a pupil relay. Within the project, such a system has been optimized, integrated and experimentally characterized. The system is designed considering wave-front errors expected in 3m-class primary mirrors, and taking into account space constraints such as compactness, low weight, low power consumption and mechanical strength. Finite Element Analysis allowed an optimization of the system in order to reach a precision of correction better than 10 nm rms. A dedicated test-bed has been designed to fully characterize the integrated mirror performance in representative conditions. The test set up is made of three main parts: a telescope aberrations generator, a correction loop with the MADRAS mirror and a Shack-Hartman wave-front sensor, and PSF imaging. In addition, Fizeau interferometry monitors the optical surface shape. We have developed and characterized an active optics system with a limited number of actuators and a design fitting space requirements. All the conducted tests tend to demonstrate the efficiency of such a system for a real-time, in situ wave-front. It would allow a significant improvement for future space telescopes optical performance while relaxing the specifications on the others components.

  13. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    Science.gov (United States)

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.

  14. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...

  15. Microstructural evaluation of Ti-35Nb-7,5 T alloy deformed by cold rolling and annealed

    International Nuclear Information System (INIS)

    Giudice, M.L.C.; Hayama, A.O.F.; Button, S.T.; Caram, R.

    2010-01-01

    This work presents the main results of microstructural characterization of Ti- 35Nb-7.5Ta (% in weight) deformed by cold rolling and annealed. Samples were obtained by electric arc melting, heat treated at 1000 deg C for 8 hours and water quenched. Samples were deformed by cold rolling in multiple passes up to a maximum reduction of 84%. Deformed samples were encapsulated in quartz under vacuum and annealed at 600, 700 e 800 deg C, in variable times and water quenched. Characterization was carried out using light optical microscopy, X-ray diffraction, Vickers hardness test and acoustic emission measurements to determine the Young's modulus. The results show the orientation occurrence of the martensitic phase in relation to the cold rolling direction in deformed samples. In samples annealed at 600 deg C recovery is predominant and samples annealed at 800 deg C for 60 min are fully recrystallized. (author)

  16. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    Science.gov (United States)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  17. Impact of Type of Sport, Gender and Age on Red Blood Cell Deformability of Elite Athletes.

    Science.gov (United States)

    Tomschi, Fabian; Bloch, Wilhelm; Grau, Marijke

    2018-01-01

    Our objective was to detect possible differences in red blood cell (RBC) deformability of elite athletes performing different types of sports and being of different age and gender.182 athletes were included in this cross-sectional study. RBC deformability was measured using the laser-assisted optical rotational cell-analyzer. Maximal elongation index (EI  max ) and shear stress at half-maximum deformation (SS  1/2 ) were calculated. The ratio SS  1/2  /EI  max  (EI  Ratio ) was calculated with low values representing high RBC deformation. Hematocrit (Hct) and mean cellular volume (MCV) were determined in venous blood. Overall RBC deformability did not differ between male and female athletes but, when separated by age of the subjects, RBC deformability increased with age in male but not in female athletes. RBC deformability was lower in Combat sports compared other sport groups. Hct was higher in male compared to female athletes while no difference was observed for MCV. MCV and Hct increased with increasing age. A negative correlation was found between the EI  Ratio  and MCV and between EI  Ratio  and Hct. RBC deformability is influenced by age and endurance rate of the sport which suggests that the RBC system may adapt to changing conditions such as adolescence with the onset effects of sex hormones or physical exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; Grant, I.S.; England, J.G.; Fawcett, M.J.

    1984-01-01

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144 Sm and 154 Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  19. Mechanisms of submicron inclusion re-equilibration during host mineral deformation

    Science.gov (United States)

    Griffiths, Thomas; Habler, Gerlinde; Abart, Rainer; Rhede, Dieter; Wirth, Richard

    2014-05-01

    Both brittle and ductile deformation can facilitate re-equilibration of mineral inclusions. The presence of inclusions also influences stress and strain distribution in the host. The processes governing feedbacks between brittle deformation, ductile deformation, and inclusion re-equilibration have been studied using unique microstructures in Permian meta-pegmatite garnets from the Koralpe, Eastern Alps, Austria. Sampled almandine-spessartine garnets contain highly abundant submicron-sized inclusions, which originated during or subsequent to magmatic garnet growth. The Permian magmatic assemblages were affected by eclogite facies metamorphism during the Cretaceous tectono-metamorphic event. The meta-pegmatite garnet deformed crystal-plastically at this metamorphic stage (Bestmann et al. 2008) and the host-inclusion system was affected by partial recrystallization. Trails of coarser inclusions (1-10µm diameter) crosscut the magmatic submicron inclusion density zoning in the garnet, defining curviplanar geometrical surfaces in 3D. In 10-40µm broad 'bleaching zones' flanking inclusion trails, the original ≤1µm sized inclusions are not seen in the optical microscope or SEM, however inclusions <100nm are still abundant in TEM foils from these areas. From their microstructural characteristics it is inferred that the trails formed at sites of healed brittle cracks. FEG-microprobe data showed that inclusion-trails and associated bleaching zones can be formed isochemically, although some trails showed non-isochemical coarsening. In both cases no change in garnet major element composition was observed. EBSD mapping revealed two phenomena that were investigated by cutting targeted TEM foils. Firstly, bleaching zones are associated with systematic very low angle (ca. 0.5°) garnet lattice orientation changes along discrete boundaries. TEM foils transecting such a boundary show a lower concentration of dislocations than expected for the lattice rotation inferred from EBSD

  20. Quantitative Analyses of the Modes of Deformation in Engineering Thermoplastics

    Science.gov (United States)

    Landes, B. G.; Bubeck, R. A.; Scott, R. L.; Heaney, M. D.

    1998-03-01

    Synchrotron-based real-time small-angle X-ray scattering (RTSAXS) studies have been performed on rubber-toughened engineering thermoplastics with amorphous and semi-crystalline matrices. Scattering patterns are measured at successive time intervals of 3 ms were analyzed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample permits the total plastic strain to be concurrently computed. The plastic strain due to other deformation mechanisms (e.g., particle cavitation and macroscopic shear yield can be determined from the difference between the total and craze-derived plastic strains. The contribution from macroscopic shear deformation can be determined from video-based optical data measured simultaneously with the X-ray data. These types of time-resolved experiments result in the generation of prodigious quantities of data, the analysis of which can considerably delay the determination of key results. A newly developed software package that runs in WINDOWSa 95 permits the rapid analysis of the relative contributions of the deformation modes from these time-resolved experiments. Examples of using these techniques on ABS-type and QUESTRAa syndiotactic polystyrene type engineering resins will be given.

  1. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  2. An optical flow-based state-space model of the vocal folds.

    Science.gov (United States)

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  3. Numerical model of the influence function of deformable mirrors based on Bessel Fourier orthogonal functions

    International Nuclear Information System (INIS)

    Li Shun; Zhang Sijiong

    2014-01-01

    A numerical model is presented to simulate the influence function of deformable mirror actuators. The numerical model is formed by Bessel Fourier orthogonal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems. (research papers)

  4. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  5. Effects of Structural Deformations on Optical Properties of Tetrabenzoporphyrins: Free-Bases and Pd Complexes

    Science.gov (United States)

    Lebedev, Artem Y.; Filatov, Mikhail A.; Cheprakov, Andrei V.; Vinogradov, Sergei A.

    2009-01-01

    A recently developed method of synthesis of π-extended porphyrins made it possible to prepare a series of tetrabenzoporphyrins (TBP) with different numbers of meso-aryl substituents. The photophysical parameters of free-bases and Pd complexes of meso-unsubstituted TBP’s, 5,15-diaryl-TBP’s (Ar2TBP’s) and 5,10,15,20-tetraaryl-TBP’s (Ar4TBP’s) were measured. For comparison, similarly meso-arylsubstituted porphyrins fused with nonaromatic cyclohexeno-rings, i.e. Arn-tetracyclohexenoporphyrins (ArnTCHP’s, n = 0, 2, 4), were also synthesized and studied. Structural information was obtained by ab initio (DFT) calculations and X-ray crystallography. It was found that: 1) Free-base Ar4TBP’s are strongly distorted out-of-plane (saddled), possess broadened, red-shifted spectra, short excited-state lifetimes and low fluorescence quantum yields (τfl = 2–3 ns, ϕfl = 0.02–0.03). These features are characteristic of other nonplanar free-base porphyrins, including Ar4TCHP’s. 2) Ar2TBP free-bases possess completely planar geometries, although with significant in-plane deformations. These deformations have practically no effect on the singlet excited-state properties of Ar2TBP’s as compared to planar meso-unsubstituted TBP’s. Both types of porphyrins retain strong fluorescence (τfl = 10–12 ns, ϕfl = 0.3–0.4), and their radiative rate constants (kr) are 3–4 times higher than those of planar H2TCHP’s. 3) Nonplanar deformations dramatically enhance nonradiative decay of triplet states of regular Pd porphyrins. For example, planar PdTCHP phosphoresces with high quantum yield (ϕphos = 0.45, τphos = 1118 µs), while saddled PdPh4TCHP is practically nonemissive. In contrast, both ruffled and saddled PdArnTBP’s retain strong phosphorescence at ambient temperatures (PdPh2TBP: τphos = 496 µs, ϕphos = 0.15; PdPh4TBP: τphos = 258 µs, ϕphos = 0.08). It appears that π-extension is capable of counterbalancing deleterious effects of nonplanar

  6. Optical and Capacitive Alignment of ATLAS Muon Chambers for Calibration with Cosmic Rays

    CERN Document Server

    Stiller, G W

    2002-01-01

    The intrinsic resolution of each of the RasNiK monitors installed at the Cosmic-Ray Test-Facility - whether of the reference or of the in-plane alignment system - has been determined using the so called ``multiple image'' method. For both optical systems the resolution for displacements of optical elements along the optical axis is of the order of 100~$\\mu m$ and can therefore not be used to monitor deformations and displacements on the micrometer scale. The intrinsic resolution of the in-plane RasNiK monitors for optical element displacements perpendicular to the optical axis has been found to be better than 1~$\\mu m$ in agreement with previous studies. For the RasNiK monitors of the reference alignment system the intrinsic resolution for these kind of displacements was determined to be about 3~$\\mu m$. As individual chamber deformations and relative displacements between the reference chambers below a limit of 5~$\\mu m$ over a time of 20 hours can be neglected, one can conclude that the intrinsic resolution...

  7. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  8. Optical components of adaptive systems for improving laser beam quality

    Science.gov (United States)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  9. Mechanical stability of heat-treated nanoporous anodic alumina subjected to repetitive mechanical deformation

    Science.gov (United States)

    Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.

    2018-03-01

    We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.

  10. A silicon-nanowire memory driven by optical gradient force induced bistability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, B. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Cai, H., E-mail: caih@ime.a-star.edu.sg; Gu, Y. D.; Kwong, D. L. [Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Chin, L. K.; Ng, G. I.; Ser, W. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, J. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, Z. C. [School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Liu, A. Q., E-mail: eaqliu@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  11. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    Science.gov (United States)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  12. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    DEFF Research Database (Denmark)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa

    2017-01-01

    A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic......, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite...... formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during...

  13. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  14. Optical storage media based on fluorite activated crystals

    International Nuclear Information System (INIS)

    Mokienko, I.Yu.; Poletimov, A.E.; Shcheulin, A.S.

    1991-01-01

    Earlier studied mechanisms of photo- and thermotransformations of defects in pure and activated additively coloured crystals with fluorite structure are considered to suggest several methods of reversible optical recording of images, characterized by high resistance to high-power laser radiation and mechanical deformation

  15. Optical design methods, applications, and large optics; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19-21, 1988

    Science.gov (United States)

    Masson, Andre; Schulte In den Baeumen, J.; Zuegge, Hannfried

    1989-04-01

    Recent advances in the design of large optical components are discussed in reviews and reports. Sections are devoted to calculation and optimization methods, optical-design software, IR optics, diagnosis and tolerancing, image formation, lens design, and large optics. Particular attention is given to the use of the pseudoeikonal in optimization, design with nonsequential ray tracing, aspherics and color-correcting elements in the thermal IR, on-line interferometric mirror-deforming measurement with an Ar-ion laser, and the effect of ametropia on laser-interferometric visual acuity. Also discussed are a holographic head-up display for air and ground applications, high-performance objectives for a digital CCD telecine, the optics of the ESO Very Large Telescope, static wavefront correction by Linnik interferometry, and memory-saving techniques in damped least-squares optimization of complex systems.

  16. Improved Advanced Actuated Hybrid Mirrors Final Report CRADA No. TC02130.0

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ealey, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    This was a collaborative effort to develop and demonstrate an improved Advanced Actuated Hybrid Mirrors (AAHM) for commercial or Government purposes. The AAHM consists of a nanolaminate film replicating a precision optical surface bonded to a Silicon Carbide (SiC) substrate with active figure control capability. The goal of this project was to further the development of specific AAHM technologies. The intent of the CRADA was to combine the expertise of LLNL and NG Xinetics in the manufacture and test of a very high quality AAHM, incorporating lessons learned from earlier joint efforts.

  17. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718

    International Nuclear Information System (INIS)

    Wang, Y.; Shao, W.Z.; Zhen, L.; Zhang, X.M.

    2008-01-01

    Microstructure evolution during dynamic recrystallization (DRX) of superalloy 718 was studied by optical microscope and electron backscatter diffraction (EBSD) technique. Compression tests were performed at different strains at temperatures from 950 deg. C to 1120 deg. C with a strain rate of 10 -1 s -1 . Microstructure observations show that the recrystallized grain size as well as the fraction of new grains increases with the increasing temperature. A power exponent relationship is obtained between the dynamically recrystallized grain size and the peak stress. It is found that different nucleation mechanisms for DRX are operated in hot deformed superalloy 718, which is closely related to deformation temperatures. DRX nucleation and development are discussed in consideration of subgrain rotation or twinning taking place near the original grain boundaries. Particular attention is also paid to the role of continuous dynamic recrystallization (CDRX) at both higher and lower temperatures

  18. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    Science.gov (United States)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa; Burrows, Andrew; Alimadadi, Hossein

    2017-08-01

    A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of 900 MPa and elongation to fracture of 94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001} texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.

  19. Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy

    Science.gov (United States)

    Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj

    2009-04-01

    An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.

  20. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: Molecular dynamics study

    International Nuclear Information System (INIS)

    Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina

    2011-01-01

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.

