WorldWideScience

Sample records for defensin-like zmes4 mediates

  1. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1.

    Directory of Open Access Journals (Sweden)

    Suseno Amien

    2010-06-01

    Full Text Available In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+ influx. We further suggest that K(+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization

  2. Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1

    Science.gov (United States)

    Márton, Mihaela L.; Debener, Thomas; Geiger, Dietmar; Becker, Dirk; Dresselhaus, Thomas

    2010-01-01

    In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K+ influx. We further suggest that K+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a

  3. ZmES genes encode peptides with structural homology to defensins and are specifically expressed in the female gametophyte of maize.

    NARCIS (Netherlands)

    Cordts, S.; Bantin, J.; Wittich, P.; Kranz, E.; Lorz, H.; Dresselhaus, T.

    2001-01-01

    All four members of a gene family, which are highly expressed in the cells of the female gametophyte (ZmES1--4: Zea mays embryo sac), were isolated from a cDNA library of maize egg cells. High expression of ZmES genes in the synergids around the micropylar region was detected in thin sections of

  4. Structural and functional characterization of the conserved salt bridge in mammalian paneth cell alpha-defensins

    DEFF Research Database (Denmark)

    Rosengren, K Johan; Daly, Norelle L; Fornander, Liselotte M

    2006-01-01

    alpha-Defensins are mediators of mammalian innate immunity, and knowledge of their structure-function relationships is essential for understanding their mechanisms of action. We report here the NMR solution structures of the mouse Paneth cell alpha-defensin cryptdin-4 (Crp4) and a mutant (E15D)-C...

  5. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its γ-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the γ-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  6. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro

    Directory of Open Access Journals (Sweden)

    Zhengyang Zeng

    2016-04-01

    Full Text Available Hepatitis B virus (HBV infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC. Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel–modulating activities in the future.

  7. Increased expression and levels of human β defensins (hBD2 and hBD4 in adults with dental caries

    Directory of Open Access Journals (Sweden)

    Girolamo Jose Barrera

    2013-09-01

    Full Text Available Introduction: Defensins are small anti-microbial peptides produced by epithelial cells. These peptides have a broad range of actions against microorganisms, including Gram-positive and Gram-negative bacteria.Human defensins are classifi ed into two subfamilies, the α-, and β- defensins, which differ in their distribution of disulphide bonds between the six conserved cysteine residues. Defensins are found in salivaand others compartments of the body. Human β defensins 2 (hBD2, beta defensins 4 (hBD4 and alpha defensins 4 (hNP4 in saliva may contributes to vulnerability or resistance to caries. This study aimed to determine a possible correlation between caries and levels of defensins measuring the expression in gingival tissue and concentrations in saliva samples.Methods: Oral examinations were performed on 100 adults of both genders (18-30 years old, and unstimulated whole saliva was collected for immunoassays of the three peptides and for the salivary pH, buffercapacity, protein, and peroxidase activity. mRNA levels of defensins in gingival sample were assessed by semi-quantitative RT-PCR technique.Results: The median salivary levels of hBD2 and hBD4 were 1.88 μg/ml and 0.86 μg/ml respectively for the caries-free group (n=44 and 7.26 μ/ml (hBD2 and 4.25 μg/ml (hBD4 for all subjects with evidenceof caries (n=56. There was no difference in the levels of hNP4, salivary pH, and proteins between groups, however the peroxidase activity and buffer capacity (interval 6.0-5.0 were reduced in caries group. Transcriptional levels of hBD2 and hBD4 did correlate with caries experience, the mRNA expression of hBD2 and hBD4 were signifi cantly higher in patients with caries than in patients with no-caries (p Conclusion: We conclude that high salivary levels and expression of beta defensins, low peroxidase activity and buffer capacity may represent a biological response of oral tissue to caries. Our observation couldlead to new ways to prevent caries

  8. Increased expression and levels of human β defensins (hBD2 and hBD4 in adults with dental caries

    Directory of Open Access Journals (Sweden)

    Girolamo Jose Barrera

    2013-09-01

    Full Text Available Introduction: Defensins are small anti-microbial peptides produced by epithelial cells. These peptides have a broad range of actions against microorganisms, including Gram-positive and Gram-negative bacteria.Human defensins are classifi ed into two subfamilies, the α-, and β- defensins, which differ in their distribution of disulphide bonds between the six conserved cysteine residues. Defensins are found in salivaand others compartments of the body. Human β defensins 2 (hBD2, beta defensins 4 (hBD4 and alpha defensins 4 (hNP4 in saliva may contributes to vulnerability or resistance to caries. This study aimed to determine a possible correlation between caries and levels of defensins measuring the expression in gingival tissue and concentrations in saliva samples.Methods: Oral examinations were performed on 100 adults of both genders (18-30 years old, and unstimulated whole saliva was collected for immunoassays of the three peptides and for the salivary pH, buffercapacity, protein, and peroxidase activity. mRNA levels of defensins in gingival sample were assessed by semi-quantitative RT-PCR technique.Results: The median salivary levels of hBD2 and hBD4 were 1.88 μg/ml and 0.86 μg/ml respectively for the caries-free group (n=44 and 7.26 μ/ml (hBD2 and 4.25 μg/ml (hBD4 for all subjects with evidenceof caries (n=56. There was no difference in the levels of hNP4, salivary pH, and proteins between groups, however the peroxidase activity and buffer capacity (interval 6.0-5.0 were reduced in caries group. Transcriptional levels of hBD2 and hBD4 did correlate with caries experience, the mRNA expression of hBD2 and hBD4 were signifi cantly higher in patients with caries than in patients with no-caries (p < 0.01.Conclusion: We conclude that high salivary levels and expression of beta defensins, low peroxidase activity and buffer capacity may represent a biological response of oral tissue to caries. Our observation couldlead to new ways to prevent

  9. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    Science.gov (United States)

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  10. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  11. Partial characterization of three β-defensin gene transcripts in river ...

    African Journals Online (AJOL)

    In this study, the tracheal tissues from Egyptian river buffalo and cattle were screened for the presence of three bovine β-defensin gene transcripts. Three primer pairs were designed on the basis of published Bos taurus sequences for partial amplification of β-defensin 4, β-defensin 10 and β-defensin 11 complementary DNA ...

  12. Human Milk Components Modulate Toll-Like Receptor–Mediated Inflammation12

    Science.gov (United States)

    He, YingYing; Lawlor, Nathan T

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2′-fucosyllactose attenuate TLR4 signaling; 3′-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. PMID:26773018

  13. Expression of avian β-defensins and Toll-like receptor genes in the rooster epididymis during growth and Salmonella infection.

    Science.gov (United States)

    Anastasiadou, M; Avdi, M; Michailidis, G

    2013-08-01

    The epididymis is an organ involved in the maturation, transport, and storage of sperm prior to ejaculation. As epididymis is exposed to a constant risk of inflammatory conditions that may lead to transient or permanent sterility, protection of this organ from pathogens is an essential aspect of reproductive physiology. The families of antimicrobial peptides β-defensins and the pattern-recognition receptors Toll-like (TLR) mediate innate immunity in various vertebrates including avian species. As rooster infertility is a major concern in the poultry industry, the objectives of this study were to determine the expression profile of the entire family of the avian β-defensins (AvBD) and TLR genes in the rooster epididymis, to investigate whether sexual maturation affects their epididymidal mRNA abundance and to determine the changes in their expression levels in response to Salmonella enteritidis (SE) infection in the epididymis of sexually mature roosters. RNA was extracted from the epididymis of healthy pubertal, sexually mature and aged birds, and from sexually mature SE infected birds. RT-PCR analysis revealed that 10 members of the AvBD and nine members of the TLR gene families were expressed in the epididymis. Quantitative real-time PCR analysis revealed that the epididymidal mRNA abundance of certain AvBD and TLR genes was developmentally regulated with respect to sexual maturation. SE infection resulted in a significant induction of AvBD 1, 9, 10, 12 and 14, as well as TLR 1-2, 2-1, 2-2, 4, 5 and 7 genes, in the epididymis of sexually mature roosters, compared to healthy birds of the same age. These findings provide strong evidence to suggest that the rooster epididymis is capable of initiating an inflammatory response to Salmonella, through activation of certain members of the AvBD and TLR gene families. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants.

    Directory of Open Access Journals (Sweden)

    Siddhesh B Ghag

    Full Text Available Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana.

  15. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  16. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells.

    Science.gov (United States)

    Gerashchenko, O L; Zhuravel, E V; Skachkova, O V; Khranovska, N N; Filonenko, V V; Pogrebnoy, P V; Soldatkina, M A

    2013-06-01

    The aim of the study was in vitro analysis of biological activity of recombinant human beta-defensin-4 (rec-hBD-4). hBD-4 cDNA was cloned into pGEX-2T vector, and recombinant plasmid was transformed into E. coli BL21(DE3) cells. To purify soluble fusion GST-hBD-4 protein, affinity chromatography was applied. Rec-hBD-4 was cleaved from the fusion protein with thrombin, and purified by reverse phase chromatography on Sep-Pack C18. Effects of rec-hBD-4 on proliferation, viability, cell cycle distribution, substrate-independent growth, and mobility of cultured human cancer cells of A431, A549, and TPC-1 lines were analyzed by direct cell counting technique, MTT assay, flow cytofluorometry, colony forming assay in semi-soft medium, and wound healing assay. Rec-hBD-4 was expressed in bacterial cells as GST-hBD-4 fusion protein, and purified by routine 3-step procedure (affine chromatography on glutathione-agarose, cleavage of fusion protein by thrombin, and reverse phase chromatography). Analysis of in vitro activity of rec-hBD-4 toward three human cancer cell lines has demonstrated that the defensin is capable to affect cell behaviour in concentration-dependent manner. In 1-100 nM concentrations rec-hBD-4 significantly stimulates cancer cell proliferation and viability, and promotes cell cycle progression through G2/M checkpoint, greatly enhances colony-forming activity and mobility of the cells. Treatment of the cells with 500 nM of rec-hBD-4 resulted in opposite effects: significant suppression of cell proliferation and viability, blockage of cell cycle in G1/S checkpoint, significant inhibition of cell migration and colony forming activity. Recombinant human beta-defensin-4 is biologically active peptide capable to cause oppositely directed effects toward biologic features of cancer cells in vitro dependent on its concentration.

  17. Defensins in periodontal health

    Directory of Open Access Journals (Sweden)

    Taran Bedi

    2015-01-01

    Full Text Available Defensins are abundant and widely distributed peptides in human and animal tissues that are involved in host defence. Defensins not only have the ability to strengthen the innate immune system but can also enhance the adaptive immune system by chemotaxis of monocytes, T-lymphocytes, dendritic cells and mast cells to the infection site. Defensins also improves the capacity of macrophage phagocytosis. A greater understanding of how these peptides act in the healthy, gingivitis and periodontitis conditions would definitely open new opportunities for identification, prevention and treatment of periodontal diseases. This discussion focuses on recent studies about biological function of defensins in human diseases and animal models.

  18. Expression and purification of moricin CM4 and human β-defensins 4 in Escherichia coli using a new technology.

    Science.gov (United States)

    Shen, Yang; Ai, Hong-Xin; Song, Ren; Liang, Zhen-Ning; Li, Jian-Feng; Zhang, Shuang-Quan

    2010-10-20

    Different strategies have been developed to produce small antimicrobial peptides using recombinant techniques. Here we report a new technology of biosynthesis of moricin CM4 and human β-defensins 4 (HβD4) in the Escherichia coli. The CM4 and HβD4 gene were cloned into a vector containing the tags elastin-like peptide (ELP) and intein to construct the expression vector pET-EI-CM4 and pET-EI-HβD4. All the peptides, expressed as soluble fusions, were isolated from the protein debris by the method called inverse transition cycling (ITC) rather than traditional immobilized metal affinity chromatography (IMAC) and separated from the fusion leader by self-cleavage. Fully reduced peptides that were purified exhibited expected antimicrobial activity. The approach described here is a low-cost, convenient and potential way for generating small antimicrobial peptide. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry.

    Directory of Open Access Journals (Sweden)

    Uma Shankar Sagaram

    Full Text Available MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of β2 and β3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA, a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA.

  20. Human alpha-defensin-1 protects cells from intoxication with Clostridium perfringens iota toxin.

    Science.gov (United States)

    Fischer, Stephan; Popoff, Michel R; Barth, Holger

    2018-03-01

    Iota toxin is produced by Clostridium perfringens type E strains and associated with diarrhea in cattle and lambs. This binary protein toxin comprises the enzyme component iota a (Ia), which ADP-ribosylates G-actin, and the separate transport component iota b (Ib), which delivers Ia into the cytosol of target cells. Ib binds to cell receptors and forms biologically active toxin complexes with Ia, which cause rounding of adherent cells due to the destruction of the actin cytoskeleton. Here, we report that the human peptide α-defensin-1 protects cultured cells including human colon cells from intoxication with iota toxin. In contrast, the related ß-defensin-1 had no effect, indicating a specific mode of action. The α-defensin-1 did not inhibit ADP-ribosylation of actin by Ia in vitro. Pretreatment of Ib with α-defensin-1 prior to addition of Ia prevented intoxication. Additionally, α-defensin-1 protected cells from cytotoxic effects mediated by Ib in the absence of Ia, implicating that α-defensin-1 interacts with Ib to prevent the formation of biologically active iota toxin on cells. In conclusion, the findings contribute to a better understanding of the functions of α-defensin-1 and suggest that this human peptide might be an attractive starting point to develop novel pharmacological options to treat/prevent diseases associated with iota toxin-producing Clostridium perfringens strains.

  1. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  2. Heterologous expression and solution structure of defensin from lentil Lens culinaris

    International Nuclear Information System (INIS)

    Shenkarev, Zakhar O.; Gizatullina, Albina K.; Finkina, Ekaterina I.; Alekseeva, Ekaterina A.; Balandin, Sergey V.; Mineev, Konstantin S.; Arseniev, Alexander S.; Ovchinnikova, Tatiana V.

    2014-01-01

    Highlights: • Lentil defensin Lc-def and its 15 N-labeled analog were overexpressed in E. coli. • Lc-def is active against fungi, but does not inhibit growth of G+ and G− bacteria. • Lc-def spatial structure involves triple-stranded β-sheet and α-helix (CSαβ motif). • Lc-def is able to bind to anionic lipid vesicles under low-salt conditions. • NMR data revealed significant μs–ms mobility in the loops 1 and 3 of Lc-def. - Abstract: A new defensin Lc-def, isolated from germinated seeds of the lentil Lens culinaris, has molecular mass 5440.4 Da and consists of 47 amino acid residues. Lc-def and its 15 N-labeled analog were overexpressed in Escherichia coli. Antimicrobial activity of the recombinant protein was examined, and its spatial structure, dynamics, and interaction with lipid vesicles were studied by NMR spectroscopy. It was shown that Lc-def is active against fungi, but does not inhibit the growth of Gram-positive and Gram-negative bacteria. The peptide is monomeric in aqueous solution and contains one α-helix and triple-stranded β-sheet, which form cysteine-stabilized αβ motif (CSαβ) previously found in other plant defensins. The sterically neighboring loop1 and loop3 protrude from the defensin core and demonstrate significant mobility on the μs–ms timescale. Lc-def does not bind to the zwitterionic lipid (POPC) vesicles but interacts with the partially anionic (POPC/DOPG, 7:3) membranes under low-salt conditions. The Lc-def antifungal activity might be mediated through electrostatic interaction with anionic lipid components of fungal membranes

  3. Heterologous expression and solution structure of defensin from lentil Lens culinaris

    Energy Technology Data Exchange (ETDEWEB)

    Shenkarev, Zakhar O. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow (Russian Federation); Gizatullina, Albina K. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700 Dolgoprudny, Moscow Region (Russian Federation); Finkina, Ekaterina I.; Alekseeva, Ekaterina A.; Balandin, Sergey V.; Mineev, Konstantin S. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow (Russian Federation); Arseniev, Alexander S. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700 Dolgoprudny, Moscow Region (Russian Federation); Ovchinnikova, Tatiana V., E-mail: ovch@ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700 Dolgoprudny, Moscow Region (Russian Federation)

    2014-08-22

    Highlights: • Lentil defensin Lc-def and its {sup 15}N-labeled analog were overexpressed in E. coli. • Lc-def is active against fungi, but does not inhibit growth of G+ and G− bacteria. • Lc-def spatial structure involves triple-stranded β-sheet and α-helix (CSαβ motif). • Lc-def is able to bind to anionic lipid vesicles under low-salt conditions. • NMR data revealed significant μs–ms mobility in the loops 1 and 3 of Lc-def. - Abstract: A new defensin Lc-def, isolated from germinated seeds of the lentil Lens culinaris, has molecular mass 5440.4 Da and consists of 47 amino acid residues. Lc-def and its {sup 15}N-labeled analog were overexpressed in Escherichia coli. Antimicrobial activity of the recombinant protein was examined, and its spatial structure, dynamics, and interaction with lipid vesicles were studied by NMR spectroscopy. It was shown that Lc-def is active against fungi, but does not inhibit the growth of Gram-positive and Gram-negative bacteria. The peptide is monomeric in aqueous solution and contains one α-helix and triple-stranded β-sheet, which form cysteine-stabilized αβ motif (CSαβ) previously found in other plant defensins. The sterically neighboring loop1 and loop3 protrude from the defensin core and demonstrate significant mobility on the μs–ms timescale. Lc-def does not bind to the zwitterionic lipid (POPC) vesicles but interacts with the partially anionic (POPC/DOPG, 7:3) membranes under low-salt conditions. The Lc-def antifungal activity might be mediated through electrostatic interaction with anionic lipid components of fungal membranes.

  4. External application of gametophyte-specific ZmPMEI1 induces pollen tube burst in maize.

    Science.gov (United States)

    Woriedh, Mayada; Wolf, Sebastian; Márton, Mihaela L; Hinze, Axel; Gahrtz, Manfred; Becker, Dirk; Dresselhaus, Thomas

    2013-09-01

    Regulated demethylesterification of homogalacturonan, a major component of plant cell walls, by the activity of pectin methylesterases (PMEs), plays a critical role for cell wall stability and integrity. Especially fast growing plant cells such as pollen tubes secrete large amounts of PMEs toward their apoplasmic space. PME activity itself is tightly regulated by its inhibitor named as PME inhibitor and is thought to be required especially at the very pollen tube tip. We report here the identification and functional characterization of PMEI1 from maize (ZmPMEI1). We could show that the protein acts as an inhibitor of PME but not of invertases and found that its gene is strongly expressed in both gametophytes (pollen grain and embryo sac). Promoter reporter studies showed gene activity also during pollen tube growth toward and inside the transmitting tract. All embryo sac cells except the central cell displayed strong expression. Weaker signals were visible at sporophytic cells of the micropylar region. ZmPMEI1-EGFP fusion protein is transported within granules inside the tube and accumulates at the pollen tube tip as well as at sites where pollen tubes bend and/or change growth directions. The female gametophyte putatively influences pollen tube growth behavior by exposing it to ZmPMEI1. We therefore simulated this effect by applying recombinant protein at different concentrations on growing pollen tubes. ZmPMEI1 did not arrest growth, but destabilized the cell wall inducing burst. Compared with female gametophyte secreted defensin-like ZmES4, which induces burst at the very pollen tube tip, ZmPMEI1-induced burst occurs at the subapical region. These findings indicate that ZmPMEI1 secreted by the embryo sac likely destabilizes the pollen tube wall during perception and together with other proteins such as ZmES4 leads to burst and thus sperm release.

  5. Directional and balancing selection in human beta-defensins.

    Science.gov (United States)

    Hollox, Edward J; Armour, John A L

    2008-04-16

    In primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations. We show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of DEFB127 in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For DEFB132, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93), is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations. Some, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.

  6. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  7. Antifungal defensins and their role in plant defense.

    Science.gov (United States)

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins.

  8. Antifungal defensins and their role in plant defense

    Directory of Open Access Journals (Sweden)

    Ariane eLacerda

    2014-04-01

    Full Text Available Since the beginning of the 90’s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP have been studied. However, Broekaert only coined the term plant defensin in 1995, after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity towards microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM. Its low effective concentration towards fungi, ranging from 0.1 to 10 µM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90’s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i the most studied plant defensins and their fungal targets; (ii the molecular features of plant defensins and their relation with antifungal activity; (iii the possibility of using plant defensin(s genes to generate fungi resistant GM crops and biofungicides; and (iv a brief discussion about the absence of products in the market containing plant antifungal defensins.

  9. Characterization of defensin gene from abalone Haliotis discus hannai and its deduced protein

    Science.gov (United States)

    Hong, Xuguang; Sun, Xiuqin; Zheng, Minggang; Qu, Lingyun; Zan, Jindong; Zhang, Jinxing

    2008-11-01

    Defensin is one of preserved ancient host defensive materials formed in biological evolution. As a regulator and effector molecule, it is very important in animals’ acquired immune system. This paper reports the defensin gene from the mixed liver and kidney cDNA library of abalone Haliotis discus hannai Ino. Sequence analysis shows that the gene sequence of full-length cDNA encodes 42 mature peptides (including six Cys), molecular weight of 4 323 Da, and pI of 8.02. Amino acid sequence homology analysis shows that the peptides are highly similar (70% in common) to other insects defensin. Because of a typical insect-defensin structural character of mature peptide in the secondary structure, the polypeptide named Haliotis discus defensin (hd-def), a novel of antimicrobial peptides, belongs to insects defensin subfamily. The RT-PCR result of Haliotis discus defensin shows that the gene can be expressed only in the hepatopancreas by Gram-negative and positive bacteria stimulation, which is ascribed to inducible expression. Therefore, it is revealed that the Haliotis discus defensin gene expression was related to the antibacterial infection of Haliotis discus hannai Ino.

  10. Directional and balancing selection in human beta-defensins

    Directory of Open Access Journals (Sweden)

    Armour John AL

    2008-04-01

    Full Text Available Abstract Background In primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations. Results We show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of DEFB127 in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For DEFB132, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93, is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations. Conclusion Some, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.

  11. Candida Infections and Human Defensins.

    Science.gov (United States)

    Polesello, Vania; Segat, Ludovica; Crovella, Sergio; Zupin, Luisa

    2017-01-01

    Candida species infections are an important worldwide health issue since they do not only affect immunocompromised patients but also healthy individuals. The host developed different mechanisms of protection against Candida infections; specifically the immune system and the innate immune response are the first line of defence. Defensis are a group of antimicrobial peptides, components of the innate immunity, produced at mucosal level and known to be active against bacteria, virus but also fungi. The aim of the current work was to review all previous studies in literature that analysed defensins in the context of Candida spp. infections, in order to investigate and clarify the exact mechanisms of defensins anti-fungal action. Several studies were identified from 1985 to 2017 (9 works form years 1985 to 1999, 44 works ranging from 2000 to 2009 and 35 from 2010 to 2017) searched in two electronic databases (PubMed and Google Scholar). The main key words used for the research were "Candida", "Defensins"," Innate immune system","fungi". The findings of the reviewed studies highlight the pivotal role of defensins antimicrobial peptides in the immune response against Candida infections, since they are able to discriminate host cell from fungi: defensins are able to recognize the pathogens cell wall (different in composition from the human ones), and to disrupt it through membrane permeabilization. However, further research is needed to explain completely defensins' mechanisms of action to fight C. albicans (and other Candida spp.) infections, being the information fragmentary and only in part elucidated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Inflammatory disorders mimicking periprosthetic joint infections may result in false positive α-defensin.

    Science.gov (United States)

    Plate, Andreas; Stadler, Laura; Sutter, Reto; Anagnostopoulos, Alexia; Frustaci, Dario; Zbinden, Reinhard; Fucentese, Sandro F; Zinkernagel, Annelies S; Zingg, Patrick O; Achermann, Yvonne

    2018-02-26

    The antimicrobial peptide α-defensin has recently been introduced as potential "single" biomarker with a high sensitivity and specificity for the preoperative diagnosis of periprosthetic joint infections (PJIs). However, most studies assessed the benefits of the test with exclusion of patients with rheumatic diseases. We aimed to evaluate the α-defensin test in a cohort study without exclusion of cases with inflammatory diseases. Between June 2016 and June 2017, we prospectively included cases with a suspected PJI and an available lateral flow test α-defensin (Synovasure®) in synovial fluid. We compared the test result to the diagnostic criteria for PJIs published by an International Consensus Group in 2013. We included 109 cases (49 hips, 60 knees) in which preoperative α-defensin tests had been performed. Thereof, 20 PJIs (16 hips, 4 knees) were diagnosed. Preoperative α-defensin tests were positive in 25 cases (22.9%) with a test sensitivity and specificity of 90% and 92.1% (95% confidence interval [CI], 68.3 - 98.8% and 84.5 - 96.8%, respectively), and a high negative predictive value of 97.6% (95% CI, 91.7 - 99.4%). We interpreted seven α-defensin tests as false positive, mainly in cases with inflammatory rheumatic diseases, including crystal deposition diseases. A negative synovial α-defensin test can reliably rule out a PJI. However, the test can be false positive in conjunction with an underlying non-infectious inflammatory disease. We therefore propose to use the α-defensin test only in addition to MSIS criteria and assessment for crystals in synovial aspirates. Copyright © 2018. Published by Elsevier Ltd.

  13. Identification, cloning and functional characterization of novel beta-defensins in the rat (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    French Frank S

    2006-02-01

    Full Text Available Abstract Background beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation. Methods In silico rat genomic analyses were used to identify novel beta-defensins related to human defensins 118–123. RNAs isolated from male reproductive tract tissues of rat were reverse transcribed and PCR amplified using gene specific primers for defensins. PCR products were sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue distribution, developmental expression and androgen regulation of these defensins. Recombinant defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial activities. Results Novel beta-defensins, Defb21, Defb24, Defb27, Defb30 and Defb36 were identified in the rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression, whereas the others were expressed in a variety of tissues including the female reproductive tract. Early onset of defensin expression was observed in the epididymides of 10–60 day old rats. Defb21-Defb36 expression in castrated rats was down regulated and maintained at normal levels in testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time dependent antibacterial activity. Conclusion Rat Defb21, Defb24, Defb27, Defb30 and Defb36 are abundantly expressed in the male reproductive tract where they most likely protect against microbial invasion. They are developmentally regulated and androgen is required for full expression in the adult epididymis.

  14. Plasma alpha-defensin is associated with cardiovascular morbidity and mortality in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Joseph, G.; Tarnow, L.; Astrup, A.S.

    2008-01-01

    CONTEXT: alpha-Defensins are antimicrobial peptides of the innate immune system. In addition, experimental evidence suggests that alpha-defensins are proatherogenic. OBJECTIVE: The objective of the study was to examine the predictive value of plasma alpha-defensin as a clinical marker of cardiova...... to the development of CVD or an innocent bystander Udgivelsesdato: 2008/4...

  15. A crucial role of paralogous β-defensin genes in the Chinese alligator innate immune system revealed by the first determination of a Crocodilia defensin cluster.

    Science.gov (United States)

    Tang, Ke-Yi; Wang, Xin; Wan, Qiu-Hong; Fang, Sheng-Guo

    2018-04-01

    The β-defensin, one of the antimicrobial peptides (AMPs), is a significant component of the innate immune with a broad range of antimicrobial activities. Differing from the widely-studied mammals and birds, limited information about β-defensins has been reported in reptiles, especially in crocodilians. As a same ancient species as dinosaurs and the most endangered species of 23 crocodilians, the survival of Chinese alligator (Alligator sinensis) means a powerful immune system and possible involvement of AMPs in its immune resistance. In this study, we identified 20 novel Alligator sinensisβ-defensin genes (AsBDs) from a 390 kb region using bioinformatic and experimental approaches, and successfully distinguished six orthologous AsBDs to birds and nine paralogous AsBDs undergoing gene duplication events. The amino acid alignment shows that the AsBD paralogs, like α-defensins, encode a significantly longer pro-piece comparing with the orthologs. The calculation of non-synonymous (d N ) and synonymous (d S ) substitutions in the mature peptide reveals that the AsBD paralogs experience a significantly higher selective pressure (d N /d S ) than the orthologs, but a similar evolutionary force to α-defensins. The gene expression result indicates that the AsBD paralogs have a significantly higher expression level than the orthologos in gastrointestinal tract where the host is vulnerable to enteric pathogenic bacteria, as observed in α-defensins. These three pieces of evidence demonstrate that the AsBD paralogs do play an important role in maintaining long-term survival of this endangered reptile. Thus, this survey of AsBDs on the genomic structure, evolutionary characteristics, and expression pattern provides a genetic and immunological foundation for further investigating their antimicrobial function and alternative antibiotics potentiality. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Antiplasmodial activity is an ancient and conserved feature of tick defensins

    Directory of Open Access Journals (Sweden)

    Alejandro Cabezas-Cruz

    2016-10-01

    Full Text Available Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA. The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.

  17. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.

    Science.gov (United States)

    Telleria, Erich L; Sant'Anna, Maurício R Viana; Alkurbi, Mohammad O; Pitaluga, André N; Dillon, Rod J; Traub-Csekö, Yara M

    2013-01-11

    Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.

  18. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing (China); Zhu, Shunyi, E-mail: Zhusy@ioz.ac.cn [Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Al-M is an engineered fungal defensin with the n-loop of an insect defensin. Black-Right-Pointing-Pointer Al-M adopts a native defensin-like structure with high antibacterial potency. Black-Right-Pointing-Pointer Al-M kills bacteria through a membrane disruptive mechanism. Black-Right-Pointing-Pointer This work sheds light on the functional evolution of CS{alpha}{beta}-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized {alpha}-helical and {beta}-sheet (CS{alpha}{beta}) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 {mu}M. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.

  19. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    International Nuclear Information System (INIS)

    Gao, Bin; Zhu, Shunyi

    2012-01-01

    Highlights: ► Al-M is an engineered fungal defensin with the n-loop of an insect defensin. ► Al-M adopts a native defensin-like structure with high antibacterial potency. ► Al-M kills bacteria through a membrane disruptive mechanism. ► This work sheds light on the functional evolution of CSαβ-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized α-helical and β-sheet (CSαβ) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wall biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 μM. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.

  20. Defensins: The Case for Their Use against Mycobacterial Infections

    Directory of Open Access Journals (Sweden)

    Haodi Dong

    2016-01-01

    Full Text Available Human tuberculosis remains a huge global public health problem with an estimated 1/3rd of the population being infected. Defensins are antibacterial cationic peptides produced by a number of cell types, most notably neutrophil granulocytes and epithelial cells. All three defensin types (α-, β-, and θ-defensins have antibacterial activities, mainly through bacterial membrane permeabilization. Defensins are effective against Gram-negative and Gram-positive bacteria including mycobacteria and are active both intra- and extracellularly. Mycobacterial resistance has never been demonstrated although the mprF gene encoding resistance in Staphylococcus aureus is present in the Mycobacterium tuberculosis genome. In addition to their antibacterial effect, defensins are chemoattractants for macrophages and neutrophils. There are many cases for their use for therapy or prophylaxis in tuberculosis as well. In conclusion, we propose that there is considerable scope and potential for exploring their use as therapeutic/prophylactic agents and more comprehensive survey of defensins from different species and their bioactivity is timely.

  1. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Burgess Juliana

    2005-12-01

    Full Text Available Abstract Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2 is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF, and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found.

  2. Novel aspects of defensins' involvement in virus-induced autoimmunity in the central nervous system.

    Science.gov (United States)

    Kazakos, Evangelos I; Kountouras, Jannis; Polyzos, Stergios A; Deretzi, Georgia

    2017-05-01

    Recent research on re-circulation of interstitial fluid from the brain parenchyma to the periphery and its inferred importance in immune surveillance dysregulation are changing our conceptualization of the pathophysiology of virus-induced autoimmunity. In this context, it is necessary to reassess the immunomodulatory properties of human defensins that are variably expressed by cerebral microglia, astrocytes and choroid plexus epithelial cells and exhibit complex and often confounding roles in neuroinflammatory processes. Therefore, in this review we describe current contributions in this field and we propose novel hypotheses regarding the potential impact of defensin-related pathways on virus-driven autoimmune neurodegeneration. In this regard, we have previously proposed that abnormal expression of defensins by penetrating the blood-brain barrier (BBB) may contribute to the pathophysiology of Helicobacter pylori-related brain neurodegenerative disorders through variable modulations of innate and adaptive immune responses. We hereby propose that impaired expression of defensins by structural components of the BBB may impede glymphatic circulation and disrupt receptor signalling in pericytes that is essential for microvascular stability, thereby retaining blood-derived toxins and bystander activated T-cells in the brain and further impairing BBB integrity and hampering viral clearance. Autoreactive T-cell infiltrates in neuronaxonal lesions characteristic of chronic central nervous system diseases, such as multiple sclerosis, are directed against both, myelin and non-myelin, antigens the precise nature of which remains enigmatic. Inadequate expression of the autoimmune regulator (AIRE), a gene expressed in medullary thymic epithelial cells, induces the recruitment of defensin-specific T-cells. These cells may access the brain, thereby causing a decrease in defensin expression and subsequent down-regulation of CD91/LRP1-mediated clearance of amyloid-β that

  3. Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jennifer R. Mastroianni

    2014-10-01

    Full Text Available Small intestinal Paneth cells secrete a-defensin peptides, termed cryptdins (Crps in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse a-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that a-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.

  4. The Alpha-defensin Test for Periprosthetic Joint Infections Is Not Affected by Prior Antibiotic Administration.

    Science.gov (United States)

    Shahi, Alisina; Parvizi, Javad; Kazarian, Gregory S; Higuera, Carlos; Frangiamore, Salvatore; Bingham, Joshua; Beauchamp, Christopher; Valle, Craig Della; Deirmengian, Carl

    2016-07-01

    Previous studies have demonstrated that the administration of antibiotics to patients before performing diagnostic testing for periprosthetic joint infection (PJI) can interfere with the accuracy of test results. Although a single-institution study has suggested that alpha-defensin maintains its concentration and sensitivity even after antibiotic treatment, this has not yet been demonstrated in a larger multiinstitutional study. (1) For the evaluation of PJI, is prior antibiotic administration associated with decreased alpha-defensin levels? (2) When prior antibiotics are given, is alpha-defensin a better screening test for PJI than the traditional tests (erythrocyte sedimentation rate [ESR], C-reactive protein [CRP], fluid white blood cells, fluid polymorphonuclear cells [PMNs], and fluid culture)? This retrospective study included data from 106 hip and knee arthroplasties with Musculoskeletal Infection Society-defined PJI from four centers. Of the 106 patients in this study, 30 (28%) were treated with antibiotics for PJI before diagnostic workup (ABX group), and 76 (72%) were not treated before the diagnostic workup (NO-ABX group). There were no differences in age, sex, joint, culture-negative rate, or bacteriology between groups. The patients in the ABX group had antibiotics initiated by physicians who commenced care before assessment for PJI by the treating surgeon's service. We compared the alpha-defensin levels and sensitivity between the ABX and NO-ABX groups. Additionally, the sensitivity of the alpha-defensin test was compared to that of traditional tests for PJI among patients on antibiotics. The administration of antibiotics before performing the alpha-defensin test for PJI was not associated with a decreased median alpha-defensin level (ABX group, median 4.2 [range, 1.79-12.8 S/CO] versus NO-ABX, median 4.9 [range, 0.5-16.8 S/CO], difference of medians: 0.68 S/CO [95% confidence interval {CI}, -0.98 to 1.26], p = 0.451). Furthermore, the alpha-defensin

  5. β-Defensin genomic copy number does not influence the age of onset in Huntington's Disease.

    Science.gov (United States)

    Vittori, Angelica; Orth, Michael; Roos, Raymund A C; Outeiro, Tiago F; Giorgini, Flaviano; Hollox, Edward J

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a CAG triplet repeat tract in the huntingtin gene. While the length of this CAG expansion is the major determinant of the age of onset (AO), other genetic factors have also been shown to play a modulatory role. Recent evidence suggests that neuroinflammations is a pivotal factor in the pathogenesis of HD, and that targeting this process may have important therapeutic ramifications. The human β-defensin 2 (hBD2)- encoded by DEFB4- is an antimicrobial peptide that exhibits inducible expression in astrocytes during inflammation and is an important regulator of innate and adaptive immune response. Therefore, DEFB4 may contribute to the neuroinflammatory processes observed in HD. In this study we tested the hypothesis that copy number variation (CNV) of the β-defensin region, including DEFB4, modifies the AO in HD. We genotyped β-defensin CNV in 490 HD individuals using the paralogue ratio test and found no association between β-defensin CNV and onset of HD. We conclude that it is unlikely that DEFB4 plays a role in HD pathogenesis.

  6. Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa).

    Science.gov (United States)

    Song, D; Xiong, X; Tu, W F; Yao, W; Liang, H W; Chen, F J; He, Z Q

    2017-01-23

    Lettuce (Lactuca sativa L.) is an annual plant of the daisy family, Asteraceae, with high food and medicinal value. However, the crop is susceptible to several viruses that are transmitted by aphids and is highly vulnerable to post-harvest diseases, as well as insect and mammal pests and fungal and bacterial diseases. Here, the rabbit defensin gene NP-1 was transferred into lettuce by Agrobacterium-mediated transformation to obtain a broad-spectrum disease-resistant lettuce. Transgenic lettuce plants were selected and regenerated on selective media. The presence of the NP-1 gene in these plants was confirmed by western blot analyses. Resistance tests revealed native defensin NP-1 expression conferred partial resistance to Bacillus subtilis and Pseudomonas aeruginosa, which suggests new possibilities for lettuce disease resistance.

  7. Isolation and Properties of Floral Defensins from Ornamental Tobacco and Petunia1

    Science.gov (United States)

    Lay, Fung T.; Brugliera, Filippa; Anderson, Marilyn A.

    2003-01-01

    The flowers of the solanaceous plants ornamental tobacco (Nicotiana alata) and petunia (Petunia hybrida) produce high levels of defensins during the early stages of development. In contrast to the well-described seed defensins, these floral defensins are produced as precursors with C-terminal prodomains of 27 to 33 amino acids in addition to a typical secretion signal peptide and central defensin domain of 47 or 49 amino acids. Defensins isolated from N. alata and petunia flowers lack the C-terminal domain, suggesting that it is removed during or after transit through the secretory pathway. Immunogold electron microscopy has been used to demonstrate that the N. alata defensin is deposited in the vacuole. In addition to the eight canonical cysteine residues that define the plant defensin family, the two petunia defensins have an extra pair of cysteines that form a fifth disulfide bond and hence define a new subclass of this family of proteins. Expression of the N. alata defensin NaD1 is predominantly flower specific and is most active during the early stages of flower development. NaD1 transcripts accumulate in the outermost cell layers of petals, sepals, anthers, and styles, consistent with a role in protection of the reproductive organs against potential pathogens. The floral defensins inhibit the growth of Botrytis cinerea and Fusarium oxysporum in vitro, providing further support for a role in protection of floral tissues against pathogen invasion. PMID:12644678

  8. α-Defensins and outcome in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Christensen, Heidi M; Frystyk, Jan; Faber, Jens

    2012-01-01

    Aim a-Defensins are part of the innate immune system. Low-grade inflammation seems to play a crucial role in development and progression of chronic heart failure (CHF). The aims of the present study were to compare plasma levels of a-defensins in CHF patients and healthy controls and to examine......% confidence interval 1.19-2.28, P = 0.002) per 1 standard deviation increment in Ln (natural logarithm)-transformed a-defensin values. The combination of high a-defensins and NT-proBNP levels provided incremental prognostic information independent of well-known prognostic biomarkers in heart failure...... in 194 CHF patients, and compared plasma levels with those of 98 age-matched healthy controls. a-Defensin levels were twice as high among CHF patients in New York Heart Association (NYHA) functional class III-IV than in patients in NYHA class I-II and healthy controls (P = 0.001). The absolute increase...

  9. The Toll-like receptor 1/2 agonists Pam(3) CSK(4) and human β-defensin-3 differentially induce interleukin-10 and nuclear factor-κB signalling patterns in human monocytes.

    Science.gov (United States)

    Funderburg, Nicholas T; Jadlowsky, Julie K; Lederman, Michael M; Feng, Zhimin; Weinberg, Aaron; Sieg, Scott F

    2011-10-01

    Human β-defensin 3 (hBD-3) activates antigen-presenting cells through Toll-like receptors (TLRs) 1/2. Several TLR1/2 agonists have been identified but little is known about how they might differentially affect cellular activation. We compared the effects of hBD-3 with those of another TLR1/2 agonist, Pam(3) CSK(4) , in human monocytes. Monocytes incubated with hBD-3 or Pam(3) CSK(4) produced interleukin-6 (IL-6), IL-8 and IL-1β, but only Pam(3) CSK(4) induced IL-10. The IL-10 induction by Pam(3) CSK(4) caused down-modulation of the co-stimulatory molecule, CD86, whereas CD86 expression was increased in monocytes exposed to hBD-3. Assessment of signalling pathways linked to IL-10 induction indicated that mitogen-activated protein kinases were activated similarly by hBD-3 or Pam(3) CSK(4) , whereas the non-canonical nuclear factor-κB pathway was only induced by Pam(3) CSK(4) . Our data suggest that the lack of non-canonical nuclear factor-κB signalling by hBD-3 could contribute to the failure of this TLR agonist to induce production of the anti-inflammatory cytokine, IL-10, in human monocytes. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  10. Identification of structural traits that increase the antimicrobial activity of a chimeric peptide of human β-defensins 2 and 3.

    Science.gov (United States)

    Spudy, Björn; Sönnichsen, Frank D; Waetzig, Georg H; Grötzinger, Joachim; Jung, Sascha

    2012-10-12

    Antimicrobial peptides participate in the first line of defence of many organisms against pathogens. In humans, the family of β-defensins plays a pivotal role in innate immunity. Two human β-defensins, β-defensin-2 and -3 (HBD2 and HBD3), show substantial sequence identity and structural similarity. However, HBD3 kills Staphylococcus (S.) aureus with a 4- to 8-fold higher efficiency compared to HBD2, whereas their activities against Escherichia (E.) coli are very similar. The generation of six HBD2/HBD3-chimeric molecules led to the identification of distinct molecular regions which mediate their divergent killing properties. One of the chimeras (chimera C3) killed both E. coli and S. aureus with an even higher efficacy compared to the wild-type molecules. Due to the broad spectrum of its antimicrobial activity against many human multidrug-resistant pathogens, this HBD2/HBD3-chimeric peptide represents a promising candidate for a new class of antibiotics. In order to investigate the structural basis of its exceptional antimicrobial activity, the peptide's tertiary structure was determined by NMR spectroscopy, which allowed its direct comparison to the published structures of HBD2 and HBD3 and the identification of the activity-increasing molecular features. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides

    Directory of Open Access Journals (Sweden)

    Markus F. F. Arnold

    2017-08-01

    Full Text Available The model legume species Medicago truncatula expresses more than 700 nodule-specific cysteine-rich (NCR signaling peptides that mediate the differentiation of Sinorhizobium meliloti bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity in vitro and in vivo. Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis. However, the mechanisms used by S. meliloti to resist antimicrobial activity of plant peptides are poorly understood. To address this, we applied a global genetic approach using transposon mutagenesis followed by high-throughput sequencing (Tn-seq to identify S. meliloti genes and pathways that increase or decrease bacterial competitiveness during exposure to the well-studied cationic NCR247 peptide and also to the unrelated model antimicrobial peptide polymyxin B. We identified 78 genes and several diverse pathways whose interruption alters S. meliloti resistance to NCR247. These genes encode the following: (i cell envelope polysaccharide biosynthesis and modification proteins, (ii inner and outer membrane proteins, (iii peptidoglycan (PG effector proteins, and (iv non-membrane-associated factors such as transcriptional regulators and ribosome-associated factors. We describe a previously uncharacterized yet highly conserved peptidase, which protects S. meliloti from NCR247 and increases competitiveness during symbiosis. Additionally, we highlight a considerable number of uncharacterized genes that provide the basis for future studies to investigate the molecular basis of symbiotic development as well as chronic pathogenic interactions.

  12. ß-defensin-2 in breast milk displays a broad antimicrobial activity against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Joanna Baricelli

    2015-02-01

    Full Text Available OBJECTIVE: To describe the antimicrobial activity of ß-defensin-2 produced in the mammary gland and secreted in human breast milk. METHODS: The peptide production was performed by DNA cloning. ß-defensin-2 levels were quantified in 61 colostrum samples and 39 mature milk samples from healthy donors, by an indirect enzyme-linked immunosorbent assay (ELISA. Using halo inhibition assay, this study assessed activity against seven clinical isolates from diarrheal feces of children between 0 and 2 years of age. The activity of ß-defensin-2 against three opportunistic pathogens that can cause nosocomial infections was determined by microdilution test. RESULTS: The peptide levels were higher in colostrum (n = 61 than in mature milk samples (n = 39, as follows: median and range, 8.52 (2.6-16.3 µg/ml versus 0.97 (0.22-3.78, p < 0.0001; Mann-Whitney test. The recombinant peptide obtained showed high antimicrobial activity against a broad range of pathogenic bacteria. Its antibacterial activity was demonstrated in a disk containing between 1-4 µg, which produced inhibition zones ranging from 18 to 30 mm against three isolates of Salmonella spp. and four of E. coli. ß-defensin-2 showed minimum inhibitory concentrations (MICs of 0.25 µg/mL and 0.5 µg/mL for S. marcescen and P. aeruginosa, respectively, while a higher MIC (4 µg/mL was obtained against an isolated of multidrug-resistant strain of A. baumannii. CONCLUSIONS: To the authors' knowledge, this study is the first to report ß-defensin-2 levels in Latin American women. The production and the activity of ß-defensin-2 in breast milk prove its importance as a defense molecule for intestinal health in pediatric patients.

  13. Antiprotozoan and Antiviral Activities of Non-Cytotoxic Truncated and Variant Analogues of Mussel Defensin

    Directory of Open Access Journals (Sweden)

    Philippe Roch

    2004-01-01

    Full Text Available We previously reported the crucial role displayed by loop 3 of defensin isolated from the Mediterranean mussel, Mytilus galloprovincialis, in antibacterial and antifungal activities. We now investigated antiprotozoan and antiviral activities of some previously reported fragments B, D, E, P and Q. Two fragments (D and P efficiently killed Trypanosoma brucei (ID50 4–12 μM and Leishmania major (ID50 12–45 μM in a time/dose-dependent manner. Killing of T. brucei started as early as 1 h after initiation of contact with fragment D and reached 55% mortality after 6 h. Killing was temperature dependent and a temperature of 4°C efficiently impaired the ability to kill T. brucei. Fragments bound to the entire external epithelium of T. brucei. Prevention of HIV-1 infestation was obtained only with fragments P and Q at 20 μM. Even if fragment P was active on both targets, the specificity of fragments D and Q suggest that antiprotozoan and antiviral activities are mediated by different mechanisms. Truncated sequences of mussel defensin, including amino acid replacement to maintain 3D structure and increased positive net charge, also possess antiprotozoan and antiviral capabilities. New alternative and/or complementary antibiotics can be derived from the vast reservoir of natural antimicrobial peptides (AMPs contained in marine invertebrates.

  14. Two novel antimicrobial defensins from rice identified by gene coexpression network analyses.

    Science.gov (United States)

    Tantong, Supaluk; Pringsulaka, Onanong; Weerawanich, Kamonwan; Meeprasert, Arthitaya; Rungrotmongkol, Thanyada; Sarnthima, Rakrudee; Roytrakul, Sittiruk; Sirikantaramas, Supaart

    2016-10-01

    Defensins form an antimicrobial peptides (AMP) family, and have been widely studied in various plants because of their considerable inhibitory functions. However, their roles in rice (Oryza sativa L.) have not been characterized, even though rice is one of the most important staple crops that is susceptible to damaging infections. Additionally, a previous study identified 598 rice genes encoding cysteine-rich peptides, suggesting there are several uncharacterized AMPs in rice. We performed in silico gene expression and coexpression network analyses of all genes encoding defensin and defensin-like peptides, and determined that OsDEF7 and OsDEF8 are coexpressed with pathogen-responsive genes. Recombinant OsDEF7 and OsDEF8 could form homodimers. They inhibited the growth of the bacteria Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Erwinia carotovora subsp. atroseptica with minimum inhibitory concentration (MIC) ranging from 0.6 to 63μg/mL. However, these OsDEFs are weakly active against the phytopathogenic fungi Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense. This study describes a useful method for identifying potential plant AMPs with biological activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Diesel exhaust particles increase IL-1β-induced human β-defensin expression via NF-κB-mediated pathway in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Lee Chun

    2006-05-01

    Full Text Available Abstract Background Human β-defensin (hBD-2, antimicrobial peptide primarily induced in epithelial cells, is a key factor in the innate immune response of the respiratory tract. Several studies showed increased defensin levels in both inflammatory lung diseases, such as cystic fibrosis, diffuse panbronchiolitis, idiopathic pulmonary fibrosis and acute respiratory distress syndrome, and infectious diseases. Recently, epidemiologic studies have demonstrated acute and serious adverse effects of particulate air pollution on respiratory health, especially in people with pre-existing inflammatory lung disease. To elucidate the effect of diesel exhaust particles (DEP on pulmonary innate immune response, we investigated the hBD-2 and interleukin-8 (IL-8 expression to DEP exposure in interleukin-1 beta (IL-1β-stimulated A549 cells. Results IL-1β markedly up-regulated the hBD-2 promoter activity, and the subsequent DEP exposure increased dose-dependently the expression of hBD-2 and inflammatory cytokine IL-8 at the transcriptional level. In addition, DEP further induced the NF-κB activation in IL-1β-stimulated A549 cells more rapidly than in unstimulated control cells, which was showed by nuclear translocation of p65 NF-κB and degradation of IκB-α. The experiment using two NF-κB inhibitors, PDTC and MG132, confirmed that this increase of hBD-2 expression following DEP exposure was regulated through NF-κB-mediated pathway. Conclusion These results demonstrated that DEP exposure increases the expression of antimicrobial peptide and inflammatory cytokine at the transcriptional level in IL-1β-primed A549 epithelial cells and suggested that the increase is mediated at least partially through NF-κB activation. Therefore, DEP exposure may contribute to enhance the airway-responsiveness especially on the patients suffering from chronic respiratory disease.

