WorldWideScience

Sample records for deep-sea red crab

  1. 75 FR 49420 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-08-13

    .... 100513223-0289-02] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine...-sea (DAS) allocation for the Atlantic deep- sea red crab fishery that were implemented in May 2010...

  2. 75 FR 35435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-06-22

    .... 100513223-0254-01] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine... deep-sea red crab fishery, including a target total allowable catch (TAC) and a fleet-wide days-at-sea...

  3. 75 FR 7435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-02-19

    .... 100105009-0053-01] RIN 0648-AY51 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications AGENCY: National Marine Fisheries Service (NMFS... comments. SUMMARY: NMFS proposes 2010 specifications for the Atlantic deep-sea red crab fishery, including...

  4. 76 FR 36511 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-06-22

    ...-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3 AGENCY... the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP) (Amendment 3), incorporating a draft... current trap limit regulations state that red crab may not be harvested from gear other than a marked red...

  5. 76 FR 60379 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-09-29

    .... 100903433-1531-02] RIN 0648-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab... approved in Amendment 3 to the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP). The New England... ABC control rule.'' The NS1 guidelines further state that ``ABC may not exceed OFL,'' and that ``the...

  6. 75 FR 27219 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-05-14

    .... Whereas a limited market has been responsible for the shortfall in landings compared to the target TAC... final specifications for the 2010 Atlantic deep- sea red crab fishery, including a target total... specify the target TAC and other management measures in order to manage the red crab resource for fishing...

  7. Genetic and morphological identification of some crabs from the Gulf of Suez, Northern Red Sea, Egypt

    Directory of Open Access Journals (Sweden)

    Eman M. Abbas

    2016-09-01

    Full Text Available Most crab species inhabiting the Red Sea have not been characterized morphologically and genetically. In the current work, five different crab species were collected from the northern part of the Egyptian Red Sea. They were morphologically identified through description of colors, dentations of the carapace and shapes of chelipeds and pereiopods. They were also genetically characterized by the partial sequencing of the barcode region in the mitochondrial cytochrome oxidase subunit I (COI gene, which is known to be hypervariable among different crab species. Morphological and genetic characterization identified the crab species as: Charybdis (Charybdis hellerii (A. Milne-Edwards, 1867, Charybdis (Charybdis natator (Herbst, 1794, Portunus (Portunus pelagicus (Linnaeus, 1758, Liocarcinus corrugatus (Pennant, 1777, and Atergatis roseus (Rüppell, 1830. This is the first record of L. corrugatus in the Egyptian Red Sea, despite being previously recorded in the Indian and Atlantic Ocean as well as in the Mediterranean Sea. DNA barcoding with precise morphological identification was effective in characterizing the crab species collected from the Egyptian Red Sea water.

  8. Portunoid crabs as indicators of the Red Sea fauna history and endemism

    Science.gov (United States)

    Spiridonov, Vassily; Türkay, Michael; Brösing, Andreas; Al-Aidaroos, Ali

    2013-04-01

    Peculiar environmental conditions and "turbulent" geological history make the Red Sea a laboratory of evolution and a significant area for understanding adaptation processes. To interpret the results of this basin-scale evolutionary experiment revised inventories of taxonomic diversity of particular groups of marine biota are essential. As one of the first results of the Red Sea Biodiversity Survey (RSBS) in the years 2011 - 2012 along the coast of Saudi Arabia (http://www.redseabiodiversity.org/) and examination of earlier collections and literature a revised species list is provided for the portunoid (swimming) crabs (Crustacea Decapoda Portunoidea). This superfamily is one of the most species rich and has one of the broadest habitat scopes among Brachyura in the global scale. The present assessment results in 54 shallow water species (including 2 recorded for the first time in the Red Sea during RSBS), 2 deep water species and 1 semipelagic species Charybdis smithii. Doubtful literature records of another 7 shallow water species remain unconfirmed. Among reliably recorded shallow water species 58 % belong to widespread Indo-West-Pacific (IWP) species, 13% are the species restricted to the western Indian Ocean, 11 % are endemics of the Arabian region (occurring also either in the western Gulf of Aden or along the eastern coast of the Arabian Peninsula, or in both areas) which are usually vicariant to the widespread IWP species, 11% are taxa that are similar to the species occurring elsewhere in the IWP but have morphological peculiarities and probably deserve a specific or subspecific status. Finally 4% of species (Thalamita murinae and Liocarcinus subcorrugatus) appear to be endemic for the Red Sea and show remarkable disjunctions from most closely related species. Carcinus sp. (probably C. aestuarii) is an introduced (but not established) species in the northern Red Sea. The deep water fauna of the Red Sea is unique because it lives in the warm (20.5-21.5 ° C

  9. 76 FR 39369 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fishery; Amendment 3

    Science.gov (United States)

    2011-07-06

    ... crab vessels may not deploy parlor traps/pots in water depths greater than 400 meters (219 fathoms... water deeper than 400 m; prohibit a limited access red crab vessel from harvesting red crab in water shallower than 400 m; and prohibit parlor traps from being deployed at water shallower than 400 m. This...

  10. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  11. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  12. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    Science.gov (United States)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  13. Isolation and Tissue Distribution of an Insulin-Like Androgenic Gland Hormone (IAG of the Male Red Deep-Sea Crab, Chaceon quinquedens

    Directory of Open Access Journals (Sweden)

    Amanda Lawrence

    2017-08-01

    Full Text Available The insulin-like androgenic gland hormone (IAG found in decapod crustaceans is known to regulate sexual development in males. IAG is produced in the male-specific endocrine tissue, the androgenic gland (AG; however, IAG expression has been also observed in other tissues of decapod crustacean species including Callinectes sapidus and Scylla paramamosain. This study aimed to isolate the full-length cDNA sequence of IAG from the AG of male red deep-sea crabs, Chaceon quinquedens (ChqIAG, and to examine its tissue distribution. To this end, we employed polymerase chain reaction cloning with degenerate primers and 5′ and 3′ rapid amplification of cDNA ends (RACE. The full-length ChqIAG cDNA sequence (1555 nt includes a 366 nt 5′ untranslated region a 453 nt open reading frame encoding 151 amino acids, and a relatively long 3′ UTR of 733 nt. The ORF consists of a 19 aa signal peptide, 32 aa B chain, 56 aa C chain, and 44 aa A chain. The putative ChqIAG amino acid sequence is most similar to those found in other crab species, including C. sapidus and S. paramamosain, which are clustered together phylogenetically.

  14. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  15. A Modeling Study of Deep Water Renewal in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  16. Factors governing the deep ventilation of the Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2015-11-19

    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.

  17. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  18. Invasive Crabs in the Barents Sea

    DEFF Research Database (Denmark)

    Kaiser, Brooks; Fernandez, Linda; Kourantidou, Melina

    The recent invasions of the red king crab (RKC) and the snow crab (SC) in the Barents Sea represent the sorts of integrated ecological and economic shifts we may expect as climate change affects arctic seas. Economic incentives and ecological unknowns have combined to change the current...... and potentially future productivity and profitability of the Barents ecosystem in complex and interacting ways. We examine potential ecological-economic trajectories for these crabs’ continued expansions in the Arctic and how the profitability, the joint and national management structures in Norway and Russia...

  19. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  20. Heavy metals in red crabs, Chaceon quinquedens, from the Gulf of Mexico.

    Science.gov (United States)

    Perry, Harriet; Isphording, Wayne; Trigg, Christine; Riedel, Ralf

    2015-12-30

    The red crab, Chaceon quinquedens, is distributed in deep waters of the Gulf of Mexico (GOM) and is most abundant in an area associated with sediment deposition from the Mississippi River. Sediment geochemistry and biological and ecological traits of red crabs favor accumulation of contaminants. Red crabs, sediment, and bottom water samples were taken from three distinct geographic locations representing areas with differing exposure to contaminant laden effluents from the Mississippi River. Inductively coupled plasma spectrophotometry and atomic absorption spectrophotometry were employed to determine levels of heavy metals in red crab muscle tissue. Ion site partitioning was used to determine metal speciation in sediments. Red crabs showed evidence of heavy metal bioaccumulation in all sample areas with high variability in contaminant levels in individual crabs for some metals. Bioavailability of metals in sediment did not always result in accumulation in muscle tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Inter-annual dynamics of the Barents Sea red king crab (Paralithodes camtschaticus) stock indices in relation to environmental factors

    Science.gov (United States)

    Dvoretsky, Alexander G.; Dvoretsky, Vladimir G.

    2016-12-01

    Knowledge of relationships between environmental variables and biological processes can greatly improve fisheries assessment and management in commercially important species. We analyzed the effects of environmental factors (climatic indices and water temperature) on the stock characteristics (total population number, number of pre-recruits and number of legal males) of the red king crab (Paralithodes camtschaticus), an introduced species in the Barents Sea. Stock trends in red king crab appear to be related to decadal climate shifts. Abundances were negatively related to the North Atlantic Oscillation index (NAO) in August and positively related to water temperature in late winter-early summer. Total and commercial stock abundance were negatively correlated with the lag-1 Arctic Oscillation index (AO) in August and the lag-2 winter NAO index. The total number of P. camtschaticus was most strongly associated with water temperature in spring and summer and NAO/AO indices in April and May. Lagged NAO indices in February and August (9 or 10 yr) had a positive relationship to the commercial stock of P. camtschaticus. These findings suggest that temperature conditions of current and previous year affect natural mortality of larvae and juvenile red king crabs. Warmer temperature conditions lead to increased biomass of red king crab food items. Negative correlations between climatic indices and the red king crab stocks may be associated with predator pressure on juvenile red king crabs or higher mortality because of predator or parasite pressure and diseases. The associations between stock indices and environmental variables could help better predict recruitment patterns of P. camtschaticus.

  2. New distribution records of the gall crab Opecarcinus cathyae van der Meij, 2014 (Decapoda: Brachyura: Cryptochiridae) from the Red Sea, Maldives and Japan

    KAUST Repository

    Meij, Sancia E. T.

    2016-11-12

    The gall crab Opecarcinus cathyae van der Meij, 2014 has been reported from various localities in Indonesia and Malaysia. Recent surveys in the Red Sea, Maldives and Japan yielded additional specimens of O. cathyae, considerably expanding the known distribution range of this species to the east and west. The identity of O. cathyae was confirmed based on COI sequence data, revealing identical haplotypes for the Red Sea, Maldivian and Japanese material and three haplotypes in the Indonesian material. Opecarcinus cathyae has one of the widest known recorded distribution ranges for all gall crab species.

  3. New distribution records of the gall crab Opecarcinus cathyae van der Meij, 2014 (Decapoda: Brachyura: Cryptochiridae) from the Red Sea, Maldives and Japan

    KAUST Repository

    Meij, Sancia E. T.; Benzoni, Francesca; Berumen, Michael L.; Naruse, Tohru

    2016-01-01

    The gall crab Opecarcinus cathyae van der Meij, 2014 has been reported from various localities in Indonesia and Malaysia. Recent surveys in the Red Sea, Maldives and Japan yielded additional specimens of O. cathyae, considerably expanding the known distribution range of this species to the east and west. The identity of O. cathyae was confirmed based on COI sequence data, revealing identical haplotypes for the Red Sea, Maldivian and Japanese material and three haplotypes in the Indonesian material. Opecarcinus cathyae has one of the widest known recorded distribution ranges for all gall crab species.

  4. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    Science.gov (United States)

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  5. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren

    2017-07-19

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  6. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren; Baumgarten, Sebastian; Rö thig, Till; Roder, Cornelia; Roik, Anna Krystyna; Michell, Craig; Voolstra, Christian R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  7. Infestation and morphological identification of the stalked epizoic barnacle Octolasmis on the blue crab Portunus pelagicus from the Red Sea

    Science.gov (United States)

    Afifi Khattab, Rafat

    2017-09-01

    The intensity of infestation of the epizoic stalked barnacle Octolasmis on the blue crab was calculated for a total of 180 individuals collected around Jeddah, the western Red Sea Saudi coast. More than 90% of the crabs were found bearing the Octolasmis at a prevalence rate of 92% and mean intensity of 18.5±18.6 (0-127 epibiont per host). The intensity of infestation increased with host size in the range 90-135 mm. Generally, females were more infested (69%) than the males (31%). Octolasmis angulata occurred mostly on the gills, and the lower side of the gill chambers was more infested (84%) than the upper side (16%) and the left side of gills was also more infested than the right side in both males and females. Further studies are still needed to examine the commensal relationship and its impact on the fishery market of the Red Sea blue crab populations.

  8. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  9. Far red bioluminescence from two deep-sea fishes.

    Science.gov (United States)

    Widder, E A; Latz, M I; Herring, P J; Case, J F

    1984-08-03

    Spectral measurements of red bioluminescence were obtained from the deep-sea stomiatoid fishes Aristostomias scintillans (Gilbert) and Malacosteus niger (Ayres). Red luminescence from suborbital light organs extends to the near infrared, with peak emission at approximately 705 nanometers in the far red. These fishes also have postorbital light organs that emit blue luminescence with maxima between 470 and 480 nanometers. The red bioluminescence may be due to an energy transfer system and wavelength-selective filtering.

  10. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege; Kaartvedt, Stein

    2015-01-01

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013

  11. Sources of the deep water masses in the northern Red Sea

    OpenAIRE

    Said, M.A.

    1998-01-01

    The hydrographic structure of the northern Red Sea indicated that, the surface waters of temperature around 22°C, salinity of 40.1OO%o and dt = 28.1 might sink to depths between 400-500 m by convective overturn, contributing to the formation of the mid-deep Red Sea waters. Below the 500 db depth down to the bottom the water column is stable. The geostrophic circulation clearly indicated an inflow of water from the Red Sea towards NNW, along the main axis of the sea. Arriving at the nort...

  12. Arsenobetaine in the red crab, Chionoecetes opilio

    Energy Technology Data Exchange (ETDEWEB)

    Matsuto, S.; Stockton, R.A.; Irgolic, K.J.

    1986-01-01

    The meat of the red crab, Chionoecetes opilio, caught near the central coast the Japan Sea, was extracted with methanol. The arsenic compounds were isolated from this extract and purified by anion and cation exchange chromatography and thin-layer chromatography. Three arsenic compounds were detected. The major arsenic compound, identified as arsenobetaine by TLC, proton NMR spectroscopy, and high pressure liquid chromatography with an atomic absorption spectrometer as an arsenic-specific detector, accounted for 90% of the total arsenic in the crab meat. The other two arsenic compounds could not be identified because of insufficient amounts available for analysis.

  13. Exploring Archaeal Communities And Genomes Across Five Deep-Sea Brine Lakes Of The Red Sea With A Focus On Methanogens

    KAUST Repository

    Guan, Yue

    2015-12-15

    The deep-sea hypersaline lakes in the Red Sea are among the most challenging, extreme, and unusual environments on the planet Earth. Despite their harshness to life, they are inhabited by diverse and novel members of prokaryotes. Methanogenesis was proposed as one of the main metabolic pathways that drive microbial colonization in similar habitats. However, not much is known about the identities of the methane-producing microbes in the Red Sea, let alone the way in which they could adapt to such poly extreme environments. Combining a range of microbial community assessment, cultivation and omics (genomics, transcriptomics, and single amplified genomics) approaches, this dissertation seeks to fill these gaps in our knowledge by studying archaeal composition, particularly methanogens, their genomic capacities and transcriptomic characteristics in order to elucidate their diversity, function, and adaptation to the deep-sea brines of the Red Sea. Although typical methanogens are not abundant in the samples collected from brine pool habitats of the Red Sea, the pilot cultivation experiment has revealed novel halophilic methanogenic species of the domain Archaea. Their physiological traits as well as their genomic and transcriptomic features unveil an interesting genetic and functional adaptive capacity that allows them to thrive in the unique deep-sea hypersaline environments in the Red Sea.

  14. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    OpenAIRE

    Yum, L. K.; Baumgarten, S.; Röthig, T.; Roder, C.; Roik, Anna; Michell, C.; Voolstra, C. R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20??C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studie...

  15. Structural and functional changes of soft-bottom ecosystems in northern fjords invaded by the red king crab (Paralithodes camtschaticus)

    Science.gov (United States)

    Oug, Eivind; Sundet, Jan H.; Cochrane, Sabine K. J.

    2018-04-01

    The red king crab invaded Norwegian coastal waters in the early 1990s after having been introduced from the northern Pacific to the Russian Barents Sea coast. The crab stock increased rapidly in NE northern Norway in the latter half of the 1990s, and since 2002 there has been a commercial fishery in the eastern invaded areas. The crab is an active predator on benthic fauna especially feeding in deep soft-bottom environments. The present study is a follow-up of previous studies (2007-09) to assess the effects of the king crab predation on soft bottom species composition, ecological functioning and sediment quality. Macroinfauna (> 1 mm) was investigated in three fjord areas in the Varanger region with low, moderate and very high crab abundances, respectively. Compared with data from 1994, most benthic species were markedly reduced in abundance, in particular non-moving burrowing and tube-dwelling polychaetes, bivalves and echinoderms. However, a few species appeared to recover from 2007-09 to 2012. Changes in ecological functioning were assessed using 'biological traits analysis (BTA)'. Following the crab invasion there was a relative reduction of suspension and surface deposit feeding species, an increase in mobile and predatory organisms and an increase in those with planktotrophic larval development. From low to high crab abundances functioning changed from tube-building, deep deposit feeding and fairly large size to free-living, shallow burrowing and rather small size. With regard to sediment reworking, downward and upward conveyors were reduced whereas surficial modifiers increased. The changes imply that sediment biomixing and bioirrigation were reduced leading to a degraded sedimentary environment. It is suggested that establishing relationships between ecosystem functioning and crab abundances may form the basis for estimating ecological costs of the crab invasion. Such knowledge is important for managing the crab in the Barents Sea area being both a non

  16. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.

    Directory of Open Access Journals (Sweden)

    Andrew R Thurber

    Full Text Available Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws, chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs on its 3(rd maxilliped (a mouth appendage which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.

  17. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.

    Science.gov (United States)

    Thurber, Andrew R; Jones, William J; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.

  18. Gonioinfradens paucidentatus (A. Milne Edwards, 1861 (Crustacea, Decapoda, Portunidae: a new alien crab in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    M. CORSINI-FOKA

    2010-11-01

    Full Text Available The first record for the Mediterranean Sea of the Red Sea/Indo-Pacific portunid Gonioinfradens paucidentatus (red swimming crab is documented. A detailed description of the specimens collected at Rodos Island (southeastern Aegean Sea is given, while possible introduction vectors of the species in the area are discussed.

  19. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre

    2015-10-31

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  20. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; Simoes, Marta; Daniels, Camille Arian; Ferreira, Ari J.S.; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B.

    2015-01-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  1. Egg production and shell relationship of the land hermit crab Coenobita scaevola (Anomura: Coenobitidae from Wadi El-Gemal, Red Sea, Egypt

    Directory of Open Access Journals (Sweden)

    Wafaa S. Sallam

    2012-03-01

    Full Text Available The aim of the present study is to characterize the fecundity of the land hermit crab Coenobita scaevola as well as the influence of shell type on fecundity using morphometric relationships. Hermit crabs were collected monthly from January to December 2007 from the protected area of Wadi El-Gemal, at Marsa Alam on the Red Sea, and ovigerous females were selected. Hermit crab wet weight and the gastropod shell weight were recorded. The number of eggs carried by females of several sizes (CL, carapace length, stages of development and egg size were determined. Shells of eight gastropod species were occupied by ovigerous females of C. scaevola. Shells of Nerita undata was the most occupied (65.7%, particularly by individuals falling within the size range 5.0–7.0 mm CL. Only 35 berried females were recorded during May, July and September and the mean fecundity was 679.8 ± 140 eggs. Fecundity was found positively correlated with crab size and shell dimensions. The relationship between fecundity and the internal volume of the occupied shell was ranked as the most correlated. The impact of shell utilization on hermit crab fecundity is discussed.

  2. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment.

    Science.gov (United States)

    Röthig, Till; Yum, Lauren K; Kremb, Stephan G; Roik, Anna; Voolstra, Christian R

    2017-03-17

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at 90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L -1 ) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.

  3. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

    KAUST Repository

    Röthig, Till

    2017-03-17

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.

  4. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea.

    Science.gov (United States)

    Antunes, André; Alam, Intikhab; Simões, Marta Filipa; Daniels, Camille; Ferreira, Ari J S; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B

    2015-10-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  5. [Biology and ecology of the terrestrial hermit crab coenobita scaevola forskål of the Red Sea].

    Science.gov (United States)

    Niggemann, Renate

    1968-06-01

    The terrestrial hermit crab Coenobita scaevola is very common on the coast of the Red Sea. The species depends on the sea for its source of food (wrack-fauna), source of drinking-water and water for moistening gills and abdomen. Only in the supra-litoral zone they find gastropod shells to protect their abdomen against insolation, desiccation and mechanical damage. Coenobita scaevola stays in one place for a long time if good living conditions are available. The time of activity of the juveniles differs from one place to another. Some are diurnal, others are nocturnal. There is no evident relation to the ecological factors. Most of the adults are nocturnal. No Coenobita could be collected in Barber traps. The avoidance of such traps by arthropodes has never been observed before. Coenobita scaevola can live for quite a long time under water of sufficient temperature and salinity. The osmotic regulation of the land-hermit crab differs from that of other shore animals. Coenobita can tolerate a wide range of blood concentrations (25-70‰). It controls the concentration of its blood by selecting water of the appropriate salinity.The static problems of Coenobita are solved by regular movement of the legs and special articulation of the legs.As Coenobita scaevola is a phylogenetically young land animal it carries many inhabitants of marine and terrestrial origin.

  6. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    KAUST Repository

    Roik, Anna Krystyna

    2015-01-20

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  7. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    KAUST Repository

    Roik, Anna Krystyna; Rö thig, Till; Roder, Cornelia; Muller, Paul Joachim; Voolstra, Christian R.

    2015-01-01

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  8. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity.

    Science.gov (United States)

    Roik, Anna; Röthig, Till; Roder, Cornelia; Müller, Paul J; Voolstra, Christian R

    2015-01-01

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  9. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    Directory of Open Access Journals (Sweden)

    Anna Roik

    2015-01-01

    Full Text Available The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C, oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G as well as respiration rates (R were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  10. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

    KAUST Repository

    Antunes, Andre

    2011-05-30

    Summary: The Red Sea harbours approximately 25 deep-sea anoxic brine pools. They constitute extremely unique and complex habitats with the conjugation of several extreme physicochemical parameters rendering them some of the most inhospitable environments on Earth. After 50 years of research mostly driven by chemists, geophysicists and geologists, the microbiology of the brines has been receiving increased interest in the last decade. Recent molecular and cultivation-based studies have provided us with a first glimpse on the enormous biodiversity of the local microbial communities, the identification of several new taxonomic groups, and the isolation of novel extremophiles that thrive in these environments. This review presents a general overview of these unusual biotopes and compares them with other similar environments in the Mediterranean Sea and the Gulf of Mexico, with a focus on their microbial ecology. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Boxer crabs induce asexual reproduction of their associated sea anemones by splitting and intraspecific theft

    Directory of Open Access Journals (Sweden)

    Yisrael Schnytzer

    2017-01-01

    Full Text Available Crabs of the genus Lybia have the remarkable habit of holding a sea anemone in each of their claws. This partnership appears to be obligate, at least on the part of the crab. The present study focuses on Lybia leptochelis from the Red Sea holding anemones of the genus Alicia (family Aliciidae. These anemones have not been found free living, only in association with L. leptochelis. In an attempt to understand how the crabs acquire them, we conducted a series of behavioral experiments and molecular analyses. Laboratory observations showed that the removal of one anemone from a crab induces a “splitting” behavior, whereby the crab tears the remaining anemone into two similar parts, resulting in a complete anemone in each claw after regeneration. Furthermore, when two crabs, one holding anemones and one lacking them, are confronted, the crabs fight, almost always leading to the “theft” of a complete anemone or anemone fragment by the crab without them. Following this, crabs “split” their lone anemone into two. Individuals of Alicia sp. removed from freshly collected L. leptochelis were used for DNA analysis. By employing AFLP (Fluorescence Amplified Fragments Length Polymorphism it was shown that each pair of anemones from a given crab is genetically identical. Furthermore, there is genetic identity between most pairs of anemone held by different crabs, with the others showing slight genetic differences. This is a unique case in which one animal induces asexual reproduction of another, consequently also affecting its genetic diversity.

  12. Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

    KAUST Repository

    Qashqari, Maryam S.

    2017-05-01

    Mangrove plants are a productive ecosystem that provide several benefits for marine organisms and industry. They are considered to be a food source and habitat for many organisms. However, mangrove growth is limited by nutrient availability. According to some recent studies, the dwarfism of the mangrove plants is due to the limitation of nitrogen in the environment. Biological nitrogen fixation is the process by which atmospheric nitrogen is fixed into ammonium. Then, this fixed nitrogen can be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia. The nitrogen fixation rates are calculated by the acetylene reduction assay. The experimental setup will allow us to analyze the effect of crab bioturbation on nitrogen fixing rates. This study will help to better understand the nitrogen dynamics in mangrove ecosystems in Saudi Arabia. Furthermore, this study points out the importance of the sediment microbial community in mangrove trees development. Finally, the role of nitrogen fixing bacteria should be taken in account for future restoration activities.

  13. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

    Science.gov (United States)

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  14. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I.; Marini, Monica; Das, Gobind; Elshenawy, Mohamed; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed Abdelmaboud; Stingl, Ulrich; Merzaban, Jasmeen; Di Fabrizio, Enzo M.; Hamdan, Samir

    2018-01-01

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  15. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  16. Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea

    KAUST Repository

    Wang, Yong; Yang, Jiangke; Lee, Onon; Dash, Swagatika; Lau, Chunkwan; Al-Suwailem, Abdulaziz M.; Wong, Tim; Danchin, Antoine; Qian, Peiyuan

    2011-01-01

    , the temperature of the Atlantis II Deep brine pool in the Red Sea has increased from 56 to 68 °C, whereas the temperature at the nearby Discovery Deep brine pool has remained relatively stable at about 44 °C. In this report, we confirmed the presence of aromatic

  17. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  18. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus and Tanner crab (Chionoecetes bairdi growth, condition, calcification, and survival.

    Directory of Open Access Journals (Sweden)

    William Christopher Long

    Full Text Available Ocean acidification, a decrease in the pH in marine waters associated with rising atmospheric CO2 levels, is a serious threat to marine ecosystems. In this paper, we determine the effects of long-term exposure to near-future levels of ocean acidification on the growth, condition, calcification, and survival of juvenile red king crabs, Paralithodes camtschaticus, and Tanner crabs, Chionoecetes bairdi. Juveniles were reared in individual containers for nearly 200 days in flowing control (pH 8.0, pH 7.8, and pH 7.5 seawater at ambient temperatures (range 4.4-11.9 °C. In both species, survival decreased with pH, with 100% mortality of red king crabs occurring after 95 days in pH 7.5 water. Though the morphology of neither species was affected by acidification, both species grew slower in acidified water. At the end of the experiment, calcium concentration was measured in each crab and the dry mass and condition index of each crab were determined. Ocean acidification did not affect the calcium content of red king crab but did decrease the condition index, while it had the opposite effect on Tanner crabs, decreasing calcium content but leaving the condition index unchanged. This suggests that red king crab may be able to maintain calcification rates, but at a high energetic cost. The decrease in survival and growth of each species is likely to have a serious negative effect on their populations in the absence of evolutionary adaptation or acclimatization over the coming decades.

  19. The biomass of the deep-sea benthopelagic plankton

    Science.gov (United States)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  20. Mantle helium in the Red Sea brines

    International Nuclear Information System (INIS)

    Lupton, J.E.; Weiss, R.F.; Craig, H.

    1977-01-01

    It is stated that He isotope studies of terrestrial samples have shown the existence of two He components that are clearly distinct from atmospheric He. These are termed 'crustal' He and 'mantle' He; the latter was discovered as 'excess 3 He' in deep ocean water and attributed to a flux of primordial He from the mantle. Studies of the 3 He/ 4 He ratio in deep Pacific water and in He trapped in submarine basalt glasses showed that this 'mantle' component is characterised by ratios about ten times the atmospheric ratio and 100 times the ratio in 'crustal' He. Basalt glasses from other deep sea waters also showed similar ratios, and it is indicated that 'mantle' He in areas in which new lithosphere is being formed has a unique and uniform isotopic signature. Measurements of He and Ne are here reported that reveal additional information on the origin of Red Sea brines and their relationship to the Red Sea rifts. (U.K.)

  1. North Sea ecosystem change from swimming crabs to seagulls.

    Science.gov (United States)

    Luczak, C; Beaugrand, G; Lindley, J A; Dewarumez, J-M; Dubois, P J; Kirby, R R

    2012-10-23

    A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea.

  2. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward-blowing summer daily wind jet originating from the Tokar Gap on the Sudanese Red Sea coast, and (2) wintertime westward-blowing wind-jet bands along the northwestern Saudi Arabian coast, which occur every 10-20 days and can last for several days when occurring. Both wind jets can attain wind speeds over 15 m s-1 and contribute significantly to monthly mean surface wind stress, especially in the cross-axis components, which could be of importance to ocean eddy formation in the Red Sea. The wintertime wind jets can cause significant evaporation and ocean heat loss along the northeastern Red Sea coast and may potentially drive deep convection in that region. An initial characterization of these wind jets is presented. Copyright 2009 by the American Geophysical Union.

  3. Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea

    Science.gov (United States)

    Plähn, Olaf; Baschek, Burkard; Badewien, Thomas H.; Walter, Maren; Rhein, Monika

    2002-08-01

    Conductivity-temperature-depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal of intermediate or deep water but cannot ventilate the bottom water. The observations in 1999 showed no evidence for open ocean convection in the Red Sea during the winter 1998/1999. The overflow water from the Gulf of Aqaba was found to be the densest water mass in the northern Red Sea. An anomaly of the chlorofluorocarbon component CFC-12 observed in the Gulf of Aqaba and at the bottom of the Red Sea suggests a strong contribution of this water mass to the renewal of bottom water in the Red Sea. The CFC data obtained during this cruise are the first available for this region. Because of the new signal, it is possible for the first time to subdivide the deep water column into deep and bottom water in the northern Red Sea. The available data set also shows that the outflow water from the Gulf of Suez is not dense enough to reach down to the bottom of the Red Sea but was found about 250 m above the bottom.

  4. 76 FR 47155 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2011-08-04

    ... the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab Rationalization Program... program for the Bering Sea/Aleutian Islands crab fisheries managed under the BSAI Crab Rationalization... Center Web site at http://www.afsc.noaa.gov/ . For further information on the Crab Rationalization...

  5. Red king crab’s bycatch in demersal fishing in the South-Eeastern part of the Barents Sea

    Directory of Open Access Journals (Sweden)

    Stes Aleksej Vladimirovich

    2016-03-01

    Full Text Available In the paper, the data of the red king crab by-catch in demersal fishing in the South-Eastern part of the Barents Sea, including those in the areas forbidden to trawling are presented. The impact of the catch of demersal fish on the distribution of the king crab is analyzed. It was shown that intensive fishing contributes to the growth of crabs’ density, possibly, they are attracted by the wastes of fish factories.

  6. Seasonal cycle of hydrography in the Bab el Mandab region, southern Red Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Saafani, M.A.A.; Shenoi, S.S.C.

    and less than 26 m deep, whereas the large strait on the west of Myyun is about 18 km wide and 300 m deep. The Strait of Bab el Mandab con- nects the Red Sea with the Gulf of Aden in the south. Consistent northwesterly winds blow over the Red Sea except....0 psu) con nes to the top 20 m layer. The cooler inflow is fresher (19.0 C, 36.0 psu) and is from GA. The deeper high saline water has its origin in the northern Red Sea (Maillard 1974; Murray et al 1984; Cember 1988). Keywords. Hydrography; Gulf of Aden...

  7. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong

    2015-10-20

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  8. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  9. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  10. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia; Berumen, Michael L.; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, Abdulaziz M.; Voolstra, Christian R.

    2013-01-01

    from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key

  11. On rational usage of catches during the trap fishery in the Barents Sea

    Directory of Open Access Journals (Sweden)

    Sokolov K. M.

    2017-06-01

    Full Text Available The aim of the work is the search for resources to increase the fullness and complexity of using commercial catches of the red king crab and snow crab in the Barents Sea. The causes of the by-catches during the new trap fishery for commercial crustaceans in the Barents Sea have been analyzed and discards from the catches have been estimated. The main portion of discards is crab processing wastes, including the cephalothorax and internal organs and tissues placed in. According to estimations in 2006–2015 during the Russian trap fishery of red king crab and snow crab, the annual weight of discards ranged from 1.3 to 4.6 thou. t. These years about 2.8 thou. t of biological materials have been thrown back at sea annually. About 85 % of the total mass of wastes in 2006–2015 has been the red king crabs body parts. Due to the high abundance and biomass of the red king crab stock observed in the recent years accompanied by an increase of the snow crab commercial stock, some increase in the total mass of discards of two crabs can be expected, as well as some increase in the portion of discards from snow crab fishery. Current circumstances preventing the full processing of crabs catches are the technical limitations of fishing vessels, as well as the absence of onshore enterprises capable for processing waste from crab fishery. The full use of catches of the red king crab and the snow crab in the Barents Sea could provide the raw materials for production of food products, as well as a wide range of pharmaceuticals for humans and animals.

  12. Notes on a mating event of the deep-sea crab Chaecon affinis in the Gorringe Bank (NE Atlantic)

    Science.gov (United States)

    Hilário, A.; Cunha, M. R.

    2013-08-01

    The deep-water red crab Chaceon affinis is the largest species of the family Geryonidae. Unlike other species of the same genus, C. affinis is not yet subject to intense commercial exploitation but it has been appointed as a new target resource in European waters, in spite of the lack of information on its biology, life cycle and distribution, which is essential to provide advice for a sustainable exploitation. Here we report for the first time the presence of C. affinis in the Gorringe Bank and give the first account of the mating behavior of this species. All mating pairs were found at the interface of the Mediterranean Outflow Water with North Atlantic Deep Water, suggesting that environmental parameters associated with the interface of these water masses may be relevant for mating in this species. The majority of C. affinis was mating which is an indication of synchrony and reproductive seasonality. A biennial female reproductive cycle is hypothesized, involving molting and mating in the first year with subsequent oviposition during the autumn, and spawning during spring of the second year. We suggest that synchrony and seasonality in the reproduction of C. affinis is linked to the formation of phytoplankton blooms in surface waters, with females carrying embryos from autumn to spring, possibly timing the release of planktotrophic larvae to exploit a seasonal peak in surface productivity and its export.

  13. Draft Genome Sequences of TwoThiomicrospiraStrains Isolated from the Brine-Seawater Interface of Kebrit Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan

    2016-03-11

    Two Thiomicrospira strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.

  14. Draft Genome Sequences of TwoThiomicrospiraStrains Isolated from the Brine-Seawater Interface of Kebrit Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan; Haroon, Mohamed; Zhang, Ruifu; Hikmawan, Tyas I.; Stingl, Ulrich

    2016-01-01

    Two Thiomicrospira strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.

  15. Seasonal Overturning Circulation in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  16. Development of a real-time PCR assay for detection of planktonic red king crab (Paralithodes camtschaticus (Tilesius 1815)) larvae

    Science.gov (United States)

    Jensen, Pamela C.; Purcell, Maureen K.; Morado, J. Frank; Eckert, Ginny L.

    2012-01-01

    The Alaskan red king crab (Paralithodes camtschaticus) fishery was once one of the most economically important single-species fisheries in the world, but is currently depressed. This fishery would benefit from improved stock assessment capabilities. Larval crab distribution is patchy temporally and spatially, requiring extensive sampling efforts to locate and track larval dispersal. Large-scale plankton surveys are generally cost prohibitive because of the effort required for collection and the time and taxonomic expertise required to sort samples to identify plankton individually via light microscopy. Here, we report the development of primers and a dual-labeled probe for use in a DNA-based real-time polymerase chain reaction assay targeting the red king crab, mitochondrial gene cytochrome oxidase I for the detection of red king crab larvae DNA in plankton samples. The assay allows identification of plankton samples containing crab larvae DNA and provides an estimate of DNA copy number present in a sample without sorting the plankton sample visually. The assay was tested on DNA extracted from whole red king crab larvae and plankton samples seeded with whole larvae, and it detected DNA copies equivalent to 1/10,000th of a larva and 1 crab larva/5mL sieved plankton, respectively. The real-time polymerase chain reaction assay can be used to screen plankton samples for larvae in a fraction of the time required for traditional microscopial methods, which offers advantages for stock assessment methodologies for red king crab as well as a rapid and reliable method to assess abundance of red king crab larvae as needed to improve the understanding of life history and population processes, including larval population dynamics.

  17. A new species of Fizesereneia Takeda & Tamura, 1980 (Crustacea: Brachyura: Cryptochiridae) from the Red Sea and Oman

    NARCIS (Netherlands)

    Meij, van der S.E.T.; Berumen, M.L.; Paulay, G.

    2015-01-01

    A new species of cryptochirid crab, Fizesereneia panda van der Meij, is described and illustrated based on specimens collected from the scleractinian corals Lobophyllia cf. hemprichii and L. cf. corymbosa from the Farasan Banks, Farasan Islands, and the reefs off Thuwal in the Saudi Arabian Red Sea,

  18. Red Sea circulation during marine isotope stage 5e

    Science.gov (United States)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  19. A Novel Morphometry-Based Protocol of Automated Video-Image Analysis for Species Recognition and Activity Rhythms Monitoring in Deep-Sea Fauna

    Directory of Open Access Journals (Sweden)

    Paolo Menesatti

    2009-10-01

    Full Text Available The understanding of ecosystem dynamics in deep-sea areas is to date limited by technical constraints on sampling repetition. We have elaborated a morphometry-based protocol for automated video-image analysis where animal movement tracking (by frame subtraction is accompanied by species identification from animals’ outlines by Fourier Descriptors and Standard K-Nearest Neighbours methods. One-week footage from a permanent video-station located at 1,100 m depth in Sagami Bay (Central Japan was analysed. Out of 150,000 frames (1 per 4 s, a subset of 10.000 was analyzed by a trained operator to increase the efficiency of the automated procedure. Error estimation of the automated and trained operator procedure was computed as a measure of protocol performance. Three displacing species were identified as the most recurrent: Zoarcid fishes (eelpouts, red crabs (Paralomis multispina, and snails (Buccinum soyomaruae. Species identification with KNN thresholding produced better results in automated motion detection. Results were discussed assuming that the technological bottleneck is to date deeply conditioning the exploration of the deep-sea.