  1. CubeSat Deformable Mirror Demonstration mission (DeMi)

    Science.gov (United States)

    Cahoy, K.; Marinan, A.; Kerr, C.; Novak, B.; Webber, M.; Kasdin, N. J.

    The high contrast requirement of 1010 needed to directly image an Earth-like exoplanet around a sun-like star at optical wavelengths requires space telescopes equipped with coronagraphs and wavefront control systems. Coronagraphs are needed to block the parent star's light and improve the ability of the system to detect photons that have reflected off of the exoplanet toward the observer. Wavefront control systems are needed to correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and ruin the desired contrast. The two key elements of wavefront control systems are (1) a way to detect the wavefront distortions (a wavefront sensor) and (2) a way to correct the distortions before the image plane (such as deformable mirrors, or DMs). In this paper, we investigate a compact and inexpensive CubeSat-based wavefront control testbed that can be used as a technology development precursor toward a larger mission.

  2. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  3. Dynamic Landslide Deformation Monitoring with Fiber Bragg Grating Sensors

    Science.gov (United States)

    Moore, J. R.; Gischig, V.; Button, E.; Loew, S.

    2009-12-01

    Fiber optic (FO) strain sensors are a promising new technology for in-situ landslide monitoring. General performance advantages include high resolution, fast sampling rate, and insensitivity to electrical disturbances. Here we describe a new FO monitoring system based on long-gage fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. We highlight the advantages and disadvantages of the system, describe relevant first results, and compare FO data to that from traditional instruments already installed on site. The Randa rock slope has been the subject of intensive research since its failure in 1991. Around 5 million cubic meters of rock remains unstable today, moving at rates up to 20 mm / year. Traditional in-situ monitoring techniques have been employed to understand the mechanics and driving forces of the currently unstable rock mass, however these investigations are limited by the resolution and low sampling rate of the sensors. The new FO monitoring system has micro-strain resolution and offers the capability to detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: fully-embedded borehole sensors encased in grout at depths of 38, 40, and 68 m, and surface extensometers spanning active tension cracks. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous measurements are logged every 5 minutes. Since installation in August 2008, the FO monitoring system has been operational 90% of the time. Time series deformation data show movement rates consistent with previous borehole extensometer surveys. Accelerated displacements following installation are likely related to long-term curing and dewatering of the grout. A number of interesting transients have been recorded, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new

  4. Investigation of shape memory of red blood cells using optical tweezers and quantitative phase microscopy

    Science.gov (United States)

    Cardenas, Nelson; Mohanty, Samarendra K.

    2012-03-01

    RBC has been shown to possess shape memory subsequent to shear-induced shape transformation. However, this property of RBC may not be generalized to all kinds of stresses. Here, we report our observation on the action of radiation pressure forces on RBC's shape memory using optical manipulation and quantitative phase microscopy (OMQPM). QPM, based on Mach-Zehnder interferrometry, allowed measurement of dynamic changes of shape of RBC in optical tweezers at different trapping laser powers. In high power near-infrared optical tweezers (>200mW), the RBC was found to deform significantly due to optical forces. Upon removal of the tweezers, hysteresis in recovering its original resting shape was observed. In very high power tweezers or long-term stretching events, shape memory was almost erased. This irreversibility of the deformation may be due to temperature rise or stress-induced phase transformation of lipids in RBC membrane.

  5. Estimation and control of large-scale systems with an application to adaptive optics for EUV lithography

    NARCIS (Netherlands)

    Haber, A.

    2014-01-01

    Extreme UltraViolet (EUV) lithography is a new technology for production of integrated circuits. In EUV lithographic machines, optical elements are heated by absorption of exposure energy. Heating induces thermoelastic deformations of optical elements and consequently, it creates wavefront

  6. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...... to measure deformation, in the form of applied pressure....

  7. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    lightwave may be expressed by a modulation amplitude ¯E(z,t) of the optical electric field. E(z,t). E(z,t) = 1. 2. ¯E(z ... the lightwaves is important to minimize the pulse deformation even in case of the digital formats. ...... Pure Appl. Math. 21, 467 ...

  8. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    Science.gov (United States)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  9. Deformation compensation in dynamic tomography; Compensation de deformations en tomographie dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Desbat, L. [Universite Joseph Fourier, UMR CNRS 5525, 38 - Grenoble (France); Roux, S. [Universite Joseph Fourier, TIMC-IMAG, In3S, Faculte de Medecine, 38 - Grenoble (France)]|[CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Grangeat, P. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2005-07-01

    This work is a contribution to the compensation of motion in tomography. New classes of deformation are proposed, that compensates analytically by an algorithm of a F.B.P. type reconstruction. This work makes a generalisation of the known results for affine deformations, in parallel geometry and fan-beam, to deformation classes of infinite dimension able to include strong non linearities. (N.C.)

  10. Nonlinear optical beam manipulation, beam combining, and atmospheric propagation

    International Nuclear Information System (INIS)

    Fischer, R.A.

    1988-01-01

    These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment

  11. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser

    International Nuclear Information System (INIS)

    Ye, Y.X.; Feng, Y.Y.; Lian, Z.C.; Hua, Y.Q.

    2014-01-01

    Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond (fs) laser has been characterized through optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experiments of ns laser shocking copper (Cu) and fs laser shocking aluminum (Al) were also conducted for comparison. Dislocations arranged in multiple forms, profuse twins and stacking faults (SFs) coexist in the fs laser shocked copper. At small strain condition, dislocation slip is the dominant deformation mode and small amount of SFs act as complementary mechanism. With strain increasing, profuse twins and SFs form to accommodate the plastic deformation. Furthermore, new formed SFs incline to locate around the old ones because the dislocation densities there are more higher. So there is a high probability for new SFs overlapping on old ones to form twins, or connecting old ones to lengthen them, which eventually produce the phenomena that twins connect with each other or twins connect with SFs. Strain greatly influences the dislocation density. Twins and SFs are more dependent on strain rate and shock pressure. Medium stacking fault energy (SFE) of copper helps to extend partial dislocations and provides sources for forming SFs and twins.

  12. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values advantages of the proposed optimized phase-variation methodology.

  13. In situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance

    Science.gov (United States)

    Sun, Yunna; Wang, Bo; Wang, Huiying; Wu, Kaifeng; Yang, Shengyong; Wang, Yan; Ding, Guifu

    2017-12-01

    The in situ measurement of TSVs deformation at different temperature is meaningful for learning more about the thermal deformation schemes of 3D TSVs in the microelectronic devices. An efficient and smart hotplate based on sheet resistance is designed for offering more heat, producing a uniform temperature distribution, relieving thermal stress and heat concentration issues, and reducing room space, which was optimized by the finite element method (FEM). The fabricated hotplate is efficient and smart (2.5 cm  ×  2.0 cm  ×  0.5 cm) enough to be located in the limited space during measuring. The thermal infrared imager was employed as the temperature sensor for monitoring the temperature distribution of TSVs sample. The 3D profilometry was adopted as the observer for TSVs profiles survey. The in situ 2D top surface profiles and 3D displacement profiles of TSVs sample at the different temperature were measured by 3D profilometer. The in situ average relative deformation and effective plastic deformation of the TSV sample were measured. With optical measurement method, 3D profilometry, the TSV sample can be tested repeatedly.

  14. Research on the Phase Aberration Correction with a Deformable Mirror Controlled by a Genetic Algorithm

    International Nuclear Information System (INIS)

    Yang, P; Hu, S J; Chen, S Q; Yang, W; Xu, B; Jiang, W H

    2006-01-01

    In order to improve laser beam quality, a real number encoding genetic algorithm based on adaptive optics technology was presented. This algorithm was applied to control a 19-channel deformable mirror to correct phase aberration in laser beam. It is known that when traditional adaptive optics system is used to correct laser beam wave-front phase aberration, a precondition is to measure the phase aberration information in the laser beam. However, using genetic algorithms, there is no necessary to know the phase aberration information in the laser beam beforehand. The only parameter need to know is the Light intensity behind the pinhole on the focal plane. This parameter was used as the fitness function for the genetic algorithm. Simulation results show that the optimal shape of the 19-channel deformable mirror applied to correct the phase aberration can be ascertained. The peak light intensity was improved by a factor of 21, and the encircled energy strehl ratio was increased to 0.34 from 0.02 as the phase aberration was corrected with this technique

  15. Optic nerve head biomechanics in aging and disease.

    Science.gov (United States)

    Downs, J Crawford

    2015-04-01

    This nontechnical review is focused upon educating the reader on optic nerve head biomechanics in both aging and disease along two main themes: what is known about how mechanical forces and the resulting deformations are distributed in the posterior pole and ONH (biomechanics) and what is known about how the living system responds to those deformations (mechanobiology). We focus on how ONH responds to IOP elevations as a structural system, insofar as the acute mechanical response of the lamina cribrosa is confounded with the responses of the peripapillary sclera, prelaminar neural tissues, and retrolaminar optic nerve. We discuss the biomechanical basis for IOP-driven changes in connective tissues, blood flow, and cellular responses. We use glaucoma as the primary framework to present the important aspects of ONH biomechanics in aging and disease, as ONH biomechanics, aging, and the posterior pole extracellular matrix (ECM) are thought to be centrally involved in glaucoma susceptibility, onset and progression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nano composite

    International Nuclear Information System (INIS)

    Akbari, B.; Bagheri, R.

    2012-01-01

    Polypropylene/montmorillonite nano composite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nano composite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD) and transmission optical microscopy (TOM) techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nano composite.

  17. q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

    OpenAIRE

    He, Jingsong; Li, Yinghua; Cheng, Yi

    2006-01-01

    Using the determinant representation of gauge transformation operator, we have shown that the general form of $au$ function of the $q$-KP hierarchy is a $q$-deformed generalized Wronskian, which includes the $q$-deformed Wronskian as a special case. On the basis of these, we study the $q$-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represent...

  18. Measuring in-vivo and in-situ ex-vivo the 3D deformation of the lamina cribrosa microstructure under elevated intraocular pressure

    Science.gov (United States)

    Wei, Junchao; Yang, Bin; Voorhees, Andrew P.; Tran, Huong; Brazile, Bryn; Wang, Bo; Schuman, Joel; Smith, Matthew A.; Wollstein, Gadi; Sigal, Ian A.

    2018-02-01

    Elevated intraocular pressure (IOP) deforms the lamina cribrosa (LC), a structure within the optic nerve head (ONH) in the back of the eye. Evidence suggests that these deformations trigger events that eventually cause irreversible blindness, and have therefore been studied in-vivo using optical coherence tomography (OCT), and ex-vivo using OCT and a diversity of techniques. To the best of our knowledge, there have been no in-situ ex-vivo studies of LC mechanics. Our goal was two-fold: to introduce a technique for measuring 3D LC deformations from OCT, and to determine whether deformations of the LC induced by elevated IOP differ between in-vivo and in-situ ex-vivo conditions. A healthy adult rhesus macaque monkey was anesthetized and IOP was controlled by inserting a 27- gauge needle into the anterior chamber of the eye. Spectral domain OCT was used to obtain volumetric scans of the ONH at normal and elevated IOPs. To improve the visibility of the LC microstructure the scans were first processed using a novel denoising technique. Zero-normalized cross-correlation was used to find paired corresponding locations between images. For each location pair, the components of the 3D strain tensor were determined using non-rigid image registration. A mild IOP elevation from 10 to 15mmHg caused LC effective strains as large as 3%, and about 50% larger in-vivo than in-situ ex-vivo. The deformations were highly heterogeneous, with substantial 3D components, suggesting that accurate measurement of LC microstructure deformation requires high-resolution volumes. This technique will help improve understanding of LC biomechanics and how IOP contributes to glaucoma.

  19. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    International Nuclear Information System (INIS)

    Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing

    2015-01-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)

  20. Crystal field and site deformation in spinels and pentavalent uranium compounds

    International Nuclear Information System (INIS)

    Drifford, M.; Soulie, E.

    1976-01-01

    Magnesium aluminates with different alumina contents have the spinel structure. The optical absorption spectra of doped spinel compounds (Cr 3+ , Ni 2+ , Co 2+ ) or E.S.R. spectra (Cr 3+ , Mn 2+ ) are used for the investigation of the position of the doping materials and the deformation of the crystal sites, and give information on the structural disorders. The local structural information given by the doping materials are compared with the mean structure parameters obtained from X-ray diffraction. The optical absorption spectrum and the principal components of the g tensor for UF 6 Cs and the thermal variation in the magnetic susceptibility for UF 8 Cs 3 and UF 8 (NH 4 ) are used for determining the parameters of the electron Hamiltonian for the f 1 configuration. A rather significant covalent aspect is evidenced for UF 6 Cs, in the framework of the model of Eisenstein and Pryce, this property being weaker for the other two complex compounds. The three parameters giving the crystal field at a deformed cubic site with Dsub(3d) symmetry in the Newman superposition model are noticeably weaker for the 8-coordination than for the 6-coordination. As for UF 8 Cs 3 and UF 8 (NH 4 ) 3 a calculation predicts an electronic levels with a very low excitation, at about 110 and 70cm -1 respectively [fr

  1. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    Science.gov (United States)

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  2. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  3. Application of nanostructural materials in electro optical measuring sets of big powers based on usage of optical effects

    Science.gov (United States)

    Salihov, Aidar I.; Tljavlin, Anfar Z.; Kusimov, Salavat M.

    2005-06-01

    Optically transparent nanostructural materials show to themselves a heightened interest owing to display in them the new physic mechanical properties. Variation of structure of the materials received by methods of intensive plastic deformation, results in variation of many fundamental parameters. Among them special interest was caused with variations of fundamental magnetic characteristics. One of them is the magnetization of saturation, which is usually structurally tolerant, but reflects changes in an atomic-crystal structure of solids. Even in the first probing of the transparent nanostructures, received by intensive deformation by torsion of samples, was found that the magnetization of saturation was revealed at room temperature in comparison with coarse-grained samples. High-power measuring devices are based on Faraday effect, representing itself rotation of a plane of polarization of linearly polarized light in optical active substances under action of a magnetic field. Application of nanostructural materials in the optical insulator, which is the main part of the measuring device, allows improving the measuring characteristics of instruments qualitatively. Brought losses in Faraday cell make 0,35 -0,89 dB instead of 0,7 - I,2 dB, and value of the backward losses makes not less than 62 dB instead of 55 dB. Undoubtedly, improvement of the given parameters allows making the measuring operations with the greater accuracy, reducing both absolute, and relative errors.