  16. Rabbit defensin (NP-1) genetic engineering of plant | Ting | African ...

    African Journals Online (AJOL)

    Rabbit defensin (NP-1) genetic engineering of plant. ... Log in or Register to get access to full text downloads. ... defensin genetic engineering of plant in recent years, and also focuses on the existing problems and new strategies in this area.

  17. Enteric alpha defensins in norm and pathology

    Directory of Open Access Journals (Sweden)

    Lisitsyn Nikolai A

    2012-01-01

    Full Text Available Abstract Microbes living in the mammalian gut exist in constant contact with immunity system that prevents infection and maintains homeostasis. Enteric alpha defensins play an important role in regulation of bacterial colonization of the gut, as well as in activation of pro- and anti-inflammatory responses of the adaptive immune system cells in lamina propria. This review summarizes currently available data on functions of mammalian enteric alpha defensins in the immune defense and changes in their secretion in intestinal inflammatory diseases and cancer.

  18. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  19. Alpha-defensins 1-3 release by dendritic cells is reduced by estrogen

    Directory of Open Access Journals (Sweden)

    Sperling Rhoda

    2011-08-01

    Full Text Available Abstract Background During pregnancy the immune system of the mother must protect any activation that may negatively affect the fetus. Changes in susceptibility to infection as well as resolution of some autoimmune disorders represent empirical evidence for pregnancy related alterations in immunity. Sex hormones reach extremely high levels during pregnancy and have been shown to have direct effects on many immune functions including the antiviral response of dendritic cells. Among the immunologically active proteins secreted by monocyte derived DCs (MDDC are the alpha-defensins 1-3. This family of cationic antimicrobial peptides has a broad spectrum of microbicidal activity and has also been shown to link innate to adaptive immunity by attracting T cells and immature DCs, which are essential for initiating and polarizing the immune response. Methods We compare culture-generated monocyte derived DCs (MDDCs with directly isolated myeloid dendritic cells (mDCs and plasmacytoid dendritic cells (pDCs and measure their alpha-defensins 1-3 secretion by ELISA both, in basal situations and after hormone (E2 or PG treatments. Moreover, using a cohort of pregnant women we isolated mDCs from blood and also measure the levels of these anti-microbial peptides along pregnancy. Results We show that mDCs and pDCs constitutively produce alpha-defensins 1-3 and at much higher levels than MDDCs. Alpha-defensins 1-3 production from mDCs and MDDCs but not pDCs is inhibited by E2. PG does not affect alpha-defensins 1-3 in any of the populations. Moreover, alpha-defensins 1-3 production by mDCs was reduced in the later stages of pregnancy in 40% of the patients. Conclusions Here, we demonstrate that mDCs and pDCs secrete alpha-defensins 1-3 and present a novel effect of E2 on the secretion of alpha-defensins 1-3 by dendritic cells.

  20. Correlation of levels of alpha-defensins determined by HPLC-ESI-MS in bronchoalveolar lavage fluid with the diagnosis of pneumonia in premature neonates.

    Science.gov (United States)

    Tirone, Chiara; Boccacci, Simona; Inzitari, Rosanna; Tana, Milena; Aurilia, Claudia; Fanali, Chiara; Cabras, Tiziana; Messana, Irene; Castagnola, Massimo; Romagnoli, Costantino; Vento, Giovanni

    2010-08-01

    The presence of alpha-defensins in bronchoalveolar lavage fluid (BALF) was investigated in a cohort of preterm newborns with gestational age (GA) groups: pneumonia group of nine neonates suffering from pulmonary infection (GA: 26.1 +/- 2.1 wk; birth weight: 787.4 +/- 309.9 g), with or without associated bloodstream infection, and nonpneumonia group of 15 neonates (GA: 27.7 +/- 2.0 wk; birth weight: 1019.0 +/- 319.8 g). BALF culture was positive for CONS (n = 5), Staphylococcus aureus (n = 1), and Candida spp (n = 3). BALF samples were analyzed by HPLC-electrospray Ionization-mass spectrometer. The alpha-defensins 1-4 concentration, absolute and differential white cells count were measured. Relative amounts of alpha-defensins 1-4 and the absolute number of neutrophils were found significantly higher in the pneumonia group with respect to the nonpneumonia group (p < 0.05). Moreover, positive significant correlations between the number of neutrophils and the alpha-defensins 1-3 levels were observed. In conclusion, our data show that preterm newborns, also at the lower GA, are able to produce alpha-defensins, underlining that their innate defense system is already active before the at-term delivery date.

  1. Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora.

    Science.gov (United States)

    Kaushal, Akanksha; Gupta, Kajal; van Hoek, Monique L

    2016-02-19

    Antimicrobial peptides are components of both vertebrate and invertebrate innate immune systems that are expressed in response to exposure to bacterial antigens. Naturally occurring antimicrobial peptides from evolutionarily ancient species have been extensively studied and are being developed as potential therapeutics against antibiotic resistant microorganisms. In this study, a putative Cimex lectularius (bedbug, CL) defensin is characterized for its effectiveness against human skin flora including Gram-negative and Gram-positive bacteria. The bedbug defensin (CL-defensin), belonging to family of insect defensins, is predicted to have a characteristic N-terminal loop, an α-helix, and an antiparallel β-sheet, which was supported by circular dichroism spectroscopy. The defensin was shown to be antimicrobial against Gram-positive bacteria commonly found on human skin (Micrococcus luteus, Corynebacterium renale, Staphylococcus aureus and Staphylococcus epidermidis); however, it was ineffective against common skin Gram-negative bacteria (Pseudomonas aeruginosa and Acinetobacter baumannii) under low-salt conditions. CL-defensin was also effective against M. luteus and C. renale in high-salt (MIC) conditions. Our studies indicate that CL-defensin functions by depolarization and pore-formation in the bacterial cytoplasmic membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Contribution of alpha- and beta-defensins to lung function decline and infection in smokers: an association study

    Directory of Open Access Journals (Sweden)

    Anthonisen Nicholas R

    2006-05-01

    Full Text Available Abstract Background Alpha-defensins, which are major constituents of neutrophil azurophilic granules, and beta-defensins, which are expressed in airway epithelial cells, could contribute to the pathogenesis of chronic obstructive pulmonary disease by amplifying cigarette smoke-induced and infection-induced inflammatory reactions leading to lung injury. In Japanese and Chinese populations, two different beta-defensin-1 polymorphisms have been associated with chronic obstructive pulmonary disease phenotypes. We conducted population-based association studies to test whether alpha-defensin and beta-defensin polymorphisms influenced smokers' susceptibility to lung function decline and susceptibility to lower respiratory infection in two groups of white participants in the Lung Health Study (275 = fast decline in lung function and 304 = no decline in lung function. Methods Subjects were genotyped for the alpha-defensin-1/alpha-defensin-3 copy number polymorphism and four beta-defensin-1 polymorphisms (G-20A, C-44G, G-52A and Val38Ile. Results There were no associations between individual polymorphisms or imputed haplotypes and rate of decline in lung function or susceptibility to infection. Conclusion These findings suggest that, in a white population, the defensin polymorphisms tested may not be of importance in determining who develops abnormally rapid lung function decline or is susceptible to developing lower respiratory infections.

  3. Conformational landscape and pathway of disulfide bond reduction of human alpha defensin

    NARCIS (Netherlands)

    Snijder, Joost; Van De Waterbeemd, Michiel; Glover, Matthew S.; Shi, Liuqing; Clemmer, David E.; Heck, Albert J R

    2015-01-01

    Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions.

  4. Mincle suppresses Toll-like receptor 4 activation.

    Science.gov (United States)

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  5. Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis.

    Directory of Open Access Journals (Sweden)

    Jun-Yan Jin

    Full Text Available Defensins are a group of cationic peptides that exhibit broad-spectrum antimicrobial activity. In this study, we cloned and characterized a β-defensin from pituitary cDNA library of a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides. Interestingly, the β-defensin was shown to be dominantly expressed in pituitary and testis by RT-PCR and Western blot analysis, and its transcript level is significantly upregulated in reproduction organs from intersexual gonad to testis during the natural and artificial sex reversal. Promoter sequence and the responsible activity region analyses revealed the pituitary-specific POU1F1a transcription binding site and testis-specific SRY responsible site, and demonstrated that the pituitary-specific POU1F1a transcription binding site that locates between -180 and -208 bp is the major responsible region of grouper β-defensin promoter activity. Immunofluorescence localization observed its pituicyte expression in pituitary and spermatogonic cell expression in testis. Moreover, both in vitro antibacterial activity assay of the recombinant β-defensin and in vivo embryo microinjection of the β-defensin mRNA were shown to be effective in killing gram-negative bacteria. And, its antiviral role was also demonstrated in EPC cells transfected with the β-defensin construct. Additionally, the antibacterial activity was sensitive to concentrations of Na(+, K(+, Ca(2+ and Mg(2+. The above intriguing findings strongly suggest that the fish β-defensin might play significant roles in both innate immunity defense and reproduction endocrine regulation.

  6. Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis.

    Science.gov (United States)

    Jin, Jun-Yan; Zhou, Li; Wang, Yang; Li, Zhi; Zhao, Jiu-Gang; Zhang, Qi-Ya; Gui, Jian-Fang

    2010-12-20

    Defensins are a group of cationic peptides that exhibit broad-spectrum antimicrobial activity. In this study, we cloned and characterized a β-defensin from pituitary cDNA library of a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Interestingly, the β-defensin was shown to be dominantly expressed in pituitary and testis by RT-PCR and Western blot analysis, and its transcript level is significantly upregulated in reproduction organs from intersexual gonad to testis during the natural and artificial sex reversal. Promoter sequence and the responsible activity region analyses revealed the pituitary-specific POU1F1a transcription binding site and testis-specific SRY responsible site, and demonstrated that the pituitary-specific POU1F1a transcription binding site that locates between -180 and -208 bp is the major responsible region of grouper β-defensin promoter activity. Immunofluorescence localization observed its pituicyte expression in pituitary and spermatogonic cell expression in testis. Moreover, both in vitro antibacterial activity assay of the recombinant β-defensin and in vivo embryo microinjection of the β-defensin mRNA were shown to be effective in killing gram-negative bacteria. And, its antiviral role was also demonstrated in EPC cells transfected with the β-defensin construct. Additionally, the antibacterial activity was sensitive to concentrations of Na(+), K(+), Ca(2+) and Mg(2+). The above intriguing findings strongly suggest that the fish β-defensin might play significant roles in both innate immunity defense and reproduction endocrine regulation.

  7. The expression of cytokines and β -defensin 2, - 3, -4 in rabbit bone tissue after hydroxyapatite (HAp), α- Tricalcium phosphate (α-TCP) and polymethylmethacrylate (PMMA) implantation

    International Nuclear Information System (INIS)

    Vamze, J; Pilmane, M; Skagers, A

    2012-01-01

    Bone loss induced by inflammation is one of the complications after biomaterial implantation. There is no much data on expression of cytokines and defensins into the bone tissue around the implants in literature. The aim of this work was to investigate the distribution and appearance of interleukin (IL)-1, IL-6, IL-8, IL-10 and (β - defensin (BD)-2, BD-3, BD-4 after the implantation of different biomaterials. Bone developing zones, signs of bone-implant contact and low expression of pro-inflammatory cytokine IL-1, IL-6 and anti-inflammatory cytokine IL-10 in experimental tissue with pure HAp and unburned HAp implants indicate a potential advantage of this material in terms of its biocompatibility over the other materials used in our study.

  8. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat.

    Science.gov (United States)

    Kaur, Jagdeep; Fellers, John; Adholeya, Alok; Velivelli, Siva L S; El-Mounadi, Kaoutar; Nersesian, Natalya; Clemente, Thomas; Shah, Dilip

    2017-02-01

    Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.

  9. Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants.

    Science.gov (United States)

    de Zélicourt, Axel; Letousey, Patricia; Thoiron, Séverine; Campion, Claire; Simoneau, Philippe; Elmorjani, Khalil; Marion, Didier; Simier, Philippe; Delavault, Philippe

    2007-08-01

    Plant defensins are small basic peptides of 5-10 kDa and most of them exhibit antifungal activity. In a sunflower resistant to broomrape, among the three defensin encoding cDNA identified, SF18, SD2 and HaDef1, only HaDef1 presented a preferential root expression pattern and was induced upon infection by the root parasitic plant Orobanche cumana. The amino acid sequence deduced from HaDef1 coding sequence was composed of an endoplasmic reticulum signal sequence of 28 amino acids, a standard defensin domain of 50 amino-acid residues and an unusual C-terminal domain of 30 amino acids with a net positive charge. A 5.8 kDa recombinant mature Ha-DEF1 corresponding to the defensin domain was produced in Escherichia coli and was purified by means of a two-step chromatography procedure, Immobilized Metal Affinity Chromatography (IMAC) and Ion Exchange Chromatography. Investigation of in vitro antifungal activity of Ha-DEF1 showed a strong inhibition on Saccharomyces cerevisiae growth linked to a membrane permeabilization, and a morphogenetic activity on Alternaria brassicicola germ tube development, as already reported for some other plant defensins. Bioassays also revealed that Ha-DEF1 rapidly induced browning symptoms at the radicle apex of Orobanche seedlings but not of another parasitic plant, Striga hermonthica, nor of Arabidopsis thaliana. FDA vital staining showed that these browning areas corresponded to dead cells. These results demonstrate for the first time a lethal effect of defensins on plant cells. The potent mode of action of defensin in Orobanche cell death and the possible involvement in sunflower resistance are discussed.

  10. Gene organization of a novel defensin of Ixodes ricinus: first annotation of an intron/exon structure in a hard tick defensin gene and first evidence of the occurrence of two isoforms of one member of the arthropod defensin family

    Czech Academy of Sciences Publication Activity Database

    Rudenko, Natalia; Golovchenko, Maryna; Grubhoffer, Libor

    2007-01-01

    Roč. 16, č. 4 (2007), s. 501-507 ISSN 0962-1075 R&D Projects: GA MŠk(CZ) LC06009; GA ČR(CZ) GA524/06/1479 Institutional research plan: CEZ:AV0Z60220518 Keywords : defensin * Ixodes ricinus * intron/exon structure * immune response * antimicrobial activity Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.787, year: 2007

  11. Antiplasmodial Activity Is an Ancient and Conserved Feature of Tick Defensins

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Tonk, M.; Bouchut, A.; Pierrot, C.; Pierce, R.J.; Kotsyfakis, Michalis; Rahnamaeian, M.; Vilcinskas, A.; Khalife, J.; Valdés, James J.

    2016-01-01

    Roč. 7, 24 October (2016), č. článku 1682. ISSN 1664-302X R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : ticks * defensins * antimicrobial spectrum * ancestral sequence reconstruction * Plasmodium falciparum Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.076, year: 2016

  12. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis.

    Science.gov (United States)

    Xu, X-X; Zhang, Y-Q; Freed, S; Yu, J; Gao, Y-F; Wang, S; Ouyang, L-N; Ju, W-Y; Jin, F-L

    2016-12-01

    Insect defensins, are cationic peptides that play an important role in immunity against microbial infection. In the present study, an anionic defensin from Plutella xylostella, (designated as PxDef) was first cloned and characterized. Amino acid sequence analysis showed that the mature peptide owned characteristic six-cysteine motifs with predicted isoelectric point of 5.57, indicating an anionic defensin. Quantitative real-time polymerase chain reaction analysis showed that PxDef was significantly induced in epidermis, fat body, midgut and hemocytes after injection of heat-inactivated Bacillus thuringiensis, while such an induction was delayed by the injection of live B. thuringiensis in the 4th instar larvae of P. xylostella. Knocking down the expression of nuclear transcription factor Dorsal in P. xylostella by RNA interference significantly decreased the mRNA level of PxDef, and increased the sensitivity of P. xylostella larvae to the infection by live B. thuringiensis. The purified recombinant mature peptide (PxDef) showed higher activity against Gram-positive bacteria, with the minimum inhibition concentrations of 1.6 and 2.6 µM against B. thuringiensis and Bacillus subtilis, respectively. To our knowledge, this is the first report about an anionic PxDef, which may play an important role in the immune system of P. xylostella against B. thuringiensis.

  13. Characterization of the antimicrobial peptide family defensins in the Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii).

    Science.gov (United States)

    Jones, Elizabeth A; Cheng, Yuanyuan; O'Meally, Denis; Belov, Katherine

    2017-03-01

    Defensins comprise a family of cysteine-rich antimicrobial peptides with important roles in innate and adaptive immune defense in vertebrates. We characterized alpha and beta defensin genes in three Australian marsupials: the Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii) and identified 48, 34, and 39 defensins, respectively. One hundred and twelve have the classical antimicrobial peptides characteristics required for pathogen membrane targeting, including cationic charge (between 1+ and 15+) and a high proportion of hydrophobic residues (>30%). Phylogenetic analysis shows that gene duplication has driven unique and species-specific expansions of devil, koala, and tammar wallaby beta defensins and devil alpha defensins. Defensin genes are arranged in three genomic clusters in marsupials, whereas further duplications and translocations have occurred in eutherians resulting in four and five gene clusters in mice and humans, respectively. Marsupial defensins are generally under purifying selection, particularly residues essential for defensin structural stability. Certain hydrophobic or positively charged sites, predominantly found in the defensin loop, are positively selected, which may have functional significance in defensin-target interaction and membrane insertion.

  14. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways.

    Science.gov (United States)

    Wathugala, Deepthi L; Hemsley, Piers A; Moffat, Caroline S; Cremelie, Pieter; Knight, Marc R; Knight, Heather

    2012-07-01

    • Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  15. Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells

    International Nuclear Information System (INIS)

    Negoro, Ryosuke; Takayama, Kazuo; Nagamoto, Yasuhito; Sakurai, Fuminori; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-01

    Many drugs have potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in small intestinal enterocytes. Therefore, a model that can accurately evaluate drug-mediated CYP3A4 induction is urgently needed. In this study, we overlaid Matrigel on the human induced pluripotent stem cells-derived enterocyte-like cells (hiPS-ELCs) to generate the mature hiPS-ELCs that could be applied to drug-mediated CYP3A4 induction test. By overlaying Matrigel in the maturation process of enterocyte-like cells, the gene expression levels of intestinal markers (VILLIN, sucrase-isomaltase, intestine-specific homeobox, caudal type homeobox 2, and intestinal fatty acid-binding protein) were enhanced suggesting that the enterocyte-like cells were maturated by Matrigel overlay. The percentage of VILLIN-positive cells in the hiPS-ELCs found to be approximately 55.6%. To examine the CYP3A4 induction potential, the hiPS-ELCs were treated with various drugs. Treatment with dexamethasone, phenobarbital, rifampicin, or 1α,25-dihydroxyvitamin D3 resulted in 5.8-fold, 13.4-fold, 9.8-fold, or 95.0-fold induction of CYP3A4 expression relative to that in the untreated controls, respectively. These results suggest that our hiPS-ELCs would be a useful model for CYP3A4 induction test. - Highlights: • The hiPS-ELCs were matured by Matrigel overlay. • The hiPS-ELCs expressed intestinal nuclear receptors, such as PXR, GR and VDR. • The hiPS-ELC is a useful model for the drug-mediated CYP3A4 induction test.

  16. Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Negoro, Ryosuke [Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Takayama, Kazuo [Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8302 (Japan); Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085 (Japan); Nagamoto, Yasuhito [Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085 (Japan); Sakurai, Fuminori [Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Project, Graduate School of Pharmaceutical Sciences, Osaka University Osaka 565-0871 (Japan); Tachibana, Masashi [Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Mizuguchi, Hiroyuki, E-mail: mizuguch@phs.osaka-u.ac.jp [Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085 (Japan); Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871 (Japan)

    2016-04-15

    Many drugs have potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in small intestinal enterocytes. Therefore, a model that can accurately evaluate drug-mediated CYP3A4 induction is urgently needed. In this study, we overlaid Matrigel on the human induced pluripotent stem cells-derived enterocyte-like cells (hiPS-ELCs) to generate the mature hiPS-ELCs that could be applied to drug-mediated CYP3A4 induction test. By overlaying Matrigel in the maturation process of enterocyte-like cells, the gene expression levels of intestinal markers (VILLIN, sucrase-isomaltase, intestine-specific homeobox, caudal type homeobox 2, and intestinal fatty acid-binding protein) were enhanced suggesting that the enterocyte-like cells were maturated by Matrigel overlay. The percentage of VILLIN-positive cells in the hiPS-ELCs found to be approximately 55.6%. To examine the CYP3A4 induction potential, the hiPS-ELCs were treated with various drugs. Treatment with dexamethasone, phenobarbital, rifampicin, or 1α,25-dihydroxyvitamin D3 resulted in 5.8-fold, 13.4-fold, 9.8-fold, or 95.0-fold induction of CYP3A4 expression relative to that in the untreated controls, respectively. These results suggest that our hiPS-ELCs would be a useful model for CYP3A4 induction test. - Highlights: • The hiPS-ELCs were matured by Matrigel overlay. • The hiPS-ELCs expressed intestinal nuclear receptors, such as PXR, GR and VDR. • The hiPS-ELC is a useful model for the drug-mediated CYP3A4 induction test.

  17. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes.

    Science.gov (United States)

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  18. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices.

    Science.gov (United States)

    Choi, Man-Soo; Kim, Yul-Ho; Park, Hyang-Mi; Seo, Bo-Yoon; Jung, Jin-Kyo; Kim, Sun-Tae; Kim, Min-Chul; Shin, Dong-Bum; Yun, Hong-Tai; Choi, Im-Soo; Kim, Chung-Kon; Lee, Jang-Yong

    2009-08-31

    Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

  19. Oviduct-Specific Expression of Human Neutrophil Defensin 4 in Lentivirally Generated Transgenic Chickens

    Science.gov (United States)

    Liu, Tongxin; Wu, Hanyu; Cao, Dainan; Li, Qingyuan; Zhang, Yaqiong; Li, Ning; Hu, Xiaoxiang

    2015-01-01

    The expression of oviduct-specific recombinant proteins in transgenic chickens is a promising technology for the production of therapeutic biologics in eggs. In this study, we constructed a lentiviral vector encoding an expression cassette for human neutrophil defensin 4 (HNP4), a compound that displays high activity against Escherichia coli, and produced transgenic chickens that expressed the recombinant HNP4 protein in egg whites. After the antimicrobial activity of the recombinant HNP4 protein was tested at the cellular level, a 2.8-kb ovalbumin promoter was used to drive HNP4 expression specifically in oviduct tissues. From 669 injected eggs, 218 chickens were successfully hatched. Ten G0 roosters, with semens identified as positive for the transgene, were mated with wild-type hens to generate G1 chickens. From 1,274 total offspring, fifteen G1 transgenic chickens were positive for the transgene, which was confirmed by PCR and Southern blotting. The results of the Southern blotting and genome walking indicated that a single copy of the HNP4 gene was integrated into chromosomes 1, 2, 3, 4, 6 and 24 of the chickens. As expected, HNP4 expression was restricted to the oviduct tissues, and the levels of both transcriptional and translational HNP4 expression varied greatly in transgenic chickens with different transgene insertion sites. The amount of HNP4 protein expressed in the eggs of G1 and G2 heterozygous transgenic chickens ranged from 1.65 μg/ml to 10.18 μg/ml. These results indicated that the production of transgenic chickens that expressed HNP4 protein in egg whites was successful. PMID:26020529

  20. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  1. Beta-defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin.

    Directory of Open Access Journals (Sweden)

    Patrick A M Jansen

    Full Text Available BACKGROUND: Previous studies have extensively documented antimicrobial and chemotactic activities of beta-defensins. Human beta-defensin-2 (hBD-2 is strongly expressed in lesional psoriatic epidermis, and recently we have shown that high beta-defensin genomic copy number is associated with psoriasis susceptibility. It is not known, however, if biologically and pathophysiologically relevant concentrations of hBD-2 protein are present in vivo, which could support an antimicrobial and proinflammatory role of beta-defensins in lesional psoriatic epidermis. METHODOLOGY/PRINCIPAL FINDINGS: We found that systemic levels of hBD-2 showed a weak but significant correlation with beta defensin copy number in healthy controls but not in psoriasis patients with active disease. In psoriasis patients but not in atopic dermatitis patients, we found high systemic hBD-2 levels that strongly correlated with disease activity as assessed by the PASI score. Our findings suggest that systemic levels in psoriasis are largely determined by secretion from involved skin and not by genomic copy number. Modelling of the in vivo epidermal hBD-2 concentration based on the secretion rate in a reconstructed skin model for psoriatic epidermis provides evidence that epidermal hBD-2 levels in vivo are probably well above the concentrations required for in vitro antimicrobial and chemokine-like effects. CONCLUSIONS/SIGNIFICANCE: Serum hBD-2 appears to be a useful surrogate marker for disease activity in psoriasis. The discrepancy between hBD-2 levels in psoriasis and atopic dermatitis could explain the well known differences in infection rate between these two diseases.

  2. The Yin and Yang of human beta defensins in health and disease

    Directory of Open Access Journals (Sweden)

    Aaron eWeinberg

    2012-10-01

    Full Text Available Rapidly evolving research examining the extended role of human beta-defensins (hBDs in chemoattraction, innate immune-mediated response and promotion of angiogenesis suggest that the collective effects of hBDs extend well beyond their antimicrobial mechanism(s. Indeed, the numerous basic cellular functions associated with hBDs demonstrate that these peptides have dual impact on health, as they may be advantageous under certain conditions, but potentially detrimental in others. The consequences of these functions are reflected in the overexpression of hBDs in diseases, such as psoriasis, and recently the association of hBDs with pro-tumoral signaling. The mechanisms regulating hBD response in health and disease are still being elucidated. Clearly the spectrum of function now attributed to hBD regulation identifies these molecules as important cellular regulators, whose appropriate expression is critical for proper immune surveillance; i.e., expression of hBDs in proximity to areas of cellular dysregulation may inadvertently exacerbate disease progression. Understanding the mechanism(s that regulate contextual signaling of hBDs is an important area of concentration in our laboratories. Using a combination of immunologic, biochemical and molecular biologic approaches, we have identified signaling pathways associated with hBD promotion of immune homeostasis and have begun to dissect the inappropriate role that beta-defensins may assume in disease.

  3. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes

    Directory of Open Access Journals (Sweden)

    Julia R Dorin

    2015-01-01

    Full Text Available β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  4. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...

  5. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  6. High level expression of human epithelial β-defensins (hBD-1, 2 and 3 in papillomavirus induced lesions

    Directory of Open Access Journals (Sweden)

    Chong Kong T

    2006-09-01

    Full Text Available Abstract Background Epithelial defensins including human β-defensins (hBDs and α-defensins (HDs are antimicrobial peptides that play important roles in the mucosal defense system. However, the role of defensins in papillomavirus induced epithelial lesions is unknown. Results Papilloma tissues were prospectively collected from 15 patients with recurrent respiratory papillomatosis (RRP and analyzed for defensins and chemokine IL-8 expression by quantitative, reverse-transcriptase polymerase chain reaction (RT-PCR assays. HBD-1, -2 and -3 mRNAs were detectable in papilloma samples from all RRP patients and the levels were higher than in normal oral mucosal tissues from healthy individuals. Immunohistochemical analysis showed that both hBD-1 and 2 were localized in the upper epithelial layers of papilloma tissues. Expression of hBD-2 and hBD-3 appeared to be correlated as indicated by scatter plot analysis (r = 0.837, p Conclusion Human β-defensins are upregulated in respiratory papillomas. This novel finding suggests that hBDs might contribute to innate and adaptive immune responses targeted against papillomavirus-induced epithelial lesions.

  7. The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets.

    Science.gov (United States)

    Elahi, Shokrollah; Buchanan, Rachelle M; Attah-Poku, Sam; Townsend, Hugh G G; Babiuk, Lorne A; Gerdts, Volker

    2006-04-01

    Innate immunity plays an important role in protection against respiratory infections in humans and animals. Host defense peptides such as beta-defensins represent major components of innate immunity. We recently developed a novel porcine model of pertussis, an important respiratory disease of young children and infants worldwide. Here, we investigated the role of porcine beta-defensin 1 (pBD-1), a porcine defensin homologue of human beta-defensin 2, in conferring protection against respiratory infection with Bordetella pertussis. In this model, newborn piglets were fully susceptible to infection and developed severe bronchopneumonia. In contrast, piglets older than 4 weeks of age were protected against infection with B. pertussis. Protection was associated with the expression of pBD-1 in the upper respiratory tract. In fact, pBD-1 expression was developmentally regulated, and the absence of pBD-1 was thought to contribute to the increased susceptibility of newborn piglets to infection with B. pertussis. Bronchoalveolar lavage specimens collected from older animals as well as chemically synthesized pBD-1 displayed strong antimicrobial activity against B. pertussis in vitro. Furthermore, in vivo treatment of newborn piglets with only 500 mug pBD-1 at the time of challenge conferred protection against infection with B. pertussis. Interestingly, pBD-1 displayed no bactericidal activity in vitro against Bordetella bronchiseptica, a closely related natural pathogen of pigs. Our results demonstrate that host defense peptides play an important role in protection against pertussis and are essential in modulating innate immune responses against respiratory infections.

  8. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Sumitha Nallu

    Full Text Available Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR group of defensin-like (DEFL genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.

  9. Rabbit defensin (NP-1) genetic engineering of plant

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... rabbit defensin has a significant toxic effect on mouse tumor cells .... Disease is one of the important factors which lead to decrease of .... Transgenic Nitrate Reductase Deficient Mutant of Chlorella ellipsoide. J. Agric.

  10. Alpha-defensin DEFA1A3 gene copy number elevation in Danish Crohn's disease patients

    DEFF Research Database (Denmark)

    Jespersgaard, Cathrine; Fode, Peder; Dybdahl, Marianne

    2011-01-01

    BACKGROUND AND PURPOSE OF STUDY: Extensive copy number variation is observed for the DEFA1A3 gene encoding alpha-defensins 1-3. The objective of this study was to determine the involvement of alpha-defensins in colonic tissue from Crohn's disease (CD) patients and the possible genetic association...... of DEFA1A3 with CD. METHODS: Two-hundred and forty ethnic Danish CD patients were included in the study. Reverse transcriptase PCR assays determined DEFA1A3 expression in colonic tissue from a subset of patients. Immunohistochemical analysis identified alpha-defensin peptides in colonic tissue. Copy...

  11. Heme-Mediated Induction of CXCL10 and Depletion of CD34+ Progenitor Cells Is Toll-Like Receptor 4 Dependent.

    Directory of Open Access Journals (Sweden)

    Carmen M Dickinson-Copeland

    Full Text Available Plasmodium falciparum infection can cause microvascular dysfunction, cerebral encephalopathy and death if untreated. We have previously shown that high concentrations of free heme, and C-X-C motif chemokine 10 (CXCL10 in sera of malaria patients induce apoptosis in microvascular endothelial and neuronal cells contributing to vascular dysfunction, blood-brain barrier (BBB damage and mortality. Endothelial progenitor cells (EPC are microvascular endothelial cell precursors partly responsible for repair and regeneration of damaged BBB endothelium. Studies have shown that EPC's are depleted in severe malaria patients, but the mechanisms mediating this phenomenon are unknown. Toll-like receptors recognize a wide variety of pathogen-associated molecular patterns generated by pathogens such as bacteria and parasites. We tested the hypothesis that EPC depletion during malaria pathogenesis is a function of heme-induced apoptosis mediated by CXCL10 induction and toll-like receptor (TLR activation. Heme and CXCL10 concentrations in plasma obtained from malaria patients were elevated compared with non-malaria subjects. EPC numbers were significantly decreased in malaria patients (P < 0.02 and TLR4 expression was significantly elevated in vivo. These findings were confirmed in EPC precursors in vitro; where it was determined that heme-induced apoptosis and CXCL10 expression was TLR4-mediated. We conclude that increased serum heme mediates depletion of EPC during malaria pathogenesis.

  12. The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity.

    Science.gov (United States)

    Bailleul, Geoffrey; Kravtzoff, Amanda; Joulin-Giet, Alix; Lecaille, Fabien; Labas, Valérie; Meudal, Hervé; Loth, Karine; Teixeira-Gomes, Ana-Paula; Gilbert, Florence B; Coquet, Laurent; Jouenne, Thierry; Brömme, Dieter; Schouler, Catherine; Landon, Céline; Lalmanach, Gilles; Lalmanach, Anne-Christine

    2016-01-01

    Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion.

  13. Beta-Defensin-2 and Beta-Defensin-3 Reduce Intestinal Damage Caused by Salmonella typhimurium Modulating the Expression of Cytokines and Enhancing the Probiotic Activity of Enterococcus faecium

    Directory of Open Access Journals (Sweden)

    Alessandra Fusco

    2017-01-01

    Full Text Available The intestinal microbiota is a major factor in human health and disease. This microbial community includes autochthonous (permanent inhabitants and allochthonous (transient inhabitants microorganisms that contribute to maintaining the integrity of the intestinal wall, modulating responses to pathogenic noxae and representing a key factor in the maturation of the immune system. If this healthy microbiota is disrupted by antibiotics, chemotherapy, or a change in diet, intestinal colonization by pathogenic bacteria or viruses may occur, leading to disease. To manage substantial microbial exposure, epithelial surfaces of the intestinal tract produce a diverse arsenal of antimicrobial peptides (AMPs, including, of considerable importance, the β-defensins, which directly kill or inhibit the growth of microorganisms. Based on the literature data, the purpose of this work was to create a line of intestinal epithelial cells able to stably express gene encoding human β-defensin-2 (hBD-2 and human β-defensin-3 (hBD-3, in order to test their role in S. typhimurium infections and their interaction with the bacteria of the gut microbiota.

  14. [Study on vaginal production of human defensins and the correlated pathogenetic factors of vulvovaginal candidiasis].

    Science.gov (United States)

    Wang, Wen; DI, Wen; Liao, Qin-ping; Liu, Zhao-hui; Zhang, Ning; Zhang, Hui-ying; Zhang, Dai; Geng, Li; Fan, Shang-rong; Hu, Li-na

    2008-07-01

    To investigate the correlated pathogenetic factors and vaginal local immunity in vulvovaginal candidiasis (VVC). A case control study was conducted to compare VVC group (60 cases) with normal group (60 cases). All of the women filled up the specific questionnaires. Routine examination, pH test and bacterial culture were done on the vaginal discharge. Cytokines of the vaginal lavage were measured by enzyme linked immunosorbent assay. (1) Outcomes of the questionnaires: there was no significant difference between the two groups in educational background, knowledge of gynecologic infection, history of gynecologic infection, hygienic habit, sex life, or use of medicine (P > 0.05). The incidence of chronic cervicitis in normal group (43%, 26/60) was higher than in VVC group (22%, 13/60; P vaginal pH between the two groups (P > 0.05). (3) Detection rate of candida albicans by vaginal discharge routine examination was 72% (43/60). (4) The concentrations of interleukin (IL) 2, and IL-4 in vaginal lavage did not show significant difference between the two groups (P > 0.05), but the concentrations of human defensin 5, human beta-defensin (HBD) 1, and HBD2 in VVC group [(0.94 +/- 0.44) mg/L, (3.1 +/- 0.4) microg/L, (10 +/- 6) microg/L] were higher than normal group (P < 0.05). VVC is a common vulvovaginitis. There is no significant correlation between the incidence of VVC and educational background, knowledge of gynecologic infection, history of gynecologic infection, hygienic habit, sex life, or use of medicine in the child-bearing period. Human defensin may be closely correlated with the pathogenesis of VVC.

  15. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  16. Anti-Legionella dumoffii Activity of Galleria mellonella Defensin and Apolipophorin III

    Directory of Open Access Journals (Sweden)

    Małgorzata Cytryńska

    2012-12-01

    Full Text Available The gram-negative bacterium Legionella dumoffii is, beside Legionella pneumophila, an etiological agent of Legionnaires’ disease, an atypical form of pneumonia. The aim of this study was to determine the antimicrobial activity of Galleria mellonella defense polypeptides against L. dumoffii. The extract of immune hemolymph, containing a mixture of defense peptides and proteins, exhibited a dose-dependent bactericidal effect on L. dumoffii. The bacterium appeared sensitive to a main component of the hemolymph extract, apolipophorin III, as well as to a defense peptide, Galleria defensin, used at the concentrations 0.4 mg/mL and 40 μg/mL, respectively. L. dumoffii cells cultured in the presence of choline were more susceptible to both defense factors analyzed. A transmission electron microscopy study of bacterial cells demonstrated that Galleria defensin and apolipophorin III induced irreversible cell wall damage and strong intracellular alterations, i.e., increased vacuolization, cytoplasm condensation and the appearance of electron-white spaces in electron micrographs. Our findings suggest that insects, such as G. mellonella, with their great diversity of antimicrobial factors, can serve as a rich source of compounds for the testing of Legionella susceptibility to defense-related peptides and proteins.

  17. Sal-like 4 (SALL4) suppresses CDH1 expression and maintains cell dispersion in basal-like breast cancer.

    Science.gov (United States)

    Itou, Junji; Matsumoto, Yoshiaki; Yoshikawa, Kiyotsugu; Toi, Masakazu

    2013-09-17

    In cell cultures, the dispersed phenotype is indicative of the migratory ability. Here we characterized Sal-like 4 (SALL4) as a dispersion factor in basal-like breast cancer. Our shRNA-mediated SALL4 knockdown system and SALL4 overexpression system revealed that SALL4 suppresses the expression of adhesion gene CDH1, and positively regulates the CDH1 suppressor ZEB1. Cell behavior analyses showed that SALL4 suppresses intercellular adhesion and maintains cell motility after cell-cell interaction and cell division, which results in the dispersed phenotype. Our findings indicate that SALL4 functions to suppress CDH1 expression and to maintain cell dispersion in basal-like breast cancer. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis.

    Science.gov (United States)

    Flores-Alvarez, Luis José; Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2018-06-01

    Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC 50  = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus

    Czech Academy of Sciences Publication Activity Database

    Chrudimská, Tereza; Slaninová, Jiřina; Rudenko, Natalia; Růžek, Daniel; Grubhoffer, Libor

    2011-01-01

    Roč. 4, č. 1 (2011), e63 ISSN 1756-3305 R&D Projects: GA MŠk(CZ) LC06009; GA ČR GA206/09/1782; GA ČR GD206/09/H026; GA ČR(CZ) GAP302/11/1901 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z40550506 Keywords : defensin * antimicrobial compounds * Ixodes ricinus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.937, year: 2011

  20. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus.

    Science.gov (United States)

    Guillén-Chable, Francisco; Arenas-Sosa, Iván; Islas-Flores, Ignacio; Corzo, Gerardo; Martinez-Liu, Cynthia; Estrada, Georgina

    2017-08-01

    The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages

    OpenAIRE

    Syed M. Faisal; Vivek P. Varma; M. Subathra; Sarwar Azam; Anil K. Sunkara; Mohd Akif; Mirza. S. Baig; Yung-Fu Chang

    2016-01-01

    Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins. We screened Leptospira outer membrane/surface proteins for their ability to activate/inhibit TLR2/4 signaling in HEK293 cell lines. Of these the 21?kDa Leptospira surface ad...

  2. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms.

    Science.gov (United States)

    Mondragón-Palomino, Mariana; Stam, Remco; John-Arputharaj, Ajay; Dresselhaus, Thomas

    2017-12-15

    Genes encoding proteins underlying host-pathogen co-evolution and which are selected for new resistance specificities frequently are under positive selection, a process that maintains diversity. Here, we tested the contribution of natural selection, recombination and transcriptional divergence to the evolutionary diversification of the plant defensins superfamily in three Arabidopsis species. The intracellular NOD-like receptor (NLR) family was used for comparison because positive selection has been well documented in its members. Similar to defensins, NLRs are encoded by a large and polymorphic gene family and many of their members are involved in the immune response. Gene trees of Arabidopsis defensins (DEFLs) show a high prevalence of clades containing orthologs. This indicates that their diversity dates back to a common ancestor and species-specific duplications did not significantly contribute to gene family expansion. DEFLs are characterized by a pervasive pattern of neutral evolution with infrequent positive and negative selection as well as recombination. In comparison, most NLR alignment groups are characterized by frequent occurrence of positive selection and recombination in their leucine-rich repeat (LRR) domain as well negative selection in their nucleotide-binding (NB-ARC) domain. While major NLR subgroups are expressed in pistils and leaves both in presence or absence of pathogen infection, the members of DEFL alignment groups are predominantly transcribed in pistils. Furthermore, conserved groups of NLRs and DEFLs are differentially expressed in response to Fusarium graminearum regardless of whether these genes are under positive selection or not. The present analyses of NLRs expands previous studies in Arabidopsis thaliana and highlights contrasting patterns of purifying and diversifying selection affecting different gene regions. DEFL genes show a different evolutionary trend, with fewer recombination events and significantly fewer instances of

  3. Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas.

    Science.gov (United States)

    Rosa, Rafael D; Santini, Adrien; Fievet, Julie; Bulet, Philippe; Destoumieux-Garzón, Delphine; Bachère, Evelyne

    2011-01-01

    Big defensin is an antimicrobial peptide composed of a highly hydrophobic N-terminal region and a cationic C-terminal region containing six cysteine residues involved in three internal disulfide bridges. While big defensin sequences have been reported in various mollusk species, few studies have been devoted to their sequence diversity, gene organization and their expression in response to microbial infections. Using the high-throughput Digital Gene Expression approach, we have identified in Crassostrea gigas oysters several sequences coding for big defensins induced in response to a Vibrio infection. We showed that the oyster big defensin family is composed of three members (named Cg-BigDef1, Cg-BigDef2 and Cg-BigDef3) that are encoded by distinct genomic sequences. All Cg-BigDefs contain a hydrophobic N-terminal domain and a cationic C-terminal domain that resembles vertebrate β-defensins. Both domains are encoded by separate exons. We found that big defensins form a group predominantly present in mollusks and closer to vertebrate defensins than to invertebrate and fungi CSαβ-containing defensins. Moreover, we showed that Cg-BigDefs are expressed in oyster hemocytes only and follow different patterns of gene expression. While Cg-BigDef3 is non-regulated, both Cg-BigDef1 and Cg-BigDef2 transcripts are strongly induced in response to bacterial challenge. Induction was dependent on pathogen associated molecular patterns but not damage-dependent. The inducibility of Cg-BigDef1 was confirmed by HPLC and mass spectrometry, since ions with a molecular mass compatible with mature Cg-BigDef1 (10.7 kDa) were present in immune-challenged oysters only. From our biochemical data, native Cg-BigDef1 would result from the elimination of a prepropeptide sequence and the cyclization of the resulting N-terminal glutamine residue into a pyroglutamic acid. We provide here the first report showing that big defensins form a family of antimicrobial peptides diverse not only in terms

  4. Utilization of plant-derived recombinant human β-defensins (hBD-1 and hBD-2) for averting salmonellosis.

    Science.gov (United States)

    Patro, Sunita; Maiti, Soumitra; Panda, Santosh Kumar; Dey, Nrisingha

    2015-04-01

    We describe the use of plant-made β-defensins as effective antimicrobial substances for controlling salmonellosis, a deadly infection caused by Salmonella typhimurium (referred to further as S. typhi). Human β-defensin-1 (hBD-1) and -2 (hBD-2) were expressed under the control of strong constitutive promoters in tobacco plants, and bio-active β-defensins were successfully extracted. In the in vitro studies, enriched recombinant plant-derived human β-defensin-1 (phBD-1) and -2 (phBD-2) obtained from both T1 and T2 transgenic plants showed significant antimicrobial activity against Escherichia coli and S. typhi when used individually and in various combinations. The 2:1 peptide combination of phBD-1:phBD-2 with peptides isolated from T1-and T2-generation plants reduced the growth of S. typhi by 96 and 85 %, respectively. In vivo studies employing the mouse model (Balb/c) of Salmonella infection clearly demonstrated that the administration of plant-derived defensins individually and in different combinations enhanced the mean survival time of Salmonella-infected animals. When treatment consisted of the 2:1 phBD-1:phBD-2 combination, approximately 50 % of the infected mice were still alive at 206 h post-inoculation; the lowest number of viable S. typhi was observed in the liver and spleen of infected animals. We conclude that plant-made recombinant β-defensins (phBD-1 and phBD-2) are promising antimicrobial substances and have the potential to become additional tools against salmonellosis, particularly when used in combination.

  5. Mode of action of plant defensins suggests therapeutic potential

    NARCIS (Netherlands)

    Thomma, B.P.H.J.; Cammue, B.P.A.; Thevissen, K.

    2003-01-01

    Higher vertebrates can rely both on an innate as well as an adaptive immune system for defense against invading pathogens. In contrast, plants can only employ an innate immune system that largely depends on the production of antimicrobial compounds such as plant defensins and other

  6. A Defensin from the Model Beetle Tribolium castaneum Acts Synergistically with Telavancin and Daptomycin against Multidrug Resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Jayamani, Elamparithi; Conery, Annie L; Fuchs, Beth Burgwyn; Kim, Wooseong; Johnston, Tatiana; Vilcinskas, Andreas; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    The red flour beetle Tribolium castaneum is a common insect pest and has been established as a model beetle to study insect development and immunity. This study demonstrates that defensin 1 from T. castaneum displays in vitro and in vivo antimicrobial activity against drug resistant Staphylococcus aureus strains. The minimum inhibitory concentration (MIC) of defensin 1 against 11 reference and clinical staphylococcal isolates was between 16-64 μg/ml. The putative mode of action of the defensin peptide is disruption of the bacterial cell membrane. The antibacterial activity of defensin 1 was attenuated by salt concentrations of 1.56 mM and 25 mM for NaCl and CaCl2 respectively. Treatment of defensin 1 with the reducing agent dithiothreitol (DTT) at concentrations 1.56 to 3.13 mM abolished the antimicrobial activity of the peptide. In the presence of subinhibitory concentrations of antibiotics that also target the bacterial cell envelope such as telavancin and daptomycin, the MIC of the peptide was as low as 1 μg/ml. Moreover, when tested against an S. aureus strain that was defective in D-alanylation of the cell wall, the MIC of the peptide was 0.5 μg/ml. Defensin 1 exhibited no toxicity against human erythrocytes even at 400 μg/ml. The in vivo activity of the peptide was validated in a Caenorhabditis elegans-MRSA liquid infection assay. These results suggest that defensin 1 behaves similarly to other cationic AMPs in its mode of action against S. aureus and that the activity of the peptide can be enhanced in combination with other antibiotics with similar modes of action or with compounds that have the ability to decrease D-alanylation of the bacterial cell wall.

  7. A Defensin from the Model Beetle Tribolium castaneum Acts Synergistically with Telavancin and Daptomycin against Multidrug Resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available The red flour beetle Tribolium castaneum is a common insect pest and has been established as a model beetle to study insect development and immunity. This study demonstrates that defensin 1 from T. castaneum displays in vitro and in vivo antimicrobial activity against drug resistant Staphylococcus aureus strains. The minimum inhibitory concentration (MIC of defensin 1 against 11 reference and clinical staphylococcal isolates was between 16-64 μg/ml. The putative mode of action of the defensin peptide is disruption of the bacterial cell membrane. The antibacterial activity of defensin 1 was attenuated by salt concentrations of 1.56 mM and 25 mM for NaCl and CaCl2 respectively. Treatment of defensin 1 with the reducing agent dithiothreitol (DTT at concentrations 1.56 to 3.13 mM abolished the antimicrobial activity of the peptide. In the presence of subinhibitory concentrations of antibiotics that also target the bacterial cell envelope such as telavancin and daptomycin, the MIC of the peptide was as low as 1 μg/ml. Moreover, when tested against an S. aureus strain that was defective in D-alanylation of the cell wall, the MIC of the peptide was 0.5 μg/ml. Defensin 1 exhibited no toxicity against human erythrocytes even at 400 μg/ml. The in vivo activity of the peptide was validated in a Caenorhabditis elegans-MRSA liquid infection assay. These results suggest that defensin 1 behaves similarly to other cationic AMPs in its mode of action against S. aureus and that the activity of the peptide can be enhanced in combination with other antibiotics with similar modes of action or with compounds that have the ability to decrease D-alanylation of the bacterial cell wall.

  8. Expression of human beta-defensins-1-4 in thyroid cancer cells and new insight on biologic activity of hBD-2 in vitro.