  20. Factors governing the deep ventilation of the Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.; Zhan, Peng; Sofianos, Sarantis S.; Raitsos, Dionysios E.; Qurban, Mohammed; Abualnaja, Yasser; Bower, Amy; Kontoyiannis, Harilaos; Pavlidou, Alexandra; Asharaf T.T., Mohamed; Zarokanellos, Nikolaos; Hoteit, Ibrahim

    2015-01-01

    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red

  1. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  2. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue; Hikmawan, Tyas; Antunes, Andre; Ngugi, David; Stingl, Ulrich

    2015-01-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  3. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David; Stingl, Ulrich

    2018-01-01

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  4. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David

    2018-05-09

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  5. Ruegeria profundi sp. nov. and Ruegeria marisrubri sp. nov., isolated from the brine–seawater interface at Erba Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan; Haroon, Mohamed; Zhang, Ruifu; Dong, Xiaoyan; Wang, Dandan; Liu, Yunpeng; Xun, Weibing; Dong, Xiuzhu; Stingl, Ulrich

    2017-01-01

    Two moderately halophilic marine bacterial strains of the family Rhodobacteraceae, designated ZGT108T and ZGT118T, were isolated from the brine-seawater interface at Erba Deep in the Red Sea (Saudi Arabia). Cells of both strains were aerobic, rod

  6. Use of Hyperspectral Imagery to Assess Cryptic Color Matching in Sargassum Associated Crabs.

    Directory of Open Access Journals (Sweden)

    Brandon J Russell

    Full Text Available Mats of the pelagic macroalgae Sargassum represent a complex environment for the study of marine camouflage at the air-sea interface. Endemic organisms have convergently evolved similar colors and patterns, but quantitative assessments of camouflage strategies are lacking. Here, spectral camouflage of two crab species (Portunus sayi and Planes minutus was assessed using hyperspectral imagery (HSI. Crabs matched Sargassum reflectance across blue and green wavelengths (400-550 nm and diverged at longer wavelengths. Maximum discrepancy was observed in the far-red (i.e., 675 nm where Chlorophyll a absorption occurred in Sargassum and not the crabs. In a quantum catch color model, both crabs showed effective color matching against blue/green sensitive dichromat fish, but were still discernible to tetrachromat bird predators that have visual sensitivity to far red wavelengths. The two species showed opposing trends in background matching with relation to body size. Variation in model parameters revealed that discrimination of crab and background was impacted by distance from the predator, and the ratio of cone cell types for bird predators. This is one of the first studies to detail background color matching in this unique, challenging ecosystem at the air-sea interface.

  7. Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

    KAUST Repository

    Qashqari, Maryam S.

    2017-01-01

    be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia

  8. 76 FR 35772 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2011-06-20

    ... Aleutian Islands Crab Rationalization Program AGENCY: National Marine Fisheries Service (NMFS), National... Tanner Crabs. Amendment 34 amends the Bering Sea and Aleutian Islands Crab Rationalization Program to... for the Crab Rationalization Program are available from the NMFS Alaska Region Web site at http...

  9. Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea

    Science.gov (United States)

    Jung, S. J. A.; Ganssen, G. M.; Davies, G. R.

    2001-12-01

    We present Holocene stable oxygen isotope data from the deep Arabian Sea off Somalia at a decadal time resolution as a proxy for the history of intermediate/upper deep water. These data show an overall δ18O reduction by 0.5‰ between 10 and ˜6.5 kyr B.P. superimposed upon short-term δ18O variations at a decadal-centennial timescale. The amplitude of the decadal variations is 0.3‰ prior, and up to 0.6‰ subsequent, to ˜8.1 kyr B.P. We conclude from modeling experiments that the short-term δ18O variations between 10 and ˜6.5 kyr B.P. most likely document changes in the evaporation-precipitation balance in the central Red Sea. Changes in water temperature and salinity cause the outflowing Red Sea Water to settle roughly 800 m deeper than today.

  10. Draft Genome Sequence of Pseudoalteromonas sp. Strain XI10 Isolated from the Brine-Seawater Interface of Erba Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan; Haroon, Mohamed; Zhang, Ruifu; Hikmawan, Tyas I.; Stingl, Ulrich

    2016-01-01

    Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.

  11. Draft Genome Sequence of Pseudoalteromonas sp. Strain XI10 Isolated from the Brine-Seawater Interface of Erba Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan

    2016-03-10

    Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.

  12. 76 FR 35781 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2011-06-20

    ... Aleutian Islands Crab Rationalization Program; Amendment 37 AGENCY: National Marine Fisheries Service (NMFS... Tanner Crabs (FMP). This action amends the Bering Sea/Aleutian Islands Crab Rationalization Program by... Assessment prepared for the Crab Rationalization Program are available from the NMFS Alaska Region Web site...

  13. 77 FR 44214 - Essential Fish Habitat Components of Fishery Management Plans; 5-Year Review

    Science.gov (United States)

    2012-07-27

    ... Plan Development Team to evaluate information related to deep- sea corals and develop alternatives for... time is necessary to ensure that management actions related to deep sea corals are consistent... herring, skates, Atlantic salmon, and Atlantic deep- sea red crab. The Council is seeking comments about...

  14. Microbial Diversity and Ecology in the Interfaces of the Deep-sea Anoxic Brine Pools in the Red Sea

    KAUST Repository

    Hikmawan, Tyas I.

    2015-05-01

    Deep-sea anoxic brine pools are one of the most extreme ecosystems on Earth, which are characterized by drastic changes in salinity, temperature, and oxygen concentration. The interface between the brine and overlaying seawater represents a boundary of oxic-anoxic layer and a steep gradient of redox potential that would initiate favorable conditions for divergent metabolic activities, mainly methanogenesis and sulfate reduction. This study aimed to investigate the diversity of Bacteria, particularly sulfate-reducing communities, and their ecological roles in the interfaces of five geochemically distinct brine pools in the Red Sea. Performing a comprehensive study would enable us to understand the significant role of the microbial groups in local geochemical cycles. Therefore, we combined culture-dependent approach and molecular methods, such as 454 pyrosequencing of 16S rRNA gene, phylogenetic analysis of functional marker gene encoding for the alpha subunits of dissimilatory sulfite reductase (dsrA), and single-cell genomic analysis to address these issues. Community analysis based on 16S rRNA gene sequences demonstrated high bacterial diversity and domination of Bacteria over Archaea in most locations. In the hot and multilayered Atlantis II Deep, the bacterial communities were stratified and hardly overlapped. Meanwhile in the colder brine pools, sulfatereducing Deltaproteobacteria were the most prominent bacterial groups inhabiting the interfaces. Corresponding to the bacterial community profile, the analysis of dsrA gene sequences revealed collectively high diversity of sulfate-reducing communities. Desulfatiglans-like dsrA was the prevalent group and conserved across the Red Sea brine pools. In addition to the molecular studies, more than thirty bacterial strains were successfully isolated and remarkably were found to be cytotoxic against the cancer cell lines. However, none of them were sulfate reducers. Thus, a single-cell genomic analysis was used to study

  15. AFSC/RACE/SAP/Long: Data from: Effects of Ocean Acidification on Juvenile Red King Crab (Paralithodes camtschaticus) and Tanner Crab (Chionoecetes bairdi) Growth, Condition, Calcification, and Survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is the results of a laboratory experiment. Juvenile red king crab and Tanner crab were reared in individual containers for nearly 200 days in flowing...

  16. Distinct Bacterial Microbiomes Associate with the Deep-Sea Coral Eguchipsammia fistula from the Red Sea and from Aquaria Settings

    KAUST Repository

    Röthig, Till

    2017-08-10

    Microbial communities associated with deep-sea corals are beginning to be studied in earnest and the contribution of the microbiome to host organismal function remains to be investigated. In this regard, the ability of the microbiome to adjust to prevailing environmental conditions might provide clues to its functional importance. In this study, we characterized bacterial community composition associated with the deep-sea coral Eguchipsammia fistula under natural (in situ) and aquaria (ex situ) settings using 16S rRNA gene amplicon sequencing. We compared freshly collected Red Sea coral specimens with those reared for >1 year at conditions that partially differed from the natural environment, in particular regarding increased oxygen and food availability under ex situ conditions. We found substantial differences between the microbiomes associated with corals under both environmental settings. The core microbiome comprised only six bacterial taxa consistently present in all corals, whereas the majority of bacteria were exclusively associated either with freshly collected corals or corals under long-term reared aquaria settings. Putative functional profiling of microbial communities showed that corals in their natural habitat were enriched for processes indicative of a carbon- and nitrogen-limited environment, which might be reflective of differences in diet under in situ and ex situ conditions. The ability of E. fistula to harbor distinct microbiomes under different environmental settings might contribute to the flexibility and phenotypic plasticity of this cosmopolitan coral. Future efforts should further assess the role of these different bacteria in holobiont function, in particular since E. fistula is naturally present in markedly different environments.

  17. Distinct Bacterial Microbiomes Associate with the Deep-Sea Coral Eguchipsammia fistula from the Red Sea and from Aquaria Settings

    KAUST Repository

    Rö thig, Till; Roik, Anna Krystyna; Yum, Lauren; Voolstra, Christian R.

    2017-01-01

    Microbial communities associated with deep-sea corals are beginning to be studied in earnest and the contribution of the microbiome to host organismal function remains to be investigated. In this regard, the ability of the microbiome to adjust to prevailing environmental conditions might provide clues to its functional importance. In this study, we characterized bacterial community composition associated with the deep-sea coral Eguchipsammia fistula under natural (in situ) and aquaria (ex situ) settings using 16S rRNA gene amplicon sequencing. We compared freshly collected Red Sea coral specimens with those reared for >1 year at conditions that partially differed from the natural environment, in particular regarding increased oxygen and food availability under ex situ conditions. We found substantial differences between the microbiomes associated with corals under both environmental settings. The core microbiome comprised only six bacterial taxa consistently present in all corals, whereas the majority of bacteria were exclusively associated either with freshly collected corals or corals under long-term reared aquaria settings. Putative functional profiling of microbial communities showed that corals in their natural habitat were enriched for processes indicative of a carbon- and nitrogen-limited environment, which might be reflective of differences in diet under in situ and ex situ conditions. The ability of E. fistula to harbor distinct microbiomes under different environmental settings might contribute to the flexibility and phenotypic plasticity of this cosmopolitan coral. Future efforts should further assess the role of these different bacteria in holobiont function, in particular since E. fistula is naturally present in markedly different environments.

  18. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong; Cao, Huiluo; Zhang, Guishan; Bougouffa, Salim; Lee, On On; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan

    2013-01-01

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past

  19. POSSIBILITIES OF CULTURING BIG SEA CRABS (LOBSTERS, SPINY LOBSTERS

    Directory of Open Access Journals (Sweden)

    Ivančica Strunjak-Perović

    1999-09-01

    Full Text Available By the end of the 19 th century an experimental work on culturing big sea crabs began in Europe and North America. Great demand for their flesh as well as their high price urged many institutions to explore the possibilities of a commercial production in varios parts of the world. Lobsters (Homarus sp. were mainly used for experimenting, so that the most data available refer to them. Because of the complicated larva stage spiny lobster culturing is mainly being carried out in experimental circumstances. Despite the promissing results this aquacultural activity faces many problems (long time until they achieve a commercial size, loss of eggs due to stress sensitivity during the process of moulting, canibalism. In order to minimize these problems various researches are being carried out, like temperature influence, influence of light, way of feeding, hormonal regulation of moulting frequency. Although both lobster and spiny lobsters live in the Adriatic Sea, there are no data on their culturing in our contry. Concernig conditions in our sea there are realistic possibilities for crabs production development. In this way this delicacy would be more affordable to broader population and could be a highly rated export product.

  20. The larval development of the red mangrove crab Sesarma meinerti ...

    African Journals Online (AJOL)

    The larval stages of the red mangrove crab Sesarma meinerti de Man were reared in the laboratory. Larval development consists of five zoeal stages and one megalopa. Zoeal development lasts an average of 25 days at 25°C. The external morphology of larvae is described in detail and their relationship with larvae of.

  1. Formation and spreading of Red Sea Outflow Water in the Red Sea

    Science.gov (United States)

    Zhai, Ping; Bower, Amy S.; Smethie, William M.; Pratt, Larry J.

    2015-09-01

    Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September-October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.

  2. AFSC/RACE/SAP/Cummiskey: Red king crab sonic tagging and dive database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is data from a long-term monitoring project which utilized sonic tags to follow aggregations of red king crab in Womens Bay near Kodiak Alaska. The database...

  3. AFSC/RACE/SAP/Swiney: Red king crab fecundity and embryo and larval quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Stock assessment of Alaskan red king crab, Paralithodes camtschaticus (Tilesius, 1815), can be improved by incorporating reproductive output, which requires an...

  4. Movement patterns of juvenile whale sharks tagged at an aggregation site in the Red Sea.

    Directory of Open Access Journals (Sweden)

    Michael L Berumen

    Full Text Available Conservation efforts aimed at the whale shark, Rhincodon typus, remain limited by a lack of basic information on most aspects of its ecology, including global population structure, population sizes and movement patterns. Here we report on the movements of 47 Red Sea whale sharks fitted with three types of satellite transmitting tags from 2009-2011. Most of these sharks were tagged at a single aggregation site near Al-Lith, on the central coast of the Saudi Arabian Red Sea. Individuals encountered at this site were all juveniles based on size estimates ranging from 2.5-7 m total length with a sex ratio of approximately 1∶1. All other known aggregation sites for juvenile whale sharks are dominated by males. Results from tagging efforts showed that most individuals remained in the southern Red Sea and that some sharks returned to the same location in subsequent years. Diving data were recorded by 37 tags, revealing frequent deep dives to at least 500 m and as deep as 1360 m. The unique temperature-depth profiles of the Red Sea confirmed that several whale sharks moved out of the Red Sea while tagged. The wide-ranging horizontal movements of these individuals highlight the need for multinational, cooperative efforts to conserve R. typus populations in the Red Sea and Indian Ocean.

  5. Movement patterns of juvenile whale sharks tagged at an aggregation site in the Red Sea.

    Science.gov (United States)

    Berumen, Michael L; Braun, Camrin D; Cochran, Jesse E M; Skomal, Gregory B; Thorrold, Simon R

    2014-01-01

    Conservation efforts aimed at the whale shark, Rhincodon typus, remain limited by a lack of basic information on most aspects of its ecology, including global population structure, population sizes and movement patterns. Here we report on the movements of 47 Red Sea whale sharks fitted with three types of satellite transmitting tags from 2009-2011. Most of these sharks were tagged at a single aggregation site near Al-Lith, on the central coast of the Saudi Arabian Red Sea. Individuals encountered at this site were all juveniles based on size estimates ranging from 2.5-7 m total length with a sex ratio of approximately 1∶1. All other known aggregation sites for juvenile whale sharks are dominated by males. Results from tagging efforts showed that most individuals remained in the southern Red Sea and that some sharks returned to the same location in subsequent years. Diving data were recorded by 37 tags, revealing frequent deep dives to at least 500 m and as deep as 1360 m. The unique temperature-depth profiles of the Red Sea confirmed that several whale sharks moved out of the Red Sea while tagged. The wide-ranging horizontal movements of these individuals highlight the need for multinational, cooperative efforts to conserve R. typus populations in the Red Sea and Indian Ocean.

  6. Movement patterns of juvenile whale sharks tagged at an aggregation site in the Red Sea

    KAUST Repository

    Berumen, Michael L.

    2014-07-30

    Conservation efforts aimed at the whale shark, Rhincodon typus, remain limited by a lack of basic information on most aspects of its ecology, including global population structure, population sizes and movement patterns. Here we report on the movements of 47 Red Sea whale sharks fitted with three types of satellite transmitting tags from 2009-2011. Most of these sharks were tagged at a single aggregation site near Al-Lith, on the central coast of the Saudi Arabian Red Sea. Individuals encountered at this site were all juveniles based on size estimates ranging from 2.5-7 m total length with a sex ratio of approximately 1:1. All other known aggregation sites for juvenile whale sharks are dominated by males. Results from tagging efforts showed that most individuals remained in the southern Red Sea and that some sharks returned to the same location in subsequent years. Diving data were recorded by 37 tags, revealing frequent deep dives to at least 500 m and as deep as 1360 m. The unique temperature-depth profiles of the Red Sea confirmed that several whale sharks moved out of the Red Sea while tagged. The wide-ranging horizontal movements of these individuals highlight the need for multinational, cooperative efforts to conserve R. typus populations in the Red Sea and Indian Ocean. © 2014 Berumen et al.

  7. Sea turtle symbiosis facilitates social monogamy in oceanic crabs via refuge size.

    Science.gov (United States)

    Pfaller, Joseph B; Gil, Michael A

    2016-09-01

    The capacity for resource monopolization by individuals often dictates the size and composition of animal groups, and ultimately, the adoption of mating strategies. For refuge-dwelling animals, the ability (or inability) of individuals to monopolize refuges should depend on the relative size of the refuge. In theory, groups should be larger and more inclusive when refuges are large, and smaller and more exclusive when refuges are small, regardless of refuge type. We test this prediction by comparing the size and composition of groups of oceanic crabs (Planes minutus) living on plastic flotsam and loggerhead sea turtles. We found that (i) surface area of refuges (barnacle colonies on flotsam and supracaudal space on turtles) is a better predictor of crab number than total surface area and (ii) flotsam and turtles with similar refuge surface area host a similar number (1-2) and composition (adult male-female pairs) of crabs. These results indicate that group size and composition of refuge-dwelling animals are modulated by refuge size and the capacity for refuge monopolization. Moreover, these results suggest that sea turtle symbiosis facilitates social monogamy in oceanic crabs, providing insights into how symbiosis can promote specific mating strategies. © 2016 The Author(s).

  8. AFSC/RACE/SAP: Detailed Crab Data From NOAA Fisheries Service 2012 Chukchi Sea Bottom Trawl Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detailed crab data collected from the 2012 NOAA/NMFS/AFSC/RACE crab-groundfish bottom trawl survey of the Chukchi Sea. 71 survey stations were...

  9. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  10. Stratification and space-time variability of Red Sea hot brines

    Energy Technology Data Exchange (ETDEWEB)

    Monin, A S; Plakhin, E A

    1982-11-01

    The results of hydrophysical studies in Red Sea hot brines prefaced with historical information are presented. The CTD-recorder readings show stratification of the upper brine in the Atlantis II Deep into meter-scale layers, in agreement with laboratory findings. Repeated soundings with the AIST CTD meter of the upper brine interface in the Valdivia Deep recorded internal waves of 3 to 4-h periods. The observations show the different nature of brines in the four deeps studied and the lack of contact between the brine layers of the Chain and Discovery deeps.

  11. Seasonality of Red Sea Mixed-Layer Depth and Density Budget

    Science.gov (United States)

    Kartadikaria, A. R.; Cerovecki, I.; Krokos, G.; Hoteit, I.

    2016-02-01

    The Red Sea is an active area of water mass formation. Dense water initially formed in the northern Red Sea, in the Gulf of Aqaba and the Gulf of Suez, spreads southward and finally flows to the open ocean through the Gulf of Aden via the narrow strait of Bab Al Mandeb. The signature of this outflow can be traced until the southern Indian Ocean, and is characterized by potential density of σθ ≈ 27.4. This water mass is important because it represents a significant source of heat and salt for the Indian Ocean. Using a high-resolution 1km regional MITgcm ocean model for the period 1992-2001 configured for the Red Sea, we examine the spatio-temporal characteristics of water mass formation inside the basin by analyzing closed and complete temperature and salinity budgets. The deepest mixed-layers (MLD) always develop in the northern part of the basin where surface ocean buoyancy loss leads to the Red Sea Intermediate and Deep Water formation. As this water is advected south, it is strongly modified by diapycnal mixing of heat and salt.

  12. A new species of Fizesereneia Takeda & Tamura, 1980 (Crustacea: Brachyura: Cryptochiridae) from the Red Sea and Oman

    KAUST Repository

    Van Der Meij, Sancia E T; Berumen, Michael L.; Paulay, Gustav

    2015-01-01

    A new species of cryptochirid crab, Fizesereneia panda van der Meij, is described and illustrated based on specimens collected from the scleractinian corals Lobophyllia cf. hemprichii and L. cf. corymbosa from the Farasan Banks, Farasan Islands, and the reefs off Thuwal in the Saudi Arabian Red Sea, and from Symphyllia recta from reefs in the Gulf of Oman. This is the second cryptochirid species with the Red Sea as type locality. It can be separated from its congeners by the subrectangular carapace, raised midline and the complete division of the carapace depressions, and reddish black colour pattern of these concavities in live specimens. This new species is the seventh assigned to Fizesereneia. A DNA barcode for the new species has been deposited in GenBank. Copyright © 2015 Magnolia Press.

  13. A new species of Fizesereneia Takeda & Tamura, 1980 (Crustacea: Brachyura: Cryptochiridae) from the Red Sea and Oman

    KAUST Repository

    Van Der Meij, Sancia E T

    2015-03-16

    A new species of cryptochirid crab, Fizesereneia panda van der Meij, is described and illustrated based on specimens collected from the scleractinian corals Lobophyllia cf. hemprichii and L. cf. corymbosa from the Farasan Banks, Farasan Islands, and the reefs off Thuwal in the Saudi Arabian Red Sea, and from Symphyllia recta from reefs in the Gulf of Oman. This is the second cryptochirid species with the Red Sea as type locality. It can be separated from its congeners by the subrectangular carapace, raised midline and the complete division of the carapace depressions, and reddish black colour pattern of these concavities in live specimens. This new species is the seventh assigned to Fizesereneia. A DNA barcode for the new species has been deposited in GenBank. Copyright © 2015 Magnolia Press.

  14. Studies of the reproductive biology of deep-sea megabenthos III. The deep-sea commensal species Epizoanthus paguriphilus (zoanthidea, anthozoa) and Parapagurus pilosimanus (paguroidea, crustacea)

    International Nuclear Information System (INIS)

    Muirhead, A.; Tyler, P.A.

    1984-01-01

    This report is the third in a series concerned with the biological processes of deep-sea megainvertebrates. The research programme aims to aid long term planning of nuclear waste disposal by providing information on the nature and rates of reproductive activities of deep sea invertebrates from several different phylogenetic groups. This information serves three functions:- Firstly, baseline information is provided concerning processes at or around the sediment/water interface. Secondly, knowledge of the actual mode of reproduction indicates the extent to which the biota could be involved in recycling leaked radioactive heavy metals to different areas of the environment via their reproductive processes. The third function fulfilled by this programme is to provide information on the rates at which these processes occur. Evaluation of these aspects of the life cycles of the megainvertebrates of a specific site will indicate the potential role of a large proportion of the biota inhabiting that site following leakage of dumped material. This report is concerned with the growth and modes of reproduction of a hermit crab, Parapagurus pilosimanus and the zoanthids Epizoanthus paguriphilus and E. abyssorum with which it lives at different depths of the N. Atlantic. (U.K.)

  15. Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea

    KAUST Repository

    Wang, Yong

    2011-04-28

    Hydrothermal ecosystems have a wide distribution on Earth and many can be found in the basin of the Red Sea. Production of aromatic compounds occurs in a temperature window of 60-150 °C by utilizing organic debris. In the past 50 years, the temperature of the Atlantis II Deep brine pool in the Red Sea has increased from 56 to 68 °C, whereas the temperature at the nearby Discovery Deep brine pool has remained relatively stable at about 44 °C. In this report, we confirmed the presence of aromatic compounds in the Atlantis II brine pool as expected. The presence of the aromatic compounds might have disturbed the microbes in the Atlantis II. To show shifted microbial communities and their metabolisms, we sequenced the metagenomes of the microbes from both brine pools. Classification based on metareads and the 16S rRNA gene sequences from clones showed a strong divergence of dominant bacterial species between the pools. Bacteria capable of aromatic degradation were present in the Atlantis II brine pool. A comparison of the metabolic pathways showed that several aromatic degradation pathways were significantly enriched in the Atlantis II brine pool, suggesting the presence of aromatic compounds. Pathways utilizing metabolites derived from aromatic degradation were also significantly affected. In the Discovery brine pool, the most abundant genes from the microbes were related to sugar metabolism pathways and DNA synthesis and repair, suggesting a different strategy for the utilization of carbon and energy sources between the Discovery brinse pool and the Atlantis II brine pool. © 2011 International Society for Microbial Ecology. All rights reserved.

  16. New Observations of the Gulf of Aden Intermediate Water Intrusion into the Red Sea.

    Science.gov (United States)

    Bower, A.; Abualnaja, Y.

    2012-04-01

    The three-layer exchange flow between the Red Sea and the Indian Ocean during summer is characterized by a thick, northward intrusion of relatively cold, low-salinity and low in dissolved oxygen (Water (GAIW), sandwiched between two thin layers of outflow water. The flux of GAIW into the Red Sea is important in the heat, freshwater and nutrient budgets of the Red Sea, but the structure and pathways of the intrusion are not well-known due to a paucity of hydrographic and direct velocity observations. A research cruise was executed at the eastern side of the Red Sea during September-October 2011 to conduct the first large-scale survey of the intrusion. This mission is part of a series of expeditions in the Red Sea designed to investigate the seasonal Red Sea circulation. Surprisingly, the GAIW intrusion was observed to stretch nearly the entire length of the Red Sea (~1500 km) as a narrow eastern boundary current with subsurface velocity maximum of 0.1-0.3 m/s in the depth range 50-100 m. The intruding layer is weakly stratified compared to the background, possibly an indication of strong vertical mixing as it flows through the strait. Some GAIW was observed to enter deep channels in a coral reef bank (Farasan Banks) located in the southeastern Red Sea, and to enter the Red Sea interior, the latter possibly due to interactions between the boundary current and mesoscale eddies. The pathways and erosion of the GAIW intrusion will likely have major implications for the spatial distribution of biological productivity.

  17. 78 FR 28523 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2013-05-15

    ...; Bering Sea and Aleutian Islands Crab Rationalization Program AGENCY: National Marine Fisheries Service... Rationalization Program (CR Program) by establishing a process whereby holders of regionally designated individual... scope of this action. Comment 9: One comment generally supported the Crab Rationalization Program...

  18. Microbial ecology of deep-sea hypersaline anoxic basins

    KAUST Repository

    Merlino, Giuseppe

    2018-05-09

    Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated condition. Here, we review the current knowledge on the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.

  19. Unique Prokaryotic Consortia in Geochemically Distinct Sediments from Red Sea Atlantis II and Discovery Deep Brine Pools

    Science.gov (United States)

    Siam, Rania; Mustafa, Ghada A.; Sharaf, Hazem; Moustafa, Ahmed; Ramadan, Adham R.; Antunes, Andre; Bajic, Vladimir B.; Stingl, Uli; Marsis, Nardine G. R.; Coolen, Marco J. L.; Sogin, Mitchell; Ferreira, Ari J. S.; Dorry, Hamza El

    2012-01-01

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction. PMID:22916172

  20. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    Directory of Open Access Journals (Sweden)

    Rania Siam

    Full Text Available The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The 'polyextremophiles' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA revealed that one sulfur (S-rich Atlantis II and one nitrogen (N-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1, group II was characteristic for the N-rich Discovery sample (DD-1, and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  1. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    KAUST Repository

    Siam, Rania

    2012-08-20

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The \\'polyextremophiles\\' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  2.  The diversity of horseshoe crabs - protecting an endangered resource

    DEFF Research Database (Denmark)

    Funch, Peter; Cong, Nguyen Van; Intanai, Itsara

    Horseshoe crabs are fascinating inhabitants of the sea represented by four living species, where three species live in Asia, while the fourth species lives on the East coast of North America. Ancient fossils, dating back to Ordovician 445 million years ago looks so similar to recent horseshoe crabs...... that people often call them "living fossils". Unfortunately, the existing populations are threatened by overfishing of the adults as well as by destruction and pollution of the beaches where they mate and deposit their eggs. All four extant species are on IUCN Red List of Threatened Species. The blue blood...... of the horseshoe crabs saves thousands of human lives every year. An extract from their blood are used worldwide to determine whether medicine, blood donations, and medical supplies are infected by bacteria or contain toxins. Horseshoe crabs are also fished for human consumption in Asia, are heavily used as bait...

  3. Red Sea Outflow Experiment (REDSOX): Descent and initial spreading of Red Sea Water in the northwestern Indian Ocean

    Science.gov (United States)

    Bower, A.; Johns, W.; Peters, H.; Fratantoni, D.

    2003-04-01

    Two comprehensive surveys were carried out during 2001 to investigate the dense overflow and initial spreading of Red Sea Water (RSW) in the Gulf of Aden. The cruises were timed to coincide with the climatological maximum (February) and minimum (August) periods of outflow transport. The surveys included high-resolution CTD/lowered ADCP/shipboard ADCP observations in the descending plume and in the western gulf, and trajectories from 50 acoustically-tracked RAFOS floats released at the center of the equilibrated RSW (650 m). The measurements reveal a complicated descending plume structure in the western gulf with three main pathways for the high salinity RSW. Different mixing intensities along these pathways lead to variable penetration depths of the Red Sea plume between 450-900 m in the Gulf of Aden. The observations also revealed the hydrographic and velocity structure of large, energetic, deep-reaching mesoscale eddies in the gulf that fundamentally impact the spreading rates and pathways of RSW. Both cyclones and anticyclones were observed, with horizontal scales up to 250 km and azimuthal speeds as high as 0.5 m/s. The eddies appear to reach nearly to the sea floor and entrain RSW from the western gulf at mid-depth. Post-cruise analysis of SeaWiffs imagery suggests that some of these eddies form in the Indian Ocean and propagate into the gulf.

  4. Baselines and Comparison of Coral Reef Fish Assemblages in the Central Red Sea

    KAUST Repository

    Kattan, Alexander

    2014-12-01

    In order to properly assess human impacts and appropriate restoration goals, baselines of pristine conditions on coral reefs are required. In Saudi Arabian waters of the central Red Sea, widespread and heavy fishing pressure has been ongoing for decades. To evaluate this influence, we surveyed the assemblage of offshore reef fishes in both this region as well as those of remote and largely unfished southern Sudan. At comparable latitudes, of similar oceanographic influence, and hosting the same array of species, the offshore reefs of southern Sudan provided an ideal location for comparison. We found that top predators (jacks, large snappers, groupers, and others) dominated the reef fish community biomass in Sudan’s deep south region, resulting in an inverted (top-heavy) biomass pyramid. In contrast, the Red Sea reefs of central Saudi Arabia exhibited the typical bottom-heavy pyramid and show evidence for trophic cascades in the form of mesopredator release. Biomass values from Sudan’s deep south are quite similar to those previously reported in the remote and uninhabited Northwest Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other remote Pacific islands and atolls. The findings of this study suggest that heavy fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia while simultaneously making a strong case for protection in the form of marine protected areas in the southern Sudanese Red Sea.

  5. Sorption of americium and neptunium by deep-sea sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.

    1983-01-01

    The sorption and desorption of americium and neptunium by a wide range of deep-sea sediments from natural sea water at 4 0 C has been studied using a carefully controlled batch technique. All the sediments studied should form an excellent barrier to the migration of americium since distribution coefficients were uniformly greater than 10 5 and the sorption-desorption reaction may not be reversible. The sorption of neptunium was reversible and, except for one red clay, the distribution coefficients were greater than 10 3 for all the sediments investigated. Nevertheless the migration of neptunium should also be effectively retarded by most deep-sea sediments even under relatively oxidizing conditions. The neptunium in solution remained in the V oxidation state throughout the experiments. Under the experimental conditions used colloidal americium was trapped by the sediment and solubility did not seem to be the controlling factor in the desorption of americium. (Auth.)

  6. Metagenomic studies of the Red Sea.

    Science.gov (United States)

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2016-02-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and

  7. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M.; Irigoien, Xabier

    2015-01-01

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  8. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2015-12-15

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  9. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  10. Climatology of sea breezes along the Red Sea coast of Saudi Arabia

    KAUST Repository

    Khan, Basit

    2018-04-25

    Long-term near-surface observations from five coastal stations, high-resolution model data from Modern Era Retrospective-Analysis for Research and Applications (MERRA) and high-resolution daily sea surface temperature (SST) from National Ocean and Atmospheric Administration (NOAA) are used to investigate the climatology of sea breezes over the eastern side of the Red Sea region. Results show existence of separate sea breeze systems along different segments of the Red Sea coastline. Based on the physical character and synoptic influences, sea breezes in the Red Sea are broadly divided into three regions: the north and the middle Red Sea (NMRS), the Red Sea convergence zone (RSCZ) and the southern Red Sea (SRS) regions. On average, sea breezes developed on 67% of days of the 10-year study period. Although sea breezes occur almost all year, this mesoscale phenomenon is most frequent from May to October (78% of the total sea breeze days). The sea breeze frequency increases from north to south (equatorwards), and sea breeze characteristics appear to vary both temporally and spatially. In addition to land-sea thermal differential, coastline shape, latitude and topography, the prevailing northwesterly at NMRS region, the convergence of northwesterly and southeasterly wind system at RSCZ region and the northeast and southwest monsoon at SRS region play an important role in defining the sea breeze characteristics over the Red Sea.

  11. Sexual maturity of the deep-sea red crab Chaceon notialis Manning & Holthuis, 1989 (Brachyura: Geryonidae in southern Brazil Madurez sexual del cangrejo rojo de profundidad Chaceon notialis Manning & Holthuis, 1989 (Brachyura: Geryonidae al sur de Brasil

    Directory of Open Access Journals (Sweden)

    Rodrigo Sant'Ana

    2009-01-01

    Full Text Available The red crab Chaceon notialis is one of the three deep-sea crab species currently exploited in Brazil. The red crab fishery started in 1998 with foreign vessels that, as of 2000, have been extensively moni-tored by observers and tracked by satellite. A management plan implemented in 2005 was based only on bio-mass dynamics, as biological knowledge of the resource was limited at that date. Samples taken aboard were used to determine size at first sexual maturity for males and females by studying the allometric growth of the chelae and abdomen in relation to the carapace width (CW, the proportion of females with opened vulvae and eggs in the pleopods, and males showing copula marks on the first ambulatory legs. Morphometric maturity was attained, on average, at 8.9 cm CW (males and 8.8 cm CW (females. The CW5% was estimated to be 6.9 and 9.7 cm CW for females, considering the vulva condition and eggs in the pleopods, respectively, and 8.4 cm CW for males. The maximum estimated proportions of ovigerous females and males with copula marks by size class were 0.8 and 0.7, respectively, suggesting an annual reproductive cycle for the species, both at the populational and individuals levels. The size composition analysis showed that up to 97% of the females caught in the fishery were immature. Given these results, enhancing trap selectivity and minimizing the mortality of ovigerous females should be considered as new and immediate goals for the management of the resource.El cangrejo-rojo Chaceon notialis corresponde a una de las tres especies de cangrejos de profundidad que actualmente se explotan en Brasil. La pesca de cangrejo-rojo comenzó en el año 1998 por barcos extranjeros que, desde 2000 fueron intensamente vigilados por observadores y rastreados por satélites. En el año de 2005 se implemento un plan de manejo, considerando solamente el estudio de la dinámica de la biomasa del recurso, ya que el conocimiento biológico todavía era limitado

  12. AFSC/RACE/SAP/Long: Data from: Habitat, predation, growth, and coexistence: Could interactions between juvenile red and blue king crabs limit blue king crab productivity?

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is from a series of laboratory experiments examining the interactions between red and blue king crabs and habitat. We examined how density and predator...

  13. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea.

    KAUST Repository

    Sagar, Sunil; Esau, Luke; Hikmawan, Tyas I.; Antunes, Andre; Holtermann, Karie; Stingl, Ulrich; Bajic, Vladimir B.; Kaur, Mandeep

    2013-01-01

    High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes

  14. 75 FR 43147 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2010-07-23

    ... of a 2.67-percent fee for cost recovery under the Bering Sea and Aleutian Islands Crab... for the 2010/2011 crab fishing year so they can calculate the required payment for cost recovery fees...-Stevens Act). The Program includes a cost recovery provision to collect fees to recover the actual costs...

  15. 78 FR 46577 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2013-08-01

    ... of a 0.69-percent fee for cost recovery under the Bering Sea and Aleutian Islands Crab... for the 2013/2014 crab fishing year so they can calculate the required payment for cost recovery fees... Program includes a cost recovery provision to collect fees to recover the actual costs directly related to...

  16. 76 FR 43658 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2011-07-21

    ... of a 1.23-percent fee for cost recovery under the Bering Sea and Aleutian Islands Crab... for the 2011/2012 crab fishing year so they can calculate the required payment for cost recovery fees...-Stevens Act). The Program includes a cost recovery provision to collect fees to recover the actual costs...

  17. Climate change facilitated range expansion of the non-native angular crab Goneplax rhomboides into the North Sea

    NARCIS (Netherlands)

    Neumann, H.; Boois, de I.J.; Kroncke, I.; Reiss, H.

    2013-01-01

    The angular crab Goneplax rhomboides is native to the north-eastern Atlantic and Mediterranean Sea. It has rarely been reported from the North Sea, with no evidence of sustainable populations. Compiled survey data, however, revealed an increasing abundance of this species in the North Sea since

  18. AFSC/RACE/SAP: Detailed Crab Data From NOAA Fisheries Service Annual Eastern Bering Sea Summer Bottom Trawl Surveys 1975 - 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detailed crab data collected from the annual NOAA/NMFS/AFSC/RACE crab-groundfish bottom trawl survey of the eastern Bering Sea continental...

  19. Deep-sea Hexactinellida (Porifera) of the Weddell Sea

    Science.gov (United States)

    Janussen, Dorte; Tabachnick, Konstantin R.; Tendal, Ole S.