  4. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  5. Optical Design of COATLI: A Diffraction-Limited Visible Imager with Fast Guiding and Active Optics Correction

    Science.gov (United States)

    Fuentes-Fernández, J.; Cuevas, S.; Watson, A. M.

    2018-04-01

    We present the optical design of COATLI, a two channel visible imager for a comercial 50 cm robotic telescope. COATLI will deliver diffraction-limited images (approximately 0.3 arcsec FWHM) in the riz bands, inside a 4.2 arcmin field, and seeing limited images (approximately 0.6 arcsec FWHM) in the B and g bands, inside a 5 arcmin field, by means of a tip-tilt mirror for fast guiding, and a deformable mirror for active optics, both located on two optically transferred pupil planes. The optical design is based on two collimator-camera systems plus a pupil transfer relay, using achromatic doublets of CaF2 and S-FTM16 and one triplet of N-BK7 and CaF2. We discuss the effciency, tolerancing, thermal behavior and ghosts. COATLI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, Mexico, in 2018.

  6. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  7. Residual Stress Analysis Based on Acoustic and Optical Methods

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-02-01

    Full Text Available Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  8. Analysis of Non-Uniform Gain for Control of a Deformable Mirror in an Adaptive-Optics System

    National Research Council Canada - National Science Library

    Vitayaudom, Kevin P

    2008-01-01

    The objective of this research was to develop and experimentally verify the use of spatially varying gain maps on the servo-loop controller of a deformable mirror for improvements in the performance...

  9. 4th International Workshop on Adaptive Optics for Industry and Medicine

    CERN Document Server

    Wittrock, Ulrich

    2005-01-01

    This book treats the development and application of adaptive optics for industry and medicine. The contributions describe recently developed components for adaptive-optics systems such as deformable mirrors, wavefront sensors, and mirror drivers as well as complete adaptive optical systems and their applications in industry and medicine. Applications range from laser-beam forming and adaptive aberration correction for high-power lasers to retinal imaging in ophthalmology. The contributions are based on presentations made at the 4th International Workshop on Adaptive Optics in Industry and Medicine which took place in Münster, Germany, in October 2003. This highly successful series of workshops on adaptive optics started in 1997 and continues with the 5th workshop in Beijing in 2005.

  10. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    Science.gov (United States)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  11. Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems

    National Research Council Canada - National Science Library

    Schgallis, Richard J

    2007-01-01

    Phase Diversity Wavefront Sensing (PD WFS) is a wavefront reconstruction technique used in adaptive optics, which takes advantage of the curvature conjugating analog physical properties of a deformable mirror (MMDM or Bi-morph...

  12. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  13. Effect of deformation temperature on niobium clustering, precipitation and austenite recrystallisation in a Nb–Ti microalloyed steel

    International Nuclear Information System (INIS)

    Kostryzhev, Andrii G.; Al Shahrani, Abdullah; Zhu, Chen; Ringer, Simon P.; Pereloma, Elena V.

    2013-01-01

    The effect of deformation temperature on Nb solute clustering, precipitation and the kinetics of austenite recrystallisation were studied in a steel containing 0.081C–0.021Ti–0.064 Nb (wt%). Thermo-mechanical processing was carried out using a Gleeble 3500 simulator. The austenite microstructure was studied using a combination of optical microscopy, transmission electron microscopy, and atom probe microscopy, enabling a careful characterisation of grain size, as well as Nb-rich clustering and precipitation processes. A correlation between the austenite recrystallisation kinetics and the chemistry, size and number density of Nb-rich solute atom clusters, and NbTi(C,N) precipitates was established via the austenite deformation temperature. Specifically, we have determined thresholds for the onset of recrystallisation: for deformation levels above 75% and temperatures above 825 °C, Nb atom clusters <8 nm effectively suppressed austenite recrystallisation

  14. Deformation of second and third quantization

    Science.gov (United States)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  15. Deformations of the Almheiri-Polchinski model

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2017-03-31

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS{sub 2} metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  16. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results

    Science.gov (United States)

    Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.

    2014-07-01

    The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.

  17. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  18. Rotary deformity in degenerative spondylolisthesis

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul

    1994-01-01

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected

  19. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  20. Fine grained 304 ASS processed by a severe plastic deformation and subsequent annealing; microstructure and mechanical properties evaluation

    Science.gov (United States)

    Salout, Shima Ahmadzadeh; Shirazi, Hasan; Nili-Ahmadabadi, Mahmoud

    2018-01-01

    The current research is an attempt to study the effect of a novel severe plastic deformation technique so called "repetitive corrugation and straightening by rolling" (RCSR) and subsequent annealing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. In this study, RCSR process was carried out at 200 °C on the 304 austenitic stainless steel (above Md30 temperature that is about 50 °C for this stainless steel) in order to avoid the formation of martensite phase when a high density of dislocations was introduced into the austenite phase and also high density of mechanical twins was induced in the deformed 304 austenitic stainless steel. Because of relationship between deformation temperature, stacking fault energy (SFE) and mechanisms of deformation. Thereafter subsequently, annealing treatment was applied into deformed structure in order to refine the microstructure of 304 stainless s teel. The specimens were examined by means of optical microscopy (OM), scanning electron microscopy (SEM), tensile and micro-hardness tests. The results indicate that by increasing the cycles of RCSR process (increasing applied strain), further mechanical twins are induced, the hardness and in particular, the yield stress of specimens have been increased.

  1. Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; Coughlan, Hannah D.; Darmanin, Connie; Johnson, Brett C.; Harder, Ross; Clark, Jesse N.; Balaur, Eugeniu; Abbey, Brian

    2017-01-01

    The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.

  2. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  3. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    Science.gov (United States)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  4. Deforming tachyon kinks and tachyon potentials

    International Nuclear Information System (INIS)

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  5. The effect of hot deformation on the bainite transformation of a working tool steel; Efeito da deformacao a quente sobre a transformacao bainitica de um aco ferramenta

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Lima, Ricardo F. de; Carvalho, Miguel A.; Nogueira, Marcos A.S. [Acos Villares SA, Rio de Janeiro, RJ (Brazil)

    1989-12-31

    The effect of hot deformation of austenite on its isothermal transformation at 400 degrees Celsius for a hot working steel has been investigated. The degrees of transformation was varied and the results were analysed by optical metallography. Increasing the deformation, the bainite nucleation occurs in twins and grain boundaries, and also inside the austenitic grains. (author). 10 refs., 8 figs.

  6. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  7. Formation process of lamella structures by deformation in an Fe-Mn-Si-Cr-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Kikuchi, T.; Kajiwara, S.; Tomota, Y.

    1995-01-01

    For Fe-Mn-Si-Cr-Ni shape memory alloys, it was previously found by HREM study that the formation of the nanometric lamella structures consisting of f.c.c. and h.c.p. phase is very important to exhibit good shape memory effect. In the present work, the formation process of such lamella structures has been studied in detail. The results are as follows. The transformation is initiated by random formation of extremely thin martensite plates with 1-2 nm width and then these plates are clustered and some of them coalesce to form thicker martensite plates with increasing deformation. The clustered regions are 400-600 nm wide and will correspond to the above mentioned lamella structures. These clustered regions are considered also to correspond to the thinnest martensite plate observable with optical microscope. In the optical microscopic scale, the thin martenite plates with the smallest width are formed rather uniformly in an austenite grain, and with further increasing deformation, they are clustered and coalesce into thicker plates with 3-8 μm width. (orig.)

  8. Static softening following multistage hot deformation of 7150 aluminum alloy: Experiment and modeling

    International Nuclear Information System (INIS)

    Jiang, Fulin; Zurob, Hatem S.; Purdy, Gary R.; Zhang, Hui

    2015-01-01

    Previous studies have demonstrated that the static softening kinetics of 7150 aluminum alloy showed typical sigmoidal behavior at 400 °C and softening plateaus at 300 °C (F.L. Jiang, et al., Mater. Sci. Eng. A, vol. 552, 2012, pp. 269–275). In present work, the static softening mechanisms, the microstructural evolution during post-deformation holding was studied by optical microscopy, scanning electron microscope, electron back-scattered diffraction and transmission electron microscopy. It was demonstrated that recrystallization is essentially absent during post-deformation holding, and that static recovery was the main contribution to static softening. Strain induced precipitation and coarsening caused softening plateaus at 300 °C. In order to better understand the static softening mechanism, physically-based modeling, which integrated recovery and multicomponent particle coarsening modeling, was employed to rationalize the experimental results.

  9. Towards high velocity deformation characterisation of metals and composites using Digital Image Correlation

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken; Berggreen, Christian; Boyd, S.W

    2010-01-01

    images and then extracting deformation data using Digital Image Correlation (DIC) from tensile testing in the intermediate strain rate regime available with the test machines. Three different materials, aluminium alloy 1050, S235 steel and glass fibre reinforced plastic (GFRP) were tested at different......Characterisation of materials subject to high velocity deformation is necessary as many materials behave differently under such conditions. It is particularly important for accurate numerical simulation of high strain rate events. High velocity servo-hydraulic test machines have enabled material...... testing in the strain rate regime from 1 – 500 ε/s. The range is much lower than that experienced under ballistic, shock or impact loads, nevertheless it is a useful starting point for the application of optical techniques. The present study examines the possibility of using high speed cameras to capture...

  10. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    Science.gov (United States)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  11. VLT deformable secondary mirror: integration and electromechanical tests results

    Science.gov (United States)

    Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.

    2012-07-01

    The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.

  12. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  13. Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System

    Science.gov (United States)

    2016-12-01

    492 DM. The quarter wave plates polarize the light so that as it reflects off the DM, the light is then redirected at the beam splitter to the one...1  II.  SPACE-BASED TELESCOPE DESIGN CONSIDERATIONS .......................3  A.  ADAPTIVE OPTICS...3  B.  DESIGN CONSTRAINTS

  14. Effect of alloy deformation on the average spacing parameters of non-deforming particles

    International Nuclear Information System (INIS)

    Fisher, J.; Gurland, J.

    1980-02-01

    It is shown on the basis of stereological definitions and a few simple experiments that the commonly used average dispersion parameters, area fraction (A/sub A/)/sub β/, areal particle density N/sub Aβ/ and mean free path lambda/sub α/, remain invariant during plastic deformation in the case of non-deforming equiaxed particles. Directional effects on the spacing parameters N/sub Aβ/ and lambda/sub α/ arise during uniaxial deformation by rotation and preferred orientation of nonequiaxed particles. Particle arrangement in stringered or layered structures and the effect of deformation on nearest neighbor distances of particles and voids are briefly discussed in relation to strength and fracture theories

  15. Strength and structure during hot deformation of nickel-base superalloys

    International Nuclear Information System (INIS)

    Ribeiro, N.D.; Sellars, C.M.

    1984-01-01

    The effect of deformational variables on the flow stress and microstructure developed by plane strain compression testing and experimental rolling of three otherwise well characterized nickel-base super alloys, Nimonic 80A, Nimonic 90 and Waspaloy are presented. Rolled or tested samples were sectioned longitudinally at mid-width and were prepared for optical metallography. X-ray analysis of particles observed in several samples was carried out on polished and lightly etehed surfaces using a diffractometer with CoKα radiation. For other samples, energy dispersive x-ray analysis was also carried out in a scanning microscope. (E.G.) [pt

  16. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  17. X-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profile

    International Nuclear Information System (INIS)

    Spiga, Daniele; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco

    2013-01-01

    X-ray mirrors with high focusing performances are in use in both mirror modules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geometrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the computation can be performed via a ray-tracing routine, and, under opportune assumptions, the focal spot profile (the Point Spread Function, PSF) can even be predicted analytically. The advantage of this approach is that the analytical relation can be reversed; i.e., from the desired PSF the required mirror profile can be computed easily, thereby avoiding the use of complex and time-consuming numerical codes. The method can also be suited in the case of spatially inhomogeneous beam intensities, as commonly experienced at synchrotrons and FELs. In this work we expose the analytical method and the application to the beam shaping problem

  18. Relative hardness measurement of soft objects by a new fiber optic sensor

    Science.gov (United States)

    Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran

    2010-06-01

    The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.

  19. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups

    Science.gov (United States)

    Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-03-01

    The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.

  20. Deformation-induced crystallographic-preferred orientation of hcp-iron: An experimental study using a deformation-DIA apparatus

    Science.gov (United States)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo

    2018-05-01

    Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the and axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the and axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.

  1. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  2. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  3. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  4. Applying simulation to optimize plastic molded optical parts

    Science.gov (United States)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  5. Thorax deformity, joint hypermobility and anxiety disorder

    International Nuclear Information System (INIS)

    Gulsun, M.; Dumlu, K.; Erbas, M.; Yilmaz, Mehmet B.; Pinar, M.; Tonbul, M.; Celik, C.; Ozdemir, B.

    2007-01-01

    Objective was to evaluate the association between thorax deformities, panic disorder and joint hypermobility. The study includes 52 males diagnosed with thorax deformity, and 40 healthy male controls without thorax deformity, in Tatvan Bitlis and Isparta, Turkey. The study was carried out from 2004 to 2006. The teleradiographic and thoracic lateral images of the subjects were evaluated to obtain the Beighton scores; subjects psychiatric conditions were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1), and the Hamilton Anxiety Scale (HAM-A) was applied in order to determine the anxiety levels. Both the subjects and controls were compared in sociodemographic, anxiety levels and joint mobility levels. In addition, males with joint hypermobility and thorax deformity were compared to the group with thorax deformity without joint hypermobility. A significant difference in HAM-A scores was found between the groups with thorax deformity and without. In addition, 21 subjects with thorax deformity met the joint hypermobility criteria in the group with thorax deformity and 7 subjects without thorax deformity met the joint hypermobility criteria in the group without thorax deformity, according to Beighton scoring. The Beighton score of subjects with thorax deformity were significantly different from those of the group without deformity. Additionally, anxiety scores of the males with thorax deformity and joint hypermobility were found higher than males with thorax deformity without joint hypermobility. Anxiety disorders, particularly panic disorder, have a significantly higher distribution in males subjects with thorax deformity compared to the healthy control group. In addition, the anxiety level of males with thorax deformity and joint hypermobility is higher than males with thorax deformity without joint hypermobility. (author)

  6. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  7. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  8. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  9. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  10. Research on the compensation of laser launch optics to improve the performance of the LGS spot.