    Science.gov (United States)

    Zhuravel, O V; Gerashchenko, O L; Khetsuriani, M R; Soldatkina, M A; Pogrebnoy, P V

    2014-09-01

    The study was aimed on analysis of human beta-defensin-1-4 (hBDs) mRNA expression in cultured thyroid cancer cells and evaluation of effects of recombinant hBD-2 (rec-hBD-2) on growth patterns, migration properties and expression of E-cadherin and vimentin in these cells. The study was performed on cultured follicular thyroid cancer WRO cells, papillary thyroid cancer TPC1 cells, and anaplastic thyroid cancer KTC-2 cells. For analysis of hBD-1-4 mRNA expression in thyroid cancer cells, semiquantitative RT-PCR was used. Effects of rec-hBD-2 on cell proliferation, viability, and migration were analyzed using direct cell counting, MTT test, and scratch assay respectively. Expression of vimentin and E-cadherin was evaluated by quantitative PCR (qPCR). By the data of RT-PCR, all three studied thyroid cancer cell lines express hBD-1 and -4 mRNA, but not hBD-2 mRNA, while hBD-3 expression was detected in WRO and KTC-2 cells. The treatment of TPC-1, WRO, and KTC-2 cells with 100-1000 nM rec-hBD-2 resulted in significant concentration-dependent suppression of cell proliferation, viability, and migratory property. By the data of qPCR, significant up-regulation of vimentin expression was registered in KTC-2 and WRO cells treated with 500 nM rec-hBD-2. Significant down-regulation of E-cadherin expression (p cells treated with the defensin. Also, it has been shown that TPC-1 cells treated with 500 nM rec-hBD-2 acquired more elongated morphology. The data demonstrate that hBD-2 in concentrations higher than 100 nM exerts significant concentration-dependent suppression of thyroid cancer cell growth and migration, and affects vimentin and E-cadherin expression dependent on histologic type of thyroid cancer cells.

  9. Big Defensins, a Diverse Family of Antimicrobial Peptides That Follows Different Patterns of Expression in Hemocytes of the Oyster Crassostrea gigas

    Science.gov (United States)

    Rosa, Rafael D.; Santini, Adrien; Fievet, Julie; Bulet, Philippe; Destoumieux-Garzón, Delphine; Bachère, Evelyne

    2011-01-01

    Background Big defensin is an antimicrobial peptide composed of a highly hydrophobic N-terminal region and a cationic C-terminal region containing six cysteine residues involved in three internal disulfide bridges. While big defensin sequences have been reported in various mollusk species, few studies have been devoted to their sequence diversity, gene organization and their expression in response to microbial infections. Findings Using the high-throughput Digital Gene Expression approach, we have identified in Crassostrea gigas oysters several sequences coding for big defensins induced in response to a Vibrio infection. We showed that the oyster big defensin family is composed of three members (named Cg-BigDef1, Cg-BigDef2 and Cg-BigDef3) that are encoded by distinct genomic sequences. All Cg-BigDefs contain a hydrophobic N-terminal domain and a cationic C-terminal domain that resembles vertebrate β-defensins. Both domains are encoded by separate exons. We found that big defensins form a group predominantly present in mollusks and closer to vertebrate defensins than to invertebrate and fungi CSαβ-containing defensins. Moreover, we showed that Cg-BigDefs are expressed in oyster hemocytes only and follow different patterns of gene expression. While Cg-BigDef3 is non-regulated, both Cg-BigDef1 and Cg-BigDef2 transcripts are strongly induced in response to bacterial challenge. Induction was dependent on pathogen associated molecular patterns but not damage-dependent. The inducibility of Cg-BigDef1 was confirmed by HPLC and mass spectrometry, since ions with a molecular mass compatible with mature Cg-BigDef1 (10.7 kDa) were present in immune-challenged oysters only. From our biochemical data, native Cg-BigDef1 would result from the elimination of a prepropeptide sequence and the cyclization of the resulting N-terminal glutamine residue into a pyroglutamic acid. Conclusions We provide here the first report showing that big defensins form a family of antimicrobial

  10. Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Rafael D Rosa

    Full Text Available BACKGROUND: Big defensin is an antimicrobial peptide composed of a highly hydrophobic N-terminal region and a cationic C-terminal region containing six cysteine residues involved in three internal disulfide bridges. While big defensin sequences have been reported in various mollusk species, few studies have been devoted to their sequence diversity, gene organization and their expression in response to microbial infections. FINDINGS: Using the high-throughput Digital Gene Expression approach, we have identified in Crassostrea gigas oysters several sequences coding for big defensins induced in response to a Vibrio infection. We showed that the oyster big defensin family is composed of three members (named Cg-BigDef1, Cg-BigDef2 and Cg-BigDef3 that are encoded by distinct genomic sequences. All Cg-BigDefs contain a hydrophobic N-terminal domain and a cationic C-terminal domain that resembles vertebrate β-defensins. Both domains are encoded by separate exons. We found that big defensins form a group predominantly present in mollusks and closer to vertebrate defensins than to invertebrate and fungi CSαβ-containing defensins. Moreover, we showed that Cg-BigDefs are expressed in oyster hemocytes only and follow different patterns of gene expression. While Cg-BigDef3 is non-regulated, both Cg-BigDef1 and Cg-BigDef2 transcripts are strongly induced in response to bacterial challenge. Induction was dependent on pathogen associated molecular patterns but not damage-dependent. The inducibility of Cg-BigDef1 was confirmed by HPLC and mass spectrometry, since ions with a molecular mass compatible with mature Cg-BigDef1 (10.7 kDa were present in immune-challenged oysters only. From our biochemical data, native Cg-BigDef1 would result from the elimination of a prepropeptide sequence and the cyclization of the resulting N-terminal glutamine residue into a pyroglutamic acid. CONCLUSIONS: We provide here the first report showing that big defensins form a family

  11. Comparing the efficiency of Er,Cr:YSGG laser and diode laser on human β-defensin-1 and IL-1β levels during the treatment of generalized aggressive periodontitis and chronic periodontitis.

    Science.gov (United States)

    Ertugrul, Abdullah Seckin; Tekin, Yasin; Talmac, Ahmet Cemil

    2017-11-01

    The aim of this study is to determine the suitability of the Er,Cr:YSGG and 940 ± 15-nm diode laser for the treatment of generalized aggressive periodontitis and chronic periodontitis by measuring the levels of human β-defensin-1 and IL-1β. A total of 26 patients were included in this study. The study was designed as a "split-mouth" experiment. We performed scaling and root planing in the right maxillary quadrant, scaling and root planning + Er,Cr:YSGG laser in the left maxillary quadrant, scaling and root planning + 940 ± 15-nm diode laser in the left mandibular quadrant, and only scaling and root planing in the right mandibular quadrant. The presence of human β-defensin-1 and IL-1β was analyzed with an ELISA. When the baseline and post-treatment human β-defensin-1 levels and IL-1β levels of the study groups were evaluated, a decrease in human β-defensin-1 and IL-1β were observed in the quadrant where the Er,Cr:YSGG laser was applied in both the generalized aggressive periodontitis group and the chronic periodontitis group. The use of the Er,Cr:YSGG laser at non-surgical periodontal treatment decreased both IL-1β and human β-defensin-1 levels. It is likely that Er,Cr:YSGG laser is more suitable for the treatment of generalized aggressive periodontitis and chronic periodontitis.

  12. Association of β-defensin copy number and psoriasis in three cohorts of European origin.

    Science.gov (United States)

    Stuart, Philip E; Hüffmeier, Ulrike; Nair, Rajan P; Palla, Raquel; Tejasvi, Trilokraj; Schalkwijk, Joost; Elder, James T; Reis, Andre; Armour, John A L

    2012-10-01

    A single previous study has demonstrated significant association of psoriasis with copy number of β-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study, we attempted to replicate that finding in larger new cohorts from Erlangen (N=2,017) and Michigan (N=5,412), using improved methods for β-defensin copy number determination based on the paralog ratio test, and enhanced methods of analysis and association testing implemented in the CNVtools resource. We demonstrate that the association with psoriasis found in the discovery sample is maintained after applying improved typing and analysis methods (P=5.5 × 10(-4), odds ratio (OR)=1.25). We also find that the association is replicated in 2,616 cases and 2,526 controls from Michigan, although at reduced significance (P=0.014), but not in new samples from Erlangen (1,396 cases and 621 controls, P=0.38). Meta-analysis across all cohorts suggests a nominally significant association (P=6.6 × 10(-3)/2 × 10(-4)) with an effect size (OR=1.081) much lower than found in the discovery study (OR=1.32). This reduced effect size and significance on replication is consistent with a genuine but weak association.

  13. Association of β-defensin copy number and psoriasis in three cohorts of European origin

    Science.gov (United States)

    Stuart, Philip E; Hüffmeier, Ulrike; Nair, Rajan P; Palla, Raquel; Tejasvi, Trilokraj; Schalkwijk, Joost; Elder, James T; Reis, Andre; Armour, John AL

    2012-01-01

    A single previous study has demonstrated significant association of psoriasis with copy number of beta-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study we attempted to replicate that finding in larger new cohorts from Erlangen (N = 2017) and Michigan (N = 5412), using improved methods for beta-defensin copy number determination based on the paralog ratio test (PRT), and enhanced methods of analysis and association testing implemented in the CNVtools resource. We demonstrate that the association with psoriasis found in the discovery sample is maintained after applying improved typing and analysis methods (p = 5.5 × 10−4, OR = 1.25). We also find that the association is replicated in 2616 cases and 2526 controls from Michigan, although at reduced significance (p = 0.014), but not in new samples from Erlangen (1396 cases and 621 controls, p = 0.38). Meta-analysis across all cohorts suggests a nominally significant association (p = 6.6 × 10−3/2 × 10−4) with an effect size (OR = 1.081) much lower than found in the discovery study (OR = 1.32). This reduced effect size and significance on replication is consistent with a genuine but weak association. PMID:22739795

  14. Ixodes ricinus defensins attack distantly-related pathogens

    Czech Academy of Sciences Publication Activity Database

    Tonk, M.; Cabezas-Cruz, A.; Valdés, James J.; Rego, Ryan O. M.; Grubhoffer, Libor; Estrada--Pena, A.; Vilcinskas, A.; Kotsyfakis, Michalis; Rahnamaeian, M.

    2015-01-01

    Roč. 53, č. 2 (2015), s. 358-365 ISSN 0145-305X R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GAP502/12/2409 EU Projects: European Commission(XE) 278976 Institutional support: RVO:60077344 Keywords : Antimicrobial peptide * Defensin * Ixodes ricinus * Listeria monocytogenes * Staphylococcus aureus * Staphylococcus epidermidis * Escherichia coli * Pseudomonas aeruginosa * Fusarium spp Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.620, year: 2015

  15. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    Directory of Open Access Journals (Sweden)

    Peter M. Dracatos

    2016-09-01

    Full Text Available Nicotiana alata defensins 1 and 2 (NaD1 and NaD2 are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An O-mannosyltransferase (pmt knockout (KO mutants (An∆pmtA, An∆pmtB, and An∆pmtC. An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol signalling knockout mutants from the cell wall integrity (CWI and high osmolarity glycerol (HOG mitogen-activated protein kinase (MAPK pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.

  16. Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection.

    Science.gov (United States)

    Veldhuizen, Edwin J A; van Dijk, Albert; Tersteeg, Monique H G; Kalkhove, Stefanie I C; van der Meulen, Jan; Niewold, Theo A; Haagsman, Henk P

    2007-01-01

    Defensins are antimicrobial peptides that play an important role in the innate immune response in the intestine. Up to date, only one beta-defensin (pBD-1), has been described in pig, which was found to be expressed at low levels in the intestine. We set-up a quantitative PCR method to detect the gene expression of pBD-1 and a newly discovered porcine beta-defensin, pBD-2. Expression of pBD-1 mRNA increased from the proximal to the distal part of the intestine whereas pBD-2 expression decreased. The main gene expression sites for pBD-2 were kidney and liver, whereas pBD-1 was mainly expressed in tongue. The porcine small intestinal segment perfusion (SISP) technique was used to investigate effects of Salmonella typhimurium DT104 on intestinal morphology and pBD-1 and pBD-2 mRNA levels in vivo. The early responses were studied 2, 4 and 8 h post-infection in four separate jejunal and ileal segments. Immunohistochemistry showed invasion of the mucosa by Salmonella and changes in intestinal morphology. However, no concomitant changes in expression of either pBD-1 or pBD-2 were observed. We conclude that at least two defensins are differentially expressed in the intestine of pigs, and that expression of both defensins is not altered by S. typhimurium under these conditions.

  17. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract.

    Directory of Open Access Journals (Sweden)

    Brian Becknell

    Full Text Available Beta defensins (BDs are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1 expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1(-/- mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1(-/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.

  18. Expression and Antimicrobial Function of Beta-Defensin 1 in the Lower Urinary Tract

    Science.gov (United States)

    Becknell, Brian; Spencer, John David; Carpenter, Ashley R.; Chen, Xi; Singh, Aspinder; Ploeger, Suzanne; Kline, Jennifer; Ellsworth, Patrick; Li, Birong; Proksch, Ehrhardt; Schwaderer, Andrew L.; Hains, David S.; Justice, Sheryl S.; McHugh, Kirk M.

    2013-01-01

    Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1 -/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1 -/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract. PMID:24204930

  19. Oil Palm Defensin: A Thermal Stable Peptide that Restricts the Mycelial Growth of Ganoderma boninense.

    Science.gov (United States)

    Tan, Yung-Chie; Ang, Cheng-Liang; Wong, Mui-Yun; Ho, Chai-Ling

    2016-01-01

    Plant defensins are plant defence peptides that have many different biological activities, including antifungal, antimicrobial, and insecticidal activities. A cDNA (EgDFS) encoding defensin was isolated from Elaeis guineensis. The open reading frame of EgDFS contained 231 nucleotides encoding a 71-amino acid protein with a predicted molecular weight at 8.69 kDa, and a potential signal peptide. The eight highly conserved cysteine sites in plant defensins were also conserved in EgDFS. The EgDFS sequence lacking 30 amino acid residues at its N-terminus (EgDFSm) was cloned into Escherichia coli BL21 (DE3) pLysS and successfully expressed as a soluble recombinant protein. The recombinant EgDFSm was found to be a thermal stable peptide which demonstrated inhibitory activity against the growth of G. boninense possibly by inhibiting starch assimilation. The role of EgDFSm in oil palm defence system against the infection of pathogen G. boninense was discussed.

  20. Determination of beta-defensin genomic copy number in different populations

    DEFF Research Database (Denmark)

    Fode, Peder; Jespersgaard, Cathrine; Hardwick, Robert J

    2011-01-01

    There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and ß-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with...

  1. Maize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells.

    Science.gov (United States)

    Woriedh, Mayada; Merkl, Rainer; Dresselhaus, Thomas

    2015-08-01

    EMBRYO SAC1-4 (ES1-4) peptides belong to the defensin subgroup of cysteine-rich peptides known to mediate pollen tube burst in Zea mays (maize). ES1-4 are reported here to also be capable of inhibiting germination and growth of the maize fungal pathogens Fusarium graminearum and Ustilago maydis at higher concentrations. Dividing the peptides into smaller pieces showed that a 15-amino-acid peptide located in a highly variable loop region lacking similarity to other defensins or defensin-like peptides binds to maize pollen tube surfaces, causing swelling prior to burst. This peptide fragment and a second conserved neighbouring fragment showed suppression of fungal germination and growth. The two peptides caused swelling of fungal cells, production of reactive oxygen species, and finally the formation of big vacuoles prior to burst at high peptide concentration. Furthermore, peptide fragments were found to bind differently to fungal cells. In necrotrophic F. graminearum, a peptide fragment named ES-d bound only at cell surfaces whereas the peptide ES-c bound at cell surfaces and also accumulated inside cells. Conversely, in biotrophic U. maydis, both peptide fragments accumulated inside cells, but, if applied at higher concentration, ES-c but not ES-d accumulated mainly in vacuoles. Mapping of peptide interaction sites identified amino acids differing in pollen tube burst and fungal response reactions. In summary, these findings indicate that residues targeting pollen tube burst in maize are specific to the ES family, while residues targeting fungal growth are conserved within defensins and defensin-like peptides. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Tribolium castaneum defensins are primarily active against Gram-positive bacteria

    Czech Academy of Sciences Publication Activity Database

    Tonk, M.; Knorr, E.; Cabezas-Cruz, A.; Valdés, James J.; Kollewe, C.; Vilcinskas, A.

    2015-01-01

    Roč. 132, NOV 2015 (2015), s. 208-215 ISSN 0022-2011 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Antimicrobial peptides * Defensin * Innate immunity * Insects * Tribolium castaneum * Gram-positive bacteria Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.198, year: 2015

  3. Expression of the angiogenic mediator, angiopoietin-like 4, in the eyes of patients with proliferative sickle retinopathy.

    Directory of Open Access Journals (Sweden)

    Kathleen Jee

    Full Text Available The recent success of therapies directly targeting the angiogenic mediator, vascular endothelial growth factor (VEGF, for the treatment of proliferative diabetic retinopathy has encouraged clinicians to extend the use of anti-VEGF therapies for the treatment of another ischemic retinal vascular disease, proliferative sickle cell retinopathy (PSR, the most common cause of irreversible blindness in patients with sickle cell disease. However, results from case reports evaluating anti-VEGF therapies for PSR have been mixed. This highlights the need to identify alternative therapeutic targets for the treatment of retinal neovascularization in sickle cell patients. In this regard, angiopoietin-like 4 (ANGPTL4 is a novel angiogenic factor regulated by the transcription factor, hypoxia-inducible factor 1, the master regulator of angiogenic mediators (including VEGF in ischemic retinal disease. In an effort to identify alternative targets for the treatment of sickle cell retinopathy, we have explored the expression of ANGPTL4 in the eyes of patients with PSR. To this end, we examined expression and localization of ANGPTL4 by immunohistochemistry in autopsy eyes from patients with known PSR (n = 5 patients. Complementary studies were performed using enzyme-linked immunosorbent assays in aqueous (n = 8; 7 patients, 2 samples from one eye of same patient and vitreous (n = 3 patients samples from a second group of patients with active PSR. We detected expression of ANGPTL4 in neovascular tissue and in the ischemic inner retina in PSR, but not control, eyes. We further observed elevated expression of ANGPTL4 in the aqueous and vitreous of PSR patients compared to controls. These results suggest that ANGPTL4 could contribute to the development of retinal neovascularization in sickle cell patients and could therefore be a therapeutic target for the treatment of PSR.

  4. The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.

    Directory of Open Access Journals (Sweden)

    Marian Uhe

    Full Text Available Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.

  5. Human α-defensin (DEFA) gene expression helps to characterise benign and malignant salivary gland tumours

    International Nuclear Information System (INIS)

    Winter, Jochen; Wenghoefer, Matthias; Pantelis, Annette; Kraus, Dominik; Reckenbeil, Jan; Reich, Rudolf; Jepsen, Soeren; Fischer, Hans-Peter; Allam, Jean-Pierre; Novak, Natalija

    2012-01-01

    Because of the infrequence of salivary gland tumours and their complex histopathological diagnosis it is still difficult to exactly predict their clinical course by means of recurrence, malignant progression and metastasis. In order to define new proliferation associated genes, purpose of this study was to investigate the expression of human α-defensins (DEFA) 1/3 and 4 in different tumour entities of the salivary glands with respect to malignancy. Tissue of salivary glands (n=10), pleomorphic adenomas (n=10), cystadenolymphomas (n=10), adenocarcinomas (n=10), adenoidcystic carcinomas (n=10), and mucoepidermoid carcinomas (n=10) was obtained during routine surgical procedures. RNA was extracted according to standard protocols. Transcript levels of DEFA 1/3 and 4 were analyzed by quantitative realtime PCR and compared with healthy salivary gland tissue. Additionally, the proteins encoded by DEFA 1/3 and DEFA 4 were visualized in paraffin-embedded tissue sections by immunohistochemical staining. Human α-defensins are traceable in healthy as well as in pathological altered salivary gland tissue. In comparison with healthy tissue, the gene expression of DEFA 1/3 and 4 was significantly (p<0.05) increased in all tumours – except for a significant decrease of DEFA 4 gene expression in pleomorphic adenomas and a similar transcript level for DEFA 1/3 compared to healthy salivary glands. A decreased gene expression of DEFA 1/3 and 4 might protect pleomorphic adenomas from malignant transformation into adenocarcinomas. A similar expression pattern of DEFA-1/3 and -4 in cystadenolymphomas and inflamed salivary glands underlines a potential importance of immunological reactions during the formation of Warthin’s tumour

  6. Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression

    Directory of Open Access Journals (Sweden)

    Xinjing Luo

    2016-01-01

    Full Text Available Human fibroblast-like synoviocytes play a vital role in joint synovial inflammation in rheumatoid arthritis (RA. Proinflammatory cytokines induce fibroblast-like synoviocyte activation and dysfunction. The inflammatory mediator Krüppel-like factor 4 is upregulated during inflammation and plays an important role in endothelial and macrophage activation during inflammation. However, the role of Krüppel-like factor 4 in fibroblast-like synoviocyte activation and RA inflammation remains to be defined. In this study, we identify the notion that Krüppel-like factor 4 is higher expressed in synovial tissues and fibroblast-like synoviocytes from RA patients than those from osteoarthritis patients. In vitro, the expression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes is induced by proinflammatory cytokine tumor necrosis factor-α. Overexpression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes robustly induced interleukin-6 production in the presence or absence of tumor necrosis factor-α. Conversely, knockdown of Krüppel-like factor 4 markedly attenuated interleukin-6 production in the presence or absence of tumor necrosis factor-α. Krüppel-like factor 4 not only can bind to and activate the interleukin-6 promoter, but also may interact directly with nuclear factor-kappa B. These results suggest that Krüppel-like factor 4 may act as a transcription factor mediating the activation of fibroblast-like synoviocytes in RA by inducing interleukin-6 expression in response to tumor necrosis factor-α.

  7. Plant defensins and their potential use as pest control in agriculture

    International Nuclear Information System (INIS)

    Rojas Arias, Adriana Carolina; Zamora Espitia, Humberto Miguel

    2010-01-01

    Plants, as all organisms in nature, have elaborate systems of defense against pathogens; which can be physical or chemical and produced in a constitutive and induced way. Among the induced chemical barriers, there is a group of low molecular weight proteins, known as antimicrobial peptides (AMPs). These peptides include defensins, which are peptides with a molecular weight about 5 to 7 KDa, isoelectric point of 9, and length of about 45 to 55 amino acids. Likewise, they have the ability to avoid the growth of phytopathogenic microorganisms, mainly funguses. Moreover, these peptides create resistance to abiotic conditions of stress in plants. This manuscript seeks to make a clear and current description about the recent characteristics and researches related to plant defensins and their most significant uses in pathogens management in crops of economical relevance. It also intends to go deep into the study of such proteins in order to use them as a control strategy, such as production of transgenic plants and microorganisms.

  8. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  9. 10 CFR 4.333 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Mediation. 4.333 Section 4.333 Energy NUCLEAR REGULATORY... Investigation, Conciliation, and Enforcement Procedures § 4.333 Mediation. (a) Referral of complaints for mediation. NRC will refer to a mediation agency designated by the Secretary of the Department of Health and...

  10. Purification, cDNA cloning and modification of a defensin from the coconut rhinoceros beetle, Oryctes rhinoceros.

    Science.gov (United States)

    Ishibashi, J; Saido-Sakanaka, H; Yang, J; Sagisaka, A; Yamakawa, M

    1999-12-01

    A novel member of the insect defensins, a family of antibacterial peptides, was purified from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros, immunized with Escherichia coli. A full-size cDNA was cloned by combining reverse-transcription PCR (RT-PCR), and 5'- and 3'-rapid amplification of cDNA ends (RACE). Analysis of the O. rhinoceros defensin gene expression showed it to be expressed in the fat body and hemocyte, midgut and Malpighian tubules. O. rhinoceros defensin showed strong antibacterial activity against Staphylococcus aureus. A 9-mer peptide amidated at its C-terminus, AHCLAICRK-NH2 (Ala22-Lys30-NH2), was synthesized based on the deduced amino-acid sequence, assumed to be an active site sequence by analogy with the sequence of a defensin isolated from larvae of the beetle Allomyrina dichotoma. This peptide showed antibacterial activity against S. aureus, methicillin-resistant S. aureus, E. coli and Pseudomonas aeruginosa. We further modified this oligopeptide and synthesized five 9-mer peptides, ALRLAIRKR-NH2, ALLLAIRKR-NH2, AWLLAIRKR-NH2, ALYLAIRKR-NH2 and ALWLAIRKR-NH2. These oligopeptides showed strong antibacterial activity against Gram-negative and Gram-positive bacteria. The antibacterial effect of Ala22-Lys30-NH2 analogues was due to its interaction with bacterial membranes, judging from the leakage of liposome-entrapped glucose. These Ala22-Lys30-NH2 analogues did not show haemolytic activity and did not inhibit the growth of murine fibroblast cells or macrophages, except for AWLLAIRKR-NH2.

  11. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard

    2010-01-01

    Host defense peptides such as defensins are components of innate immunity and have retained antibiotic activity throughout evolution. Their activity is thought to be due to amphipathic structures, which enable binding and disruption of microbial cytoplasmic membranes. Contrary to this, we show th...

  12. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3.

    Science.gov (United States)

    Hilberath, Jan N; Carlo, Troy; Pfeffer, Michael A; Croze, Roxanne H; Hastrup, Frantz; Levy, Bruce D

    2011-06-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4(Lps-d)/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (R(i)); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×10(3) vs. (control) 13×10(3) cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.

  13. Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers

    Directory of Open Access Journals (Sweden)

    Kabeerdoss Jayakanthan

    2011-12-01

    Full Text Available Abstract Background Probiotics are used to provide health benefits. The present study tested the effect of a probiotic yoghurt on faecal output of beta-defensin and immunoglobulin A in a group of young healthy women eating a defined diet. Findings 26 women aged 18-21 (median 19 years residing in a hostel were given 200 ml normal yoghurt every day for a week, followed by probiotic yoghurt containing Bifidobacterium lactis Bb12® (109 in 200 ml for three weeks, followed again by normal yoghurt for four weeks. Stool samples were collected at 0, 4 and 8 weeks and assayed for immunoglobulin A and human beta-defensin-2 by ELISA. All participants tolerated both normal and probiotic yoghurt well. Human beta-defensin-2 levels in faeces were not altered during the course of the study. On the other hand, compared to the basal sample, faecal IgA increased during probiotic feeding (P = 0.0184 and returned to normal after cessation of probiotic yoghurt intake. Conclusions Bifidobacterium lactis Bb12® increased secretory IgA output in faeces. This property may explain the ability of probiotics to prevent gastrointestinal and lower respiratory tract infections.

  14. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    Science.gov (United States)

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  15. Gastrointestinal Autoimmunity Associated With Loss of Central Tolerance to Enteric alpha-Defensins

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Jan; Neuwirth, Aleš; Dobešová, Martina; Vobořil, Matouš; Balounová, Jana; Ballek, Ondřej; Lebl, J.; Meloni, A.; Krohn, K.; Kluger, N.; Ranki, A.; Filipp, Dominik

    2015-01-01

    Roč. 149, č. 1 (2015), s. 139-150 ISSN 0016-5085 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : Enteric defensins * Intestinal autoimmunity * Mouse Model of APECED Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 18.187, year: 2015

  16. Proteinase 3 carries small unusual carbohydrates and associates with αlpha-defensins

    DEFF Research Database (Denmark)

    Zoega, Morten; Ravnsborg, Tina; Højrup, Peter

    2012-01-01

    with carbohydrates at Asn 102 and 147 carrying unusual small moieties indicating heavy processing. Mass spectrometric analysis and immuno blotting revealed strong association of highly purified PR3 with α-defensins and oligomers hereof. Irreversible inhibition of PR3 by α1-antitrypsin did not affect its association...

  17. Salivary human beta defensins affected by oral Candida status in Chinese HIV/AIDS patients undergoing ART.

    Science.gov (United States)

    Liu, Zhenmin; Yong, Xiangzhi; Jiang, Lanlan; Zhang, Linlin; Lin, Xuefang; Liu, Wei; Peng, Yuanyuan; Tao, Renchuan

    2018-03-02

    To observe relationships between oral Candida status and salivary human beta defensin-2 and -3 (hBD-2 and hBD-3) levels in HIV/AIDS patients of Guangxi, China during the first year of antiretroviral therapy (ART) dynamically, and to understand the influence of ART on oral Candida status and salivary hBDs expressions. A prospective self-controlled study was carried to observe the dynamic changes of CD4 + T cell counts, oral Candida carriages and salivary hBD-2,3 expressions in HIV/AIDS patients during the first year of ART. A total of 90 HIV/AIDS patients were enrolled, and were examined at the baseline, 3rd, 6th, 12th month of ART. Thirty healthy individuals were enrolled as control. Peripheral blood, oral rinse sample and unstimulated whole saliva were collected to test CD4 + T cell counts, oral Candida carriages and hBD-2,3 expressions. In the first year of ART, CD4 + T cell counts increased significantly. However, oral Candida carriages and oral candidiasis decreased significantly, and salivary hBD-2 expressions in HIV/AIDS patients decreased gradually, salivary hBD-3 levels were highly variable. Salivary hBD-2 concentrations were positively related to oral Candida carriages. The incidence of oral candidiasis among HIV/AIDS patients gradually decreased due to the immune reconstruction of ART. Salivary defensins might play an important role in Candida-host interaction in HIV/AIDS patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Science.gov (United States)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  19. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol.

    Science.gov (United States)

    Abu-Fanne, Rami; Maraga, Emad; Abd-Elrahman, Ihab; Hankin, Aviel; Blum, Galia; Abdeen, Suhair; Hijazi, Nuha; Cines, Douglas B; Higazi, Abd Al-Roof

    2016-02-05

    Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice.

    Directory of Open Access Journals (Sweden)

    Yu S Zhou

    2013-10-01

    Full Text Available β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9 in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.

  1. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages.

    Science.gov (United States)

    Zhang, Pei; Liu, Weizhi; Peng, Yanfei; Han, Baoqin; Yang, Yan

    2014-11-01

    The in vivo and in vitro immunostimulating properties of chitosan oligosaccharide (COS) prepared by enzymatic hydrolysis of chitosan and the mechanisms mediating the effects were investigated. Our data showed that the highly active chitosanase isolated could hydrolyze chitosan to the polymerization degree of 3-8. The resulting COS was an efficient immunostimulator. COS markedly enhanced the proliferation and neutral red phagocytosis by RAW 264.7 macrophages. The production of nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) by macrophages was significantly increased after incubation with COS. Oral administration of COS in mice could increase spleen index and serum immunoglobin G (IgG) contents. COS was labeled with FITC to study the pinocytosis by macrophages. Results showed that FITC-COS was phagocyted by macrophages and anti-murine TLR4 antibody completely blocked FITC-COS pinocytosis. RT-PCR indicated that COS treatment of macrophages significantly increased TLR4 and inducible nitric oxide synthase (iNOS) mRNA levels. When cells were pretreated with anti-murine TLR4 antibody, the effect of COS on TLR4 and iNOS mRNA induction was decreased. COS-induced NO secretion by macrophages was also markedly decreased by anti-murine TLR4 antibody pretreatment. In conclusion, the present study revealed that COS possesses potent immune-stimulating properties by activating TLR4 on macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy

    Czech Academy of Sciences Publication Activity Database

    Čeřovský, Václav; Bém, R.

    2014-01-01

    Roč. 7, č. 3 (2014), s. 251-264 ISSN 1424-8247 R&D Projects: GA ČR GA203/08/0536 Institutional support: RVO:61388963 Keywords : antimicrobial peptide * insect defensin * lucifensin * maggot therapy * Lucilia sericata * Lucilia cuprina * peptide isolation * peptide identification Subject RIV: CC - Organic Chemistry http://www.mdpi.com/1424-8247/7/3/251

  3. Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1.

    Science.gov (United States)

    Bucekova, Marcela; Juricova, Valeria; Monton, Enrique; Martinotti, Simona; Ranzato, Elia; Majtan, Juraj

    2018-02-01

    Microwave (MW) thermal heating has been proposed as an efficient method for honey liquefaction, while maintaining honey quality criteria. However, little is known about the effects of MW thermal heating on honey antibacterial activity. In this study, we aimed to determine the effects of MW heating on the antibacterial activity of raw rapeseed honeys against Pseudomonas aeruginosa and Staphylococcus aureus, with a particular focus on two major bee-derived antibacterial components, defensin-1 and hydrogen peroxide (H 2 O 2 ). Our results demonstrated that MW thermal heating completely abolished honey antibacterial activity whereas conventional thermal treatment at 45 and 55°C did not affect the antibacterial activity of honey samples. A significant decrease in both glucose oxidase activity and H 2 O 2 production as well as defensin-1 amount was observed in MW-treated samples. Given that defensin-1 and H 2 O 2 are regular antibacterial components of all honeys, MW heating may have similar negative effects on every type of crystallized/liquid honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine

    NARCIS (Netherlands)

    Peschel, A.; Jack, R.W.; Otto, M.; Collins, L.V.; Staubitz, P.; Nicholson, G.; Kalbacher, H.; Nieuwenhuizen, W.F.; Jung, G.; Tarkowski, A.; Kessel, K.P.M. van; Strijp, J.A.G. van

    2001-01-01

    Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance

  5. Expression and new exon mutations of the human Beta defensins and their association on colon cancer development.

    Directory of Open Access Journals (Sweden)

    Abdelhabib Semlali

    Full Text Available The development of cancer involves genetic predisposition and a variety of environmental exposures. Genome-wide linkage analyses provide evidence for the significant linkage of many diseases to susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Human β-defensins (hBDs are important molecules of innate immunity. This study was designed to analyze the expression and genetic variations in hBDs (hBD-1, hBD-2, hBD-3 and hBD-4 and their putative association with colon cancer. hBD gene expression and relative protein expression were evaluated by Real-Time polymerase chain reaction (qPCR and immunohistochemistry, respectively, from 40 normal patients and 40 age-matched patients with colon cancer in Saudi Arabia. In addition, hBD polymorphisms were genotyped by exon sequencing and by promoter methylation. hBD-1, hBD-2, hBD-3 and hBD-4 basal messenger RNA expression was significantly lower in tumor tissues compared with normal tissues. Several insertion mutations were detected in different exons of the analyzed hBDs. However, no methylation in any hBDs promoters was detected because of the limited number of CpG islands in these regions. We demonstrated for the first time a link between hBD expression and colon cancer. This suggests that there is a significant link between innate immunity deregulation through disruption of cationic peptides (hBDs and the potential development of colon cancer.

  6. Association of beta-Defensin Copy Number and Psoriasis in Three Cohorts of European Origin

    NARCIS (Netherlands)

    Stuart, P.E.; Huffmeier, U.; Nair, R.P.; Palla, R.; Tejasvi, T.; Schalkwijk, J.; Elder, J.T.; Reis, A.; Armour, J.A.

    2012-01-01

    A single previous study has demonstrated significant association of psoriasis with copy number of beta-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study, we attempted to replicate that finding in larger new cohorts from Erlangen (N=2,017) and

  7. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    Science.gov (United States)

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  8. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents.

    Science.gov (United States)

    Mul, Joram D; Spruijt, Berry M; Brakkee, Jan H; Adan, Roger A H

    2013-11-05

    Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Regulation of gene expression for defensins and lipid transfer protein in Scots pine seedlings by necrotrophic pathogen Alternaria alternata (Fr.

    Directory of Open Access Journals (Sweden)

    Hrunyk Nataliya

    2017-06-01

    Full Text Available Damping-off disease in pine seedling, caused by fungi and oomycetes (Fusarium, Alternaria, Botrytis, Phytophthora and other species, is one of the most dangerous diseases in conifer nurseries and greenhouses worldwide. Alternaria alternata is a necrotrophic pathogen, which causes early blight in higher plants and results in massive economic losses in agro-industry as well as in forestry. Pine seedlings that lack strong lignificated and suberized cell walls at early stages of their growth are vulnerable to damping-off disease. So, triggering the synthesis of antimicrobial compounds, such as phytoalexins, anticipins and pathogenesis-related (PR proteins, is the main defense strategy to confine pathogens at early stages of pine ontogenesis. Defensins and lipid transfer proteins are members of two PR-protein families (PR-12 and PR-14 respectively and possess antimicrobial activities in vitro through contact toxicity, and the involvement in defense signalling. In this work, we describe the changes in the expression levels of four defensin genes and lipid transfer protein in Scots pine seedlings infected with A. alternata. The expression levels of PsDef1 and PsDef2 increased at 48 h.p.i. (hours post inoculation. The levels of PsDef4 transcripts have increased after 6 and 24 hours. Notably, at 48 h.p.i., the level of PsDef4 transcripts was decreased by 1.2 times compared to control. The level of PsDef3 transcripts was reduced at all three time points. On the other hand, the level of PsLTP1 transcripts increased at 6 h and 48 h.p.i.; while at 24 h.p.i., it decreased by 20% when compared to the control sample. Our results suggest that defensins and lipid transfer protein are involved in the defense response of young Scots pine to necrotrophic pathogen. Thus, those genes can be used as the molecular markers in forestry selection and development of the ecologically friendly remedies for coniferous seedlings cultivation in greenhouses and nurseries.

  10. Identification and partial characterisation of new members of the Ixodes ricinus defensin family

    Czech Academy of Sciences Publication Activity Database

    Tonk, Miray; Cabezas Cruz, Alejandro; Valdés, James J.; Rego, Ryan O. M.; Rudenko, Natalia; Golovchenko, Maryna; Bell-Sakyi, L.; de la Fuente, J.; Grubhoffer, Libor

    2014-01-01

    Roč. 540, č. 2 (2014), s. 146-152 ISSN 0378-1119 R&D Projects: GA ČR(CZ) GAP302/11/1901; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : antimicrobial peptide * defensin * Ixodes ricinus * tick * tick cell line Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.138, year: 2014

  11. Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34+ cells

    International Nuclear Information System (INIS)

    Wang, Xingbing; Cheng, Qiansong; Li, Lailing; Wang, Jian; Xia, Liang; Xu, Xiucai; Sun, Zimin

    2012-01-01

    Bone marrow derived-mesenchymal stromal cells (BM-MSCs) are multipotent, nonhematopoietic progenitors in a hematopoietic microenvironment and indispensable for regulating hematopoiesis. Several studies have reported that toll-like receptors (TLRs) are expressed in mesenchymal stromal cells (MSCs) to modulate their biological functions. In this study, we investigated the possible role(s) of TLRs in mediating the hematopoiesis-supporting role of human BM-MSCs. Human BM-MSCs were analyzed for mRNA expression of TLR1–10 by reverse transcription-polymerase chain reaction. TLR1–6, but not TLR7–10 were expressed by BM-MSCs. The protein expression of TLR2 and TLR4 was also confirmed by flow cytometry. We further explored the role of TLR2 and TLR4 in mediating the capacity of BM-MSCs to support the proliferation and differentiation of CD34 + hematopoietic stem/progenitor cells obtained from cord blood. BM-MSCs increased proliferation of CD34 + cells and promoted the differentiation towards the myeloid lineage 7 or 14 days after co-culture, as well as colony formation by those cells and the production of interleukin 1 (IL-1), IL-8, IL-11, stem cell factor (SCF), granulocyte colony-stimulating factor (CSF), macrophage CSF and granulocyte-macrophage CSF, if MSCs had been stimulated with TLR2 agonist (PAM 3 CSK 4 ) or TLR4 agonist (LPS). Interestingly, although these effects were elevated in a different degree, a synergistic effect was not observed in BM-MSCs co-stimulated with PAM 3 CSK 4 and LPS. Together, our findings suggest that TLR2 and TLR4 signaling may indirectly regulate hematopoiesis by modulating BM-MSCs' functions. The increased hematopoietic proliferation and differentiation could be mediated, at least in part, by augmented hematopoiesis-related cytokine production of BM-MSCs.

  12. Accurate measurement of gene copy number for human alpha-defensin DEFA1A3.

    Science.gov (United States)

    Khan, Fayeza F; Carpenter, Danielle; Mitchell, Laura; Mansouri, Omniah; Black, Holly A; Tyson, Jess; Armour, John A L

    2013-10-20

    Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing. In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples. We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn's disease, type I diabetes, HIV progression and multiple sclerosis.

  13. Expression of beta-defensins pBD-1 and pBD-2 along the small tract of the pig: Lack of upregulation in vivo upon Salmonella typhimurium infection

    NARCIS (Netherlands)

    Veldhuizen, E.J.; Dijk, van A.; Tersteeg, M.H.; Kalkhove, S.I.; Meulen, van der J.; Niewold, T.A.; Haagsman, H.P.

    2007-01-01

    Defensins are antimicrobial peptides that play an important role in the innate immune response in the intestine. Up to date, only one ß-defensin (pBD-1), has been described in pig, which was found to be expressed at low levels in the intestine. We set-up a quantitative PCR method to detect the gene

  14. Poly(methacrylic acid)-mediated morphosynthesis of PbWO4 micro-crystals

    International Nuclear Information System (INIS)

    Yu, J.G.; Zhao, X.F.; Liu, S.W.; Li, M.; Mann, S.; Ng, D.H.L.

    2007-01-01

    PbWO 4 crystals with various morphologies were fabricated via a facile poly(methacrylic acid)-mediated hydrothermal route. Novel microsized PbWO 4 single crystals with a needle-like shape as well as other morphologies, such as a fishbone, dendrite, sphere, spindle, ellipsoid, rod, and dumbbell with two dandelion-like heads, could be produced. The presence of PMAA, [Pb 2+ ]/[WO 4 2- ] molar ratio (R), and aging temperature played key roles in the formation of the PbWO 4 needle-like structures. Between temperatures of 60 to 150 C, the length and photoluminescence intensities of the PbWO 4 micro needles significantly increased with aging temperature, while the diameter did not change remarkably. Time-dependent experiments revealed that the formation of PbWO 4 microneedles involved an unusual growth process, involving nucleation, oriented assembly and controlled mesoscale restructuring of nanoparticle building blocks. (orig.)

  15. The Antifungal Plant Defensin HsAFP1 Is a Phosphatidic Acid-Interacting Peptide Inducing Membrane Permeabilization

    Directory of Open Access Journals (Sweden)

    Tanne L. Cools

    2017-11-01

    Full Text Available HsAFP1, a plant defensin isolated from coral bells (Heuchera sanguinea, is characterized by broad-spectrum antifungal activity. Previous studies indicated that HsAFP1 binds to specific fungal membrane components, which had hitherto not been identified, and induces mitochondrial dysfunction and cell membrane permeabilization. In this study, we show that HsAFP1 reversibly interacts with the membrane phospholipid phosphatidic acid (PA, which is a precursor for the biosynthesis of other phospholipids, and to a lesser extent with various phosphatidyl inositol phosphates (PtdInsP’s. Moreover, via reverse ELISA assays we identified two basic amino acids in HsAFP1, namely histidine at position 32 and arginine at position 52, as well as the phosphate group in PA as important features enabling this interaction. Using a HsAFP1 variant, lacking both amino acids (HsAFP1[H32A][R52A], we showed that, as compared to the native peptide, the ability of this variant to bind to PA and PtdInsP’s is reduced (≥74% and the antifungal activity of the variant is reduced (≥2-fold, highlighting the link between PA/PtdInsP binding and antifungal activity. Using fluorescently labelled HsAFP1 in confocal microscopy and flow cytometry assays, we showed that HsAFP1 accumulates at the cell surface of yeast cells with intact membranes, most notably at the buds and septa. The resulting HsAFP1-induced membrane permeabilization is likely to occur after HsAFP1’s internalization. These data provide novel mechanistic insights in the mode of action of the HsAFP1 plant defensin.

  16. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  17. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    Science.gov (United States)

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Combination of Early and Rapid Type I IFN, IL-1α, and IL-1β Production Are Essential Mediators of RNA-Like Adjuvant Driven CD4+ Th1 Responses

    Science.gov (United States)

    Madera, Rachel F.; Wang, Jennifer P.; Libraty, Daniel H.

    2011-01-01

    There is a growing need for novel vaccine adjuvants that can provide safe and potent T-helper type 1 (Th1) activity. RNA-like immune response modifiers (IRMs) are candidate T-cell adjuvants that skew acquired immune responses towards a Th1 phenotype. We set out to delineate the essential signaling pathways by which the RNA-like IRMs, resiquimod (R-848) and polyinosinic:polycytidylic acid (poly I:C), augment CD4+ T-helper 1 (Th1) responses. Highly purified murine conventional dendritic cells (cDCs) and conventional CD4+ T-cells were co-cultured in allogeneic and MHC congenic mixed leukocyte reactions. The activation of CD4+ Th1 cells was examined utilizing cells from mice deficient in specific RNA-sensing pattern recognition receptors and signaling mediators. R-848 and poly I:C stimulation of Type I interferon production and signaling in cDCs was essential but not sufficient for driving CD4+ Th1 responses. The early and rapid production of IL-1α and IL-1β was equally critical for the optimal activation of Th1 CD4+ T-cells. R-848 activation of Toll-like receptor 7/MyD88-dependent signaling in cDCs led to a rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C activation of MyD88-independent signaling pathways. The in vitro data show that CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical combination of early and rapid Type I interferon, IL-1α and IL-1β production. These results provide important insights into the key signaling pathways responsible for RNA-like IRM CD4+ Th1 activation. A better understanding of the critical signaling pathways by which RNA-like IRMs stimulate CD4+ Th1 responses is relevant to the rational design of improved vaccine adjuvants. PMID:22206014

  19. The combination of early and rapid type I IFN, IL-1α, and IL-1β production are essential mediators of RNA-like adjuvant driven CD4+ Th1 responses.

    Directory of Open Access Journals (Sweden)

    Rachel F Madera

    Full Text Available There is a growing need for novel vaccine adjuvants that can provide safe and potent T-helper type 1 (Th1 activity. RNA-like immune response modifiers (IRMs are candidate T-cell adjuvants that skew acquired immune responses towards a Th1 phenotype. We set out to delineate the essential signaling pathways by which the RNA-like IRMs, resiquimod (R-848 and polyinosinic:polycytidylic acid (poly I:C, augment CD4+ T-helper 1 (Th1 responses. Highly purified murine conventional dendritic cells (cDCs and conventional CD4+ T-cells were co-cultured in allogeneic and MHC congenic mixed leukocyte reactions. The activation of CD4+ Th1 cells was examined utilizing cells from mice deficient in specific RNA-sensing pattern recognition receptors and signaling mediators. R-848 and poly I:C stimulation of Type I interferon production and signaling in cDCs was essential but not sufficient for driving CD4+ Th1 responses. The early and rapid production of IL-1α and IL-1β was equally critical for the optimal activation of Th1 CD4+ T-cells. R-848 activation of Toll-like receptor 7/MyD88-dependent signaling in cDCs led to a rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C activation of MyD88-independent signaling pathways. The in vitro data show that CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical combination of early and rapid Type I interferon, IL-1α and IL-1β production. These results provide important insights into the key signaling pathways responsible for RNA-like IRM CD4+ Th1 activation. A better understanding of the critical signaling pathways by which RNA-like IRMs stimulate CD4+ Th1 responses is relevant to the rational design of improved vaccine adjuvants.

  20. Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingbing, E-mail: wangxingbing91@hotmail.com [Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China); Cheng, Qiansong; Li, Lailing; Wang, Jian; Xia, Liang [Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China); Xu, Xiucai [The Center Laboratory of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China); Sun, Zimin [Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China)

    2012-02-01

    Bone marrow derived-mesenchymal stromal cells (BM-MSCs) are multipotent, nonhematopoietic progenitors in a hematopoietic microenvironment and indispensable for regulating hematopoiesis. Several studies have reported that toll-like receptors (TLRs) are expressed in mesenchymal stromal cells (MSCs) to modulate their biological functions. In this study, we investigated the possible role(s) of TLRs in mediating the hematopoiesis-supporting role of human BM-MSCs. Human BM-MSCs were analyzed for mRNA expression of TLR1-10 by reverse transcription-polymerase chain reaction. TLR1-6, but not TLR7-10 were expressed by BM-MSCs. The protein expression of TLR2 and TLR4 was also confirmed by flow cytometry. We further explored the role of TLR2 and TLR4 in mediating the capacity of BM-MSCs to support the proliferation and differentiation of CD34{sup +} hematopoietic stem/progenitor cells obtained from cord blood. BM-MSCs increased proliferation of CD34{sup +} cells and promoted the differentiation towards the myeloid lineage 7 or 14 days after co-culture, as well as colony formation by those cells and the production of interleukin 1 (IL-1), IL-8, IL-11, stem cell factor (SCF), granulocyte colony-stimulating factor (CSF), macrophage CSF and granulocyte-macrophage CSF, if MSCs had been stimulated with TLR2 agonist (PAM{sub 3}CSK{sub 4}) or TLR4 agonist (LPS). Interestingly, although these effects were elevated in a different degree, a synergistic effect was not observed in BM-MSCs co-stimulated with PAM{sub 3}CSK{sub 4} and LPS. Together, our findings suggest that TLR2 and TLR4 signaling may indirectly regulate hematopoiesis by modulating BM-MSCs' functions. The increased hematopoietic proliferation and differentiation could be mediated, at least in part, by augmented hematopoiesis-related cytokine production of BM-MSCs.