    2004-07-01

    New Hexactinellida from the deep Weddel Sea are described. This moderately diverse hexactinellid fauna includes 14 species belonging to 12 genera, of which five species and one subgenus are new to science: Periphragella antarctica n. sp., Holascus pseudostellatus n. sp., Caulophacus (Caulophacus) discohexactinus n. sp., C. ( Caulodiscus) brandti n. sp., C. ( Oxydiscus) weddelli n. sp., and C. ( Oxydiscus) n. subgen. So far, 20 hexactinellid species have been reported from the deep Weddell Sea, 15 are known from the northern part and 10 only from here, while 10 came from the southern area, and five of these only from there. However, this apparent high "endemism" of Antarctic hexactinellid sponges is most likely the result of severe undersampling of the deep-sea fauna. We find no reason to believe that a division between an oceanic and a more continental group of species exists. The current poor database indicates that a substantial part of the deep hexactinellid fauna of the Weddell Sea is shared with other deep-sea regions, but it does not indicate a special biogeographic relationship with any other ocean.

  20. First laboratory insight on the behavioral rhythms of the bathyal crab Geryon longipes

    Science.gov (United States)

    Nuñez, J. D.; Sbragaglia, V.; García, J. A.; Company, J. B.; Aguzzi, J.

    2016-10-01

    The deep sea is the largest and at the same time least explored biome on Earth, but quantitative studies on the behavior of bathyal organisms are scarce because of the intrinsic difficulties related to in situ observations and maintaining animals in aquaria. In this study, we reported, for the first time, laboratory observations on locomotor rhythms and other behavioral observations (i.e. feeding, exploring and self-grooming) for the bathyal crab Geryon longipes. Crabs were collected on the middle-lower slope (720-1750 m) off the coast of Blanes (Spain). Inertial (18 h) water currents and monochromatic blue (i.e. 470 nm) light-darkness (24 h) cycles were simulated in two different experiments in flume tanks endowed with burrows. Both cycles were simulated in order to investigate activity rhythms regulation in Mediterranean deep-sea benthos. Crabs showed rhythmic locomotor activity synchronized to both water currents and light-darkness cycles. In general terms, feeding and exploring behaviors also followed the same pattern. Results presented here indicate the importance of local inertial (18 h) periodicity of water currents at the seabed as a temporal cue regulating the behavior of bathyal benthic fauna in all continental margin areas where the effects of tides is negligible.

  1. Lake Afrera, a structural depression in the Northern Afar Rift (Red Sea).

    Science.gov (United States)

    Bonatti, Enrico; Gasperini, Elia; Vigliotti, Luigi; Lupi, Luca; Vaselli, Orlando; Polonia, Alina; Gasperini, Luca

    2017-05-01

    The boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs. Acoustic bathymetric profiles show ≈80 m deep canyons parallel to the NNW shore of the lake, part of a system of extensional normal faults striking parallel to the Red Sea. This system is intersected by oblique structures, some with strike-slip earthquakes, in what might evolve into a transform boundary. Given that the lake's surface lies today about 112 m below sea level, the depressed (minus ≈190 m below sea level) lake's bottom area may be considered the equivalent of the "nodal deep" in slow-slip oceanic transforms. The chemistry of the lake is compatible with the water having originated from hydrothermal liquids that had reacted with evaporites and basalts, rather than residual from evaporation of sea water. Bottom sediments include calcitic grains, halite and gypsum, as well as ostracod and diatom tests. The lake's level appears to have dropped by over 10 m during the last ≈50 years, continuing a drying up trend of the last few thousand years, after a "wet" stage 9,800 and 7,800 years before present when according to Gasse (1973) Lake Afrera covered an area several times larger than at present. This "wet" stage corresponds to an early Holocene warm-humid climate that prevailed in Saharan and Sub Saharan Africa. Lake Abhé, located roughly 250 km south of Afrera, shows similar climate-driven oscillations of its level.

  2. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  3. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  4. Shear-controlled evolution of the Red Sea: pull apart model

    Science.gov (United States)

    Makris, J.; Rihm, R.

    1991-11-01

    continued and the oceanisation was accentuated, while in the north the eastern flank developed en-echelon fractures of "Aqaba-orientation". Seafloor spreading commenced 5 Ma ago at parts of the central and southern Red Sea. This final stage is also responsible for the bathymetry with maximum depth values of 3000 m in the seafloor spread areas and a much shallower basin in the north. The metalliferous "Red Sea deeps" are either associated with this infant mid-ocean ridge or with the en-echelon fractures in the north.

  5. The Red Sea and Gulf of Aden Basins

    Science.gov (United States)

    Bosworth, William; Huchon, Philippe; McClay, Ken

    2005-10-01

    normal (N60°E) to highly oblique and parallel to the Aqaba-Levant transform (N15°E). North of Suez in Egypt the rift system became emergent, perhaps due to minor compression of the Sinai sub-plate, and the marine connection to the Mediterranean Sea became restricted but not terminated. Red Sea sedimentation changed from predominantly open marine to evaporitic, although deep water persisted in many regions. A third phase of magmatism commenced, locally in Ethiopia but predominantly in western Saudi Arabia and extending north to Harrat Ash Shama and Jebel Druse in Jordan, Lebanon, and Syria. At ˜10 Ma, the Sheba Ridge rapidly propagated west over 400 km from the central Gulf of Aden to the Shukra al Sheik discontinuity. Oceanic spreading followed in the south-central Red Sea at ˜5 Ma. This corresponded in time to an important unconformity throughout the Red Sea basin and along the margins of the Gulf of Aden, coeval with the Messinian unconformity of the Mediterranean basin. A major phase of pull-apart basin development also occurred along the Aqaba-Levant transform. In the early Pliocene the influx of marine waters through Bab al Mandeb increased and Red Sea sedimentation thereafter returned to predominantly open marine conditions. By ˜3-2 Ma, oceanic spreading moved west of the Shukra al Sheik discontinuity, and the entire Gulf of Aden was an oceanic rift. During the last ˜1 My, the southern Red Sea plate boundary linked to the Aden spreading center through the Gulf of Zula, Danakil Depression, and Gulf of Tadjoura. Presently, the Red Sea spreading center appears to be propagating toward the northern Red Sea to link with the Aqaba-Levant transform. Alkali basaltic volcanism continues within the Younger Harrats of western Saudi Arabia and Yemen and offshore southern Red Sea islands. Most of the Arabian plate is now experiencing N-S upper crustal compression, whereas the maximum horizontal stress is oriented E-W in NE Africa. Arabia and Africa, now on separate plates

  6. Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea

    KAUST Repository

    Kürten, Benjamin

    2015-11-10

    Although zooplankton occupy key roles in aquatic biogeochemical cycles, little is known about the pelagic food web and trophodynamics of zooplankton in the Red Sea. Natural abundance stable isotope analysis (SIA) of carbon (δ13C) and N (δ15N) is one approach to elucidating pelagic food web structures and diet assimilation Integrating the combined effects of ecological processes and hydrography, ecohydrographic features often translate into geographic patterns in δ13C and δ15N values at the base of food webs. This is due, for example, to divergent 15N abundances in source end-members (deep water sources: high δ15N, diazotrophs: low δ15N). Such patterns in the spatial distributions of stable isotope values were coined isoscapes. Empirical data of atmospheric, oceanographic, and biological processes, which drive the ecohydrographic gradients of the oligotrophic Red Sea, are under-explored and some rather anticipated than proven. Specifically, five processes underpin Red Sea gradients: a) monsoon-related intrusions of nutrient-rich Indian Ocean water; b) basin scale thermohaline circulation; c) mesoscale eddy activity that causes up-welling of deep water nutrients into the upper layer; d) the biological fixation of atmospheric nitrogen (N2) by diazotrophs; and e) the deposition of aerosol-derived N. This study assessed relationships between environmental samples (nutrients, chlorophyll a), oceanographic data (temperature, salinity, current velocity [ADCP]), particulate organic matter (POM), and net-phytoplankton, with the δ13C and δ15N values of zooplankton collected in spring 2012 from 16°28’ to 26°57’N along the central axis of the Red Sea. The δ15N of bulk POM and most zooplankton taxa increased from North (Duba) to South (Farasan). The potential contribution of deep water nutrient-fueled phytoplankton, POM, and diazotrophs varied among sites. Estimates suggested higher diazotroph contributions in the North, a greater contribution of POM in the South

  7. Air–Sea Interaction and Horizontal Circulation in the Red Sea

    KAUST Repository

    Bower, Amy S.

    2015-01-01

    This chapter discusses the horizontal circulation of the Red Sea and the surface meteorology that drives it, and recent satellite and in situ measurements from the region are used to illustrate properties of the Red Sea circulation and the atmospheric forcing. The surface winds over the Red Sea have rich spatial structure, with variations in speed and direction on both synoptic and seasonal timescales. Wintertime mountain-gap wind jets drive large heat losses and evaporation at some locations, with as much as 9 cm of evaporation in a week. The near-surface currents in the Red Sea exhibit similarly rich variability, with an energetic and complex flow field dominated by persistent, quasi-stationary eddies, and convoluted boundary currents. At least one quasi-stationary eddy pair is driven largely by winds blowing through a gap in the mountains (Tokar Gap), but numerical simulations suggest that much of the eddy field is driven by the interaction of the buoyancy-driven flow with topography. Recent measurements suggest that Gulf of Aden Intermediate Water (GAIW) penetrates further northward into the Red Sea than previously reported.

  8. Revisiting Seafloor-Spreading in the Red Sea: Basement Nature, Transforms and Ocean-Continent Boundary

    Science.gov (United States)

    Tapponnier, P.; Dyment, J.; Zinger, M. A.; Franken, D.; Afifi, A. M.; Wyllie, A.; Ali, H. G.; Hanbal, I.

    2013-12-01

    A new marine geophysical survey on the Saudi Arabian side of the Red Sea confirms early inferences that ~ 2/3 of the eastern Red Sea is floored by oceanic crust. Most seismic profiles south of 24°N show a strongly reflective, landward-deepening volcanic basement up to ~ 100 km east of the axial ridge, beneath thick evaporitic deposits. This position of the Ocean-Continent Boundary (OCB) is consistent with gravity measurements. The low amplitudes and long wavelengths of magnetic anomalies older than Chrons 1-3 can be accounted for by low-pass filtering due to thick sediments. Seafloor-spreading throughout the Red Sea started around 15 Ma, as in the western Gulf of Aden. Its onset was coeval with the activation of the Aqaba/Levant transform and short-cutting of the Gulf of Suez. The main difference between the southern and northern Red Sea lies not in the nature of the crust but in the direction and modulus of the plate motion rate. The ~ 30° counterclockwise strike change and halving of the spreading rate (~ 16 to ~ 8 mm/yr) between the Hermil (17°N) and Suez triple junctions results in a shift from slow (≈ North Atlantic) to highly oblique, ultra-slow (≈ Southwest Indian) ridge type. The obliquity of spreading in the central and northern basins is taken up by transform discontinuities that stop ~ 40 km short of the coastline, at the OCB. Three large transform fault systems (Jeddah, Zabargad, El Akhawein) nucleated as continental transfer faults reactivating NNE-trending Proterozoic shear zones. The former two systems divide the Red Sea into three main basins. Between ~15 and ~5 Ma, for about 10 million years, thick evaporites were deposited directly on top of oceanic crust in deep water, as the depositional environment, modulated by climate, became restricted by the Suez and Afar/Bab-el-Mandeb volcano-tectonic 'flood-gates.' The presence of these thick deposits (up to ~ 8 km) suffices to account for the difference between the Red Sea and the Gulf of Aden

  9. The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions

    Science.gov (United States)

    Gildor, H.; Biton, E.; Peltier, W. R.

    2006-12-01

    The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).

  10. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  11. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea.

    KAUST Repository

    Sagar, Sunil

    2013-02-06

    High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes inhabiting bacteria interesting candidates for the search of novel bioactive molecules.

  12. Chemosynthesis in deep-sea red-clay: Linking concepts to probable martian life

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Mourya, B.S.; Mamatha, S.S.; Khadge, N.H.; LokaBharathi, P.A.

    of microbial biogeochemistry are used in the pres- ent deep-sea analogue studies and would be imple- mented for actual Martian soil samples in future: Microbial abundance in terms of total counts » Diversity of culture dependent and independent Chemos... soils done earlier by Viking I robots [5, Bianciardi et. al, 2012

  13. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-01-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea

  14. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  15. Comparative metagenomics of the Red Sea

    KAUST Repository

    Mineta, Katsuhiko

    2016-01-26

    Metagenome produces a tremendous amount of data that comes from the organisms living in the environments. This big data enables us to examine not only microbial genes but also the community structure, interaction and adaptation mechanisms at the specific location and condition. The Red Sea has several unique characteristics such as high salinity, high temperature and low nutrition. These features must contribute to form the unique microbial community during the evolutionary process. Since 2014, we started monthly samplings of the metagenomes in the Red Sea under KAUST-CCF project. In collaboration with Kitasato University, we also collected the metagenome data from the ocean in Japan, which shows contrasting features to the Red Sea. Therefore, the comparative metagenomics of those data provides a comprehensive view of the Red Sea microbes, leading to identify key microbes, genes and networks related to those environmental differences.

  16. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    Science.gov (United States)

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  17. Climatology of sea breezes along the Red Sea coast of Saudi Arabia

    KAUST Repository

    Khan, Basit; Abualnaja, Yasser; Al-Subhi, Abdullah M.; Nellayaputhenpeedika, Mohammedali; Nellikkattu Thody, Manoj; Sturman, Andrew P.

    2018-01-01

    and Atmospheric Administration (NOAA) are used to investigate the climatology of sea breezes over the eastern side of the Red Sea region. Results show existence of separate sea breeze systems along different segments of the Red Sea coastline. Based on the physical

  18. Comparative metagenomics of the Red Sea

    KAUST Repository

    Mineta, Katsuhiko

    2016-01-01

    started monthly samplings of the metagenomes in the Red Sea under KAUST-CCF project. In collaboration with Kitasato University, we also collected the metagenome data from the ocean in Japan, which shows contrasting features to the Red Sea. Therefore

  19. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh

    2015-10-23

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  20. [Mini review] metagenomic studies of the Red Sea

    KAUST Repository

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2015-01-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied amongst marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmolyte C1 oxidation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1–3 °C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the

  1. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  2. The Amino Acid Composition of Blue Swimming Crab (Portunus Segnis, Forskal, 1775 from The North Eastern Mediterranean Sea of Turkey

    Directory of Open Access Journals (Sweden)

    Engin Artar

    2018-04-01

    Full Text Available This study was carried out to detect the content of amino acid in female and male specimens of blue swimming crab (Portunus segnis obtained from (including 12 male crab and also 12 female crab North Eastern Mediterranean Sea, Turkey. The protein was identified as 17.63% and 18.13% for female and male crab respevtively. Totally 9 essential amino acids were recorded in the present study. Lysine and leucine constituted the highest essential amino acid (EAA concentrations in P. segnis. This species was found to be in good score in terms of the level of EAA and the EAA/Non-EAA ratios when compared with other economical crab species.

  3. Effects of visual and chemical cues on orientation behavior of the Red Sea hermit crab Clibanarius signatus

    Directory of Open Access Journals (Sweden)

    Tarek Gad El-Kareem Ismail

    2012-03-01

    Full Text Available Directional orientation of Clibanarius signatus toward different targets of gastropod shells was studied in a circular arena upon exposure to background seawater, calcium concentrations and predatory odor. Directional orientation was absent when crabs were presented with the white background alone. Each shell was tested in different positions (e.g., anterior, posterior, upside-down, lateral. Adult crabs were tested without their gastropod shells, and orientation varied with concentration and chemical cue. With calcium, orientation increased as concentration increased up to a maximum attraction percentage and then attraction became stable. In the case of predator cues, some individuals swim away from the target toward the opposite direction representing a predator avoidance response. Whenever, the blind hermit crab C. signatus was exposed to a shell target combined with calcium or predator cues, the majority of them stop moving or move in circles around the arena center. The others exhibited uniform orientation distribution. The responsiveness was higher with calcium cues than predator cues. Thus in the absence of vision, individual hermit crabs were able to detect both calcium and predator cues and have different response regarding them.

  4. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  5. High mortality of Red Sea zooplankton under ambient solar radiation.

    Directory of Open Access Journals (Sweden)

    Ali M Al-Aidaroos

    Full Text Available High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation. The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM 18.4±5.8% h(-1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM 12±5.6 h(-1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  6. Muscle enzyme activities in a deep-sea squaloid shark, Centroscyllium fabricii, compared with its shallow-living relative, Squalus acanthias.

    Science.gov (United States)

    Treberg, Jason R; Martin, R Aidan; Driedzic, William R

    2003-12-01

    The activities of several enzymes of energy metabolism were measured in the heart, red muscle, and white muscle of a deep and a shallow living squaloid shark, Centroscyllium fabricii and Squalus acanthias, respectively. The phylogenetic closeness of these species, combined with their active predatory nature, similar body form, and size makes them well matched for comparison. This is the first time such a comparison has been made involving a deep-sea elasmobranch. Enzyme activities were similar in the heart, but generally lower in the red muscle of C. fabricii. Paralleling the trend seen in deep-sea teleosts, the white muscle of C. fabricii had substantially lower activities of key glycolytic enzymes, pyruvate kinase and lactate dehydrogenase, relative to S. acanthias or other shallow living elasmobranchs. Unexpectedly, between the squaloid sharks examined, creatine phosphokinase activity was higher in all tissues of the deep living C. fabricii. Low white muscle glycolytic enzyme activities in the deep-sea species coupled with high creatine phosphokinase activity suggests that the capacity for short burst swimming is likely limited once creatine phosphate supplies have been exhausted. Copyright 2003 Wiley-Liss, Inc.

  7. Seasonal evolution of physical processes and biological responses in the northern Red Sea

    KAUST Repository

    Asfahani, Khaled

    2017-12-01

    A sequence of autonomous underwater glider deployments were used to characterize the spatial-temporal variability of the region over an eight month period from late September to May. Strongly stratified system was found in early fall with significant gradients in both temperature (T) and salinity (S), during winter T < 23°C and minimum S of 40.3 psu was observed and resulting in weakened stratification that enables deep convective mixing and upwelling of deep water by cyclonic circulations in the region leading to significant biomass increase. Throughout the entire observational period the slope of the 28 and 28.5 kg/m3 isopycnals remained sloping downward from offshore toward the coast reflected a persistent northward geostrophic flow. The depth of the 180 μmol/kg isopleth of oxygen, indicative of the top of the nutricline, paralleled the depth of the 28 kg/m3, but remained slightly deeper than the isopycnal. The deep winter mixing did not penetrate the nutricline where the mixed layer was deeper near the coast. However, because of the cyclonic signature the 28 kg/m3 rose to the surface offshore, injecting nutrients into the surface layer and promoting increased biomass in the central Red Sea. With the presence of cyclonic eddies, there was evidence of subduction associated with the cross-eddy circulation. This subducted flow was toward the coast within the domain of the glider observations. During this period, increases in the particulate backscatter were associated with increased chlorophyll indicating that the suspended particles were primarily phytoplankton particles. Within the mean northward flow there is a cross-basin flow wherein water is upwelled near the center of the Red Sea, there is a eastward component to the northward flow, and subsequent downwelling near the coasts. Within the surface flow subductive processes lead not only to a horizontal flow, but also a downward component toward the coast. Overall transport is very 3-dimensional in the

  8. Associational resistance protects mangrove leaves from crab herbivory

    Science.gov (United States)

    Erickson, Amy A.; Bell, Susan S.; Dawes, Clinton J.

    2012-05-01

    While associational defenses have been well documented in many plant and algal ecosystems, this study is the first to document associational resistance in mangroves. Mangrove tree crab (Aratus pisonii) density and herbivory on three life-stages of the red mangrove (Rhizophora mangle) were documented in pure red versus mixed-species and predominantly non-red mangrove stands containing black (Avicennia germinans) and white (Laguncularia racemosa) mangroves in 1999-2000 in Tampa Bay, Florida. This study first established that R. mangle is the focal species in the context of associational resistance because it is damaged more than either of the other mangrove species. Next, it was hypothesized that crab density and leaf damage on R. mangle would be lower when in mixed-species and predominantly non-red versus red mangrove stands. A non-significant trend suggested that crab density varies among stands, and crab damage on R. mangle leaves was significantly lower in mixed-species and non-red stands. Mechanisms to explain associational resistance were examined. Positive Pearson correlations between the percent of adult R. mangle in a stand and both crab density and R. mangle leaf damage provided support for the resource concentration hypothesis. Limited support was found for the attractant-decoy hypothesis because the total amount of damaged leaves of all mangrove species combined typically differed among stands, suggesting that crabs were not shifting to alternative mangrove species to offset reduced availability of R. mangle leaves. Finally, while R. mangle seedlings were shorter in non-red stands compared to others, intra-specific differences in R. mangle leaf chemistry and sclerophylly among stands failed to explain associational patterns. These combined results argue for the need for additional experiments to elucidate mechanisms responsible for defensive plant associations in mangrove ecosystems and to determine whether such associations could be of use in mangrove

  9. Simulating Coral Reef Connectivity in the Southern Red Sea

    KAUST Repository

    Wang, Yixin

    2018-05-01

    Connectivity is an important component of coral reef studies for its role in the enhancement of ecosystem resilience. Previous genetic structure and physical circulation studies in the Red Sea reveal a homogeneity within the coral reef complexes in the central and northern parts of the basin. Yet, genetic isolation and relatively low connectivity has been observed in the southern Red Sea. Raitsos et al. (2017) recently hypothesized that coral reefs in the southern Red Sea are more connected with regions outside the basin, rather than with the central and northern Red Sea. Using a physical circulation approach based on a 3-D backward particle tracking simulation, we further investigate this hypothesis. A long-term (> 10 years), very high resolution (1km) MITgcm simulation is used to provide detailed information on velocity in the complex coastal regions of the Red Sea and the adjacent narrow Bab-El-Mandeb Strait. The particle tracking simulation results support the initial hypothesis that the coastal regions in the southern Red Sea exhibit a consistently higher connectivity with the regions outside the Bab-El-Mandeb Strait, than with the central and northern Red Sea. Substantially high levels of connectivity, facilitated by the circulation and eddies, is observed with the coastal regions in the Gulf of Aden. A strong seasonality in connectivity, related to the monsoon-driven circulation, is also evident with the regions outside of the Red Sea. The winter surface intrusion plays a leading role in transporting the particles from the Gulf of Aden and the Indian Ocean into the Red Sea, while the summer subsurface intrusion also supports the transport of particles into the Red Sea in the intermediate layer. In addition, the connectivity with the central and northern Red Sea is more affected by the intensity of the eddies. Evidence also suggests that potential connectivity exists between the coastal southern Red Sea and the coasts of Oman, Socotra, Somalia, Kenya

  10. Investigating the Interannual Variability of the Circulation and Water Mass Formation in the Red Sea

    Science.gov (United States)

    Sofianos, S. S.; Papadopoulos, V. P.; Denaxa, D.; Abualnaja, Y.

    2014-12-01

    The interannual variability of the circulation and water mass formation in the Red Sea is investigated with the use of a numerical model and the combination of satellite and in-situ observations. The response of Red Sea to the large-scale variability of atmospheric forcing is studied through a 30-years simulation experiment, using MICOM model. The modeling results demonstrate significant trends and variability that are mainly located in the central and northern parts of the basin. On the other hand, the exchange pattern between the Red Sea and the Indian Ocean at the strait of Bab el Mandeb presents very weak interannual variability. The results verify the regularity of the water mass formation processes in the northern Red Sea but also show significant variability of the circulation and thermohaline conditions in the areas of formation. Enhanced water mass formation conditions are observed during specific years of the simulation (approximately five years apart). Analysis of recent warm and cold events in the northernmost part of the basin, based on a combination of atmospheric reanalysis results and oceanic satellite and in-situ observations, shows the importance of the cyclonic gyre that is prevailing in this part of the basin. This gyre can effectively influence the sea surface temperature (SST) and intensify or mitigate the winter effect of the atmospheric forcing. Upwelling induced by persistent periods of the gyre functioning drops the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme atmospheric forcing. These mechanisms are crucial for the formation of intermediate and deep water masses in the Red Sea and the strength of the subsequent thermohaline cells.

  11. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  12. Taxonomic research on deep-sea macrofauna in the South China Sea using the Chinese deep-sea submersible Jiaolong.

    Science.gov (United States)

    Li, Xinzheng

    2017-07-01

    This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong. To date, 6 new species have been described, including the sponges Lophophysema eversa, Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae, Uroptychus spinulosus and Globospongicola jiaolongi; some newly recorded species from the South China Sea have also been reported. The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li (2015), as has the mitochondrial genome of the glass sponge L. eversa by Zhang et al. (2016). The population structures of two dominant species, the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons, from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough, were compared using molecular analysis. The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. Systematics, functional morphology and distribution of a bivalve (Apachecorbula muriatica gen. et sp. nov.) from the rim of the 'Valdivia Deep' brine pool in the Red Sea

    KAUST Repository

    Oliver, Pere Graham

    2014-11-11

    The deep brine pools of the Red Sea comprise extreme, inhospitable habitats yet house microbial communities that potentially may fuel adjacent fauna. We here describe a novel bivalve from a deep-sea (1525 m) brine pool in the Red Sea, where conditions of high salinity, lowered pH, partial anoxia and high temperatures are prevalent. Remotely operated vehicle (ROV) footage showed that the bivalves were present in a narrow (20 cm) band along the rim of the brine pool, suggesting that it is not only tolerant of such extreme conditions but is also limited to them. The bivalve is a member of the Corbulidae and named Apachecorbula muriatica gen. et sp. nov. The shell is atypical of the family in being modioliform and thin. The semi-infaunal habit is seen in ROV images and reflected in the anatomy by the lack of siphons. The ctenidia are large and typical of a suspension feeding bivalve, but the absence of \\'guard cilia\\' and the greatly reduced labial palps suggest that it is non-selective as a response to low food availability. It is proposed that the low body mass observed is a consequence of the extreme habitat and low food availability. It is postulated that the observed morphology of Apachecorbula is a result of paedomorphosis driven by the effects of the extreme environment on growth but is in part mitigated by the absence of high predation pressures. © Marine Biological Association of the United Kingdom, 2014.

  14. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.

    Directory of Open Access Journals (Sweden)

    Alex D Rogers

    2012-01-01

    Full Text Available Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp., stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae, bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more

  15. AFSC/RACE/SAP/Long: Data from: Upper thermal tolerance in red and blue king crab: Sublethal and lethal effects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains data from a series of experiments that determined the upper thermal tolerance of early benthic stage red and blue king crabs. Experiments...

  16. Glacial conditions in the Red Sea

    Science.gov (United States)

    Rohling, Eelco J.

    1994-10-01

    In this paper, results from previous studies on planktonic foraminifera, δ18O, and global sea level are combined to discuss climatic conditions in the Red Sea during the last glacial maximum (18,000 B.P.). First, the influence of 120-m sea level lowering on the exchange transport through the strait of Bab-el-Mandab is considered. This strait is the only natural connection of the Red Sea to the open ocean. Next, glacial Red Sea outflow salinity is estimated (about 48 parts per thousand) from the foraminiferal record. Combined, these results yield an estimate of the glacial net water deficit, which appears to have been quite similar to the present (about 2 m yr-1). Finally, budget calculation of δ18O fluxes suggests that the glacial δ18O value of evaporation was about 50% of the present value. This is considered to have resulted from substantially increased mean wind speeds over the glacial Red Sea, which would have caused a rapid drop in the kinematic fractionation factor for 18O. The sensitivity of the calculated values for water deficit and isotopic fractionation to the various assumptions and estimates is evaluated in the discussion. Improvents are to be expected especially through research on the glacial salinity contrast between the Red Sea and Gulf of Aden. It is argued, however, that such future improvement will likely result in a worsening of the isotopic discrepancy, thus increasing the need for an additional mechanism that influenced fractionation (such as mean wind speed). This study demonstrates the need for caution when calculating paleosalinities from δ18O records under the assumption that the modern S∶δ18O relation has remained constant through time. Previously overlooked factors, such as mean wind speed, may have significantly altered that relation in the past.

  17. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-12-01

    Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind

  18. Features of Red Sea Water Masses

    Science.gov (United States)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  19. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  20. Thermal Limits and Thresholds of Red Sea Biota

    KAUST Repository

    Chaidez, Veronica

    2018-05-01

    As ocean temperatures continue to rise, the effect of temperature on marine organisms becomes highly relevant. The Red Sea is the warmest sea and is rapidly warming with current surface temperatures (28 – 34 °C) already exceeding those of most tropical systems. This has major consequences for organisms that may already find themselves at their thermal limits. The aim of this project was to define the thermal limits and thresholds of certain Red Sea species. Firstly, to better understand the thermal regimes of the Red Sea, we looked at decadal trends in maximum sea surface temperature across the basin. Then, we tested the thermal capacities of Red Sea mangroves and zooplankton, two key ecological groups, by performing thermal stress experiments in the laboratory. We found that the Red Sea basin is warming faster than the global average (0.17 °C decade-1), the thermal limit of mangrove propagules is between 33 and 35 °C, and the limits among the most common zooplankton groups range from 30 to 36 °C. This project gives us a better understanding of how organisms respond to extreme temperatures and how they may be affected in a future, warmer, ocean.

  1. Authigenic gypsum in a deep sea core from Southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.

    Authigenic gypsum has been encountered in a deep sea core RC9-157 from the southeastern Arabian Sea at a depth of 4111 m which is a zone of lysocline. The formation of gypsum in the deep sea region is attributed to the prevailing sulphate rich...

  2. Synoptic conditions of fine-particle transport to the last interglacial Red Sea -Dead Sea from Nd-Sr compositions of sediment cores

    Science.gov (United States)

    Stein, M.; Palchan, D.; Goldstein, S. L.; Almogi-Labin, A.; Tirosh, O.; Erel, Y.

    2017-12-01

    The last interglacial peak, Marine Isotope Stage 5e (MIS 5e), was associated with stronger northern hemisphere insolation, higher global sea levels and higher average global temperatures compared to the Holocene, and is considered as an analogue for a future warming world. In this perspective the present-day areas of the Sahara - Arabia deserts (the "desert belt") are of special interest since their margins are densely inhabited and global climate models predict enhanced aridity in these regions due to future warming. The Red Sea situated at the midst of the desert belt and the Dead Sea at the northern fringe of the desert belt comprise sensitive monitors for past hydroclimate changes in the Red Sea-Levant regions as global climate shifted from glacial to interglacial conditions. Here, we reconstruct the synoptic conditions that controlled desert dust transport to the Red Sea and the Dead Sea during MIS5e. The reconstruction is based on Nd-Sr isotopes and chemical composition of carbonate-free detritus recovered from sediment cores drilled at the deep floors of these water-bodies combined with data of contemporaneous dust storms transporting dust to the lake and sea floors. During Termination 2 ( 134-130 ka) the Sahara, Nile River desiccated and the Dead Sea watershed were under extreme dry conditions manifested by lake level drop, deposition of salt and enhanced transport of Sahara dusts to the entire studied transect. At the peak of the interglacial MIS 5e ( 130-120 ka), enhanced flooding activity mobilized local fine detritus from the surroundings of the Red Sea and the Dead Sea watershed into the water-bodies. This interval coincided with the Sapropel event S5 in the Mediterranean that responded to enhanced monsoon rains at the heads of the Blue Nile River. At the end of MIS 5e ( 120-116 ka) the effect of the regional floods faded and the Dead Sea and Red Sea areas re-entered sever arid conditions with salt deposition at the Dead Sea. Overall, the desert

  3. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Duarte, Carlos M.; Irigoien, Xabier

    2016-01-01

    Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week

  4. Red Sea as a source for bioprospecting

    KAUST Repository

    Kodzius, Rimantas

    2015-01-01

    King-Abdullah University of Science and Technology (KAUST) is located on the shores of the Red Sea in Saudi Arabia. The Red Sea is well known for its unique environment, harboring various microbes capable of surviving in salty brines. We collected

  5. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  6. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-01-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  7. Training Course on the Marine Ecology of the Red Sea. Red Sea & Gulf of Aden Programme (PERSGA).

    Science.gov (United States)

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents a training course on the marine ecology of the Red Sea designed by the Arab League Educational, Cultural and Scientific Organization (ALECSO) in collaboration with the Marine Science Department of UNESCO for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). It was hosted by the Marine Science Station,…

  8. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  9. On the origin of endemic species in the Red Sea

    KAUST Repository

    DiBattista, Joseph

    2015-10-19

    Aim The geological and palaeo-climatic forces that produced the unique biodiversity in the Red Sea are a subject of vigorous debate. Here, we review evidence for and against the hypotheses that: (1) Red Sea fauna was extirpated during glacial cycles of the Pleistocene and (2) coral reef fauna found refuge within or just outside the Red Sea during low sea level stands when conditions were inhospitable. Location Red Sea and Western Indian Ocean. Methods We review the literature on palaeontological, geological, biological and genetic evidence that allow us to explore competing hypotheses on the origins and maintenance of shallow-water reef fauna in the Red Sea. Results Palaeontological (microfossil) evidence indicates that some areas of the central Red Sea were devoid of most plankton during low sea level stands due to hypersaline conditions caused by almost complete isolation from the Indian Ocean. However, two areas may have retained conditions adequate for survival: the Gulf of Aqaba and the southern Red Sea. In addition to isolation within the Red Sea, which separated the northern and southern faunas, a strong barrier may also operate in the region: the cold, nutrient-rich water upwelling at the boundary of the Gulf of Aden and the Arabian Sea. Biological data are either inconclusive or support these putative barriers and refugia, but no data set, that we know of rejects them. Genetic evidence suggests that many endemic lineages diverged from their Indian Ocean counterparts long before the most recent glaciations and/or are restricted to narrow areas, especially in the northern Red Sea. Main conclusions High endemism observed in the Red Sea and Gulf of Aden appears to have multiple origins. A cold, nutrient-rich water barrier separates the Gulf of Aden from the rest of the Arabian Sea, whereas a narrow strait separates the Red Sea from the Gulf of Aden, each providing potential isolating barriers. Additional barriers may arise from environmental gradients

  10. Marine microbiology: Microbial ecology of the Red Sea [Mikrobielle Ökologie des Roten Meeres

    KAUST Repository

    Stingl, Ulrich; Ngugi, David; Thompson, Luke R.; Antunes, Andre; Cahill, Matthew

    2012-01-01

    The Red Sea is an unusually harsh marine environment, characterized by high temperature and salinity. It also harbors some of the most extreme environments on earth, the Deep Sea Brine Pools. Here, we report on the microbial communities in these environments. The water column is dominated by SAR11 and Prochlorococcus, which have developed specific adaptations to withstand the conditions. The Brine Pools have only been poorly characterized so far, and only four pure cultures are described. © Springer-Verlag 2012.

  11. Marine microbiology: Microbial ecology of the Red Sea [Mikrobielle Ökologie des Roten Meeres

    KAUST Repository

    Stingl, Ulrich

    2012-10-01

    The Red Sea is an unusually harsh marine environment, characterized by high temperature and salinity. It also harbors some of the most extreme environments on earth, the Deep Sea Brine Pools. Here, we report on the microbial communities in these environments. The water column is dominated by SAR11 and Prochlorococcus, which have developed specific adaptations to withstand the conditions. The Brine Pools have only been poorly characterized so far, and only four pure cultures are described. © Springer-Verlag 2012.

  12. Extensive use of mesopelagic waters by a Scalloped hammerhead shark (Sphyrna lewini) in the Red Sea

    KAUST Repository

    Spaet, Julia L.Y.

    2017-09-06

    Background Despite being frequently landed in fish markets along the Saudi Arabian Red Sea coast, information regarding fundamental biology of the Scalloped hammerhead shark (Sphyrna lewini) in this region is scarce. Satellite telemetry studies can generate important data on life history, describe critical habitats, and ultimately redefine management strategies for sharks. To better understand the horizontal and vertical habitat use of S. lewini in the Red Sea and to aid with potential future development of zoning and management plans for key habitats, we deployed a pop-up satellite archival transmitting tag to track a single female specimen (240 cm total length) for a tracking period of 182 days. Results The tag was physically recovered after a deployment period of 6 months, thus providing the complete archived dataset of more than one million depth and temperature records. Based on a reconstructed, most probable track, the shark travelled a circular distance of approximately 1000 km from the central Saudi Arabian Red Sea southeastward into Sudanese waters, returning to the tagging location toward the end of the tracking period. Mesopelagic excursions to depths between 650 and 971 m occurred on 174 of the 182 days of the tracking period. Intervals between such excursions were characterized by constant oscillatory diving in the upper 100 m of the water column. Conclusions This study provides evidence that mesopelagic habitats might be more commonly used by S. lewini than previously suggested. We identified deep diving behavior throughout the 24-h cycle over the entire 6-month tracking period. In addition to expected nightly vertical habitat use, the shark exhibited frequent mesopelagic excursions during daytime. Deep diving throughout the diel cycle has not been reported before and, while dive functionality remains unconfirmed, our study suggests that mesopelagic excursions may represent foraging events within and below deep scattering layers. Additional research

  13. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    Craig, Jessica; Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G.

    2011-01-01

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  14. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  15. Ongoing decline of shark populations in the Eastern Red Sea

    KAUST Repository

    Spaet, Julia L.Y.

    2016-06-30

    Information on the abundance and diversity of Red Sea elasmobranchs is notoriously scarce, even though sharks are among the most profitable fisheries of the region. Effective conservation would ideally entail baselines on pristine conditions, yet no such data is available for the Red Sea. To collect distribution and abundance data on Red Sea elasmobranchs, we conducted a dedicated longline and Baited Remote Underwater Video system (BRUVs) sampling program along the entire Red Sea coast of Saudi Arabia over the course of two years. Both survey techniques were opportunistically employed at central and southern Saudi Arabian (SA) Red Sea reef systems. In addition, BRUVs were employed in the northern SA Red Sea and at selected reef systems in Sudan. Shark catch per unit effort (CPUE) data for BRUVs and longline surveys were compared to published data from non-Red Sea reef systems. This comparison revealed CPUE estimates several orders of magnitude lower for both survey methods in the SA Red Sea compared to other reef systems around the world. Catch per unit effort values of BRUVs on Sudanese reefs on the contrary were within the range of estimates from various locations where sharks are considered common. We argue that decades of heavy fishing pressure on Red Sea marine resources has significantly altered the community structure of SA Red Sea reefs. There is an urgent need to establish effective management strategies for species of highest conservation concern. Our results have the potential to be used as a baseline, if such management strategies were to be established. © 2016 Elsevier Ltd

  16. Abrupt warming of the Red Sea

    KAUST Repository

    Raitsos, D. E.