    Science.gov (United States)

    Liu, Jie; Wang, Jianli; Wang, Yuning; Tian, Donghe; Zheng, Quan; Lin, Xudong; Wang, Liang; Yang, Qingyun

    2018-02-01

    To improve the beam quality of the uplink laser, a 37 channel piezo-ceramic deformable mirror was inserted into the laser launch optics to compensate the static aberrations. An interferometer was used as the calibration light source as well as the wavefront sensor to perform closed-loop correction for the moment. About 0.38λ root mean square (rms) aberrations, including the deformable mirror's initial figure error, were compensated, and the residual error was less than 0.07λ rms. Field observations with a 2 m optical telescope demonstrated that the peak intensity value of the laser guide star (LGS) spot increased from 5650 to 7658, and the full width at half-maximum (FWHM) size reduced from 4.07 arcseconds to 3.52 arcseconds. With the compensation, an improved guide star spot can be obtained, which is crucial for the adaptive optics systems of ground-based large telescopes.

  11. Nanomechanical characterization of adaptive optics components in microprojectors

    International Nuclear Information System (INIS)

    Palacio, Manuel; Bhushan, Bharat

    2010-01-01

    Compact microprojectors are being developed for information display in mobile electronic devices. A key component of the microprojector is the green laser package, which consists of an adaptive optics component with a drive mechanism. A crucial concern is the mechanical wear of key drive mechanism components, such as the carbon fiber reinforced polymer (CFRP) driving rod, the Zn alloy body and the stainless steel friction plate, after prolonged operation. Since friction and wear are dependent on the mechanical properties, nanoindentation experiments were conducted on these drive mechanism components using a depth-sensing nanoindenter at room and elevated temperatures up to 100 °C. The hardness and elastic modulus of all the materials studied decrease at increasing test temperatures. From plasticity index analysis, a correlation between the tendency for plastic deformation and the mechanical properties was obtained. Nanoscratch studies were also conducted in order to simulate wear, as well as examine the scratch resistance and deformation modes of these materials, where it was found that the CFRP rod exhibited the highest scratch resistance. The CFRP rod undergoes mostly brittle deformation, while the Zn alloy body and friction plate undergo plastic deformation.

  12. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  13. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  14. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    Science.gov (United States)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  15. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  16. Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope.

    Science.gov (United States)

    Mercatelli, Raffaella; Ratto, Fulvio; Centi, Sonia; Soria, Silvia; Romano, Giovanni; Matteini, Paolo; Quercioli, Franco; Pini, Roberto; Fusi, Franco

    2013-10-21

    In this paper we report on a new use for dark-field microscopy in order to retrieve two-dimensional maps of optical parameters of a thin sample such as a cryptograph, a histological section, or a cell monolayer. In particular, we discuss the construction of quantitative charts of light absorbance and scattering coefficients of a polyvinyl alcohol film that was embedded with gold nanorods and then etched using a focused mode-locked Ti:Sapphire oscillator. Individual pulses from this laser excite plasmonic oscillations of the gold nanorods, thus triggering plastic deformations of the particles and their environment, which are confined within a few hundred nm of the light focus. In turn, these deformations modify the light absorbance and scattering landscape, which can be measured with optical resolution in a dark-field microscope equipped with an objective of tuneable numerical aperture. This technique may prove to be valuable for various applications, such as the fast readout of optically encoded data or to model functional interactions between light and biological tissue at the level of cellular organelles, including the photothermolysis of cancer.

  17. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  18. SU-E-J-42: Customized Deformable Image Registration Using Open-Source Software SlicerRT

    Energy Technology Data Exchange (ETDEWEB)

    Gaitan, J Cifuentes; Chin, L; Pignol, J [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Kirby, N; Pouliot, J [UC San Francisco, San Francisco, CA (United States); Lasso, A; Pinter, C; Fichtinger, G [Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: SlicerRT is a flexible platform that allows the user to incorporate the necessary images registration and processing tools to improve clinical workflow. This work validates the accuracy and the versatility of the deformable image registration algorithm of the free open-source software SlicerRT using a deformable physical pelvic phantom versus available commercial image fusion algorithms. Methods: Optical camera images of nonradiopaque markers implanted in an anatomical pelvic phantom were used to measure the ground-truth deformation and evaluate the theoretical deformations for several DIR algorithms. To perform the registration, full and empty bladder computed tomography (CT) images of the phantom were obtained and used as fixed and moving images, respectively. The DIR module, found in SlicerRT, used a B-spline deformable image registration with multiple optimization parameters that allowed customization of the registration including a regularization term that controlled the amount of local voxel displacement. The virtual deformation field at the center of the phantom was obtained and compared to the experimental ground-truth values. The parameters of SlicerRT were then varied to improve spatial accuracy. To quantify image similarity, the mean absolute difference (MAD) parameter using Hounsfield units was calculated. In addition, the Dice coefficient of the contoured rectum was evaluated to validate the strength of the algorithm to transfer anatomical contours. Results: Overall, SlicerRT achieved one of the lowest MAD values across the algorithm spectrum, but slightly smaller mean spatial errors in comparison to MIM software (MIM). On the other hand, SlicerRT created higher mean spatial errors than Velocity Medical Solutions (VEL), although obtaining an improvement on the DICE to 0.91. The large spatial errors were attributed to the poor contrast in the prostate bladder interface of the phantom. Conclusion: Based phantom validation, SlicerRT is capable of

  19. q-Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  20. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  1. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  2. q-deformations of noncompact Lie (super-) algebras: The examples of q-deformed Lorentz, Weyl, Poincare' and (super-) conformal algebras

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1992-01-01

    We review and explain a canonical procedure for the q-deformation of the real forms G of complex Lie (super-) algebras associated with (generalized) Cartan matrices. Our procedure gives different q-deformations for the non-conjugate Cartan subalgebras of G. We give several in detail the q-deformed Lorentz and conformal (super-) algebras. The q-deformed conformal algebra contains as a subalgebra a q-deformed Poincare algebra and as Hopf subalgebras two conjugate 11-generator q-deformed Weyl algebras. The q-deformed Lorentz algebra in Hopf subalgebra of both Weyl algebras. (author). 24 refs

  3. Nuclear moments and deformation changes in the lightest Pt isotopes measured by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J; Duong, H T; Genevey, J; Girod, M; Huber, G; Ibrahim, F; Krieg, M; Le Blanc, F; Lee, J K P; Obert, J; Oms, J; Peru, S; Pinard, J; Putaux, J C; Sauvage, J; Sebastian, V; Zemlyanoi, S G; Forkel-Wirth, Doris; Lettry, Jacques

    1999-01-01

    Laser spectroscopy measurements are performed with the lightest neutron-deficient platinum isotopes using the experimental setup COMPLIS installed at the ISOLDE-Booster facility. The hyperfine spectra of /sup 182-178/Pt and /sup 183m/Pt are recorded for the first time from the optical transition 5d/sup 9/6s/sup 3/D/sub 3/ to 5d/sup 9/6p/sup 3/P/sub 2/. The variation in the mean-square charge radius of these nuclei and the magnetic and quadrupole (for I>or=1) moments of the odd isotope nuclei are found. A large deformation change between the /sup 183g/Pt and /sup 183m/Pt nuclei, quite large inverted odd-even staggering of the charge radius around the neutron midshell N=104, and a nuclear deformation drop in the region A=179 are revealed. All the results are discussed in terms of nuclear shape variation and are compared with the results of Hartree-Fock- Bogoliubov calculations involving the Gogny force. Comparison of the deformation measured from /sup 183g, m/Pt to the odd-odd isotone /sup 184g, m/Au shows that...

  4. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    International Nuclear Information System (INIS)

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travère, J. M.; Thellier, C.; Fermé, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-01-01

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  5. Distributed Fiber Optic Sensors For The Monitoring Of A Tunnel Crossing A Landslide

    Science.gov (United States)

    Minardo, Aldo; Picarelli, Luciano; Zeni, Giovanni; Catalano, Ester; Coscetta, Agnese; Zhang, Lei; DiMaio, Caterina; Vassallo, Roberto; Coviello, Roberto; Macchia, Giuseppe Nicola Paolo; Zeni, Luigi

    2017-04-01

    Optical fiber distributed sensors have recently gained great attention in structural and environmental monitoring due to specific advantages because they share all the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], but also offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over long distances, without any added devices. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C. These sensors have already been employed in static and dynamic monitoring of a variety of structures resulting able to identify and localize many kind of failures [2,3,4]. This paper deals with the application of BOTDA to the monitoring of the deformations of a railway tunnel (200 m long) constructed in the accumulation of Varco d'Izzo earthflow, Potenza city, in the Southern Italian Apennine. The earthflow, which occurs in the tectonized clay shale formation called Varicoloured Clays, although very slow, causes continuous damage to buildings and infrastructures built upon or across it. The railway tunnel itself had to be re-constructed in 1992. Since then, the Italian National Railway monitored the structure by means of localized fissure-meters. Recently, thanks to a collaboration with the rail Infrastructure Manager (RFI), monitoring of various zones of the landslide including the tunnel is based on advanced systems, among which the optical fiber distributed sensors. First results show how the sensing optical fiber cable is able

  6. Visualization of Longitudinal and Transverse Components of Strongly Focused Optical Field by means of Photo-Reactive Azopolymers

    Directory of Open Access Journals (Sweden)

    Kharitonov A.V.

    2015-01-01

    Full Text Available Most important problems in modern photonics are fabrication, visualization and characterization of nanomaterials at optical frequencies. A number of optical techniques uses tightly focused laser beams to access longitudinal electromagnetic fields, which are directed towards the wave vector. In this Letter, the distribution of transverse and longitudinal optical fields in tightly focused laser beams, polarized in a new fashion, is investigated. Polarization dependent fingerprints of transverse and longitudinal optical fields are experimentally captured by means of photoinduced surface deformations in azobenzene polymer thin films.

  7. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    Science.gov (United States)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with {010} slip. The deformation bands are unlike curved

  8. Microbending losses in multimode optical fibers

    International Nuclear Information System (INIS)

    Hussain, A.; Mudassar, A.A.; Hamza, M.Y.; Ikram, M.

    2003-01-01

    Microbending losses of optical fiber have been studied for different amplitude and shape of the deformer. Experimental results show that grooves of angel 60 degree cause more losses as compared to the grooves 90 degree. Intensity modulation induced by micro bends is considered as transudation mechanism for detecting environmental changes such as pressure, temperature, acceleration and magnetic and electric fields. An accelerometer has been designed on this principle and tested up to the acceleration of 65g. (author)

  9. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. On infinitesimal conformai deformations of surfaces

    Directory of Open Access Journals (Sweden)

    Юлия Степановна Федченко

    2014-11-01

    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  11. Online interferometric study of viscoelastic rupture and necking deformation of as-spun (iPP) fibres due to creep process.

    Science.gov (United States)

    Sokkar, Taha; El-Farahaty, Kermal; Azzam, Amira

    2015-01-01

    Creep deformation under constant load leads to rupture when the polymer chains can no longer separate and accommodate the load. This fracture phenomenon is investigated interferometrically. The creep behaviour of as-spun isotactic Polypropylene (iPP) fibres is studied at different stresses, different initial lengths and different radii. The creep rate, which defines the velocity of the creep deformation and the dimensional stability of the material, is studied. The failure time and stress of iPP due to creep process is determined. The necking deformation was in situ detected during creep process. The mean refractive indices (n(P) andn⊥) profiles of iPP fibres were determined at different positions along the fibre axis before and after necking. The relation between the creep behaviour and different optical and structural parameters is investigated. Microinterferograms are given for illustration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  13. Structural evolution of a deformed Σ=9 (122) grain boundary in silicon. A high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Putaux, Jean-Luc

    1991-01-01

    This research thesis addresses the study by high resolution electron microscopy of the evolution of a silicon bi-crystal under deformation at different temperatures. The author notably studied the structural evolution of the boundary as well as that of grains at the vicinity of the boundary. Two observation scales have been used: the evolution of sub-structures of dislocations induced by deformation in grains and in boundary, and the structure of all defects at an atomic scale. After a presentation of experimental tools (the necessary perfect quality of the electronic optics is outlined), the author recalls some descriptive aspects of grain boundaries (geometric network concepts to describe coinciding networks, concepts of delimiting boundaries and of structural unit to describe grain boundary atomic structure), recalls the characteristics of the studied bi-crystal, and the conditions under which it is deformed. He presents the structures of all perfectly coinciding boundaries, describes defects obtained by deformation at the vicinity of the boundary, describes the entry of dissociated dislocations into the boundaries, and discusses the characterization of boundary dislocations (the notion of Burgers vector is put into question again), and the atomic mechanism of displacement of dislocations in boundaries [fr

  14. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  15. General analysis of slab lasers using geometrical optics.

    Science.gov (United States)

    Chung, Te-yuan; Bass, Michael

    2007-02-01

    A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.

  16. Optical model calculations with the code ECIS95

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B V [Departamento de Fisica, Instituto Tecnologico da Aeronautica, Centro Tecnico Aeroespacial (Brazil)

    2001-12-15

    The basic features of elastic and inelastic scattering within the framework of the spherical and deformed nuclear optical models are discussed. The calculation of cross sections, angular distributions and other scattering quantities using J. Raynal's code ECIS95 is described. The use of the ECIS method (Equations Couplees en Iterations Sequentielles) in coupled-channels and distorted-wave Born approximation calculations is also reviewed. (author)

  17. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  18. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  19. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  20. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    Science.gov (United States)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  1. Deformation and fracture of solid-state materials field theoretical approach and engineering applications

    CERN Document Server

    Yoshida, Sanichiro

    2015-01-01

    This book introduces a comprehensive theory of deformation and fracture to engineers and applied scientists. The author explains the gist of local symmetry (gauge invariance) intuitively so that engineers and applied physicists can digest it easily, rather than describing physical or mathematical details of the principle. Applications of the theory to practical engineering are also described, such as nondestructive testing, in particular, with the use of an optical interferometric technique called ESPI (Electronic Speckle-Pattern Interferometry). The book provides information on how to apply physical concepts to engineering applications. This book also: ·         Describes a highly original way to reveal loading hysteresis of a given specimen ·         Presents a fundamentally new approach to deformation and fracture, which offers potential for new applications ·         Introduces the unique application of Electric Speckle-Pattern Interferometry—reading fringe patterns to connect...