  1. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGFII) on 1-methyl-4-phenyl pyridinium (MPP) induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  2. Beta-defensins-2 expressions in gingival epithelium cells after probiotic Lactobacillus reuteri induction

    Directory of Open Access Journals (Sweden)

    Tuti Kusumaningsih

    2016-12-01

    Full Text Available Background: Beta-defensins (BD are antimicrobial peptides that play a role in defense against pathogens. Beta-defensins (BD are expressed by a variety of epithelial cells, including gingival epithelium, salivary glands, saliva and salivary duct. BD-1 is expressed constitutively, while BD-2 and BD-3 expressions can be induced by commensal bacteria. Probiotics are commensal bacteria, thus L. reuteri as probiotic bacteria may act as “inducer” for BD-2 in epithelial gingiva. S. mutans is the main bacteria causing dental caries and sensitive to BD-2. Purpose: This study was aimed to prove that the administration of probiotic L. reuteri may improve BD-2 expressions in the gingiva epithelium. Method: This study was conducted in vivo using twenty-four male Rattus norvegicus Wistar strains aged 10-12 weeks and weighed 120-150 g. Those rats were randomly divided into four groups, namely negative control group (not induced with L. reuteri or S. mutans, positive control group (induced with S. mutans for 14 days, treatment group 1 (induced with L. reuteri for 14 days and S. mutans for 7 days, and treatment group 2 (induced with L. reuteri and S. mutans for 14 days concurrently. The concentration of L. reuteri used was 4x108cfu/ml, while the concentration of S. mutans was 1x 1010cfu/ml. 0.1 ml of each was dropped in the region of the mandibular incisors. BD-2 expression was calculated using immunohistochemical method. The difference of BD-2 expressions in gingival epithelial cells in the respective groups was analyzed by Anova/SPSS. Results: There were significant differences in BD-2 expressions in gingival epithelial cells in each group based on the results of Anova test (p=0.001. Conclusion: The administration of probiotic L. reuteri is able to increase BD-2 expressions in gingival epithelial cells.

  3. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane

    DEFF Research Database (Denmark)

    Witzke, Sarah; Petersen, Michael; Carpenter, Timothy S.

    2016-01-01

    dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization...... the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular...... of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes....

  4. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease

    Science.gov (United States)

    Aldhous, Marian C.; Abu Bakar, Suhaili; Prescott, Natalie J.; Palla, Raquel; Soo, Kimberley; Mansfield, John C.; Mathew, Christopher G.; Satsangi, Jack; Armour, John A.L.

    2010-01-01

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case–control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case–control studies. PMID:20858604

  5. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease.

    Science.gov (United States)

    Aldhous, Marian C; Abu Bakar, Suhaili; Prescott, Natalie J; Palla, Raquel; Soo, Kimberley; Mansfield, John C; Mathew, Christopher G; Satsangi, Jack; Armour, John A L

    2010-12-15

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case-control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case-control studies.

  6. Cysteinyl leukotrienes C4 and D4 downregulate human mast cell expression of toll-like receptors 1 through 7.

    Science.gov (United States)

    Karpov, V; Ilarraza, R; Catalli, A; Kulka, M

    2018-01-01

    Cysteinyl leukotrienes (CysLT) are potent inflammatory lipid molecules that mediate some of the pathophysiological responses associated with asthma such as bronchoconstriction, vasodilation and increased microvascular permeability. As a result, CysLT receptor antagonists (LRA), such as montelukast, have been used to effectively treat patients with asthma. We have recently shown that mast cells are necessary modulators of innate immune responses to bacterial infection and an important component of this innate immune response may involve the production of CysLT. However, the effect of LRA on innate immune receptors, particularly on allergic effector cells, is unknown. This study determined the effect of CysLT on toll-like receptor (TLR) expression by the human mast cell line LAD2. Real-time PCR analysis determined that LTC4, LTD4 and LTE4 downregulated mRNA expression of several TLR. Specifically in human CD34+-derived human mast cells (HuMC), LTC4 inhibited expression of TLR1, 2, 4, 5, 6 and 7 while LTD4 inhibited expression of TLR1-7. Montelukast blocked LTC4-mediated downregulation of all TLR, suggesting that these effects were mediated by activation of the CysLT1 receptor (CysLT1R). Flow cytometry analysis confirmed that LTC4 downregulated surface expression of TLR2 which was blocked by montelukast. These data show that CysLT can modulate human mast cell expression of TLR and that montelukast may be beneficial for innate immune responses mediated by mast cells.

  7. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    Science.gov (United States)

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.

  8. Defensin from the ornate sheep tick Dermacentor marginatus and its effect on Lyme borreliosis spirochetes

    Czech Academy of Sciences Publication Activity Database

    Chrudimská, Tereza; Čeřovský, Václav; Slaninová, Jiřina; Rego, Ryan O. M.; Grubhoffer, Libor

    2014-01-01

    Roč. 46, č. 2 (2014), s. 165-170 ISSN 0145-305X R&D Projects: GA ČR(CZ) GAP302/11/1901 Institutional support: RVO:60077344 ; RVO:61388963 Keywords : Tick * Dermacentor marginatus * Defensin * Borrelia afzelii * Antimicrobial activity * Peptide synthesis Subject RIV: EE - Microbiology, Virology; EE - Microbiology, Virology (UOCHB-X) Impact factor: 2.815, year: 2014

  9. The Alpha-Defensin Immunoassay and Leukocyte Esterase Colorimetric Strip Test for the Diagnosis of Periprosthetic Infection

    Science.gov (United States)

    Wyatt, M.C.; Beswick, A.D.; Kunutsor, S.K.; Wilson, M.J.; Whitehouse, M.R.; Blom, A.W.

    2016-01-01

    Background: Synovial biomarkers have recently been adopted as diagnostic tools for periprosthetic joint infection (PJI), but their utility is uncertain. The purpose of this systematic review and meta-analysis was to synthesize the evidence on the accuracy of the alpha-defensin immunoassay and leukocyte esterase colorimetric strip test for the diagnosis of PJI compared with the Musculoskeletal Infection Society diagnostic criteria. Methods: We performed a systematic review to identify diagnostic technique studies evaluating the accuracy of alpha-defensin or leukocyte esterase in the diagnosis of PJI. MEDLINE and Embase on Ovid, ACM, ADS, arXiv, CERN DS (Conseil Européen pour la Recherche Nucléaire Document Server), CrossRef DOI (Digital Object Identifier), DBLP (Digital Bibliography & Library Project), Espacenet, Google Scholar, Gutenberg, HighWire, IEEE Xplore (Institute of Electrical and Electronics Engineers digital library), INSPIRE, JSTOR (Journal Storage), OAlster (Open Archives Initiative Protocol for Metadata Harvesting), Open Content, Pubget, PubMed, and Web of Science were searched for appropriate studies indexed from inception until May 30, 2015, along with unpublished or gray literature. The classification of studies and data extraction were performed independently by 2 reviewers. Data extraction permitted meta-analysis of sensitivity and specificity with construction of receiver operating characteristic curves for each test. Results: We included 11 eligible studies. The pooled diagnostic sensitivity and specificity of alpha-defensin (6 studies) for PJI were 1.00 (95% confidence interval [CI], 0.82 to 1.00) and 0.96 (95% CI, 0.89 to 0.99), respectively. The area under the curve (AUC) for alpha-defensin and PJI was 0.99 (95% CI, 0.98 to 1.00). The pooled diagnostic sensitivity and specificity of leukocyte esterase (5 studies) for PJI were 0.81 (95% CI, 0.49 to 0.95) and 0.97 (95% CI, 0.82 to 0.99), respectively. The AUC for leukocyte esterase and PJI

  10. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  11. Herbal preparation (HemoHIM) enhanced functional maturation of bone marrow-derived dendritic cells mediated toll-like receptor 4.

    Science.gov (United States)

    Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2016-02-19

    HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. In the present study, we investigated the effect of HemoHIM on the functional and phenotypic maturation of murine bone marrow-derived dendritic cells (BMDCs) both in vitro and in vivo. The expression of co-stimulatory molecules (CD40, CD80, CD86, MHC I, and MHC II) and the production of cytokines (IL-1β, IL-6, IL-12p70, and TNF-α) were increased by HemoHIM in BMDCs. Furthermore, the antigen-uptake ability of BMDCs was decreased by HemoHIM, and the antigen-presenting ability of HemoHIM-treated mature BMDCs increased TLR4-dependent CD4(+) and CD8(+) T cell responses. Our findings demonstrated that HemoHIM induces TLR4-mediated BMDCs functional and phenotypic maturation through in vivo and in vitro. And our study showed the antigen-presenting ability that HemoHIM-treated mature BMDCs increase CD4(+) and CD8(+) T cell responses by in vitro. These results suggest that HemoHIM has the potential to mediate DC immune responses.

  12. Vitamin D Signaling Through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models

    Directory of Open Access Journals (Sweden)

    Danmei Su

    2016-11-01

    Full Text Available Metabolic syndrome (MetS, characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD,is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR is highly expressed in the ileum of the small intestine,which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD is necessary but not sufficient, while additional vitamin D deficiency (VDD as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD, the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5, MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD, Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with

  13. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins.

    Directory of Open Access Journals (Sweden)

    Irina V Demina

    Full Text Available Actinorhizal root nodule symbioses are very diverse, and the symbiosis of Datisca glomerata has previously been shown to have many unusual aspects. In order to gain molecular information on the infection mechanism, nodule development and nodule metabolism, we compared the transcriptomes of D. glomerata roots and nodules. Root and nodule libraries representing the 3'-ends of cDNAs were subjected to high-throughput parallel 454 sequencing. To identify the corresponding genes and to improve the assembly, Illumina sequencing of the nodule transcriptome was performed as well. The evaluation revealed 406 differentially regulated genes, 295 of which (72.7% could be assigned a function based on homology. Analysis of the nodule transcriptome showed that genes encoding components of the common symbiosis signaling pathway were present in nodules of D. glomerata, which in combination with the previously established function of SymRK in D. glomerata nodulation suggests that this pathway is also active in actinorhizal Cucurbitales. Furthermore, comparison of the D. glomerata nodule transcriptome with nodule transcriptomes from actinorhizal Fagales revealed a new subgroup of nodule-specific defensins that might play a role specific to actinorhizal symbioses. The D. glomerata members of this defensin subgroup contain an acidic C-terminal domain that was never found in plant defensins before.

  15. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.

    Directory of Open Access Journals (Sweden)

    Marius R Robciuc

    Full Text Available Peroxisome proliferator-activated receptor (PPAR delta is an important regulator of fatty acid (FA metabolism. Angiopoietin-like 4 (Angptl4, a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR, PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

  16. Association studies of the copy-number variable ß-defensin cluster on 8p23.1 in adenocarcinoma and chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Taudien Stefan

    2012-11-01

    Full Text Available Abstract Background Human ß-defensins are a family of antimicrobial peptides located at the mucosal surface. Both sequence multi-site variations (MSV and copy-number variants (CNV of the defensin-encoding genes are associated with increased risk for various diseases, including cancer and inflammatory conditions such as psoriasis and acute pancreatitis. In a case–control study, we investigated the association between MSV in DEFB104 as well as defensin gene (DEF cluster copy number (CN, and pancreatic ductal adenocarcinoma (PDAC and chronic pancreatitis (CP. Results Two groups of PDAC (N=70 and CP (N=60 patients were compared to matched healthy control groups CARLA1 (N=232 and CARLA2 (N=160, respectively. Four DEFB104 MSV were haplotyped by PCR, cloning and sequencing. DEF cluster CN was determined by multiplex ligation-dependent probe amplification. Neither the PDAC nor the CP cohorts show significant differences in the DEFB104 haplotype distribution compared to the respective control groups CARLA1 and CARLA2, respectively. The diploid DEF cluster CN exhibit a significantly different distribution between PDAC and CARLA1 (Fisher’s exact test P=0.027, but not between CP and CARLA2 (P=0.867. Conclusion Different DEF cluster b CN distribution between PDAC patients and healthy controls indicate a potential protective effect of higher CNs against the disease.

  17. Identification of sociodemographic and clinical factors associated with the levels of human β-defensin-1 and human β-defensin-2 in the human milk of Han Chinese.

    Science.gov (United States)

    Wang, Xiao-Fang; Cao, Rui-Ming; Li, Jing; Wu, Jing; Wu, Sheng-Mei; Chen, Tong-Xin

    2014-03-14

    Human milk provides infants with various immune molecules. The objective of the present study was to measure human β-defensin-1 (hBD-1) and human β-defensin-2 (hBD-2) levels in the colostrum and mature milk of healthy Han Chinese, to identify factors regulating milk hBD-1 and hBD-2 expression and to explore the potential protective effect of milk hBD-1 and hBD-2 on infants. A total of 100 mothers and their babies were recruited into the study. Sociodemographic characteristics and other factors were obtained by a questionnaire. Babies were followed up for a period of 6 months. Colostrum samples (n 100) and mature milk samples (n 82) were collected by hand expression. The hBD-1 and hBD-2 concentrations were measured by ELISA. The hBD-1 and hBD-2 levels differed in the colostrum and mature milk. In the colostrum, the concentration ranges of hBD-1 and hBD-2 were 1·04-12·81 μg/ml and 0·31-19·12 ng/ml, respectively. In mature milk, the hBD-1 and hBD-2 levels were 1·03-31·76 ng/ml and 52·65-182·29 pg/ml, respectively. Several independent factors influence their production. The multivariable analysis showed a strong association between pre-pregnancy BMI and hBD-1 levels in the colostrum (P=0·001), mode of delivery was significantly associated with hBD-2 levels in the colostrum (P=0·006) and gestational age was significantly associated with hBD-1 levels in mature milk (P= 0·010). During the first 6 months of life, the incidence rate of upper respiratory infection was found to be less in the high-colostrum hBD-1 group than in the low-colostrum hBD-1 group (χ²=4·995, P=0·025). The present study suggested that the abundance of hBD-1 in the colostrum may have a protective function against upper respiratory infection for infants younger than 6 months.

  18. Antibacterial Activity of Four Human Beta-Defensins: HBD-19, HBD-23, HBD-27, and HBD-29

    Directory of Open Access Journals (Sweden)

    David Camerini

    2012-03-01

    Full Text Available Human β-defensins (HBD are a family of small antimicrobial peptides that play important roles in the innate and adaptive immune defenses against microbial infection. In this study, we predicted the mature sequences and assessed the antibacterial properties of synthetic HBD-19, HBD-23, HBD-27, and HBD-29 against three species of clinically relevant bacteria: Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. We also examined the cytotoxicity of each β-defensin to human cells. HBD-19 exhibited modest antibacterial effects against E. coli and S. aureus but had little effect on the growth of P. aeruginosa. HBD-23 exhibited substantial antibacterial effects against all three bacterial species and was particularly potent against the Gram-negative species, E. coli and P. aeruginosa. HBD-27 exerted modest antibacterial activity only towards S. aureus while HBD-29 had modest antibacterial activity for E. coli and P. aeruginosa. HBD-23 and HBD-27 showed little or no toxicity to human peripheral blood mononuclear cells, while HBD-19 and HBD-29 decreased cell viability by 20% at 30 μg/mL.

  19. [Inhibition of glycogen synthase kinase 3b activity regulates Toll-like receptor 4-mediated liver inflammation].

    Science.gov (United States)

    Ren, Feng; Zhang, Hai-yan; Piao, Zheng-fu; Zheng, Su-jun; Chen, Yu; Chen, De-xi; Duan, Zhong-ping

    2012-09-01

    To determine the mechanism underlying the therapeutic activities of glycogen synthase kinase 3b (GSK3b) against hepatic ischemia-reperfusion (H-IR) injury by investigating the inhibitive effects of GSK3b on inflammation mediated by Toll-like receptor 4 (TLR4). C57BL/6 male mice were subjected to 90 min of warm liver cephalad lobe ischemia, followed by reperfusion for various lengths of time. The mice were divided into three groups: the H-IR untreated model (control group), and the H-IR inflammation-induced models that received an intraperitoneal injection of purified lipopolysaccharide (LPS) endotoxin alone (inflammation group) or with pretreatment of the SB216763 GSK3b-specific inhibitor (intervention group). To create a parallel isolated cell system for detailed investigations of macrophages, marrow-derived stem cells were isolated from femurs of the H-IR control group of mice and used to derive primary macrophages. The cells were then divided into the same three groups as the whole mouse system: control, LPS-induced inflammation model, and inflammation model with SB216763 intervention. Differential expressions of inflammation-related proteins and genes were detected by Western blotting and real-time quantitative PCR, respectively. The phosphorylation levels of ERK, JNK and p38 MAPK were induced in liver at 1 h after reperfusion, but then steadily decreased and returned to baseline levels by 4 h after reperfusion. In addition, the phosphorylation levels of ERK and JNK were induced in macrophages at 15 min after LPS stimulation, while the phosphorylation level of p38 MAPK was induced at 1 h; SB216763 pretreatment suppressed the LPS-stimulated ERK, JNK and p38 phosphorylation in macrophages. In the mouse model, GSK3b activity was found to promote the gene expression of anti-inflammatory cytokine IL-10 (control: 0.21 ± 0.08, inflammation: 0.83 ± 0.21, intervention: 1.76 ± 0.67; F = 3.16, P = 0.027) but to significantly inhibit the gene expression of pro

  20. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition

    International Nuclear Information System (INIS)

    Kim, Seok-Joo; Lee, Sun-Mee

    2012-01-01

    Alcoholic fatty liver is susceptible to secondary stresses such as ischemia/reperfusion (I/R). Baicalin is an active component extracted from Scutellaria baicalensis, which is widely used in herbal preparations for treatment of hepatic diseases and inflammatory disorders. This study evaluated the potential beneficial effect of baicalin on I/R injury in alcoholic fatty liver. Rats were fed an alcohol liquid diet or a control isocaloric diet for 5 weeks, and then subjected to 60 min of hepatic ischemia and 5 h of reperfusion. Baicalin (200 mg/kg) was intraperitoneally administered 24 and 1 h before ischemia. After reperfusion, baicalin attenuated the increases in serum alanine aminotransferase activity, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels in alcoholic fatty liver. The increased levels of TNF-α and IL-6 mRNA expression and inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions increased after reperfusion, which were higher in ethanol-fed animals, were attenuated by baicalin. In ethanol-fed animals, baicalin attenuated the increases in toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 protein expressions and the nuclear translocation of NF-κB after reperfusion. In conclusion, our findings suggest that baicalin ameliorates I/R-induced hepatocellular damage by suppressing TLR4-mediated inflammatory responses in alcoholic fatty liver. -- Highlights: ► Baicalin attenuates hepatic I/R-induced inflammation in alcoholic fatty liver. ► Baicalin downregulates TLR4, MyD88 expression during I/R in alcoholic fatty liver. ► Baicalin attenuates NF-κB nuclear translocation during I/R in alcoholic fatty liver.

  1. Eosinophils from patients with type 1 diabetes mellitus express high level of myeloid alpha-defensins and myeloperoxidase

    Czech Academy of Sciences Publication Activity Database

    Neuwirth, Aleš; Dobeš, Jan; Oujezdská, Jana; Ballek, Ondřej; Benešová, Martina; Sumnik, Z.; Včeláková, J.; Koloušková, S.; Obermannová, B.; Kolář, Michal; Štechová, K.; Filipp, Dominik

    2012-01-01

    Roč. 273, č. 2 (2012), s. 158-163 ISSN 0008-8749 R&D Projects: GA MŠk 2B08066 Institutional research plan: CEZ:AV0Z50520514 Keywords : type 1 diabetes * alpha-defensin * myeloperoxidase * granulocyte * eosinophil Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.743, year: 2012

  2. Nest-like LiFePO4/C architectures for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Deng Honggui; Jin Shuangling; Zhan Liang; Qiao Wenming; Ling Licheng

    2012-01-01

    Highlights: ► Nest-like LiFePO 4 /C architectures (nest-like LPCs) were synthesized by solvothermal method. ► The microstructures of nest-like LPCs are very stable constructed by many nanosheets. ► The unique structures offer nest-like LPC electrode with high rate performance. ► The reversible capacity of nest-like LPCs electrode is as high as 120 mAh g −1 at 10 C. - Abstract: A novel kind of microsized nest-like LiFePO 4 /C architectures was synthesized by solvothermal method using inexpensive and stable Fe 3+ salt as iron source and ethylene glycol as mediate. A layer of carbon could be coated directly on the surface of LiFePO 4 crystals and the nest-like unique structures offer the cathode materials with high reversible capacity, excellent cycling stability and high rate performance. The reversible capacity can maintain 159 mAh g −1 at 0.1 C and 120 mAh g −1 at 10 C.

  3. Prevention of autoantibody-mediated Graves'-like hyperthyroidism in mice with IL-4, a Th2 cytokine.

    Science.gov (United States)

    Nagayama, Yuji; Mizuguchi, Hiroyuki; Hayakawa, Takao; Niwa, Masami; McLachlan, Sandra M; Rapoport, Basil

    2003-04-01

    Graves' hyperthyroidism has long been considered to be a Th2-type autoimmune disease because it is directly mediated by autoantibodies against the thyrotropin receptor (TSHR). However, several lines of evidence have recently challenged this concept. The present study evaluated the Th1/Th2 paradigm in Graves' disease using a recently established murine model involving injection of adenovirus expressing the TSHR (AdCMVTSHR). Coinjection with adenovirus expressing IL-4 (AdRGDCMVIL-4) decreased the ratio of Th1/Th2-type anti-TSHR Ab subclasses (IgG2a/IgG1) and suppressed the production of IFN-gamma by splenocytes in response to TSHR Ag. Importantly, immune deviation toward Th2 was accompanied by significant inhibition of thyroid-stimulating Ab production and reduction in hyperthyroidism. However, in a therapeutic setting, injection of AdRGDCMVIL-4 alone or in combination with AdCMVTSHR into hyperthyroid mice had no beneficial effect. In contrast, coinjection of adenoviruses expressing IL-12 and the TSHR promoted the differentiation of Th1-type anti-TSHR immune responses as demonstrated by augmented Ag-specific IFN-gamma secretion from splenocytes without changing disease incidence. Coinjection of adenoviral vectors expressing IL-4 or IL-12 had no effect on the titers of anti-TSHR Abs determined by ELISA or thyroid-stimulating hormone-binding inhibiting Ig assays, suggesting that Ab quality, not quantity, is responsible for disease induction. Our observations demonstrate the critical role of Th1 immune responses in a murine model of Graves' hyperthyroidism. These data may raise a cautionary note for therapeutic strategies aimed at reversing Th2-mediated autoimmune responses in Graves' disease in humans.

  4. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    Science.gov (United States)

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  5. C/EBPβ Promotes Immunity to Oral Candidiasis through Regulation of β-Defensins.

    Science.gov (United States)

    Simpson-Abelson, Michelle R; Childs, Erin E; Ferreira, M Carolina; Bishu, Shrinivas; Conti, Heather R; Gaffen, Sarah L

    2015-01-01

    Humans or mice subjected to immunosuppression, such as corticosteroids or anti-cytokine biologic therapies, are susceptible to mucosal infections by the commensal fungus Candida albicans. Recently it has become evident that the Th17/IL-17 axis is essential for immunity to candidiasis, but the downstream events that control immunity to this fungus are poorly understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) transcription factor is important for signaling by multiple inflammatory stimuli, including IL-17. C/EBPβ is regulated in a variety of ways by IL-17, and controls several downstream IL-17 target genes. However, the role of C/EBPβ in vivo is poorly understood, in part because C/EBPβ-deficient mice are challenging to breed and work with. In this study, we sought to understand the role of C/EBPβ in the context of an IL-17-dependent immune response, using C. albicans infection as a model system. Confirming prior findings, we found that C/EBPβ is required for immunity to systemic candidiasis. In contrast, C/EBPβ(-/-) mice were resistant to oropharyngeal candidiasis (OPC), in a manner indistinguishable from immunocompetent WT mice. However, C/EBPβ(-/-) mice experienced more severe OPC than WT mice in the context of cortisone-induced immunosuppression. Expression of the antimicrobial peptide β-defensin (BD)-3 correlated strongly with susceptibility in C/EBPβ(-/-) mice, but no other IL-17-dependent genes were associated with susceptibility. Therefore, C/EBPβ contributes to immunity to mucosal candidiasis during cortisone immunosuppression in a manner linked to β-defensin 3 expression, but is apparently dispensable for the IL-17-dependent response.

  6. Identification of potential pathway mediation targets in Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Fan Li

    2009-02-01

    Full Text Available Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input-output relationships. The input-output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects.

  7. The Effect of Calcipotriol on the Expression of Human β Defensin-2 and LL-37 in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Beom Joon Kim

    2009-01-01

    Full Text Available Background. Vitamin D has been reported to regulate innate immunity by controlling the expression of antimicrobial peptides (AMPs. Objective. We investigated the effect of calcipotriol on the expression of AMPs in human cultured keratinocytes. Methods. Keratinocytes were treated with lipopolysaccharide (LPS, TNF-α, Calcipotriol and irradiated with UVB, cultured, and harvested. To assess the expression of human beta defensin-2 and LL-37 in the control group, not exposed to any stimulants, the experimental group was treated with LPS, TNF-α, or UVB, and another group was treated again with calcipotriol; reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemical staining were performed. Results. In the experimental group treated with LPS, UVB irradiation, and TNF-α, the expression of β-defensin and LL-37 was increased more than in the control group and then decreased in the experimental group treated with calcipotriol. Conclusions. Calcipotriol suppressed HBD-2 and LL-37, which were stimulated by UVB, LPS, and TNF-α.

  8. Multi-Center, Double-Blind, Vehicle-Controlled Clinical Trial of an Alpha and Beta Defensin-Containing Anti-Aging Skin Care Regimen With Clinical, Histopathologic, Immunohistochemical, Photographic, and Ultrasound Evaluation.

    Science.gov (United States)

    Taub, Amy; Bucay, Vivian; Keller, Gregory; Williams, Jay; Mehregan, Darius

    2018-04-01

    detected in either group as measured by Ki67-immunohistochemistry. Reduction in visible pores, superficial wrinkles, oiliness, pigmentation, and improvement of skin evenness, were statistically significant. A trend for improvement was also observed in skin elasticity, TEWL, and hydration; these did not achieve statistical significance. Ultrasound and histopathology demonstrated increases in dermal thickness in individual patients, without statistical significance. Comprehensive improvement in all 5 parameters, including visible pores, hyperpigmentation, superficial and deep wrinkles, and epidermal thickness, was statistically significant when the subset of participants assigned for histology in full formula group was compared with the placebo group participants. A 3-product skin care regimen containing alpha and beta defensins globally improves the visual appearance and structure of aging skin without irritation, dryness, or inflammation. Specifically, this regimen increases epidermal thickness, reduces appearance of pores, reduces wrinkles, and reduces melanin. This skin care regimen stimulates rejuvenation without evidence of increase of a marker of carcinogenic stimulation. This data is consistent with the hypothesis that a defensin-containing skin care regimen activates the body's own dormant stem cells to generate healthy new epidermal cells. J Drugs Dermatol. 2018;17(4):426-441. THIS ARTICLE HAD BEEN MADE AVAILABLE FREE OF CHARGE. PLEASE SCROLL DOWN TO ACCESS THE FULL TEXT OF THIS ARTICLE WITHOUT LOGGING IN. NO PURCHASE NECESSARY. PLEASE CONTACT THE PUBLISHER WITH ANY QUESTIONS.

  9. The β-Defensin Gallinacin-6 Is Expressed in the Chicken Digestive Tract and Has Antimicrobial Activity against Food-Borne Pathogens▿

    Science.gov (United States)

    van Dijk, Albert; Veldhuizen, Edwin J. A.; Kalkhove, Stefanie I. C.; Tjeerdsma-van Bokhoven, Johanna L. M.; Romijn, Roland A.; Haagsman, Henk P.

    2007-01-01

    Food-borne pathogens are responsible for most cases of food poisoning in developed countries and are often associated with poultry products, including chicken. Little is known about the role of β-defensins in the chicken digestive tract and their efficacy. In this study, the expression of chicken β-defensin gallinacin-6 (Gal-6) and its antimicrobial activity against food-borne pathogens were investigated. Reverse transcription-PCR analysis showed high expression of Gal-6 mRNA in the esophagus and crop, moderate expression in the glandular stomach, and low expression throughout the intestinal tract. Putative transcription factor binding sites for nuclear factor kappa beta, activator protein 1, and nuclear factor interleukin-6 were found in the Gal-6 gene upstream region, which suggests a possible inducible nature of the Gal-6 gene. In colony-counting assays, strong bactericidal and fungicidal activity was observed, including bactericidal activity against food-borne pathogens Campylobacter jejuni, Salmonella enterica serovar Typhimurium, Clostridium perfringens, and Escherichia coli. Treatment with 16 μg/ml synthetic Gal-6 resulted in a 3 log unit reduction in Clostridium perfringens survival within 60 min, indicating fast killing kinetics. Transmission electron microscopy examination of synthetic-Gal-6-treated Clostridium perfringens cells showed dose-dependent changes in morphology after 30 min, including intracellular granulation, cytoplasm retraction, irregular septum formation in dividing cells, and cell lysis. The high expression in the proximal digestive tract and broad antimicrobial activity suggest that chicken β-defensin gallinacin-6 plays an important role in chicken innate host defense. PMID:17194828

  10. Similarities between Reproductive and Immune Pistil Transcriptomes of Arabidopsis Species.

    Science.gov (United States)

    Mondragón-Palomino, Mariana; John-Arputharaj, Ajay; Pallmann, Maria; Dresselhaus, Thomas

    2017-07-01

    Independent lines of evidence suggest that members from ancient and polymorphic gene families such as defensins and receptor-like kinases mediate intercellular communication during both the immune response and reproduction. Here, we report a large-scale analysis to investigate the extent of overlap between these processes by comparing differentially expressed genes (DEGs) in the pistil transcriptomes of Arabidopsis thaliana and Arabidopsis halleri during self-pollination and interspecific pollination and during infection with Fusarium graminearum In both Arabidopsis species, the largest number of DEGs was identified in infected pistils, where genes encoding regulators of cell division and development were most frequently down-regulated. Comparison of DEGs between infection and various pollination conditions showed that up to 79% of down-regulated genes are shared between conditions and include especially defensin-like genes. Interspecific pollination of A. thaliana significantly up-regulated thionins and defensins. The significant overrepresentation of similar groups of DEGs in the transcriptomes of reproductive and immune responses of the pistil makes it a prime system in which to study the consequences of plant-pathogen interactions on fertility and the evolution of intercellular communication in pollination. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Do withdrawal-like symptoms mediate increased marijuana smoking in individuals treated with venlafaxine-XR?

    Science.gov (United States)

    Kelly, Meredith A; Pavlicova, Martina; Glass, Andrew; Mariani, John J; Bisaga, Adam; Sullivan, Maria A; Nunes, Edward V; Levin, Frances R

    2014-11-01

    Cannabis-dependent participants with depressive disorder are less likely to achieve abstinence with venlafaxine-XR (VEN-XR) treatment. Individuals on VEN-XR reported more severe withdrawal, despite not reducing their smoking behavior. We hypothesized that withdrawal-like symptoms, likely medication side effects, led to continued marijuana smoking in this group. We conducted a secondary analysis using Marijuana Withdrawal Checklist (MWC) scores and urine THC to test whether severity of withdrawal-like symptoms mediates the relationship between VEN-XR treatment and continued marijuana smoking. We included 103 participants (VEN-XR=51, Placebo=52). Marijuana use was dichotomized into smoking (THC>100 ng/ml) and non-smoking (THC ≤ 100 ng/ml) weeks. MWC scores were obtained weekly. We used three models in a regression based mediation analysis. The estimated risk of smoking marijuana was greater for individuals on VEN-XR in weeks 7-9, even when controlling for MWC scores (week 7 Risk Difference (RD)=0.11, p=0.034; week 8 RD=0.20, p=0.014), and higher scores mediated this effect. In weeks 10 and 11, the estimated effect was stronger (week 10 RD=0.03, p=0.380; week 11 RD=0.07, p=0.504), and worse withdrawal-like symptoms more fully accounted for continued marijuana smoking in the VEN-XR group, according to the models. Individuals treated with VEN-XR had more severe withdrawal-like symptoms, which mediated their continued marijuana smoking. Noradrenergic agents, such as VEN-XR, may negatively impact treatment outcomes in cannabis-dependent patients attempting to reduce or stop their use. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  13. Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var. drymifolia) expressed in endothelial cells against Escherichia coli and Staphylococcus aureus.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Suárez-Rodríguez, Luis M; Salgado-Garciglia, Rafael; Rodríguez-Zapata, Luis C; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2013-01-01

    Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP) represent attractive control agents. Mexican avocado (Persea americana var. drymifolia) is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp) encoding a protein (78 aa) homologous with plant defensins (>80%). We expressed the defensin PaDef cDNA (pBME3) in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 μg/mL of total protein from clones (>55%). Also, S. aureus viability was inhibited from 50 μg/mL total protein (27-38%) but was more evident at 100 μg/mL (52-65%). This inhibition was higher than the effect showed by polyclonal population (~23%). Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens.

  14. Antibacterial Activity of Defensin PaDef from Avocado Fruit (Persea americana var. drymifolia Expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jaquelina Julia Guzmán-Rodríguez

    2013-01-01

    Full Text Available Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP represent attractive control agents. Mexican avocado (Persea americana var. drymifolia is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp encoding a protein (78 aa homologous with plant defensins (>80%. We expressed the defensin PaDef cDNA (pBME3 in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 μg/mL of total protein from clones (>55%. Also, S. aureus viability was inhibited from 50 μg/mL total protein (27–38% but was more evident at 100 μg/mL (52–65%. This inhibition was higher than the effect showed by polyclonal population (~23%. Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens.

  15. 7 CFR 785.4 - Grants to certified State mediation programs.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Grants to certified State mediation programs. 785.4..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS CERTIFIED STATE MEDIATION PROGRAM § 785.4 Grants to certified State mediation programs. (a) Eligibility. To be eligible to receive a grant, a State mediation program...

  16. The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens

    NARCIS (Netherlands)

    van Dijk, A.; Veldhuizen, E.J.A.; Kalkhove, S.I.C.; Tjeerdsma-van Bokhoven, J.L.M.; Romijn, R.A.; Haagsman, H.P.

    2007-01-01

    Food-borne pathogens are responsible for most cases of food poisoning in developed countries and are often associated with poultry products, including chicken. Little is known about the role of ß-defensins in the chicken digestive tract and their efficacy. In this study, the expression of chicken

  17. Instagram addiction and the Big Five of personality: The mediating role of self-liking.

    Science.gov (United States)

    Kircaburun, Kagan; Griffiths, Mark D

    2018-03-01

    Background and aims Recent research has suggested that social networking site use can be addictive. Although extensive research has been carried out on potential addiction to social networking sites, such as Facebook, Twitter, YouTube, and Tinder, only one very small study has previously examined potential addiction to Instagram. Consequently, the objectives of this study were to examine the relationships between personality, self-liking, daily Internet use, and Instagram addiction, as well as exploring the mediating role of self-liking between personality and Instagram addiction using path analysis. Methods A total of 752 university students completed a self-report survey, including the Instagram Addiction Scale (IAS), the Big Five Inventory (BFI), and the Self-Liking Scale. Results Results indicated that agreeableness, conscientiousness, and self-liking were negatively associated with Instagram addiction, whereas daily Internet use was positively associated with Instagram addiction. The results also showed that self-liking partially mediated the relationship of Instagram addiction with agreeableness and fully mediated the relationship between Instagram addiction with conscientiousness. Discussion and conclusions This study contributes to the small body of literature that has examined the relationship between personality and social networking site addiction and is one of only two studies to examine the addictive use of Instagram and the underlying factors related to it.

  18. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    Science.gov (United States)

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  19. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity.

    Science.gov (United States)

    Postma, Jelle; Liebrand, Thomas W H; Bi, Guozhi; Evrard, Alexandre; Bye, Ruby R; Mbengue, Malick; Kuhn, Hannah; Joosten, Matthieu H A J; Robatzek, Silke

    2016-04-01

    The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Expression of natural antimicrobial peptide β-defensin-2 and Langerhans cell accumulation in epidermis from human non-healing leg ulcers

    Directory of Open Access Journals (Sweden)

    Urszula Wojewodzka

    2011-08-01

    Full Text Available Chronic wounds like venous calf and diabetic foot ulcers are frequently contaminated and colonized by bacteria and it remains unclear whether there is sufficient expression of defensins and recruitment of epidermal Langerhans cells in the margin of ulcer compared to normal skin. The aim of this study was to examine immunohistochemically the expression of β-defensin-2 (hBD2, GM-CSF, VEGF growth factors and accumulation of CD1a+ Langerhans cells (LC in epidermis from chronic skin ulcers and to compare it to normal skin from the corresponding areas. Studies were carried out in 10 patients with diabetic foot, 10 patients with varicous ulcers of the calf and 10 patients undergoing orthopedic surgery (normal skin for control. Biopsy specimens were immunostained using specific primary antibodies, LSAB+ kit based on biotin-avidinperoxidase complex technique and DAB chromogen. Results were expressed as a mean staining intensity. Statistical analysis of staining showed significantly higher staining of hBD2 in both normal and ulcerated epidermis from foot sole skin compared to calf skin (normal and ulcerated, p<0.05. Chronic ulcers showed the same expression of hBD2 as normal skin. There was significantly lower accumulation of CD1a+ LC in normal epidermis from foot sole skin compared to normal calf skin (p<0.05. Accumulation of CD1a+ LC and GM-CSF upregulation at the border area of diabetic foot ulcer and reduction of LC concentration at the margin of venous calf ulcer compared to normal skin were observed. It seems that normal calf and sole epidermis is, unlike in the mechanisms of innate immunity, influenced by the different keratinocyte turnover and bacterial flora colonizing these regions. Insufficient upregulation of hBD2 in both diabetic foot and venous calf ulcers may suggest the pathological role of this protein in the chronicity of ulcers.

  1. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Platelet-released growth factors (PRGF and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF® contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3 is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR. In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds.

  2. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    Science.gov (United States)

    Lammel, Justus; Tohidnezhad, Mersedeh; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Cremer, Jochen; Jahr, Holger; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF®)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR). In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds. PMID:28811680

  3. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    Science.gov (United States)

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  4. The Relationship Among School Safety, School Liking, and Students' Self-Esteem: Based on a Multilevel Mediation Model.

    Science.gov (United States)

    Zhang, Xinghui; Xuan, Xin; Chen, Fumei; Zhang, Cai; Luo, Yuhan; Wang, Yun

    2016-03-01

    Perceptions of school safety have an important effect on students' development. Based on the model of "context-process-outcomes," we examined school safety as a context variable to explore how school safety at the school level affected students' self-esteem. We used hierarchical linear modeling to examine the link between school safety at the school level and students' self-esteem, including school liking as a mediator. The data were from the National Children's Study of China (NCSC), in which 6618 fourth- to fifth-grade students in 79 schools were recruited from 100 counties in 31 provinces in China. Multilevel mediation analyses showed that the positive relationship between school safety at the school level and self-esteem was partially mediated by school liking, controlling for demographics at both student and school levels. Furthermore, a sex difference existed in the multilevel mediation model. For boys, school liking fully mediated the relationship between school safety at the school level and self-esteem. However, school liking partially mediated the relationship between school safety at the school level and self-esteem among girls. School safety should receive increasing attention from policymakers because of its impact on students' self-esteem. © 2016, American School Health Association.

  5. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    International Nuclear Information System (INIS)

    Chen, Rui; Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-01

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  6. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808 (China); Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Liu, Chao [Guangzhou Forensic Science Institute, Guangzhou 510030 (China); Lin, Zhoumeng [Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (United States); Xie, Wei-Bing, E-mail: xieweib@126.com [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Wang, Huijun, E-mail: hjwang711@yahoo.cn [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China)

    2016-03-15

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  7. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Elham Hakimizadeh

    2017-08-01

    Full Text Available Objective(s: Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1 channels and toll-like receptors (TLRs are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist -treated and capsaicin (TRPV1 agonist -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke.

  8. Role of urinary cathelicidin LL-37 and human β-defensin 1 in uncomplicated Escherichia coli urinary tract infections

    DEFF Research Database (Denmark)

    Nielsen, Karen L; Dynesen, Pia; Larsen, Preben

    2014-01-01

    Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs). This was investiga......Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs......). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 and in vivo virulence. Forty-seven UTI patients and 50 controls who had never had a UTI were...... included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecal E. coli clones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D). In vivo virulence was investigated in the murine UTI model by use of selected fecal...

  9. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    International Nuclear Information System (INIS)

    Pan, Hong; Wu, Xinyi

    2012-01-01

    Highlights: ► Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-β. ► Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. ► Hypoxia inhibits Acanthamoeba-induced the activation of NF-κB and ERK1/2 in HCECs. ► Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. ► LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion

  10. Plasmid-mediated mineralization of 4-chlorobiphenyl

    International Nuclear Information System (INIS)

    Shields, M.S.; Hooper, S.W.; Sayler, G.S.

    1985-01-01

    Strains of Alcaligenes and Acinetobacter spp. were isolated from a mixed culture already proven to be proficient at complete mineralization of monohalogenated biphenyls. These strains were shown to harbor a 35 x 10(6)-dalton plasmid mediating a complete pathway for 4-chlorobiphenyl (4CB) oxidation. Subsequent plasmid curing of these bacteria resulted in the abolishment of the 4CB mineralization phenotype and loss of even early 4CB metabolism by Acinetobacter spp. Reestablishment of the Alcaligenes plasmid, denoted pSS50, in the cured Acinetobacter spp. via filter surface mating resulted in the restoration of 4CB mineralization abilities. 4CB mineralization, however, proved to be an unstable characteristic in some subcultured strains. Such loss was not found to coincide with any detectable alteration in plasmid size. Cultures capable of complete mineralization, as well as those limited to partial metabolism of 4CB, produced 4-chlorobenzoate as a metabolite. Demonstration of mineralization of a purified 14 C-labeled chlorobenzoate showed it to be a true intermediate in 4CB mineralization. Unlike the mineralization capability, the ability to produce a metabolite has proven to be stable on subculture. These results indicate the occurrence of a novel plasmid, or evolved catabolic plasmid, that mediates the complete mineralization of 4CB

  11. Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice.

    Directory of Open Access Journals (Sweden)

    Rabindra N Bhattacharjee

    Full Text Available BACKGROUND: Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC-/- mice display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of TLR4 in telomerase deficient mTERC-/- mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+, mTERC+/- and mTERC-/- mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFalpha and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC-/- mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-kappaB binding to its promoter by down-regulating ATF-3 in mTERC-/- macrophages. CONCLUSIONS/SIGNIFICANCE: Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-kappaB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups.

  12. Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways.

    Science.gov (United States)

    Xie, Song-Zi; Hao, Ran; Zha, Xue-Qiang; Pan, Li-Hua; Liu, Jian; Luo, Jian-Ping

    2016-08-01

    The present work aimed at investigating the pattern recognition receptor (PRR) and immunostimulatory mechanism of a purified Dendrobium huoshanense polysaccharide (DHP). We found that DHP could bind to the surface of macrophages and stimulate macrophages to secrete NO, TNF-α and IL-1β. To unravel the mechanism for the binding of DHP to macrophages, flow cytometry, confocal laser-scanning microscopy, affinity electrophoresis, SDS-PAGE and western blotting were employed to verify the type of PRR responsible for the recognition of DHP by RAW264.7 macrophages and peritoneal macrophages of C3H/HeN and C3H/HeJ macrophages. Results showed that toll-like receptor 4 (TLR4) was an essential receptor for macrophages to directly bind DHP. Further, the phosphorylation of ERK, JNK, Akt and p38 were observed to be time-dependently promoted by DHP, as well as the nuclear translocation of NF-κB p65. These results suggest that DHP activates macrophages via its direct binding to TLR4 to trigger TLR4 signaling pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Uddman Rolf

    2005-09-01

    Full Text Available Abstract Background Toll-like receptors enable the host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharide, viral RNA, CpG-containing DNA and flagellin. Toll-like receptors have also been shown to play a pivotal role in both innate and adaptive immune responses. The role of Toll-like receptors as a primary part of our microbe defense system has been shown in several studies, but their possible function as mediators in allergy and asthma remains to be established. The present study was designed to examine the expression of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with intermittent allergic rhinitis, focusing on changes induced by exposure to pollen. Methods 27 healthy controls and 42 patients with seasonal allergic rhinitis volunteered for the study. Nasal biopsies were obtained before and during pollen season as well as before and after allergen challenge. The seasonal material was used for mRNA quantification of Toll-like receptors 2, 3 and 4 with real-time polymerase chain reaction, whereas specimens achieved in conjunction with allergen challenge were used for immunohistochemical localization and quantification of corresponding proteins. Results mRNA and protein representing Toll-like receptors 2, 3 and 4 could be demonstrated in all specimens. An increase in protein expression for all three receptors could be seen following allergen challenge, whereas a significant increase of mRNA only could be obtained for Toll-like receptor 3 during pollen season. Conclusion The up-regulation of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with symptomatic allergic rhinitis supports the idea of a role for Toll-like receptors in allergic airway inflammation.

  14. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi

    Czech Academy of Sciences Publication Activity Database

    Tonk, Miray; Cabezas-Cruz, A.; Valdés, James J.; Rego, Ryan O. M.; Chrudimská, Tereza; Strnad, Martin; Šíma, Radek; Bell-Sakyi, L.; Franta, Z.; Vilcinskas, A.; Grubhoffer, Libor; Rahnamaeian, M.

    2014-01-01

    Roč. 7, DEC 3 2015 (2014), s. 554 ISSN 1756-3305 R&D Projects: GA ČR(CZ) GAP302/11/1901; GA MŠk(CZ) EE2.3.30.0032; GA ČR GP13-12816P Institutional support: RVO:60077344 Keywords : Antimicrobial peptide * Defensin * Listeria grayi * Fusarium spp * Ixodes scapularis * Tick cell line Subject RIV: EE - Microbiology, Virology Impact factor: 3.430, year: 2014

  15. The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance

    NARCIS (Netherlands)

    Penninckx, I.A.M.A.; Eggermont, K.; Schenk, P.M.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    Jasmonate and ethylene are concomitantly involved in the induction of the Arabidopsis plant defensin gene PDF1.2. To define genes in the signal transduction pathway leading to the induction of PDF1.2, we screened for mutants with induced over-expression of a β-glucuronidase reporter, under the

  16. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  17. Proanthocyanidin-rich Pinus radiata bark extract inhibits mast cell-mediated anaphylaxis-like reactions.

    Science.gov (United States)

    Choi, Yun Ho; Song, Chang Ho; Mun, Sung Phil

    2018-02-01

    Mast cells play a critical role in the effector phase of immediate hypersensitivity and allergic reactions. Pinus radiata bark extract exerts multiple biological effects and exhibits immunomodulatory and antioxidant properties. However, its role in mast cell-mediated anaphylactic reactions has not been thoroughly investigated. In this study, we examined the effects of proanthocyanidin-rich water extract (PAWE) isolated from P. radiata bark on compound 48/80-induced or antidinitrophenyl (DNP) immunoglobulin E (IgE)-mediated anaphylaxis-like reactions in vivo. In addition, we evaluated the mechanism underlying the inhibitory effect of PAWE on mast cell activation, with a specific focus on histamine release, using rat peritoneal mast cells. PAWE attenuated compound 48/80-induced or anti-DNP IgE-mediated passive cutaneous anaphylaxis-like reactions in mice, and it inhibited histamine release triggered by compound 48/80, ionophore A23187, or anti-DNP IgE in rat peritoneal mast cells in vitro. Moreover, PAWE suppressed compound 48/80-elicited calcium uptake in a concentration-dependent manner and promoted a transient increase in intracellular cyclic adenosine-3',5'-monophosphate levels. Together, these results suggest that proanthocyanidin-rich P. radiata bark extract effectively inhibits anaphylaxis-like reactions. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Methemoglobin Is an Endogenous Toll-Like Receptor 4 Ligand—Relevance to Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Min Seong Kwon

    2015-03-01

    Full Text Available Neuroinflammation is a well-recognized consequence of subarachnoid hemorrhage (SAH, and may be responsible for important complications of SAH. Signaling by Toll-like receptor 4 (TLR4-mediated nuclear factor κB (NFκB in microglia plays a critical role in neuronal damage after SAH. Three molecules derived from erythrocyte breakdown have been postulated to be endogenous TLR4 ligands: methemoglobin (metHgb, heme and hemin. However, poor water solubility of heme and hemin, and lipopolysaccharide (LPS contamination have confounded our understanding of these molecules as endogenous TLR4 ligands. We used a 5-step process to obtain highly purified LPS-free metHgb, as confirmed by Fourier Transform Ion Cyclotron Resonance mass spectrometry and by the Limulus amebocyte lysate assay. Using this preparation, we show that metHgb is a TLR4 ligand at physiologically relevant concentrations. metHgb caused time- and dose-dependent secretion of the proinflammatory cytokine, tumor necrosis factor α (TNFα, from microglial and macrophage cell lines, with secretion inhibited by siRNA directed against TLR4, by the TLR4-specific inhibitors, Rs-LPS and TAK-242, and by anti-CD14 antibodies. Injection of purified LPS-free metHgb into the rat subarachnoid space induced microglial activation and TNFα upregulation. Together, our findings support the hypothesis that, following SAH, metHgb in the subarachnoid space can promote widespread TLR4-mediated neuroinflammation.

  19. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  20. Forespore engulfment mediated by a ratchet-like mechanism.