    2011-07-19

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  17. Abrupt warming of the Red Sea

    Science.gov (United States)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  18. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  19. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  20. Mass-induced [|#8#|]Sea Level Variations in the Red Sea from Satellite Altimetry and GRACE

    Science.gov (United States)

    Feng, W.; Lemoine, J.; Zhong, M.; Hsu, H.

    2011-12-01

    We have analyzed mass-induced sea level variations (SLVs) in the Red Sea from steric-corrected altimetry and GRACE between January 2003 and December 2010. The steric component of SLVs in the Red Sea calculated from climatological temperature and salinity data is relatively small and anti-phase with the mass-induced SLV. The total SLV in the Red Sea is mainly driven by the mass-induced SLV, which increases in winter when the Red Sea gains the water mass from the Gulf of Aden and vice versa in summer. Spatial and temporal patterns of mass-induced SLVs in the Red Sea from steric-corrected altimetry agree very well with GRACE observations. Both of two independent observations show high annual amplitude in the central Red Sea (>20cm). Total mass-induced SLVs in the Red Sea from two independent observations have similar annual amplitude and phase. One main purpose of our work is to see whether GRGS's ten-day GRACE results can observe intra-seasonal mass change in the Red Sea. The wavelet coherence analysis indicates that GRGS's results show the high correlation with the steric-corrected SLVs on intra-seasonal time scale. The agreement is excellent for all the time-span until 1/3 year period and is patchy between 1/3 and 1/16 year period. Furthermore, water flux estimates from current-meter arrays and moorings show mass gain in winter and mass loss in summer, which is also consistent with altimetry and GRACE.

  1. Deep-sea geohazards in the South China Sea

    Science.gov (United States)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  2. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan

    2015-04-01

    Satellite observations recently revealed the existence of trains of internal solitary waves in the southern Red Sea between 16.0°N and 16.5°N, propagating from the centre of the domain toward the continental shelf [Da silva et al., 2012]. Given the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial tides by impinging, remotely generated internal tidal beams and for geometrically focused and amplified internal tidal beams. Tide analysis based on tide stations data and barotropic tide model in the Red Sea shows that tide is indeed very weak in the centre part of the Red Sea, but it is relatively strong in the northern and southern parts (reaching up to 66 cm/s). Together with extreme steep slopes along the deep trench, it provides favourable conditions for the generation of internal solitary in the southern Red Sea. To investigate the generation mechanisms and study the evolution of the internal waves in the off-shelf region of the southern Red Sea we have implemented a 2-D, high-resolution and non-hydrostatic configuration of the MIT general circulation model (MITgcm). Our simulations reproduce well that the generation process of the internal solitary waves. Analysis of the model\\'s output suggests that the interaction between the topography and tidal flow with the nonlinear effect is the main mechanism behind the generation of the internal solitary waves. Sensitivity experiments suggest that neither tidal beam nor the resonance effect of the topography is important factor in this process.

  3. Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea

    KAUST Repository

    Jiang, Houshuo; Farrar, J. Thomas; Beardsley, Robert C.; Chen, Ru; Chen, Changsheng

    2009-01-01

    [1] Mesoscale atmospheric modeling over the Red Sea, validated by in-situ meteorological buoy data, identifies two types of coastal mountain gap wind jets that frequently blow across the longitudinal axis of the Red Sea: (1) an eastward

  4. A review of elasmobranch research in the Red Sea

    KAUST Repository

    Spaet, Julia L.Y.

    2012-01-30

    Given the global concern about the status of elasmobranch fishes, the paucity of information on elasmobranchs in the Red Sea is worrisome. Management of elasmobranchs in areas other than the Red Sea has been helped by research on population ecology, reproductive biology and resource partitioning, subjects that are virtually absent in the Red Sea elasmobranch literature. This review provides the first comprehensive summary of elasmobranch biology in the Red Sea with the aim of facilitating research in a region that remains remarkably under-studied. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  5. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing

    KAUST Repository

    Qian, Peiyuan

    2010-07-29

    The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea. © 2011 International Society for Microbial Ecology All rights reserved.

  6. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing

    KAUST Repository

    Qian, Peiyuan; Wang, Yong; Lee, Onon; Lau, Chunkwan; Yang, Jiangke; Lafi, Feras Fawzi; Al-Suwailem, Abdulaziz M.; Wong, Tim

    2010-01-01

    The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (2 and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea. © 2011 International Society for Microbial Ecology All rights reserved.

  7. U.V. repair in deep-sea bacteria

    International Nuclear Information System (INIS)

    Lutz, L.; Yayanos, A.A.

    1986-01-01

    Exposure of cells to light of less than 320 nanometers wavelengths may lead to lethal lesions and perhaps carcinogenesis. Many organisms have evolved mechanisms to repair U.V. light-induced damage. Organisms such as deep-sea bacteria are presumably never exposed to U.V. light and perhaps occasionally to visible from bioluminescence. Thus, the repair of U.V. damage in deep-sea bacterial DNA might be inefficient and repair by photoreactivation unlikely. The bacteria utilized in this investigation are temperature sensitive and barophilic. Four deep-sea isolates were chosen for this study: PE-36 from 3584 m, CNPT-3 from 5782 m, HS-34 from 5682 m, and MT-41 from 10,476 m, all are from the North Pacific ocean. The deep-sea extends from 1100 m to depths greater than 7000 m. It is a region of relatively uniform conditions. The temperature ranges from 5 to -1 0 C. There is no solar light in the deep-sea. Deep-sea bacteria are sensitive to U.V. light; in fact more sensitive than a variety of terrestrial and sea-surface bacteria. All four isolates demonstrate thymine dimer repair. Photoreactivation was observed in only MT-41. The other strains from shallower depths displayed no photoreactivation. The presence of DNA sequences homologous to the rec A, uvr A, B, and C and phr genes of E. coli have been examined by Southern hybridization techniques

  8. The status of coral reef ecology research in the Red Sea

    KAUST Repository

    Berumen, Michael L.

    2013-06-21

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia\\'s Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically "young" sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world\\'s most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale. © 2013 Springer-Verlag Berlin Heidelberg.

  9. In Brief: Deep-sea observatory

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  10. Field experiments on individual adaptation of the spider crab Inachus phalangium to its sea anemone host Anemonia viridis in the northern Adriatic Sea

    Directory of Open Access Journals (Sweden)

    S. LANDMANN

    2015-02-01

    Full Text Available We studied the adaptation of the spider crab Inachus phalangium (Fabricius, 1755 to one of its sea anemone host species, Anemonia viridis (Forsskål, 1775 in the coastal region of Rovinj, Croatia. Similar to other brachyuran species, Inachus spp. generally lives within the anemone to obtain protection from possible predators. Using removal and reintroduction experiments, this study investigates the protection mechanism and shows a loss of adaptation after a period of 10 days when the crabs are taken out of their host and kept solitary. Thirty-nine anemones from two different trial sites were marked individually and the inhabiting crabs were isolated to be released back into their individual hosts later. The reactions of the anemones were closely observed and characterized to determine the respective state of crab adaptation. As 35 out of 39 individuals provoked a defense /attack reaction of the anemone, it is concluded that the crabs possessed some sort of non-permanent protection mechanism that was lost during the test run (chi-square test, p < 0.00014. All tested crabs re-inhabited their host anemones within a maximum of 20 minutes after they had been reintroduced and stung by the anemones. Therefore, habituation to the host’s defense / attack mechanism is acquired individually and not genetically inherent to the species. The results are compared to adaptation and protection data on other decapod crustaceans and some anemonefishes.

  11. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

    KAUST Repository

    Rö thig, Till; Yum, Lauren; Kremb, Stephan Georg; Roik, Anna Krystyna; Voolstra, Christian R.

    2017-01-01

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed

  12. The regional structure of the Red Sea Rift revised

    Science.gov (United States)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Brandsdóttir, Bryndís

    2017-04-01

    The Red Sea Rift has, for decades, been considered a text book example of how young ocean basins form and mature. Nevertheless, most studies of submarine processes in the Red Sea were previously based on sparse data (mostly obtained between the late 1960's and 1980's) collected at very low resolution. This low resolution, combined with large gaps between individual datasets, required large interpolations when developing geological models. Thus, these models generally considered the Red Sea Rift a special case of young ocean basement formation, dividing it from North to South into three zones: a continental thinning zone, a "transition zone" and a fully developed spreading zone. All these zones are imagined, in most of the models, to be separated by large transform faults, potentially starting and ending on the African and Arabian continental shields. However, no consensus between models e.g. about the locations (or even the existence) of major faults, the nature of the transition zone or the extent of oceanic crust in the Red Sea Rift has been reached. Recently, high resolution bathymetry revealed detailed seafloor morphology as never seen before from the Red Sea, very comparable to other (ultra)slow spreading mid-ocean ridges such as the Gakkel Ridge, the Mid-Atlantic Ridge and SW-Indian Ridge, changing the overall picture of the Red Sea significantly. New discoveries about the extent, movement and physical properties of submarine salt deposits led to the Red Sea Rift being linked to the young Aptian-age South Atlantic. Extensive crosscutting transform faults are not evident in the modern bathymetry data, neither in teleseismic nor vertical gravity gradient data and comparisons to Gakkel Ridge and the SW-Indian Ridge suggest that the Red Sea is much simpler in terms of structural geology than was previously thought. Complicated tectonic models do not appear necessary and there appears to be large areas of oceanic crust under the Red Sea salt blankets. Based on

  13. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  14. 50 CFR 600.1104 - Bering Sea and Aleutian Islands (BSAI) crab species fee payment and collection system.

    Science.gov (United States)

    2010-10-01

    ... endorsement for Norton Sound red king. More specifically, the reduction endorsement fisheries, and the crab... COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Specific Fishery or Program Fishing Capacity Reduction Regulations....1012 of subpart L, establish: (i) The borrower's obligation to repay a reduction loan, and (ii) The...

  15. The dynamics of biogeographic ranges in the deep sea.

    Science.gov (United States)

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-07

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.

  16. Climatology of the autumn Red Sea trough

    Science.gov (United States)

    Awad, Adel M.; Mashat, Abdul-Wahab S.

    2018-03-01

    In this study, the Sudan low and the associated Red Sea trough (RST) are objectively identified using the mean sea level pressure (SLP) data from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset covering the period 1955-2015. The Sudan low was detected in approximately 60.6% of the autumn periods, and approximately 83% of the detected low-pressure systems extended into RSTs, with most generated at night and during cold months. The distribution of the RSTs demonstrated that Sudan, South Sudan and Red Sea are the primary development areas of the RSTs, generating 97% of the RSTs in the study period. In addition, the outermost areas affected by RSTs, which include the southern, central and northern Red Sea areas, received approximately 91% of the RSTs originating from the primary generation areas. The synoptic features indicated that a Sudan low developed into an RST when the Sudan low deepened in the atmosphere, while the low pressures over the southern Arabian Peninsula are shallow and the anticyclonic systems are weakened over the northern Red Sea. Moreover, stabile areas over Africa and Arabian Peninsula form a high stability gradient around the Red Sea and the upper maximum winds weaken. The results of the case studies indicate that RSTs extend northward when the upper cyclonic and anticyclonic systems form a high geopotential gradient over Arabian Peninsula. Furthermore, the RST is oriented from the west to the east when the Azores high extends eastward and the Siberian high shrinks eastward or shifts northward.

  17. AFSC/RACE/SAP/Daly: Juvenile red and blue king crab prey preference experiment conducted in the Kodiak Lab in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is part of a laboratory experiment, which evaluated how varying ratios of prey species (year-0 blue and red king crabs) and habitat type (shell and...

  18. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    Full Text Available Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth, including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components

  19. Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.

  20. Postmortem changes in physiochemical and sensory properties of red snow crab (Chionoecetes japonicus leg muscle during freeze storage

    Directory of Open Access Journals (Sweden)

    Joon-Young Jun

    2017-07-01

    Full Text Available Abstract In order to evaluate the maximal storable period of the raw crab for a non-thermal muscle separation, the quality changes of the leg meat of red snow crab (Chionoecetes japonicus during freeze storage were investigated. Fresh red snow crabs were stored at −20 °C for 7 weeks, and the leg muscle was separated by a no heating separation (NHS method every week. During the storage, considerable loss of the leg muscle did not occur and microbiological risk was very low. In contrast, discoloration appeared at 2-week storage on around carapace and the leg muscle turned yellow at storage 3-week. In physiochemical parameters, protein and free amino acids gradually decreased with storage time, expected that proteolytic enzymes still activated at −20 °C. At 4-week storage, the sensory acceptance dropped down below point 4 as low as inedible and notable inflection points in pH and acidity were observed. The volatile base nitrogen was low, though a little increase was recorded. These results suggested that the maximal storable period at −20 °C of the raw material was within 2 weeks and it was depended on external factor such as the discoloration. The present study might be referred as basic data for approaches to solve quality loss occurred in non-thermal muscle separation.

  1. Distribution of Prochlorococcus Ecotypes in the Red Sea Basin Based on Analyses of rpoC1 Sequences

    KAUST Repository

    Shibl, Ahmed A.; Haroon, Mohamed; Ngugi, David; Thompson, Luke R.; Stingl, Ulrich

    2016-01-01

    The marine picocyanobacteria Prochlorococcus represent a significant fraction of the global pelagic bacterioplankton community. Specifically, in the surface waters of the Red Sea, they account for around 91% of the phylum Cyanobacteria. Previous work suggested a widespread presence of high-light (HL)-adapted ecotypes in the Red Sea with the occurrence of low-light (LL)-adapted ecotypes at intermediate depths in the water column. To obtain a more comprehensive dataset over a wider biogeographical scope, we used a 454-pyrosequencing approach to analyze the diversity of the Prochlorococcus rpoC1 gene from a total of 113 samples at various depths (up to 500 m) from 45 stations spanning the Red Sea basin from north to south. In addition, we analyzed 45 metagenomes from eight stations using hidden Markov models based on a set of reference Prochlorococcus genomes to (1) estimate the relative abundance of Prochlorococcus based on 16S rRNA gene sequences, and (2) identify and classify rpoC1 sequences as an assessment of the community structure of Prochlorococcus in the northern, central and southern regions of the basin without amplification bias. Analyses of metagenomic data indicated that Prochlorococcus occurs at a relative abundance of around 9% in samples from surface waters (25, 50, 75 m), 3% in intermediate waters (100 m) and around 0.5% in deep-water samples (200–500 m). Results based on rpoC1 sequences using both methods showed that HL II cells dominate surface waters and were also present in deep-water samples. Prochlorococcus communities in intermediate waters (100 m) showed a higher diversity and co-occurrence of low-light and high-light ecotypes. Prochlorococcus communities at each depth range (surface, intermediate, deep sea) did not change significantly over the sampled transects spanning most of the Saudi waters in the Red Sea. Statistical analyses of rpoC1 sequences from metagenomes indicated that the vertical distribution of Prochlorococcus in the water

  2. Distribution of Prochlorococcus Ecotypes in the Red Sea Basin Based on Analyses of rpoC1 Sequences

    KAUST Repository

    Shibl, Ahmed A.

    2016-06-25

    The marine picocyanobacteria Prochlorococcus represent a significant fraction of the global pelagic bacterioplankton community. Specifically, in the surface waters of the Red Sea, they account for around 91% of the phylum Cyanobacteria. Previous work suggested a widespread presence of high-light (HL)-adapted ecotypes in the Red Sea with the occurrence of low-light (LL)-adapted ecotypes at intermediate depths in the water column. To obtain a more comprehensive dataset over a wider biogeographical scope, we used a 454-pyrosequencing approach to analyze the diversity of the Prochlorococcus rpoC1 gene from a total of 113 samples at various depths (up to 500 m) from 45 stations spanning the Red Sea basin from north to south. In addition, we analyzed 45 metagenomes from eight stations using hidden Markov models based on a set of reference Prochlorococcus genomes to (1) estimate the relative abundance of Prochlorococcus based on 16S rRNA gene sequences, and (2) identify and classify rpoC1 sequences as an assessment of the community structure of Prochlorococcus in the northern, central and southern regions of the basin without amplification bias. Analyses of metagenomic data indicated that Prochlorococcus occurs at a relative abundance of around 9% in samples from surface waters (25, 50, 75 m), 3% in intermediate waters (100 m) and around 0.5% in deep-water samples (200–500 m). Results based on rpoC1 sequences using both methods showed that HL II cells dominate surface waters and were also present in deep-water samples. Prochlorococcus communities in intermediate waters (100 m) showed a higher diversity and co-occurrence of low-light and high-light ecotypes. Prochlorococcus communities at each depth range (surface, intermediate, deep sea) did not change significantly over the sampled transects spanning most of the Saudi waters in the Red Sea. Statistical analyses of rpoC1 sequences from metagenomes indicated that the vertical distribution of Prochlorococcus in the water

  3. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.

    2015-02-16

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  4. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.; Yi, Xing; Platt, Trevor; Racault, Marie-Fanny; Brewin, Robert J. W.; Pradhan, Yaswant; Papadopoulos, Vassilis P.; Sathyendranath, Shubha; Hoteit, Ibrahim

    2015-01-01

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  5. Thermal refugia against coral bleaching throughout the northern Red Sea

    KAUST Repository

    Osman, Eslam O.; Smith, David J.; Ziegler, Maren; Kü rten, Benjamin; Conrad, Constanze; El-Haddad, Khaled M.; Voolstra, Christian R.; Suggett, David J.

    2017-01-01

    Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982–2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C-weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C-weeks). A similar pattern was observed during the 2015–2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C-weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C-weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef-building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef-building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance.

  6. Thermal refugia against coral bleaching throughout the northern Red Sea

    KAUST Repository

    Osman, Eslam O.

    2017-10-17

    Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982–2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C-weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C-weeks). A similar pattern was observed during the 2015–2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C-weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C-weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef-building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef-building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance.

  7. Evolutionary process of deep-sea bathymodiolus mussels.

    Science.gov (United States)

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  8. 77 FR 41728 - Plan for Periodic Review of Regulations

    Science.gov (United States)

    2012-07-16

    ... mackerel, squid, butterfish, Atlantic surfclam, ocean quahog, Atlantic herring, Atlantic deep-sea red crab... fishing effort as determined by historical participation in the American lobster trap fisheries conducted... conservation equivalency and associated trap limits for owners of vessels in possession of a Federal lobster...

  9. 76 FR 17109 - Magnuson-Stevens Act Provisions; General Provisions for Domestic Fisheries; Extension for...

    Science.gov (United States)

    2011-03-28

    ... tagging, and model development to better evaluate the growth and reproductive performance of the... to initial logistical delays and additional time to complete research and funding components of this... study remain consistent with the Atlantic Deep-Sea Red Crab Fishery Management Plan. If approved, the...

  10. 78 FR 36122 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2013-06-17

    ... the harvesting and processing sectors'' and to monitor the ``economic stability for harvesters.... 120806311-3530-02] RIN 0648-BC25 Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and... Tanner Crabs (FMP). These regulations revise the annual economic data reports (EDRs) currently required...

  11. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  12. 50 CFR Table 7 to Part 680 - Initial Issuance of Crab QS by Crab QS Fishery

    Science.gov (United States)

    2010-10-01

    ... June 10, 2002 in the Eastern Aleutian Island golden (brown) king crab, Western Aleutian Island golden... through February 8, 2002. 4 years 3. Eastern Aleutian Islands golden king crab (EAG) 5 years of the 5-year... through September 24, 2000. (3) August 15, 2001 through September 10, 2001. 5 years 4. Eastern Bering Sea...

  13. Ecosystem Services of Avicennia marina in the Red Sea

    KAUST Repository

    Almahasheer, Hanan

    2016-01-01

    The Red Sea is an arid environment, without riverine inputs, oligotrophic waters and extreme temperature and salinity. Avicennia marina is the dominant vegetation in the shores of the Red Sea. However, little is known about their distribution, dynamics, and services. Therefore, the aim of this Ph.D. was to obtain the basic information needed to evaluate their role in the coastal ecosystems and quantify their services. With that objective we 1) estimated the past and present distribution of mangroves in the Red Sea, 2) investigated the growth, leave production and floration 3) examined the growth limiting factors 4) measured the nutrients and heavy metal dynamics in the leaves and 5) estimated carbon sequestration. We found an increase of about 12% in the last 41 years, which contrasts with global trends of decrease. The extreme conditions in the Red Sea contributed to limit their growth resulting in stunted trees. Hence, we surveyed Central Red Sea mangroves to estimate their node production with an average of 9.59 node y-1 then converted that number into time to have a plastochrone interval of 38 days. As mangroves are taller in the southern Red Sea where both temperature and nutrients are higher than the Central Red Sea, we assessed nutrient status Avicennia marina propagules and naturally growing leaves to find the leaves low in nutrient concentrations (N < 1.5 %, P < 0.09 %, Fe < 0.06) and that nutrients are reabsorbed before shedding the leaves (69%, 72% and 35% for N, P, and Fe respectively). As a result, we conducted a fertilization experiment (N, P, Fe and combinations) to find that iron additions alone led to significant growth responses. Moreover, we estimated their leaf production and used our previous estimates of both the total cover mangrove in the Red Sea along with plastochrone interval to assess their total nutrients flux per year to be 2414 t N, 139 t P and 98 t Fe. We found them to sequester 34 g m-2 y-1, which imply 4590 tons of carbon

  14. Ecosystem Services of Avicennia marina in the Red Sea

    KAUST Repository

    Almahasheer, Hanan

    2016-12-01

    The Red Sea is an arid environment, without riverine inputs, oligotrophic waters and extreme temperature and salinity. Avicennia marina is the dominant vegetation in the shores of the Red Sea. However, little is known about their distribution, dynamics, and services. Therefore, the aim of this Ph.D. was to obtain the basic information needed to evaluate their role in the coastal ecosystems and quantify their services. With that objective we 1) estimated the past and present distribution of mangroves in the Red Sea, 2) investigated the growth, leave production and floration 3) examined the growth limiting factors 4) measured the nutrients and heavy metal dynamics in the leaves and 5) estimated carbon sequestration. We found an increase of about 12% in the last 41 years, which contrasts with global trends of decrease. The extreme conditions in the Red Sea contributed to limit their growth resulting in stunted trees. Hence, we surveyed Central Red Sea mangroves to estimate their node production with an average of 9.59 node y-1 then converted that number into time to have a plastochrone interval of 38 days. As mangroves are taller in the southern Red Sea where both temperature and nutrients are higher than the Central Red Sea, we assessed nutrient status Avicennia marina propagules and naturally growing leaves to find the leaves low in nutrient concentrations (N < 1.5 %, P < 0.09 %, Fe < 0.06) and that nutrients are reabsorbed before shedding the leaves (69%, 72% and 35% for N, P, and Fe respectively). As a result, we conducted a fertilization experiment (N, P, Fe and combinations) to find that iron additions alone led to significant growth responses. Moreover, we estimated their leaf production and used our previous estimates of both the total cover mangrove in the Red Sea along with plastochrone interval to assess their total nutrients flux per year to be 2414 t N, 139 t P and 98 t Fe. We found them to sequester 34 g m-2 y-1, which imply 4590 tons of carbon

  15. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  16. A coral reef refuge in the Red Sea.

    Science.gov (United States)

    Fine, Maoz; Gildor, Hezi; Genin, Amatzia

    2013-12-01

    The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We suggest that the Gulf of Aqaba (GoA) (Red Sea) may serve as a reef refugium due to a unique suite of environmental conditions. Our hypothesis is based on experimental detection of an exceptionally high bleaching threshold of northern Red Sea corals and on the potential dispersal of coral planulae larvae through a selective thermal barrier estimated using an ocean model. We propose that millennia of natural selection in the form of a thermal barrier at the southernmost end of the Red Sea have selected coral genotypes that are less susceptible to thermal stress in the northern Red Sea, delaying bleaching events in the GoA by at least a century. © 2013 John Wiley & Sons Ltd.

  17. Ploughing the deep sea floor.

    Science.gov (United States)

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  18. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  19. Physical and biological characteristics of the winter-summer transition in the Central Red Sea

    KAUST Repository

    Zarokanellos, Nikolaos

    2017-07-25

    The Central Red Sea (CRS) lies between two distinct hydrographic and atmospheric regimes. In the southern Red Sea, seasonal monsoon reversal regulates the exchange of water between the Red Sea and the Indian Ocean. In the northern Red Sea, intermediate and occasionally deep water are formed during winter to sustain the basin\\'s overturning circulation. Highly variable mesoscale eddies and the northward flowing eastern boundary current (EBC) determine the physical and biogeochemical characteristics of the CRS. Ship-based and glider observations in the CRS between March and June 2013 capture key features of the transition from winter to summer and depict the impact of the eddy activity on the EBC flow. Less saline and relatively warmer water of Indian Ocean origin reaches the CRS via the EBC. Initially, an anticyclonic eddy with diameter of 140 km penetrating to 150m depth with maximum velocities up to 30–35 cm s prevails in the CRS. This anticyclonic eddy appears to block or at least redirect the northward flow of the EBC. Dissipation of the eddy permits the near-coastal, northward flow of the EBC and gives place to a smaller cyclonic eddy with a diameter of about 50 km penetrating to 200 m depth. By the end of May, as the northerly winds become stronger and persistent throughout the basin, characteristic of the summer southwest monsoon wind regime, the EBC, and its associated lower salinity water became less evident, replaced by the saltier surface water that characterizes the onset of the summer stratification in the CRS.

  20. On the origin of endemic species in the Red Sea

    KAUST Repository

    DiBattista, Joseph; Howard Choat, J.; Gaither, Michelle R.; Hobbs, Jean-Paul A.; Lozano-Corté s, Diego; Myers, Robert F.; Paulay, Gustav; Rocha, Luiz A.; Toonen, Robert J.; Westneat, Mark W.; Berumen, Michael L.

    2015-01-01

    High endemism observed in the Red Sea and Gulf of Aden appears to have multiple origins. A cold, nutrient-rich water barrier separates the Gulf of Aden from the rest of the Arabian Sea, whereas a narrow strait separates the Red Sea from the Gulf of Aden, each providing potential isolating barriers. Additional barriers may arise from environmental gradients, circulation patterns and the constriction at the mouth of the Gulf of Aqaba. Endemics that evolved within the Red Sea basin had to survive glacial cycles in relatively low salinity refugia. It therefore appears that the unique conditions in the Red Sea, in addition to those characteristics of the Arabian Peninsula region as a whole, drive the divergence of populations via a combination of isolation and selection.

  1. Raising the Dead without a Red Sea-Dead Sea project? Hydro-economics and governance

    Directory of Open Access Journals (Sweden)

    D. E. Rosenberg

    2011-04-01

    Full Text Available Seven decades of extractions have dramatically reduced Jordan River flows, lowered the Dead Sea level, opened sink holes, and caused other environmental problems. The fix Jordan, Israel, and the Palestinians propose would build an expensive multipurpose conveyance project from the Red Sea to the Dead Sea that would also generate hydropower and desalinate water. This paper compares the Red-Dead project to alternatives that may also raise the Dead Sea level. Hydro-economic model results for the Jordan-Israel-Palestinian inter-tied water systems show two restoration alternatives are more economically viable than the proposed Red-Dead project. Many decentralized new supply, wastewater reuse, conveyance, conservation, and leak reduction projects and programs in each country can together increase economic benefits and reliably deliver up to 900 MCM yr−1 to the Dead Sea. Similarly, a smaller Red-Dead project that only generates hydropower can deliver large flows to the Dead Sea when the sale price of generated electricity is sufficiently high. However, for all restoration options, net benefits fall and water scarcity rises as flows to the Dead Sea increase. This finding suggests (i each country has no individual incentive to return water to the Dead Sea, and (ii outside institutions that seek to raise the Dead must also offer countries direct incentives to deliver water to the Sea besides building the countries new infrastructure.

  2. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan

    2017-08-22

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  3. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M.; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-01-01

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  4. Investigation and Isolation of Cellulase-Producing microorganisms in the Red Sea

    KAUST Repository

    Fatani, Siham

    2016-05-01

    Cellulolytic microorganisms are considered to be key players in biorefinery, especially for the utilization of plant biomass. These organisms have been isolated from various environments. The Red Sea is one of the seas with high biodiversity and a unique environment, characterized by high water temperature and high salinity . However, there is little information regarding cellulases in Red Sea environments. The aim of the present study is to evaluate the Red Sea as a gene resource for microbial cellulase. I first surveyed microbial cellulases in the Red Sea using a method called metagenomes, and then investigated their abundance and diversity. My survey revealed that the Red Sea biome has a substantial abundance and a wide range of cellulase enzymes with substantial abundance, when compared with those in other environments. Next, I tried to isolate cellulase-active microorganisms from the Red Sea and I successfully obtained seven strains of four different taxonomic groups. These strains showed a similarity of 99% identity to Aspergillus ustus, 99% to Staphylococcus pasteuri, 99% to Bacillus aerius and 99% to Bacillus subtilis. The enzyme assay I conducted, revealed that these strains actually secreted active cellulases. These results suggest that the Red Sea environment can be, indeed, an excellent gene resource of microbial cellulases.

  5. Observations of the summer Red Sea circulation

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  6. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.; Abualnaja, Yasser; Josey, Simon A.; Bower, Amy; Raitsos, Dionysios E.; Kontoyiannis, Harilaos; Hoteit, Ibrahim

    2013-01-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  7. Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2013-03-01

    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.

  8. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2016-12-24

    As coastal plants that can survive in salt water, mangroves play an essential role in large marine ecosystems (LMEs). The Red Sea, where the growth of mangroves is stunted, is one of the least studied LMEs in the world. Mangroves along the Central Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week-old seedlings of Avicennia marina to identify limiting nutrients and stoichiometric effects. We measured height, number of leaves, number of nodes and root development at different time periods as well as the leaf content of C, N, P, Fe, and Chl a in the experimental seedlings. Height, number of nodes and number of leaves differed significantly among treatments. Iron treatment resulted in significantly taller plants compared with other nutrients, demonstrating that iron is the primary limiting nutrient in the tested mangrove population and confirming Liebig\\'s law of the minimum: iron addition alone yielded results comparable to those using complete fertilizer. This result is consistent with the biogenic nature of the sediments in the Red Sea, which are dominated by carbonates, and the lack of riverine sources of iron.

  9. Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea

    KAUST Repository

    Klevjer, Thor A.

    2012-06-13

    The mesopelagic zone of the Red Sea represents an extreme environment due to low food concentrations, high temperatures and low oxygen waters. Nevertheless, a 38 kHz echosounder identified at least four distinct scattering layers during the daytime, of which the 2 deepest layers resided entirely within the mesopelagic zone. Two of the acoustic layers were found above a mesopelagic oxygen minimum zone (OMZ), one layer overlapped with the OMZ, and one layer was found below the OMZ. Almost all organisms in the deep layers migrated to the near-surface waters during the night. Backscatter from a 300 kHz lowered Acoustic Doppler Current Profiler indicated a layer of zooplankton within the OMZ. They carried out DVM, yet a portion remained at mesopelagic depths during the night. Our acoustic measurements showed that the bulk of the acoustic backscatter was restricted to waters shallower than 800 m, suggesting that most of the biomass in the Red Sea resides above this depth. 2012 The Author(s).

  10. Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea

    KAUST Repository

    Klevjer, Thor A.; Torres, Daniel J.; Kaartvedt, Stein

    2012-01-01

    The mesopelagic zone of the Red Sea represents an extreme environment due to low food concentrations, high temperatures and low oxygen waters. Nevertheless, a 38 kHz echosounder identified at least four distinct scattering layers during the daytime, of which the 2 deepest layers resided entirely within the mesopelagic zone. Two of the acoustic layers were found above a mesopelagic oxygen minimum zone (OMZ), one layer overlapped with the OMZ, and one layer was found below the OMZ. Almost all organisms in the deep layers migrated to the near-surface waters during the night. Backscatter from a 300 kHz lowered Acoustic Doppler Current Profiler indicated a layer of zooplankton within the OMZ. They carried out DVM, yet a portion remained at mesopelagic depths during the night. Our acoustic measurements showed that the bulk of the acoustic backscatter was restricted to waters shallower than 800 m, suggesting that most of the biomass in the Red Sea resides above this depth. 2012 The Author(s).

  11. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.

    2015-05-18

    The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.

  12. Remote sensing the phytoplankton seasonal succession of the Red Sea.

    Science.gov (United States)

    Raitsos, Dionysios E; Pradhan, Yaswant; Brewin, Robert J W; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  13. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.

    2013-06-05

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  14. 77 FR 44216 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea and Aleutian Islands Crab...

    Science.gov (United States)

    2012-07-27

    ... of a zero (0) percent fee for cost recovery under the Bering Sea and Aleutian Islands Crab... Program includes a cost recovery provision to collect fees to recover the actual costs directly related to... processing sectors to each pay half the cost recovery fees. Catcher/processor quota share holders are...

  15. Post-rift deformation of the Red Sea Arabian margin

    Science.gov (United States)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb

    2017-04-01

    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent

  16. Effects of ocean acidification on fishery yields and profits of red king crab in Bristol Bay from model studies (NCEI Accession 0127395)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains model output data that were collected to examine the impact of ocean acidification on fishery yields and profits of red king crab in...

  17. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.; Raitsos, Dionysios E.; Dall'Olmo, Giorgio; Zarokanellos, Nikolaos; Jackson, Thomas; Racault, Marie-Fanny; Boss, Emmanuel S.; Sathyendranath, Shubha; Jones, Burton; Hoteit, Ibrahim

    2015-01-01

    an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll

  18. Biodiversity loss from deep-sea mining

    OpenAIRE

    C. L. Van Dover; J. A. Ardron; E. Escobar; M. Gianni; K. M. Gjerde; A. Jaeckel; D. O. B. Jones; L. A. Levin; H. Niner; L. Pendleton; C. R. Smith; T. Thiele; P. J. Turner; L. Watling; P. P. E. Weaver

    2017-01-01

    The emerging deep-sea mining industry is seen by some to be an engine for economic development in the maritime sector. The International Seabed Authority (ISA) – the body that regulates mining activities on the seabed beyond national jurisdiction – must also protect the marine environment from harmful effects that arise from mining. The ISA is currently drafting a regulatory framework for deep-sea mining that includes measures for environmental protection. Responsible mining increasingly stri...

  19. Bomb radiocarbon in the Red Sea: A medium-scale gas exchange experiment

    International Nuclear Information System (INIS)

    Cember, R.

    1989-01-01

    The history of bomb-produced radiocarbon in the surface waters of the Red Sea and the western Gulf of Aden was reconstructed from annual growth bands of corals. Gulf of Aden surface water entering the Red Sea and flowing to the north at the surface of the Red Sea becomes progressively enriched in bomb 14 C by air-sea exchange of carbon dioxide. With physical oceanographic observations and analysis as the basis of a simple model, this progressive northward enrichment can be used to calculate a mean invasionn flux for CO 2 across the Red Sea surface. The CO 2 invasion flux so calculated is 8 mol/m 2 /yr with an uncertainty of approximately 2 mol/m 2 /yr. When combined with the extensive historical observations of wind speeds in the Red Sea, the calculated CO 2 invasion flux supports the empirical relationship between CO 2 invasion and wind speed proposed by other workers. Sea surface pCO 2 was measured at seven stations along the length of the Red Sea in January 1985. These pCO 2 data show that in midwinter the net flux of CO 2 across the Red Sea surface (i.e. the difference between the invasion and evasion fluxes) is approximately zero for the Red Sea as a whole. copyright American Geophysical Union 1989

  20. A review of elasmobranch research in the Red Sea

    KAUST Repository

    Spaet, Julia L.Y.; Thorrold, Simon R.; Berumen, Michael L.

    2012-01-01

    Given the global concern about the status of elasmobranch fishes, the paucity of information on elasmobranchs in the Red Sea is worrisome. Management of elasmobranchs in areas other than the Red Sea has been helped by research on population ecology

  1. Stable isotope geochemistry of deep sea cherts

    Energy Technology Data Exchange (ETDEWEB)

    Kolodny, Y; Epstein, S [California Inst. of Tech., Pasadena (USA). Div. of Geological Sciences

    1976-10-01

    Seventy four samples of DSDP (Deep Sea Drilling Project) recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. delta/sup 18/0 of chert ranges between 27 and 39 parts per thousand relative to SMOW, delta/sup 18/0 of porcellanite - between 30 and 42 parts per thousand. The consistent enrichment of opal-CT in porcellanites in /sup 18/0 with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. delta/sup 18/0 of deep sea cherts generally decrease with increasing age, indicating an overall cooling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas et al., Initial Reports of the Deep Sea Drilling Project; 32:509(1975)) indicates the possibility of delta/sup 18/0 in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of delta/sup 18/0 values, increasing diagenesis being reflected in a lowering of delta/sup 18/0. Drusy quartz has the lowest delta/sup 18/0 values. On land exposed cherts are consistently depleted in /sup 18/0 in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt%. deltaD of this water ranges between -78 and -95 parts per thousand and is not a function of delta/sup 18/0 of the cherts (or the temperature of their formation).

  2. NPRB711 Quantification of unobserved injury and mortality of Bering Sea crabs due to encounters with trawls on the seafloor

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The potential for unobserved mortality of crabs encountering bottom trawls, but not captured, has long been a concern in the management of Bering Sea fisheries. We...

  3. Low Carbon sink capacity of Red Sea mangroves.

    Science.gov (United States)

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-08-29

    Mangroves forests of Avicennia marina occupy about 135 km 2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C org ) stocks, soil accretion rates (SAR; mm y -1 ) and soil C org sequestration rates (g C org m -2 yr -1 ) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 ± 0.3 mg C org cm -3 and 43 ± 5 Mg C org ha -1 (in 1 m-thick soils), respectively. Sequestration rates of C org , estimated at 3 ± 1 and 15 ± 1 g C org m -2 yr -1 for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  4. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  5. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea

    KAUST Repository

    Pearman, John K.

    2016-01-07

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water.

  6. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea

    KAUST Repository

    Pearman, John K.; Kurten, Saskia; Yellepeddi, Sarma B.; Jones, Burton; Carvalho, Susana

    2016-01-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water.

  7. Simulating Coral Reef Connectivity in the Southern Red Sea

    KAUST Repository

    Wang, Yixin

    2018-01-01

    and northern Red Sea is more affected by the intensity of the eddies. Evidence also suggests that potential connectivity exists between the coastal southern Red Sea and the coasts of Oman, Socotra, Somalia, Kenya, Tanzania and the north coast of the Madagascar.