  2. Asymmetry of the water flux induced by the deformation of a nanotube

    International Nuclear Information System (INIS)

    He Jun-Xia; Lu Hang-Jun; Wu Feng-Min; Nie Xue-Chuan; Zhou Xiao-Yan; Chen Yan-Yan; Liu Yang

    2012-01-01

    The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water. At the nanoscale, it is still unclear whether water flows more easily along the convergent direction or the divergent one, and whether a hourglass shape is more convenient than a funnel shape for water molecules to pass through a nanotube. Here, we present an approach to explore these questions by changing the deformation position of a carbon nanotube. The results of our molecular dynamics simulation indicate that the water flux through the nanotube changes significantly when the deformation position moves away from the middle region of the tube. Different from the macroscopic level, we find water flux asymmetry (water flows more easily along the convergent direction than along the divergent one), which plays a key role in a nano water pump driven by a ratchet-like mechanism. We explore the mechanism and calculate the water flux by means of the Fokker—Planck equation and find that our theoretical results are well consistent with the simulation results. Furthermore, the simulation results demonstrate that the effect of deformation location on the water flux will be reduced when the diameter of the nanochannel increases. These findings are helpful for devising water transporters or filters based on carbon nanotubes and understanding the molecular mechanism of biological channels. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. The Art of Optical Aberrations

    Science.gov (United States)

    Wylde, Clarissa Eileen Kenney

    Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.

  4. Quantifying the Erlenmeyer flask deformity

    Science.gov (United States)

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  5. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation

    International Nuclear Information System (INIS)

    Wang, T.S.; Hou, R.J.; Lv, B.; Zhang, M.; Zhang, F.C.

    2007-01-01

    The microstructure evolution and the deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation at room temperature have been studied as a function of the reduction in the range of 20-60%. Experimental results show that with the reduction increasing the microstructure of the deformed sample changes from dislocation substructures into the dominant twins plus dislocations. This suggests that the plastic deformation mechanism changes from the dislocation slip to the dominant deformation twinning. The minimum reduction for deformation twins starting is estimated to be at between 30 and 40%. With the reduction further increases to more than 40%, the deformation twinning is operative and the thickness of deformation twins gradually decreases to nanoscale and shear bands occur. These high-density twins can be curved by the formation of shear bands. In addition, both transmission electron microscopy and X-ray diffraction examinations confirm the inexistence of deformation-induced martensites in these deformed samples

  6. Active optics: off axis aspherics generation for high contrast imaging

    Science.gov (United States)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism

  7. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  8. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  9. Interactive Character Deformation Using Simplified Elastic Models

    NARCIS (Netherlands)

    Luo, Z.

    2016-01-01

    This thesis describes the results of our research into realistic skin and model deformation methods aimed at the field of character deformation and animation. The main contributions lie in the properties of our deformation scheme. Our approach preserves the volume of the deformed object while

  10. Shape oscillations of microparticles on an optical microscope stage.

    Science.gov (United States)

    Zhu, Z M; Apfel, R E

    1985-11-01

    A modulated acoustic radiation pressure technique to produce quadrupole shape oscillations of drops ranging in diameter from 50-220 micron has been used by us. These drops have been suspended by acoustic levitation in a small chamber mounted on a stage of an optical microscope, which allowed easy viewing. The fission of drops and the deformation of sea urchin eggs were also observed.

  11. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  12. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  13. A time series deformation estimation in the NW Himalayas using SBAS InSAR technique

    Science.gov (United States)

    Kumar, V.; Venkataraman, G.

    2012-12-01

    deformation in the year after the Landers earthquake. Nature 1994, 369, 227-230. [2] Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002). A new algorithm for surface deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40 (11), 2375-2383. [3] GEOLOGICAL SURVEY OF INDIA (GSI), (1999) Inventory of the Himalayan glaciers. Special publication, vol. 34, pp. 165-168. [4] Chen, C.W., and Zebker, H. A., (2000). Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. Journal of the Optical Society of America, A, 17, 401-414.

  14. Non-Deforming, High-Reflectance X-ray Coatings for Lynx and Other Future Missions

    Science.gov (United States)

    Windt, David

    The overarching challenge addressed by this proposal is the development of highreflectance, high-resolution X-ray mirrors, to be used for the construction of lightweight X-ray telescopes for future NASA astronomy missions such as Lynx and others. The proposal's two specific aims are: 1) the development of optimized iridium-based interference coatings for the 0.1–10 keV band; and 2) the development of methods to mitigate coating-stress-induced substrate deformations in thin-shell glass and Si mirror segments. These goals will be achieved by building on established film deposition techniques and metrology infrastructure for X-ray optics that have been developed and advanced by the PI through APRA funding since 1999. Specific Aim #1: Interference Coatings for the 0.1–10 keV Energy Band Telescope effective area can be maximized by using Ir-based reflective coatings that exploit optical interference to provide higher reflectance than Ir alone. However, only preliminary investigations of such coatings have been conducted thus far; more research is required to fully optimize these coatings for maximum performance, to experimentally determine the coating designs that are feasible, and to determine the achievable X-ray reflectance, film stress, surface roughness, and thermal and temporal stability. The first specific aim of this proposal is to reach these very goals through a comprehensive research program. Demonstration of the achievable reflectance, stress, and roughness in stable, optimized coatings will in turn facilitate global telescope design optimization, by identifying the best coating for each mirror shell based on incidence angle, and on telescope effective-area and field-of-view requirements. The research has the potential to greatly increase the effective area of future X-ray telescopes. Specific Aim #2: Mitigation of Coating-Stress-Induced Substrate Deformations High-quality films of Ir and other candidate materials (e.g., B4C) to be investigated for the 0

  15. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  16. Optical fiber sensors FBG to the structural health monitoring of bridges

    International Nuclear Information System (INIS)

    Navarro-Henriquez, Francisco

    2014-01-01

    Systems with optical fiber sensors FBG (Fiber Bragg Grating) are consolidated in the Structural Health Monitoring (SHM) of bridges, static and dynamic nondestructive testing with measurements of deformation, displacement, deflection, temperature and vibrations. A brief introduction to the technology is presented and the fundamentals of optical fiber sensors, their use and comparative advantages over its traditional counterpart. The practice of the FBG sensor application is described. The characteristics of these sensors and measurement graphics are presented. Some key aspects to consider for proper use in the field are mentioned. (author) [es

  17. Passive sorting of capsules by deformability

    Science.gov (United States)

    Haener, Edgar; Juel, Anne

    We study passive sorting according to deformability of liquid-filled ovalbumin-alginate capsules. We present results for two sorting geometries: a straight channel with a half-cylindrical obstruction and a pinched flow fractioning device (PFF) adapted for use with capsules. In the half-cylinder device, the capsules deform as they encounter the obstruction, and travel around the half-cylinder. The distance from the capsule's centre of mass to the surface of the half-cylinder depends on deformability, and separation between capsules of different deformability is amplified by diverging streamlines in the channel expansion downstream of the obstruction. We show experimentally that capsules can be sorted according to deformability with their downstream position depending on capillary number only, and we establish the sensitivity of the device to experimental variability. In the PFF device, particles are compressed against a wall using a strong pinching flow. We show that capsule deformation increases with the intensity of the pinching flow, but that the downstream capsule position is not set by deformation in the device. However, when using the PFF device like a T-Junction, we achieve improved sorting resolution compared to the half-cylinder device.

  18. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  19. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  20. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  1. The Application Research of Inverse Finite Element Method for Frame Deformation Estimation

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    2017-01-01

    Full Text Available A frame deformation estimation algorithm is investigated for the purpose of real-time control and health monitoring of flexible lightweight aerospace structures. The inverse finite element method (iFEM for beam deformation estimation was recently proposed by Gherlone and his collaborators. The methodology uses a least squares principle involving section strains of Timoshenko theory for stretching, torsion, bending, and transverse shearing. The proposed methodology is based on stain-displacement relations only, without invoking force equilibrium. Thus, the displacement fields can be reconstructed without the knowledge of structural mode shapes, material properties, and applied loading. In this paper, the number of the locations where the section strains are evaluated in the iFEM is discussed firstly, and the algorithm is subsequently investigated through a simple supplied beam and an experimental aluminum wing-like frame model in the loading case of end-node force. The estimation results from the iFEM are compared with reference displacements from optical measurement and computational analysis, and the accuracy of the algorithm estimation is quantified by the root-mean-square error and percentage difference error.

  2. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    Science.gov (United States)

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes

  3. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  4. SPINAL DEFORMITIES AFTER SELECTIVE DORSAL RHIZOTOMY

    Directory of Open Access Journals (Sweden)

    PATRICIO PABLO MANZONE

    Full Text Available ABSTRACT Objective: Selective dorsal rhizotomy (SDR used for spasticity treatment could worsen or develop spinal deformities. Our goal is to describe spinal deformities seen in patients with cerebral palsy (CP after being treated by SDR. Methods: Retrospective study of patients operated on (SDR between January/1999 and June/2012. Inclusion criteria: spinal Rx before SDR surgery, spinography, and assessment at follow-up. We evaluated several factors emphasizing level and type of SDR approach, spinal deformity and its treatment, final Risser, and follow-up duration. Results: We found 7 patients (6 males: mean age at SDR 7.56 years (4.08-11.16. Mean follow-up: 6.64 years (2.16-13, final age: 14.32 years (7.5-19. No patient had previous deformity. GMFCS: 2 patients level IV, 2 level III, 3 level II. Initial walking status: 2 community walkers, 2 household walkers, 2 functional walkers, 1 not ambulant, at the follow-up, 3 patients improved, and 4 kept their status. We found 4 TL/L laminotomies, 2 L/LS laminectomies, and 1 thoracic laminectomy. Six spinal deformities were observed: 2 sagittal, 3 mixed, and 1 scoliosis. There was no association among the type of deformity, final gait status, topographic type, GMFCS, age, or SDR approach. Three patients had surgery indication for spinal deformity at skeletal maturity, while those patients with smaller deformities were still immature (Risser 0 to 2/3 although with progressive curves. Conclusions: After SDR, patients should be periodically evaluated until they reach Risser 5. The development of a deformity does not compromise functional results but adds morbidity because it may require surgical treatment.

  5. Size effects on failure behaviour of reactor pressure vessel steel and their dependence on deformation inhomogeneity

    International Nuclear Information System (INIS)

    Aktaa, J.; Klotz, M.; Schmitt, R.

    2003-01-01

    The investigation of the size dependence of the material behaviour and particularly of the failure strain is the main objective of the European research project LISSAC (Limit Strains for Severe Accident Conditions). Within our activities in LISSAC, tensile test series with specimens of similar geometry and different sizes are performed. The specimens, cut from the wall of a real reactor vessel, are flat with a central hole, flat with a double edge notch as well as round with a circumferential notch in order to obtain inhomogeneous deformation with high strain gradients, which will be higher in the smaller specimens and might be responsible for size effects. An additional variation of the strain gradient is obtained by varying the central hole radius of the flat specimens, with three different hole geometries being considered: round hole, increased round hole and slot. During the tests optical methods are used for measuring local deformations and partly local strain gradients. The results obtained show a size effect neither on the global nor on the local deformation behaviour, whereas the damage and failure behaviour is influenced significantly by the size of the specimen. On the basis of the surface deformation measurements, finite element calculations are performed to estimate the local failure strains as well as the corresponding strain gradients. A clear dependence of local failure strains on strain gradients is obtained. (author)

  6. Hysteresis compensation of piezoelectric deformable mirror based on Prandtl-Ishlinskii model

    Science.gov (United States)

    Ma, Jianqiang; Tian, Lei; Li, Yan; Yang, Zongfeng; Cui, Yuguo; Chu, Jiaru

    2018-06-01

    Hysteresis of piezoelectric deformable mirror (DM) reduces the closed-loop bandwidth and the open-loop correction accuracy of adaptive optics (AO) systems. In this work, a classical Prandtl-Ishlinskii (PI) model is employed to model the hysteresis behavior of a unimorph DM with 20 actuators. A modified control algorithm combined with the inverse PI model is developed for piezoelectric DMs. With the help of PI model, the hysteresis of the DM was reduced effectively from about 9% to 1%. Furthermore, open-loop regenerations of low-order aberrations with or without hysteresis compensation were carried out. The experimental results demonstrate that the regeneration accuracy with PI model compensation is significantly improved.

  7. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  8. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Ferrante, M.; Sinka, V.; Assis, O.B.G.; Oliveira, I. de; Freitas, E. de

    1996-01-01

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  9. Microgravity-Driven Optic Nerve/Sheath Biomechanics Simulations

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2016-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Current thinking suggests that the ocular changes observed in VIIP syndrome are related to cephalad fluid shifts resulting in altered fluid pressures [1]. In particular, we hypothesize that increased intracranial pressure (ICP) drives connective tissue remodeling of the posterior eye and optic nerve sheath (ONS). We describe here finite element (FE) modeling designed to understand how altered pressures, particularly altered ICP, affect the tissues of the posterior eye and optic nerve sheath (ONS) in VIIP. METHODS: Additional description of the modeling methodology is provided in the companion IWS abstract by Feola et al. In brief, a geometric model of the posterior eye and optic nerve, including the ONS, was created and the effects of fluid pressures on tissue deformations were simulated. We considered three ICP scenarios: an elevated ICP assumed to occur in chronic microgravity, and ICP in the upright and supine positions on earth. Within each scenario we used Latin hypercube sampling (LHS) to consider a range of ICPs, ONH tissue mechanical properties, intraocular pressures (IOPs) and mean arterial pressures (MAPs). The outcome measures were biomechanical strains in the lamina cribrosa, optic nerve and retina; here we focus on peak values of these strains, since elevated strain alters cell phenotype and induce tissue remodeling. In 3D, the strain field can be decomposed into three orthogonal components, denoted as first, second and third principal strains. RESULTS AND CONCLUSIONS: For baseline material properties, increasing ICP from 0 to 20 mmHg significantly changed strains within the posterior eye and ONS (Fig. 1), indicating that elevated ICP affects ocular tissue biomechanics. Notably, strains in the lamina cribrosa and retina became less extreme as ICP increased; however, within the optic nerve, the occurrence of such extreme strains greatly increased as

  10. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  11. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  12. Versal deformation of the Lie algebra L_2

    NARCIS (Netherlands)

    Post, Gerhard F.; Fialowski, Alice

    2001-01-01

    We investigate deformations of the infinite-dimensional vector-field Lie algebra spanned by the fields ei = zi + 1d/dz, where i ≥ 2. The goal is to describe the base of a “versal” deformation; such a versal deformation induces all the other nonequivalent deformations and solves the deformation

  13. Robust intravascular optical coherence elastography by line correlations

    International Nuclear Information System (INIS)

    Soest, Gijs van; Mastik, Frits; Jong, Nico de; Steen, Anton F W van der

    2007-01-01

    We present a new method for intravascular optical coherence elastography, which is robust against motion artefacts. It employs the correlation between adjacent lines, instead of subsequent frames. Pressure to deform the tissue is applied synchronously with the line scan rate of the optical coherence tomography (OCT) instrument. The viability of the method is demonstrated with a simulation study. We find that the root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique

  14. SU-F-I-50: Finite Element-Based Deformable Image Registration of Lung and Heart

    Energy Technology Data Exchange (ETDEWEB)

    Penjweini, R [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Kim, M [University of Pennsylvania, Philadelphia, PA (United States); Zhu, T [University Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. Although accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery impacts the delivered light dose. To facilitate treatment planning, we use a finite-element-based (FEM) deformable image registration to quantify the anatomical variation of lung and heart volumes between CT pre-(or post-) surgery and surface contours obtained during PDT using an infrared camera-based navigation system (NDI). Methods: NDI is used during PDT to obtain the information of the cumulative light fluence on every cavity surface point that is being treated. A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the light during PDT. The position of the treatment is tracked using an attachment with nine reflective passive markers that are seen by the NDI system. Then, the position points are plotted as three-dimensional volume of the pleural cavity using Matlab and Meshlab. A series of computed tomography (CT) scans of the lungs and heart, in the same patient, are also acquired before and after the surgery. The NDI and CT contours are imported into COMSOL Multiphysics, where the FEM-based deformable image registration is obtained. The NDI and CT contours acquired during and post-PDT are considered as the reference, and the Pre-PDT CT contours are used as the target, which will be deformed. Results: Anatomical variation of the lung and heart volumes, taken at different times from different imaging devices, was determined by using our model. The resulting three-dimensional deformation map along x, y and z-axes was obtained. Conclusion: Our model fuses images acquired by different modalities and provides insights into the variation in anatomical structures over time.