    Science.gov (United States)

    Broder, Dan H; Pogliano, Kit

    2006-09-08

    A key step in bacterial endospore formation is engulfment, during which one bacterial cell engulfs another in a phagocytosis-like process that normally requires SpoIID, SpoIIM, and SpoIIP (DMP). We here describe a second mechanism involving the zipper-like interaction between the forespore protein SpoIIQ and its mother cell ligand SpoIIIAH, which are essential for engulfment when DMP activity is reduced or SpoIIB is absent. They are also required for the rapid engulfment observed during the enzymatic removal of peptidoglycan, a process that does not require DMP. These results suggest the existence of two separate engulfment machineries that compensate for one another in intact cells, thereby rendering engulfment robust. Photobleaching analysis demonstrates that SpoIIQ assembles a stationary structure, suggesting that SpoIIQ and SpoIIIAH function as a ratchet that renders forward membrane movement irreversible. We suggest that ratchet-mediated engulfment minimizes the utilization of chemical energy during this dramatic cellular reorganization, which occurs during starvation.

  1. NDH-Mediated Cyclic Electron Flow Around Photosystem I is Crucial for C4 Photosynthesis.

    Science.gov (United States)

    Ishikawa, Noriko; Takabayashi, Atsushi; Noguchi, Ko; Tazoe, Youshi; Yamamoto, Hiroshi; von Caemmerer, Susanne; Sato, Fumihiko; Endo, Tsuyoshi

    2016-10-01

    C 4 photosynthesis exhibits efficient CO 2 assimilation in ambient air by concentrating CO 2 around ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) through a metabolic pathway called the C 4 cycle. It has been suggested that cyclic electron flow (CEF) around PSI mediated by chloroplast NADH dehydrogenase-like complex (NDH), an alternative pathway of photosynthetic electron transport (PET), plays a crucial role in C 4 photosynthesis, although the contribution of NDH-mediated CEF is small in C 3 photosynthesis. Here, we generated NDH-suppressed transformants of a C 4 plant, Flaveria bidentis, and showed that the NDH-suppressed plants grow poorly, especially under low-light conditions. CO 2 assimilation rates were consistently decreased in the NDH-suppressed plants under low and medium light intensities. Measurements of non-photochemical quenching (NPQ) of Chl fluorescence, the oxidation state of the reaction center of PSI (P700) and the electrochromic shift (ECS) of pigment absorbance indicated that proton translocation across the thylakoid membrane is impaired in the NDH-suppressed plants. Since proton translocation across the thylakoid membrane induces ATP production, these results suggest that NDH-mediated CEF plays a role in the supply of ATP which is required for C 4 photosynthesis. Such a role is more crucial when the light that is available for photosynthesis is limited and the energy production by PET becomes rate-determining for C 4 photosynthesis. Our results demonstrate that the physiological contribution of NDH-mediated CEF is greater in C 4 photosynthesis than in C 3 photosynthesis, suggesting that the mechanism of PET in C 4 photosynthesis has changed from that in C 3 photosynthesis accompanying the changes in the mechanism of CO 2 assimilation. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Rice Bran Feruloylated Oligosaccharides Activate Dendritic Cells via Toll-Like Receptor 2 and 4 Signaling

    Directory of Open Access Journals (Sweden)

    Chi Chen Lin

    2014-04-01

    Full Text Available This work presents the effects of feruloylated oligosaccharides (FOs of rice bran on murine bone marrow-derived dendritic cells (BMDCs and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4 or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs and increased NF-kB activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination.

  3. Beta-Defensin 2 and 3 Promote Bacterial Clearance of Pseudomonas aeruginosa by Inhibiting Macrophage Autophagy through Downregulation of Early Growth Response Gene-1 and c-FOS

    Directory of Open Access Journals (Sweden)

    Yongjian Wu

    2018-02-01

    Full Text Available Beta-defensins 2 and 3 (BD2 and BD3 are inducible peptides present at the sites of infection, and they are well characterized for their antimicrobial activities and immune-regulatory functions. However, no study has thoroughly investigated their immunomodulatory effects on macrophage-mediated immune responses against Pseudomonas aeruginosa (PA. Here, we use THP-1 and RAW264.7 cell lines and demonstrate that BD2 and BD3 suppressed macrophage autophagy but enhanced the engulfment of PA and Zymosan bioparticles as well as the formation of phagolysosomes, using immunofluorescence staining and confocal microscopy. Plate count assay showed that macrophage-mediated phagocytosis and intracellular killing of PA were promoted by BD2 and BD3. Furthermore, microarray and real-time PCR showed that the expression of two genes, early growth response gene-1 (EGR1 and c-FOS, was attenuated by BD2 and BD3. Western blot revealed that BD2 and BD3 inhibited the expression and nuclear translocation of EGR1 and c-FOS. Knockdown of EGR1 and c-FOS by siRNA transfection suppressed macrophage autophagy before and after PA infection; while overexpression of these two transcription factors enhanced autophagy but reversed the role of BD2 and BD3 on macrophage-mediated PA eradication. Together, these results demonstrate a novel immune defense activity of BD2 and BD3, which promotes clearance of PA by inhibiting macrophage autophagy through downregulation of EGR1 and c-FOS.

  4. Adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, relational and physical victimization, and peer liking.

    Science.gov (United States)

    Kawabata, Yoshito; Tseng, Wan-Ling; Crick, Nicki R

    2014-01-01

    A three-wave longitudinal study among ethnically diverse preadolescents (N = 597 at Time 1, ages 9-11) was conducted to examine adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, victimization, and peer liking indexed by peer acceptance and friendships. A series of nested structural equation models tested the hypothesized links among these peer-domain factors. It was hypothesized that (1) relational aggression trails both adaptive and maladaptive processes, linking to more peer victimization and more peer liking, whereas physical aggression is maladaptive, resulting in more peer victimization and less peer liking; (2) physical and relational victimization is maladaptive, relating to more aggression and less peer liking; (3) peer liking may be the social context that promotes relational aggression (not physical aggression), whereas peer liking may protect against peer victimization, regardless of its type; and (4) peer liking mediates the link between forms of aggression and forms of peer victimization. Results showed that higher levels of peer liking predicted relative increases in relational aggression (not physical aggression), which in turn led to more peer liking. On the other hand, more peer liking was predictive of relative decreases in relational aggression and relational victimization in transition to the next grade (i.e., fifth grade). In addition, relational victimization predicted relative increases in relational aggression and relative decreases in peer liking. Similarly, physical aggression was consistently and concurrently associated more physical victimization and was marginally predictive of relative increases in physical victimization in transition to the next grade. More peer liking predicted relative decreases in physical victimization, which resulted in lower levels of peer liking. The directionality and magnitude of these paths did not differ between boys and girls. © 2013 Wiley

  5. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    Science.gov (United States)

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    OpenAIRE

    Andreas Bayer; Justus Lammel; Mersedeh Tohidnezhad; Sebastian Lippross; Peter Behrendt; Tim Klüter; Thomas Pufe; Jochen Cremer; Holger Jahr; Franziska Rademacher; Regine Gläser; Jürgen Harder

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF?)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting acti...

  7. Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo.

    Science.gov (United States)

    Jedidi, Iness; Zhang, Fan; Qiu, Hongfang; Stahl, Stephen J; Palmer, Ira; Kaufman, Joshua D; Nadaud, Philippe S; Mukherjee, Sujoy; Wingfield, Paul T; Jaroniec, Christopher P; Hinnebusch, Alan G

    2010-01-22

    Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Delta cells. Although several Gal11 segments were previously shown to bind Gcn4 in vitro, the importance of these interactions for recruitment of Mediator and transcriptional activation by Gcn4 in cells was unknown. We show that interaction of Gcn4 with the Mediator tail in vitro and recruitment of this subcomplex and intact Mediator to the ARG1 promoter in vivo involve additive contributions from three different segments in the N terminus of Gal11. These include the KIX domain, which is a critical target of other activators, and a region that shares a conserved motif (B-box) with mammalian coactivator SRC-1, and we establish that B-box is a critical determinant of Mediator recruitment by Gcn4. We further demonstrate that Gcn4 binds to the Gal11 KIX domain directly and, by NMR chemical shift analysis combined with mutational studies, we identify the likely binding site for Gcn4 on the KIX surface. Gcn4 is distinctive in relying on comparable contributions from multiple segments of Gal11 for efficient recruitment of Mediator in vivo.

  8. Placental Trophoblast Responses to Porphyromonas gingivalis Mediated by Toll-like Receptor-2 and -4

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2013-09-01

    Full Text Available Trophoblast participates in preventing allorecognition and controlling pathogens that compromise fetal wellbeing. Toll-like receptors recognize conserved sequences on the pathogens surface and trigger effector cell functions. Porphyromonas gingivalis is thought to spread to the umbilical cord and cause fetal growth restriction. Objective: To characterize expression and function of TLR-2 and TLR-4 in trophoblast cells from Porphyromonas gingivalisinfected pregnant rats. Methods: Live Porphyromonas gingivalis were challenged into the maxillary first molar subgingival sulcus of female rats before and/or during pregnancy and sacrified on gestational day (GD 14 and 20. Porphyromonas gingivalis was detected by API-ZYM system in the maternal blood of the retro-orbital venous plexus and the umbilical cord. TLR-2 and TLR-4 expressions in trophoblast cells was detected by immunohistochemistry. Results: Porphyromonas gingivalis was first detected in the maternal blood and finally spread to the umbilical cord. Syncytiotrophoblast, spongitrophoblast and trophoblastic giant cell in treated groups had significantly higher expression of TLR-2 and TLR-4 than control group (p<0.05. Conclusion: Syncytiotrophoblast, spongitrophoblast and trophoblastic giant cell are able to recognize Porphyromonas gingivalis through TLR-2 and TLR-4 expression. The ligation of TLR-2 and TLR-4 promoted cytokine production and induced trophoblast cell death. These findings strengthen links between periodontal disease and fetal growth restriction.DOI: 10.14693/jdi.v20i2.150

  9. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    Science.gov (United States)

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  10. The Alpha-Defensin Immunoassay and Leukocyte Esterase Colorimetric Strip Test for the Diagnosis of Periprosthetic Infection: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Wyatt, M C; Beswick, A D; Kunutsor, S K; Wilson, M J; Whitehouse, M R; Blom, A W

    2016-06-15

    Synovial biomarkers have recently been adopted as diagnostic tools for periprosthetic joint infection (PJI), but their utility is uncertain. The purpose of this systematic review and meta-analysis was to synthesize the evidence on the accuracy of the alpha-defensin immunoassay and leukocyte esterase colorimetric strip test for the diagnosis of PJI compared with the Musculoskeletal Infection Society diagnostic criteria. We performed a systematic review to identify diagnostic technique studies evaluating the accuracy of alpha-defensin or leukocyte esterase in the diagnosis of PJI. MEDLINE and Embase on Ovid, ACM, ADS, arXiv, CERN DS (Conseil Européen pour la Recherche Nucléaire Document Server), CrossRef DOI (Digital Object Identifier), DBLP (Digital Bibliography & Library Project), Espacenet, Google Scholar, Gutenberg, HighWire, IEEE Xplore (Institute of Electrical and Electronics Engineers digital library), INSPIRE, JSTOR (Journal Storage), OAlster (Open Archives Initiative Protocol for Metadata Harvesting), Open Content, Pubget, PubMed, and Web of Science were searched for appropriate studies indexed from inception until May 30, 2015, along with unpublished or gray literature. The classification of studies and data extraction were performed independently by 2 reviewers. Data extraction permitted meta-analysis of sensitivity and specificity with construction of receiver operating characteristic curves for each test. We included 11 eligible studies. The pooled diagnostic sensitivity and specificity of alpha-defensin (6 studies) for PJI were 1.00 (95% confidence interval [CI], 0.82 to 1.00) and 0.96 (95% CI, 0.89 to 0.99), respectively. The area under the curve (AUC) for alpha-defensin and PJI was 0.99 (95% CI, 0.98 to 1.00). The pooled diagnostic sensitivity and specificity of leukocyte esterase (5 studies) for PJI were 0.81 (95% CI, 0.49 to 0.95) and 0.97 (95% CI, 0.82 to 0.99), respectively. The AUC for leukocyte esterase and PJI was 0.97 (95% CI, 0.95 to 0

  11. Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis

    Directory of Open Access Journals (Sweden)

    Bailey R Hartford

    2009-07-01

    Full Text Available Abstract Background Salmonella enterica serovar Enteritidis (SE colonizes the ovary and oviduct of chickens without causing overt clinical signs which can lead to SE-contamination of the content and membrane of shell-eggs as well as hatchery eggs. The organism utilizes the Salmonella Pathogenicity Island-2 encoded type III secretion system (T3SS-2 to promote persistence in the oviduct of laying hens. In this study, reverse transcriptase-polymerase chain reaction (RT-PCR was carried out to determine the expression profiles of 14 known avian beta defensins (AvBDs in primary chicken oviduct epithelial cells (COEC before and after infections with a wild type SE strain and T3SS mutant SE strains carrying an inactivated sipA or pipB gene. Results Based on the expression levels in uninfected COEC, AvBDs can be loosely grouped into three categories with AvBD4-5 and AvBD9-12 being constitutively expressed at high levels; AvBD1, AvBD3, and AvBD13-14 at moderate levels; and AvBD2 and AvBD6-8 at minimal levels. Infection with the wild type SE strain temporarily repressed certain highly expressed AvBDs and induced the expression of minimally expressed AvBDs. The pipB mutant, compared to the wild type strain, had reduced suppressive effect on the expression of highly expressed AvBDs. Moreover, the pipB mutant elicited significantly higher levels of the minimally expressed AvBDs than the wild type SE or the sipA mutant did. Conclusion Chicken oviduct epithelial cells express most of the known AvBD genes in response to SE infection. PipB, a T3SS-2 effector protein, plays a role in dampening the β-defensin arm of innate immunity during SE invasion of chicken oviduct epithelium.

  12. Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis.

    Science.gov (United States)

    Ebers, Katie L; Zhang, C Yan; Zhang, M Zhenyu; Bailey, R Hartford; Zhang, Shuping

    2009-07-30

    Salmonella enterica serovar Enteritidis (SE) colonizes the ovary and oviduct of chickens without causing overt clinical signs which can lead to SE-contamination of the content and membrane of shell-eggs as well as hatchery eggs. The organism utilizes the Salmonella Pathogenicity Island-2 encoded type III secretion system (T3SS-2) to promote persistence in the oviduct of laying hens. In this study, reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out to determine the expression profiles of 14 known avian beta defensins (AvBDs) in primary chicken oviduct epithelial cells (COEC) before and after infections with a wild type SE strain and T3SS mutant SE strains carrying an inactivated sipA or pipB gene. Based on the expression levels in uninfected COEC, AvBDs can be loosely grouped into three categories with AvBD4-5 and AvBD9-12 being constitutively expressed at high levels; AvBD1, AvBD3, and AvBD13-14 at moderate levels; and AvBD2 and AvBD6-8 at minimal levels. Infection with the wild type SE strain temporarily repressed certain highly expressed AvBDs and induced the expression of minimally expressed AvBDs. The pipB mutant, compared to the wild type strain, had reduced suppressive effect on the expression of highly expressed AvBDs. Moreover, the pipB mutant elicited significantly higher levels of the minimally expressed AvBDs than the wild type SE or the sipA mutant did. Chicken oviduct epithelial cells express most of the known AvBD genes in response to SE infection. PipB, a T3SS-2 effector protein, plays a role in dampening the beta-defensin arm of innate immunity during SE invasion of chicken oviduct epithelium.

  13. The increasing of beta-defensin-2 level in saliva after probiotic Lactobacillus reuteri administration

    Directory of Open Access Journals (Sweden)

    Tuti Kusumaningsih

    2015-03-01

    Full Text Available Background: Commesal bacteria is an excellent inducer for beta defensin-2 (BD-2. Probiotics bacteria Lactobacillus reuteri (L. reuteri as commensal bacteria may play the same role as an excellent inducer for BD-2. Beta defensin is natural antimicrobial peptides widely expressed in oral cavity, including in epithelium salivary gland. Streptococcus mutans (S. mutans as the main of bacteria causing caries are sensitive to BD-2. Purpose: This research was aimed to determine whether administration of probiotic L. reuteri can increase salivary BD-2 level in Wistar rats. Methods: This research can be considered as a laboratory experimental research with a randomized control group post test only design. Twenty-four male Rattus norvegicus Wistar strain rats aged 3 months were used. They were randomly divided into four groups, namely two control groups (negative control group that was not induced and positive control group induced with S. mutans, and two treatment groups (K1: induced with L. reuteri for 14 days and S. mutans for 7 days, and K2: induced with L. reuteri and S. mutans simultaneously for 14 days. L. reuteri culture at a concentration of 108 CFU/ml and S. mutans culture at a concentration of 1010CFU/ml were induced into the oral cavity of Wistar rats. An examination of BD-2 level was then conducted by using Elisa techniques. results: There was significant difference of salivary BD-2 level among those treatment groups (p=0.001. BD-2 level in saliva was increased after the administration of L. reuteri. Conclusion: L. reuteri probiotic can increase salivary BD-2 level in Wistar rats.

  14. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis

    KAUST Repository

    Cui, Peng; Chen, Tao; Qin, Tao; Ding, Feng; Wang, Zhenyu; Chen, Hao; Xiong, Liming

    2016-01-01

    © 2016 American Society of Plant Biologists. All rights reserved. Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana. Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 59-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximidetreated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.

  15. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis

    KAUST Repository

    Cui, Peng

    2016-02-18

    © 2016 American Society of Plant Biologists. All rights reserved. Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana. Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 59-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximidetreated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.

  16. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus.

    Science.gov (United States)

    Sinon, Suraya H; Rich, Alison M; Parachuru, Venkata P B; Firth, Fiona A; Milne, Trudy; Seymour, Gregory J

    2016-01-01

    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP). Initially, immunohistochemistry was used to determine TLR expression in 12 formalin-fixed archival OLP tissues with 12 non-specifically inflamed oral tissues as controls. RNA was isolated from further fresh samples of OLP and non-specifically inflamed oral tissue controls (n = 6 for both groups) and used in qRT(2)-PCR focused arrays to determine the expression of TLRs and associated signalling pathway genes. Genes with a statistical significance of ±two-fold regulation (FR) and a P-value < 0.05 were considered as significantly regulated. Significantly more TLR4(+) cells were present in the inflammatory infiltrate in OLP compared with the control tissues (P < 0.05). There was no statistically significant difference in the numbers of TLR2(+) and TLR8(+) cells between the groups. TLR3 was significantly downregulated in OLP (P < 0.01). TLR8 was upregulated in OLP, but the difference between the groups was not statistically significant. The TLR-mediated signalling-associated protein genes MyD88 and TIRAP were significantly downregulated (P < 0.01 and P < 0.05), as were IRAK1 (P < 0.05), MAPK8 (P < 0.01), MAP3K1 (P < 0.05), MAP4K4 (P < 0.05), REL (P < 0.01) and RELA (P < 0.01). Stress proteins HMGB1 and the heat shock protein D1 were significantly downregulated in OLP (P < 0.01). These findings suggest a downregulation of TLR-mediated signalling pathways in OLP lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    Science.gov (United States)

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  19. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  20. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis

    NARCIS (Netherlands)

    Hermann, L.M.; Pinkerton, M.; Jennings, K.; Yang, L.; Grom, A.; Sowders, D.; Kersten, A.H.; Witte, D.P.; Hirsch, R.; Thornton, S.

    2005-01-01

    Our previous studies of gene expression profiling during collagen-induced arthritis (CIA) indicated that the putative angiogenic factor Angptl4 was one of the most highly expressed mRNAs early in disease. To investigate the potential involvement of Angptl4 in CIA pathogenesis, Angptl4 protein levels

  1. Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells.

    Science.gov (United States)

    Park, Jungyun; Ahn, Seyoung; Jayabalan, Aravinth K; Ohn, Takbum; Koh, Hyun Chul; Hwang, Jungwook

    2016-07-01

    Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper.

    Directory of Open Access Journals (Sweden)

    Hyo-Hyoun Seo

    Full Text Available Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL-1. To develop transgenic pepper plants resistant to anthracnose disease, J1-1 cDNA under the control of 35S promoter was introduced into pepper via Agrobacterium-mediated genetic transformation method. Southern and Northern blot analyses confirmed that a single copy of the transgene in selected transgenic plants was normally expressed and also stably transmitted to subsequent generations. The insertion of T-DNA was further analyzed in three independent homozygous lines using inverse PCR, and confirmed the integration of transgene in non-coding region of genomic DNA. Immunoblot results showed that the level of J1-1 proteins, which was not normally accumulated in unripe fruits, accumulated high in transgenic plants but appeared to differ among transgenic lines. Moreover, the expression of jasmonic acid-biosynthetic genes and pathogenesis-related genes were up-regulated in the transgenic lines, which is co-related with the resistance of J1-1 transgenic plants to anthracnose disease. Consequently, the constitutive expression of J1-1 in transgenic pepper plants provided strong resistance to the anthracnose fungus that was associated with highly reduced lesion formation and fungal colonization. These results implied the significance of the antifungal protein, J1-1, as a useful agronomic trait to control fungal disease.

  3. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper.

    Science.gov (United States)

    Seo, Hyo-Hyoun; Park, Sangkyu; Park, Soomin; Oh, Byung-Jun; Back, Kyoungwhan; Han, Oksoo; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL-1. To develop transgenic pepper plants resistant to anthracnose disease, J1-1 cDNA under the control of 35S promoter was introduced into pepper via Agrobacterium-mediated genetic transformation method. Southern and Northern blot analyses confirmed that a single copy of the transgene in selected transgenic plants was normally expressed and also stably transmitted to subsequent generations. The insertion of T-DNA was further analyzed in three independent homozygous lines using inverse PCR, and confirmed the integration of transgene in non-coding region of genomic DNA. Immunoblot results showed that the level of J1-1 proteins, which was not normally accumulated in unripe fruits, accumulated high in transgenic plants but appeared to differ among transgenic lines. Moreover, the expression of jasmonic acid-biosynthetic genes and pathogenesis-related genes were up-regulated in the transgenic lines, which is co-related with the resistance of J1-1 transgenic plants to anthracnose disease. Consequently, the constitutive expression of J1-1 in transgenic pepper plants provided strong resistance to the anthracnose fungus that was associated with highly reduced lesion formation and fungal colonization. These results implied the significance of the antifungal protein, J1-1, as a useful agronomic trait to control fungal disease.

  4. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells.

    Science.gov (United States)

    Bahk, Young Yil; Pak, Jhang Ho

    2016-10-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

  5. Babesial vector tick defensin against Babesia sp. parasites.

    Science.gov (United States)

    Tsuji, Naotoshi; Battsetseg, Badgar; Boldbaatar, Damdinsuren; Miyoshi, Takeharu; Xuan, Xuenan; Oliver, James H; Fujisaki, Kozo

    2007-07-01

    Antimicrobial peptides are major components of host innate immunity, a well-conserved, evolutionarily ancient defensive mechanism. Infectious disease-bearing vector ticks are thought to possess specific defense molecules against the transmitted pathogens that have been acquired during their evolution. We found in the tick Haemaphysalis longicornis a novel parasiticidal peptide named longicin that may have evolved from a common ancestral peptide resembling spider and scorpion toxins. H. longicornis is the primary vector for Babesia sp. parasites in Japan. Longicin also displayed bactericidal and fungicidal properties that resemble those of defensin homologues from invertebrates and vertebrates. Longicin showed a remarkable ability to inhibit the proliferation of merozoites, an erythrocyte blood stage of equine Babesia equi, by killing the parasites. Longicin was localized at the surface of the Babesia sp. parasites, as demonstrated by confocal microscopic analysis. In an in vivo experiment, longicin induced significant reduction of parasitemia in animals infected with the zoonotic and murine B. microti. Moreover, RNA interference data demonstrated that endogenous longicin is able to directly kill the canine B. gibsoni, thus indicating that it may play a role in regulating the vectorial capacity in the vector tick H. longicornis. Theoretically, longicin may serve as a model for the development of chemotherapeutic compounds against tick-borne disease organisms.

  6. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    International Nuclear Information System (INIS)

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar; Illenberger, Susanne; Preuss, Ute

    2005-01-01

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis

  7. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    International Nuclear Information System (INIS)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-01-01

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  8. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela [Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Gutiérrez, Silvina; Torres, Alicia Inés [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); De Paul, Ana Lucía, E-mail: adepaul@cmefcm.uncor.edu [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina)

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  9. Distinct signaling pathways leading to the induction of human β-defensin 2 by stimulating an electrolyticaly-generated acid functional water and double strand RNA in oral epithelial cells.

    Science.gov (United States)

    Gojoubori, Takahiro; Nishio, Yukina; Asano, Masatake; Nishida, Tetsuya; Komiyama, Kazuo; Ito, Koichi

    2014-04-01

    Defensins, a major family of cationic antimicrobial peptides, play important roles in innate immunity. In the present study, we investigated whether double-stranded RNA (dsRNA), a by-product of RNA virus replication, can induce human β-defensins-2 (hBD-2) expression in oral epithelial cells (OECs). We also examined the hBD-2-inducible activity of acid-electrolyzed functional water (FW). The results indicated that both dsRNA- and FW-induced hBD-2 expression in OECs. The induction efficiency was much higher for FW than for dsRNA. FW-induced production of hBD-2 was clearly observed by immunofluorescence staining. A luciferase assay was performed with 1.2 kb of the 5'-untranslated region (5'-UTR) of the hBD-2 gene. The results indicated that the nuclear factor-kappa B (NF-κB)-binding site proximal to the translation initiation site was indispensable for dsRNA-stimulated hBD-2 expression, but not in the case of FW. Moreover, FW-stimulated hBD-2 expression did not depend on NF-κB activity; instead, FW inhibited NF-κB activity. Pretreatment of the cells with specific inhibitors against NF-κB further confirmed NF-κB-independent hBD-2 induction by FW. In analogy to the results for intestinal epithelial cells (IECs), the dsRNA signal, but not FW, was sensed by toll-like receptor 3 (TLR3) in OECs. These results suggested that hBD-2 expression induced by dsRNA and FW is regulated by distinct mechanisms in OECs.

  10. Toll-Like Receptor 4 Activation Contributes to Diabetic Bladder Dysfunction in a Murine Model of Type 1 Diabetes.

    Science.gov (United States)

    Szasz, Theodora; Wenceslau, Camilla F; Burgess, Beth; Nunes, Kenia P; Webb, R Clinton

    2016-12-01

    Diabetic bladder dysfunction (DBD) is a common urological complication of diabetes. Innate immune system activation via Toll-like receptor 4 (TLR4) leads to inflammation and oxidative stress and was implicated in diabetes pathophysiology. We hypothesized that bladder hypertrophy and hypercontractility in DBD is mediated by TLR4 activation. Wild-type (WT) and TLR4 knockout (TLR4KO) mice were made diabetic by streptozotocin (STZ) treatment, and bladder contractile function and TLR4 pathway expression were evaluated. Immunohistochemistry confirmed the expression of TLR4 in human and mouse bladder. Recombinant high-mobility group box protein 1 (HMGB1) increased bladder TLR4 and MyD88 expression and enhanced contractile response to electrical field stimulation. Bladder expression of TLR4 and MyD88 and serum expression of HMGB1 were increased in STZ compared with control mice. Carbachol (CCh)-mediated contraction was increased in bladders from STZ mice, and TLR4 inhibitor CLI-095 attenuated this increase. Induction of diabetes by STZ in WT mice increased bladder weight and contractile responses to CCh and to electrical field stimulation. TLR4KO mice were not protected from STZ-induced diabetes; however, despite levels of hyperglycemia similar to those of WT STZ mice, TLR4KO STZ mice were protected from diabetes-induced bladder hypertrophy and hypercontractility. These data suggest that TLR4 activation during diabetes mediates DBD-associated bladder hypertrophy and hypercontractility. © 2016 by the American Diabetes Association.

  11. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    Science.gov (United States)

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  12. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway.

    Science.gov (United States)

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D'Andrea, Alan D

    2015-04-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4-mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.

  13. Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior.

    Science.gov (United States)

    Mazzone, C M; Pati, D; Michaelides, M; DiBerto, J; Fox, J H; Tipton, G; Anderson, C; Duffy, K; McKlveen, J M; Hardaway, J A; Magness, S T; Falls, W A; Hammack, S E; McElligott, Z A; Hurd, Y L; Kash, T L

    2018-01-01

    The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of G q -mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that G q -mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple G q -coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the G q -coupled receptor 5-HT 2C R in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT

  14. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior.

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; Armini, Rubia de Souza; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S; Beurel, Eleonore

    2016-03-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and

  15. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1 to 3 hr, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory

  16. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    Science.gov (United States)

    Zhou, Vivian; Agle, Kimberle; Chen, Xiao; Beres, Amy; Komorowski, Richard; Belle, Ludovic; Taylor, Carolyn; Zhu, Fenlu; Haribhai, Dipica; Williams, Calvin B.; Verbsky, James; Blumenschein, Wendy; Sadekova, Svetlana; Bowman, Eddie; Ballantyne, Christie; Weaver, Casey; Serody, David A.; Vincent, Benjamin; Serody, Jonathan; Cua, Daniel J.; Drobyski, William R.

    2016-01-01

    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers. PMID:27500496

  17. Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner

    DEFF Research Database (Denmark)

    Kny, Melanie; Standera, Sybille; Hartmann-Petersen, Rasmus

    2011-01-01

    in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, which is found in high molecular mass complexes of the ER membrane. Here we present the first evidence that Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like (UBL) domain-dependent manner. We...

  18. Phosphorylation-mediated control of histone chaperone ASF1 levels by Tousled-like kinases.

    Directory of Open Access Journals (Sweden)

    Maxim Pilyugin

    Full Text Available Histone chaperones are at the hub of a diverse interaction networks integrating a plethora of chromatin modifying activities. Histone H3/H4 chaperone ASF1 is a target for cell-cycle regulated Tousled-like kinases (TLKs and both proteins cooperate during chromatin replication. However, the precise role of post-translational modification of ASF1 remained unclear. Here, we identify the TLK phosphorylation sites for both Drosophila and human ASF1 proteins. Loss of TLK-mediated phosphorylation triggers hASF1a and dASF1 degradation by proteasome-dependent and independent mechanisms respectively. Consistent with this notion, introduction of phosphorylation-mimicking mutants inhibits hASF1a and dASF1 degradation. Human hASF1b is also targeted for proteasome-dependent degradation, but its stability is not affected by phosphorylation indicating that other mechanisms are likely to be involved in control of hASF1b levels. Together, these results suggest that ASF1 cellular levels are tightly controlled by distinct pathways and provide a molecular mechanism for post-translational regulation of dASF1 and hASF1a by TLK kinases.

  19. Quantum electrodynamics effects in the 4s-4p transitions in Cu-like and Zn-like ions

    International Nuclear Information System (INIS)

    Cheng, K.; Wagner, R.A.

    1987-01-01

    Multiconfiguration Dirac-Fock energies are compared with experiment for the 4s-4p transitions in Cu-like ions and the 4s 2 1 S 0 --4s4p 1 P 1 transition in Zn-like ions for Au, Pb, Bi, Th, and U. The Coulomb, Breit, and QED contributions to these transitions are tabulated for selected ions in the range Z = 50--92. Results show that the agreement between theory and experiment is good enough to show the importance of QED corrections in the spectra of these highly stripped ions. Contrary to earlier findings by Seely et al. [Phys. Rev. Lett. 57, 2924 (1986)] we find no significant differences between the observed and calculated transition energies after finite-nuclear-size corrections are included

  20. Caspase-dependant activation of chymotrypsin-like proteases mediates nuclear events during Jurkat T cell apoptosis

    International Nuclear Information System (INIS)

    O'Connell, A.R.; Lee, B.W.; Stenson-Cox, C.

    2006-01-01

    Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events

  1. The role of MAPK in CD4+ T cells toll-like receptor 9-mediated signaling following HHV-6 infection

    International Nuclear Information System (INIS)

    Chi, Jing; Wang, Fang; Li, Lingyun; Feng, Dongju; Qin, Jian; Xie, Fangyi; Zhou, Feng; Chen, Yun; Wang, Jinfeng; Yao, Kun

    2012-01-01

    Human herpesvirus-6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells (mainly CD4 + T cells) and strongly suppresses the proliferation of infected cells. Toll-like receptors are pattern-recognition receptors essential for the development of an appropriate innate immune defense against infection. To understand the role of CD4 + T cells in the innate response to HHV-6 infection and the involvement of TLRs, we used an in vitro infection model and observed that the infection of CD4 + T cells resulted in the activation of JNK/SAPK via up-regulation of toll-like receptor 9 (TLR9). Associated with JNK activation, annexin V-PI staining indicated that HHV-6A was a strong inducer of apoptosis. Apoptotic response associated cytokines, IL-6 and TNF-α also induced by HHV-6A infection.

  2. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression

    Directory of Open Access Journals (Sweden)

    Anna Jurczak

    2015-01-01

    Full Text Available BACKGROUND: Recently, a continuous growth of interest has been observed in antimicrobial peptides (AMPs in the light of an alarming increase in resistance of bacteria and fungi against antibiotics. AMPs are used as biomarkers in diagnosis and monitoring of oral cavity pathologies. Therefore, the determination of specific protein profiles in children diagnosed with early childhood caries (ECC might be a basis for effective screening tests and specialized examinations which may enable progression of disease METHODS: The objective of the studies was to determine the role of histatin-5 and β-defensing-2 as a diagnostic marker of early childhood caries progression. In this work, results of concentration determination of two salivary proteins (histatin-5 and β-defensin-2 were presented. In addition, bacterial profiles from dental plaque in various stages of ECC and control were marked. The assessment of alteration in the concentration of these two proteins in a study group of children with various stages of ECC and a control group consisting of children with no symptoms was performed by enzyme-linked immunosorbent assays RESULTS: The statistical analysis showed a significant increase in the concentration of histatin-5 and β-defensin-2 in the study group compared to the control group and correlated with the progression of the disease CONCLUSIONS: The confirmation of concentration changes in these proteins during the progression of dental caries may discover valuable disease progression biomarkers

  3. Altered IFN-γ-mediated immunity and transcriptional expression patterns in N-Ethyl-N-nitrosourea-induced STAT4 mutants confer susceptibility to acute typhoid-like disease.

    Science.gov (United States)

    Eva, Megan M; Yuki, Kyoko E; Dauphinee, Shauna M; Schwartzentruber, Jeremy A; Pyzik, Michal; Paquet, Marilène; Lathrop, Mark; Majewski, Jacek; Vidal, Silvia M; Malo, Danielle

    2014-01-01

    Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.

  4. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor.

    Science.gov (United States)

    Armant, D Randall; Kilburn, Brian A; Petkova, Anelia; Edwin, Samuel S; Duniec-Dmuchowski, Zophia M; Edwards, Holly J; Romero, Roberto; Leach, Richard E

    2006-02-01

    Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.

  5. Toll-like receptor 7-mediated enhancement of contextual fear memory in mice.

    Science.gov (United States)

    Kubo, Yasunori; Yanagawa, Yoshiki; Matsumoto, Machiko; Hiraide, Sachiko; Kobayashi, Masanobu; Togashi, Hiroko

    2012-10-01

    Toll-like receptor (TLR) 7 recognizes viral single-stranded RNA and triggers production of the type I interferons (IFNs) IFN-α and IFN-β. Imiquimod, a synthetic TLR7 ligand, induces production of type I IFNs and is used clinically as an antiviral and antitumor drug. In the present study, we examined the effect of imiquimod on conditioned and innate fear behaviors in mice. Imiquimod was administered 2, 4, or 15 h before contextual fear conditioning. Imiquimod treatment 4 or 15 h before fear conditioning significantly enhanced context-dependent freezing behavior. This imiquimod-induced enhancement of fear-related behaviors was observed 120 h after fear conditioning. In contrast, imiquimod failed to enhance context-dependent freezing behavior in TLR7 knockout mice. Imiquimod had no significant effect on pain threshold or on innate fear-related behavior, as measured by the elevated plus-maze. The levels of type I IFN mRNA in the brain were significantly increased at 2 h after imiquimod treatment. Imiquimod also increased interleukin (IL)-1β mRNA expression in the brain at 4 h following administration, while mRNA expression of F4/80, a macrophage marker, was unaffected by imiquimod treatment. Our findings suggest that TLR7-mediated signaling enhances contextual fear memory in mice, possibly by inducing the expression of type I IFNs and IL-1β in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Cannabis use and psychotic-like experiences trajectories during early adolescence: the coevolution and potential mediators.

    Science.gov (United States)

    Bourque, Josiane; Afzali, Mohammad H; O'Leary-Barrett, Maeve; Conrod, Patricia

    2017-12-01

    The authors sought to model the different trajectories of psychotic-like experiences (PLE) during adolescence and to examine whether the longitudinal relationship between cannabis use and PLE is mediated by changes in cognitive development and/or change in anxiety or depression symptoms. A total of 2,566 youths were assessed every year for 4-years (from 13- to 16-years of age) on clinical, substance use and cognitive development outcomes. Latent class growth models identified three trajectories of PLE: low decreasing (83.9%), high decreasing (7.9%), and moderate increasing class (8.2%). We conducted logistic regressions to investigate whether baseline levels and growth in cannabis use were associated with PLE trajectory membership. Then, we examined the effects of potential mediators (growth in cognition and anxiety/depression) on the relationship between growth in cannabis use and PLE trajectory. A steeper growth in cannabis use from 13- to 16-years was associated with a higher likelihood of being assigned to the moderate increasing trajectory of PLE [odds ratio, 2.59; 95% confidence interval (CI), 1.11-6.03], when controlling for cumulative cigarette use. Growth in depression symptoms, not anxiety or change in cognitive functioning, mediated the relationship between growth in cannabis use and the PLE moderate increasing group (indirect effect: 0.07; 95% CI, 0.03-0.11). Depression symptoms partially mediated the longitudinal link between cannabis use and PLE in adolescents, suggesting that there may be a preventative effect to be gained from targeting depression symptoms, in addition to attempting to prevent cannabis use in youth presenting increasing psychotic experiences. © 2017 Association for Child and Adolescent Mental Health.

  7. IB4(+) nociceptors mediate persistent muscle pain induced by GDNF.

    Science.gov (United States)

    Alvarez, Pedro; Chen, Xiaojie; Bogen, Oliver; Green, Paul G; Levine, Jon D

    2012-11-01

    Skeletal muscle is a well-known source of glial cell line-derived neurotrophic factor (GDNF), which can produce mechanical hyperalgesia. Since some neuromuscular diseases are associated with both increased release of GDNF and intense muscle pain, we explored the role of GDNF as an endogenous mediator in muscle pain. Intramuscularly injected GDNF induced a dose-dependent (0.1-10 ng/20 μl) persistent (up to 3 wk) mechanical hyperalgesia in the rat. Once hyperalgesia subsided, injection of prostaglandin E(2) at the site induced a prolonged mechanical hyperalgesia (>72 h) compared with naïve rats (vibration increased muscle GDNF levels at 24 h, a time point where rats also exhibited marked muscle hyperalgesia. Intrathecal antisense oligodeoxynucleotides to mRNA encoding GFRα1, the canonical binding receptor for GDNF, reversibly inhibited eccentric exercise- and mechanical vibration-induced muscle hyperalgesia. Finally, electrophysiological recordings from nociceptors innervating the gastrocnemius muscle in anesthetized rats, revealed significant increase in response to sustained mechanical stimulation after local GDNF injection. In conclusion, these data indicate that GDNF plays a role as an endogenous mediator in acute and induction of chronic muscle pain, an effect likely to be produced by GDNF action at GFRα1 receptors located in IB4(+) nociceptors.

  8. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research July 2015; 14 (7): 1191-1197 ... Abstract. Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGF- ... catecholamines, reduces levels of dopamine and.

  9. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.

    Science.gov (United States)

    Yao, Guangbao; Li, Jiang; Chao, Jie; Pei, Hao; Liu, Huajie; Zhao, Yun; Shi, Jiye; Huang, Qing; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2015-03-02

    DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw-puzzle-like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide-functionalized AuNPs function as universal joint units for the one-pot assembly of parent DNA origami of triangular shape to form sub-microscale super-origami nanostructures. AuNPs anchored at predefined positions of the super-origami exhibited strong interparticle plasmonic coupling. This AuNP-mediated strategy offers new opportunities to drive macroscopic self-assembly and to fabricate well-defined nanophotonic materials and devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Toll-like receptor-4 (TLR-4) expression on polymorphonuclear ...

    African Journals Online (AJOL)

    To establish a foundation for further researches on the improvement of polymorphonuclear neutrophil leukocytes (PMN) functions in dairy cow during perinatal period, the counting of PMN, as well as the mRNA and protein expression of toll-like receptor-4 (TLR-4) on PMN was studied during this critical period.

  11. Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors.

    Directory of Open Access Journals (Sweden)

    Mirjam E Belderbos

    Full Text Available Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP or soluble CD14 (sCD14. The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection.

  12. Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    Science.gov (United States)

    Belderbos, Mirjam E.; Levy, Ofer; Stalpers, Femke; Kimpen, Jan L.; Meyaard, Linde; Bont, Louis

    2012-01-01

    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection. PMID:22442690

  13. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex

    Directory of Open Access Journals (Sweden)

    Lisa M. Tuttle

    2018-03-01

    Full Text Available Summary: Transcription activation domains (ADs are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. : Tuttle et al. report a “fuzzy free-for-all” interaction mechanism that explains how seemingly unrelated transcription activators converge on a limited number of coactivator targets. The mechanism provides a rationale for the observation that individually weak and low-specificity interactions can combine to produce biologically critical function without requiring highly ordered structure. Keywords: transcription activation, intrinsically disordered proteins, fuzzy binding

  14. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  15. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  16. Synovial Fluid α-Defensin as a Biomarker for Peri-Prosthetic Joint Infection: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Li, Bin; Chen, Fei; Liu, Yi; Xu, Guokang

    Total joint arthroplasty (TJA) has been one of the most beneficial interventions for treating patients suffering from joint disorders. However, peri-prosthetic joint infection (PJI) is a serious complication that often accompanies TJA and the diagnosis of PJI is remains difficult. Questions remain regarding whether certain biomarkers can be valuable in the diagnosis of PJI. We conducted our systematic review by searching PubMed, Embase, Web of Science, the Cochrane Library, and Science Direct with the key words "periprosthetic joint infection," "synovial fluid," and "α-defensin." Studies that provided sufficient data to construct 2 × 2 contingency tables were chosen based on inclusion and exclusion criteria. The quality of included studies was assessed according to the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated for the included studies. The summary receiver operating characteristic (SROC) curve and the area under the summary receiver operating characteristic (AUSROC) were used to evaluate the overall diagnostic performance. Eight studies were included in this systematic review. Among them four articles were included in meta-analysis. A total of 421 participants were studied in the meta-analysis. The pooled sensitivity, specificity, and DOR were 0.98 (95% confidence interval [CI]: 0.94-1.00), 0.97 (95% CI: 0.95-0.99), and 1095.49 (95% CI: 283.68.58-4230.45), respectively. The AUSROC was 0.9949 (standard error [SE] 0.0095). Synovial fluid α-defensin is a biomarker of high sensitivity and specificity for the diagnosis of PJI.

  17. Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression

    Directory of Open Access Journals (Sweden)

    Madrigal José LM

    2011-11-01

    Full Text Available Abstract Background There is a pressing need to identify novel pathophysiological pathways relevant to depression that can help to reveal targets for the development of new medications. Toll-like receptor 4 (TLR-4 has a regulatory role in the brain's response to stress. Psychological stress may compromise the intestinal barrier, and increased gastrointestinal permeability with translocation of lipopolysaccharide (LPS from Gram-negative bacteria may play a role in the pathophysiology of major depression. Methods Adult male Sprague-Dawley rats were subjected to chronic mild stress (CMS or CMS+intestinal antibiotic decontamination (CMS+ATB protocols. Levels of components of the TLR-4 signaling pathway, of LPS and of different inflammatory, oxidative/nitrosative and anti-inflammatory mediators were measured by RT-PCR, western blot and/or ELISA in brain prefrontal cortex. Behavioral despair was studied using Porsolt's test. Results CMS increased levels of TLR-4 and its co-receptor MD-2 in brain as well as LPS and LPS-binding protein in plasma. In addition, CMS also increased interleukin (IL-1β, COX-2, PGE2 and lipid peroxidation levels and reduced levels of the anti-inflammatory prostaglandin 15d-PGJ2 in brain tissue. Intestinal decontamination reduced brain levels of the pro-inflammatory parameters and increased 15d-PGJ2, however this did not affect depressive-like behavior induced by CMS. Conclusions Our results suggest that LPS from bacterial translocation is responsible, at least in part, for the TLR-4 activation found in brain after CMS, which leads to release of inflammatory mediators in the CNS. The use of Gram-negative antibiotics offers a potential therapeutic approach for the adjuvant treatment of depression.

  18. Downregulation of Lung Toll-Like Receptor 4 Could Effectively Attenuate Liver Transplantation-Induced Pulmonary Damage at the Early Stage of Reperfusion

    Directory of Open Access Journals (Sweden)

    Xinjin Chi

    2015-01-01

    Full Text Available Acute lung injury (ALI is a severe complication of orthotopic liver transplantation (OLT with unclear underline mechanism. Toll-like receptor 4 (TLR4 has been identified as a key receptor mediating inflammation. We hypothesized that TLR4-mediated pulmonary inflammation may contribute to development of ALI during OLT. Patients with or without ALI were observed for serum cytokines and expression of TLR4 on peripheral blood polymorphonuclear leukocytes (PMNs. Next, rats which underwent orthotopic autologous liver transplantation (OALT were divided into sham and model groups. Pulmonary function and the level of TLR4 expression and cytokines were analyzed. Furthermore, the role of TLR4 in OALT-mediated ALI was assessed in rats treated with TLR4-siRNA before OALT. The PMNs TLR4 expression and the serum TNF-α and IL-β level were higher in patients with ALI than those with non-ALI. Interestingly, lung TLR4 expression was significantly increased after 8 hours of OALT with increased levels of TNF-α and IL-β, which lead to lung pathological damage and an increase of lung myeloperoxidase content. Moreover, knockdown of TLR4 reduced lung cytokines release and reversed the above pathologic changes after OALT and finally improved rats’ survival rate. In conclusion, TLR4 overexpression, potentially by stimulating proinflammatory cytokine overproduction, contributes to the development of ALI after OLT.

  19. The DUB/USP17 deubiquitinating enzymes: A gene family within a tandemly repeated sequence, is also embedded within the copy number variable Beta-defensin cluster

    Directory of Open Access Journals (Sweden)

    Scott Christopher J

    2010-04-01

    Full Text Available Abstract Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A. Subsequently we have identified a number of human family members and shown that one of these (DUB-3 is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

  20. The role of MAPK in CD4{sup +} T cells toll-like receptor 9-mediated signaling following HHV-6 infection

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jing [Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu Province (China); Wang, Fang [Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province (China); Li, Lingyun [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029, Jiangsu Province (China); Feng, Dongju [Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu Province (China); Qin, Jian [College of Foreign Languages, Hehai University, Nanjing 210029, Jiangsu Province (China); Xie, Fangyi; Zhou, Feng; Chen, Yun; Wang, Jinfeng [Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu Province (China); Yao, Kun, E-mail: yaokun@njmu.edu.cn [Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu Province (China)

    2012-01-05

    Human herpesvirus-6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells (mainly CD4{sup +} T cells) and strongly suppresses the proliferation of infected cells. Toll-like receptors are pattern-recognition receptors essential for the development of an appropriate innate immune defense against infection. To understand the role of CD4{sup +} T cells in the innate response to HHV-6 infection and the involvement of TLRs, we used an in vitro infection model and observed that the infection of CD4{sup +} T cells resulted in the activation of JNK/SAPK via up-regulation of toll-like receptor 9 (TLR9). Associated with JNK activation, annexin V-PI staining indicated that HHV-6A was a strong inducer of apoptosis. Apoptotic response associated cytokines, IL-6 and TNF-{alpha} also induced by HHV-6A infection.

  1. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2

    OpenAIRE

    Wang Zheng; Ruiqi Cai; Laura Hofmann; Vasyl Nesin; Qiaolin Hu; Wentong Long; Mohammad Fatehi; Xiong Liu; Shaimaa Hussein; Tim Kong; Jingru Li; Peter E. Light; Jingfeng Tang; Veit Flockerzi; Leonidas Tsiokas

    2018-01-01

    Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function ...

  2. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  3. Vector-like fields, messenger mixing and the Higgs mass in gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Fischler, Willy; Tangarife, Walter [Department of Physics and Texas Cosmology Center,The University of Texas at Austin,TX 78712 (United States)

    2014-05-30

    In order to generate, in the context of gauge mediation, a Higgs mass around 126 GeV that avoids the little hierarchy problem, we explore a set of models where the messengers are directly coupled to new vector-like fields at the TeV scale in addition to the usual low energy degrees of freedom. We find that in this context, stop masses lighter than 2 TeV and large A-terms are generated, thereby improving issues of fine tuning.