  8. Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-05-07

    Despite the importance of the optical properties such as the downwelling diffuse attenuation coefficient for characterizing the upper water column, until recently no in situ optical measurements were published for the Red Sea. Kirby et al. used observations from the Coastal Zone Color Scanner to characterize the spatial and temporal variability of the diffuse attenuation coefficient (Kd(490)) in the Red Sea. To better understand optical variability and its utility in the Red Sea, it is imperative to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical profile measurements of downwelling irradiance (Ed) and upwelling radiance (Lu). Kd characterizes light penetration into water column that is important for understanding both the physical and biogeochemical environment, including water quality and the health of ocean environment. Our study tests the performance of the existing Kd(490) algorithms in the Red Sea and compares them against direct in situ measurements within various subdivisions of the Red Sea. Most standard algorithms either overestimated or underestimated with the measured in situ values of Kd. Consequently, these algorithms provided poor retrieval of Kd(490) for the Red Sea. Random errors were high for all algorithms and the correlation coefficients (r2) with in situ measurements were quite low. Hence, these algorithms may not be suitable for the Red Sea. Overall, statistical analyses of the various algorithms indicated that the existing algorithms are inadequate for the Red Sea. The present study suggests that reparameterizing existing algorithms or developing new regional algorithms is required to improve retrieval of Kd(490) for the Red Sea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is

  9. Properties, Mechanisms and Predictability of Eddies in the Red Sea

    KAUST Repository

    Zhan, Peng

    2018-04-01

    Eddies are one of the key features of the Red Sea circulation. They are not only crucial for energy conversion among dynamics at different scales, but also for materials transport across the basin. This thesis focuses on studying the characteristics of Red Sea eddies, including their temporal and spatial properties, their energy budget, the mechanisms of their evolution, and their predictability. Remote sensing data, in-situ observations, the oceanic general circulation model, and data assimilation techniques were employed in this thesis. The eddies in the Red Sea were first identified using altimeter data by applying an improved winding-angle method, based on which the statistical properties of those eddies were derived. The results suggested that eddies occur more frequently in the central basin of the Red Sea and exhibit a significant seasonal variation. The mechanisms of the eddies’ evolution, particularly the eddy kinetic energy budget, were then investigated based on the outputs of a long-term eddy resolving numerical model configured for the Red Sea with realistic forcing. Examination of the energy budget revealed that the eddies acquire the vast majority of kinetic energy through conversion of eddy available potential energy via baroclinic instability, which is intensified during winter. The possible factors modulating the behavior of the several observed eddies in the Red Sea were then revealed by conducting a sensitivity analysis using the adjoint model. These eddies were found to exhibit different sensitivities to external forcings, suggesting different mechanisms for their evolution. This is the first known adjoint sensitivity study on specific eddy events in the Red Sea and was hitherto not previously appreciated. The last chapter examines the predictability of Red Sea eddies using an ensemble-based forecasting and assimilation system. The forecast sea surface height was used to evaluate the overall performance of the short-term eddy

  10. Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea

    KAUST Repository

    Swift, Stephen A.; Bower, Amy S.; Schmitt, Raymond W.

    2012-01-01

    convective layers is rapid on time scales of 3-5 years and, thus, heat is lost from the brine pools to overlying Red Sea Deep Water. Heat budgets suggest that the heat flux from hydrothermal venting has decreased from 0.54. GW to 0.18. GW since 1966. A tow

  11. Vision in the deep sea.

    Science.gov (United States)

    Warrant, Eric J; Locket, N Adam

    2004-08-01

    The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the

  12. Latitudinal environmental gradients and diel variability influence abundance and community structure of Chaetognatha in Red Sea coral reefs

    KAUST Repository

    Al-aidaroos, Ali M.

    2016-08-15

    The Red Sea has been recognized as a unique region to study the effects of ecohydrographic gradients at a basin-wide scale. Its gradient of temperature and salinity relates to the Indian Ocean monsoon and associated wind-driven transport of fertile and plankton-rich water in winter from the Gulf of Aden into the Red Sea. Subsequent evaporation and thermohaline circulation increase the salinity and decrease water temperatures toward the North. Compared with other ocean systems, however, relatively little is known about the zooplankton biodiversity of the Red Sea and how this relates to Red Sea latitudinal gradients. Among the most abundant zooplankton taxa are Chaetognatha, which play an important role as secondary consumers in most marine food webs. Since Chaetognatha are sensitive to changes in temperature and salinity, we surmised latitudinal changes in their biodiversity, community structure and diel variability along the coast of Saudi Arabia. Samples were collected at nine coral reefs spanning approximately 1500km, from the Gulf of Aqaba in the northern Red Sea to the Farasan Archipelago in the southern Red Sea. Thirteen Chaetognatha species belonging to two families (Sagittidae and Krohnittidae) were identified. Latitudinal environmental changes and availability of prey (i.e. Copepoda, Crustacea) altered Chaetognatha density and distribution. The cosmopolitan epiplanktonic Flaccisagitta enflata (38.1%) dominated the Chaetognatha community, and its abundance gradually decreased from South to North. Notable were two mesopelagic species (Decipisagitta decipiens and Caecosagitta macrocephala) in the near-reef surface mixed layers at some sites. This was related to wind-induced upwelling of deep water into the coral reefs providing evidence of trophic oceanic subsidies. Most Sagittidae occurred in higher abundances at night, whereas Krohnittidae were more present during the day. Chaetognatha with developing (stage II) or mature ovaries (stage III) were more active

  13. Age-dependent mixing of deep-sea sediments

    International Nuclear Information System (INIS)

    Smith, C.R.; Maggaard, L.; Pope, R.H.; DeMaster, D.J.

    1993-01-01

    Rates of bioturbation measured in deep-sea sediments commonly are tracer dependent; in particular, shorter lived radiotracers (such as 234 Th) often yield markedly higher diffusive mixing coefficients than their longer-lived counterparts (e.g., 210 Pb). At a single station in the 1,240-m deep Santa Catalina Basin, the authors document a strong negative correlation between bioturbation rate and tracer half-life. Sediment profiles of 234 Th (half-life = 24 days) yield an average mixing coefficient (60 cm 2 y -1 ) two orders of magnitude greater than that for 210 Pb (half-life = 22 y, mean mixing coefficient = 0.4 cm 2 y -1 ). A similar negative relationship between mixing rate and tracer time scale is observed at thirteen other deep-sea sites in which multiple radiotracers have been used to assess diffusive mixing rates. This relationship holds across a variety of radiotracer types and time scales. The authors hypothesize that this negative relationship results from age-dependent mixing, a process in which recently sedimented, food-rich particles are ingested and mixed at higher rates by deposit feeders than are older, food-poor particles. Results from an age-dependent mixing model demonstrate that this process indeed can yield the bioturbation-rate vs. tracer-time-scale correlations observed in deep-sea sediments. Field data on mixing rates of recently sedimented particles, as well as the radiotracer activity of deep-sea deposit feeders, provide strong support for the age-dependent mixing model. The presence of age-dependent mixing in deep-sea sediments may have major implications for diagenetic modeling, requiring a match between the characteristic time scales of mixing tracers and modeled reactants. 102 refs., 6 figs., 5 tabs

  14. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  15. Temporal changes in the Red Sea circulation and associated water masses

    OpenAIRE

    Alraddadi, Turki Metabe

    2013-01-01

    Long-term variability of the Red Sea deep water (RSDW) properties was investigated using hydrographic data stretching back to the beginning of the 19th century. The analysis of the potential temperature and salinity indicate that there is a signal of cooling and freshening trends between 1950 to 2011 in the RSDW by an average of 35.5 x10-4 ± 5.6x10-4 oC yr-1 and 13.8x10-4 ± 2.8x10-4 psu yr-1 respectively. Both trends of cooling and freshening are statistically significant with a confidence le...

  16. Molecular biodiversity of Red Sea demosponges

    International Nuclear Information System (INIS)

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M.; Berumen, Michael L.; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone

    2016-01-01

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. - Highlights: •First assessment of demosponge molecular biodiversity from Arabia •Rapid molecular screening approach on Arabian demosponge collections •Assessment of 28S 'C-Region' for demosponge barcoding •Data for a future comprehensive understanding of sponge biodiversity of the Red Sea

  17. A vertical wall dominated by Acesta excavata and Neopycnodonte zibrowii, part of an undersampled group of deep-sea habitats.

    Directory of Open Access Journals (Sweden)

    Mark P Johnson

    Full Text Available We describe a novel biotope at 633 to 762 m depth on a vertical wall in the Whittard Canyon, an extensive canyon system reaching from the shelf to the deep sea on Ireland's continental margin. We explored this wall with an ROV and compiled a photomosaic of the habitat. The assemblage contributing to the biotope was dominated by large limid bivalves, Acesta excavata (mean shell height 10.4 cm, and deep-sea oysters, Neopycnodonte zibrowii, at high densities, particularly at overhangs. Mean density of N. zibrowii increased with depth, with densities of the most closely packed areas of A. excavata also increasing with depth. Other taxa associated with the assemblage included the solitary coral Desmophyllum dianthus, cerianthid anemones, comatulid crinoids, the trochid gastropod Margarites sp., the portunid crab Bathynectes longispina and small fish of the family Bythitidae. The scleractinian coral Madrepora oculata, the pencil urchin Cidaris cidaris and a species of Epizoanthus were also common. Prominent but less abundant species included the flytrap anemone Actinoscyphia saginata, the carrier crab Paramola cuvieri, and the fishes Lepidion eques and Conger conger. Observations of the hydrography of the canyon system identified that the upper 500 m was dominated by Eastern North Atlantic Water, with Mediterranean Outflow Water beneath it. The permanent thermocline is found between 600 and 1000 m depth, i.e., in the depth range of the vertical wall and the dense assemblage of filter feeders. Beam attenuation indicated nepheloid layers present in the canyon system with the greatest amounts of suspended material at the ROV dive site between 500 and 750 m. A cross-canyon CTD transect indicated the presence of internal waves between these depths. We hypothesise that internal waves concentrate suspended sediment at high concentrations at the foot of the vertical wall, possibly explaining the large size and high density of filter-feeding molluscs.

  18. Saurida lessepsianus a new species of lizardfish (Pisces: Synodontidae) from the Red Sea and Mediterranean Sea, with a key to Saurida species in the Red Sea.

    Science.gov (United States)

    Russell, Barry C; Golani, Daniel; Tikochinski, Yaron

    2015-05-12

    Saurida lessepsianus n. sp., a lizardfish (Aulopiformes: Synodontidae) from the Red Sea and Mediterranean Sea, previously misidentified as S. undosquamis (Richardson) and more recently as S. macrolepis Tanaka, is described as a new species. It is characterised by the following combination of characters: dorsal fin with 11-12 rays; pectoral fins with 13-15 rays; lateral-line scales 47-51; transverse scale rows above lateral line 4½, below lateral line 5½; pectoral fins moderately long (extending to between just before or just beyond a line from origin of pelvic fins to origin of dorsal fin); 2 rows of teeth on outer palatines; 0-2 teeth on vomer; tongue with 3-6 rows of teeth posteriorly; caudal peduncle slightly compressed (depth a little more than width); upper margin of caudal fin with row of 3-8 (usually 6 or 7) small black spots; stomach pale grey to blackish anteriorly; intestine whitish. The species is common in the Red Sea and as a result of Lessepsian migration through the Suez Canal, it is now widely distributed in the eastern Mediterranean. The taxonomic status of two other Red Sea nominal species, Saurus badimottah Rüppell [= Saurida tumbil (Bloch)] and Saurida sinaitica Dollfus in Gruvel (a nomen nudum), is clarified. A key is provided for the species of Saurida in the Red Sea.

  19. The Red Sea outflow regulated by the Indian monsoon

    Science.gov (United States)

    Aiki, Hidenori; Takahashi, Keiko; Yamagata, Toshio

    2006-08-01

    To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May-September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.

  20. New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea

    Science.gov (United States)

    Laurila, Tea E.; Hannington, Mark D.; Leybourne, Matthew; Petersen, Sven; Devey, Colin W.; Garbe-Schönberg, Dieter

    2015-12-01

    The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main "ore" minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au.

  1. Movement Ecology of the Reef Manta Ray Manta alfredi in the Eastern Red Sea

    KAUST Repository

    Braun, Camrin D.

    2013-07-01

    Many well-studied elasmobranch populations have recently exhibited significant decline. The limited data related to fisheries and sightings for many unstudied or poorly understood populations indicate that these are also suffering. Directed fisheries and more cryptic threats such as entanglement and vessel strike represent significant risk to mobulid rays, arguably one of the most vulnerable elasmobranch groups. Very little information currently exists describing the basic ecology of manta rays or quantifying anthropogenic threats and impacts; however, recent efforts have drastically improved the body of knowledge available for these species, including oceanographic influences on movement, seasonal migration, and mating behaviors. Nevertheless, Red Sea mantas remain completely enigmatic. In this thesis, Chapter 1 details results from tagging 18 reef manta rays Manta alfredi in the eastern Red Sea using satellite and acoustic tag technology and demonstrates that mantas occupy areas with high human traffic. The combined satellite and acoustic techniques define both regional movements and ‘hotspots’ of habitat use where there is significant potential for manta-human interaction. I also present opportunistic sighting data that corroborate anthropogenic impacts on this population. Chapter 2 explores the vertical component of the nine satellite tags that were deployed on Manta alfredi as described in the previous chapter. Seven tags returned adequate data for analysis. Three of the seven were physically recovered yielding full archival datasets of depth, temperature, and light levels every 10-15 seconds for over 2.6 5 million cumulative data points. Mantas frequented the upper 10 m during the day and occupied deeper water through nocturnal periods. Individuals also exhibited deep diving behavior as deep as 432 m, extending the known depth range of the species. An investigation of 76 high-resolution deep dives suggests gliding is a significant behavioral component of

  2. Formation of early-middle Miocene red beds in the South China Sea: element geochemistry and mineralogy analysis

    Science.gov (United States)

    Lyu, X.; Liu, Z.

    2017-12-01

    The formation of oceanic red beds that usually present oxic and oligotrophic conditions with low sedimentation rate has been used to trace depositional paleoenvironment and paleoclimate change. Red beds overlying oceanic basalts were drilled at two adjacent Sites U1433 and U1434 of IODP Expedition 349 in the Southwest Subbasin of the South China Sea. The occurrence of early-middle Miocene red beds may indicate that at that time there was oxic and quiet marine environment in the deep South China Sea. To understand their formation of red-color, local depositional condition, and potential paleoceanographic significance, major elements (XRF), trace and rare earth elements (ICP-MS), Fe chemical speciation (modified sequential iron extraction procedure), and Fe oxic minerals (CBD and DRS) were analyzed. Geochemical and mineralogical data reveal that hematite and goethite are responsible for the reddish color and red beds were deposited under highly oxic, oligotrophic conditions with a little later hydrothermal influence in the South China Sea. Our results indicate that: (1) after treatment using the CBD procedure, the red samples presented a change in color to greenish, showing the iron oxides being responsible for the sediment color; (2) enriched Mn, depleted U, S enrichment factors, and negative Ce anomaly show that the water mass was pre-oxidized before transported to the study location; (3) low primary productivity was inferred from the lower P, Ba enrichment factors in red beds compared to non-red beds; (4) the excess Mo influx at the bottom may come from the later hydrothermal input; (5) the diverse Ca enrichment factors and correlations between Fe and Al suggest different allogenic sources for red beds at our two sites. We conclude that the red beds at Sites U1433 and U1434 despite their diverse sources both developed in externally oxidized water mass and low primary productivity conditions, and partially altered by hydrothermal fluids after their pelagic

  3. Applied radiotracer techniques for studying pollutant bioaccumulation in selected marine organisms (jellyfish, crabs and sea stars)

    International Nuclear Information System (INIS)

    Fowler, S.W.; Teyssie, J.-L.; Cotret, O.; Danis, B.; Warnau, M.; Rouleau, C.

    2004-01-01

    Obtaining specific information on contaminant biokinetics in marine biota is often necessary for properly interpreting monitoring data on trace contaminant levels in bioindicator species living under varying environmental conditions. Radiotracers have been employed in laboratory experiments to assess the uptake, distribution and retention of selected heavy metals and PCB congeners in three potential marine bioindicators occupying different ecological niches in the coastal zone. Pelagic and benthic jellyfish readily accumulated Co, Ag, Zn, Cd, 137 Cs and 241 Am from both water and food and retained them with biological half-lives (Tb1/2) ranging from a few days to several weeks. Zinc and silver were accumulated to the greatest degree (CF ∼ 4 · 10 2 ), with benthic jellyfish having a greater affinity for metals than the pelagic species. Results from light-dark experiments indicate that the enhanced metal uptake in the benthic jellyfish is due to the presence of endosymbiotic photosynthetic zooxanthellae situated in the arms of organisms. Shore crabs ingesting Ag, a sewage-related contaminant, readily accumulated the metal with male crabs assimilating some 71% and female crabs 51% of the Ag from their food. Moreover, the assimilated fraction of Ag remained virtually immobile in their tissues as evidenced by an extremely long Tb1/2 for depuration of 7.3 years. Sea stars exposed to 14 C-labelled PCB congener no. 153 in sea water accumulated the congener mainly in the body wall and podia reaching lipid weight CFs that ranged between approximately 2 · 10 5 to 4 · 10 5 . In contrast, following exposure in radiolabelled sediments, the corresponding PCB transfer factors in the same tissues were much lower, viz., 3 · 10 2 to 5 · 10 2 . Nevertheless, regardless of the exposure mode, CFs of PCB in the other tissues (digestive system, gonads, pyloric and rectal caeca) were consistently one to two orders of magnitude lower, an observation which suggests that sea star body

  4. Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria.

    Science.gov (United States)

    Speth, Daan R; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei-Yuan; Dutilh, Bas E; Jetten, Mike S M

    2017-07-01

    Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the possibility of anammox at BSI sites using metagenomic shotgun sequencing of DNA obtained from the BSI above the Discovery Deep brine pool. Analysis of sequencing reads matching the 16S rRNA and hzsA genes confirmed presence of anammox bacteria of the genus Scalindua. Phylogenetic analysis of the 16S rRNA gene indicated that this Scalindua sp. belongs to a distinct group, separate from the anammox bacteria in the seawater column, that contains mostly sequences retrieved from high-salt environments. Using coverage- and composition-based binning, we extracted and assembled the draft genome of the dominant anammox bacterium. Comparative genomic analysis indicated that this Scalindua species uses compatible solutes for osmoadaptation, in contrast to other marine anammox bacteria that likely use a salt-in strategy. We propose the name Candidatus Scalindua rubra for this novel species, alluding to its discovery in the Red Sea.

  5. Climatic features of the Red Sea from a regional assimilative model

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2016-08-16

    The Advanced Research version of Weather Research and Forecasting (WRF-ARW) model was used to generate a downscaled, 10-km resolution regional climate dataset over the Red Sea and adjacent region. The model simulations are performed based on two, two-way nested domains of 30- and 10-km resolutions assimilating all conventional observations using a cyclic three-dimensional variational approach over an initial 12-h period. The improved initial conditions are then used to generate regional climate products for the following 24 h. We combined the resulting daily 24-h datasets to construct a 15-year Red Sea atmospheric downscaled product from 2000 to 2014. This 15-year downscaled dataset is evaluated via comparisons with various in situ and gridded datasets. Our analysis indicates that the assimilated model successfully reproduced the spatial and temporal variability of temperature, wind, rainfall, relative humidity and sea level pressure over the Red Sea region. The model also efficiently simulated the seasonal and monthly variability of wind patterns, the Red Sea Convergence Zone and associated rainfall. Our results suggest that dynamical downscaling and assimilation of available observations improve the representation of regional atmospheric features over the Red Sea compared to global analysis data from the National Centers for Environmental Prediction. We use the dataset to describe the atmospheric climatic conditions over the Red Sea region. © 2016 Royal Meteorological Society.

  6. Environmental characterization and radiological impacts of non-nuclear industries on the red sea coast

    International Nuclear Information System (INIS)

    Mamoney, M. H. El; Khater, Ashraf E. M.

    2002-01-01

    The Red Sea is a deep semi-enclosed and narrow basin connected to the Indian Ocean by a narrow sill in the south and to the Suez Canal in the north. Oil industries in the Gulf of Suez, phosphate ore mining activities in Safaja- Quseir region and intensified navigation activities are non-nuclear land base pollution sources that could have a serious radiological impacts on the marine environment and the coastal ecosystems of the Red Sea. It is a need and an essential to draw up the radiological base-line data, which is not exist yet and to investigate the radio-ecological impact of non- nuclear industries to protect the coastal environment of the Red Sea. Natural and man- made radionuclides have been measured in shore sediment samples collected from the Egyptian coast of the Red Sea. The specific activities of 226 Ra ( 238 U)series, 232 Th series, 40 K, 137 Cs and 210 Pb (Bq/kg dry weight) were measured using gamma ray spectrometry based on hyper pure germanium detectors. The specific activities of 210 Po ( 210 Pb) and uranium isotopes ( 238 U, 235 U and 234 U), (Bq/kg dry weight) were measured using alpha spectrometry based on surface barrier (PIPS) detectors after radiochemical separation. The absorbed radiation dose rates in air (nGy/h) due to natural radionuclides in shore sediment and radium equivalent activity (Bq/kg) were calculated. The specific activity ratios of 228 Ra/ 226 Ra, 210 Pb/ 226 Ra, 226 Ra/ 238 U and 234 U/ 238 U were calculated for evaluation of geo-chemical behaviour of these radionuclides. These results were represented and discussed. The results gave an indication of the possible radiological impacts of oil industries in the northern region and phosphate mining activities in the Safaja-Quseir region

  7. AFSC/RACE/SAP/Pathobiology: 2015 Bitter crab disease prevalence in immature Chionoecetes spp. at 6 index sites in eastern Bering Sea

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains crab data from a field survey of Chionoecetes bairdi and C. opilio collected at six designated index sites in the Bering Sea during the 2015...

  8. AFSC/RACE/SAP/Pathobiology: 2016 Bitter crab disease prevalence in immature Chionoecetes spp. at 6 index sites in eastern Bering Sea

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains crab data from a field survey of Chionoecetes bairdi and C. opilio collected at six designated index sites in the Bering Sea during the 2016...

  9. AFSC/RACE/SAP/Pathobiology: 2014 Bitter crab disease prevalence in immature Chionoecetes spp. at 6 index sites in eastern Bering Sea

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains crab data from a field survey of Chionoecetes bairdi and C. opilio collected at six designated index sites in the Bering Sea during the 2014...

  10. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an \\'intermediate\\' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  11. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-01-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  12. Fracture-zone tectonics at Zabargad Island, Red Sea (Egypt)

    Science.gov (United States)

    Marshak, Stephen; Bonatti, Enrico; Brueckner, Hannes; Paulsen, Timothy

    1992-12-01

    Zabargad Island, which lies along the western margin of the Red Sea rift, is a remarkable place because it provides fresh exposures of undepleted mantle peridotite. How this peridotite came to be exposed on Zabargad remains unclear. Our field mapping indicates that most of the contacts between peridotite and the adjacent bodies of Pan-African gneiss and Cretaceous(?) Zabargad Formation on the island are now high-angle brittle faults. Zabargad Formation strata have been complexly folded, partly in response to this faulting. Overall, the array of high-angle faults and associated folds on the island resembles those found in cross-rift transfer zones. We suggest, therefore, that the Zabargad fracture zone, a band of submarine escarpments on the floor of the Red Sea north of the island, crosses Zabargad Island and has actively resolved differential movement between the central Red Sea rift and the northern Red Sea rift. The final stage of uplift that brought the unusual peridotite to the earth's surface is related to shallow crustal transpression, which may have inverted an earlier transtensional regime.

  13. Arabian Red Sea coastal soils as potential mineral dust sources

    Directory of Open Access Journals (Sweden)

    P. Jish Prakash

    2016-09-01

    Full Text Available Both Moderate Resolution Imaging Spectroradiometer (MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD, inductively coupled plasma optical emission spectrometry (ICP-OES, ion chromatography (IC, scanning electron microscopy (SEM and laser particle size analysis (LPSA. We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models

  14. The tropical African hermit crab Pagurus mbizi (Crustacea, Decapoda, Paguridae in the Western Mediterranean Sea: a new alien species or filling gaps in the knowledge of the distribution?

    Directory of Open Access Journals (Sweden)

    J. E. GARCIA RASO

    2013-12-01

    Full Text Available We report the first occurrence in the European Mediterranean Sea of a tropical Atlantic hermit crab, Pagurus mbizi (Forest, 1955, based on the capture of twenty specimens (all sizes and ovigerous females collected along the northern shores of the Alboran Sea, which proof the existence of a well-established population of this species, and the importance of this geographic area as a transitional and settlement zone for Atlantic species, which makes the Alboran Sea one of the richest marine biodiversity areas in the Mediterranean Sea. Some morphological comparative data with the closely related hermit crab Pagurus pubescentulus are given. In addition, data on its habitat and geographical distribution, as well as the probable pathways of introduction, are commented.

  15. Laminae type and possible mechanisms for the formation of laminated sediments in the Shaban Deep, northern Red Sea

    Directory of Open Access Journals (Sweden)

    I. A. Seeberg-Elverfeldt

    2005-01-01

    Full Text Available Laminated sediments in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed with backscattered electron imagery. Here we present possible mechanisms involved in the formation of laminae of various types and homogenous intervals arising from the detailed investigation of multicore GeoB 7805-1 (26°13.9' N and 35°22.6' E; water depth 1447 m and gravity core GeoB 5836-2 (26°12.61' N, 35°21.56' E; water depth 1475 m. Sediment makeup includes six types: a a laminated structure with alternating light (mainly coccoliths and dark (diatom frustules layers, where the diatom component is indicative of the intra-annual variability between stratification and mixing events; b a pocket-like structure attributed to the sinking of particles within fecal pellets and aggregates; c a matrix of tightly packed diatoms that relates to extended stratification/mixing periods of the water column; d homogenous intervals that result from turbidity deposition; e silt accumulations which origin may lie in agglutinated foraminifers; and f pyrite layers with pyrite formation initiated at the seawater-brine interface.

  16. Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): Assessing the environmental impact of bauxite red mud disposal

    NARCIS (Netherlands)

    Fontanier, C.; Fabri, M.-C.; Buscail, R.; Biscara, L.; Koho, K.A.; Reichart, G.-J.; Cossa, D.; Galaup, S.; Chabaud, G.; Pigot, L.

    2012-01-01

    Benthic foraminiferal assemblages were investigated from two sites along the axis of the Cassidaigne Canyon (NW Mediterranean Sea). Both areas are contaminated by bauxite red mud enriched in iron, titanium, vanadium and chromium. These elemental enrichments are related to bauxite-derived

  17. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  18. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    Science.gov (United States)

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  19. Red Sea as a source for bioprospecting

    KAUST Repository

    Kodzius, Rimantas

    2015-12-12

    King-Abdullah University of Science and Technology (KAUST) is located on the shores of the Red Sea in Saudi Arabia. The Red Sea is well known for its unique environment, harboring various microbes capable of surviving in salty brines. We collected sediment samples from brine pool adjacent to the Thuwal cold seeps in the Red Sea. The taxonomic analysis showed the diversity and abundance of bacterial and archaeal operational taxonomic units (OUT). Recently we established in the laboratory a microdroplet technology to encapsulate single cells. This technology enables us to analyze single-cell genomes and perform the high-throughput screening. The genomes of both cultivable and uncultivable organisms can be analyzed. We envision the collection of complimentary data, obtained by various techniques, such as single-cell genomics, metagenomics, and transcriptomics. That will enable us not only to understand the environment and microorganism communities but also will allow to discover the previously unknown genes, pathways, and whole genomes. These data will facilitate the enhancement of biological and chemical producers, and pave the way for bioprospecting.

  20. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    Science.gov (United States)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially

  1. Species distribution models of tropical deep-sea snappers.

    Directory of Open Access Journals (Sweden)

    Céline Gomez

    Full Text Available Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna. Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and

  2. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  3. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea.

    Science.gov (United States)

    Pearman, J K; Kürten, S; Sarma, Y V B; Jones, B H; Carvalho, S

    2016-03-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. A Deep-Sea Simulation.

    Science.gov (United States)

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  5. Indian deep-sea environment experiment (INDEX): Monitoring the restoration of marine enviroment after artificial disturbance to simulate deep-sea mining in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin Guest Editor Rahul Sharma Note from guest editor A special issue on Indian Deep-sea Environment Experiment (INDEX) conducted by the scientists... in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. Nagender Nath, G. Parthiban, S. Banaulikar, and Subhadeep Sarkar Marine Georesources and Geotechnology, 24:61–62, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1064-119X print/1521...

  6. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  7. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    Science.gov (United States)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  8. Observations of Deep-Sea Coral and Sponge Occurrences from the NOAA National Deep-Sea Coral and Sponge Database, 1842-Present (NCEI Accession 0145037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA’s Deep-Sea Coral Research and Technology Program (DSC-RTP) compiles a national database of the known locations of deep-sea corals and sponges in U.S....

  9. A catalogue of 136 microbial draft genomes from Red Sea metagenomes

    KAUST Repository

    Haroon, Mohamed

    2016-07-05

    Earth is expected to continue warming and the Red Sea is a model environment for understanding the effects of global warming on ocean microbiomes due to its unusually high temperature, salinity and solar irradiance. However, most microbial diversity analyses of the Red Sea have been limited to cultured representatives and single marker gene analyses, hence neglecting the substantial uncultured majority. Here, we report 136 microbial genomes (completion minus contamination is ≥50%) assembled from 45 metagenomes from eight stations spanning the Red Sea and taken from multiple depths between 10 to 500 m. Phylogenomic analysis showed that most of the retrieved genomes belong to seven different phyla of known marine microbes, but more than half representing currently uncultured species. The open-access data presented here is the largest number of Red Sea representative microbial genomes reported in a single study and will help facilitate future studies in understanding the physiology of these microorganisms and how they have adapted to the relatively harsh conditions of the Red Sea.

  10. A catalogue of 136 microbial draft genomes from Red Sea metagenomes

    KAUST Repository

    Haroon, Mohamed; Thompson, Luke R.; Parks, Donovan H.; Hugenholtz, Philip; Stingl, Ulrich

    2016-01-01

    Earth is expected to continue warming and the Red Sea is a model environment for understanding the effects of global warming on ocean microbiomes due to its unusually high temperature, salinity and solar irradiance. However, most microbial diversity analyses of the Red Sea have been limited to cultured representatives and single marker gene analyses, hence neglecting the substantial uncultured majority. Here, we report 136 microbial genomes (completion minus contamination is ≥50%) assembled from 45 metagenomes from eight stations spanning the Red Sea and taken from multiple depths between 10 to 500 m. Phylogenomic analysis showed that most of the retrieved genomes belong to seven different phyla of known marine microbes, but more than half representing currently uncultured species. The open-access data presented here is the largest number of Red Sea representative microbial genomes reported in a single study and will help facilitate future studies in understanding the physiology of these microorganisms and how they have adapted to the relatively harsh conditions of the Red Sea.

  11. A catalogue of 136 microbial draft genomes from Red Sea metagenomes.

    Science.gov (United States)

    Haroon, Mohamed F; Thompson, Luke R; Parks, Donovan H; Hugenholtz, Philip; Stingl, Ulrich

    2016-07-05

    Earth is expected to continue warming and the Red Sea is a model environment for understanding the effects of global warming on ocean microbiomes due to its unusually high temperature, salinity and solar irradiance. However, most microbial diversity analyses of the Red Sea have been limited to cultured representatives and single marker gene analyses, hence neglecting the substantial uncultured majority. Here, we report 136 microbial genomes (completion minus contamination is ≥50%) assembled from 45 metagenomes from eight stations spanning the Red Sea and taken from multiple depths between 10 to 500 m. Phylogenomic analysis showed that most of the retrieved genomes belong to seven different phyla of known marine microbes, but more than half representing currently uncultured species. The open-access data presented here is the largest number of Red Sea representative microbial genomes reported in a single study and will help facilitate future studies in understanding the physiology of these microorganisms and how they have adapted to the relatively harsh conditions of the Red Sea.

  12. Assessing Deep Sea Communities Through Seabed Imagery

    Science.gov (United States)

    Matkin, A. G.; Cross, K.; Milititsky, M.

    2016-02-01

    The deep sea still remains virtually unexplored. Human activity, such as oil and gas exploration and deep sea mining, is expanding further into the deep sea, increasing the need to survey and map extensive areas of this habitat in order to assess ecosystem health and value. The technology needed to explore this remote environment has been advancing. Seabed imagery can cover extensive areas of the seafloor and investigate areas where sampling with traditional coring methodologies is just not possible (e.g. cold water coral reefs). Remotely operated vehicles (ROVs) are an expensive option, so drop or towed camera systems can provide a more viable and affordable alternative, while still allowing for real-time control. Assessment of seabed imagery in terms of presence, abundance and density of particular species can be conducted by bringing together a variety of analytical tools for a holistic approach. Sixteen deep sea transects located offshore West Africa were investigated with a towed digital video telemetry system (DTS). Both digital stills and video footage were acquired. An extensive data set was obtained from over 13,000 usable photographs, allowing for characterisation of the different habitats present in terms of community composition and abundance. All observed fauna were identified to the lowest taxonomic level and enumerated when possible, with densities derived after the seabed area was calculated for each suitable photograph. This methodology allowed for consistent assessment of the different habitat types present, overcoming constraints, such as specific taxa that cannot be enumerated, such as sponges, corals or bryozoans, the presence of mobile and sessile species, or the level of taxonomic detail. Although this methodology will not enable a full characterisation of a deep sea community, in terms of species composition for instance, itt will allow a robust assessment of large areas of the deep sea in terms of sensitive habitats present and community

  13. Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean.

    Science.gov (United States)

    Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz

    2014-11-18

    Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·10(10) kg·y(-1) of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms.

  14. Applicability of Current Atmospheric Correction Techniques in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-10-26

    Much of the Red Sea is considered to be a typical oligotrophic sea having very low chlorophyll-a concentrations. Few existing studies describe the variability of phytoplankton biomass in the Red Sea. This study evaluates the resulting chlorophyll-a values computed with different chlorophyll algorithms (e.g., Chl_OCI, Chl_Carder, Chl_GSM, and Chl_GIOP) using radiances derived from two different atmospheric correction algorithms (NASA standard and Singh and Shanmugam (2014)). The resulting satellite derived chlorophyll-a concentrations are compared with in situ chlorophyll values measured using the High-Performance Liquid Chromatography (HPLC). Statistical analyses are used to assess the performances of algorithms using the in situ measurements obtain in the Red Sea, to evaluate the approach to atmospheric correction and algorithm parameterization.

  15. Applicability of Current Atmospheric Correction Techniques in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash; Ouhssain, Mustapha; Jones, Burton

    2016-01-01

    Much of the Red Sea is considered to be a typical oligotrophic sea having very low chlorophyll-a concentrations. Few existing studies describe the variability of phytoplankton biomass in the Red Sea. This study evaluates the resulting chlorophyll-a values computed with different chlorophyll algorithms (e.g., Chl_OCI, Chl_Carder, Chl_GSM, and Chl_GIOP) using radiances derived from two different atmospheric correction algorithms (NASA standard and Singh and Shanmugam (2014)). The resulting satellite derived chlorophyll-a concentrations are compared with in situ chlorophyll values measured using the High-Performance Liquid Chromatography (HPLC). Statistical analyses are used to assess the performances of algorithms using the in situ measurements obtain in the Red Sea, to evaluate the approach to atmospheric correction and algorithm parameterization.

  16. Deep sea radionuclides

    International Nuclear Information System (INIS)

    Kanisch, G.; Vobach, M.

    1993-01-01

    Every year since 1979, either in sping or in summer, the fishing research vessel 'Walther Herwig' goes to the North Atlantic disposal areas of solid radioactive wastes, and, for comparative purposes, to other areas, in order to collect water samples, plankton and nekton, and, from the deep sea bed, sediment samples and benthos organisms. In addition to data on the radionuclide contents of various media, information about the plankton, nekton and benthos organisms living in those areas and about their biomasses could be gathered. The investigations are aimed at acquiring scientifically founded knowledge of the uptake of radioactive substances by microorganisms, and their migration from the sea bottom to the areas used by man. (orig.) [de

  17. Regional Hydrological Cycle over the Red Sea in ERA-Interim

    KAUST Repository

    Zolina, Olga; Dufour, Ambroise; Gulev, Sergey K.; Stenchikov, Georgiy L.

    2016-01-01

    The major sources of atmospheric moisture over the Red Sea are analyzed using ERA-Interim for the 1979-2013 period. The vertical structure of moisture transports across the coastlines has been computed separately for the western and eastern coasts of the Red Sea. The vertical structure of the moisture transport from the Red Sea to the continents is dominated by a breeze-like circulation in the near-surface layer and the Arabian high above 850 hPa. The lower-layer, breeze-like circulation is acting to export the moisture to the northwest of Africa and to the Arabian Peninsula and contributes about 80% of the moisture exports from the Red Sea, dominating over the transport in the upper layer, where the moisture is advected to the Arabian Peninsula in the northern part of the sea and to the African continent in the southern part. Integrated moisture divergence over the Red Sea decreased from the early 1980s to 1997 and then increased until the 2010s. Associated changes in the moisture export were provided primarily by the increasing intensity of the breeze-associated transports. The transports above the boundary layer, while being strong across the western and the eastern coasts, have a smaller effect on the net moisture export. The interannual variability of the moisture export in the near-surface layer was found to be closely correlated with the variability in sea surface temperature, especially in summer. Implications of the observed changes in the moisture advection for the hydrological cycle of the Middle East are discussed.

  18. Regional Hydrological Cycle over the Red Sea in ERA-Interim

    KAUST Repository

    Zolina, Olga

    2016-09-30

    The major sources of atmospheric moisture over the Red Sea are analyzed using ERA-Interim for the 1979-2013 period. The vertical structure of moisture transports across the coastlines has been computed separately for the western and eastern coasts of the Red Sea. The vertical structure of the moisture transport from the Red Sea to the continents is dominated by a breeze-like circulation in the near-surface layer and the Arabian high above 850 hPa. The lower-layer, breeze-like circulation is acting to export the moisture to the northwest of Africa and to the Arabian Peninsula and contributes about 80% of the moisture exports from the Red Sea, dominating over the transport in the upper layer, where the moisture is advected to the Arabian Peninsula in the northern part of the sea and to the African continent in the southern part. Integrated moisture divergence over the Red Sea decreased from the early 1980s to 1997 and then increased until the 2010s. Associated changes in the moisture export were provided primarily by the increasing intensity of the breeze-associated transports. The transports above the boundary layer, while being strong across the western and the eastern coasts, have a smaller effect on the net moisture export. The interannual variability of the moisture export in the near-surface layer was found to be closely correlated with the variability in sea surface temperature, especially in summer. Implications of the observed changes in the moisture advection for the hydrological cycle of the Middle East are discussed.