  15. Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics

    Science.gov (United States)

    Bochner, Brett

    1998-12-01

    The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling

  16. Use of the optical model in the actinide region

    International Nuclear Information System (INIS)

    Salvy, J.

    1985-11-01

    This paper reviews current methods as well as recent developments in the use of optical model for calculating actinide nuclear data in the incident neutron energy range from 10 keV to 20 MeV. Special consideration is given of the general role of the model, parameterization procedures with taking account of nuclear deformations, parameters sets to be recommended, and some utilization problems [fr

  17. Quantification and validation of soft tissue deformation

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel...... markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised...

  18. Physics-based deformable organisms for medical image analysis

    Science.gov (United States)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  19. Development Of The Nuclear Optical Penetration

    Science.gov (United States)

    Inoue, K.; Koike, K.; Imada, Y.

    1984-10-01

    We have developed the nuclear optical penetration to be incorporated in the wall penetration of the shell to introduce a data transmission system using optical fibers into a nuclear power plant with a pressurized water reactor. Radiation-induced coloration in optical glass seriously affects transmission characteristics of optical fibers, whereas it has been revealed that the pure-silica core optical fiber without any dopant in the core has wide applicability in radiation fields thanks to its very low radiation-induced attenuation. The wall penetration of the shell should have airtightness and resistivity to heat, vibration, and pressure, let alone radiation, excellent enough to be invariable in data transmission efficiency even when subjected to severe environmental tests. The sealing modules of this newly developed nuclear optical penetration are hermetically sealed. The gap between the optical fiber rod (100 pm in core diameter and 5 mm in rod diameter) and stainless steel tube is sealed with lamingted glass layer. As the result of He gas leakage test, high airtightness of less than 10 cc/sec was achieved. No thermal deformation of the core was caused by sealing with laminated glass layer, nor was observed transmission loss. Then the sealiing modules were subjected to the irradiation test using 60 Co gamma ray exposure of 2 x 10 rads. Though silica glass layer supporting the fiber rod and sealing glass portion turned blackish purple, transparency of the fiber was not affected. Only less than 0.5 dB of connecting loss was observed at the connecting point with the optical fiber cable. The sealing modules were also found to have resistivity to vibration and pressure as excellent as that of existing nuclear electric penetrations. We expect the nuclear optical fiber penetration will be much effective in improving reliability of data transmission systems using optical fibers in radiation fields.

  20. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    Science.gov (United States)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  1. Semantic Interpretation of Insar Estimates Using Optical Images with Application to Urban Infrastructure Monitoring

    Science.gov (United States)

    Wang, Y.; Zhu, X. X.

    2015-08-01

    Synthetic aperture radar interferometry (InSAR) has been an established method for long term large area monitoring. Since the launch of meter-resolution spaceborne SAR sensors, the InSAR community has shown that even individual buildings can be monitored in high level of detail. However, the current deformation analysis still remains at a primitive stage of pixel-wise motion parameter inversion and manual identification of the regions of interest. We are aiming at developing an automatic urban infrastructure monitoring approach by combining InSAR and the semantics derived from optical images, so that the deformation analysis can be done systematically in the semantic/object level. This paper explains how we transfer the semantic meaning derived from optical image to the InSAR point clouds, and hence different semantic classes in the InSAR point cloud can be automatically extracted and monitored. Examples on bridges and railway monitoring are demonstrated.

  2. Retinal nerve fiber layer thickness map determined from optical coherence tomography images

    NARCIS (Netherlands)

    Mujat, M.; Chan, R. C.; Cense, B.; Park, B.H.; Joo, C.; Akkin, T.; Chen, TC; de Boer, JF

    2005-01-01

    We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth

  3. M theory on deformed superspace

    Science.gov (United States)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  4. Automatically tracking neurons in a moving and deforming brain.

    Directory of Open Access Journals (Sweden)

    Jeffrey P Nguyen

    2017-05-01

    Full Text Available Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.

  5. Solar multi-conjugate adaptive optics performance improvement

    Science.gov (United States)

    Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie

    2015-08-01

    In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.

  6. Nonlocal transformation optics.

    Science.gov (United States)

    Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2012-02-10

    We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects and provide a physically incisive and powerful geometrical interpretation in terms of deformation of the equifrequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.

  7. Effects of an angelica extract on human erythrocyte aggregation, deformation and osmotic fragility.

    Science.gov (United States)

    Wang, X; Wei, L; Ouyang, J P; Muller, S; Gentils, M; Cauchois, G; Stoltz, J F

    2001-01-01

    In Chinese traditional medicine, angelica is widely used for its known clinical effects of ameliorating blood microcirculation. But the mechanism of these beneficial effects still remains unclear. In this work the rheological behaviour of human erythrocytes treated by angelica was studied in vitro. Normal RBCs incubated with an angelica extract at different concentrations (5, 10 or 20 mg/ml) for 60 min at 37 degrees C and then their aggregation, deformation and osmotic fragility were measured with different recently developed optical techniques, namely Erythroaggregometer (Regulest, Florange, France), LORCA (Mechatronics, Amsterdam) and Fragilimeter (Regulest, Florange, France). Experimental results show that angelica (20 mg/ml) significantly decreased normal RBCs' aggregation speed (p<0.01) and could inhibit the hyperaggregability caused by dextran 500. However, the strength of normal RBCs aggregates were not influenced by angelica. When a calcium ionophore A23187 (1.9 microM) was used to harden cell membrane, angelica (20 mg/ml) could significantly (p<0.01) protect erythrocytes against the loss of their deformability even it had no effects on normal RBCs deformation. Finally angelica (5 and 10 mg/ml) decreased significantly (p<0.01) normal RBCs osmotic fragility. In conclusion angelica plays a rheologically active role on human erythrocytes, and this study suggests a possible mechanism for angelica's positive effects against certain cardiovascular diseases.

  8. Effects of strain rate and temperature on deformation behaviour of IN 718 during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L X [Dept. of Metallurgy and Engineering Materials, Univ. of Strathclyde, Glasgow (United Kingdom); Baker, T N [Dept. of Metallurgy and Engineering Materials, Univ. of Strathclyde, Glasgow (United Kingdom)

    1994-04-15

    The hot deformation characteristics of a wrought IN 718 alloy were investigated by compression testing at constant strain rates in the range of 0.1 to 5 x 10[sup -3] s[sup -1], and testing temperatures in the range of 950 to 1100 C using a 200 ton capacity microprocessor controlled Fielding hydraulic press. Examination of the microstructures was carried out by optical microscopy and TEM. The flow stress of the compression tests showed a single peak in the flow stress-strain curves, and indicated that a dynamic recrystallization transition took place during the hot compression. The relationship between the peak stresses ([sigma][sub p]) and the Zener-Hollomon parameter (z) can be expressed by [sigma][sub p] = 0.5 Z[sup 0.17]. Necklace'' microstructures were observed at testing temperatures below 1050 C, for strain of 0.7. The fraction of recrystallized grains increased with the increasing temperature and strain, and decreasing strain rate. Fully recrystallized microstructures were observed at temperatures 1050 C or greater, with a strain of 0.7. (orig.)

  9. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  10. Microstructure of AZ31 Magnesium Alloy deformed by indentation-flattening compound deformation technology

    Science.gov (United States)

    Wang, Minghao; Wang, Zhongtang; Yu, Xiaolin

    2018-03-01

    Characteristic of indentation-flattening compound deformation technology (IFCDT) is discussed, and the parameters of IFCDT are defined. Performance of magnesium alloy AZ31 sheet deformed by IFCDT is researched. The effect of IFCDT coefficient, temperature and reduction ratio on the microstructure of magnesium alloy sheet is analyzed. The research results show that the volume fraction of the twin crystal decreases gradually and the average grain size increases with increasing of coefficient of IFCDT. With increase of the reduction ratio, the volume fraction of the twin crystal gradually increases, and the average grain size also increases. With increase of deformation temperature, the volume fraction of the twin crystal decreases gradually, and the twin crystal grain size increases.

  11. Rheo-optical near-infrared (NIR) spectroscopy study of partially miscible polymer blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG)

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-03-01

    Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.

  12. A NEW APPROACH FOR SUBWAY TUNNEL DEFORMATION MONITORING: HIGH-RESOLUTION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    J. Li

    2012-07-01

    Full Text Available With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400. There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  13. Origami-enabled deformable silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  14. Origami-enabled deformable silicon solar cells

    International Nuclear Information System (INIS)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-01-01

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics

  15. Probing myocardium biomechanics using quantitative optical coherence elastography

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.

  16. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  17. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    Science.gov (United States)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.

  18. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  19. Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites

    International Nuclear Information System (INIS)

    An, X. H.; Cao, Y.; Liao, X. Z.; Zhu, S. M.; Nie, J. F.; Kawasaki, M.; Ringer, S. P.; Langdon, T. G.; Zhu, Y. T.

    2015-01-01

    We report an atomic-scale investigation of interface-facilitated deformation twinning behaviour in Ag-Cu nanolamellar composites. Profuse twinning activities in Ag supply partial dislocations to directly transmit across the Ag-Cu lamellar interface that promotes deformation twinning in the neighbouring Cu lamellae although the interface is severely deformed. The trans-interface twin bands change the local structure at the interface. Our analysis suggests that the orientation relationship and interfacial structure between neighbouring Ag-Cu lamellae play a crucial role in such special interface-facilitated twinning behaviour

  20. A Thermo-Optic Propagation Modeling Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  1. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  2. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  3. Scanning laser ophthalmoscope design with adaptive optics

    OpenAIRE

    Laut, SP; Jones, SM; Olivier, SS; Werner, JS

    2005-01-01

    A design for a high-resolution scanning instrument is presented for in vivo imaging of the human eye at the cellular scale. This system combines adaptive optics technology with a scanning laser ophthalmoscope (SLO) to image structures with high lateral (∼2 μm) resolution. In this system, the ocular wavefront aberrations that reduce the resolution of conventional SLOs are detected by a Hartmann-Shack wavefront sensor, and compensated with two deformable mirrors in a closed-loop for dynamic cor...

  4. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  5. Study of electron-beam-evaporated MgO films using electron diffraction, optical absorption and cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aboelfotoh, M.O.; Ramsey, J.N.

    1982-05-21

    Reflection high energy electron diffraction, optical absorption and cathodoluminescence were used to study MgO films deposited onto fused silica, single-crystal silicon and LiF substrates at various temperatures. Results showed that some of the same optical absorption and emission bands observed in X- or UV-irradiated, additively colored or mechanically deformed MgO crystals were observed in evaporated MgO films. The peak positions and the relative peak intensities of the optical absorption and emission bands depended on the substrate temperature during film deposition as well as on the structure of the film. The effect of heating the films in air and vacuum on the optical absorption and emission bands is also discussed.

  6. Deformations of Geometric Structures in Topological Sigma Models

    International Nuclear Information System (INIS)

    Bytsenko, A. A.

    2010-01-01

    We study a Lie algebra of formal vector fields W n with it application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are described by a Hochschild cohomology of the DG-algebra A = (A,Q), Q = ∂-bar+∂ deform, which is defined to be the cohomology of (-1) n Q+d Hoch . Here ∂-bar is the initial non-deformed BRST operator while ∂ deform is the deformed part whose algebra is a Lie algebra of linear vector fields gl n .

  7. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  8. Pair of Exceptional Points in a Microdisk Cavity under an Extremely Weak Deformation

    Science.gov (United States)

    Yi, Chang-Hwan; Kullig, Julius; Wiersig, Jan

    2018-03-01

    One of the interesting features of open quantum and wave systems is the non-Hermitian degeneracy called an exceptional point, where not only energy levels but also the corresponding eigenstates coalesce. We demonstrate that such a degeneracy can appear in optical microdisk cavities by deforming the boundary extremely weakly. This surprising finding is explained by a semiclassical theory of dynamical tunneling. It is shown that the exceptional points come in nearly degenerated pairs, originating from the different symmetry classes of modes. A spatially local chirality of modes at the exceptional point is related to vortex structures of the Poynting vector.