  4. NOD2 Down-Regulates Colonic Inflammation by IRF4-Mediated Inhibition of K63-Linked Polyubiquitination of RICK and TRAF6

    Science.gov (United States)

    Watanabe, Tomohiro; Asano, Naoki; Meng, Guangxun; Yamashita, Kouhei; Arai, Yasuyuki; Sakurai, Toshiharu; Kudo, Masatoshi; Fuss, Ivan J; Kitani, Atsushi; Shimosegawa, Tooru; Chiba, Tsutomu; Strober, Warren

    2014-01-01

    It is well established that polymorphisms of the nucleotide-binding oligomerization domain 2 (NOD2) gene, a major risk factor in Crohn's disease (CD), lead to loss of NOD2 function. However, a molecular explanation of how such loss of function leads to increased susceptibility to CD has remained unclear. In a previous study exploring this question we reported that activation of NOD2 in human dendritic cells by its ligand, muramyl dipeptide (MDP) negatively regulates Toll-like receptor (TLR)-mediated inflammatory responses. Here we show that NOD2 activation results in increased interferon regulatory factor 4 (IRF4) expression and binding to TNF receptor associated factor 6 (TRAF6) and receptor interacting serine-threonine kinase (RICK). We then show that such binding leads to IRF4-mediated inhibition of Lys63-linked polyubiquitination of TRAF6 and RICK and thus to down-regulation of NF-κB activation. Finally, we demonstrate that protection of mice from the development of experimental colitis by MDP or IRF4 administration is accompanied by similar IRF4-mediated effects on polyubiquitination of TRAF6 and RICK in colonic lamina propria mononuclear cells. These findings thus define a mechanism of NOD2-mediated regulation of innate immune responses to intestinal microflora that could explain the relation of NOD2 polymorphisms and resultant NOD2 dysfunction to CD. PMID:24670424

  5. Comprehensive assessment of sequence variation within the copy number variable defensin cluster on 8p23 by target enriched in-depth 454 sequencing

    Directory of Open Access Journals (Sweden)

    Zhang Xinmin

    2011-05-01

    Full Text Available Abstract Background In highly copy number variable (CNV regions such as the human defensin gene locus, comprehensive assessment of sequence variations is challenging. PCR approaches are practically restricted to tiny fractions, and next-generation sequencing (NGS approaches of whole individual genomes e.g. by the 1000 Genomes Project is confined by an affordable sequence depth. Combining target enrichment with NGS may represent a feasible approach. Results As a proof of principle, we enriched a ~850 kb section comprising the CNV defensin gene cluster DEFB, the invariable DEFA part and 11 control regions from two genomes by sequence capture and sequenced it by 454 technology. 6,651 differences to the human reference genome were found. Comparison to HapMap genotypes revealed sensitivities and specificities in the range of 94% to 99% for the identification of variations. Using error probabilities for rigorous filtering revealed 2,886 unique single nucleotide variations (SNVs including 358 putative novel ones. DEFB CN determinations by haplotype ratios were in agreement with alternative methods. Conclusion Although currently labor extensive and having high costs, target enriched NGS provides a powerful tool for the comprehensive assessment of SNVs in highly polymorphic CNV regions of individual genomes. Furthermore, it reveals considerable amounts of putative novel variations and simultaneously allows CN estimation.

  6. Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes.

    Science.gov (United States)

    Büchau, Amanda S; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L

    2008-11-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.

  7. Toll-like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation.

    Science.gov (United States)

    Camandola, Simonetta; Mattson, Mark P

    2017-07-01

    Immune and inflammatory pathways play important roles in the pathogenesis of metabolic disorders. This study investigated the role of toll-like receptor 4 (TLR4) in orosensory detection of dietary lipids and sugars. Taste preferences of TLR4 knockout (KO) and wild-type (WT) male mice under a standard and a high-fat, high-sugar diet were assessed with two-bottle tests. Gene expression of taste signaling molecules was analyzed in the tongue epithelium. The role of TLR4 in food intake and weight gain was investigated in TLR4 KO and WT mice fed a high-fat and high-sugar diet for 12 weeks. Compared to WT mice, TLR4 KO mice showed reduced preference for lipids, sugars, and umami in a two-bottle preference test. The altered taste perception was associated with decreased levels of key taste regulatory molecules in the tongue epithelium. TLR4 KO mice on a high-fat and high-sugar diet consumed less food and drink, resulting in diminished weight gain. TLR4 signaling promotes ingestion of sugar and fat by a mechanism involving increased preference for such obesogenic foods. © 2017 The Obesity Society.

  8. Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ~125 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wells, James D. [CERN, Geneva (Switzerland)

    2012-08-01

    We investigate the implications of models that achieve a Standard Model-like Higgs boson of mass near 125 GeV by introducing additional TeV-scale supermultiplets in the vector-like 10+\\bar{10} representation of SU(5), within the context of gauge-mediated supersymmetry breaking. We study the resulting mass spectrum of superpartners, comparing and contrasting to the usual gauge-mediated and CMSSM scenarios, and discuss implications for LHC supersymmetry searches. This approach implies that exotic vector-like fermions t'_{1,2}, b',and \\tau' should be within the reach of the LHC. We discuss the masses, the couplings to electroweak bosons, and the decay branching ratios of the exotic fermions, with and without various unification assumptions for the mass and mixing parameters. We comment on LHC prospects for discovery of the exotic fermion states, both for decays that are prompt and non-prompt on detector-crossing time scales.

  9. Should a Toll-like receptor 4 (TLR-4 agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers

    Directory of Open Access Journals (Sweden)

    Mai CW

    2013-11-01

    Full Text Available Chun Wai Mai, Yew Beng Kang, Mallikarjuna Rao PichikaDepartment of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, MalaysiaAbstract: Toll-like receptor 4 (TLR-4 is well known for its host innate immunity. Despite the fact that TLR-4 activation confers antitumor responses; emerging evidence suggests that TLR-4 is associated with tumor development and progression. It is now clear that overactivation of TLR-4, through various immune mediators, may cause immune response dysfunction, resulting in tumorigenesis. Different cancers could have different extents of TLR-4 involvement during tumorigenesis or tumor progression. In this review, we focus on infection- and inflammation-related TLR-4 activation in noncancer and cancer cells, as well as on the current evidence about the role of TLR-4 in ten of the most common cancers, viz, head and neck cancer, lung cancer, gastrointestinal cancer, liver cancer, pancreatic cancer, skin cancer, breast cancer, ovarian cancer, cervical cancer, and prostate cancer.Keywords: drug design, cancer treatment, myeloid differentiation factor 2, MD-2, tumor progression, pathogen-associated molecular patterns, PAMPs

  10. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    Science.gov (United States)

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  11. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells.

    Science.gov (United States)

    Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar

    2015-06-01

    Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.

  12. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4.

    Science.gov (United States)

    Drager, Luciano F; Yao, Qiaoling; Hernandez, Karen L; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Gay, Jason; Sussan, Thomas E; Jun, Jonathan C; Myers, Allen C; Olivecrona, Gunilla; Schwartz, Alan R; Halberg, Nils; Scherer, Philipp E; Semenza, Gregg L; Powell, David R; Polotsky, Vsevolod Y

    2013-07-15

    Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.

  13. Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes

    Directory of Open Access Journals (Sweden)

    Jacqueline Zoe-Munn Chan

    2014-10-01

    Full Text Available Two bacteriophages, RPP1 and RLP1, infecting members of the marine Roseobacter clade were isolated from seawater. Their linear genomes are 74.7 and 74.6 kb and encode 91 and 92 coding DNA sequences, respectively. Around 30% of these are homologous to genes found in Enterobacter phage N4. Comparative genomics of these two new Roseobacter phages and twenty-three other sequenced N4-like phages (three infecting members of the Roseobacter lineage and twenty infecting other Gammaproteobacteria revealed that N4-like phages share a core genome of 14 genes responsible for control of gene expression, replication and virion proteins. Phylogenetic analysis of these genes placed the five N4-like roseophages (RN4 into a distinct subclade. Analysis of the RN4 phage genomes revealed they share a further 19 genes of which nine are found exclusively in RN4 phages and four appear to have been acquired from their bacterial hosts. Proteomic analysis of the RPP1 and RLP1 virions identified a second structural module present in the RN4 phages similar to that found in the Pseudomonas N4-like phage LIT1. Searches of various metagenomic databases, included the GOS database, using CDS sequences from RPP1 suggests these phages are widely distributed in marine environments in particular in the open ocean environment.

  14. 4D constructions of supersymmetric extra dimensions and gaugino mediation

    International Nuclear Information System (INIS)

    Csaki, Csaba; Erlich, Joshua; Grojean, Christophe; Kribs, Graham D.

    2002-01-01

    We present 4D gauge theories which at low energies coincide with higher dimensional supersymmetric (SUSY) gauge theories on a transverse lattice. We show that in the simplest case of pure 5D SUSY Yang-Mills theory there is an enhancement of SUSY in the continuum limit without fine tuning. This result no longer holds in the presence of matter fields, in which case fine tuning is necessary to ensure higher dimensional Lorentz invariance and supersymmetry. We use this construction to generate 4D models which mimic gaugino mediation of SUSY breaking. The way supersymmetry breaking is mediated in these models to the MSSM is by assuming that the physical gauginos are a mixture of a number of gauge eigenstate gauginos: one of these couples to the SUSY breaking sector, while another couples to the MSSM matter fields. The lattice can be as coarse as just two gauge groups while still obtaining the characteristic gaugino-mediated soft breaking terms

  15. Toll-like receptor 2 or toll-like receptor 4 deficiency does not modify lupus in MRLlpr mice.

    Directory of Open Access Journals (Sweden)

    Simon J Freeley

    Full Text Available Systemic lupus erythematosus is an autoimmune disease with a high morbidity and nephritis is a common manifestation. Previous studies in murine lupus models have suggest a role for Toll-like receptor 2 and 4. We examined the role of these molecules in MRL lpr mice which is one of the most established and robust murine models. We compared disease parameters in Toll-like receptor 2 or Toll-like receptor 4 deficient mice with their littermate controls. We found no difference in the severity of glomerulonephritis as assessed by histology, serum creatinine and albuminuria when Toll-like receptor 2 or Toll-like receptor 4 deficient MRLlpr mice were compared with Toll-like receptor sufficient controls. We also found similar levels of anti-dsDNA and anti-ssDNA antibodies. These results show that Toll-like receptor 2 and Toll-like receptor 4 do not play a significant role in MRLlpr mice, and therefore they may not be important in human lupus.

  16. Toll-like receptor 4 (TLR4) impairs nitric oxide contributing to Angiotensin II-induced cavernosal dysfunction.

    Science.gov (United States)

    Nunes, Kenia P; Bomfim, Gisele F; Toque, Haroldo A; Szasz, Theodora; Clinton Webb, R

    2017-12-15

    Angiotensin II (AngII), a corpus cavernosum (CC) constrictor peptide, modulates Toll like receptor (TLR) expression, a key element of the innate immune system, contributing to impaired vascular function in pathological conditions. However, it is unknown whether TLR4 is involved in AngII-induced erectile dysfunction. In this study, we investigated whether TLR4 plays a role in cavernosal dysfunction caused by AngII upregulation. Cavernosal smooth muscle cells (CSMC) from C57/BL6 mice were treated with AngII (0.1μM) or bacterial LPS (50ng/ml) for 12-24h and TLR4 expression was assessed. Mice were infused with AngII (90ng/min, 28days) and treated with anti-TLR4 antibody (0.1mg/daily, i.p.) for the last 14days of the treatment. CC tissue was used for functional studies and for Western blotting. Nitric Oxide Synthase (NOS) activity was measured by conversion of [ 3 H]-l-arginine to [ 3 H]-l-citrulline, systemic TNF-α levels by ELISA, and reactive oxygen species (ROS) by immunofluorescence. We report upregulation of TLR4 in CSMC following AngII or LPS stimulation. In AngII-infused mice, chronic treatment with anti-TLR4 antibody (28±2.1%) attenuates adrenergic CC contraction, which also ameliorates nitrergic (68.90±0.21 vs. 51.07±0.63, 8Hz, AngII-infused mice treated vs. non-treated). Decreased endothelial NOS expression, reduced NOS activity, and augmented levels of TNF-α, and ROS were found following AngII-infusion. These alterations were prevented, or at least decreased by anti-TLR4 antibody treatment. Inhibition of TLR4 ameliorates AngII-impaired cavernosal relaxation, decreases TNF-α levels, and restores NO bioavailability, demonstrating that TLR4 partly mediates AngII-induced cavernosal dysfunction. Copyright © 2017. Published by Elsevier Inc.

  17. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  18. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    International Nuclear Information System (INIS)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-01-01

    Highlights: ► Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. ► PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. ► p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. ► Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl 2 . Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1α. A PI3K inhibitor (LY294002) attenuated CoCl 2 -induced nuclear accumulation and transcriptional activation of HIF-1α. In addition, HIF-1α-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl 2 -induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1α. However, p38 was not involved in HIF-1α activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt contributes to hypoxic stress-induced TLR4 expression at least partly through the regulation of HIF-1 activation. These reveal a novel

  19. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Joo Young, E-mail: joolee@catholic.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K

  20. Grb2 mediates semaphorin-4D-dependent RhoA inactivation.

    Science.gov (United States)

    Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M

    2012-08-01

    Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.

  1. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Smart, Simon; Franzyk, Henrik

    2015-01-01

    intracellularly in Calu-3 epithelial cells and in THP-1 cells, whereas A549 cells did not show significant uptake of nanoparticles. Overall, encapsulation of plectasin into PLGA-based nanoparticles appears to be a viable strategy to improve the efficacy of plectasin against infections in epithelial tissues....... epithelial cells might thus be a promising approach to combat such infections. In this work, plectasin, which is a cationic AMP of the defensin class, was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles using the double emulsion solvent evaporation method. The nanoparticles displayed...... high plectasin encapsulation efficiency (71-90%) and mediated release of the peptide over 24h. The antimicrobial efficacy of the peptide-loaded nanoparticles was investigated using bronchiolar epithelial Calu-3 cell monolayers infected with S. aureus. The plectasin-loaded nanoparticles displayed...

  2. TLR4 links podocytes with the innate immune system to mediate glomerular injury

    DEFF Research Database (Denmark)

    Banas, Miriam C; Banas, Bernhard; Hudkins, Kelly L

    2008-01-01

    profile of chemokines. In conclusion, it was demonstrated that TLR4 is constitutively expressed by podocytes and is upregulated in MPGN, where it may mediate glomerular injury by modulating expression of chemokines; therefore, TLR4 may link podocytes with the innate immune system to mediate MPGN triggered...... by the deposition of immune complexes....

  3. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    Full Text Available Host defense peptides (HDPs play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3 is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs and peripheral blood mononuclear cells (PBMCs to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS. On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens.

  4. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    Science.gov (United States)

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy.

  5. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  6. Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression.

    Science.gov (United States)

    Lv, Can; Mo, Chunheng; Liu, Haikun; Wu, Chao; Li, Zhengyang; Li, Juan; Wang, Yajun

    2018-04-20

    Dopamine (DA) D2-like (and D1-like) receptors are suggested to mediate the dopamine actions in the anterior pituitary and/or CNS of birds. However, the information regarding the structure, functionality, and expression of avian D2-like receptors have not been fully characterized. In this study, we cloned two D2-like receptors (cDRD2, cDRD4) from chicken brain using RACE PCR. The cloned cDRD4 is a 378-amino acid receptor, which shows 57% amino acid (a.a.) identity with mouse DRD4. As in mammals, two cDRD2 isoforms, cDRD2L (long isoform, 437 a.a.) and cDRD2S (short isoform, 408 a.a.), which differ in their third intracellular loop, were identified in chickens. Using cell-based luciferase reporter assays or Western blot, we demonstrated that cDRD4, cDRD2L and cDRD2S could be activated by dopamine and quinpirole (a D2-like receptor agonist) dose-dependently, and their activation inhibits cAMP signaling pathway and stimulates MAPK/ERK signaling cascade, indicating that they are functional receptors capable of mediating dopamine actions. Quantitative real-time PCR revealed that cDRD2 and cDRD4 are widely expressed in chicken tissues with abundant expression noted in anterior pituitary, and their expressions are likely controlled by their promoters near exon 1, as demonstrated by dual-luciferase reporter assays in DF-1 cells. In accordance with cDRD2/cDRD4 expression in the pituitary, DA or quinpirole could partially inhibit vasoactive intestinal peptide-induced prolactin expression in cultured chick pituitary cells. Together, our data proves the functionality of DRD2 and DRD4 in birds and aids to uncover the conserved roles of DA/D2-like receptor system in vertebrates, such as its action on the pituitary. Copyright © 2018. Published by Elsevier B.V.

  7. Food allergens inducing a lymphocyte-mediated immunological reaction in canine atopic-like dermatitis

    OpenAIRE

    SUTO, Akemi; SUTO, Yukinori; ONOHARA, Nozomi; TOMIZAWA, Yu; YAMAMOTO-SUGAWARA, Yukiko; OKAYAMA, Taro; MASUDA, Kenichi

    2014-01-01

    Canine atopic-like dermatitis (ALD) is suspected to be associated with food allergies, particularly those mediated by lymphocytes. In this study, 54 cases were included as ALD dogs, based on the negative IgE test results. In the dogs, the percentage of activated cells in helper-T lymphocytes was measured by flow cytometry using cultured peripheral lymphocytes under food allergen stimulation. We observed that 49 of the 54 ALD dogs (90.7%) had positive lymphocyte reactions against one or more f...

  8. Can the TLR-4-Mediated Signaling Pathway Be “A Key Inflammatory Promoter for Sporadic TAA”?

    Directory of Open Access Journals (Sweden)

    Giovanni Ruvolo

    2014-01-01

    Full Text Available Thoracic aorta shows with advancing age various changes and a progressive deterioration in structure and function. As a result, vascular remodeling (VR and medial degeneration (MD occur as pathological entities responsible principally for the sporadic TAA onset. Little is known about their genetic, molecular, and cellular mechanisms. Recent evidence is proposing the strong role of a chronic immune/inflammatory process in their evocation and progression. Thus, we evaluated the potential role of Toll like receptor- (TLR- 4-mediated signaling pathway and its polymorphisms in sporadic TAA. Genetic, immunohistochemical, and biochemical analyses were assessed. Interestingly, the rs4986790 TLR4 polymorphism confers a higher susceptibility for sporadic TAA (OR=14.4, P=0.0008 and it represents, together with rs1799752 ACE, rs3918242 MMP-9, and rs2285053 MMP-2 SNPs, an independent sporadic TAA risk factor. In consistency with these data, a significant association was observed between their combined risk genotype and sporadic TAA. Cases bearing this risk genotype showed higher systemic inflammatory mediator levels, significant inflammatory/immune infiltrate, a typical MD phenotype, lower telomere length, and positive correlations with histopatological abnormalities, hypertension, smoking, and ageing. Thus, TLR4 pathway should seem to have a key role in sporadic TAA. It might represent a potential useful tool for preventing and monitoring sporadic TAA and developing personalized treatments.

  9. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation

    Directory of Open Access Journals (Sweden)

    Das Sulagna

    2010-10-01

    Full Text Available Abstract Background Activation of microglia, the resident macrophages of the central nervous system (CNS, is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (Cox-2 and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4, one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. Methods For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS. Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs. Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. Results LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown

  10. Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available Polychlorinated biphenyls (PCBs are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2',6-trichlorinated biphenyl (PCB19 caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq- and phospholipase Cβ-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.

  11. Crystallization and Preliminary X-ray Analysis of Bacteriophasge T4 UvsY Recombination Mediator Protein

    International Nuclear Information System (INIS)

    Xu, H.; Beernink, H.; Rould, M.; Morrical, S.

    2006-01-01

    Bacteriophage T4 UvsY protein is considered to be the prototype of recombination mediator proteins, a class of proteins which assist in the loading of recombinases onto DNA. Wild-type and Se-substituted UvsY protein have been expressed and purified and crystallized by hanging-drop vapor diffusion. The crystals diffract to 2.4 (angstrom) using in-house facilities and to 2.2 (angstrom) at NSLS, Brookhaven National Laboratory. The crystals belong to space group P422, P4 2 22, P42 1 2 or P4 2 2 1 2, the ambiguity arising from pseudo-centering, with unit-cell parameters a = b = 76.93, c = 269.8 (angstrom). Previous biophysical characterization of UvsY indicates that it exists primarily as a hexamer in solution. Along with the absence of a crystallographic threefold, this suggests that the asymmetric unit of these crystals is likely to contain either three monomers, giving a solvent content of 71%, or six monomers, giving a solvent content of 41%

  12. Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis.

    Science.gov (United States)

    Chen, Ching-Wen; Mittal, Rohit; Klingensmith, Nathan J; Burd, Eileen M; Terhorst, Cox; Martin, Greg S; Coopersmith, Craig M; Ford, Mandy L

    2017-09-15

    Sepsis is a leading cause of death in the United States, but the mechanisms underlying sepsis-induced immune dysregulation remain poorly understood. 2B4 (CD244, SLAM4) is a cosignaling molecule expressed predominantly on NK cells and memory CD8 + T cells that has been shown to regulate T cell function in models of viral infection and autoimmunity. In this article, we show that 2B4 signaling mediates sepsis lymphocyte dysfunction and mortality. 2B4 expression is increased on CD4 + T cells in septic animals and human patients at early time points. Importantly, genetic loss or pharmacologic inhibition of 2B4 significantly increased survival in a murine cecal ligation and puncture model. Further, CD4-specific conditional knockouts showed that 2B4 functions on CD4 + T cell populations in a cell-intrinsic manner and modulates adaptive and innate immune responses during sepsis. Our results illuminate a novel role for 2B4 coinhibitory signaling on CD4 + T cells in mediating immune dysregulation. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    International Nuclear Information System (INIS)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi; Asano, Shigetaka

    2010-01-01

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  14. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  15. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  16. Characterization of the biomechanical properties of T4 pili expressed by Streptococcus pneumoniae--a comparison between helix-like and open coil-like pili.

    Science.gov (United States)

    Castelain, Mickaël; Koutris, Efstratios; Andersson, Magnus; Wiklund, Krister; Björnham, Oscar; Schedin, Staffan; Axner, Ove

    2009-07-13

    Bacterial adhesion organelles, known as fimbria or pili, are expressed by gram-positive as well as gram-negative bacteria families. These appendages play a key role in the first steps of the invasion and infection processes, and they therefore provide bacteria with pathogenic abilities. To improve the knowledge of pili-mediated bacterial adhesion to host cells and how these pili behave under the presence of an external force, we first characterize, using force measuring optical tweezers, open coil-like T4 pili expressed by gram-positive Streptococcus pneumoniae with respect to their biomechanical properties. It is shown that their elongation behavior can be well described by the worm-like chain model and that they possess a large degree of flexibility. Their properties are then compared with those of helix-like pili expressed by gram-negative uropathogenic Escherichia coli (UPEC), which have different pili architecture. The differences suggest that these two types of pili have distinctly dissimilar mechanisms to adhere and sustain external forces. Helix-like pili expressed by UPEC bacteria adhere to host cells by single adhesins located at the distal end of the pili while their helix-like structures act as shock absorbers to dampen the irregularly shear forces induced by urine flow and to increase the cooperativity of the pili ensemble, whereas open coil-like pili expressed by S. pneumoniae adhere to cells by a multitude of adhesins distributed along the pili. It is hypothesized that these two types of pili represent different strategies of adhering to host cells in the presence of external forces. When exposed to significant forces, bacteria expressing helix-like pili remain attached by distributing the external force among a multitude of pili, whereas bacteria expressing open coil-like pili sustain large forces primarily by their multitude of binding adhesins which presumably detach sequentially.

  17. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

    Science.gov (United States)

    Rallabhandi, Prasad; Phillips, Rachel L.; Boukhvalova, Marina S.; Pletneva, Lioubov M.; Shirey, Kari Ann; Gioannini, Theresa L.; Weiss, Jerrold P.; Chow, Jesse C.; Hawkins, Lynn D.; Vogel, Stefanie N.; Blanco, Jorge C. G.

    2012-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. PMID:22872782

  18. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Guan-Lin [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Wu, Jing-Yiing [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Yeh, Chang-Ching [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Kuo, Cheng-Chin, E-mail: kuocc@nhri.org.tw [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2016-05-13

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  19. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    International Nuclear Information System (INIS)

    Lee, Guan-Lin; Wu, Jing-Yiing; Yeh, Chang-Ching; Kuo, Cheng-Chin

    2016-01-01

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  20. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  1. Exogenous estrogen as mediator of racial differences in bioactive insulin-like growth factor-I levels among postmenopausal women.

    Science.gov (United States)

    Jung, Su Yon; Vitolins, Mara Z; Paskett, Electra D; Chang, Shine

    2015-04-01

    The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race-IGF-I relationship in postmenopausal women. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women's Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race-IGF-I relationship, we used the Baron-Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race-IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2013-06-01

    Full Text Available The innate immune response is the earliest cellular response to infectious agents and mediates the interactions between microbes and cells. Toll-like receptors (TLRs play an important role in these interactions. We have already shown that TLRs are involved with the uptake of titanium dioxide nanoparticles (TiO2 NPs and promote inflammatory responses. In this paper, we compared role of cellular uptake and inflammatory response via TLR 4 to lipopolysaccharide (LPS and TiO2 NPs. In the case of LPS, LPS binds to LPS binding protein (LBP and CD 14, and then this complex binds to TLR 4. In the case of TiO2 NPs, the necessity of LBP and CD 14 to induce the inflammatory response and for uptake by cells was investigated using over-expression, antibody blocking, and siRNA knockdown experiments. Our results suggested that for cellular uptake of TiO2 NPs, TLR 4 did not form a complex with LBP and CD 14. In the TiO2 NP-mediated inflammatory response, TLR 4 acted as the signaling receptor without protein complex of LPS, LBP and CD 14. The results suggested that character of TiO2 NPs might be similar to the complex of LPS, LBP and CD 14. These results are important for development of safer nanomaterials.

  3. Virus-mediated shRNA knockdown of prodynorphin in the rat nucleus accumbens attenuates depression-like behavior and cocaine locomotor sensitization.

    Science.gov (United States)

    Cohen, Ami; Whitfield, Timothy W; Kreifeldt, Max; Koebel, Pascale; Kieffer, Brigitte L; Contet, Candice; George, Olivier; Koob, George F

    2014-01-01

    Dynorphins, endogenous opioid peptides that arise from the precursor protein prodynorphin (Pdyn), are hypothesized to be involved in the regulation of mood states and the neuroplasticity associated with addiction. The current study tested the hypothesis that dynorphin in the nucleus accumbens (NAcc) mediates such effects. More specifically, we examined whether knockdown of Pdyn within the NAcc in rats would alter the expression of depressive-like and anxiety-like behavior, as well as cocaine locomotor sensitization. Wistar rats were injected with adeno-associated viral (AAV) vectors encoding either a Pdyn-specific short hairpin RNA (AAV-shPdyn) or a scrambled shRNA (AAV-shScr) as control. Four weeks later, rats were tested for anxiety-like behavior in the elevated plus maze test and depressive-like behavior in the forced swim test (FST). Finally, rats received one daily injection of saline or cocaine (20 mg/kg, i.p.), followed by assessment of locomotion for 4 consecutive days. Following 3 days of abstinence, the rats completed 2 additional daily cocaine/saline locomotor trials. Pdyn knockdown in the NAcc led to a significant reduction in depressive-like behavior in the FST, but had no effect on anxiety-like behavior in the elevated plus maze. Pdyn knockdown did not alter baseline locomotor behavior, the locomotor response to acute cocaine, or the initial sensitization of the locomotor response to cocaine over the first 4 cocaine treatment days. However, following 3 days abstinence the locomotor response to the cocaine challenge returned to their original levels in the AAV-shPdyn rats while remaining heightened in the AAV-shScr rats. These results suggest that dynorphin in a very specific area of the nucleus accumbens contributes to depressive-like states and may be involved in neuroadaptations in the NAcc that contribute to the development of cocaine addiction as a persistent and lasting condition.

  4. Virus-mediated shRNA knockdown of prodynorphin in the rat nucleus accumbens attenuates depression-like behavior and cocaine locomotor sensitization.

    Directory of Open Access Journals (Sweden)

    Ami Cohen

    Full Text Available Dynorphins, endogenous opioid peptides that arise from the precursor protein prodynorphin (Pdyn, are hypothesized to be involved in the regulation of mood states and the neuroplasticity associated with addiction. The current study tested the hypothesis that dynorphin in the nucleus accumbens (NAcc mediates such effects. More specifically, we examined whether knockdown of Pdyn within the NAcc in rats would alter the expression of depressive-like and anxiety-like behavior, as well as cocaine locomotor sensitization. Wistar rats were injected with adeno-associated viral (AAV vectors encoding either a Pdyn-specific short hairpin RNA (AAV-shPdyn or a scrambled shRNA (AAV-shScr as control. Four weeks later, rats were tested for anxiety-like behavior in the elevated plus maze test and depressive-like behavior in the forced swim test (FST. Finally, rats received one daily injection of saline or cocaine (20 mg/kg, i.p., followed by assessment of locomotion for 4 consecutive days. Following 3 days of abstinence, the rats completed 2 additional daily cocaine/saline locomotor trials. Pdyn knockdown in the NAcc led to a significant reduction in depressive-like behavior in the FST, but had no effect on anxiety-like behavior in the elevated plus maze. Pdyn knockdown did not alter baseline locomotor behavior, the locomotor response to acute cocaine, or the initial sensitization of the locomotor response to cocaine over the first 4 cocaine treatment days. However, following 3 days abstinence the locomotor response to the cocaine challenge returned to their original levels in the AAV-shPdyn rats while remaining heightened in the AAV-shScr rats. These results suggest that dynorphin in a very specific area of the nucleus accumbens contributes to depressive-like states and may be involved in neuroadaptations in the NAcc that contribute to the development of cocaine addiction as a persistent and lasting condition.

  5. The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action.

    Science.gov (United States)

    Chaili, Siyang; Cheung, Ambrose L; Bayer, Arnold S; Xiong, Yan Q; Waring, Alan J; Memmi, Guido; Donegan, Niles; Yang, Soo-Jin; Yeaman, Michael R

    2016-02-01

    Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous β-defensin (human β-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells.

    Science.gov (United States)

    Offersen, Rasmus; Nissen, Sara Konstantin; Rasmussen, Thomas A; Østergaard, Lars; Denton, Paul W; Søgaard, Ole Schmeltz; Tolstrup, Martin

    2016-05-01

    Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family

  7. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Intercultural Mediation

    OpenAIRE

    Dragos Marian Radulescu; Denisa Mitrut

    2012-01-01

    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  9. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Biancardi, Vinicia Campana; Stranahan, Alexis M; Krause, Eric G; de Kloet, Annette D; Stern, Javier E

    2016-02-01

    ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN. Copyright © 2016 the American Physiological Society.

  10. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  11. Glutamate mediates the function of melanocortin receptor 4 on sim1 neurons in body weight regulation

    Science.gov (United States)

    The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing ...

  12. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  13. Krüppel-like factor 4 promotes c-Met amplification-mediated gefitinib resistance in non-small-cell lung cancer.

    Science.gov (United States)

    Feng, Wei; Xie, Qianyi; Liu, Suo; Ji, Ying; Li, Chunyun; Wang, Chunle; Jin, Longyu

    2018-06-01

    Gefitinib has been widely used in the first-line treatment of advanced EGFR-mutated non-small-cell lung cancer (NSCLC). However, many NSCLC patients will acquire resistance to gefitinib after 9-14 months of treatment. This study revealed that Krüppel-like factor 4 (KLF4) contributes to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells. We observed that KLF4 was overexpressed in c-Met-overexpressing NSCLC cells and tissues. Knockdown of KLF4 increased tumorigenic properties in gefitinib-resistant NSCLC cell lines without c-Met overexpression, but it reduced tumorigenic properties and increased gefitinib sensitivity in gefitinib-resistant NSCLC cells with c-Met overexpression, whereas overexpression of KLF4 reduced gefitinib sensitivity in gefitinib-sensitive NSCLC cells. Furthermore, Western blot analysis revealed that KLF4 contributed to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells by inhibiting the expression of apoptosis-related proteins under gefitinib treatment and activating the c-Met/Akt signaling pathway by decreasing the inhibition of β-catenin on phosphorylation of c-Met to prevent blockade by gefitinib. In summary, this study's results suggest that KLF4 is a promising candidate molecular target for both prevention and therapy of NSCLC with c-Met overexpression. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. S1P4 Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells

    Directory of Open Access Journals (Sweden)

    Joseph M. Kulinski

    2018-04-01

    Full Text Available Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P1 and S1P2, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P4. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P4-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33-mediated enhancement of IgE-induced degranulation was reduced in S1P4-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P4 in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P4 modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.

  15. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  16. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    Science.gov (United States)

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  17. Spontaneous, Immune-Mediated Gastric Inflammation in SAMP1/YitFc Mice, a Model of Crohn’s-Like Gastritis

    Science.gov (United States)

    Reuter, Brian K.; Pastorelli, Luca; Brogi, Marco; Garg, Rekha R.; McBride, James A.; Rowlett, Robert M.; Arrieta, Marie C.; Wang, Xiao-Ming; Keller, Erik J.; Feldman, Sanford H.; Mize, James R.; Cominelli, Fabio; Meddings, Jonathan B.; Pizarro, Theresa T.

    2011-01-01

    Background & Aims Crohn’s disease (CD) can develop in any region of the gastrointestinal tract, including the stomach. The etiology and pathogenesis of Crohn’s gastritis are poorly understood, treatment approaches are limited, and there are not many suitable animal models for study. We characterized the features and mechanisms of chronic gastritis in SAMP1/YitFc (SAMP) mice, a spontaneous model of CD-like ileitis, along with possible therapeutic approaches. Methods Stomachs from specific pathogen-free and germ-free SAMP and AKR mice (controls) were evaluated histologically; the presence of Helicobacter spp. was tested in fecal pellets by PCR analysis. In vivo gastric permeability was quantified by fractional excretion of sucrose and epithelial tight junction protein expression was measured by quantitative reverse transcription PCR analysis. The effects of a proton pump inhibitor (PPI) or corticosteroids were measured and the ability of pathogenic immune cells to mediate gastritis was assessed in adoptive transfer experiments. Results SAMP mice developed Helicobacter-negative gastritis, characterized by aggregates of mononuclear cells, diffuse accumulation of neutrophils, and disruption of epithelial architecture; SAMP mice also had increased in gastric permeability compared with controls, without alterations in expression of tight junction proteins. The gastritis and associated permeability defect observed in SAMP mice were independent of bacterial colonization and reduced by administration of corticosteroids but not a PPI. CD4+ T cells isolated from draining mesenteric lymph nodes of SAMP mice were sufficient to induce gastritis in recipient SCID mice. Conclusions In SAMP mice, gastritis develops spontaneously and has many features of CD-like ileitis. These mice are a useful model to study Helicobacter-negative, immune-mediated Crohn’s gastritis. PMID:21704001

  18. The antimicrobial peptide derived from insulin-like growth factor-binding protein 5, AMP-IBP5, regulates keratinocyte functions through Mas-related gene X receptors.

    Science.gov (United States)

    Chieosilapatham, Panjit; Niyonsaba, François; Kiatsurayanon, Chanisa; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki

    2017-10-01

    In addition to their microbicidal properties, host defense peptides (HDPs) display various immunomodulatory functions, including keratinocyte production of cytokines/chemokines, proliferation, migration and wound healing. Recently, a novel HDP named AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5) was shown to exhibit antimicrobial activity against numerous pathogens, even at concentrations comparable to those of human β-defensins and LL-37. However, the immunomodulatory role of AMP-IBP5 in cutaneous tissue remains unknown. To investigate whether AMP-IBP5 triggers keratinocyte activation and to clarify its mechanism. Production of cytokines/chemokines and growth factors was determined by appropriate ELISA kits. Cell migration was assessed by in vitro wound closure assay, whereas cell proliferation was analyzed using BrdU incorporation assay complimented with XTT assay. MAPK and NF-κB activation was determined by Western blotting. Intracellular cAMP levels were assessed using cAMP enzyme immunoassay kit. Among various cytokines/chemokines and growth factors tested, AMP-IBP5 selectively increased the production of IL-8 and VEGF. Moreover, AMP-IBP5 markedly enhanced keratinocyte migration and proliferation. AMP-IBP5-induced keratinocyte activation was mediated by Mrg X1-X4 receptors with MAPK and NF-κB pathways working downstream, as evidenced by the inhibitory effects of MrgX1-X4 siRNAs and ERK-, JNK-, p38- and NF-κB-specific inhibitors. We confirmed that AMP-IBP5 indeed induced MAPK and NF-κB activation. Furthermore, AMP-IBP5-induced VEGF but not IL-8 production correlated with an increase in intracellular cAMP. Our findings suggest that in addition to its antimicrobial function, AMP-IBP5 might contribute to wound healing process through activation of keratinocytes. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  19. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Seung Jin Lee

    Full Text Available Toll-like receptor 4 (TLR4 is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA, a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.

  20. mTOR inhibition in macrophages of asymptomatic HIV+ persons reverses the decrease in TLR4-mediated TNFα release through prolongation of MAPK pathway activation1

    Science.gov (United States)

    Li, Xin; Han, Xinbing; Llano, Juliana; Bole, Medhavi; Zhou, Xiuqin; Swan, Katharine; Anandaiah, Asha; Nelson, Benjamin; Patel, Naimish R.; Reinach, Peter S.; Koziel, Henry; Tachado, Souvenir D.

    2011-01-01

    Toll-like receptor 4 (TLR4) mediated signaling is significantly impaired in macrophages from HIV+ persons predominantly due to altered MyD88-dependent pathway signaling caused in part by constitutive activation of PI3K. Here we assessed in these macrophages if the blunted increase in TLR4-mediated TNFα release induced by lipid A are associated with PI3K-induced upregulation of mammalian target of rapamycin (mTOR) activity. mTOR inhibition with rapamycin enhanced TLR4-mediated TNFα release, but instead suppressed anti-inflammatory IL-10 release. Targeted gene silencing of mTOR in macrophages resulted in lipid A-induced TNFα and IL-10 release patterns similar to those induced by rapamycin. Rapamycin restored MyD88-IRAK interaction in a dose-dependent manner. Targeted gene silencing of MyD88 (shRNA) and mTOR (RNAi) inhibition resulted in TLR4-mediated p70s6K activation and enhanced TNFα release, whereas IL-10 release was inhibited in both silenced and non-silenced HIV+ macrophages. Furthermore, mTOR inhibition augmented lipid A-induced TNFα release through enhanced and prolonged phosphorylation of ERK1/2 and JNK1/2 MAP kinases, which was associated with time-dependent MKP-1 destabilization. Taken together, impaired TLR4-mediated TNFα release in HIV+ macrophages is attributable in part to mTOR activation by constitutive PI3K expression in a MyD88-dependent signaling pathway. These changes result in MKP-1 stabilization, which shortens and blunts MAP kinase activation. mTOR inhibition may serve as a potential therapeutic target to upregulate macrophage innate immune host defense responsiveness in HIV+ persons. PMID:22025552

  1. HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells.

    Science.gov (United States)

    Marampon, Francesco; Megiorni, Francesca; Camero, Simona; Crescioli, Clara; McDowell, Heather P; Sferra, Roberta; Vetuschi, Antonella; Pompili, Simona; Ventura, Luca; De Felice, Francesca; Tombolini, Vincenzo; Dominici, Carlo; Maggio, Roberto; Festuccia, Claudio; Gravina, Giovanni Luca

    2017-07-01

    The role of histone deacetylase (HDAC) 4 and 6 in glioblastoma (GBM) radioresistance was investigated. We found that tumor samples from 31 GBM patients, who underwent temozolomide and radiotherapy combined treatment, showed HDAC4 and HDAC6 expression in 93.5% and 96.7% of cases, respectively. Retrospective clinical data analysis demonstrated that high-intensity HDAC4 and/or HDAC6 immunostaining was predictive of poor clinical outcome. In vitro experiments revealed that short hairpin RNA-mediated silencing of HDAC4 or HDAC6 radiosensitized U87MG and U251MG GBM cell lines by promoting DNA double-strand break (DSBs) accumulation and by affecting DSBs repair molecular machinery. We found that HDAC6 knock-down predisposes to radiation therapy-induced U251MG apoptosis- and U87MG autophagy-mediated cell death. HDAC4 silencing promoted radiation therapy-induced senescence, independently by the cellular context. Finally, we showed that p53 WT expression contributed to the radiotherapy lethal effects and that HDAC4 or HDAC6 sustained GBM stem-like radioresistant phenotype. Altogether, these observations suggest that HDAC4 and HDAC6 are guardians of irradiation-induced DNA damages and stemness, thus promoting radioresistance, and may represent potential prognostic markers and therapeutic targets in GBM. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Lei, XiaoFeng [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Nakagawa, Takenobu [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima, Tokushima (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  3. Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH rat cerebral arterial muscle cells.

    Directory of Open Access Journals (Sweden)

    Debebe Gebremedhin

    Full Text Available The transient receptor potential vallinoid type 4 (TRPV4 is a calcium entry channel known to modulate vascular function by mediating endothelium-dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR, Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and

  4. Disulfide high mobility group box-1 causes bladder pain through bladder Toll-like receptor 4.

    Science.gov (United States)

    Ma, Fei; Kouzoukas, Dimitrios E; Meyer-Siegler, Katherine L; Westlund, Karin N; Hunt, David E; Vera, Pedro L

    2017-05-25

    Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in female C57BL/6 mice 24 hours post-administration. Moreover, we determined which of the specific HMGB1 receptors, Toll-like receptor 4 (TLR4) or receptor for advanced glycation end products (RAGE), mediate HMGB1-induced changes. Disulfide HMGB1 elicited abdominal mechanical hypersensitivity 24 hours after intravesical (5, 10, 20 μg/150 μl) instillation. In contrast, all-thiol HMGB1 did not produce abdominal mechanical hypersensitivity in any of the doses tested (1, 2, 5, 10, 20 μg/150 μl). Both HMGB1 redox forms caused micturition changes only at the highest dose tested (20 μg/150 μl) while eliciting mild bladder edema and reactive changes at all doses. We subsequently tested whether the effects of intravesical disulfide HMGB1 (10 μg/150 μl; a dose that did not produce inflammation) were prevented by systemic (i.p.) or local (intravesical) administration of either a TLR4 antagonist (TAK-242) or a RAGE antagonist (FPS-ZM1). Systemic administration of either TAK-242 (3 mg/kg) or FPS-ZM1 (10 mg/kg) prevented HMGB1 induced abdominal mechanical hypersensitivity while only intravesical TLR4 antagonist pretreatment (1.5 mg/ml; not RAGE) had this effect. The disulfide form of HMGB1 mediates bladder pain directly (not

  5. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells.

    Science.gov (United States)

    Armstrong, Lynne; Medford, Andrew R L; Uppington, Kay M; Robertson, John; Witherden, Ian R; Tetley, Teresa D; Millar, Ann B

    2004-08-01

    The recognition of potentially harmful microorganisms involves the specific recognition of pathogen-associated molecular patterns (PAMPs) and the family of Toll-like receptors (TLRs) is known to play a central role in this process. TLR-4 is the major recognition receptor for lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, whereas TLR-2 responds to bacterial products from gram-positive organisms. Although resident alveolar macrophages are the first line of defense against microbial attack, it is now understood that the alveolar epithelium also plays a pivotal role in the innate immunity of the lung. The purpose of the current study was to determine whether human primary type II alveolar epithelial cells (ATII) express functional TLR-2 and TLR-4 and how they may be regulated by inflammatory mediators. We have used reverse transcriptase-polymerase chain reaction and flow cytometry to determine basal and inducible expression on ATII. We have used highly purified preparations of the gram-positive bacterial product lipoteichoic acid (LTA) and LPS to look at the functional consequences of TLR-2 and TLR-4 ligation, respectively, in terms of interleukin-8 release. We have shown that human primary ATII cells express mRNA and protein for both TLR-2 and TLR-4, which can be modulated by incubation with LPS and tumor necrosis factor. Furthermore, we have demonstrated that these receptors are functional. This suggests that ATII have the potential to contribute significantly to the host defense of the human alveolus against bacteria.

  6. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  7. Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure.

    Science.gov (United States)

    Xiao, Wen; Song, Wendong; Herng, Tun Seng; Qin, Qing; Yang, Yong; Zheng, Ming; Hong, Xiaoliang; Feng, Yuan Ping; Ding, Jun

    2016-08-25

    Herein, we design a room-temperature spin-valve-like magnetoresistance in a nano-column Fe3O4/Ni heterostructure without using a non-magnetic spacer or pinning layer. An Fe3O4 nano-column film is self-assembled on a Ni underlayer by the thermal decomposition method. The wet-chemical self-assembly is facile, economical and scalable. The magnetoresistance (MR) response of the Ni underlayer in the heterostructure under positive and negative out-of-plane magnetic fields differ by ∼0.25 at room temperature and ∼0.43 at 100 K. We attribute the spin-valve-like magnetoresistance to the unidirectional magnetic anisotropy of the Ni underlayer when being magnetically coupled by the Fe3O4 nano-column film. The out-of-plane negative-field magnetization is higher than the positive-field magnetization, affirming the unidirectional magnetic anisotropy of the Fe3O4/Ni heterostructure. Temperature-dependent magnetic and resistivity studies illustrate a close correlation between the magnetization transition of Fe3O4 and resistivity transition of Ni and prove a magnetic coupling between the Fe3O4 and Ni. First-principles calculations reveal that the Fe3O4/Ni model under a negative magnetic field is energetically more stable than that under a positive magnetic field. Furthermore, partial density of states (PDOS) analysis demonstrates the unidirectional magnetic anisotropy of the Ni 3d orbital. This is induced by the strong ferromagnetic coupling between Fe3O4 and Ni via oxygen-mediated Fe 3d-O 2p-Ni 3d hybridizations.

  8. Challenging metastatic breast cancer with the natural defensin PvD1.

    Science.gov (United States)

    Figueira, Tiago N; Oliveira, Filipa D; Almeida, Inês; Mello, Érica O; Gomes, Valdirene M; Castanho, Miguel A R B; Gaspar, Diana

    2017-11-09

    Metastatic breast cancer is a very serious life threatening condition that poses many challenges for the pharmaceutical development of effective chemotherapeutics. As the therapeutics targeted to the localized masses in breast improve, metastatic lesions in the brain slowly increase in their incidence compromising successful treatment outcomes overall. The blood-brain-barrier (BBB) is one important obstacle for the management of breast cancer brain metastases. New therapeutic approaches are in demand for overcoming the BBB's breaching by breast tumor cells. In this work we demonstrate the potential dual role of a natural antimicrobial plant defensin, PvD 1 : it interferes with the formation of solid tumors in the breast and concomitantly controls adhesion of breast cancer cells to human brain endothelial cells. We have used a combination of techniques that probe PvD 1 's effect at the single cell level and reveal that this peptide can effectively damage breast tumor cells, leaving healthy breast and brain cells unaffected. Results suggest that PvD1 quickly internalizes in cancer cells but remains located in the membrane of normal cells with no significant damage to its structure and biomechanical properties. These interactions in turn modulate cell adhesiveness between tumor and BBB cells. PvD 1 is a potential template for the design of innovative pharmacological approaches for metastatic breast cancer treatment: the manipulation of the biomechanical properties of tumor cells that ultimately prevent their attachment to the BBB.

  9. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  10. Effects of Genetically Modified Milk Containing Human Beta-Defensin-3 on Gastrointestinal Health of Mice.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available This study was performed to investigate the effects of genetically modified (GM milk containing human beta-defensin-3 (HBD3 on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT. The emphasis was placed on the effects on gastrointestinal (GI tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health.

  11. Importin α-importin β complex mediated nuclear translocation of insulin-like growth factor binding protein-5.

    Science.gov (United States)

    Sun, Min; Long, Juan; Yi, Yuxin; Xia, Wei

    2017-10-28

    Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: K D =2.44e-7, IGFBP-5/importin-α5: K D =3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5 ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5 ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.

  12. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion.

    Directory of Open Access Journals (Sweden)

    Christoph M Ernst

    2009-11-01

    Full Text Available Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs by the multiple peptide resistance factor (MprF protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic phospholipid phosphatidylglycerol with l-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG production and that several conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an important bacterial immune evasion mechanism and it may help

  13. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity.

    Science.gov (United States)

    Molina-Serrano, Diego; Schiza, Vassia; Demosthenous, Christis; Stavrou, Emmanouil; Oppelt, Jan; Kyriakou, Dimitris; Liu, Wei; Zisser, Gertrude; Bergler, Helmut; Dang, Weiwei; Kirmizis, Antonis

    2016-12-01

    Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. The Relative Influence of Metal Ion Binding Sites in the I-like Domain and the Interface with the Hybrid Domain on Rolling and Firm Adhesion by Integrin α4β7*

    OpenAIRE

    Chen, JianFeng; Takagi, Junichi; Xie, Can; Xiao, Tsan; Luo, Bing-Hao; Springer, Timothy A.

    2004-01-01

    We examined the effect of conformational change at the β7 I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin α4β7. An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the α4β7 headpiece. Wild-type α4β7 mediates rolling adhesion in Ca2+ and Ca2+/Mg2+ but firm adhesion in Mg2+ and Mn2+. Stabilizing the ope...