  19. The Age of Human-Robot Collaboration: Deep Sea Exploration

    KAUST Repository

    Khatib, Oussama

    2018-01-18

    The promise of oceanic discovery has intrigued scientists and explorers for centuries, whether to study underwater ecology and climate change, or to uncover natural resources and historic secrets buried deep at archaeological sites. Reaching these depth is imperative since factors such as pollution and deep-sea trawling increasingly threaten ecology and archaeological sites. These needs demand a system deploying human-level expertise at the depths, and yet remotely operated vehicles (ROVs) are inadequate for the task. To meet the challenge of dexterous operation at oceanic depths, in collaboration with KAUSTメs Red Sea Research Center and MEKA Robotics, Oussama Khatib and the team developed Ocean One, a bimanual humanoid robot that brings immediate and intuitive haptic interaction to oceanic environments. Introducing Ocean One, the haptic robotic avatar During this lecture, Oussama Khatib will talk about how teaming with the French Ministry of Cultureメs Underwater Archaeology Research Department, they deployed Ocean One in an expedition in the Mediterranean to Louis XIVメs flagship Lune, lying off the coast of Toulon at ninety-one meters. In the spring of 2016, Ocean One became the first robotic avatar to embody a humanメs presence at the seabed. Ocean Oneメs journey in the Mediterranean marks a new level of marine exploration: Much as past technological innovations have impacted society, Ocean Oneメs ability to distance humans physically from dangerous and unreachable work spaces while connecting their skills, intuition, and experience to the task promises to fundamentally alter remote work. Robotic avatars will search for and acquire materials, support equipment, build infrastructure, and perform disaster prevention and recovery operations - be it deep in oceans and mines, at mountain tops, or in space.

  20. Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model

    KAUST Repository

    Triantafyllou, G.; Yao, F.; Petihakis, G.; Tsiaras, K. P.; Raitsos, D. E.; Hoteit, Ibrahim

    2014-01-01

    The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.

  1. Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model

    KAUST Repository

    Triantafyllou, G.

    2014-03-01

    The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.

  2. Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea

    KAUST Repository

    Swift, Stephen A.

    2012-06-01

    In October 2008, we measured temperature and salinity in hot, hypersaline brine filling the Atlantis II and Discovery Deeps on the Red Sea spreading center west of Jeddah, Saudi Arabia. In agreement with previous observations in the Atlantis II Deep, we found a stack of four convective layers with vertically uniform temperature profiles separated by thin interfaces with high vertical temperature gradients. Temperature in the thick lower convective layer in the Atlantis II Deep continued to slowly increase at 0.1 °C/year since the last observations in 1997. Previously published data show that the temperature of all four convective layers increased since the 1960s at the same rate, from which we infer that diffusive vertical heat flux between convective layers is rapid on time scales of 3-5 years and, thus, heat is lost from the brine pools to overlying Red Sea Deep Water. Heat budgets suggest that the heat flux from hydrothermal venting has decreased from 0.54. GW to 0.18. GW since 1966. A tow-yo survey found that temperature in the upper convective layers changes about 0.2 °C over 5-6. km but the temperature in the lower brine layer remains constant. Temperature in the lower convective layer in the Discovery Deep remains unchanged at 48 °C. To explain these results, we hypothesize that heat flux from a hydrothermal vent in the floor of the Discovery Deep has been stable for 40 years, whereas temperature of the brine in the Atlantis II Deep is adjusting to the change in hydrothermal heat flux from the vent in the Southwest Basin. We found no changes in the upper transition layer at 1900-1990. m depth that appeared between 1976 and 1992 and suggest that this layer originated from the seafloor elsewhere in the rift. © 2012 Elsevier Ltd.

  3. A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount

    Directory of Open Access Journals (Sweden)

    Jesús Pineda

    2016-04-01

    Full Text Available A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.

  4. PAHs sensitivity of picophytoplankton populations in the Red Sea

    KAUST Repository

    Kottuparambil, Sreejith

    2018-04-25

    In this study, we investigated the in situ responses of Red Sea picophytoplankton, the dominant phytoplankton group in the oligotrophic ocean, to two toxic polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene. The experiments were conducted across a latitudinal gradient of the Saudi Arabian Red Sea, an area sensitive to oil pollution. We observed significant adverse effects on the growth and abundance of the picocyanobacteria Synechococcus and picoeukaryotes, at all stations sampled. Prochlorococcus, which was abundant only at one of the stations, also appeared to be affected. Pyrene was found to be more toxic to phytoplankton at all stations. In general, picoeukaryotes exhibited higher sensitivity to PAHs than Synechococcus. Populations in the highly oligotrophic Northern region of the Red Sea were more tolerant to PAHs, presumably influenced by the natural selection of more resistant strains of phytoplankton due to the prolonged exposure to PAHs. Toxicity threshold values estimated here are higher than those reported for picophytoplankton from other oligotrophic marine waters and exceed by far the natural levels of PAHs in many oceans. Our findings reveal a possible adaptation of picophytoplankton populations to oil-related contaminants, which may clearly influence their spatial distribution patterns in the Red Sea.

  5. Monitoring the impact of simulated deep-sea mining in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Jaisankar, S.

    Monitoring the Impact of Simulated Deep-sea Mining in Central Indian Basin R. SHARMA, B. NAGENDER NATH, AND S. JAI SANKAR National Institute of Oceanography, Dona Paula, Goa, India Monitoring of deep-sea disturbances, natural or man-made, has gained... has shown a partial recovery of the benthic ecosystem, with indications of restoration and recolonization. Keywords deep-sea mining, environmental impact, Central Indian Basin Deep-sea mineral deposits such as the polymetallic nodules and crusts...

  6. Deep-Sea Corals: A New Oceanic Archive

    National Research Council Canada - National Science Library

    Adkins, Jess

    1998-01-01

    Deep-sea corals are an extraordinary new archive of deep ocean behavior. The species Desmophyllum cristagalli is a solitary coral composed of uranium rich, density banded aragonite that I have calibrated for several paleoclimate tracers...

  7. Extensive use of mesopelagic waters by a Scalloped hammerhead shark (Sphyrna lewini) in the Red Sea

    KAUST Repository

    Spaet, Julia L.Y.; Lam, Chi Hin; Braun, Camrin D.; Berumen, Michael L.

    2017-01-01

    This study provides evidence that mesopelagic habitats might be more commonly used by S. lewini than previously suggested. We identified deep diving behavior throughout the 24-h cycle over the entire 6-month tracking period. In addition to expected nightly vertical habitat use, the shark exhibited frequent mesopelagic excursions during daytime. Deep diving throughout the diel cycle has not been reported before and, while dive functionality remains unconfirmed, our study suggests that mesopelagic excursions may represent foraging events within and below deep scattering layers. Additional research aimed at resolving potential ecological, physiological and behavioral mechanisms underpinning vertical movement patterns of S. lewini will help to determine if the single individual reported here is representative of S. lewini populations in the Red Sea.

  8. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    Science.gov (United States)

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  9. The gravity field of the Red Sea and East Africa

    Science.gov (United States)

    Makris, Jannis; Henke, Christian H.; Egloff, Frank; Akamaluk, Thomas

    1991-11-01

    Reevaluation of all gravity data from the Red Sea, the Gulf of Aden and East Africa permitted the compilation of a new Bouguer anomaly map. The intensity of the gravity field and its regional pattern correlate closely with the topographic features of the region. The maximum Bouguer values (> + 100 mGal) are located over the median troughs of the Red Sea and Gulf of Aden. Dense juvenile oceanic crust in these rifts and intruding magmas in stretched continental areas produce excess mass responsible for the anomaly highs. In the Red Sea the orientation of the gravity highs is NW-SE in the south, turning to NE-SW in the north, almost parallel to the Aqaba-Dead Sea strike. This pattern reveals that the present basin axis is not identical with that which formed the Tertiary coastal margins and the pre-Red Sea zones of crustal weakness. In the Gulf of Aden, new oceanic crust along the Tadjura Trench and its eastward extension is also expressed in the Bouguer anomaly map by gravity highs and a sharp bending of the isolines. A maximum of approx. +150 mGal is located over the central section of the Sheba Ridge. Bouguer gravity values over the East African and Yemen Plateaus are of the order of -180 to -240 mGal, indicating significant crustal thickening. On the Somali Plateau, the Marda Fault also has a strong gravity signature that can be traced towards Somalia. By constraining crustal thickness and structure with seismic data and density values from the velocity distribution by means of the Nafe-Drake and Birch relationships, we computed density models for the crust and upper mantle. The crustal thickness is of the order of 40 km beneath the plateaus and only 5 to 6 km at the oceanized parts in the central and southern portions of the Red Sea median trough. The flanks of the southern Red Sea and the corresponding Arabian side are underlain by 12 to 16 km thick stretched continental type crust. Oceanization offshore Sudan and Egypt is asymmetrical. The continental crust

  10. The modest seismicity of the northern Red Sea rift

    Science.gov (United States)

    Mitchell, Neil C.; Stewart, Ian C. F.

    2018-05-01

    Inferring tectonic movements from earthquakes (`seismotectonics') relies on earthquakes faithfully recording tectonic motions. In the northern half of the Red Sea, however, events of magnitude 5.0 and above are almost entirely absent from global catalogues, even though GPS and other plate motion data suggest that the basin is actively rifting at ˜10 mm yr-1. Seismic moments computed here from event magnitudes contributed to the International Seismology Centre (ISC) suggest that the moment release rate is more than an order of magnitude smaller than for the southern Red Sea and for the Southwest Indian Ridge (SWIR), which is spreading at a comparable rate to the central Red Sea and is more remote from recording stations. A smaller moment release rate in the northern Red Sea might be anticipated from its smaller spreading rate, but seismic coupling coefficients, which account for spreading rate variations, are also one order of magnitude smaller than for the other two areas. We explore potential explanations for this apparently reduced seismicity. The northern Red Sea is almost continuously covered with thick evaporites and overlying Plio-Pleistocene sediments. These deposits may have reduced the thickness of the seismogenic layer, for example, by elevating lithosphere temperatures by a thermal blanketing effect or by leading to excess pore fluid pressures that reduce effective stress. The presence of subdued seismicity here implies that tectonic movements can in places be poorly recorded by earthquake data and requires that alternative data be sought when investigating the active tectonics of sedimented rifts in particular.

  11. Climatic features of the Red Sea from a regional assimilative model

    KAUST Repository

    Viswanadhapalli, Yesubabu; Dasari, Hari Prasad; Langodan, Sabique; Challa, Venkata Srinivas; Hoteit, Ibrahim

    2016-01-01

    over the Red Sea compared to global analysis data from the National Centers for Environmental Prediction. We use the dataset to describe the atmospheric climatic conditions over the Red Sea region. © 2016 Royal Meteorological Society.

  12. A new procedure for deep sea mining tailings disposal

    NARCIS (Netherlands)

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal

  13. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David; Antunes, Andre; Brune, Andreas; Stingl, Ulrich

    2011-01-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  14. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David

    2011-12-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the \\'small-cell\\' and \\'large-cell\\' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of \\'rare\\' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  15. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    Science.gov (United States)

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B

    2013-01-01

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.

  16. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    Science.gov (United States)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  17. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV.

    Directory of Open Access Journals (Sweden)

    Carolina Doya

    Full Text Available Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs, such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ. Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014. Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage. 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea, undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon, dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of

  18. Patterns in connectivity and retention of simulated Tanner crab (Chionoecetes bairdi) larvae in the eastern Bering Sea

    Science.gov (United States)

    Richar, Jonathan I.; Kruse, Gordon H.; Curchitser, Enrique; Hermann, Albert J.

    2015-11-01

    The eastern Bering Sea (EBS) population of Tanner crab (Chionoecetes bairdi) has exhibited high variability in recruitment to the commercially exploited stock since the late 1970s. Concurrently, apparent shifts in crab distribution have also been observed. Larval advection patterns and associated local retention offer a potential mechanism for these observations. The Regional Ocean Modeling System (ROMS) was used to simulate larval Tanner crab advection patterns over 1978-2004 based on larval hatching sites inferred from the distributions of reproductive females sampled during annual National Marine Fisheries Service trawl surveys. Connectivity among EBS subregions was examined by comparing start and end float locations after 60 days of simulated drift. High levels of retention (>50% of floats) were observed in the majority of source subregions, and contributed significantly to the total number of endpoints in each region. Patterns in advection and resultant interregional connectivity were variable, with strongest sustained connectivity occurring along shelf, within individual domains. Increased settlement potential in the outer domain and southern middle domain after 1990 is consistent with an observed geographic shift in fishery productivity. Apparent reliance of Bristol Bay on local larval retention validates recent spatial fishery management to conserve this area as a subpopulation.

  19. A New Structural Model for the Red Sea from Seismic Data

    Science.gov (United States)

    Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.

    2017-12-01

    We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.

  20. Erbium-doped fiber lasers as deep-sea hydrophones

    International Nuclear Information System (INIS)

    Bagnoli, P.E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-01-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos

  1. Uptake and distribution of organo-iodine in deep-sea corals.

    Science.gov (United States)

    Prouty, Nancy G; Roark, E Brendan; Mohon, Leslye M; Chang, Ching-Chih

    2018-07-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon ( 14 C) measurements. These results hold promise for developing chronologies independent of 14 C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129 I/ 127 I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129 I composition provides further evidence that iodine composition and isotope

  2. Uptake and distribution of organo-iodine in deep-sea corals

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Mohon, Leslye M.; Chang, Ching-Chih

    2018-01-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope

  3. Red Sea Leucothoidae (Crustacea: Amphipoda) including new and re-described species

    KAUST Repository

    White, Kristine N.; Krapp-Schickel, Traudl

    2017-01-01

    Examination of leucothoid amphipods of the Red Sea has revealed seven species not previously reported from this location. Leucothoe minoculis sp. nov., Leucothoe pansa sp. nov., Leucothoe reimeri sp. nov., and Paranamixis sommelieri sp. nov. are described and the range of Leucothoe predenticulata Ledoyer, 1978, L. acutilobata Ledoyer, 1978 and L. squalidens Ledoyer, 1978 is expanded to include the Red Sea. Clarification of reports of L. acanthopus Schellenberg, 1928 and L. bannwarthi (Schellenberg, 1928) is provided and Leucothoe alani sp. nov. is described from outside the Red Sea.

  4. Red Sea Leucothoidae (Crustacea: Amphipoda) including new and re-described species

    KAUST Repository

    White, Kristine N.

    2017-05-31

    Examination of leucothoid amphipods of the Red Sea has revealed seven species not previously reported from this location. Leucothoe minoculis sp. nov., Leucothoe pansa sp. nov., Leucothoe reimeri sp. nov., and Paranamixis sommelieri sp. nov. are described and the range of Leucothoe predenticulata Ledoyer, 1978, L. acutilobata Ledoyer, 1978 and L. squalidens Ledoyer, 1978 is expanded to include the Red Sea. Clarification of reports of L. acanthopus Schellenberg, 1928 and L. bannwarthi (Schellenberg, 1928) is provided and Leucothoe alani sp. nov. is described from outside the Red Sea.

  5. A 27,000 year record of Red Sea Outflow: Implication for timing of post-glacial monsoon intensification

    Science.gov (United States)

    Naqvi, Wajih A.; Fairbanks, Richard G.

    We reconstruct here the history of the Red Sea Outflow (RSO) over the past 27,000 years from an AMS 14C-dated high-resolution δ13C record of benthic foraminifera from the inner Gulf of Aden assuming the dominance of circulation over productivity in regulating benthic δ13C. The results reveal that, following a period of suppressed RSO due to shallow sill 24,000-18,000 yr BP, the Red Sea was vigorously flushed for ˜2,000 years before a major monsoon intensification caused the cessation of deep water formation from 15,500 to 7,300 yr BP. It appears that the monsoon intensification did lag behind insolation until 15,500 yr BP. Between 15,500 and the present, however, there was no lag in conflict with the previous reports, implying a negligible dampening effect of continental albedo during this period. However, since our analysis is confined to a single depth horizon and our record is sensitive to sea level, it has some limitations as an indicator of monsoon intensity.

  6. 40Ar/39Ar studies of deep sea igneous rocks

    International Nuclear Information System (INIS)

    Seidemann, D.

    1978-01-01

    An attempt to date deep-sea igneous rocks reliably was made using the 40 Ar/ 39 Ar dating technique. It was determined that the 40 Ar/ 39 Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40 Ar in deep-sea basalts. Excess 40 Ar is released throughout the extraction temperature range and cannot be distinguished from 40 Ar generated by in situ 40 K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40 Ar/ 39 Ar technique. Irradiation induced 39 Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39 Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39 Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation. (author)

  7. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  8. Deep sea biophysics

    International Nuclear Information System (INIS)

    Yayanos, A.A.

    1982-01-01

    A collection of deep-sea bacterial cultures was completed. Procedures were instituted to shelter the culture collection from accidential warming. A substantial data base on the rates of reproduction of more than 100 strains of bacteria from that collection was obtained from experiments and the analysis of that data was begun. The data on the rates of reproduction were obtained under conditions of temperature and pressure found in the deep sea. The experiments were facilitated by inexpensively fabricated pressure vessels, by the streamlining of the methods for the study of kinetics at high pressures, and by computer-assisted methods. A polybarothermostat was used to study the growth of bacteria along temperature gradients at eight distinct pressures. This device should allow for the study of microbial processes in the temperature field simulating the environment around buried HLW. It is small enough to allow placement in a radiation field in future studies. A flow fluorocytometer was fabricated. This device will be used to determine the DNA content per cell in bacteria grown in laboratory culture and in microorganisms in samples from the ocean. The technique will be tested for its rapidity in determining the concentration of cells (standing stock of microorganisms) in samples from the ocean

  9. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong; Yang, Jiang Ke; Lee, On On; Li, Tie Gang; Al-Suwailem, Abdulaziz M.; Danchin, Antoine; Qian, Pei-Yuan

    2011-01-01

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  10. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong

    2011-12-21

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  11. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.

  12. First occurrence of a Hymenosomatid crab Elamena mathoei (Desmarest, 1823 (Crustacea: Decapoda: Brachyura in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. ZAOUALI

    2013-04-01

    Full Text Available Mediterranean fauna is undergoing drastic modifications as a result of anthropogenic activities and global warming. The most important of these is the colonization of the Mediterranean Sea by alien species, many of them entering through the Suez Canal. While many of them are still confined to the Levant Basin, several have extended their distribution westwards to Tunisian waters. The presence of the Indo-west Pacific hymenosomatid crab Elamena mathoei on a rocky shore at Sidi Daoud, Cape Bon Peninsula, Tunisia, is the first Mediterranean record of this species. It is a testimony to the changes in the patterns of invasion in the Mediterranean Sea.

  13. Rare parasitic copepods (Siphonostomatoida: Lernanthropidae) from Egyptian Red Sea fishes.

    Science.gov (United States)

    El-Rashidy, Hoda Hassan; Boxshall, Geoffrey Allan

    2016-10-01

    Two rare species of parasitic copepods belonging to the genus Lernanthropus de Blainville, 1822 (Siphonostomatoida: Lernanthropidae) are redescribed in detail, based on material collected from Red Sea fishes, caught at El-Tor, near Sharm El-Sheikh on the Red Sea coast of Egypt. Adult females of Lernanthropus sanguineus Song & Chen, 1976 were found on the gills of snapper Lutjanus fulviflamma (Forsskål). This species was known only from its original description based on material from Chinese waters. Adult females of Lernanthropus triangularis Pillai, 1963 were obtained from the gills of mojarra Gerres oyena (Forsskål). Both parasite species are new records for Egyptian Red Sea waters and both host records are new.

  14. NOAA National Deep-Sea Coral and Sponge Database 1842-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's Deep-Sea Coral Research and Technology Program (DSC-RTP) is compiling a national geodatabase of the known locations of deep-sea corals and sponges in U.S....

  15. PAHs sensitivity of picophytoplankton populations in the Red Sea.

    Science.gov (United States)

    Kottuparambil, Sreejith; Agusti, Susana

    2018-04-25

    In this study, we investigated the in situ responses of Red Sea picophytoplankton, the dominant phytoplankton group in the oligotrophic ocean, to two toxic polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene. The experiments were conducted across a latitudinal gradient of the Saudi Arabian Red Sea, an area sensitive to oil pollution. We observed significant adverse effects on the growth and abundance of the picocyanobacteria Synechococcus and picoeukaryotes, at all stations sampled. Prochlorococcus, which was abundant only at one of the stations, also appeared to be affected. Pyrene was found to be more toxic to phytoplankton at all stations. In general, picoeukaryotes exhibited higher sensitivity to PAHs than Synechococcus. Populations in the highly oligotrophic Northern region of the Red Sea were more tolerant to PAHs, presumably influenced by the natural selection of more resistant strains of phytoplankton due to the prolonged exposure to PAHs. Toxicity threshold values estimated here are higher than those reported for picophytoplankton from other oligotrophic marine waters and exceed by far the natural levels of PAHs in many oceans. Our findings reveal a possible adaptation of picophytoplankton populations to oil-related contaminants, which may clearly influence their spatial distribution patterns in the Red Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The trophic position of the alien crab Rhithropanopeus harrisii (crustacea decapoda panopeidae) in the Taman Bay, Sea of Azov community

    Science.gov (United States)

    Zalota, A. K.; Kolyuchkina, G. A.; Tiunov, A. V.; Biriukova, S. V.; Spiridonov, V. A.

    2017-03-01

    This work concerns the trophic web positioning of the alien crab Rhithropanopeus harrisii and other common marine invertebrate species and fishes in the benthic ecosystem of the shallows of Taman Bay, Sea of Azov. The base of the trophic web in this system is composed of phytoplankton, macrophytes (algae and marine grasses), and reeds that use atmospheric carbon for photosynthesis. Analysis of the isotopic composition of nitrogen and carbon has shown that although marine grasses are dominating primary producers in the shallows of the bay, primary consumers (such as Cerastoderma glaucum, Porifera gen. sp., Gammarus aequicauda, Deshayesorchestia deshayesii and Idotea balthica) only partially use this organic source; instead, they use a combination of different sources of primary production. It has been shown that the food source of the alien crab is primarily of animal origin. In Taman Bay, R. harrisii is on the same trophic level as other carnivores/scavengers: benthic fishes Syngnathus nigrolineatus, Gobius spp. and native crab Pilumnus hirtellus and shrimp Palaemon adspersus.

  17. The status of coral reef ecology research in the Red Sea

    KAUST Repository

    Berumen, Michael L.; Hoey, Andrew; Bass, William H.; Bouwmeester, Jessica; Catania, Daniela; Cochran, Jesse; Khalil, Maha T.; Miyake, Sou; Mughal, Mehreen; Spaet, Julia L.Y.; Saenz Agudelo, Pablo

    2013-01-01

    The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large

  18. New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications

    International Nuclear Information System (INIS)

    Koenig, Samuel; Solé, Montserrat; Fernández-Gómez, Cristal; Díez, Sergi

    2013-01-01

    A number of studies have found high levels of mercury (Hg) in deep-sea organisms throughout the world's oceans, but the underlying causes are not clear as there is no consensus on the origin and cycling of Hg in the ocean. Recent findings suggested that Hg accumulation may increase with increasing forage depth and pointed to the deep-water column as the origin of most Hg in marine biota, especially its organic methylmercury (MeHg) form. In the present study, we determined the total mercury (THg) levels in 12 deep-sea fish species and a decapod crustacean and investigated their relationship with the species' nitrogen stable isotope ratio (δ 15 N) as an indicator of their trophic level, average weight and habitat depth. THg levels ranged from 0.27 to 4.42 μg/g w.w. and exceeded in all, except one species, the recommended 0.5 μg/g w.w. guideline value. While THg levels exhibited a strong relationship with δ 15 N values and to a lesser extent with weight, the habitat depth, characterized as the species' depth of maximum abundance (DMA), had also a significant effect on Hg accumulation. The fish species with a shallower depth range exhibited lower THg values than predicted by their trophic level (δ 15 N) and body mass, while measured THg values were higher than predicted in deeper-dwelling fish. Overall, the present results point out a potential risk for human health from the consumption of deep-sea fish. In particular, for both, the red shrimp Aristeus antennatus, which is one of the most valuable fishing resources of the Mediterranean, as well as the commercially exploited fish Mora moro, THg levels considerably exceeded the recommended 0.5 μg/g w.w. limit and should be consumed with caution. -- Highlights: ► High total mercury (THg) levels were detected in Mediterranean deep-sea organisms. ► Uniform contamination pattern was observed across the Mediterranean basin. ► All except one species exceeded recommended consumption limit of 0.5 μg/g w.w. ► THg

  19. Movements of deep-sea red crab (Geryon maritae) off South West ...

    African Journals Online (AJOL)

    1986-09-05

    Sep 5, 1986 ... between depths, small males « 100 mm CW) do tend to favour deeper water than larger males and vice versa. ... A possible reason for the fact that mature females display different movement ... Floy Manufacturing Company were employed. ..... Chi-square contingency tests were performed on a portion of.

  20. Plastic microfibre ingestion by deep-sea organisms

    Science.gov (United States)

    Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.

    2016-09-01

    Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

  1. Physiological performance and thermal tolerance of major Red Sea macrophytes

    KAUST Repository

    Weinzierl, Michael S.

    2017-12-01

    As anthropogenically-forced ocean temperatures continue to rise, the physiological response of marine macrophytes becomes exceedingly relevant. The Red Sea is a semi-isolated sea- the warmest in the world (SST up to 34°C) - already exhibiting signs of rapid warming rates exceeding those of other tropical oceans. This will have profound effects on the physiology of marine organisms, specifically marine macrophytes, which have direct influence on the dynamic carbonate system of the Red Sea. The aim of this paper is to define the physiological capability and thermal optima and limits of six ecologically important Red Sea macrophytes- ranging from seagrasses to calcifying and non-calcifying algae- and to describe the effects of increasing thermal stress on the performance and limits of each macrophyte in terms of activation energy. Of the species considered, Halophila stipulacae, Halimeda optunia, Halimeda monile and Padina pavonica thrive in thermal extremes and may be more successful in future Red Sea warming scenarios. Specifically, Halimeda opuntia increased productivity and calcification rates up to 38°C, making it the most thermally resilient macrophyte. Halophila stipulacae is the most productive seagrass, and hence has the greatest positive effect on Omega saturation state and offers chemical buffer capacity to future ocean acidification.

  2. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  3. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  4. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk

    2016-01-07

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  5. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M.; Berumen, Michael L.; Bü ttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schä tzle, Simone; Wö rheide, Gert

    2016-01-01

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  6. Potential impact of global climate change on benthic deep-sea microbes.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Phylogenetic Diversity of Cephalopoda (Animalia:Mollusca) Along the Saudi Arabian Red Sea Coastline

    KAUST Repository

    Byron, Gordon

    2016-12-01

    Although the Red Sea presents a unique environment with high temperature and salinity, it remains an area that is understudied. This lack of information is reflected in many areas, one which is biodiversity. Despite increasing work on biodiversity throughout the Red Sea and an increase in Cephalopoda studies, Cephalopoda in the Red Sea remain underrepresented, which is especially pronounced in molecular analyses. Members of the class Cephalopoda are considered to be major contributors to coral reef ecosystems, serving as part of the food chain and exhibiting population increases due to targeted teleost fisheries and global climate change. In order to assess the biodiversity of Cephalopoda in the Saudi Arabian Red Sea, 87 specimens were collected from 25 reef locations between 17°N and 28°N latitude, as well as from the largest fish market in the Kingdom of Saudi Arabia. Taxonomic identification of specimens was determined using morphological comparisons with previously reported species in the Red Sea and the molecular barcoding region Cytochrome Oxidase I. 84 Red Sea sequences were compared with sequences from GenBank and analyzed using a complement of Neighbor-Joining, Maximum-Likelihood, and Bayesian inference trees. Species complexes were also investigated for Sepia pharaonis and Sepioteuthis lessoniana, which had been previously reported. From 17 cuttlefish, our study yielded three species, two of which matched previously reported species in GenBank. In addition, two distinct clades of Sepia pharaonis were identified. Of 35 squid collected, four species were identified, one of which did not match any other accepted species in literature, while Sepioteuthis lessoniana in the Red Sea formed a distinct clade. From 30 different specimens a total of five genera of Octopoda were present, forming six distinct species. Five Octopoda species collected did not match previously reported species, although many specimens were paralarvae or juveniles, so morphologically we

  8. The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting

    Science.gov (United States)

    Stockli, D. F.; Bosworth, W.

    2017-12-01

    The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no

  9. Interspersion of highly repetitive DNA with single copy DNA in the genome of the red crab, Geryon quinquedens

    Energy Technology Data Exchange (ETDEWEB)

    Christie, N.T. (Univ. of Tennessee, Oak Ridge); Skinner, D.M.

    1979-02-01

    Kinetic analysis of the reassociation of 420 nucleotide (NT) long fragments has shown that essentially all of the repetitive sequences of the DNA of the red crab Geryon quinquedens are highly repetitive. There are negligible amounts of low and intermediate repetitive DNAs. Though atypical of most eukaryotes, this pattern has been observed in al other brachyurans (true crabs) studied. The major repetitive component is subdivided into short runs of 300 NT and longer runs of greater than 1200 NT while the minor component has an average sequence length of 400 NT. Both components reassociate at rates commonly observed for satellite DNAs. Unique among eukaryotes the organization of the genome includes single copy DNA contiguous to short runs (300 NT) of both repetitive components. Although patent satellites are not present, subsets of the repetitive DNA have been isolated by either restriction endonuclease digestion or by centrifugation in Ag/sup +/ or Hg/sup 2 +//Cs/sub 2/SO/sub 4/ density gradients.

  10. Physical profile data from CTD casts from the RV Medeia in the coastal waters of Southeast Alaska in support of the SE Alaska Red King Crab Survey from 09 June 2010 to 21 July 2010 (NODC Accession 0066061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Alaska Department of Fish and Game conducts annual shellfish surveys that include Red King Crab, Tanner Crab, and Shrimp which is used to manage the personal...

  11. Deep Red (Profondo Rosso)

    CERN Multimedia

    Cine Club

    2015-01-01

    Wednesday 29 April 2015 at 20:00 CERN Council Chamber    Deep Red (Profondo Rosso) Directed by Dario Argento (Italy, 1975) 126 minutes A psychic who can read minds picks up the thoughts of a murderer in the audience and soon becomes a victim. An English pianist gets involved in solving the murders, but finds many of his avenues of inquiry cut off by new murders, and he begins to wonder how the murderer can track his movements so closely. Original version Italian; English subtitles

  12. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Science.gov (United States)

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  13. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Directory of Open Access Journals (Sweden)

    Nobuo Kokubun

    Full Text Available Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting occurred over the ocean basin (bottom depth >1,000 m. Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1 flight, characterized by regular wing flapping, (2 resting on water, characterized by non-active behavior, and (3 foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3% compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%. The mean duration of foraging (2.4 ± 2.9 min was shorter than that of flight between prey patches (24.2 ± 53.1 min. Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight. Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  14. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    Directory of Open Access Journals (Sweden)

    Intikhab Alam

    Full Text Available The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes.We developed a data warehouse system (INDIGO that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments.We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.

  15. Environmental impacts of tourism in the Gulf and the Red Sea.

    Science.gov (United States)

    Gladstone, William; Curley, Belinda; Shokri, Mohammad Reza

    2013-07-30

    The Gulf and Red Sea possess diverse coastal and marine environments that support rapidly expanding mass tourism. Despite the associated environmental risks, there is no analysis of the tourism-related literature or recent analysis of impacts. Environmental issues reported in 101 publications (25 from the Gulf, 76 from the Red Sea) include 61 purported impacts (27 from the Gulf, 45 from the Red Sea). Gulf literature includes quantitative studies (68% publications) and reviews (32%), and addresses mostly land reclamation and artificial habitats. Most Gulf studies come from Iran and UAE (64%). Red Sea literature includes quantitative studies (81%) and reviews (11%), with most studies occurring in Egypt (70%). The most published topics relate to coral breakage and its management. A full account of tourism's environmental impacts is constrained by limited tourism data, confounding of impacts with other coastal developments, lack of baseline information, shifting baselines, and fragmentation of research across disciplines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea

    KAUST Repository

    Kalenderski, Stoitchko

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ?2.4 Tg day-1 and ?1.5 Tg day-1, corresponding to two periods with the highest aerosol optical depth that were well captured by ground-and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W m-2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  17. Radioactivity levels in some sediment samples from Red Sea and Baltic Sea

    International Nuclear Information System (INIS)

    Salahel Din, K.; Vesterbacka, P.

    2012-01-01

    Levels of 226, 228 Ra, 232 Th, 210 Pb, 210 Po and 40 K in sediments from four monitoring areas, El Hamraween and Ras El Behar (Red Sea (Egypt)) and LL3A and JML (Baltic Sea (Finland)), have been investigated using alpha and gamma spectrometry. The average activity concentrations were 238±4 Bq kg -1 ( 226 Ra), 215±11 Bq kg -1 ( 210 Pb) and 311±18 Bq kg -1 ( 210 Po) for El Hamraween area. In Ras El Behar area, the corresponding values were 16±0.4, 18±1 and 20±5 Bq kg -1 , respectively. The activity concentrations for 226 Ra, 210 Pb and 210 Po (uranium series) in El Hamraween bottom sediment are much high compared with those in Ras El Behar area, which indicates the enhanced levels due to the activities of phosphate mining and shipment operations in El Hamraween area. Excluding the influence of phosphate mining activities, it can be concluded that the levels of radioactivity in Baltic Sea sediments are higher than those in Red Sea sediments. (authors)

  18. Geodetic constraints on continental rifting along the Red Sea

    Science.gov (United States)

    Reilinger, R.; McClusky, S.; Arrajehi, A.; Mahmoud, S.; Rayan, A.; Ghebreab, W.; Ogubazghi, G.; Al-Aydrus, A.

    2006-12-01

    We are using the Global Positioning System (GPS) to monitor and quantify patterns and rates of tectonic and magmatic deformation associated with active rifting of the continental lithosphere and the transition to sea floor spreading in the Red Sea. Broad-scale motions of the Nubian and Arabian plates indicate coherent plate motion with internal deformation below the current resolution of our measurements (~ 1-2 mm/yr). The GPS-determined Euler vector for Arabia-Nubia is indistinguishable from the geologic Euler vector determined from marine magnetic anomalies, and Arabia-Eurasia relative motion from GPS is equal within uncertainties to relative motion determined from plate reconstructions, suggesting that Arabia plate motion has remained constant (±10%) during at least the past ~10 Ma. The approximate agreement between broad-scale GPS rates of extension (i.e., determined from relative plate motions) and those determined from magnetic anomalies along the Red Sea rift implies that spreading in the central Red Sea is primarily confined to the central rift (±10-20%). Extension appears to be more broadly distributed in the N Red Sea and Gulf of Suez where comparisons with geologic data also indicate a relatively recent (between 500 and 125 kyr BP) change in the motion of the Sinai block that is distinct from both Nubia and Arabia. In the southern Red Sea, GPS results are beginning to define the motion of the "Danakil micro-plate". We investigate and report on a model involving CCW rotation of the Danakil micro-plate relative to Nubia and magmatic inflation below the Afar Triple Junction that is consistent with available geodetic constraints. Running the model back in time suggests that the Danakil micro-plate has been an integral part of rifting/triple junction processes throughout the history of separation of the Arabian and Nubian plates. On the scale of Nubia-Arabia-Eurasia plate interactions, we show that new area formed at spreading centers roughly equals that

  19. New records of Lobatolampea tetragona (Ctenophora: Lobata: Lobatolampeidae) from the Red Sea

    KAUST Repository

    Uyeno, Daisuke; Lasley, Robert M.; Moore, Jenna M.; Berumen, Michael L.

    2015-01-01

    Lobatolampea tetragona Horita, 2000, a member of the monotypic family Lobatolampeidae (Lobata), is reported from the Red Sea based on seven specimens collected during marine biodiversity surveys conducted in the southern and central Red Sea

  20. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2016-08-24

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.

  1. After continents divide: Comparative phylogeography of reef fishes from the Red Sea and Indian Ocean

    KAUST Repository

    Dibattista, Joseph D.; Berumen, Michael L.; Gaither, Michelle R.; Rocha, Luiz A.; Eble, Jeff A.; Choat, John Howard; Craig, Matthew T.; Skillings, Derek J.; Bowen, Brian W.

    2013-01-01

    Aim: The Red Sea is a biodiversity hotspot characterized by a unique marine fauna and high endemism. This sea began forming c. 24 million years ago with the separation of the African and Arabian plates, and has been characterized by periods of desiccation, hypersalinity and intermittent connection to the Indian Ocean. We aim to evaluate the impact of these events on the genetic architecture of the Red Sea reef fish fauna. Location: Red Sea and Western Indian Ocean. Methods: We surveyed seven reef fish species from the Red Sea and adjacent Indian Ocean using mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences. To assess genetic variation and evolutionary connectivity within and between these regions, we estimated haplotype diversity (h) and nucleotide diversity (π), reconstructed phylogenetic relationships among haplotypes, and estimated gene flow and time of population separation using Bayesian coalescent-based methodology. Results: Our analyses revealed a range of scenarios from shallow population structure to diagnostic differences that indicate evolutionary partitions and possible cryptic species. Conventional molecular clocks and coalescence analyses indicated time-frames for divergence between these bodies of water ranging from 830,000 years to contemporary exchange or recent range expansion. Colonization routes were bidirectional, with some species moving from the Indian Ocean to the Red Sea compared with expansion out of the Red Sea for other species. Main conclusions: We conclude that: (1) at least some Red Sea reef fauna survived multiple salinity crises; (2) endemism is higher in the Red Sea than previously reported; and (3) the Red Sea is an evolutionary incubator, occasionally contributing species to the adjacent Indian Ocean. The latter two conclusions - elevated endemism and species export - indicate a need for enhanced conservation priorities for the Red Sea. © 2013 Blackwell Publishing Ltd.