  9. Through-focus scanning optical microscopy (TSOM) with adaptive optics

    Science.gov (United States)

    Lee, Jun Ho; Park, Gyunam; Jeong, Junhee; Park, Chris

    2018-03-01

    Through-focus optical microscopy (TSOM) with nanometer-scale lateral and vertical sensitivity levels matching those of scanning electron microscopy has been demonstrated to be useful both for 3D inspections and metrology assessments. In 2014, funded by two private companies (Nextin/Samsung Electronics) and the Korea Evaluation Institute of Industrial Technology (KEIT), a research team from four universities in South Korea set out to investigate core technologies for developing in-line TSOM inspection and metrology tools, with the respective teams focusing on optics implementation, defect inspection, computer simulation and high-speed metrology matching. We initially confirmed the reported validity of the TSOM operation through a computer simulation, after which we implemented the TSOM operation by throughfocus scanning of existing UV (355nm) and IR (800nm) inspection tools. These tools have an identical sampling distance of 150 nm but have different resolving distances (310 and 810 nm, respectively). We initially experienced some improvement in the defect inspection sensitivity level over TSV (through-silicon via) samples with 6.6 μm diameters. However, during the experiment, we noted sensitivity and instability issues when attempting to acquire TSOM images. As TSOM 3D information is indirectly extracted by differentiating a target TSOM image from reference TSOM images, any instability or mismatch in imaging conditions can result in measurement errors. As a remedy to such a situation, we proposed the application of adaptive optics to the TSOM operation and developed a closed-loop system with a tip/tilt mirror and a Shack-Hartmann sensor on an optical bench. We were able to keep the plane position within in RMS 0.4 pixel by actively compensating for any position instability which arose during the TSOM scanning process along the optical axis. Currently, we are also developing another TSOM tool with a deformable mirror instead of a tip/tilt mirror, in which case we

  10. Dealing with difficult deformations: Construction of a knowledge-based deformation atlas

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Darvann, T.A.; Hermann, N.V.

    2010-01-01

    from pre- to post-surgery using thin-plate spline warping. The registration results are convincing and represent a first move towards an automatic registration method for dealing with difficult deformations due to this type of surgery. New or breakthrough work to be presented: The method provides...... was needed. We have previously demonstrated that non-rigid registration using B-splines is able to provide automated determination of point correspondences in populations of infants without cleft lip. However, this type of registration fails when applied to the task of determining the complex deformation...

  11. Population of delayed-neutron granddaughter states and the optical potential

    International Nuclear Information System (INIS)

    Schenter, R.E.; Mann, F.M.; Warner, R.A.; Reeder, P.L.

    1982-08-01

    Using a statistical treatment of beta decay and the Hauser-Feshbach model of nuclear reactions, calculations were made and compared to recent experimental measurements of the population of granddaughter states of several delayed neutron precursors ( 144 145 147 Cs and 96 Rb). Emphasis of this paper is on the sensitivity and interpretation of experimental results to various standard low energy neutron optical model potentials and variations in their forms and parameters. Results for these precursors show qualitative agreement with experiment for all the optical potential models used and good quantitative agreement for two (Moldauer and Becchetti-Greenlees). Questions such as (N-Z) terms, deformation and nonlocality dependence are presented

  12. From labyrinthine aplasia to otocyst deformity.

    Science.gov (United States)

    Giesemann, Anja Maria; Goetz, Friedrich; Neuburger, Jürgen; Lenarz, Thomas; Lanfermann, Heinrich

    2010-02-01

    Inner ear malformations (IEMs) are rare and it is unusual to encounter the rarest of them, namely labyrinthine aplasia (LA) and otocyst deformity. They do, however, provide useful pointers as to the early embryonic development of the ear. LA is characterised as a complete absence of inner ear structures. While some common findings do emerge, a clear definition of the otocyst deformity does not exist. It is often confused with the common cavity first described by Edward Cock. Our purpose was to radiologically characterise LA and otocyst deformity. Retrospective analysis of CT and MRI data from four patients with LA or otocyst deformity. Middle and inner ear findings were categorised by two neuroradiologists. The bony carotid canal was found to be absent in all patients. Posterior located cystic structures were found in association with LA and otocyst deformity. In the most severe cases, only soft tissue was present at the medial border of the middle ear cavity. The individuals with otocyst deformity also had hypoplasia of the petrous apex bone. These cases demonstrate gradual changes in the two most severe IEMs. Clarification of terms was necessary and, based on these findings, we propose defining otocyst deformity as a cystic structure in place of the inner ear, with the cochlea, IAC and carotid canal absent. This condition needs to be differentiated from the common cavity described by Edward Cook. A clear definition of inner ear malformations is essential if outcomes following cochlear implantation are to be compared.

  13. From labyrinthine aplasia to otocyst deformity

    International Nuclear Information System (INIS)

    Giesemann, Anja Maria; Goetz, Friedrich; Lanfermann, Heinrich; Neuburger, Juergen; Lenarz, Thomas

    2010-01-01

    Inner ear malformations (IEMs) are rare and it is unusual to encounter the rarest of them, namely labyrinthine aplasia (LA) and otocyst deformity. They do, however, provide useful pointers as to the early embryonic development of the ear. LA is characterised as a complete absence of inner ear structures. While some common findings do emerge, a clear definition of the otocyst deformity does not exist. It is often confused with the common cavity first described by Edward Cock. Our purpose was to radiologically characterise LA and otocyst deformity. Retrospective analysis of CT and MRI data from four patients with LA or otocyst deformity. Middle and inner ear findings were categorised by two neuroradiologists. The bony carotid canal was found to be absent in all patients. Posterior located cystic structures were found in association with LA and otocyst deformity. In the most severe cases, only soft tissue was present at the medial border of the middle ear cavity. The individuals with otocyst deformity also had hypoplasia of the petrous apex bone. These cases demonstrate gradual changes in the two most severe IEMs. Clarification of terms was necessary and, based on these findings, we propose defining otocyst deformity as a cystic structure in place of the inner ear, with the cochlea, IAC and carotid canal absent. This condition needs to be differentiated from the common cavity described by Edward Cook. A clear definition of inner ear malformations is essential if outcomes following cochlear implantation are to be compared. (orig.)

  14. X-ray topographic investigation of the deformation field around spots irradiated by FLASH single pulses

    Czech Academy of Sciences Publication Activity Database

    Wierzchowski, W.; Wieteska, K.; Balcer, T.; Klinger, D.; Sobierajski, R.; Zymierska, D.; Chalupský, Jaromír; Hájková, Věra; Burian, Tomáš; Gleeson, A.J.; Juha, Libor; Tiedtke, K.; Toleikis, S.; Vyšín, Luděk; Wabnitz, H.; Gaudin, J.

    2011-01-01

    Roč. 80, č. 10 (2011), s. 1036-1040 ISSN 0969-806X R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA ČR(CZ) GAP108/11/1312; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : silicon * FLASH irradiation * x-ray topography * deformation fields Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.227, year: 2011

  15. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    Science.gov (United States)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  16. Opto-mechanical design for transmission optics in cryogenic space instrumentation

    Science.gov (United States)

    Kroes, Gabby; Venema, Lars; Navarro, Ramón

    2017-11-01

    NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.

  17. On the design of thermally loaded fiber optics feedthroughs

    Directory of Open Access Journals (Sweden)

    Marinković Dragan Z.

    2016-01-01

    Full Text Available Thermo-mechanical design aspects of various structures exposed to cyclic thermal loading have a crucial impact on their lifetime. This is particularly valid for fiber optics feedthroughs that involve several materials with significantly different thermal expansion ratios. Thermal loading in such structures may give rise to non-trivial thermally induced deformations and therewith stresses, which can be adequately predicted and assessed only by a detailed 3-D numerical simulation. This paper considers a couple of design solutions of fiber optics feedthroughs, which have exhibited certain weaknesses in their application. Numerical simulation by means of the finite element method has been conducted to reveal the weak points of the design.

  18. Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems

    DEFF Research Database (Denmark)

    Nest, Ryszard; Tsygan, Boris

    2001-01-01

    Recently Kontsevich solved the classification problem for deformation quantizations of all Poisson structures on a manifold. In this paper we study those Poisson structures for which the explicit methods of Fedosov can be applied, namely the Poisson structures coming from symplectic Lie algebroids......, as well as holomorphic symplectic structures. For deformations of these structures we prove the classification theorems and a general a general index theorem....

  19. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour

    Science.gov (United States)

    Li, Ling; Ortiz, Christine

    2014-05-01

    Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm-3) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm-3). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.

  20. Frequency of foot deformity in preschool girls

    Directory of Open Access Journals (Sweden)

    Mihajlović Ilona

    2010-01-01

    Full Text Available Background/Aim. In order to determine the moment of creation of postural disorders, regardless of the causes of this problem, it is necessary to examine the moment of entry of children into a new environment, ie. in kindergarten or school. There is a weak evidence about the age period when foot deformity occurs, and the type of these deformities. The aim of this study was to establish the relationship between the occurrence of foot deformities and age characteristics of girls. Methods. The research was conducted in preschools 'Radosno detinjstvo' in the region of Novi Sad, using the method of random selection, on the sample of 272 girls, 4-7 years of age, classified into four strata according to the year of birth. To determine the foot deformities measurement technique using computerized digitized pedografy (CDP was applied. Results. In preschool population girls pes transversoplanus and calcanei valga deformities occurred in a very high percentage (over 90%. Disturbed longitudinal instep ie flat feet also appeared in a high percentage, but we noted the improvement of this deformity according to increasing age. Namely, there was a statistically significant correlation between the age and this deformity. As a child grows older, the deformity is lower. Conclusion. This study confirmed that the formation of foot arches probably does not end at the age of 3-4 years but lasts until school age.

  1. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Science.gov (United States)

    Li, Xin; Zhang, Yuyu; Shi, Yinghua; Wu, Shuyu; Xiao, Yang; Gu, Xuejun; Zhen, Xin; Zhou, Linghong

    2017-01-01

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) for propagating contours between planning computerized tomography (CT) images and treatment CT/cone-beam CT (CBCT) images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N) cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e., the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB), the vertebral foramen (VF), the parotid gland (PG) and the submandibular gland (SMG). It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  2. Versal deformation of the Lie algebra $L_2$

    NARCIS (Netherlands)

    Fialowski, A.; Post, Gerhard F.

    1999-01-01

    We investigate deformations of the infinite dimensional vector field Lie algebra spanned by the fields $e_i = z^{i+1}d/dz$, where $i \\ge 2 $. The goal is to describe the base of a ``versal'' deformation; such a versal deformation induces all the other nonequivalent deformations and solves the

  3. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  4. Wind sock deformity in rectal atresia

    International Nuclear Information System (INIS)

    Hosseini, Seyed M V; Ghahramani, Farhad; Shamsaeefar, Alireza; Razmi, Tannaz; Zarenezhad, Mohammad

    2009-01-01

    Rectal atresia is a rare anorectal deformity. It usually presents with neonatal obstruction and it is often a complete membrane or severe stenosis. Windsock deformity has not been reported in rectal atresia especially, having been missed for 2 years. A 2-year-old girl reported only a severe constipation despite having a 1.5-cm anal canal in rectal examination with scanty discharge. She underwent loop colostomy and loopogram, which showed a wind sock deformity of rectum with mega colon. The patient underwent abdominoperineal pull-through with good result and follow-up. This is the first case of the wind sock deformity in rectal atresia being reported after 2 years of age. (author)

  5. Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry.

    Science.gov (United States)

    Demoli, Nazif; Vukicevic, Dalibor

    2004-10-15

    A method of detecting displacements of a surface from its steady-state position to its equilibrium position while it is vibrating has been developed by use of time-average digital holographic interferometry. This method permits extraction of such a hidden deformation by creating two separated systems of interferogram fringes: one corresponding to a time-varying resonantly oscillating optical phase, the other to the stationary phase modification. A mathematical description of the method and illustrative results of experimental verification are presented.

  6. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  7. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  8. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  9. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  10. Research on precision grinding technology of large scale and ultra thin optics

    Science.gov (United States)

    Zhou, Lian; Wei, Qiancai; Li, Jie; Chen, Xianhua; Zhang, Qinghua

    2018-03-01

    The flatness and parallelism error of large scale and ultra thin optics have an important influence on the subsequent polishing efficiency and accuracy. In order to realize the high precision grinding of those ductile elements, the low deformation vacuum chuck was designed first, which was used for clamping the optics with high supporting rigidity in the full aperture. Then the optics was planar grinded under vacuum adsorption. After machining, the vacuum system was turned off. The form error of optics was on-machine measured using displacement sensor after elastic restitution. The flatness would be convergenced with high accuracy by compensation machining, whose trajectories were integrated with the measurement result. For purpose of getting high parallelism, the optics was turned over and compensation grinded using the form error of vacuum chuck. Finally, the grinding experiment of large scale and ultra thin fused silica optics with aperture of 430mm×430mm×10mm was performed. The best P-V flatness of optics was below 3 μm, and parallelism was below 3 ″. This machining technique has applied in batch grinding of large scale and ultra thin optics.

  11. Infinitesimal deformations of a formal symplectic groupoid

    OpenAIRE

    Karabegov, Alexander

    2010-01-01

    Given a formal symplectic groupoid $G$ over a Poisson manifold $(M, \\pi_0)$, we define a new object, an infinitesimal deformation of $G$, which can be thought of as a formal symplectic groupoid over the manifold $M$ equipped with an infinitesimal deformation $\\pi_0 + \\epsilon \\pi_1$ of the Poisson bivector field $\\pi_0$. The source and target mappings of a deformation of $G$ are deformations of the source and target mappings of $G$. To any pair of natural star products $(\\ast, \\tilde\\ast)$ ha...

  12. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  13. A q-deformed Lorentz algebra

    International Nuclear Information System (INIS)

    Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1991-01-01

    We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)

  14. Q-deformed algebras and many-body physics

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D; Lunardi, J T; Pimentel, B M [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C L [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1995-11-01

    A review is presented of some applications of q-deformed algebras to many-body systems. The rotational and pairing nuclear problems will be discussed in the context of q-deformed algebras, before presenting a more microscopically based application of q-deformed concepts to many-fermion systems. (author). 30 refs., 5 figs.

  15. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  16. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Our study gives insight into possible deformed structures at spherical shell closure. ... Considerable experimental and theoretical efforts ... True deformation effects can be seen only by considering configuration mixing.

  17. Development of variable-magnification X-ray Bragg optics.

    Science.gov (United States)

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  18. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  19. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  20. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  1. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  2. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    Science.gov (United States)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  3. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    Science.gov (United States)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  4. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  5. Deformable Organic Nanowire Field-Effect Transistors.