  15. The Role of α-Defensins 1–3 in Antimicrobial Protection Forming in Children with Recurrent Bronchitis Caused by Bacteria of the Genus Haemophilus

    Directory of Open Access Journals (Sweden)

    G.O. Lezhenko

    2013-03-01

    Full Text Available The level of α-defensins 1–3 (HNP 1–3 has been analyzed in the blood plasma of children with recurrent bronchitis caused by bacteria of the genus Haemophilus. It is shown that the level of HNP 1–3 in the blood plasma depends on the form of Haemophilus. Trigger of HNP 1–3 outflow for neutrophils was the presence of bacterial capsule while presence of L-forms of Haemophilus influenzae wasn’t associated with increase in synthesis of antimicrobial peptides that could be one of the factors of forming of Haemophilus antibiotic resistance.

  16. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling

    International Nuclear Information System (INIS)

    Singhal, Sharad S.; Singh, Sharda P.; Singhal, Preeti; Horne, David; Singhal, Jyotsana; Awasthi, Sanjay

    2015-01-01

    4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes — higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. - Highlights: • GSTs are the major

  17. Antibody-mediated delivery of interleukin 4 to the neo-vasculature reduces chronic skin inflammation.

    Science.gov (United States)

    Hemmerle, Teresa; Zgraggen, Silvana; Matasci, Mattia; Halin, Cornelia; Detmar, Michael; Neri, Dario

    2014-11-01

    The antibody-mediated delivery of cytokines ("immunocytokines") to sites of pathological angiogenesis represents an attractive strategy for the development of innovative biopharmaceuticals, capable of modulating the activity of the immune system in cancer and in chronic inflammatory conditions. Recombinant IL4 has previously been shown to be therapeutically active in patients with psoriasis. The antibody-mediated delivery of this cytokine to sites of chronic skin inflammatory conditions should lead to an improved potency and selectivity, compared to non-targeted IL4. The therapeutic activity of F8-IL4, a fusion protein of the F8 antibody (specific to the alternatively-spliced EDA domain of fibronectin) with murine IL4, was investigated in three immunocompetent mouse models of skin inflammation: two induced by the TLR7/8 ligand imiquimod (in Balb/c and C57BL/6) and one mediated by the over-expression of VEGF-A. The EDA domain of fibronectin, a marker for angiogenesis, is expressed in the inflamed skin in all three models and F8-IL4 selectively localized to inflamed skin lesions following intravenous administration. The F8-IL4 fusion protein mediated a therapeutic benefit, which was superior to the one of a non-targeted version of IL4 and led to increased levels of key regulatory cytokines (including IL5, IL10, IL13, and IL27) in the inflamed skin, while IL2 levels were not affected in all treatment groups. A murine version of etanercept and a murine anti-IL17 antibody were used as positive control in the therapy experiments. Skin inflammatory lesions can be selectively targeted using anti-EDA antibody-cytokine fusion proteins and the pharmacodelivery of IL4 confers a therapeutic benefit by shifting the cytokine balance. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Hyperglycemia Induces Toll-Like Receptor-2 and -4 Expression and Activity in Human Microvascular Retinal Endothelial Cells: Implications for Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Uthra Rajamani

    2014-01-01

    Full Text Available Diabetic retinopathy (DR causes visual impairment in working age adults and hyperglycemia-mediated inflammation is central in DR. Toll-like receptors (TLRs play a key role in innate immune responses and inflammation. However, scanty data is available on their role in DR. Hence, in this study, we examined TLR2 and TLR4 mRNA and protein expression and activity in hyperglycemic human retinal endothelial cells (HMVRECs. HMVRECs were treated with hyperglycemia (HG or euglycemia and mRNA and protein levels of TLR-2, TLR-4, MyD88, IRF3, and TRIF as well as NF-κB p65 activation were measured. IL-8, IL-1β, TNF-α and MCP-1, ICAM-1, and VCAM-1 as well as monocyte adhesion to HMVRECs were also assayed. HG (25 mM significantly induced TLR2 and TLR4 mRNA and protein in HMVRECs. It also increased both MyD88 and non-MyD88 pathways, nuclear factor-κB (NF-κB, biomediators, and monocyte adhesion. This inflammation was attenuated by TLR-4 or TLR-2 inhibition, and dual inhibition by a TLR inhibitory peptide as well as TLR2 and 4 siRNA. Additionally, antioxidant treatment reduced TLR-2 and TLR4 expression and downstream inflammatory markers. Collectively, our novel data suggest that hyperglycemia induces TLR-2 and TLR-4 activation and downstream signaling mediating increased inflammation possibly via reactive oxygen species (ROS and could contribute to DR.

  19. Cloning and expression of a b(0,+)-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria.

    Science.gov (United States)

    Rajan, D P; Kekuda, R; Huang, W; Wang, H; Devoe, L D; Leibach, F H; Prasad, P D; Ganapathy, V

    1999-10-08

    We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.

  20. Leptospira santorosai Serovar Shermani detergent extract induces an increase in fibronectin production through a Toll-like receptor 2-mediated pathway.

    Science.gov (United States)

    Tian, Ya-Chung; Hung, Cheng-Chieh; Li, Yi-Jung; Chen, Yung-Chang; Chang, Ming-Yang; Yen, Tzung-Hai; Hsu, Hsiang-Hao; Wu, Mai-Szu; Phillips, Aled; Yang, Chih-Wei

    2011-03-01

    Leptospirosis can activate inflammatory responses through Toll-like receptors (TLRs) and may cause renal tubulointerstitial fibrosis characterized by the accumulation of extracellular matrix (ECM). We have previously demonstrated that Leptospira santorosai serovar Shermani detergent extract stimulates ECM accumulation in vitro. The aim of this study was to examine the mechanistic basis of these previous observations and, in particular, to examine the potential involvement of TLRs. The addition of serovar Shermani detergent extract led to an increase in fibronectin gene expression and production. Inhibition of TLR2 but not TLR4 expression abrogated serovar Shermani detergent extract-mediated increases in fibronectin production. This response was also blocked by the knockdown of the gene expression of the TLR2 downstream transducers myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). Serovar Shermani detergent extract also activated nuclear factor-κB, and its inhibition by curcumin-attenuated serovar Shermani detergent extract induced increases in fibronectin production. These effects were also mimicked by the specific TLR2 agonist, Pam(3)CsK(4), a response that was also abrogated by the knockdown of MyD88 and TRAF6. Similarly, the administration of live leptospires to cells also induced fibronectin production that was blocked by inhibition of TLR2 and MyD88 expression. In conclusion, serovar Shermani detergent extract can induce fibronectin production through the TLR2-associated cascade, providing evidence of an association between TLRs and leptospirosis-mediated ECM deposition.

  1. A dual mechanism involved in membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against Salmonella enteritidis CVCC3377.

    Science.gov (United States)

    Teng, Da; Wang, Xiumin; Xi, Di; Mao, Ruoyu; Zhang, Yong; Guan, Qingfeng; Zhang, Jun; Wang, Jianhua

    2014-10-01

    The food-borne bacterial gastrointestinal infection is a serious public health threat. Defensins are evolutionarily conserved innate immune components with broad-spectrum antibacterial activity that do not easily induce resistance. AvBD103b, an avian defensin with potent activity against Salmonella enteritidis, was isolated from the stomach contents of the king penguin (Aptenodytes patagonicus). To elucidate further the antibacterial mechanism of AvBD103b, its effect on the S. enteritidis CVCC3377 cell membrane and intracellular DNA was researched. The cell surface hydrophobicity and a N-phenyl-1-naphthylamine uptake assay demonstrated that AvBD103b treatment increased the cell surface hydrophobicity and outer membrane permeability. Atomic absorption spectrometry, ultraviolet spectrophotometry, flow cytometry, and transmission electron microscopy (TEM) indicated that AvBD103b treatment can lead to the release of the cellular contents and cell death through damage of the membrane. DNA gel retardation and circular dichroism analysis demonstrated that AvBD103b interacted with DNA and intercalated into the DNA base pairs. A cell cycle assay demonstrated that AvBD103b affected cellular functions, such as DNA synthesis. Our results confirmed that AvBD103b exerts its antibacterial activity by damaging the cell membrane and interfering with intracellular DNA, ultimately causing cell death, and suggested that AvBD103b may be a promising candidate as an alternative to antibiotics against S. enteritidis.

  2. Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages*

    Science.gov (United States)

    Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.

    2013-01-01

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092

  3. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Hohenhaus, Daniel M; Kelly, Greg M; Kamal, Nabilah A; Gupta, Praveer; Labzin, Larisa I; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A; Reid, Robert C; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2013-08-30

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.

  4. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    Science.gov (United States)

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Photocatalytic perfermance of sandwich-like BiVO_4 sheets by microwave assisted synthesis

    International Nuclear Information System (INIS)

    Liu, Suqin; Tang, Huiling; Zhou, Huan; Dai, Gaopeng; Wang, Wanqiang

    2017-01-01

    Graphical abstract: Sandwich-like BiVO_4 sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO_4 sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO_4. • The sandwich-like BiVO_4 sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO_4 sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO_4 sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO_4 sheets can be attributed to its large surface area over the irregular BiVO_4 particles.

  6. Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4·H2O as precursor

    International Nuclear Information System (INIS)

    Liu Jiali; Hu Dongge; Huang Tao; Yu Aishui

    2012-01-01

    Highlights: ► Flower-like NH 4 MnPO 4 ·H 2 O is obtained by novel precipitating method. ► It is used as the precursor to synthesize LiMnPO 4 /C. ► Subsequent heat treatment would not destroy the precursor morphology. ► As-prepared LiMnPO 4 /C showed discharge capacity of 85 mAh/g at 0.05 C. - Abstract: Ammonium magnesium phosphate monohydrate (NH 4 MnPO 4 ·H 2 O) precursor was prepared by a novel precipitating process with manganese citrate complexes as intermediate. The morphology of the precursor observed by Scanning Electron Microscope (SEM) was flower-like which was self-assembled by plate-like particles. Further analysis by X-ray diffraction (XRD) revealed that the lattice of the plate crystal was orientated along (0 1 0) plane. By solid-state reaction of the precursor, with lithium acetate and glucose as carbon source, pure olivine structured LiMnPO 4 /C composite was obtained and meanwhile, the original flower-like morphology could be retained.

  7. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  9. Mononuclear nonheme iron(III) complexes that show superoxide dismutase-like activity and antioxidant effects against menadione-mediated oxidative stress.

    Science.gov (United States)

    Hitomi, Yutaka; Iwamoto, Yuji; Kashida, Akihiro; Kodera, Masahito

    2015-05-21

    This communication describes the superoxide dismutase (SOD)-like activity of mononuclear iron(III) complexes with pentadentate monocarboxylamido ligands. The SOD activity can be controlled by the electronic nature of the substituent group on the ligand. The nitro-substituted complex showed clear cytoprotective activity against menadione-mediated oxidative stress in cultured cells.

  10. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages.

    Science.gov (United States)

    Korneev, Kirill V; Kondakova, Anna N; Sviriaeva, Ekaterina N; Mitkin, Nikita A; Palmigiano, Angelo; Kruglov, Andrey A; Telegin, Georgy B; Drutskaya, Marina S; Sturiale, Luisa; Garozzo, Domenico; Nedospasov, Sergei A; Knirel, Yuriy A; Kuprash, Dmitry V

    2018-01-01

    Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni , the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  11. Immunogenicity investigations of lipidoid structures in vitro and in silico: Modulating lipidoid-mediated TLR4 activation by nanoparticle design

    DEFF Research Database (Denmark)

    de Groot, Anne Marit; Thanki, Kaushik; Gangloff, Monique

    2018-01-01

    , we showed that encapsulation of siRNA in lipid-polymer hybrid nanoparticles (LPNs), based on poly(DL-lactic-co-glycolic acid) (PLGA) and cationic lipid-like materials (lipidoids), remarkably enhances intracellular delivery of siRNA as compared to siRNA delivery with LPNs modified...... acid lipid particles, which was the reference formulation for siRNA delivery, proved to activate TLR4. However, by combining lipidoids with PLGA into LPNs, TLR4 activation was abrogated. Thus, lipidoid-mediated TLR4 activation during siRNA delivery may be modulated via optimization of the formulation......Therapeutics based on small interfering RNA (siRNA) have promising potential as antiviral and anti-inflammatory agents. To deliver siRNA across cell membranes to reach the RNA interference pathway in the cytosol of target cells, non-viral nanoparticulate delivery approaches are explored. Recently...

  12. Food allergens inducing a lymphocyte-mediated immunological reaction in canine atopic-like dermatitis.

    Science.gov (United States)

    Suto, Akemi; Suto, Yukinori; Onohara, Nozomi; Tomizawa, Yu; Yamamoto-Sugawara, Yukiko; Okayama, Taro; Masuda, Kenichi

    2015-02-01

    Canine atopic-like dermatitis (ALD) is suspected to be associated with food allergies, particularly those mediated by lymphocytes. In this study, 54 cases were included as ALD dogs, based on the negative IgE test results. In the dogs, the percentage of activated cells in helper-T lymphocytes was measured by flow cytometry using cultured peripheral lymphocytes under food allergen stimulation. We observed that 49 of the 54 ALD dogs (90.7%) had positive lymphocyte reactions against one or more food allergens. The most common food allergen was soybean, showing positive results in 21 dogs (42.9%), while the allergen to cause the lowest number of reactions was catfish (only 5 dogs, 10.2%). These results may be useful in considering elimination diets for ALD dogs.

  13. NLRP10 Enhances CD4+ T-Cell-Mediated IFNγ Response via Regulation of Dendritic Cell-Derived IL-12 Release

    Directory of Open Access Journals (Sweden)

    Maurizio Vacca

    2017-11-01

    Full Text Available NLRP10 is a nucleotide-binding oligomerization domain-like receptor that functions as an intracellular pattern recognition receptor for microbial products. Here, we generated a Nlrp10−/− mouse to delineate the role of NLRP10 in the host immune response and found that Nlrp10−/− dendritic cells (DCs elicited sub-optimal IFNγ production by antigen-specific CD4+ T cells compared to wild-type (WT DCs. In response to T-cell encounter, CD40 ligation or Toll-like receptor 9 stimulation, Nlrp10−/− DCs produced low levels of IL-12, due to a substantial decrease in NF-κB activation. Defective IL-12 production was also evident in vivo and affected IFNγ production by CD4+ T cells. Upon Mycobacterium tuberculosis (Mtb infection, Nlrp10−/− mice displayed diminished T helper 1-cell responses and increased bacterial growth compared to WT mice. These data indicate that NLRP10-mediated IL-12 production by DCs is critical for IFNγ induction in T cells and contributes to promote the host defense against Mtb.

  14. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qiu [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wei, Bin [Department of Dermatology, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Li, Fenghe, E-mail: lfh_cmu@126.com [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)

    2016-07-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  15. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    International Nuclear Information System (INIS)

    Zeng, Qiu; Wei, Bin; Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong; Li, Fenghe

    2016-01-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  16. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    International Nuclear Information System (INIS)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-01-01

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH 2 -RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27 Kip1 protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27 Kip1 significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27 Kip1 degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin

  17. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Seok, Heon [Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Choi, Hyemin; Lee, Dong Gun [School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701 (Korea, Republic of); Kim, Jae Il [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  18. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  19. Wavelengths of the Ni-like 4d to 4p X-ray laser lines

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Sasaki, Akira

    2000-01-01

    The wavelengths of the Ni-like 4d to 4p X-ray laser lines for elements ranging from Pd(Z=46) to U(Z=92) calculated using the relativistic multi-configuration Dirac-Fock code, i.e. grasp92, are presented. These optimal level calculations agree well with measurements and previous calculations. To obtain accurate lasing wavelengths is important to grasp the energy level structure of the complicated Ni-like ions, and especially for the development of collisionally pumped X-ray lasers. The lasing wavelengths are also essential to identify the lines and when the X-ray laser is utilized for imaging and interferometry. (author)

  20. Expressions of toll-like receptors 2 and 4, and relative cellular ...

    African Journals Online (AJOL)

    Purpose: To investigate the expressions of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNF-α), IFN-γ (IFN- gamma), interleukin 2 (IL-2), interleukin 6 (IL-6) and interleukin 10 (IL-10) in human immunodeficiency virus (HIV) patients with tuberculosis (TB) infection. Methods: Two groups of ...

  1. Herbal preparation (HemoHIM) enhanced functional maturation of bone marrow-derived dendritic cells mediated toll-like receptor 4

    OpenAIRE

    Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2016-01-01

    Background HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. R...

  2. Novel isoforms of the TFIID subunit TAF4 modulate nuclear receptor-mediated transcriptional activity

    International Nuclear Information System (INIS)

    Brunkhorst, Adrian; Neuman, Toomas; Hall, Anita; Arenas, Ernest; Bartfai, Tamas; Hermanson, Ola; Metsis, Madis

    2004-01-01

    The transcription factor TFIID consists of TATA-binding protein (TBP) and TBP-associated factors (TAFs). TAFs are essential for modulation of transcriptional activity but the regulation of TAFs is complex and many important aspects remain unclear. In this study, we have identified and characterized five novel truncated forms of the TFIID subunit TAF4 (TAF II 135). Analysis of the mouse gene structure revealed that all truncations were the results of alternative splicing and resulted in the loss of domains or parts of domains implicated in TAF4 functional interactions. Results from transcriptional assays showed that several of the TAF4 isoforms exerted dominant negative effects on TAF4 activity in nuclear receptor-mediated transcriptional activation. In addition, alternative TAF4 isoforms could be detected in specific cell types. Our results indicate an additional level of complexity in TAF4-mediated regulation of transcription and suggest context-specific roles for these new TAF4 isoforms in transcriptional regulation in vivo

  3. Changes in soluble factor-mediated CD8+ cell-derived antiviral activity in cynomolgus macaques infected with simian immunodeficiency virus SIVmac251: relationship to biological markers of progression.

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of beta-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and alpha-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells.

  4. Changes in Soluble Factor-Mediated CD8+ Cell-Derived Antiviral Activity in Cynomolgus Macaques Infected with Simian Immunodeficiency Virus SIVmac251: Relationship to Biological Markers of Progression†

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of β-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and α-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells. PMID:16352548

  5. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Wang, Yong [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Weng, Zhiping; Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Harrod, Kevin S. [Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S., E-mail: treena@uab.edu [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-10-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4{sup +/+} wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4{sup +/−} heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca{sup ++} homeostasis. ATO induces Ca{sup ++}-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca{sup ++} homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4{sup +/−} mice

  6. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Wang, Yong; Weng, Zhiping; Elmets, Craig A.; Harrod, Kevin S.; Deshane, Jessy S.; Athar, Mohammad

    2016-01-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4 +/+ wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4 +/− heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca ++ homeostasis. ATO induces Ca ++ -dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca ++ homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4 +/− mice. • Changes in macrophage

  7. The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Li, Wenwen; Liu, Man; Su, Ying; Zhou, Xinying; Liu, Yao; Zhang, Xinyan

    2015-12-29

    Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor that regulates many essential processes, including development and cell differentiation, proliferation, and apoptosis. Along with these roles in normal cells and tissues, KLF4 has important tumor suppressive and oncogenic functions in some malignancies. However, the roles of KLF4 in oral squamous cell carcinoma remain unclear. This study investigated the epigenetic alterations and possible roles of KLF4 in oral cancer carcinogenesis. Notably, KLF4 expression was significantly decreased in human oral cancer tissues compared with healthy controls, and KLF4 promoter hypermethylation contributed to the suppression of KLF4 expression. KLF4 expression was associated with tumor grade. Its expression was much lower in poorly differentiated oral cancers than in well-differentiated cancer cells. KLF4 exerted its antitumor activity in vitro and/or in vivo by inhibiting cell proliferation, cell cycle progression, cell colony formation and by inducing apoptosis. In addition, KLF4 over-expression promoted oral cancer cell migration and invasion in vitro. Knockdown of KLF4 promoted oral cancer cells growth and colony formation, and simultaneously inhibited cell migration and invasion. Mechanistic studies revealed that MMP-9 might contribute to KLF4-mediated cell migration and invasion. These results provide evidence that KLF4 might play Janus-faced roles in oral cancer carcinogenesis, acting both as a tumor suppressor and as an oncogene.

  8. Features of borderline personality disorder as a mediator of the relation between childhood traumatic experiences and psychosis-like experiences in patients with mood disorder.

    Science.gov (United States)

    Baryshnikov, Ilya; Aaltonen, Kari; Suvisaari, Jaana; Koivisto, Maaria; Heikkinen, Martti; Joffe, Grigori; Isometsä, Erkki

    2018-03-01

    Psychosis-like experiences (PEs) are common in patients with non-psychotic disorders. Several factors predict reporting of PEs in mood disorders, including mood-associated cognitive biases, anxiety and features of borderline personality disorder (BPD). Childhood traumatic experiences (CEs), often reported by patients with BPD, are an important risk factor for mental disorders. We hypothesized that features of BPD may mediate the relationship between CEs and PEs. In this study, we investigated the relationships between self-reported PEs, CEs and features of BPD in patients with mood disorders. As part of the Helsinki University Psychiatric Consortium study, McLean Screening Instrument (MSI), Community Assessment of Psychic Experiences (CAPE-42) and Trauma and Distress Scale (TADS) were filled in by patients with mood disorders (n = 282) in psychiatric care. Correlation coefficients between total scores of scales and their dimensions were estimated, multiple regression and mediation analyses were conducted. Total scores of MSI correlated strongly with scores of the CAPE-42 dimension "frequency of positive symptoms" (rho = 0.56; p ≤ 0.001) and moderately with scores of TADS (rho = 0.4; p ≤ 0.001). Total score of MSI and its dimension "cognitive symptoms", including identity disturbance, distrustfulness and dissociative symptoms, fully mediated the relation between TADS and CAPE-42. Each cognitive symptom showed a partial mediating role (dissociative symptoms 43% (CI = 25-74%); identity disturbance 40% (CI = 30-73%); distrustfulness 18% (CI = 12-50%)). Self-reported cognitive-perceptual symptoms of BPD fully mediate, while affective, behavioural and interpersonal symptoms only partially mediate the relationships between CEs and PEs. Recognition of co-morbid features of BPD in patients with mood disorders reporting PEs is essential. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Urine Levels of Defensin α1 Reflect Kidney Injury in Leptospirosis Patients

    Directory of Open Access Journals (Sweden)

    Haorile Chagan-Yasutan

    2016-09-01

    Full Text Available Leptospirosis is a zoonotic disease whose severe forms are often accompanied by kidney dysfunction. In the present study, urinary markers were studied for potential prediction of disease severity. Urine samples from 135 patients with or without leptospirosis at San Lazaro Hospital, the Philippines, were analyzed. Urine levels of defensin α1 (uDA1 were compared with those of neutrophil gelatinase-associated lipocalin (uNGAL and N-acetyl-β-d-glucosidase (uNAG. Serum creatinine (Cr was used as a marker of kidney injury. The levels of uDA1/Cr, uNGAL/Cr, and uNAG/Cr were positive in 46%, 90%, and 80% of leptospirosis patients, and 69%, 70%, and 70% of non-leptospirosis patients, respectively. In leptospirosis patients, the correlation of uDA1/Cr, uNGAL/Cr and uNAG/Cr levels with serum Cr were r = 0.3 (p < 0.01, r = 0.29 (p < 0.01, and r = 0.02 (p = 0.81, respectively. uDA1/Cr levels were correlated with uNGAL/Cr levels (r = 0.49, p < 0.01 and uNAG/Cr levels (r = 0.47, p < 0.0001 in leptospirosis patients. These findings suggest that uDA1, uNGAL, and uNAG were elevated in leptospirosis patients and reflected various types of kidney damage. uDA1 and uNGAL can be used to track kidney injury in leptospirosis patients because of their correlation with the serum Cr level.

  10. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2018-06-01

    Full Text Available Shanxi aged vinegar (SAV is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.. The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.

  11. Hypoxia-induced autophagy is inhibited by PADI4 knockdown, which promotes apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis

    Science.gov (United States)

    Fan, Tingting; Zhang, Changsong; Zong, Ming; Fan, Lieying

    2018-01-01

    Impaired apoptosis of rheumatoid arthritis (RA)-fibroblast-like synoviocytes (FLS) is pivotal in the process of RA. Peptidyl arginine deiminase type IV (PADI4) is associated with autoantibody regulation via histone citrullination in RA. The present study aimed to investigate the role of PADI4 in the apoptosis of RA-FLS. FLS were isolated from patients with RA and a rat model. The effects of PADI4 on RA-FLS were investigated in vitro and in vivo. Hypoxia-induced autophagy was induced by 1% O2 and was detected by immunohistochemical and immunofluorescence analysis; in addition, apoptosis was detected by flow cytometry. RA-FLS obtained from RA rat model exhibited significant proliferation under severe hypoxia conditions. Hypoxia also significantly induced autophagy and elevated the expression of PADI4. Subsequently, short hairpin RNA-mediated PADI4 knockdown was demonstrated to significantly inhibit hypoxia-induced autophagy and promote apoptosis in RA-FLS. The results of these in vitro and in vivo studies suggested that PADI4 may be closely associated with hypoxia-induced autophagy, and the inhibition of hypoxia-induced autophagy by PADI4 knockdown may contribute to an increase in the apoptosis of RA-FLS. PMID:29393388

  12. Human β-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages.

    Science.gov (United States)

    Cui, Di; Lyu, Jinglu; Li, Houxuan; Lei, Lang; Bian, Tianying; Li, Lili; Yan, Fuhua

    2017-11-01

    Human β-defensin 3 (hBD3) is a cationic peptide with immunomodulatory effects on both innate and acquired immune responses. Periodontitis, an inflammatory disease that extends deep into periodontal tissues, causes the loss of supporting structures around the tooth. The present study assessed the effects of hBD3 as a monotherapy for periodontitis in mice and explored its potential mechanism. In vivo, hBD3 inhibited the levels of tumour necrosis factor (TNF)-α, interleukin-6, and matrix metalloprotease-9 in periodontium exposed to Porphyromonas gingivalis (P.g) in a mouse periodontitis model; reduced osteoclast formation and lower alveolar bone loss were also observed. In addition, hBD3 was related to the expression of polarization signature molecules in circulating monocytes. In vitro, hBD3 notably suppressed the production of TNF-α and interleukin-6 in RAW 264.7 cells stimulated by the lipopolysaccharide of P.g. Moreover, hBD3 attenuated polarization of RAW 264.7 cells into the M1 phenotype, with reduced activation of nuclear factor-κB signal transduction. In conclusion, hBD3 exhibits potent anti-periodontitis properties both in vitro and in vivo, and this effect may be correlated to inhibition of the nuclear factor-κB pathway and macrophage polarization. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. The Role of Angiopoietin-like 4 in Lipid Homeostasis

    OpenAIRE

    Gray, Nora

    2012-01-01

    AbstractThe Role of Angiopoietin-like 4 in Lipid HomeostasisbyNora Elizabeth Forbes GrayDoctor of Philosophy in Molecular and Biochemical NutritionUniversity of California, BerkeleyProfessor Jen-Chywan Wang, ChairAlterations in the regulation of lipid homeostasis are major causes of metabolic diseases like obesity, insulin resistance and the metabolic syndrome. These diseases affect millions of people and therefore constitute a pressing public health concern. The mobilization of lipids is a k...

  14. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    Science.gov (United States)

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  15. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity

    Directory of Open Access Journals (Sweden)

    Lee JY

    2015-08-01

    Full Text Available Jue Yeon Lee,1,* Jin Sook Suh,2,* Jung Min Kim,1 Jeong Hwa Kim,1 Hyun Jung Park,1 Yoon Jeong Park,1,2 Chong Pyoung Chung1 1Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Chungcheongbuk-do, Republic of Korea; 2Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Human beta-defensins (hBDs are crucial factors of intrinsic immunity that function in the immunologic response to a variety of invading enveloped viruses, bacteria, and fungi. hBDs can cause membrane depolarization and cell lysis due to their highly cationic nature. These molecules participate in antimicrobial defenses and the control of adaptive and innate immunity in every mammalian species and are produced by various cell types. The C-terminal 15-mer peptide within hBD3, designated as hBD3-3, was selected for study due to its cell- and skin-penetrating activity, which can induce anti-inflammatory activity in lipopolysaccharide-treated RAW 264.7 macrophages. hBD3-3 penetrated both the outer membrane of the cells and mouse skin within a short treatment period. Two other peptide fragments showed poorer penetration activity compared to hBD3-3. hBD3-3 inhibited the lipopolysaccharide-induced production of inducible nitric oxide synthase, nitric oxide, and secretory cytokines, such as interleukin-6 and tumor necrosis factor in a concentration-dependent manner. Moreover, hBD3-3 reduced the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. Further investigation also revealed that hBD3-3 downregulated nuclear factor kappa B-dependent inflammation by directly suppressing the degradation of phosphorylated-IκBα and by downregulating active nuclear factor kappa B p65. Our findings indicate that hBD3-3 may be conjugated with drugs of interest to ensure their proper translocation to

  16. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    Science.gov (United States)

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  17. Proteomic Profile of Unstable Atheroma Plaque: Increased Neutrophil Defensin 1, Clusterin, and Apolipoprotein E Levels in Carotid Secretome.

    Science.gov (United States)

    Aragonès, Gemma; Auguet, Teresa; Guiu-Jurado, Esther; Berlanga, Alba; Curriu, Marta; Martinez, Salomé; Alibalic, Ajla; Aguilar, Carmen; Hernández, Esteban; Camara, María-Luisa; Canela, Núria; Herrero, Pol; Ruyra, Xavier; Martín-Paredero, Vicente; Richart, Cristóbal

    2016-03-04

    Because of the clinical significance of carotid atherosclerosis, the search for novel biomarkers has become a priority. The aim of the present study was to compare the protein secretion profile of the carotid atherosclerotic plaque (CAP, n = 12) and nonatherosclerotic mammary artery (MA, n = 10) secretomes. We used a nontargeted proteomic approach that incorporated tandem immunoaffinity depletion, iTRAQ labeling, and nanoflow liquid chromatography coupled to high-resolution mass spectrometry. In total, 162 proteins were quantified, of which 25 showed statistically significant differences in secretome levels between carotid atherosclerotic plaque and nondiseased mammary artery. We found increased levels of neutrophil defensin 1, apolipoprotein E, clusterin, and zinc-alpha-2-glycoprotein in CAP secretomes. Results were validated by ELISA assays. Also, differentially secreted proteins are involved in pathways such as focal adhesion and leukocyte transendothelial migration. In conclusion, this study provides a subset of identified proteins that are differently expressed in secretomes of clinical significance.

  18. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions.

    Science.gov (United States)

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-05-06

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn(2+)-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions*

    Science.gov (United States)

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-01-01

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn2+-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion. PMID:26994136

  20. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  1. Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions

    Science.gov (United States)

    Hagelstein, Peter L.

    1987-01-01

    X-ray laser method and apparatus for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm.sup.-1.

  2. Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and ß-Defensins in Filaggrin-Deficient Skin Equivalents.

    Science.gov (United States)

    Hönzke, Stefan; Wallmeyer, Leonie; Ostrowski, Anja; Radbruch, Moritz; Mundhenk, Lars; Schäfer-Korting, Monika; Hedtrich, Sarah

    2016-03-01

    Atopic dermatitis is a chronic skin condition with complex etiology. It is characterized by skin barrier defects and T helper type 2 (Th2)-polarized inflammation. Although mutations in the filaggrin gene are known to be prominent genetic risk factors for the development of atopic dermatitis, the interdependency between these and an altered cytokine milieu is not fully understood. In this study, we evaluated the direct effects of filaggrin deficiency on the cornified envelope, tight junction proteins, and innate immune response, and report the effects of Th2 cytokines in normal and filaggrin-deficient skin equivalents. Supplementation with IL-4 and IL-13 led to distinct histologic changes and significantly increased skin surface pH, both of which were enhanced in filaggrin knockdown skin equivalents. We detected a compensatory up-regulation of involucrin and occludin in filaggrin-deficient skin that was dramatically disturbed when simultaneous inflammation occurred. Furthermore, we found that a lack of filaggrin triggered an up-regulation of human ?-defensin 2 via an unknown mechanism, which was abolished by Th2 cytokine supplementation. Taken together, these results indicate that defects in the epidermal barrier, skin permeability, and cutaneous innate immune response are not primarily linked to filaggrin deficiency but are rather secondarily induced by Th2 inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease.

    Science.gov (United States)

    Manko, Anna; Motta, Jean-Paul; Cotton, James A; Feener, Troy; Oyeyemi, Ayodele; Vallance, Bruce A; Wallace, John L; Buret, Andre G

    2017-01-01

    Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections.

  4. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Lushuai [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yanyan; Du, Fengxia [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Han, Xiao [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohua [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Niu, Yuanjie [Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300070 (China); Ren, Shancheng, E-mail: renshancheng@gmail.com [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Yingli, E-mail: sunyl@big.ac.cn [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-07-18

    Highlights: • Dihydrotestosterone stimulates H4K20me1 enrichment at the PSA promoter. • SET8 promotes AR-mediated transcription activation. • SET8 interacts with AR and promotes cell proliferation. - Abstract: Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.

  5. Anxiolytic-like and antidepressant-like activities of MCL0129 (1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine), a novel and potent nonpeptide antagonist of the melanocortin-4 receptor.

    Science.gov (United States)

    Chaki, Shigeyuki; Hirota, Shiho; Funakoshi, Takeo; Suzuki, Yoshiko; Suetake, Sayoko; Okubo, Taketoshi; Ishii, Takaaki; Nakazato, Atsuro; Okuyama, Shigeru

    2003-02-01

    We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.

  6. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism

    Science.gov (United States)

    Xu, Huan-Yan; Wang, Yuan; Shi, Tian-Nuo; Zhao, Hang; Tan, Qu; Zhao, Bo-Chao; He, Xiu-Lan; Qi, Shu-Yan

    2018-03-01

    The kinetics and Fenton-like mechanism are two challenging tasks for heterogeneous Fenton-like catalytic oxidation of organic pollutants. In this study, three kinetic models were used for the kinetic studies of Fe3O4/MWCNTs-H2O2 Fenton-like reaction for MO degradation. The results indicated that this reaction followed the first-order kinetic model. The relationship of reaction rate constant and temperature followed the Arrhenius equation. The activation energy and frequency factor of this system were calculated as 8.2 kJ·mol-1 and 2.72 s-1, respectively. The quantifications of Fe ions dissolution and •OH radicals generation confirmed that the homogeneous and heterogeneous catalyses were involved in Fe3O4/MWCNTs-H2O2 Fenton-like reaction. The reaction rate constant was closely related with Fe ions dissolution and •OH radicals generation. Fe3O4/MWCNTs nanocomposites had typical ferromagnetic property and could be easily separated from solution by an external magnet after being used. Furthermore, Fe3O4/MWCNTs nanocomposites exhibited good stability and recyclability. Finally, the Fenton-like mechanisms on homogeneous and heterogeneous catalyses were described.

  7. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  8. Antibody-mediated delivery of interleukin 4 to the neo-vasculature reduces chronic skin inflammation

    OpenAIRE

    Hemmerle Teresa; Zgraggen Silvana; Matasci Mattia; Halin Cornelia; Detmar Michael; Neri Dario

    2014-01-01

    BACKGROUND: The antibody mediated delivery of cytokines (quot;immunocytokinesquot;) to sites of pathological angiogenesis represents an attractive strategy for the development of innovative biopharmaceuticals capable of modulating the activity of the immune system in cancer and in chronic inflammatory conditions. OBJECTIVE: Recombinant IL4 has previously been shown to be therapeutically active in patients with psoriasis. The antibody mediated delivery of this cytokine to sites of chronic skin...

  9. Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype.

    Directory of Open Access Journals (Sweden)

    Tamara Murmann

    Full Text Available Small cell lung carcinomas (SCLCs represent highly aggressive tumors with an overall five-year survival rate in the range of 5 to 10%. Here, we show that four out of five SCLC cell lines reversibly develop a neuron-like phenotype on extracellular matrix constituents such as fibronectin, laminin or thrombospondin upon staurosporine treatment in an RGD/integrin-mediated manner. Neurite-like processes extend rapidly with an average speed of 10 µm per hour. Depending on the cell line, staurosporine treatment affects either cell cycle arrest in G2/M phase or induction of polyploidy. Neuron-like conversion, although not accompanied by alterations in the expression pattern of a panel of neuroendocrine genes, leads to changes in protein expression as determined by two-dimensional gel electrophoresis. It is likely that SCLC cells already harbour the complete molecular repertoire to convert into a neuron-like phenotype. More extensive studies are needed to evaluate whether the conversion potential of SCLC cells is suitable for therapeutic interventions.

  10. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harbouring a CRISPR-like Cas4 protein

    Directory of Open Access Journals (Sweden)

    Ian F. Connerton

    2015-01-01

    Full Text Available Campylobacter jejuni is a worldwide cause of human diarrhoeal disease. Clustered Repetitively Interspaced Palindromic Repeats (CRISPRs and associated proteins allow Bacteria and Archaea to evade bacteriophage and plasmid infection. Type II CRISPR systems are found in association with combinations of genes encoding the CRISPR-associated Cas1, Cas2, Cas4 or Csn2, and Cas9 proteins. C. jejuni possesses a minimal subtype II-C CRISPR system containing cas1, cas2, and cas9 genes whilst cas4 is notably absent. Cas4 proteins possess 5ʹ-3ʹ exonuclease activity to create recombinogenic-ends for spacer acquisition. Here we report a conserved Cas4-like protein in Campylobacter bacteriophages that creates a novel split arrangement between the bacteriophage and host that represents a new twist in the bacteriophage/host co-evolutionary arms race. The continuous association of bacteriophage and host in the carrier state life cycle of C. jejuni provided an opportunity to study spacer acquisition in this species. Remarkably all the spacer sequences observed were of host origin. We hypothesise that Campylobacter bacteriophages can use Cas4-like protein to activate spacer acquisition to use host DNA as an effective decoy to bacteriophage DNA. Bacteria that acquire self-spacers and escape phage infection must overcome CRISPR-mediated autoimmunity either by loss of the interference functions leaving them susceptible to foreign DNA incursion or tolerate changes in gene regulation.

  11. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages

    Directory of Open Access Journals (Sweden)

    Kirill V. Korneev

    2018-02-01

    Full Text Available Toll-like receptor 4 (TLR4 initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS, the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  12. Soft X-ray laser using pumping of 3P and 4P levels of He-like and H-like ions

    Science.gov (United States)

    Hagelstein, P.L.

    1987-04-21

    X-ray laser method and apparatus are disclosed for producing coherent radiation at, for example, energies of at least 40 eV, using Be-like Cr, N-like Ni, He-like Na, B-like Cr, Be-like Mn or similar multiply ionized species to pump appropriate high energy transitions in He-like or H-like N, O, F, C or rare gases, with associated laser transition gains of 4-50 cm[sup [minus]1]. 8 figs.

  13. Core Mediator structure at 3.4 Å extends model of transcription initiation complex.

    Science.gov (United States)

    Nozawa, Kayo; Schneider, Thomas R; Cramer, Patrick

    2017-05-11

    Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.

  14. Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism

    International Nuclear Information System (INIS)

    Voss, Melanie J; Möller, Mischa F; Powe, Desmond G; Niggemann, Bernd; Zänker, Kurt S; Entschladen, Frank

    2011-01-01

    Some breast cancer patients receiving anti-angiogenic treatment show increased metastases, possibly as a result of induced hypoxia. The effect of hypoxia on tumor cell migration was assessed in selected luminal, post-EMT and basal-like breast carcinoma cell lines. Migration was assessed in luminal (MCF-7), post-EMT (MDA-MB-231, MDA-MB-435S), and basal-like (MDA-MB-468) human breast carcinoma cell lines under normal and oxygen-deprived conditions, using a collagen-based assay. Cell proliferation was determined, secreted cytokine and chemokine levels were measured using flow-cytometry and a bead-based immunoassay, and the hypoxic genes HIF-1α and CA IX were assessed using PCR. The functional effect of tumor-cell conditioned medium on the migration of neutrophil granulocytes (NG) was tested. Hypoxia caused increased migratory activity but not proliferation in all tumor cell lines, involving the release and autocrine action of soluble mediators. Conditioned medium (CM) from hypoxic cells induced migration in normoxic cells. Hypoxia changed the profile of released inflammatory mediators according to cell type. Interleukin-8 was produced only by post-EMT and basal-like cell lines, regardless of hypoxia. MCP-1 was produced by MDA-MB-435 and -468 cells, whereas IL-6 was present only in MDA-MB-231. IL-2, TNF-α, and NGF production was stimulated by hypoxia in MCF-7 cells. CM from normoxic and hypoxic MDA-MB-231 and MDA-MB-435S cells and hypoxic MCF-7 cells, but not MDA-MB-468, induced NG migration. Hypoxia increases migration by the autocrine action of released signal substances in selected luminal and basal-like breast carcinoma cell lines which might explain why anti-angiogenic treatment can worsen clinical outcome in some patients

  15. Photocatalytic perfermance of sandwich-like BiVO{sub 4} sheets by microwave assisted synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suqin, E-mail: liusuqin888@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Tang, Huiling; Zhou, Huan [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Dai, Gaopeng, E-mail: dgp2000@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Wang, Wanqiang [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China)

    2017-01-01

    Graphical abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO{sub 4} sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO{sub 4}. • The sandwich-like BiVO{sub 4} sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N{sub 2} adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO{sub 4} sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO{sub 4} sheets can be attributed to its large surface area over the irregular BiVO{sub 4} particles.

  16. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  17. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154.

    Science.gov (United States)

    Gould, Robert W; Grannan, Michael D; Gunter, Barak W; Ball, Jacob; Bubser, Michael; Bridges, Thomas M; Wess, Jurgen; Wood, Michael W; Brandon, Nicholas J; Duggan, Mark E; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2018-01-01

    Although selective activation of the M 1 muscarinic acetylcholine receptor (mAChR) subtype has been shown to improve cognitive function in animal models of neuropsychiatric disorders, recent evidence suggests that enhancing M 4 mAChR function can also improve memory performance. Positive allosteric modulators (PAMs) targeting the M 4 mAChR subtype have shown therapeutic potential for the treatment of multiple symptoms observed in schizophrenia, including positive and cognitive symptoms when assessed in acute preclinical dosing paradigms. Since the cholinergic system has been implicated in multiple stages of learning and memory, we evaluated the effects of repeated dosing with the highly selective M 4 PAM VU0467154 on either acquisition and/or consolidation of learning and memory when dosed alone or after pharmacologic challenge with the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR) antagonist MK-801. MK-801 challenge represents a well-documented preclinical model of NMDAR hypofunction that is thought to underlie some of the positive and cognitive symptoms observed in schizophrenia. In wildtype mice, 10-day, once-daily dosing of VU0467154 either prior to, or immediately after daily testing enhanced the rate of learning in a touchscreen visual pairwise discrimination task; these effects were absent in M 4 mAChR knockout mice. Following a similar 10-day, once-daily dosing regimen of VU0467154, we also observed 1) improved acquisition of memory in a cue-mediated conditioned freezing paradigm, 2) attenuation of MK-801-induced disruptions in the acquisition of memory in a context-mediated conditioned freezing paradigm and 3) reversal of MK-801-induced hyperlocomotion. Comparable efficacy and plasma and brain concentrations of VU0467154 were observed after repeated dosing as those previously reported with an acute, single dose administration of this M 4 PAM. Together, these studies are the first to demonstrate that cognitive enhancing and antipsychotic-like

  18. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes

    Science.gov (United States)

    Jin, David K; Shido, Koji; Kopp, Hans-Georg; Petit, Isabelle; Shmelkov, Sergey V; Young, Lauren M; Hooper, Andrea T; Amano, Hideki; Avecilla, Scott T; Heissig, Beate; Hattori, Koichi; Zhang, Fan; Hicklin, Daniel J; Wu, Yan; Zhu, Zhenping; Dunn, Ashley; Salari, Hassan; Werb, Zena; Hackett, Neil R; Crystal, Ronald G; Lyden, David; Rafii, Shahin

    2009-01-01

    The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+VEGFR1+ hematopoietic progenitors, ‘hemangiocytes,’ constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induced the release of SDF-1 from platelets, enhancing neovascularization through mobilization of CXCR4+VEGFR1+ hemangiocytes. Although revascularization of ischemic hindlimbs was partially diminished in mice deficient in both GM-CSF and G-CSF (Csf2−/−Csf3−/−), profound impairment in neovascularization was detected in sKitL-deficient Mmp9−/− as well as thrombocytopenic Thpo−/− and TPO receptor–deficient (Mpl−/−) mice. SDF-1–mediated mobilization and incorporation of hemangiocytes into ischemic limbs were impaired in Thpo−/−, Mpl−/− and Mmp9−/− mice. Transplantation of CXCR4+VEGFR1+ hemangiocytes into Mmp9−/− mice restored revascularization, whereas inhibition of CXCR4 abrogated cytokine- and VEGF-A–mediated mobilization of CXCR4+VEGFR1+ cells and suppressed angiogenesis. In conclusion, hematopoietic cytokines, through graded deployment of SDF-1 from platelets, support mobilization and recruitment of CXCR4+VEGFR1+ hemangiocytes, whereas VEGFR1 is essential for their angiogenic competency for augmenting revascularization. Delivery of SDF-1 may be effective in restoring angiogenesis in individuals with vasculopathies. PMID:16648859

  19. IMPDHII Protein Inhibits Toll-like Receptor 2-mediated Activation of NF-κB*

    Science.gov (United States)

    Toubiana, Julie; Rossi, Anne-Lise; Grimaldi, David; Belaidouni, Nadia; Chafey, Philippe; Clary, Guilhem; Courtine, Emilie; Pene, Frederic; Mira, Jean-Paul; Claessens, Yann-Erick; Chiche, Jean-Daniel

    2011-01-01

    Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K. PMID:21460227

  20. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells.

    Science.gov (United States)

    Lin, Rui; Choi, Yeon Ho; Zidar, David A; Walker, Julia K L

    2018-06-01

    Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4 + T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4 + T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4 + Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4 + Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.

  1. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  2. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    International Nuclear Information System (INIS)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan; Yu Zengping; Yang Yongjian; Giet, Markus van der; Tepel, Martin

    2005-01-01

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, β-myosin heavy chain, and α-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway

  3. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Germini, Diego; Rodighiero, Isabella [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Mirandola, Prisco [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); De Conto, Flora; Medici, Maria-Cristina [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Gatti, Rita [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); Chezzi, Carlo; Calderaro, Adriana [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy)

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  4. Transcription factor Sox4 is required for PUMA-mediated apoptosis induced by histone deacetylase inhibitor, TSA.

    Science.gov (United States)

    Jang, Sang-Min; Kang, Eun-Jin; Kim, Jung-Woong; Kim, Chul-Hong; An, Joo-Hee; Choi, Kyung-Hee

    2013-08-23

    PUMA is a crucial regulator of apoptotic cell death mediated by p53-dependent and p53-independent mechanisms. In many cancer cells, PUMA expression is induced in response to DNA-damaging reagent in a p53-dependent manner. However, few studies have investigated transcription factors that lead to the induction of PUMA expression via p53-independent apoptotic signaling. In this study, we found that the transcription factor Sox4 increased PUMA expression in response to trichostatin A (TSA), a histone deacetylase inhibitor in the p53-null human lung cancer cell line H1299. Ectopic expression of Sox4 led to the induction of PUMA expression at the mRNA and protein levels, and TSA-mediated up-regulation of PUMA transcription was repressed by the knockdown of Sox4. Using luciferase assays and chromatin immunoprecipitation, we also determined that Sox4 recruits p300 on the PUMA promoter region and increases PUMA gene expression in response to TSA treatment. Taken together, these results suggest that Sox4 is required for p53-independent apoptotic cell death mediated by PUMA induction via TSA treatment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  5. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...on through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. Authors Lee C, Liu QH, Tomkowicz B, Yi

  6. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    Directory of Open Access Journals (Sweden)

    Bo Yoon Chang

    2015-10-01

    Full Text Available Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE. MFE stimulated the production of cytokines, nitric oxide (NO and tumor necrosis factor-α (TNF-α and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase and nuclear factor-κB (NF-κB signaling pathways downstream from toll-like receptor (TLR 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK cell activity, cytotoxic T lymphocyte (CTL activity and IFN-γ production. Immunoglobulin G (IgG antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  7. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4.

    Science.gov (United States)

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-10-13

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  8. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2

    Directory of Open Access Journals (Sweden)

    Wang Zheng

    2018-02-01

    Full Text Available Transient receptor potential (TRP channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2, with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels.

  9. Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases

    Science.gov (United States)

    Woo, Jongchan; Park, Eunsook; Dinesh-Kumar, S. P.

    2014-01-01

    Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a–AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants. PMID:24379391

  10. 49 CFR 1109.4 - Mandatory mediation in rate cases to be considered under the stand-alone cost methodology.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Mandatory mediation in rate cases to be considered... § 1109.4 Mandatory mediation in rate cases to be considered under the stand-alone cost methodology. (a) A... methodology must engage in non-binding mediation of its dispute with the railroad upon filing a formal...

  11. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  12. Activator Gcn4 Employs Multiple Segments of Med15/Gal11, Including the KIX Domain, to Recruit Mediator to Target Genes in Vivo*♦

    OpenAIRE

    Jedidi, Iness; Zhang, Fan; Qiu, Hongfang; Stahl, Stephen J.; Palmer, Ira; Kaufman, Joshua D.; Nadaud, Philippe S.; Mukherjee, Sujoy; Wingfield, Paul T.; Jaroniec, Christopher P.; Hinnebusch, Alan G.