  2. After continents divide: Comparative phylogeography of reef fishes from the Red Sea and Indian Ocean

    KAUST Repository

    Dibattista, Joseph D.

    2013-01-07

    Aim: The Red Sea is a biodiversity hotspot characterized by a unique marine fauna and high endemism. This sea began forming c. 24 million years ago with the separation of the African and Arabian plates, and has been characterized by periods of desiccation, hypersalinity and intermittent connection to the Indian Ocean. We aim to evaluate the impact of these events on the genetic architecture of the Red Sea reef fish fauna. Location: Red Sea and Western Indian Ocean. Methods: We surveyed seven reef fish species from the Red Sea and adjacent Indian Ocean using mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences. To assess genetic variation and evolutionary connectivity within and between these regions, we estimated haplotype diversity (h) and nucleotide diversity (π), reconstructed phylogenetic relationships among haplotypes, and estimated gene flow and time of population separation using Bayesian coalescent-based methodology. Results: Our analyses revealed a range of scenarios from shallow population structure to diagnostic differences that indicate evolutionary partitions and possible cryptic species. Conventional molecular clocks and coalescence analyses indicated time-frames for divergence between these bodies of water ranging from 830,000 years to contemporary exchange or recent range expansion. Colonization routes were bidirectional, with some species moving from the Indian Ocean to the Red Sea compared with expansion out of the Red Sea for other species. Main conclusions: We conclude that: (1) at least some Red Sea reef fauna survived multiple salinity crises; (2) endemism is higher in the Red Sea than previously reported; and (3) the Red Sea is an evolutionary incubator, occasionally contributing species to the adjacent Indian Ocean. The latter two conclusions - elevated endemism and species export - indicate a need for enhanced conservation priorities for the Red Sea. © 2013 Blackwell Publishing Ltd.

  3. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.

    2011-07-08

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  4. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.; da Silva, J. C. B.; Pineda, J.

    2011-01-01

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  5. Molecular biodiversity of Red Sea demosponges.

    Science.gov (United States)

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M; Berumen, Michael L; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone; Wörheide, Gert

    2016-04-30

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti

    OpenAIRE

    Tavormina, Patricia L.; Kellermann, Matthias Y.; Antony, Chakkiath Paul; Tocheva, Elitza I.; Dalleska, Nathan F.; Jensen, Ashley J.; Valentine, David L.; Hinrichs, Kai-Uwe; Jensen, Grant J.; Dubilier, Nicole; Orphan, Victoria J.

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid...

  7. AFSC/RACE/SAP/Long: Effects of ocean acidification on respiration, feeding, and growth of juvenile red and blue king crabs (Paralithodes camtschaticus and P. platypus)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Juvenile red and blue king crabs (Paralithodes camtschaticus and P. platypus) were exposed to three pH levels: ambient (pH 8.1), pH 7.8, and pH 7.5 for three weeks....

  8. Dynamic and static elastic moduli of North Sea and deep sea chalk

    DEFF Research Database (Denmark)

    Gommesen, Lars; Fabricius, Ida Lykke

    2001-01-01

    We have established an empirical relationship between the dynamic and the static mechanical properties of North Sea and deep sea chalk for a large porosity interval with respect to porosity, effective stress history and textural composition. The chalk investigated is from the Tor and Hod Formatio...

  9. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  10. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-03-23

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  11. Antarctic crabs: invasion or endurance?

    Directory of Open Access Journals (Sweden)

    Huw J Griffiths

    Full Text Available Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura, and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW. Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the

  12. Very large eddy simulation of the Red Sea overflow

    Science.gov (United States)

    Ilıcak, Mehmet; Özgökmen, Tamay M.; Peters, Hartmut; Baumert, Helmut Z.; Iskandarani, Mohamed

    Mixing between overflows and ambient water masses is a critical problem of deep-water mass formation in the downwelling branch of the meridional overturning circulation of the ocean. Modeling approaches that have been tested so far rely either on algebraic parameterizations in hydrostatic ocean circulation models, or on large eddy simulations that resolve most of the mixing using nonhydrostatic models. In this study, we examine the performance of a set of turbulence closures, that have not been tested in comparison to observational data for overflows before. We employ the so-called very large eddy simulation (VLES) technique, which allows the use of k-ɛ models in nonhydrostatic models. This is done by applying a dynamic spatial filtering to the k-ɛ equations. To our knowledge, this is the first time that the VLES approach is adopted for an ocean modeling problem. The performance of k-ɛ and VLES models are evaluated by conducting numerical simulations of the Red Sea overflow and comparing them to observations from the Red Sea Outflow Experiment (REDSOX). The computations are constrained to one of the main channels transporting the overflow, which is narrow enough to permit the use of a two-dimensional (and nonhydrostatic) model. A large set of experiments are conducted using different closure models, Reynolds numbers and spatial resolutions. It is found that, when no turbulence closure is used, the basic structure of the overflow, consisting of a well-mixed bottom layer (BL) and entraining interfacial layer (IL), cannot be reproduced. The k-ɛ model leads to unrealistic thicknesses for both BL and IL, while VLES results in the most realistic reproduction of the REDSOX observations.

  13. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  14. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  15. Population structure of the red mangrove crab, Goniopsis cruentata (Decapoda: Grapsidae under different fishery impacts: Implications for resource management

    Directory of Open Access Journals (Sweden)

    Gustavo L. Hirose

    2015-06-01

    Full Text Available The red mangrove crab, Goniopsis cruentata, influences the recruitment and composition of plant species in the mangrove ecosystem and it is an important fishery resource. Nevertheless, no current management and conservation plans are available for this species for the Brazilian coast. This investigation evaluated the population structure and reproductive biology in populations of G. cruentata under contrasting fishery pressures. The sampling program was carried out in two mangroves, Vaza-Barris and Sergipe River, from January through December 2011. Crabs from both mangroves were randomly collected by a professional fisherman during daytime low tide periods, using a fishing rod baited with pieces of a locally abundant gastropod, Pugilina morio, during 20min/area (catch per unit effort. Monthly measurements of air, sediment surface layer and water temperatures were obtained with a digital thermometer and salinity with an optical refractometer. Both crab populations were compared concerning their abundance, body size, sex ratio, size at onset of sexual maturity and fecundity (FI. Abiotic factors (air, water and mud temperature; and salinity showed no significant differences between sampling localities. A total of 4 370 crabs were sampled, 2 829 from the Sergipe River and 1 541 from the Vaza-Barris River. The abundance and body size of crabs were compared between mangroves, and statistically significant differences were found. The sex ratio for both populations differed from the expected 1:1 ratio, and a significant deviation in favor of juvenile males was obtained, while adults showed a bias toward females. The estimated size at onset of sexual maturity for both sexes was similar in both populations. However, the populations differed significantly in the number and volume of eggs: a higher FI was obtained in females from the Sergipe River, while a higher egg volume was observed in females from the Vaza-Barris River mangrove. These results indicated

  16. Seasonal Mass Changes in the Red Sea Observed By GPS and Grace

    Science.gov (United States)

    Alothman, A. O.; Fing, W.; Fernandes, R. M. S.; Bos, M. S.; Elsaka, B.

    2014-12-01

    The Red Sea is a semi-enclosed basin and exchanges water with the Gulf of Aden through the strait of Bab-el-Mandeb at the southern part of the sea. Its circulation is affected by the Indian Monsoon through its connection via the Gulf of Aden. Two distinctive (in summer and in winter) seasonal signals represent the water exchange. To understand the seasonal mass changes in the Red Sea, estimates of the mass changes based on two geodetic techniques are presented: from the Gravity Recovery and Climate Experiment (GRACE) and from the Global Navigation Satellite System (GNSS). The GRACE solutions were truncated up to spherical harmonic degree and order degree 60 to estimate the average monthly mass change in the atmosphere and ocean from models (several hours). GNSS solution is based on observations from four stations along the Red Sea that have been acquired in continuous mode starting in 2007 (having at least 5 years' data-span). The time series analysis of the observed GNSS vertical deformation of these sites has been analyzed. The results revealed that the GNSS observed vertical loading agrees with the atmospheric loading (ATML) assuming that the hydrological signal along the costs of the Red sea is negligible. Computed values of daily vertical atmospheric loading using the NCEP surface pressure data (Inverted Barometer IB) for the 4 stations for 2003 until 2013 are provided. Comparison of the GRACE and GNSS solutions has shown significant annual mass variations in the Red Sea (about 15 cm annual amplitude). After removing the atmospheric effect (ATML), the ocean loading can be observed by GNSS and GRACE estimates in the Red Sea.

  17. Distribución de cangrejos ermitaños (Anomura: Paguroidea en el mar Caribe colombiano Hermit crabs (Anomura: Paguroidea distribution patterns in the Colombian Caribbean Sea

    Directory of Open Access Journals (Sweden)

    Bibian Martínez Campos

    2012-03-01

    the Colombian Caribbean Sea, through classification and spatial ordination multivariate analyses, using historical records from years 1916 to 2006. Besides, the world distribution of Colombian species and their geographic affinity in the Caribbean and Western Atlantic were identified. The results show deep differences between coastal and continental slope faunas, and latitudinal differences in the assemblages, with the identification of three groups: Northeast, Center and Southwest. The differences in faunal composition that support these three groups were determined. Based on maps of the Colombian marine ecosystems, it was found that the main factors affecting the distribution of hermit crabs were the Caribaná slope (depth, water-mass temperature, Guajira sea-grass beds, and particular conditions of “Coralline Archipelagos” and “Darién” eco-regions. Colombian hermit crab fauna is more related to the North Atlantic and the Antilles, than to the South Atlantic and the Gulf of Mexico. Additionally, geographical sub-provinces in which Colombia is included, these were found as transition zones among Northern and Austral subprovinces of the Greater Caribbean.

  18. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.; Jiang, Houshuo; Farrar, J. Thomas

    2013-01-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley

  19. The climatology of the Red Sea - part 2: the waves

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Pomaro, Angela; Vishwanadhapalli, Yesubabu; Bertotti, Luciana; Hoteit, Ibrahim

    2017-01-01

    The wave climatology of the Red Sea is described based on a 30-year hindcast generated using WAVEWATCH III configured on a 5-km resolution grid and forced by Red Sea reanalysis surface winds from the advanced Weather Research and Forecasting model

  20. The climatology of the Red Sea - part 2: the waves

    KAUST Repository

    Langodan, Sabique

    2017-05-09

    The wave climatology of the Red Sea is described based on a 30-year hindcast generated using WAVEWATCH III configured on a 5-km resolution grid and forced by Red Sea reanalysis surface winds from the advanced Weather Research and Forecasting model. The wave simulations have been validated using buoy and altimeter data. The four main wind systems in the Red Sea characterize the corresponding wave climatology. The dominant ones are the two opposite wave systems with different genesis, propagating along the axis of the basin. The highest waves are generated at the centre of the Red Sea as a consequence of the strong seasonal winds blowing from the Tokar Gap on the African side. There is a general long-term trend toward lowering the values of the significant wave height over the whole basin, with a decreasing rate depending on the genesis of the individual systems.

  1. Mangrove cover in the Red Sea (1972-2013), supplement to: Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M; Irigoien, Xabier (2016): Decadal Stability of Red Sea Mangroves. Estuarine, Coastal and Shelf Science, 169, 164-172

    KAUST Repository

    Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M.; Irigoien, Xabier

    2015-01-01

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 km**2 along the African shore and 51 km**2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29%/y. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  2. Seawater Carbonate Chemistry of Deep-sea Coral Beds off the Northwestern Hawaiian Islands

    Science.gov (United States)

    Brooks, J.; Shamberger, K.; Roark, E. B.; Miller, K.; Baco-Taylor, A.

    2016-02-01

    Many species of deep-sea octocorals produce calcium carbonate (CaCO3) skeletons and form coral beds that support diverse ecosystems crucial to fisheries. The geochemistry of deep-sea coral skeletons can provide valuable paleoceanographic information on ocean circulation and nutrient cycling. Deep-sea corals in the older bottom waters of the Pacific are naturally exposed to higher carbon dioxide (CO2) concentrations and lower pH than in the Atlantic where much of the previous deep-sea coral work has occurred. Therefore, some Pacific deep-sea corals may live and calcify in waters that are corrosive to their skeletons, but there have been few current seawater carbonate chemistry measurements of the waters surrounding deep-sea coral beds to assess this. The input of anthropogenic atmospheric CO2 known as ocean acidification (OA) lowers ocean pH and causes an expansion of these corrosive waters. Seawater carbonate chemistry must be characterized before accurate predictions can be made for the effects of OA on these important ecosystems. Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) samples were collected in the fall of 2014 and 2015 from the surface to 1450 m depth off the Northwestern Hawaiian Island chain where deep-sea octocorals are found. The partial pressure of CO2 increased and pH, calcite saturation state (Ωca) and aragonite saturation state (Ωar) decreased with increasing latitude and depth. Notably, waters were undersaturated with respect to calcite and aragonite (Ωca and Ωar less than 1) below 800 m and 500 m, respectively. Therefore, deep-sea corals below these depths must calcify in waters that are thermodynamically favorable for CaCO3 dissolution. How deep-sea octocorals cope with such adverse seawater chemistry is critical to understanding future effects of OA. It is not known whether OA is currently negatively impacting deep-sea octocorals, but their naturally acidified environments could make them particularly susceptible to OA.

  3. Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa

    Science.gov (United States)

    Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.

    2011-12-01

    The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The

  4. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents

  5. Ecosystem function and services provided by the deep sea

    Science.gov (United States)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In

  6. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  7. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  8. Interspecies differences in the accumulation of tributyltin and its metabolites under dietary exposure in sea perch, Lateolabrax japonicus, and red sea bream, Pagrus major.

    Science.gov (United States)

    Uno, Seiichi; Murakami, Masayo; Kokushi, Emiko; Koyama, Jiro

    2011-02-01

    Interspecies differences in the accumulation of dietary tributyltin (TBT) between sea perch, Lateolabrax japonicus, and red sea bream, Pagrus major, were studied. Although TBTs in both species reached steady-state condition in low-concentration group (L-group, 200 ng/g nominal concentration) by 1 week, it increased up to the end of exposure in high-concentration group (H-group, 3000 ng/g nominal concentration). In H-group, the accumulation rate of TBT in sea perch from 1 to 2 weeks was much higher than in red sea bream, which were 2.4-fold for sea perch and 1.7-fold for red sea bream, although TBT concentrations were similar between sea perch and red sea bream in L-group. Furthermore, in the H-group, the concentrations of TBT at 1 and 2 weeks were about 1.3- and 1.9-fold, respectively, higher in the sea perch than in the red sea bream. On the other hand, DBT residue in red sea bream was about 1.4-fold higher in sea perch for the L-group but concentrations were similar in both fishes for the H-group. These results suggest that red sea bream could metabolize faster the TBT to DBT than sea perch. This study also reveals that fish probably could absorb TBT through the food chain. The uptake of TBT by fish should be regarded in the real environment, because TBT concentration in seawater has been decreasing and now already at significantly low level. Copyright © 2009 Wiley Periodicals, Inc.

  9. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea

    Directory of Open Access Journals (Sweden)

    S. Kalenderski

    2013-02-01

    Full Text Available We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg day−1 and ~1.5 Tg day−1, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3–4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W m−2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  10. BURROW ARCHITECTURE OF RED GHOST CRAB OCYPODE MACROCERA (H. MILNE-EDWARDS, 1852) : A CASE STUDY IN INDIAN SUNDARBANS

    OpenAIRE

    Sourabh Kumar Dubey; Deep Chandan Chakraborty; Sudipta Chakraborty; Amalesh Choudhury

    2013-01-01

    A study on burrow architecture and burrow morphology of the red ghost crab (Ocypode macrocera) was carried out at the southern proximity of the Sagar island (21°37.973' N, to E 88° 04.195'), western sector of Indian Sundarbans that faces the regular tidal influences of Bay of Bengal. Ocypode macrocera constructs burrows that are highly species specific and used by single individual. Four types of burrow patterns were observed like ‘I’, ‘J’ ‘U’ and ‘semi-U’ type with different size...

  11. Studies of the reproductive biology of deep sea megabenthos VIII. Biochemical and calorific content of the reproductive organs of deep sea holothurians

    International Nuclear Information System (INIS)

    Tyler, P.A.; Walker, M.

    1987-01-01

    The data for protein, lipid, carbohydrate and ash content of the ovary, testes, gut and body wall of a variety of deep sea holothurians are presented. The dominant biochemical is insoluble protein in all tissues followed by lipid in the ovary. The ash content was lowest in the gonads and highest in the body wall of most species. The mean calorific content of the species studied is 25.08Jmg -1 thus representing a significant energy store in the deep sea. The data suggest active metabolic pathways in these species which may pass radionuclides to the developing gametes and after spawning to dispersal in deep waters. (author)

  12. Sacculina nectocarcini, a new species of rhizocephalan, a new species of rhizocephalan(Cirripedia: Rhizocephala) parasitising the red rock crabNectocarcinus integrifrons (Decapoda: Brachyura: Portunidae)(Decapoda: Brachyura: Portunidae)

    DEFF Research Database (Denmark)

    Gurney, Robert H.; Rybakov, Alexey V.; Høeg, Jens Thorvald

    2006-01-01

    of features pertaining to the structure of the mantle papillae, the retinaculae and the male receptacles. Biological notes, prevalence and intensity of infection are reported for this rhizocephalan, infesting the red rock crab, Nectocarcinus integrifrons, collected from Western Port, Victoria, Australia....

  13. Towards the best approach for wind wave modelling in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2015-04-01

    While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.

  14. New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Samuel, E-mail: koenig@icm.csic.es [Institut de Ciencies del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Catalunya (Spain); Institut de Diagnosi Ambiental i Estudis de l' Aigua (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona, Catalunya (Spain); Sole, Montserrat [Institut de Ciencies del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Catalunya (Spain); Fernandez-Gomez, Cristal; Diez, Sergi [Institut de Diagnosi Ambiental i Estudis de l' Aigua (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona, Catalunya (Spain)

    2013-01-01

    A number of studies have found high levels of mercury (Hg) in deep-sea organisms throughout the world's oceans, but the underlying causes are not clear as there is no consensus on the origin and cycling of Hg in the ocean. Recent findings suggested that Hg accumulation may increase with increasing forage depth and pointed to the deep-water column as the origin of most Hg in marine biota, especially its organic methylmercury (MeHg) form. In the present study, we determined the total mercury (THg) levels in 12 deep-sea fish species and a decapod crustacean and investigated their relationship with the species' nitrogen stable isotope ratio ({delta}{sup 15}N) as an indicator of their trophic level, average weight and habitat depth. THg levels ranged from 0.27 to 4.42 {mu}g/g w.w. and exceeded in all, except one species, the recommended 0.5 {mu}g/g w.w. guideline value. While THg levels exhibited a strong relationship with {delta}{sup 15}N values and to a lesser extent with weight, the habitat depth, characterized as the species' depth of maximum abundance (DMA), had also a significant effect on Hg accumulation. The fish species with a shallower depth range exhibited lower THg values than predicted by their trophic level ({delta}{sup 15}N) and body mass, while measured THg values were higher than predicted in deeper-dwelling fish. Overall, the present results point out a potential risk for human health from the consumption of deep-sea fish. In particular, for both, the red shrimp Aristeus antennatus, which is one of the most valuable fishing resources of the Mediterranean, as well as the commercially exploited fish Mora moro, THg levels considerably exceeded the recommended 0.5 {mu}g/g w.w. limit and should be consumed with caution. -- Highlights: Black-Right-Pointing-Pointer High total mercury (THg) levels were detected in Mediterranean deep-sea organisms. Black-Right-Pointing-Pointer Uniform contamination pattern was observed across the Mediterranean

  15. Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast

    International Nuclear Information System (INIS)

    El Mamoney, M.H.; Khater, Ashraf E.M.

    2004-01-01

    The Red Sea is a deep semi-enclosed and narrow basin connected to the Indian Ocean by a narrow sill in the south and to the Suez Canal in the north. Oil industries in the Gulf of Suez, phosphate ore mining activities in Safaga-Quseir region and intensified navigation activities are non-nuclear pollution sources that could have serious radiological impacts on the marine environment and the coastal ecosystems of the Red Sea. It is essential to establish the radiological base-line data, which does not exist yet, and to investigate the present radio-ecological impact of the non-nuclear industries to preserve and protect the coastal environment of the Red Sea. Some natural and man-made radionuclides have been measured in shore sediment samples collected from the Egyptian coast of the Red Sea. The specific activities of 226 Ra and 210 Pb ( 238 U) series, 232 Th series, 40 K and 137 Cs (Bq/kg dry weight) were measured using gamma ray spectrometers based on hyper-pure germanium detectors. The specific activities of 210 Po ( 210 Pb) and uranium isotopes ( 238 U, 235 U and 234 U) (Bq/kg dry weight) were measured using alpha spectrometers based on surface barrier (PIPS) detectors after radiochemical separation. The absorbed radiation dose rates in air (nGy/h) due to natural radionuclides in shore sediment and radium equivalent activity index (Bq/kg) were calculated. The specific activity ratios of 228 Ra/ 226 Ra, 210 Pb/ 226 Ra, 226 Ra/ 238 U and 234 U/ 238 U were calculated for evaluation of the geo-chemical behaviour of these radionuclides. The average specific activity of 226 Ra ( 238 U) series, 232 Th series, 40 K and 210 Pb were 24.7, 31.4, 427.5 and 25.6 Bq/kg, respectively. The concentration of 137 Cs in the sediment samples was less than the lower limit of detection. The Red Sea coast is an arid region with very low rainfall and the sediment is mainly composed of sand. The specific activity of 238 U, 235 U and 234 U were 25.3, 2.9 and 25.0 Bq/kg. The average specific

  16. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  17. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  18. Man and the last great wilderness: human impact on the deep sea.

    Directory of Open Access Journals (Sweden)

    Eva Ramirez-Llodra

    Full Text Available The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008. A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past to exploitation (present. We predict that from now and into the future, increases in atmospheric CO(2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this

  19. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Science.gov (United States)

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  20. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique

    2014-12-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  1. The Red Sea: A Natural Laboratory for Wind and Wave Modeling

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2014-01-01

    The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen's and also Ardhuin's wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

  2. Development of the Red Sea Biogeographic Information System

    KAUST Repository

    Machda, Fahmi

    2010-05-01

    Marine studies, surveys, and observational activities are continuously generating new and diverse data, which are hard to keep track of with tables and spreadsheets. Integrated data and information management systems that collect, analyze, and combine data are needed in order to provide a comprehensive picture of marine environments under study. For these reasons, we started to develop the Red Sea Biogeographic Information System (RBIS) at King Abdullah University of Science and Technology (KAUST) as a web application utilizing the most updated Web 2.0 technologies. RBIS is designed to have an easily accessible interface that is able to host and display research activities conducted in the Red Sea. Its data model is designed to deal with any kind of marine data. For its data structure, RBIS is organizing the data into three main categories: biological data, physicochemical data, and human activities. Spatial distribution of these data is visualized on a Google-Maps mashup. Dynamic charts are used to visualize the statistics of the data. With these functionalities, data model, and data structure, RBIS is able to organize, visualize, and do instantly combined analyses of research data from the Red Sea. The current version is accessible at http://www.kaust.edu.sa/rbis. © 2010 IEEE.

  3. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    Science.gov (United States)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  4. Zooxanthellate zoantharians (Anthozoa: Hexacorallia: Zoantharia: Brachycnemina) in the northern Red Sea

    KAUST Repository

    Reimer, James Davis; Montenegro, Javier; Santos, Maria E. A.; Low, Martyn E. Y.; Herrera Sarrias, Marcela; Gatins, Remy; Roberts, May B.; Berumen, Michael L.

    2017-01-01

    The Red Sea was one of the first areas of the Indo-Pacific to be investigated by marine taxonomists, and the literature on suborder Brachycnemina (Anthozoa: Hexacorallia: Zoantharia) for this region dates from the early nineteenth century. However, in the last 100 years there has been only one focused study on this group in the Red Sea. In the present study, specimens collected from the Saudi Arabian coast of the northern half of the Red Sea were phylogenetically analyzed by sequencing nuclear internal transcribed spacer regions of ribosomal DNA (ITS-rDNA), mitochondrial cytochrome oxidase subunit I (COI), and 16S ribosomal DNA (16S–rDNA). The new results were compared with historical data in the literature and recent results from the Persian Gulf and the southeastern coast of Africa. Results show the presence of six to seven potential Brachycnemina species in the Red Sea; five to six Palythoa species (Palythoa mutuki, P. tuberculosa, P. cf. heliodiscus, P. aff. heliodiscus, and one to two species within the P. sp. “sakurajimensis” group) together with Zoanthus sansibaricus. While P. mutuki, P. tuberculosa, and Z. sansibaricus are known to be widely distributed in the Indo-Pacific, P. cf. heliodiscus and P. sp. “sakurajimensis” have not been reported from the Persian Gulf or the southeastern coast of Africa, and the current results represent large range extensions for these two species. Only one of the observed species, P. aff. heliodiscus, is potentially endemic to the Red Sea, further demonstrating the generally wide distributions of most zooxanthellate Brachycnemina species.

  5. Zooxanthellate zoantharians (Anthozoa: Hexacorallia: Zoantharia: Brachycnemina) in the northern Red Sea

    KAUST Repository

    Reimer, James Davis

    2017-05-12

    The Red Sea was one of the first areas of the Indo-Pacific to be investigated by marine taxonomists, and the literature on suborder Brachycnemina (Anthozoa: Hexacorallia: Zoantharia) for this region dates from the early nineteenth century. However, in the last 100 years there has been only one focused study on this group in the Red Sea. In the present study, specimens collected from the Saudi Arabian coast of the northern half of the Red Sea were phylogenetically analyzed by sequencing nuclear internal transcribed spacer regions of ribosomal DNA (ITS-rDNA), mitochondrial cytochrome oxidase subunit I (COI), and 16S ribosomal DNA (16S–rDNA). The new results were compared with historical data in the literature and recent results from the Persian Gulf and the southeastern coast of Africa. Results show the presence of six to seven potential Brachycnemina species in the Red Sea; five to six Palythoa species (Palythoa mutuki, P. tuberculosa, P. cf. heliodiscus, P. aff. heliodiscus, and one to two species within the P. sp. “sakurajimensis” group) together with Zoanthus sansibaricus. While P. mutuki, P. tuberculosa, and Z. sansibaricus are known to be widely distributed in the Indo-Pacific, P. cf. heliodiscus and P. sp. “sakurajimensis” have not been reported from the Persian Gulf or the southeastern coast of Africa, and the current results represent large range extensions for these two species. Only one of the observed species, P. aff. heliodiscus, is potentially endemic to the Red Sea, further demonstrating the generally wide distributions of most zooxanthellate Brachycnemina species.

  6. Bipolar gene flow in deep-sea benthic foraminifera

    DEFF Research Database (Denmark)

    Pawlowski, J.; Fahrni, J.; Lecroq, B.

    2007-01-01

    Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic leve...

  7. Deep sea mega-geomorphology: Progress and problems

    Science.gov (United States)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  8. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  9. Evolution of king crabs from hermit crab ancestors

    Science.gov (United States)

    Cunningham, C. W.; Blackstone, N. W.; Buss, L. W.

    1992-02-01

    KING crabs (Family Lithodidae) are among the world's largest arthropods, having a crab-like morphology and a strongly calcified exoskeleton1-6. The hermit crabs, by contrast, have depended on gastropod shells for protection for over 150 million years5,7. Shell-living has constrained the morphological evolution of hermit crabs by requiring a decalcified asymmetrical abdomen capable of coiling into gastropod shells and by preventing crabs from growing past the size of the largest available shells1-6. Whereas reduction in shell-living and acquisition of a crab-like morphology (carcinization) has taken place independently in several hermit crab lineages, and most dramatically in king crabs1-6, the rate at which this process has occurred was entirely unknown2,7. We present molecular evidence that king crabs are not only descended from hermit crabs, but are nested within the hermit crab genus Pagurus. We estimate that loss of the shell-living habit and the complete carcinization of king crabs has taken between 13 and 25 million years.

  10. Garthambrus, a new genus of deep water parthenopid crabs (Crustacea: Decapoda: Brachyura) from the Indo-Pacific, with description of a new species from the Seychelles

    NARCIS (Netherlands)

    Ng, P.K.L.

    1996-01-01

    A new genus of parthenopid crab, Garthambrus gen. nov., characterised by a broad carapace with strongly raised branchial and gastric regions, distinctive rostrum, sub-cylindrical ambulatory meri and a long distal segment of the second male pleopod, is established for six deep water species from

  11. Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma: Rhizophoraceae).

    Science.gov (United States)

    Pinheiro, Marcelo Antonio Amaro; Silva, Pablo Pena Gandara E; Duarte, Luis Felipe de Almeida; Almeida, Alaor Aparecido; Zanotto, Flavia Pinheiro

    2012-07-01

    The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various

  12. Biogeography, Cultivation and Genomic Characterization of Prochlorococcus in the Red Sea

    KAUST Repository

    Shibl, Ahmed A.

    2015-12-16

    Aquatic primary productivity mainly depends on pelagic phytoplankton. The globally abundant marine picocyanobacteria Prochlorococcus comprises a significant fraction of the photosynthetic biomass in most tropical, oligotrophic oceans. The Red Sea is an enclosed narrow body of water characterized by continuous solar irradiance, and negligible annual rainfall, in addition to elevated temperatures and salinity levels, which mimics a global warming scenario. Analysis of 16S rRNA sequences of bacterioplankton communities indicated the predominance of a high-light adapted ecotype (HL II) of Prochlorococcus at the surface of the Northern and Central Red Sea. To this end, we analyzed the distribution of Prochlorococcus at multiple depths within and below the euphotic zone in different regions of the Red Sea, using clone libraries of the 16S–23S rRNA internal transcribed spacer (ITS) region. Results indicated a high diversity of Prochlorococcus ecotypes at the 100 m depth in the water column and an unusual dominance of HL II-related sequences in deeper waters of the Red Sea. To further investigate the microdiversity of Prochlorococcus over a wider biogeographical scope, we used a 454-pyrosequencing approach to analyze rpoC1 gene pyrotags. Samples were collected from the surface of the water column to up to 500 m at 45 stations that span the Red Sea’s main basin from 4 north to south. Phylogenetic analysis of abundant rpoC1 OTUs revealed genotypes of recently discovered strains that belong to the high-light and lowlight clades. In addition, we used a rapid community-profiling tool (GraftM) and quantitatively analyzed rpoC1 gene abundance from 45 metagenomes to assess the Prochlorococcus community structure across vertical and horizontal physicochemical gradients. Results revealed the clustering of samples according to their depth and a strong influence on ecotypic distribution by temperature and oxygen levels. In efforts to better understand how the cells survive the

  13. [Fishery and biometrics of genus Calappa crabs (Brachyura: Calappidae) in northeastern Venezuela].

    Science.gov (United States)

    Alió, José J; Marcano, Luis A; Altuve, Douglas E

    2005-01-01

    The box crabs, genus Calappa, are important crab species landed by the industrial trawl fleet in Venezuela. These crabs have a wide distribution in the country, from the Gulf of Venezuela to the Orinoco River, but major landings take place in such gulf, near Margarita Island and northern Sucre State. Average annual landing in the eastern region was 69 t during 1970-2001, with a maximum of 221 t. For this study a sample of 2 398 box crabs was collected by observers on board of industrial trawl vessels, which operated in eastern Venezuela from 1994 to 2000. Three species were found in the landings, Calappa sulcata and C. flammea. each represented 47% of the sample, and C. nitida, which accounted for 5% of the sample. Sex ratio was strongly biased towards males in C. sulcata (2.8:1) and in C. flammnea (1.9:1). while it was only slightly biased in C. nitida (1.4:1). Due to its large size, C. sulcuta is of great commercial interest, with average weight 290 g and a maximum weight of 720 g: C. flammea showed an average weight of 140 g and a maximum weight of 418 g, while C. nitida is the smallest species, with average weight 46 g and maximum weight not beyond 113 g. Box crabs were captured by day and night in similar proportions, and were found in a wide depth range, from a few meters to 126 m deep; however, the largest captures were obtained in the interval 38 - 54 m. Regressions between weight of chelae and total weight were linear, and significantly different between sexes. The relation between total weight and carapace width was allometric, with a power exponent ca. three in C. sulcata, and less than three in C. flamea and C. nitida. Females of C. sulcata and C. nitida showed power exponents significantly smaller than males. Since claws are removed from the animal to be commercialized, while the rest of the animal is returned alive to the sea, for practical purposes a common equation among species and sexes to convert claws weight into total body weight is: total

  14. Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt

    Science.gov (United States)

    Ravat, D.; Salem, A.; Abdelaziz, A.M.S.; Elawadi, E.; Morgan, P.

    2011-01-01

    Over 50 magnetic bottom depths derived from spectra of magnetic anomalies in Eastern Egypt along the Red Sea margin show variable magnetic bottoms ranging from 10 to 34. km. The deep magnetic bottoms correspond more closely to the Moho depth in the region, and not the depth of 580??C, which lies significantly deeper on the steady state geotherms. These results support the idea of Wasilewski and coworkers that the Moho is a magnetic boundary in continental regions. Reduced-to-pole magnetic highs correspond to areas of Younger Granites that were emplaced toward the end of the Precambrian. Other crystalline Precambrian units formed earlier during the closure of ocean basins are not strongly magnetic. In the north, magnetic bottoms are shallow (10-15. km) in regions with a high proportion of these Younger Granites. In the south, the shoaling of the magnetic bottom associated with the Younger Granites appears to be restricted to the Aswan and Ras Banas regions. Complexity in the variation of magnetic bottom depths may arise due to a combination of factors: i) regions of Younger (Precambrian) Granites with high magnetite content in the upper crust, leaving behind low Curie temperature titanomagnetite components in the middle and lower crust, ii) rise in the depth of 580??C isotherm where the crust may have been heated due to initiation of intense magmatism at the time of the Red Sea rifting (~. 20. Ma), and iii) the contrast of the above two factors with respect to the neighboring regions where the Moho and/or Curie temperature truncates lithospheric ferromagnetism. Estimates of fractal and centroid magnetic bottoms in the oceanic regions of the Red Sea are significantly below the Moho in places suggesting that oceanic uppermost mantle may be serpentinized to the depth of 15-30 km in those regions. ?? 2011 Elsevier B.V.

  15. Deep-sea benthic megafaunal habitat suitability modelling: A global-scale maximum entropy model for xenophyophores

    Science.gov (United States)

    Ashford, Oliver S.; Davies, Andrew J.; Jones, Daniel O. B.

    2014-12-01

    Xenophyophores are a group of exclusively deep-sea agglutinating rhizarian protozoans, at least some of which are foraminifera. They are an important constituent of the deep-sea megafauna that are sometimes found in sufficient abundance to act as a significant source of habitat structure for meiofaunal and macrofaunal organisms. This study utilised maximum entropy modelling (Maxent) and a high-resolution environmental database to explore the environmental factors controlling the presence of Xenophyophorea and two frequently sampled xenophyophore species that are taxonomically stable: Syringammina fragilissima and Stannophyllum zonarium. These factors were also used to predict the global distribution of each taxon. Areas of high habitat suitability for xenophyophores were highlighted throughout the world's oceans, including in a large number of areas yet to be suitably sampled, but the Northeast and Southeast Atlantic Ocean, Gulf of Mexico and Caribbean Sea, the Red Sea and deep-water regions of the Malay Archipelago represented particular hotspots. The two species investigated showed more specific habitat requirements when compared to the model encompassing all xenophyophore records, perhaps in part due to the smaller number and relatively more clustered nature of the presence records available for modelling at present. The environmental variables depth, oxygen parameters, nitrate concentration, carbon-chemistry parameters and temperature were of greatest importance in determining xenophyophore distributions, but, somewhat surprisingly, hydrodynamic parameters were consistently shown to have low importance, possibly due to the paucity of well-resolved global hydrodynamic datasets. The results of this study (and others of a similar type) have the potential to guide further sample collection, environmental policy, and spatial planning of marine protected areas and industrial activities that impact the seafloor, particularly those that overlap with aggregations of

  16. Nematode assemblages in the deep-sea benthos of the Norwegian Sea

    Science.gov (United States)

    Jensen, Preben

    1988-07-01

    The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.

  17. Deep-sea environment and biodiversity of the West African Equatorial margin

    OpenAIRE

    Sibuet, Myriam; Vangriesheim, Annick

    2009-01-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites...

  18. INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles

    Science.gov (United States)

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.

    2013-01-01

    Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID

  19. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    -tolerant enzymes, natural products of potential use in human health management and environmental bioremediation using solvent-tolerant microorganisms are some of the potential biotechnological applications of these deep-sea microbes....

  20. A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea.

    Science.gov (United States)

    Sayed, Ahmed; Ghazy, Mohamed A; Ferreira, Ari J S; Setubal, João C; Chambergo, Felipe S; Ouf, Amged; Adel, Mustafa; Dawe, Adam S; Archer, John A C; Bajic, Vladimir B; Siam, Rania; El-Dorry, Hamza

    2014-01-17

    A unique combination of physicochemical conditions prevails in the lower convective layer (LCL) of the brine pool at Atlantis II (ATII) Deep in the Red Sea. With a maximum depth of over 2000 m, the pool is characterized by acidic pH (5.3), high temperature (68 °C), salinity (26%), low light levels, anoxia, and high concentrations of heavy metals. We have established a metagenomic dataset derived from the microbial community in the LCL, and here we describe a gene for a novel mercuric reductase, a key component of the bacterial detoxification system for mercuric and organomercurial species. The metagenome-derived gene and an ortholog from an uncultured soil bacterium were synthesized and expressed in Escherichia coli. The properties of their products show that, in contrast to the soil enzyme, the ATII-LCL mercuric reductase is functional in high salt, stable at high temperatures, resistant to high concentrations of Hg(2+), and efficiently detoxifies Hg(2+) in vivo. Interestingly, despite the marked functional differences between the orthologs, their amino acid sequences differ by less than 10%. Site-directed mutagenesis and kinetic analysis of the mutant enzymes, in conjunction with three-dimensional modeling, have identified distinct structural features that contribute to extreme halophilicity, thermostability, and high detoxification capacity, suggesting that these were acquired independently during the evolution of this enzyme. Thus, our work provides fundamental structural insights into a novel protein that has undergone multiple biochemical and biophysical adaptations to promote the survival of microorganisms that reside in the extremely demanding environment of the ATII-LCL.