    Science.gov (United States)

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  7. TH-C-BRF-01: The Promise and Potential Pitfalls of Deformable Image Registration in Clinical Practice

    International Nuclear Information System (INIS)

    Brock, K; Oldham, M; Cai, J; Pouliot, J

    2014-01-01

    Accurate and robust deformable image registration (DIR) is a key enabling technique in the clinical realization of two approaches for advancing radiation therapy treatment efficacy: adaptive radiation therapy and treatment response assessment. Currently there are a wide variety of DIR methods including the categories of splines, optical/diffusion, free-form, and biomechanical algorithms. All methods aim to translate information between image sets (including multi-modal data) in the presence of spatial deformation of tissues. However, recent research has shown that different DIR algorithms can yield substantially different results for the same reference deformation, and that DIR performance can be site and application dependent. As a result, errors can occur, and subsequent patient treatment can be compromised. There is a clear need for greater understanding of appropriate use of DIR techniques, as well as effective methods of validation, evaluation, and improvement. In this session, we will review the state-of-the-art concerning DIR development, clinical application, and performance evaluation. Novel DIR methods and evaluating technologies will be reviewed. Learning Objectives: To understand the underlying principles and physics of current DIR techniques To explore potential clinical applications and areas of high impact for DIR To investigate sources of uncertainty, appropriate usage, and methods for validating and evaluating DIR performance

  8. How deformation enhances mobility in a polymer glass

    Science.gov (United States)

    Lacks, Daniel

    2013-03-01

    Recent experiments show that deformation of a polymer glass can lead to orders-of-magnitude enhancement in the atomic level dynamics. To determine why this change in dynamics occurs, we carry out molecular dynamics simulations and energy landscape analyses. The simulations address the coarse-grained polystyrene model of Kremer and co-workers, and the dynamics, as quantified by the van Hove function, are examined as the glass undergoes shear deformation. In agreement with experiment, the simulations find that deformation enhances the atomic mobility. The enhanced mobility is shown to arise from two mechanisms: First, active deformation continually reduces barriers for hopping events, and the importance of this mechanism is modulated by the rate of thermally activated transitions between adjacent energy minima. Second, deformation moves the system to higher-energy regions of the energy landscape, characterized by lower barriers. Both mechanisms enhance the dynamics during deformation, and the second mechanism is also relevant after deformation has ceased.

  9. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    Science.gov (United States)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  10. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti–6Al–2Zr–1Mo–1V alloy

    International Nuclear Information System (INIS)

    He, D.; Zhu, J.C.; Lai, Z.H.; Liu, Y.; Yang, X.W.

    2013-01-01

    Highlights: ► Isothermal tensile deformations were carried on Ti–6Al–2Zr–1Mo–1V titanium alloy. ► Deformation activations were calculated based on kinetics rate equations. ► Deformation mechanisms are dislocation creep and self-diffusion at 800 and 850 °C. ► Microstructure globularization mechanisms varied with deformation temperature. ► Recrystallization mechanism changed from CDRX to DDRX as temperature increasing. - Abstract: Isothermal tensile tests have been performed to study the deformation mechanisms and microstructure evolution of Ti–6Al–2Zr–1Mo–1V titanium alloy in the temperature range 750–850 °C and strain rate range 0.001–0.1 s −1 . The deformation activations have been calculated based on kinetics rate equation to investigate the hot deformation mechanism. Microstructures of deformed samples have been analyzed by electron backscatter diffraction (EBSD) to evaluate the influences of hot deformation parameters on the microstructure evolution and recrystallization mechanism. The results indicate that deformation mechanisms vary with deformation conditions: at medium (800 °C) and high (850 °C) temperature, the deformation is mainly controlled by the mechanisms of dislocation creep and self-diffusion, respectively. The microstructure globularization mechanisms also depend on deformation temperature: in the temperature range from 750 to 800 °C, the high angle grain boundaries are mainly formed via dislocation accumulation or subgrain boundaries sliding and subgrains rotation; while at high temperature of 850 °C, recrystallization is the dominant mechanism. Especially, the evolution of the recrystallization mechanism with the deformation temperature is first observed and investigated in TA15 titanium alloy

  11. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals; Les mecanismes de deformation et de recristallisation des monocristaux imparfaits d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Calais, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-04-15

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect {alpha} uranium single crystals prepared by a {beta} {yields} {alpha} phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the {alpha} phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [French] Les divers modes de deformation plastique, glissement, maclage et pliage, que provoque la traction de monocristaux d'uranium {alpha} imparfaits prepares par changement de phase {beta} {yields} {alpha} ont ete etudies par rayons X et par examen micrographique. Suivant l'orientation cristallographique par rapport a la direction de l'axe de traction et suivant l'importance de l'allongement, les monocristaux se

  12. Austenite strengthening and softening during hot deformation

    International Nuclear Information System (INIS)

    Tushinskij, L.I.; Vlasov, V.S.; Kazimirova, I.E.; Tokarev, A.O.

    1981-01-01

    Processes of formation of austenite structure of 20 and 12Kh18N10T steels during hot deformation and postdeformation isothermal holdings have been investigated by the methods of analysis of curves of hot deformation, high-temperature metallography and light microscopy. Deformation has been exercised by extention in vacuum with average 4x10 -2 s -1 rate. Deformation temperatures of steel 20 are 930 and 1000 deg C, of steel 12Kh18N10T - 1100 deg C. It is stated that dynamic recrystallization takes place in both investigated steels during hot deformation. In the carbonic steel it is developed by shifting sections of high-angular boundaries, flow stress in this case remains constant. Recrystallization is developed by subgrain coalescence in austenite steel, that brings about preservation of increased defect density in recrystallized volumes. As a result strengthening of steel is continued up to fracture during the increase of the deformation degree. Postdeformation weakening of 12Kh18N10T steel is slowed down as compared with weakening of carbonic steel [ru

  13. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  14. Deformation effects in the cluster radioactivity

    International Nuclear Information System (INIS)

    Misicu, S.; Protopopescu, D.

    1998-01-01

    We investigate the influence of the deformation on the decay rates of the cluster emission process 224 Ra → 210 Pb + 14 C. The interaction between the daughter and the cluster is given by a double folding potential, containing a nuclear repulsive core, with account of the quadrupole and hexadecupole deformed densities of both fragments. Upon comparison with the experimental value of the decay rate, the results obtained point out the importance of such deformations especially for the daughter nucleus

  15. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  16. Plastic evolution behavior of H340LAD-Z steel by an optical method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-02-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD-Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  17. Plastic evolution behavior of H340LAD-Z steel by an optical method

    International Nuclear Information System (INIS)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-01-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD-Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  18. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  19. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    Science.gov (United States)

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  20. Kinetics of varnish long-term drying process monitored by a heterogeneous optical sensor system

    International Nuclear Information System (INIS)

    Saccon, F A M; De Oliveira, F M D R; Ribas, M O; Zambianchi, P Jr; Muller, M; Fabris, J L

    2013-01-01

    The drying process of an acrylic varnish film was monitored over 24 h by a heterogeneous optical sensor system. The system employs a fibre optic transducer based on Bragg gratings and optical coherence tomography, operating respectively around 1.55 and 1.3 µm. The sensor is able to provide information about the temporal evolution of temperature, mechanical deformation, thickness and average refractive index of the coating during the drying process. Resolutions for these optically measured parameters are 0.05 °C (temperature), 0.5 µε (strain), 1.5 µm (thickness) and 0.004 (refractive index). Besides, the sensor can detect the growth of a surface dry skin and supply information about the film bulk uniformity. A model for the mass loss of solvent as the drying process evolves is also discussed. (paper)

  1. EBIC and LBIC studies of the properties of extended defects in plastically deformed silicon

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, V. I.; Feklisova, O. V.; Yakimov, E. B., E-mail: yakimov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronic Technology and Ultra-High-Purity Materials (Russian Federation)

    2015-06-15

    The results of comparative experimental studies of one- and two-dimensional defects in plastically deformed silicon by the electron-beam-induced current (EBIC) and light-beam-induced current (LBIC) techniques are reported. It is shown that the contrast of two-dimensional defects (dislocation trails) in the LBIC method can by much more pronounced than that in the EBIC technique, which is in good agreement with the results of calculations. The higher sensitivity of the LBIC technique is mainly due to deeper penetration of the optical beam into the material in comparison to the penetration of the electron beam of a scanning electron microscope.

  2. Priority design parameters of industrialized optical fiber sensors in civil engineering

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  3. Embossing of optical document security devices

    Science.gov (United States)

    Muke, Sani

    2004-06-01

    Embossing in the transparent window area of polymer banknotes, such as those seen on the Australian, New Zealand and Romanian currencies, have enormous potential for the development of novel optical security devices. The intaglio printing process can provide an efficient means for embossing of optical security structures such as micro lenses. Embossed micro lens arrays in the transparent window of a polymer banknote can be folded over a corresponding printed image array elsewhere on the note to reveal a series of moire magnified images. Analysis of samples of embossed micro lenses showed that the engraving side and impression side had a similar embossed profile. The embossed micro lens profiles were modelled using Optalix-LX commercial optical ray tracing software in order to determine the focal length of the lenses and compare with the focal length of desired embossed lenses. A fundamental understanding of how the polymer deforms during the embossing process is critical towards developing a micro lens embossing tool which can achieve the desired embossed micro lenses. This work also looks at extending the early research of the Intaglio Research Group (IRG) to better understand the embossibility of polymer substrates such as biaxially oriented polypropylene (BOPP).

  4. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  5. Quantification of abdominal aortic deformation after EVAR

    Science.gov (United States)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  6. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    Science.gov (United States)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  7. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  8. Predicting the optical observables for nucleon scattering on even-even actinides

    Science.gov (United States)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  9. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  11. Clustering and triaxial deformations of 40Ca

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Kimura, Masaaki; Kanada-En'yo, Yoshiko; Horiuchi, Hisashi

    2007-01-01

    We have studied the positive-parity states of 40 Ca using antisymmetrized molecular dynamics (AMD) and the generator coordinate method (GCM). Imposing two different kinds of constraints on the variational calculation, we have found various kinds of 40 Ca structures such as a deformed-shell structure, as well as α- 36 Ar and 12 C- 28 Si cluster structures. After the GCM calculation, we obtained a normal-deformed band and a superdeformed band together with their side bands associated with triaxial deformation. The calculated B(E2) values agreed well with empirical data. It was also found that the normal-deformed and superdeformed bands have non-negligible α- 36 Ar cluster and 12 C- 28 Si cluster components, respectively. This leads to the presence of an α- 36 Ar higher nodal band occurring above the normal-deformed band

  12. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  13. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  14. Differential Calculus on h-Deformed Spaces

    Science.gov (United States)

    Herlemont, Basile; Ogievetsky, Oleg

    2017-10-01

    We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).

  15. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  16. Automatic analysis and characterization of the hummingbird wings motion using dense optical flow features

    International Nuclear Information System (INIS)

    Martínez, Fabio; Romero, Eduardo; Manzanera, Antoine

    2015-01-01

    A new method for automatic analysis and characterization of recorded hummingbird wing motion is proposed. The method starts by computing a multiscale dense optical flow field, which is used to segment the wings, i.e., pixels with larger velocities. Then, the kinematic and deformation of the wings were characterized as a temporal set of global and local measures: a global angular acceleration as a time function of each wing and a local acceleration profile that approximates the dynamics of the different wing segments. Additionally, the variance of the apparent velocity orientation estimates those wing foci with larger deformation. Finally a local measure of the orientation highlights those regions with maximal deformation. The approach was evaluated in a total of 91 flight cycles, captured using three different setups. The proposed measures follow the yaw turn hummingbird flight dynamics, with a strong correlation of all computed paths, reporting a standard deviation of 0.31 rad/frame 2 and 1.9 (rad/frame) 2 for the global angular acceleration and the global wing deformation respectively. (paper)

  17. Role of interfaces on the trapping of He in 2D and 3D Cu–Nb nanocomposites

    International Nuclear Information System (INIS)

    Lach, Timothy G.; Ekiz, Elvan H.; Averback, Robert S.; Mara, Nathan A.; Bellon, Pascal

    2015-01-01

    The role of interface structure on the trapping of He in Cu–Nb nanocomposites was investigated by comparing He bubble formation in nano-multilayers grown by PVD, nanolaminates fabricated by accumulative roll bonding (ARB), and 3D nanocomposites obtained by high pressure torsion (HPT). All samples were implanted with 1 MeV He ions at room temperature and characterized by cross section transmission electron microscopy (TEM). The critical He concentration leading to bubble formation was determined by correlating the He bubble depth distribution detected by TEM with the implanted He depth profile obtained by SRIM. The critical He dose per unit interfacial area for bubble formation was largest for the PVD multilayers, lower by a factor of ∼1.4 in the HPT nanocomposites annealed at 500 °C, and lower by a factor of ∼4.6 in the ARB nanolaminates relative to the PVD multilayers. The results indicate that the (111)FCC||(110)BCC Kurdjumov-Sachs (KS) interfaces predominant in PVD and annealed HPT samples provide more effective traps than the (112)KS interfaces predominant in ARB nanolaminates; however, the good trapping efficiency and high interface area of 3D HPT structures make them most attractive for applications. - Highlights: • Cu–Nb nanocomposites with varying interface structure were implanted with He. • PVD multilayers trap the most He per interfacial area before bubbles form. • ARB nanolaminates held ∼4.6 times less He relative to the PVD multilayers. • 3D nanocomposites with high interface area can trap more He than 2D nanocomposites. • Interface structure and interfacial area density play key role in trapping He.

  18. Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations.

    Science.gov (United States)

    Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J

    2014-07-01

    We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.

  19. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Energy Technology Data Exchange (ETDEWEB)

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  20. The Plastic Deformation of RFSSW Joints During Tensile Tests / Deformacja Plastyczna Wybranych Połączeń RFSSW Podczas Rozciągania

    Directory of Open Access Journals (Sweden)

    Lacki P.

    2015-12-01

    Full Text Available The dynamic development of the friction stir welding (FSW technology is the basis for the design of durabe joints inter alia in the aviation industry. This technology has a prospective application, especially for the aluminum alloys. It is suitable for a broad spectrum of permanent joints. The joints obtained by FSW technology are characterized by good mechanical properties. In this paper, the friction stir spot welding joints were analysed. The example of a structure made using this technology were presented. The lap joints made of 2mm Al 6061-T6 sheets were the investigation subject. The different spot welds arrangements were analysed. The tensile test were performed with optical deformation measurement system, which allow to obtain the plastic deformation field on the sample surface. The plastic strain graphs for the characteristic line passing through the maximum deformation were registered and presented. The experimental results were compared to the FEM numerical analysis. The numerical models were built with 3D-solid elements. The boundary conditions, material properties and geometry of the joints were identical as during experimental investigation. The mechanism of deformation of welded joints during tensile test was described and explained. It has been found that the arrangement of the spot welds with respect to the tensile direction has an important influence on the behaviour and deformation of lap joint.