    2009-01-01

    Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Δ cells. Although several Gal11 segments were previously shown to bind Gcn4 in vitro, the importance of these interactions for recruitment of Mediator and transcriptional activation by Gcn4 in cells was unknown. We show that i...

  13. Toll-Like Receptors 2 and 4 Cooperate in the Control of the Emerging Pathogen Brucella microti.

    Science.gov (United States)

    Arias, Maykel A; Santiago, Llipsy; Costas-Ramon, Santiago; Jaime-Sánchez, Paula; Freudenberg, Marina; Jiménez De Bagüés, Maria P; Pardo, Julián

    2016-01-01

    Toll-like receptors (TLRs) recognize pathogen-derived molecules and play a critical role during the host innate and adaptive immune response. Brucella spp. are intracellular gram-negative bacteria including several virulent species, which cause a chronic zoonotic infection in a wide range of mammalian hosts known as brucellosis. A new Brucella species, Brucella microti , was recently isolated from wild rodents and found to be highly pathogenic in mice. Using this species-specific model, it was previously found that CD8 + T cells are required to control this infection. In order to find out the role of TLR-mediated responses in the control of this pathogen, the course of infection of B. microti was analyzed over 3 weeks in wild-type (WT) and TLR knock out (KO) mice including TLR2 -/- , TLR4 -/- , TLR9 -/- , TLR2×4 -/- and TLR2×4×9 -/- . WT and single TLR2, TLR4 and TLR9 KO mice similarly control infection in liver and spleen. In contrast, bacterial clearance was delayed in TLR2×4 -/- and TLR2×4×9 -/- mice at 7 and 14 days post-infection. This defect correlated with impaired maturation and pro-inflammatory cytokine production in B. microti -infected dendritic cells from TLR2×4 -/- and TLR2×4×9 -/- mice. Finally, it was found that Tc cells from TLR2×4 -/- and TLR2×4×9 -/- mice showed reduced ability to inhibit growth of B. microti in macrophages, suggesting the involvement of TLR2 and 4 in the generation of specific Tc cells. Our findings indicate that TLR2 and TLR4 are required to control B. microti infection in mice and that this effect could be related to its participation in the maturation of dendritic cells and the generation of specific CD8 + Tc cells.

  14. Electroactive chain-like compounds constructed from trimetallic clusters and 4,4'-bipyridine spacers: one-pot synthesis, characterization and surface binding.

    Science.gov (United States)

    Abe, Masaaki; Inatomi, Atsushi; Hisaeda, Yoshio

    2011-03-14

    This paper reports the synthesis and characterization of a novel series of chain-like compounds where oxo-centered triruthenium cluster moieties are bridged by 4,4'-bipyridine (4,4'-bpy) spacers. A reaction of solvent-coordinated triruthenium "monomer" precursor [Ru(3)O(CH(3)CO(2))(6)(CO)(CH(3)OH)(2)] with a 0.1 equimolar amount of 4,4'-bpy in CH(3)OH gave mixture of chain-like compounds containing "dimers" to "tetramers" which were cleanly separated by column chromatography and characterized by spectroscopic and electrochemical methods. Cyclic voltammetry revealed that all chain-like compounds exhibit reversible and stepwise redox processes in solution with very weak intramolecular coupling between the triruthenium components across the 4,4'-bpy bridge. Photo-induced dissociation of CO from the compounds and electrode surface binding were also investigated.

  15. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages.

    Directory of Open Access Journals (Sweden)

    Do-Wan Shim

    Full Text Available Antimicrobial peptides (AMPs, also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.

  16. Orexin A-induced anxiety-like behavior is mediated through GABA-ergic, α- and β-adrenergic neurotransmissions in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Jászberényi, Miklós

    2014-07-01

    Orexins are hypothalamic neuropeptides, which are involved in several physiological functions of the central nervous system, including anxiety and stress. Several studies provide biochemical and behavioral evidence about the anxiogenic action of orexin A. However, we have little evidence about the underlying neuromodulation. Therefore, the aim of the present study was to investigate the involvement of neurotransmitters in the orexin A-induced anxiety-like behavior in elevated plus maze (EPM) test in mice. Accordingly, mice were pretreated with a non-selective muscarinic cholinergic antagonist, atropine; a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; a non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol 30min prior to the intracerebroventricular administration of orexin A. The EPM test started 30min after the i.c.v. injection of the neuropeptide. Our results show that orexin A decreases significantly the time spent in the arms (open/open+closed) and this action is reversed by bicuculline, phenoxybenzamine and propranolol, but not by atropine, haloperidol or nitro-l-arginine. Our results provide evidence for the first time that the orexin A-induced anxiety-like behavior is mediated through GABA-A-ergic, α- and β-adrenergic neurotransmissions, whereas muscarinic cholinergic, dopaminergic and nitrergic neurotransmissions may not be implicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. MSSM-like from SU5×D4 models

    Directory of Open Access Journals (Sweden)

    R. Ahl Laamara

    2016-05-01

    Full Text Available Using finite discrete group characters and symmetry breaking by hyperflux as well as constraints on top-quark family, we study minimal low energy effective theory following from SU5×D4 models embedded in F-theory with non-abelian flux. Matter curves spectrum of the models is obtained from SU5×S5 theory with monodromy S5 by performing two breakings: first from symmetric group S5 to S4 subsymmetry, and next to dihedral D4 subgroup. As a consequence, and depending on the ways of decomposing triplets of S4, we end with three types of D4-models. Explicit constructions of these theories are given and a MSSM-like spectrum is derived.

  18. Depression and anxiety mediate the relationship between temperament and character and psychotic-like experiences in healthy subjects.

    Science.gov (United States)

    Prochwicz, Katarzyna; Gawęda, Łukasz

    2016-12-30

    In this study we examined the hypothesis that depression and anxiety may mediate the relationship between personality traits and both positive and negative psychotic-like experiences (PLEs) in healthy adults. The Community Assessment of Psychic Experiences (CAPE) scale, Temperament and Character Inventory (TCI), Beck Depression Inventory (BDI) and State and Trait Anxiety Inventory (STAI) were administered to 492 healthy individuals. Multiple stepwise regression and mediation analyses were performed to examine whether depressive and anxiety symptoms influence the relationship between the TCI dimensions and positive and negative PLEs. Self-transcendence, persistence, novelty-seeking and self-directedness significantly predicted positive PLEs; self-directedness and harm avoidance were predictable for negative PLEs. Self-transcendence, self-directedness, persistence and harm avoidance also predicted the distress caused by positive PLEs, whereas self-directedness and harm avoidance predicted distress raised by negative PLEs. Depressive symptoms and the state of anxiety partially mediated the linkage between self-directedness and positive PLEs, and between self-directedness, harm avoidance and negative PLEs. Our findings confirm that the personality pattern influences both positive and negative PLEs as well as distress caused by experiencing positive and negative PLEs, and they indicate that certain personality traits may influence the development of PLEs via the emotional pathway of heightened depression and anxiety. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. K/sub 4/Si/sub 4/Te/sub 10/, the first tellurosilicate with adamantane-like Si/sub 4/Te/sub 10//sup 4 -/ anions

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Schaefer, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1982-08-01

    The new compound K/sub 4/Si/sub 4/Te/sub 10/ crystallizes in the orthorhombic system (space group Pnma) with following constants: a = 2125.8(8) pm, b = 1200.5(7) pm, c = 1060.8(7) pm. The structure is characterized by SiTe/sub 4/ tetrahedra, connected by common corners to adamantane-like Si/sub 4/Te/sub 10//sup 4 -/ units.

  20. Genetic and Epigenetic Inactivation of Kruppel-like Factor 4 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Yukiko Nakahara

    2010-01-01

    Full Text Available Although medulloblastoma is the most common pediatric malignant brain tumor, its molecular underpinnings are largely unknown. We have identified rare, recurrent homozygous deletions of Kruppel-like Factor 4 (KLF4 in medulloblastoma using high-resolution single nucleotide polymorphism arrays, digital karyotyping, and genomic real-time polymerase chain reaction (PCR. Furthermore, we show that there is loss of physiological KLF4 expression in more than 40% of primary medulloblastomas both at the RNA and protein levels. Medulloblastoma cell lines drastically increase the expression of KLF4 in response to the demethylating agent 5-azacytidine and demonstrate dense methylation of the promoter CpG island by bisulfite sequencing. Methylation-specific PCR targeting the KLF4 promoter demonstrates CpG methylation in approximately 16% of primary medulloblastomas. Reexpression of KLF4 in the D283 medulloblastoma cell line results in significant growth suppression both in vitro and in vivo. We conclude that KLF4 is inactivated by either genetic or epigenetic mechanisms in a large subset of medulloblastomas and that it likely functions as a tumor suppressor gene in the pathogenesis of medulloblastoma.

  1. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    Science.gov (United States)

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Toll-like Receptor 4: Innate Immune Regulator of Neuroimmune and Neuroendocrine interactions in Stress and Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Jiajun eLiu

    2014-09-01

    Full Text Available Major depressive disorder (MDD poses one of the highest disease burdens worldwide. Yet, current treatments targeting serotonergic and noradrenaline reuptake systems are insufficient to provide long-term relief from depressive symptoms in most patients, indicating the need for new treatment targets. Having the ability to influence behaviour similar to depressive symptoms, as well as communicate with neuronal and neuroendocrine systems, the innate immune system is a strong candidate for MDD treatments. Given the complex nature of immune signalling, the main question becomes: What is the role of the innate immune system in MDD?The current review presents evidence that toll-like receptor 4 (TLR4, via driving both peripheral and central immune responses, can interact with serotonergic neurotransmission and cause neuroendocrine disturbances, thus integrating with widely observed hallmarks of MDD. Additionally, through describing the multi-directional communication between immune, neural and endocrine systems in stress, TLR4 – related mechanisms can mediate stress-induced adaptations, which are necessary for the development of MDD. Therefore, apart from exogenous pathogenic mechanisms, TLR4 is involved in immune changes as a result of endogenous stress signals, playing an integral part in the pathophysiology, and could be a potential target for pharmacological treatments to improve current interventions for MDD.

  3. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling.

    Science.gov (United States)

    Singhal, Sharad S; Singh, Sharda P; Singhal, Preeti; Horne, David; Singhal, Jyotsana; Awasthi, Sanjay

    2015-12-15

    4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes - higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. Copyright © 2015 Elsevier Inc. All rights

  4. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process.

    Science.gov (United States)

    van der Weerden, Nicole L; Hancock, Robert E W; Anderson, Marilyn A

    2010-11-26

    The antifungal activity of the plant defensin NaD1 involves specific interaction with the fungal cell wall, followed by permeabilization of the plasma membrane and entry of NaD1 into the cytoplasm. Prior to this study, the role of membrane permeabilization in the activity of NaD1, as well as the relevance of cell wall binding, had not been investigated. To address this, the permeabilization of Fusarium oxysporum f. sp. vasinfectum hyphae by NaD1 was investigated and compared with that by other antimicrobial peptides, including the cecropin-melittin hybrid peptide CP-29, the bovine peptide BMAP-28, and the human peptide LL-37, which are believed to act largely through membrane disruption. NaD1 appeared to permeabilize cells via a novel mechanism that required the presence of the fungal cell wall. NaD1 and Bac2A, a linear variant of the bovine peptide bactenecin, were able to enter the cytoplasm of treated hyphae, indicating that cell death is accelerated by interaction with intracellular targets.

  5. Cocaine-like discriminative stimulus effects of alpha-pyrrolidinovalerophenone, methcathinone and their 3,4-methylenedioxy or 4-methyl analogs in rhesus monkeys.

    Science.gov (United States)

    Smith, Douglas A; Negus, S Stevens; Poklis, Justin L; Blough, Bruce E; Banks, Matthew L

    2017-09-01

    Synthetic cathinones are beta-ketone amphetamine analogs that have emerged as a heterogeneous class of abused compounds that function as either monoamine transporter substrates or inhibitors. Pre-clinical drug discrimination procedures are useful for interrogating structure-activity relationships of abuse-related drug effects; however, in vivo structure-activity relationship comparisons between synthetic cathinones with different mechanisms of action are lacking. The aim of the present study was to determine whether the cocaine-like discriminative stimulus effects of the monoamine transporter inhibitor alpha-pyrrolidinovalerophenone (alpha-PVP) and the monoamine transporter substrate methcathinone were differentially sensitive to 3,4-methylenedioxy and 4-methyl substitutions. Male rhesus monkeys (n = 4) were trained to discriminate intramuscular cocaine (0.32 mg/kg) from saline in a two-key food-reinforced discrimination procedure. Potency and timecourse of cocaine-like discriminative stimulus effects were determined for (±)-alpha-PVP, (±)-methcathinone and their 3,4-methylenedioxy or 4-methyl analogs. Alpha-PVP and methcathinone produced dose- and time-dependent cocaine-like effects. A 3,4-methylenedioxy addition to either alpha-PVP or methcathinone (methylone) did not alter the potency or efficacy to produce cocaine-like effects, but did prolong the time course. A 4-methyl addition to alpha-PVP (pyrovalerone) did not alter the potency or efficacy to produce cocaine-like effects, but did prolong the time course. In contrast, addition of a 4-methyl moiety to methcathinone (4MMC; mephedrone) significantly attenuated efficacy to produce cocaine-like effects. Overall, these results suggest different structural requirements for cocaine-like discriminative stimulus effects of monoamine transporter inhibitor and substrate synthetic cathinone analogs. Given that 4MMC is more hydrophobic than MDMC, these results suggest that hydrophobicity may be an important

  6. Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice.

    Science.gov (United States)

    Okada, Takeshi; Kawakita, Fumihiro; Nishikawa, Hirofumi; Nakano, Fumi; Liu, Lei; Suzuki, Hidenori

    2018-05-31

    There are no direct evidences showing the linkage between Toll-like receptor 4 (TLR4) and blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). The purpose of this study was to examine if selective blockage of TLR4 prevents BBB disruption after SAH in mice and if the TLR4 signaling involves mitogen-activated protein kinases (MAPKs). One hundred and fifty-one C57BL/6 male mice underwent sham or endovascular perforation SAH operation, randomly followed by an intracerebroventricular infusion of vehicle or two dosages (117 or 585 ng) of a selective TLR4 antagonist IAXO-102 at 30 min post-operation. The effects were evaluated by survival rates, neurological scores, and brain water content at 24-72 h and immunoglobulin G immunostaining and Western blotting at 24 h post-SAH. IAXO-102 significantly prevented post-SAH neurological impairments, brain edema, and BBB disruption, resulting in improved survival rates. IAXO-102 also significantly suppressed post-SAH activation of a major isoform of MAPK p46 c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-9 as well as periostin induction and preserved tight junction protein zona occludens-1. Another selective TLR4 antagonist TAK-242, which has a different binding site from IAXO-102, also showed similar effects to IAXO-102. This study first provided the evidence that TLR4 signaling is involved in post-SAH acute BBB disruption and that the signaling is mediated at least partly by JNK activation. TLR4-targeted therapy may be promising to reduce post-SAH morbidities and mortalities.

  7. Hepatitis C Virus NS3 Mediated Microglial Inflammation via TLR2/TLR6 MyD88/NF-κB Pathway and Toll Like Receptor Ligand Treatment Furnished Immune Tolerance.

    Directory of Open Access Journals (Sweden)

    Ayilam Ramachandran Rajalakshmy

    Full Text Available Recent evidence suggests the neurotrophic potential of hepatitis C virus (HCV. HCV NS3 protein is one of the potent antigens of this virus mediating inflammatory response in different cell types. Microglia being the immune surveillance cells in the central nervous system (CNS, the inflammatory potential of NS3 on microglia was studied. Role of toll like receptor (TLR ligands Pam2CSK3 and Pam3CSK4 in controlling the NS3 mediated microglial inflammation was studied using microglial cell line CHME3.IL (Interleukin-8, IL-6, TNF-α (Tumor nicrosis factor alpha and IL-1β gene expressions were measured by semi quantitative RT-PCR (reverse transcription-PCR. ELISA was performed to detect IL-8, IL-6, TNF-α, IL-1β and IL-10 secretion. FACS (Flourescent activated cell sorting was performed to quantify TLR1, TLR2, TLR6, MyD88 (Myeloid differntiation factor 88, IkB-α (I kappaB alpha and pNF-κB (phosphorylated nuclear factor kappaB expression. Immunofluorescence staining was performed for MyD88, TLR6 and NF-κB (Nuclear factor kappaB. Student's t-test or One way analysis of variance with Bonferoni post hoc test was performed and p < 0.05 was considered significant.Microglia responded to NS3 by secreting IL-8, IL-6, TNF-α and IL-1β via TLR2 or TLR6 mediated MyD88/NF-κB pathway. Transcription factor NF-κB was involved in activating the cytokine gene expression and the resultant inflammatory response was controlled by NF-κB inhibitor, Ro106-9920, which is known to down regulate pro-inflammatory cytokine secretion. Activation of the microglia by TLR agonists Pam3CSK4 and Pam2CSK4 induced immune tolerance against NS3. TLR ligand treatment significantly down regulated pro-inflammatory cytokine secretion in the microglia. IL-10 secretion was suggested as the possible mechanism by which TLR agonists induced immune tolerance. NS3 as such was not capable of self-inducing immune tolerance in microglia.In conclusion, NS3 protein was capable of activating

  8. Toll-like receptors-2 and 4 are overexpressed in an experimental model of particle-induced osteolysis.

    Science.gov (United States)

    Valladares, Roberto D; Nich, Christophe; Zwingenberger, Stefan; Li, Chenguang; Swank, Katherine R; Gibon, Emmanuel; Rao, Allison J; Yao, Zhenyu; Goodman, Stuart B

    2014-09-01

    Aseptic loosening secondary to particle-associated periprosthetic osteolysis remains a major cause of failure of total joint replacements (TJR) in the mid- and long term. As sentinels of the innate immune system, macrophages are central to the recognition and initiation of the inflammatory cascade, which results in the activation of bone resorbing osteoclasts. Toll-like receptors (TLRs) are involved in the recognition of pathogen-associated molecular patterns and danger-associated molecular patterns. Experimentally, polymethylmethacrylate and polyethylene (PE) particles have been shown to activate macrophages via the TLR pathway. The specific TLRs involved in PE particle-induced osteolysis remain largely unknown. We hypothesized that TLR-2, -4, and -9 mediated responses play a critical role in the development of PE wear particle-induced osteolysis in the murine calvarium model. To test this hypothesis, we first demonstrated that PE particles caused observable osteolysis, visible by microCT and bone histomorphometry when the particles were applied to the calvarium of C57BL/6 mice. The number of TRAP positive osteoclasts was significantly greater in the PE-treated group when compared to the control group without particles. Finally, using immunohistochemistry, TLR-2 and TLR-4 were highly expressed in PE particle-induced osteolytic lesions, whereas TLR-9 was downregulated. TLR-2 and -4 may represent novel therapeutic targets for prevention of wear particle-induced osteolysis and accompanying TJR failure. © 2013 Wiley Periodicals, Inc.

  9. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  10. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.

    Science.gov (United States)

    Wang, Mei; Li, Sen; Wang, Fubaihui; Zou, Jinhui; Zhang, Yanfeng

    2018-06-01

    Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type

  11. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior.

    Science.gov (United States)

    Hansen, Rolf T; Conti, Marco; Zhang, Han-Ting

    2014-08-01

    Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. The purpose of this study was to characterize the functional role of PDE4A in behavior. The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.

  12. Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    Science.gov (United States)

    Porter, Edith; Bevins, Charles L.; DiRosario, Julianne; Becknell, Brian; Wang, Huanyu

    2012-01-01

    Background The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects. Methodology/Principal Findings Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection. Conclusions/Significance DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility. PMID:22359618

  13. A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells.

    Science.gov (United States)

    Lee, Young Han; Jeon, Seung-Hyun; Kim, Se Hyun; Kim, Changyoun; Lee, Seung-Jae; Koh, Dongsoo; Lim, Yoongho; Ha, Kyooseob; Shin, Soon Young

    2012-06-30

    Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IκB and p65/RelA NF-κB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-κB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, and IL-1β, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant- active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IκB kinase (IKK)/NF-κB signaling pathway.

  14. The combination of maltose-binding protein and BCG-induced Th1 activation is involved in TLR2/9-mediated upregulation of MyD88-TRAF6 and TLR4-mediated downregulation of TRIF-TRAF3.

    Science.gov (United States)

    Liu, Guomu; Zhai, Xiaoyu; Zhou, Hongyue; Yang, Xiaoyu; Zhang, Nannan; Tai, Guixiang; Ni, Weihua

    2018-03-01

    Our previous study demonstrated that maltose-binding protein (MBP) activated Th1 through the TLR2-mediated MyD88-dependent pathway and the TLR4-mediated TRIF-dependent pathway. The combination of MBP and BCG synergistically induced Th1 activation, and the TLR2/9-mediated MyD88-dependent pathway is involved in this process. To further explore this mechanism, we stimulated purified mouse CD4 + T cells with MBP and BCG in vitro. The results demonstrated that MBP combined with BCG synergistically increased IFN-γ production and TLR2/4/9 expression, suggesting the involvement of TLR2/4/9 in the combination-induced Th1 activation. Next, TLRs 2/4/9 were blocked to analyze the effects of TLRs on Th1 activation. The results demonstrated that MBP induced a low level of Th1 activation by upregulating TLR2-mediated MyD88-TRAF6 and TLR4-mediated TRIF-TRAF3 expression, whereas MBP combined with BCG induced synergistic Th1 activation, which was not only triggered by strong upregulation of TLR2/9-mediated MyD88-TRAF6 expression but also by shifting TLR4-mediated TRIF-TRAF3 into the TRIF-TRAF6 pathway. Moreover, we observed that a TLR4 antibody upregulated MyD88 expression and a TLR9 inhibitor downregulated TRIF expression, indicating that there was cross-talk between TLRs 2/4/9 in MBP combined with BCG-induced Th1 activation. Our findings may expand the knowledge regarding TLR cross-talk involved in regulating the Th1 response. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Patrizia Puddu

    Full Text Available Lactoferrin (LF, a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs generated in the presence of bovine LF (bLF fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1, indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding

  16. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  17. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes

    NARCIS (Netherlands)

    Dijk, W.; Beigneux, Anne P.; Larsson, Mikael; Bensadoun, André; Young, Stephen G.; Kersten, A.H.

    2016-01-01

    LPL hydrolyzes triglycerides in triglyceride-rich
    lipoproteins along the capillaries of heart, skeletal muscle,
    and adipose tissue. The activity of LPL is repressed by angiopoietin-
    like 4 (ANGPTL4) but the underlying mechanisms
    have not been fully elucidated. Our objective was

  18. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome

    NARCIS (Netherlands)

    Clement, L.C.; Mace, C.; Avila-Casado, C.; Joles, J.A.; Kersten, A.H.; Chugh, S.S.

    2014-01-01

    The molecular link between proteinuria and hyperlipidemia in nephrotic syndrome is not known. We show in the present study that plasma angiopoietin-like 4 (Angptl4) links proteinuria with hypertriglyceridemia through two negative feedback loops. In previous studies in a rat model that mimics human

  19. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset

    Directory of Open Access Journals (Sweden)

    Christina Gross

    2016-09-01

    Full Text Available Seizures are bursts of excessive synchronized neuronal activity, suggesting that mechanisms controlling brain excitability are compromised. The voltage-gated potassium channel Kv4.2, a major mediator of hyperpolarizing A-type currents in the brain, is a crucial regulator of neuronal excitability. Kv4.2 expression levels are reduced following seizures and in epilepsy, but the underlying mechanisms remain unclear. Here, we report that Kv4.2 mRNA is recruited to the RNA-induced silencing complex shortly after status epilepticus in mice and after kainic acid treatment of hippocampal neurons, coincident with reduction of Kv4.2 protein. We show that the microRNA miR-324-5p inhibits Kv4.2 protein expression and that antagonizing miR-324-5p is neuroprotective and seizure suppressive. MiR-324-5p inhibition also blocks kainic-acid-induced reduction of Kv4.2 protein in vitro and in vivo and delays kainic-acid-induced seizure onset in wild-type but not in Kcnd2 knockout mice. These results reveal an important role for miR-324-5p-mediated silencing of Kv4.2 in seizure onset.

  20. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-01-01

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-κB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis

  1. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  2. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    Science.gov (United States)

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  3. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2.

    Science.gov (United States)

    Zheng, Wang; Cai, Ruiqi; Hofmann, Laura; Nesin, Vasyl; Hu, Qiaolin; Long, Wentong; Fatehi, Mohammad; Liu, Xiong; Hussein, Shaimaa; Kong, Tim; Li, Jingru; Light, Peter E; Tang, Jingfeng; Flockerzi, Veit; Tsiokas, Leonidas; Chen, Xing-Zhen

    2018-02-06

    Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    Science.gov (United States)

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  5. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  6. Optimizing bone morphogenic protein 4-mediated human embryonic stem cell differentiation into trophoblast-like cells using fibroblast growth factor 2 and transforming growth factor-β/activin/nodal signalling inhibition.

    Science.gov (United States)

    Koel, Mariann; Võsa, Urmo; Krjutškov, Kaarel; Einarsdottir, Elisabet; Kere, Juha; Tapanainen, Juha; Katayama, Shintaro; Ingerpuu, Sulev; Jaks, Viljar; Stenman, Ulf-Hakan; Lundin, Karolina; Tuuri, Timo; Salumets, Andres

    2017-09-01

    Several studies have demonstrated that human embryonic stem cells (hESC) can be differentiated into trophoblast-like cells if exposed to bone morphogenic protein 4 (BMP4) and/or inhibitors of fibroblast growth factor 2 (FGF2) and the transforming growth factor beta (TGF-β)/activin/nodal signalling pathways. The goal of this study was to investigate how the inhibitors of these pathways improve the efficiency of hESC differentiation when compared with basic BMP4 treatment. RNA sequencing was used to analyse the effects of all possible inhibitor combinations on the differentiation of hESC into trophoblast-like cells over 12 days. Genes differentially expressed compared with untreated cells were identified at seven time points. Additionally, expression of total human chorionic gonadotrophin (HCG) and its hyperglycosylated form (HCG-H) were determined by immunoassay from cell culture media. We showed that FGF2 inhibition with BMP4 activation up-regulates syncytiotrophoblast-specific genes (CGA, CGB and LGALS16), induces several molecular pathways involved in embryo implantation and triggers HCG-H production. In contrast, inhibition of the TGF-β/activin/nodal pathway decreases the ability of hESC to form trophoblast-like cells. Information about the conditions needed for hESC differentiation toward trophoblast-like cells helps us to find an optimal model for studying the early development of human trophoblasts in normal and in complicated pregnancy. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Signal-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C: implications on gating of Drosophila TRPL (transient receptor potential-like) channel.

    Science.gov (United States)

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-06

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P(2) in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P(2) was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P(2) is not an inhibitor of TRPL channel activation. PI(4,5)P(2) hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P(2) levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P(2) is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.

  8. Plant-mediated CH4 transport and C gas dynamics quantified in-situ in a Phalaris arundinacea-dominant wetland

    DEFF Research Database (Denmark)

    Jensen, Louise Askær; Elberling, Bo; Friborg, Thomas

    2011-01-01

    passive. Thus, diurnal variations are less important in contrast to wetland vascular plants facilitating convective gas flow. Despite of plant-dominant CH4 transport, net CH4 fluxes were low (–0.005–0.016 µmol m-2 s-1) and annually less than 1% of the annual C-CO2 assimilation. This is considered a result......±35% of ecosystem CH4 emissions were plant-mediated, but data show no evidence of significant diurnal variations related to convective gas flow regardless of season or plant growth stages. Therefore, despite a high percentage of arenchyma, P. arundinacea-mediated CH4 transport is interpreted to be predominantly...

  9. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver.

    Science.gov (United States)

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Rodriguez-Miguelez, Paula; Cuevas, Maria José; Soares, Félix Alexandre Antunes; Barbosa, Nilda Vargas; González-Gallego, Javier

    2016-03-01

    Acute exercise is a stress stimulus that may cause cell damage through the activation of the toll-like receptor (TLR)4 pathway, resulting in the translocation of nuclear factor kappa B (NF-κB) into the cell nucleus and the upregulation of inflammatory genes. Nonsteroidal anti-inflammatory drugs, such as diclofenac, are often prescribed to counteract exercise-induced inflammation. This study analyzed effects of diclofenac pretreatment on the TLR4/NF-κB pathway in rat liver after an acute eccentric exercise. Twenty male Wistar rats were divided in four groups: control-saline, control-diclofenac, exercise-saline and exercise-diclofenac. The rats received saline or diclofenac (10mg/kg) for 7days prior to an eccentric exercise bout. After exercise there was an increase in TLR4, myeloid differentiation primary response gene 88 (MyD88), TIR domain-containing adaptor inducing interferon (TRIF) and p65 NF-κB subunit protein levels. Exercise also resulted in increased mRNA and protein expression of interleukin (IL)-6, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. Proinflammatory effects of exercise were prevented by the administration of diclofenac, which blunted the activation of the TLR4/NF-κB pathway and the inflammatory response in the liver of exercised rats. Results from the present study highlight the role of TLR4 as a target for anti-inflammatory interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  11. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    Science.gov (United States)

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  12. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  13. Protective Role of Cyclooxygenase (COX)-2 in Experimental Lung Injury: Evidence of a Lipoxin A(4)-Mediated Effect.

    LENUS (Irish Health Repository)

    2012-02-01

    BACKGROUND: Polymorphoneutrophils (PMNs) are activated by inflammatory mediators following splanchnic ischemia\\/reperfusion (I\\/R), potentially injuring organs such as the lung. As a result, some patients develop respiratory failure following abdominal aortic aneurysm repair. Pulmonary cyclooxygenase (COX)-2 protects against acid aspiration and bacterial instillation via lipoxins, a family of potent anti-inflammatory lipid mediators. We explored the role of COX-2 and lipoxin A(4) in experimental I\\/R-mediated lung injury. MATERIALS AND METHODS: Sprague-Dawley rats were assigned to one of the following five groups: (1) controls; (2) aortic cross-clamping for 45 min and reperfusion for 4 h (I\\/R group); (3) I\\/R and SC236, a selective COX-2 inhibitor; (4) I\\/R and aspirin; and (5) I\\/R and iloprost, a prostacyclin (PGI(2)) analogue. Lung injury was assessed by wet\\/dry ratio, myeloperoxidase (MPO) activity, and bronchoalveolar lavage (BAL) neutrophil counts. BAL levels of thromboxane, PGE(2), 6-keto-PGF(1)alpha (a hydrolysis product of prostacyclin), lipoxin A(4), and 15-epi-lipoxin A(4) were analyzed by enzyme immunoassay (EIA). Immunostaining for COX-2 was performed. RESULTS: I\\/R significantly increased tissue MPO, the wet\\/dry lung ratio, and neutrophil counts. These measures were significantly further aggravated by SC236 and improved by iloprost. I\\/R increased COX-2 immunostaining and both PGE(2) and 6-keto-PGF(1alpha) levels in BAL. SC236 markedly reduced these prostanoids and lipoxin A(4) compared with I\\/R alone. Iloprost markedly increased lipoxin A(4) levels. The deleterious effect of SC236 and the beneficial effect of iloprost was associated with a reduction and an increase, respectively, in lipoxin A(4) levels. CONCLUSIONS: Lipoxin A(4) warrants further evaluation as a mediator of COX-2 regulated lung protection.

  14. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    Science.gov (United States)

    Feng, Guang; Jiang, Ze-Yu; Sun, Bo; Fu, Jie; Li, Tian-Zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  15. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Kokoza, V; Ahmed, A; Cho, W L; Jasinskiene, N; James, A A; Raikhel, A

    2000-08-01

    Progress in molecular genetics makes possible the development of alternative disease control strategies that target the competence of mosquitoes to transmit pathogens. We tested the regulatory region of the vitellogenin (Vg) gene of Aedes aegypti for its ability to express potential antipathogen factors in transgenic mosquitoes. Hermes-mediated transformation was used to integrate a 2.1-kb Vg-promoter fragment driving the expression of the Defensin A (DefA) coding region, one of the major insect immune factors. PCR amplification of genomic DNA and Southern blot analyses, carried out through the ninth generation, showed that the Vg-DefA transgene insertion was stable. The Vg-DefA transgene was strongly activated in the fat body by a blood meal. The mRNA levels reached a maximum at 24-h postblood meal, corresponding to the peak expression time of the endogenous Vg gene. High levels of transgenic defensin were accumulated in the hemolymph of bloodfed female mosquitoes, persisting for 20-22 days after a single blood feeding. Purified transgenic defensin showed antibacterial activity comparable to that of defensin isolated from bacterially challenged control mosquitoes. Thus, we have been able to engineer the genetically stable transgenic mosquito with an element of systemic immunity, which is activated through the blood meal-triggered cascade rather than by infection. This work represents a significant step toward the development of molecular genetic approaches to the control of vector competence in pathogen transmission.

  16. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    Science.gov (United States)

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein

  17. IFN-Gamma-Dependent and Independent Mechanisms of CD4+ Memory T Cell-Mediated Protection from Listeria Infection

    Directory of Open Access Journals (Sweden)

    Stephanie M. Meek

    2018-02-01

    Full Text Available While CD8+ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4+ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV, followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP61–80 (Lm-gp61. We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4+ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4+ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4+ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4+ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4+ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  18. ANTI-ALLERGIC EFFECTS OF 1,5-BIS(4’-HYDROXY-3’-METHOXYPHENYL-1,4-PENTADIENE-3-ONE ON MAST CELL-MEDIATED ALLERGY MODEL

    Directory of Open Access Journals (Sweden)

    AGUNG ENDRO NUGROHO

    2009-01-01

    Full Text Available 1,5-bis(4’-hydroxy-3’-methoxyphenyl-1,4-pentadiene-3-one is a 1,5-diphenyl-1,4-pentadiene-3-one analogue of curcumin that is produced by modifying the middle site of curcumin leading to 1,4-pentadiene-3-ones to maintain the hydroxy moiety at the aromatic rings that are responsible for its biological activities. Curcumin has been reported to have anti-allergic effects and can inhibit the release of histamine from mast cells. In the present study, we evaluated the anti-allergic effects of 1,5-bis(4’-hydroxy-3’-methoxyphenyl-1,4-pentadiene-3-one in a mast cell-mediated allergy mode in order to provide information about a newly synthesised-compound for an alternative allergy drug. The study was performed using (1 a rat basophilic leukaemia (RBL-2H3 cell line, which is a tumour analogue of mast cells, with DNP24-BSA, thapsigargin and ionomycin as inducers for secretory markers from mast cells, and (2 an active cutaneous anaphylaxis (ACA reaction, with ovalbumin as an inductor of mast cell degranulation. Treatment with 1,5-bis(4’-hydroxy-3’-methoxyphenyl-1,4-pentadiene-3-one strongly inhibited the DNP24-BSA, thapsigargin and ionomycin-mediated release of histamine and β-hexosaminidase from the RBL-2H3 cell line. The results indicated that this compound influenced the activation processes of FcεRI by antigen and intracellular Ca2+ signalling events in mast cells. In type 1 allergy model, this compound also inhibited the active cutaneous anaphylactic reaction on rat dorsal skins generated by ovalbumin. We conclude that the compound 1,5-bis(4’-hydroxy-3’-methoxyphenyl-1,4-pentadiene-3-one showed anti-allergic activities mediated by mechanisms related to intracellular signalling events in mast cells.

  19. Regulation of Membrane-Type 4 Matrix Metalloproteinase by SLUG Contributes to Hypoxia-Mediated Metastasis

    Directory of Open Access Journals (Sweden)

    Chi-Hung Huang

    2009-12-01

    Full Text Available The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT, and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis.

  20. Oxidative stress augments toll-like receptor 8 mediated neutrophilic responses in healthy subjects

    Directory of Open Access Journals (Sweden)

    Matsunaga Kazuto

    2009-06-01

    Full Text Available Abstract Background Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro. Methods Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848 in the presence or absence of hydrogen peroxide (H2O2. Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed. Results Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H2O2 (p L-cysteine reversed this potentiation. The combination of H2O2 and R848 significantly potentiated NF-kB phosphorylation and IkBα degradation. The H2O2-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88, and tumor necrosis factor receptor-associated factor 6 (TRAF6 were not affected by H2O2. Conclusion TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.

  1. CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Aqua-FM4_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal

  2. CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Aqua-FM4_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal

  3. YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion.

    Directory of Open Access Journals (Sweden)

    Said Rahim

    2011-04-01

    Full Text Available Genomic rearrangements involving the ETS family of transcription factors occur in 40-70% of prostate cancer cases. ERG and ETV1 are the most common ETS members observed in these genetic alterations. The high prevalence of these rearrangements and their biological significance represents a novel therapeutic target for the treatment of prostate cancer.We recently reported the development of YK-4-279, a small molecule inhibitor of EWS-FLI1 oncoprotein in Ewing's Sarcoma. Since ERG and ETV1 belong to the same class of ETS factors as FLI1, we tested the ability of YK-4-279 to inhibit biological functions of ERG and ETV1 proteins in prostate cancer. YK-4-279 inhibited ERG and ETV1 mediated transcriptional activity in a luciferase assay. YK-4-279 also decreased ERG and ETV1 downstream target mRNA and protein expression in ETV1-fusion positive LNCaP and ERG fusion positive VCaP cells. YK-4-279 reduced the motility of LNCaP cells in a scratch assay and the invasive phenotype of both LNCaP and VCaP cells in a HUVEC invasion assay. Fusion-negative PC3 cells were unresponsive to YK-4-279. SiRNA mediated ERG knockdown in VCaP cells resulted in a loss of drug responsiveness. Concurrently, transient ERG expression in PC-3 cells resulted in increased invasive potential, which was reduced by YK-4-279.These data demonstrate that YK-4-279 inhibits ERG and ETV1 biological activity in fusion-positive prostate cancer cells leading to decreased motility and invasion. Therefore, YK-4-279 may have an impact on metastasis in prostate cancer and it may be further evaluated for its clinical applications in prostate cancer in addition to Ewing's sarcoma.

  4. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunhyuk, E-mail: uranos5@kiom.re.kr [The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054 (Korea, Republic of); Oh, Dal-Seok [The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054 (Korea, Republic of); Lee, Mi Gi; Lee, Chang Eon [Major in Cosmeceutical Science, Division of Bio-technology and Convergence, Daegu Haany University, Gyeongsan (Korea, Republic of); Kim, Yong-ung, E-mail: ykim@dhu.ac.kr [Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University (Korea, Republic of)

    2016-11-01

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α) + IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-like skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. - Highlights: • 6-Shogaol inhibited Th2/1-mediated inflammatory mediators in vitro and in vivo. • 6-Shogaol regulated ROS/MAPKs/Nrf2 signaling pathway. • 6-Shogaol can protect against the development of AD-like skin lesions.

  5. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway

    International Nuclear Information System (INIS)

    Park, Gunhyuk; Oh, Dal-Seok; Lee, Mi Gi; Lee, Chang Eon; Kim, Yong-ung

    2016-01-01

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α) + IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-like skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. - Highlights: • 6-Shogaol inhibited Th2/1-mediated inflammatory mediators in vitro and in vivo. • 6-Shogaol regulated ROS/MAPKs/Nrf2 signaling pathway. • 6-Shogaol can protect against the development of AD-like skin lesions.

  6. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    Science.gov (United States)

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-09

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.

  7. Csk Homologous Kinase, a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis

    Science.gov (United States)

    2010-08-31

    SH2 ) and SH3 domains and lacks the consensus tyrosine phosphorylation and myristylation sites found in Src family kinases . CHK has been shown to...0350 TITLE: Csk Homologous Kinase , a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis PRINCIPAL INVESTIGATOR: Byeong-Chel...1 AUG 2009 - 31 JUL 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-09-1-0350 Csk Homologous Kinase , a Potential Regulator

  8. The glucagon-like peptide 1 receptor agonist Exendin-4 decreases relapse-like drinking in socially housed mice

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Dencker, Ditte; Wörtwein, Gitta

    2017-01-01

    Exendin-4 in an assay of relapse-like drinking in socially housed mice. Male C57BL/6NTac mice were allowed continuous access to alcohol without tastant in the home cage for 37days. Then, alcohol bottles were removed and Exendin-4 (1.5μg/kg/day) or saline was administered subcutaneously for 8days during...... alcohol deprivation. Treatment continued for 8 additional days after reintroducing access to alcohol. A high-precision automated fluid consumption system was used to monitor intake of alcohol and water, drinking kinetics, and locomotor activity. Exendin-4 prevented the deprivation-induced increase...

  9. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread.

    Science.gov (United States)

    Delpeut, Sebastien; Noyce, Ryan S; Richardson, Christopher D

    2014-04-01

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses.

    Science.gov (United States)

    Pigna, Eva; Renzini, Alessandra; Greco, Emanuela; Simonazzi, Elena; Fulle, Stefania; Mancinelli, Rosa; Moresi, Viviana; Adamo, Sergio

    2018-02-24

    Denervation triggers numerous molecular responses in skeletal muscle, including the activation of catabolic pathways and oxidative stress, leading to progressive muscle atrophy. Histone deacetylase 4 (HDAC4) mediates skeletal muscle response to denervation, suggesting the use of HDAC inhibitors as a therapeutic approach to neurogenic muscle atrophy. However, the effects of HDAC4 inhibition in skeletal muscle in response to long-term denervation have not been described yet. To further study HDAC4 functions in response to denervation, we analyzed mutant mice in which HDAC4 is specifically deleted in skeletal muscle. After an initial phase of resistance to neurogenic muscle atrophy, skeletal muscle with a deletion of HDAC4 lost structural integrity after 4 weeks of denervation. Deletion of HDAC4 impaired the activation of the ubiquitin-proteasome system, delayed the autophagic response, and dampened the OS response in skeletal muscle. Inhibition of the ubiquitin-proteasome system or the autophagic response, if on the one hand, conferred resistance to neurogenic muscle atrophy; on the other hand, induced loss of muscle integrity and inflammation in mice lacking HDAC4 in skeletal muscle. Moreover, treatment with the antioxidant drug Trolox prevented loss of muscle integrity and inflammation in in mice lacking HDAC4 in skeletal muscle, despite the resistance to neurogenic muscle atrophy. These results reveal new functions of HDAC4 in mediating skeletal muscle response to denervation and lead us to propose the combined use of HDAC inhibitors and antioxidant drugs to treat neurogenic muscle atrophy.

  11. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism.

    Science.gov (United States)

    Zheng, P; Zeng, B; Zhou, C; Liu, M; Fang, Z; Xu, X; Zeng, L; Chen, J; Fan, S; Du, X; Zhang, X; Yang, D; Yang, Y; Meng, H; Li, W; Melgiri, N D; Licinio, J; Wei, H; Xie, P

    2016-06-01

    Major depressive disorder (MDD) is the result of complex gene-environment interactions. According to the World Health Organization, MDD is the leading cause of disability worldwide, and it is a major contributor to the overall global burden of disease. However, the definitive environmental mechanisms underlying the pathophysiology of MDD remain elusive. The gut microbiome is an increasingly recognized environmental factor that can shape the brain through the microbiota-gut-brain axis. We show here that the absence of gut microbiota in germ-free (GF) mice resulted in decreased immobility time in the forced swimming test relative to conventionally raised healthy control mice. Moreover, from clinical sampling, the gut microbiotic compositions of MDD patients and healthy controls were significantly different with MDD patients characterized by significant changes in the relative abundance of Firmicutes, Actinobacteria and Bacteroidetes. Fecal microbiota transplantation of GF mice with 'depression microbiota' derived from MDD patients resulted in depression-like behaviors compared with colonization with 'healthy microbiota' derived from healthy control individuals. Mice harboring 'depression microbiota' primarily exhibited disturbances of microbial genes and host metabolites involved in carbohydrate and amino acid metabolism. This study demonstrates that dysbiosis of the gut microbiome may have a causal role in the development of depressive-like behaviors, in a pathway that is mediated through the host's metabolism.

  12. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection

    Science.gov (United States)

    Fernández, Andrea G.; Bonetto, Josefina; Giambartolomei, Guillermo H.; Fossati, Carlos A.; Baldi, Pablo C.

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site. PMID:26448160

  13. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

    Science.gov (United States)

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-06-08

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

  14. NOX4 mediates BMP4-induced upregulation of TRPC1 and 6 protein expressions in distal pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Jiang

    Full Text Available Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4 mediated, elevated expression of canonical transient receptor potential (TRPC largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs. In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression.We employed recombinant human BMP4 (rhBMP4 to determine the effects of BMP4 on NADPH oxidase 4 (NOX4 and reactive oxygen species (ROS production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4 and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs.In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13 %, and the mean ROS level was (123.65±1.62 % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001, the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001 (P<0.01. However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i and store-operated calcium entry (SOCE, suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis.These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.

  15. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  16. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.

    Science.gov (United States)

    Tsukamoto, Hiroki; Takeuchi, Shino; Kubota, Kanae; Kobayashi, Yohei; Kozakai, Sao; Ukai, Ippo; Shichiku, Ayumi; Okubo, Misaki; Numasaki, Muneo; Kanemitsu, Yoshitomi; Matsumoto, Yotaro; Nochi, Tomonori; Watanabe, Kouichi; Aso, Hisashi; Tomioka, Yoshihisa

    2018-05-14

    Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NFκB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  17. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2014-01-01

    Full Text Available The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53−/− or Par-4−/− mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors.

  18. In vivo mutational analysis of the N-terminal region of HIV-1 Nef reveals critical motifs for the development of an AIDS-like disease in CD4C/HIV transgenic mice

    International Nuclear Information System (INIS)

    Hanna, Zaher; Priceputu, Elena; Kay, Denis G.; Poudrier, Johanne; Chrobak, Pavel; Jolicoeur, Paul

    2004-01-01

    HIV-1 Nef is a critical determinant of pathogenicity in humans and transgenic (Tg) mice. To gain a better understanding of the molecular mechanisms by which Nef induces an AIDS-like disease in Tg mice, a mutational analysis of the N-terminal domain, involved in anchoring Nef to the plasma membrane, was carried out. The pathogenic effects of these Nef mutant alleles were evaluated in Tg mice by FACS analysis and by histopathological assessment. Mutation of the myristoylation site (G2A) completely abrogated the development of the AIDS-like organ disease in Tg mice, although partial downregulation of the CD4 cell surface protein and depletion of peripheral CD4 + T-cells, but not of CD4 + CD8 + thymocytes, still occurred. Despite that, the peripheral CD4 + T cells expressing Nef G2A show normal spontaneous proliferation in vivo or after stimulation in vitro, including in an allogenic mixed leukocyte reaction (MLR). Three other internal deletion mutants of Nef, spanning amino acids 8-17 (Nef Δ8-17 ), 25-35 (Nef Δ25-35 ), and 57-66 (Nef Δ57-66 ), were also studied. Nef Δ8-17 retained full pathogenic potential, although Nef Δ25-35 and Nef Δ57-66 Tg mice were free of organ disease. However, Nef Δ25-35 Tg mice exhibited disorganization of thymic architecture and a partial depletion of peripheral CD4 + T cells. These data indicate that myristoylation and other regions at the N-terminus of Nef (aa 25-35 and 57-66) are involved in mediating severe T-cell phenotypes and organ disease, although residues 8-17 are dispensable for these Nef functions. In addition, these results indicate that at least some of the CD4 + T-cell phenotypes can develop independently of the other AIDS-like organ phenotypes. This apparent segregation of different Nef-mediated phenotypes suggests distinct mechanisms of Nef action in different populations of target cells, and may be relevant to human AIDS

  19. Protein: MPB4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB4 Sema3A signaling molecules DPYSL2 CRMP2, ULIP2 DPYSL2 Dihydropyrimidinase-related pr...otein 2 Collapsin response mediator protein 2, N2A3, Unc-33-like phosphoprotein 2 9606 Homo sapiens Q16555 1808 2VM8, 2GSE 1808 Q16555 ...

  20. Self-assembly of Fe3O4 nanocrystal-clusters into cauliflower-like architectures: Synthesis and characterization

    International Nuclear Information System (INIS)

    Zhu Luping; Liao Guihong; Bing Naici; Wang Linlin; Xie Hongyong

    2011-01-01

    Large-scale cauliflower-like Fe 3 O 4 architectures consist of well-assembled magnetite nanocrystal clusters have been synthesized by a simple solvothermal process. The as-synthesized Fe 3 O 4 samples were characterized by XRD, XPS, FT-IR, SEM, TEM, etc. The results show that the samples exhibit cauliflower-like hierarchical microstructures. The influences of synthesis parameters on the morphology of the samples were experimentally investigated. Magnetic properties of the Fe 3 O 4 cauliflower-like hierarchical microstructures have been detected by VSM at room temperature, showing a relatively low saturation magnetization of 65 emu/g and an enhanced coercive force of 247 Oe. - Graphical Abstract: Cauliflower-like Fe 3 O 4 architectures consist of well-assembled magnetite nanocrystal clusters have been synthesized by a simple solvothermal process, using FeCl 3 .6H 2 O and EDA as the starting materials. Highlights: → Cauliflower-like Fe 3 O 4 architectures were successfully prepared by a simple solvothermal route. → The cauliflower-like Fe 3 O 4 architectures have a size in the range of 200-300 nm. → They show a low saturation magnetization of 65 emu/g and an enhanced coercive force of 247 Oe. → These Fe 3 O 4 architectures may have potential applications in catalysis and biological fields.