  1. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  2. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos

    DEFF Research Database (Denmark)

    Sinniger, Frédéric; Pawlowski, Jan; Harii, Saki

    2016-01-01

    in 39 deep-sea sediment samples from bathyal and abyssal depths worldwide. The eDNA dataset was dominated by meiobenthic taxa and we identified all animal phyla commonly found in the deep-sea benthos; yet, the diversity within these phyla remains largely unknown. The large numbers of taxonomically...... for pure and applied deep-sea environmental research but also emphasizes the necessity to integrate such new approaches with traditional morphology-based examination of deep-sea organisms....

  3. Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the central Red Sea

    KAUST Repository

    Pappas, Melissa

    2017-05-19

    The biodiversity of the Red Sea remains relatively understudied, particularly for invertebrate taxa. Documenting present patterns of biodiversity is essential for better understanding Red Sea reef ecosystems and how these ecosystems may be impacted by stressors (such as fishing and climate change). Several species of giant clams (genus Tridacna) are reported from the Red Sea, although the majority of research effort has occurred in the Gulf of Aqaba. We investigated the genetic diversity (16S rDNA) of the Tridacna species found in the central Saudi Arabian Red Sea. We also investigated the genetic diversity (ITS rDNA) of symbiotic dinoflagellates Symbiodinium associated with these clams. Samples were collected from nine reefs on a cross-shelf gradient near Thuwal, Saudi Arabia. Two species, T. squamosa and T. maxima, were recorded, with the latter being the most abundant. Tridacna squamosina, a species recently reported in the northern Red Sea, was not found, suggesting that this species is not present or is very rare in our study region. All tridacnids sampled were found to harbor Symbiodinium grouped in Clade A, considered an opportunistic, heat-tolerant symbiont group in anemones and corals. The consistent association with Clade A Symbiodinium in central Red Sea tridacnids may reflect the consequence of adaptation to the relatively extreme conditions of the Red Sea. This study contributes to an ever-growing catalog of Red Sea biodiversity and serves as important baseline information for a region experiencing dynamic pressures.

  4. Genetic diversity of giant clams (Tridacna spp.) and their associated Symbiodinium in the central Red Sea

    KAUST Repository

    Pappas, Melissa; He, Song; Hardenstine, Royale; Kanee, Hana; Berumen, Michael L.

    2017-01-01

    The biodiversity of the Red Sea remains relatively understudied, particularly for invertebrate taxa. Documenting present patterns of biodiversity is essential for better understanding Red Sea reef ecosystems and how these ecosystems may be impacted by stressors (such as fishing and climate change). Several species of giant clams (genus Tridacna) are reported from the Red Sea, although the majority of research effort has occurred in the Gulf of Aqaba. We investigated the genetic diversity (16S rDNA) of the Tridacna species found in the central Saudi Arabian Red Sea. We also investigated the genetic diversity (ITS rDNA) of symbiotic dinoflagellates Symbiodinium associated with these clams. Samples were collected from nine reefs on a cross-shelf gradient near Thuwal, Saudi Arabia. Two species, T. squamosa and T. maxima, were recorded, with the latter being the most abundant. Tridacna squamosina, a species recently reported in the northern Red Sea, was not found, suggesting that this species is not present or is very rare in our study region. All tridacnids sampled were found to harbor Symbiodinium grouped in Clade A, considered an opportunistic, heat-tolerant symbiont group in anemones and corals. The consistent association with Clade A Symbiodinium in central Red Sea tridacnids may reflect the consequence of adaptation to the relatively extreme conditions of the Red Sea. This study contributes to an ever-growing catalog of Red Sea biodiversity and serves as important baseline information for a region experiencing dynamic pressures.

  5. Mass-induced sea level variations in the Red Sea from steric-corrected altimetry, GRACE, in-situ bottom pressure records, and hydrographic observations

    Science.gov (United States)

    Feng, Wei; Lemoine, Jean-Michel; Zhong, Min; Xu, Houze

    2014-05-01

    An annual amplitude of ~18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from steric-corrected altimetry and the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 to 2011, which dominates the mean sea level in the region. Seawater mass variations here generally reach maximum in late January/early February. The steric component of SLV calculated from oceanographic temperature and salinity data is relatively small and peaks about seven months later than mass variations. The phase difference between the steric SLV and the mass-induced SLV indicates that when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice versa in summer. In-situ bottom pressure records in the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. Furthermore, we compare the horizontal water mass flux in the Red Sea from steric-corrected altimetry and GRACE with that estimated from hydrographic observations.

  6. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-01-01

    weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet

  7. A compiled checklist of seaweeds of Sudanese Red Sea coast

    Directory of Open Access Journals (Sweden)

    Nahid Abdel Rahim Osman

    2016-02-01

    Full Text Available Objective: To present an updated and compiled checklist of Sudanese seaweeds as an example for the region for conservational as well as developmental purposes. Methods: The checklist was developed based on both field investigations using line transect method at 4 sites along the Red Sea coast of Sudan and review of available studies done on Sudanese seaweeds. Results: In total 114 macroalgal names were recorded and were found to be distributed in 16 orders, 34 families, and 62 genera. The Rhodophyceae macroalgae contained 8 orders, 17 families, 32 genera and 47 species. The Phaeophyceae macroalgae composed of 4 orders, 5 families, 17 genera, and 28 species. The 39 species of the Chlorophyceae macroalgae belong to 2 classes, 4 orders, 12 families, and 14 genera. The present paper proposed the addition of 11 macroalgal taxa to be included in Sudan seaweeds species list. These include 3 red seaweed species, 1 brown seaweed species and 7 green seaweed species. Conclusions: This list is not yet inclusive and it only represents the macroalgal species common to the intertidal areas of Sudan Red Sea coast. Further investigation may reveal the presence of more species. While significant levels of diversity and endemism were revealed for other groups of organisms in the Red Sea region, similar work still has to be performed for seaweeds. Considering the impact of climate change on communities’ structure and composition and the growing risk of maritime transportation through the Red Sea particularly that may originate from oil tankers as well as that may emanate from oil exploration, baseline data on seaweeds are highly required for management purposes.

  8. naturally high temperature and high total alkalinity environment of the Red Sea

    KAUST Repository

    Roik, Anna Krystyna; Roethig, Till; Pogoreutz, Claudia; Saderne, Vincent; Voolstra, Christian R.

    2018-01-01

    The coral structural framework is crucial for maintaining reef ecosystem function and services. Rising seawater temperatures impair the calcification capacity of reef-building organisms on a global scale, but in the Red Sea total alkalinity is naturally high and beneficial to reef growth. It is currently unknown how beneficial and detrimental factors affect the balance between calcification and erosion, and thereby overall reef growth, in the Red Sea. To provide estimates of present-day carbonate budgets and reef growth dynamics in the central Red Sea, we measured in situ net-accretion and net-erosion rates (Gnet) by deployment of limestone blocks to estimate census-based carbonate budgets (Gbudget) in four reef sites along a cross-shelf gradient (25 km). In addition, we assessed abiotic (i.e., temperature, inorganic nutrients, and carbonate system variables) and biotic (i.e., calcifier and bioeroder abundances) variables. Our data show that aragonite saturation states (Ω = 3.65–4.20) were in the upper range compared to the chemistry of other tropical reef sites. Further, Gnet and Gbudget encompassed positive (offshore) and negative (midshore-lagoon and exposed nearshore site) carbonate budgets. Notably, Gbudget maxima were lower compared to reef growth from undisturbed Indian Ocean reefs, but erosive forces for Red Sea reefs were not as strong as observed elsewhere. In line with this, a comparison with recent historical data from the northern Red Sea suggests that overall reef growth in the Red Sea has remained similar since 1995. When assessing reef sites across the shelf gradient, AT correlated well and positive with reef growth (ρ = 0.9), while temperature (ρ = −0.7), pH variation (ρ = −0.8), and pCO2 (ρ = −0.8) were weaker negative correlates. Noteworthy for this oligotrophic sea was the positive effect of PO43− (ρ = 0.7) on reef growth. In the best-fitting distance-based linear model, AT explained about 64 % of Gbudget. Interestingly

  9. naturally high temperature and high total alkalinity environment of the Red Sea

    KAUST Repository

    Roik, Anna Krystyna

    2018-02-28

    The coral structural framework is crucial for maintaining reef ecosystem function and services. Rising seawater temperatures impair the calcification capacity of reef-building organisms on a global scale, but in the Red Sea total alkalinity is naturally high and beneficial to reef growth. It is currently unknown how beneficial and detrimental factors affect the balance between calcification and erosion, and thereby overall reef growth, in the Red Sea. To provide estimates of present-day carbonate budgets and reef growth dynamics in the central Red Sea, we measured in situ net-accretion and net-erosion rates (Gnet) by deployment of limestone blocks to estimate census-based carbonate budgets (Gbudget) in four reef sites along a cross-shelf gradient (25 km). In addition, we assessed abiotic (i.e., temperature, inorganic nutrients, and carbonate system variables) and biotic (i.e., calcifier and bioeroder abundances) variables. Our data show that aragonite saturation states (Ω = 3.65–4.20) were in the upper range compared to the chemistry of other tropical reef sites. Further, Gnet and Gbudget encompassed positive (offshore) and negative (midshore-lagoon and exposed nearshore site) carbonate budgets. Notably, Gbudget maxima were lower compared to reef growth from undisturbed Indian Ocean reefs, but erosive forces for Red Sea reefs were not as strong as observed elsewhere. In line with this, a comparison with recent historical data from the northern Red Sea suggests that overall reef growth in the Red Sea has remained similar since 1995. When assessing reef sites across the shelf gradient, AT correlated well and positive with reef growth (ρ = 0.9), while temperature (ρ = −0.7), pH variation (ρ = −0.8), and pCO2 (ρ = −0.8) were weaker negative correlates. Noteworthy for this oligotrophic sea was the positive effect of PO43− (ρ = 0.7) on reef growth. In the best-fitting distance-based linear model, AT explained about 64 % of Gbudget. Interestingly

  10. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.

    2015-01-12

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  11. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Osipov, Sergey; Bangalath, Hamza Kunhu

    2015-01-01

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  12. Studies of the reproductive biology of deep-sea megabenthos

    International Nuclear Information System (INIS)

    Tyler, P.A.

    1987-07-01

    The final report describes the general biology and ecology of the 15 holothurians, 3 asteroids, 2 zoanthids and 1 crustacea species studied in Reports I-XIII, the sampling methods used and the station data. A summary of the histological, histochemical and biochemical results for the species examined is given. The data suggest that the reproductive processes in the deep-sea species examined are highly unlikely to be part of a pathway for the transfer of radionuclides from the deep-sea back to man. (author)

  13. The National Deep-Sea Coral and Sponge Database: A Comprehensive Resource for United States Deep-Sea Coral and Sponge Records

    Science.gov (United States)

    Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.

    2014-12-01

    Research on deep-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA Deep Sea Coral Research and Technology Program's National Database for Deep-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 deep-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible observations with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution observational data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.

  14. How deep-sea wood falls sustain chemosynthetic life.

    Directory of Open Access Journals (Sweden)

    Christina Bienhold

    Full Text Available Large organic food falls to the deep sea--such as whale carcasses and wood logs--are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals.

  15. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    Science.gov (United States)

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  16. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    Science.gov (United States)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear

  17. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.

    Science.gov (United States)

    Taylor, M L; Roterman, C N

    2017-10-01

    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  18. Description of a new diphyllidean parasite of triakid sharks from the deep Red Sea.

    Science.gov (United States)

    Ivanov, Verónica A; Lipshitz, A

    2006-08-01

    Specimens of Echinobothrium diamanti n. sp. (Cestoda: Diphyllidea) were recovered from the spiral intestine of Iago omanensis and Mustelus mosis (Carcharhiniformes: Triakidae), in the Gulf of Aqaba, Red Sea. The new species can be distinguished from all other species in Echinobothrium by the presence of a conspicuous vaginal sphincter. Echinobothrium diamanti possesses a corona of spines between the apical armature and the bothria, as in Echinobothrium notoguidoi, Echinobothrium musteli, and Echinobothrium scoliodoni, also parasites of sharks. However, E. diamanti possesses more testes per proglottid than E. notoguidoi and E. scoliodoni, and it is larger and has more spines per column on the cephalic peduncle than E. musteli and E. notoguidoi, and it also has circum-medullary vitelline follicles rather than distributed in lateral columns. Echinobothrium diamanti is the first species of diphyllidean reported from the triakid genus Iago.

  19. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  20. Synoptic conditions of fine-particle transport to the last interglacial Red Sea-Dead Sea from Nd-Sr compositions of sediment cores

    Science.gov (United States)

    Palchan, Daniel; Stein, Mordechai; Goldstein, Steven L.; Almogi-Labin, Ahuva; Tirosh, Ofir; Erel, Yigal

    2018-01-01

    The sediments deposited at the depocenter of the Dead Sea comprise high-resolution archive of hydrological changes in the lake's watershed and record the desert dust transport to the region. This paper reconstructs the dust transport to the region during the termination of glacial Marine Isotope Stage 6 (MIS 6; ∼135-129 ka) and the last interglacial peak period (MIS5e, ∼129-116 ka). We use chemical and Nd and Sr isotope compositions of fine detritus material recovered from sediment core drilled at the deepest floor of the Dead Sea. The data is integrated with data achieved from cores drilled at the floor of the Red Sea, thus, forming a Red Sea-Dead Sea transect extending from the desert belt to the Mediterranean climate zone. The Dead Sea accumulated flood sediments derived from three regional surface cover types: settled desert dust, mountain loess-soils and loess-soils filling valleys in the Dead Sea watershed termed here "Valley Loess". The Valley Loess shows a distinct 87Sr/86Sr ratio of 0.7081 ± 1, inherited from dissolved detrital calcites that originate from dried waterbodies in the Sahara and are transported with the dust to the entire transect. Our hydro-climate and synoptic conditions reconstruction illustrates the following history: During glacial period MIS6, Mediterranean cyclones governed the transport of Saharan dust and rains to the Dead Sea watershed, driving the development of both mountain soils and Valley Loess. Then, at Heinrich event 11, dry western winds blew Saharan dust over the entire Red Sea - Dead Sea transect marking latitudinal expansion of the desert belt. Later, when global sea-level rose, the Dead Sea watershed went through extreme aridity, the lake retreated, depositing salt and accumulating fine detritus of the Valley Loess. During peak interglacial MIS 5e, enhanced flooding activity flushed the mountain soils and fine detritus from all around the Dead Sea and Red Sea, marking a significant "contraction" of the desert belt

  1. An interactive end-user software application for a deep-sea photographic database

    Digital Repository Service at National Institute of Oceanography (India)

    Jaisankar, S.; Sharma, R.

    . The software is the first of its kind in deep-sea applications and it also attempts to educate the user about deep-sea photography. The application software is developed by modifying established routines and by creating new routines to save the retrieved...

  2. The permeability and consolidation of deep-sea sediments

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Gunn, D.E.

    1985-01-01

    This report presents permeability and consolidation data for a wide range of sediment types. Permeability is one of the two parameters which are needed to directly quantify pore water advection in deep sea sediments and which are being investigated in high-level radioactive waste study areas. While it is desirable that these parameters should be measured in situ it is argued that values of permeability can be measured sufficiently accurately in the laboratory from core samples. Consequently, an apparatus has been developed which enables sediment permeability to be measured at decreasing void ratios during a back-pressured consolidation test. Data presented in this report from over 60 samples have established the major differences in permeability between various sediment types and how permeability changes as a function of burial depth and void ratio. Samples from two study areas in the North Atlantic Ocean, King's Trough Flank (KTF) and Great Meteor East (GME), have been compared with samples of Red Clay (RC) obtained from the NW Pacific Ocean. Results are presented and discussed. (author)

  3. Shifting environmental baselines in the Red Sea.

    Science.gov (United States)

    Price, A R G; Ghazi, S J; Tkaczynski, P J; Venkatachalam, A J; Santillan, A; Pancho, T; Metcalfe, R; Saunders, J

    2014-01-15

    The Red Sea is among the world's top marine biodiversity hotspots. We re-examined coastal ecosystems at sites surveyed during the 1980s using the same methodology. Coral cover increased significantly towards the north, mirroring the reverse pattern for mangroves and other sedimentary ecosystems. Latitudinal patterns are broadly consistent across both surveys and with results from independent studies. Coral cover showed greatest change, declining significantly from a median score of 4 (1000-9999 m(2)) to 2 (10-99m(2)) per quadrat in 2010/11. This may partly reflect impact from coastal construction, which was evident at 40% of sites and has significantly increased in magnitude over 30 years. Beach oil has significantly declined, but shore debris has increased significantly. Although substantial, levels are lower than at some remote ocean atolls. While earlier reports have suggested that the Red Sea is generally healthy, shifting environmental baselines are evident from the current study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.

    Science.gov (United States)

    Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan

    2018-05-24

    High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.

  5. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    Science.gov (United States)

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  6. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  7. A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea

    KAUST Repository

    DiBattista, Joseph

    2015-11-03

    Aim The Red Sea is characterised by a unique fauna and historical periods of desiccation, hypersalinity and intermittent isolation. The origin and contemporary composition of reef-associated taxa in this region can illuminate biogeographical principles about vicariance and the establishment (or local extirpation) of existing species. Here we aim to: (1) outline the distribution of shallow water fauna between the Red Sea and adjacent regions, (2) explore mechanisms for maintaining these distributions and (3) propose hypotheses to test these mechanisms. Location Red Sea, Gulf of Aden, Arabian Sea, Arabian Gulf and Indian Ocean. Methods Updated checklists for scleractinian corals, fishes and non-coral invertebrates were used to determine species richness in the Red Sea and the rest of the Arabian Peninsula and assess levels of endemism. Fine-scale diversity and abundance of reef fishes within the Red Sea were explored using ecological survey data. Results Within the Red Sea, we recorded 346 zooxanthellate and azooxanthellate scleractinian coral species of which 19 are endemic (5.5%). Currently 635 species of polychaetes, 211 echinoderms and 79 ascidians have been documented, with endemism rates of 12.6%, 8.1% and 16.5% respectively. A preliminary compilation of 231 species of crustaceans and 137 species of molluscs include 10.0% and 6.6% endemism respectively. We documented 1071 shallow fish species, with 12.9% endemic in the entire Red Sea and 14.1% endemic in the Red Sea and Gulf of Aden. Based on ecological survey data of endemic fishes, there were no major changes in species richness or abundance across 1100 km of Saudi Arabian coastline. Main conclusions The Red Sea biota appears resilient to major environmental fluctuations and is characterized by high rates of endemism with variable degrees of incursion into the Gulf of Aden. The nearby Omani and Arabian Gulfs also have variable environments and high levels of endemism, but these are not consistently distinct

  8. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  9. A review on deep-sea fungi: Occurrence, diversity and adaptions

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.R.; Singh, P.

    soil. In contrast to land, however, most studies on deep-sea sediments have focused exclusively on bacteria and have demonstrated their intense metabolic activities therein (Turley and Dixon 2002). The fungi and their role in the deep-sea sediments... polymerization and form brown-coloured products, constituting humus (Tisdall and Oades 1982). The humic material combines with soil particles to form microaggregates. Fungal hyphae further act as binding agents to form macroaggregates by trapping fine particles...

  10. Character and dynamics of the Red Sea and Persian Gulf outflows

    Science.gov (United States)

    Bower, Amy S.; Hunt, Heather D.; Price, James F.

    2000-03-01

    Historical hydrographic data and a numerical plume model are used to investigate the initial transformation, dynamics, and spreading pathways of Red Sea and Persian Gulf outflow waters where they enter the Indian Ocean. The annual mean transport of these outflows is relatively small (outflows in that they flow over very shallow sills (depth Red Sea outflow exhibits strong seasonal variability in transport. The four main results of this study are as follows. First, on the basis of observed temperature-salinity (T-S) characteristics of the outflow source and product waters we estimate that the Red Sea and Persian Gulf outflows are diluted by factors of ˜2.5 and 4, respectively, as they descend from sill depth to their depth of neutral buoyancy. The high-dilution factor for the Persian Gulf outflow results from the combined effects of large initial density difference between the outflow source water and oceanic water and low outflow transport. Second, the combination of low latitude and low outflow transport (and associated low outflow thickness) results in Ekman numbers for both outflows that are O(1). This indicates that they should be thought of as frictional density currents modified by rotation rather than geostrophic density currents modified by friction. Third, different mixing histories along the two channels that direct Red Sea outflow water into the open ocean result in product waters with significantly different densities, which probably contributes to the multilayered structure of the Red Sea product waters. In both outflows, seasonal variations in source water and oceanic properties have some effect on the T-S of the product waters, but they have only a minor impact on equilibrium depth. Fourth, product waters from both outflows are advected away from the sill region in narrow boundary currents, at least during part of the year. At other times, the product water appears more in isolated patches.

  11. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction

    Science.gov (United States)

    Harden-Davies, Harriet

    2017-03-01

    The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.

  12. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  13. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  14. Bio-optical characterization in an ultra-oligotrophic region: the North central Red Sea

    KAUST Repository

    Kheireddine, Malika

    2015-04-01

    Until recently, satellite-derived ocean color observations have been the only means of evaluating optical variability of the Red Sea. During a cruise in autumn 2014, we investigated the variability of Inherent Optical Properties (IOPs) in the North Central Red Sea (NCRS) with a particular focus on the particulate backscattering coefficient, bbp, and colored dissolved organic matter, CDOM, absorption. To our knowledge, these are some of the measurements of these properties in the Red Sea. The IOPs are derived from the concentration and physical properties of suspended particles in the ocean. They provide a simple description of the influence of these particles on the light within the water column. Bio-optical relationships found for ultra-oligotrophic waters of the six stations sampled significantly depart from the mean standard relationships provided for the global ocean, showing the peculiar character of the Red Sea. These optical anomalies relate to the specific biological and environmental conditions occurring in the Red Sea ecosystem. Specifically, the surface specific phytoplankton absorption coefficients are lower than the values predicted from the global relationships due to a high proportion of relatively large sized phytoplankton. Conversely, bbp values are much higher than the mean standard values for a given chlorophyll-a concentration, Chl a. This presumably results from the influence of highly refractive submicrometer particles of Saharan origin in the surface layer of the water column.

  15. Colour change and camouflage in juvenile shore crabs Carcinus maenas

    Directory of Open Access Journals (Sweden)

    Martin eStevens

    2014-05-01

    Full Text Available Camouflage is perhaps the most widespread anti-predator defense in nature, with many different types thought to exist. Of these, resembling the general color and pattern of the background (background matching is likely to be the most common. Background matching can be achieved by adaptation of individual appearance to different habitats or substrates, behavioral choice, and color change. Although the ability to change coloration for camouflage over a period of hours or days is likely to be widely found among animals, few studies have quantified this against different backgrounds. Here, we test whether juvenile shore crabs (Carcinus maenas are capable of color change for camouflage by placing them on either black or white (experiment 1 or red and green (experiment 2 backgrounds. We find that crabs are capable of significant changes in brightness, becoming lighter on white backgrounds and darker on black backgrounds. Using models of predator (avian vision, we show that these differences are large enough in many individuals to lead to perceptible changes in appearance. Furthermore, comparisons of crabs with the backgrounds show that changes are likely to lead to significant improvements in camouflage and potentially reduced detection probabilities. Crabs underwent some changes on the red and green backgrounds, but visual modeling indicated that these changes were very small and unlikely to be detectable. Our experiment shows that crabs are able to adjust their camouflage by changes in brightness over a period of hours, and that this could influence detection probability by predators.

  16. Epibiotic community of the horseshoe crab Tachypleus gigas

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    Horseshoe crabs act as moving substrata for simple to complex communities of small marine organisms. Amplexed adult pairs migrate for breeding once every 2 weeks from deep waters towards nearshore waters during highest high tide. Female horseshoe...

  17. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea

    KAUST Repository

    Alzubaidy, Hanin S.; Essack, Magbubah; Malas, Tareq Majed Yasin; Bokhari, Ameerah; Motwalli, Olaa Amin; Kamanu, Frederick Kinyua; Jamhor, Suhaiza; Mokhtar, Noor Azlin; Antunes, Andre; Simoes, Marta; Alam, Intikhab; Bougouffa, Salim; Lafi, Feras Fawzi; Bajic, Vladimir B.; Archer, John A.C.

    2015-01-01

    To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.

  18. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    KAUST Repository

    Osipov, Sergey

    2018-01-19

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  19. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    Science.gov (United States)

    Osipov, Sergey; Stenchikov, Georgiy

    2018-02-01

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  20. Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39

    International Nuclear Information System (INIS)

    Smethie, W.M. Jr.; Ostlund, H.G.; Loosli, H.H.

    1986-01-01

    On leg 5 of the TTO expedition, the distributions of 85 Kr, tritium, 14 C, 39 Ar, temperature, salinity, oxygen, carbon dioxide and nutrients were measured in the Greenland and Norwegian seas. These observations support previous observations that Greenland Sea Deep Water is formed by a deep convective process within the Greenland gyre. They also support AAGAARD et al.'s (1985, Journal of Geophysical Research, 90, 4833-4846) new hypothesis that Norwegian Sea Deep Water forms from a mixture of Greenland Sea Deep Water and Eurasian Basin Deep Water. Volume transports estimated from the distributions of 85 Kr, tritium, 14 C and 39 Ar range from 0.53 to 0.74 Sv for exchange between the surface and deep Greenland Sea and from 0.9 to 1.47 Sv for exchange between the deep Greenland and deep Norwegian Seas. The residence time of water and the deep Greenland Sea with respect to exchange with surface water ranges from 24 to 34 years reported by PETERSON and ROOTH (1976, Deep-Sea Research, 23, 273-283) and 35-42 years reported by BULLISTER and WEISS (1983, Science, 221, 265-268). The residence time of water in the deep Norwegian Sea with respect to exchange with the deep Greenland Sea ranges from 19 to 30 years compared to 97-107 years reported by PETERSON and ROOTH (1976) and 10-28 years reported by BULLISTER and WEISS (1983). The oxygen consumption rate was estimated to be at most 1.04 μM kg -1 y -1 for the deep Greenland Sea and to be between 0.47 and 0.79 μM kg -1 y -1 for the deep Norwegian Sea. (author)

  1. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    Science.gov (United States)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment

  2. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  3. ENSO influence on the interannual variability of the Red Sea convergence zone and associated rainfall

    KAUST Repository

    Dasari, Hari Prasad

    2017-07-18

    The Red Sea convergence zone (RSCZ) is formed by opposite surface winds blowing from northwest to southeast directions at around 18°-19°N between October and January. A reverse-oriented, low-level monsoon trough at 850hPa, known as the Red Sea trough (RST), transfers moisture from the southern Red Sea to RSCZ. The positions of the RSCZ and RST and the intensity of the RST have been identified as important factors in modulating weather and climatic conditions across the Middle East. Here, we investigate the influence of the El Niño southern oscillation (ENSO) on the interannual variability of RSCZ, RST, and regional rainfall during winter months. Our results indicate that El Niño (warm ENSO phase) favours a shift of the RSCZ to the north and a strengthening of the RST in the same direction. Conversely, during November and December of La Niña periods (cold ENSO phase), the RSCZ shift to the south and the RST strengthens in the same direction. During El Niño periods, southeasterly wind speeds increase (20-30%) over the southern Red Sea and northwesterly wind speeds decrease (10-15%) over the northern Red Sea. Noticeable increases in the number of rainy days and the intensity of rain events are observed during El Niño phases. These increases are associated with colder than normal air intrusion at lower levels from the north combined with warm air intrusion from the south over the RSCZ. Our analysis suggests that during El Niño winters, warmer sea surface temperatures and higher convective instability over the Red Sea favour local storms conditions and increase rainfall over the Red Sea and adjoining regions.

  4. Identified Natural Hazards May Cause Adverse Impact on Sustainability of Desalination Plants in Red Sea

    Science.gov (United States)

    Aburizaiza, O. S.; Zaigham, N. A.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.; Eusufi, S. N.

    2011-12-01

    The Red Sea and its surrounding countries have harsh arid climatic conditions where fast growth of the socio-economic activities and rapid change of lifestyle have caused tremendous stress on water to the level of acute crisis. To meet the water demands, the Red Sea countries have adopted seawater desalination giving priority against their land-based resources. Saudi Arabia is the largest desalinated-water producers in the Red Sea and has practically no adequate backup plan in case of sudden unforeseen emergency. Out of about 3.64 million m3/day, Saudi Arabia is alone being desalinated about 3.29 m3/day seawater from Red Sea and more projects are in progress. Present integrated research study has identified some of natural and anthropogenic hazards, which may be major threats to the quality of the seawater as well as to the desalination plants themselves. Results of present study reveal that the submarine complex morphologic features may cause the isolation of Red Sea from any of the open sea, the increase in the seismicity trends, the active volcanism causing unique longitudinal as well as transverse deformations of the axial trough particularly in the southern part of the Red Sea, the consistently generating enormous hot-brine tectonic-factory all along the deeper parts of the Red Sea rifting trough and other related issues. Considering the identified odd conditions, the total dependence on seawater desalination may not be worthwhile for sustainable water management strategy and consequent socio-economic developments in future. It is recommended that the priority should also be given mainly in three main disciplines to meet the future water challenges - one, developing reliable backup water management; second, alternate options for the supplementary resources of water; and third, the development and immediate implementation of the water-use conservation strategy plan.

  5. A new species of Arachnanthus from the Red Sea (Cnidaria, Ceriantharia)

    KAUST Repository

    Stampar, Sérgio N.

    2018-04-04

    A new species of the genus Arachnanthus (Cnidaria: Ceriantharia), Arachnanthus lilith Stampar & El Didi, sp. n., is described. This species is widely distributed in the Red Sea, and recorded from 2–30 m depths. Arachnanthus lilith Stampar & El Didi, sp. n. is the fifth species of the genus and the first recorded from the Red Sea. The number of labial tentacle pseudocycles, arrangement of mesenteries, and distribution of acontioids allow the differentiation of the new species from other species of the genus.

  6. A new species of Arachnanthus from the Red Sea (Cnidaria, Ceriantharia).

    Science.gov (United States)

    Stampar, Sérgio N; Didi, Suraia O El; Paulay, Gustav; Berumen, Michael L

    2018-01-01

    A new species of the genus Arachnanthus (Cnidaria: Ceriantharia), Arachnanthus lilith Stampar & El Didi, sp. n. , is described. This species is widely distributed in the Red Sea, and recorded from 2-30 m depths. Arachnanthus lilith Stampar & El Didi, sp. n. is the fifth species of the genus and the first recorded from the Red Sea. The number of labial tentacle pseudocycles, arrangement of mesenteries, and distribution of acontioids allow the differentiation of the new species from other species of the genus.

  7. A new species of Arachnanthus from the Red Sea (Cnidaria, Ceriantharia)

    KAUST Repository

    Stampar, Sé rgio N.; El Didi, Suraia O.; Paulay, Gustav; Berumen, Michael L.

    2018-01-01

    A new species of the genus Arachnanthus (Cnidaria: Ceriantharia), Arachnanthus lilith Stampar & El Didi, sp. n., is described. This species is widely distributed in the Red Sea, and recorded from 2–30 m depths. Arachnanthus lilith Stampar & El Didi, sp. n. is the fifth species of the genus and the first recorded from the Red Sea. The number of labial tentacle pseudocycles, arrangement of mesenteries, and distribution of acontioids allow the differentiation of the new species from other species of the genus.

  8. Ecological traits and environmental affinity explain Red Sea fish introduction into the Mediterranean.

    Science.gov (United States)

    Belmaker, Jonathan; Parravicini, Valeriano; Kulbicki, Michel

    2013-05-01

    Alien species are considered one of the prime threats to biodiversity, driving major changes in ecosystem structure and function. Identifying the traits associated with alien introduction has been largely restricted to comparing indigenous and alien species or comparing alien species that differ in abundance or impact. However, a more complete understanding may emerge when the entire pool of potential alien species is used as a control, information that is rarely available. In the eastern Mediterranean, the marine environment is undergoing an unparalleled species composition transformation, as a flood of aliens have entered from the Red Sea following the opening of the Suez Canal in 1869. In this study, we compile data on species traits, geographical distribution, and environmental affinity of the entire pool of reef-associated fish species in the Red Sea and more generally across the Indo-Pacific. We use this extensive data to identify the prime characteristics separating Red Sea species that have become alien in the Mediterranean from those that have not. We find that alien species occupy a larger range of environments in their native ranges, explaining their ability to colonize the seasonal Mediterranean. Red Sea species that naturally experience high maximum temperatures in their native range have a high probability of becoming alien. Thus, contrary to predictions of an accelerating number of aliens following increased water temperatures, hotter summers in this region may prevent the establishment of many alien species. We further find that ecological trait diversity of alien species is substantially more evenly spaced and more divergent than random samples from the pool of Red Sea species, pointing at additional processes, such as competition, promoting ecological diversity among alien species. We use these results to provide a first quantitative ranking of the potential of Red Sea species to become established in the eastern Mediterranean. © 2012 Blackwell

  9. Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea

    KAUST Repository

    Abualnaja, Yasser; Papadopoulos, Vassilis P.; Josey, Simon A.; Hoteit, Ibrahim; Kontoyiannis, Harilaos; Raitsos, Dionysios E.

    2015-01-01

    The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during

  10. A novel mercuric reductase from the unique deep brine environment of atlantis II in the red sea

    KAUST Repository

    Sayed, Ahmed Anazadeh

    2013-11-26

    Aunique combination of physicochemical conditions prevails in the lower convective layer (LCL) of the brine pool at Atlantis II (ATII) Deep in the Red Sea. With a maximum depth of over 2000 m, the pool is characterized by acidic pH (5.3), high temperature (68 °C), salinity (26%), low light levels, anoxia, and high concentrations of heavy metals. We have established a metagenomic dataset derived from the microbial community in the LCL, and here we describe a gene for a novel mercuric reductase, a key component of the bacterial detoxification system for mercuric and organomercurial species. The metagenome-derived gene and an ortholog from an uncultured soil bacterium were synthesized and expressed in Escherichia coli. The properties of their products show that, in contrast to the soil enzyme, the ATII-LCL mercuric reductase is functional in high salt, stable at high temperatures, resistant to high concentrations of Hg2+, and efficiently detoxifies Hg2+ in vivo. Interestingly, despite the marked functional differences between the orthologs, their amino acid sequences differ by less than 10%. Site-directed mutagenesis and kinetic analysis of the mutant enzymes, in conjunction with three-dimensional modeling, have identified distinct structural features that contribute to extreme halophilicity, thermostability, and high detoxification capacity, suggesting that these were acquired independently during the evolution of this enzyme. Thus, our work provides fundamental structural insights into a novel protein that has undergone multiple biochemical and biophysical adaptations to promote the survival of microorganisms that reside in the extremely demanding environment of the ATII-LCL. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A novel mercuric reductase from the unique deep brine environment of atlantis II in the red sea

    KAUST Repository

    Sayed, Ahmed Anazadeh; Ghazy, Mohamed A.; Ferreira, Ari José Scattone; Setú bal, Joã o Carlos; Chambergo, Felipe Santiago; Ouf, Amged; Adel, Mustafa; Dawe, Adam Sean; Archer, John A.C.; Bajic, Vladimir B.; Siam, Rania; El-Dorry, Hamza A A

    2013-01-01

    Aunique combination of physicochemical conditions prevails in the lower convective layer (LCL) of the brine pool at Atlantis II (ATII) Deep in the Red Sea. With a maximum depth of over 2000 m, the pool is characterized by acidic pH (5.3), high temperature (68 °C), salinity (26%), low light levels, anoxia, and high concentrations of heavy metals. We have established a metagenomic dataset derived from the microbial community in the LCL, and here we describe a gene for a novel mercuric reductase, a key component of the bacterial detoxification system for mercuric and organomercurial species. The metagenome-derived gene and an ortholog from an uncultured soil bacterium were synthesized and expressed in Escherichia coli. The properties of their products show that, in contrast to the soil enzyme, the ATII-LCL mercuric reductase is functional in high salt, stable at high temperatures, resistant to high concentrations of Hg2+, and efficiently detoxifies Hg2+ in vivo. Interestingly, despite the marked functional differences between the orthologs, their amino acid sequences differ by less than 10%. Site-directed mutagenesis and kinetic analysis of the mutant enzymes, in conjunction with three-dimensional modeling, have identified distinct structural features that contribute to extreme halophilicity, thermostability, and high detoxification capacity, suggesting that these were acquired independently during the evolution of this enzyme. Thus, our work provides fundamental structural insights into a novel protein that has undergone multiple biochemical and biophysical adaptations to promote the survival of microorganisms that reside in the extremely demanding environment of the ATII-LCL. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Methods in mooring deep sea sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Fernando, V.; Rajaraman, V.S.; Janakiraman, G.

    The experience gained during the process of deployment and retrieval of nearly 39 sets of deep sea sediment trap moorings on various ships like FS Sonne, ORV Sagarkanya and DSV Nand Rachit are outlined. The various problems encountered...

  13. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Thermal Limits and Thresholds of Red Sea Biota

    KAUST Repository

    Chaidez, Veronica

    2018-01-01

    tropical systems. This has major consequences for organisms that may already find themselves at their thermal limits. The aim of this project was to define the thermal limits and thresholds of certain Red Sea species. Firstly, to better understand

  15. KFUPM-KAUST Red Sea model: Digital viscoelastic depth model and synthetic seismic data set

    KAUST Repository

    Al-Shuhail, Abdullatif A.; Mousa, Wail A.; Alkhalifah, Tariq Ali

    2017-01-01

    The Red Sea is geologically interesting due to its unique structures and abundant mineral and petroleum resources, yet no digital geologic models or synthetic seismic data of the Red Sea are publicly available for testing algorithms to image and analyze the area's interesting features. This study compiles a 2D viscoelastic model of the Red Sea and calculates a corresponding multicomponent synthetic seismic data set. The models and data sets are made publicly available for download. We hope this effort will encourage interested researchers to test their processing algorithms on this data set and model and share their results publicly as well.

  16. KFUPM-KAUST Red Sea model: Digital viscoelastic depth model and synthetic seismic data set

    KAUST Repository

    Al-Shuhail, Abdullatif A.

    2017-06-01

    The Red Sea is geologically interesting due to its unique structures and abundant mineral and petroleum resources, yet no digital geologic models or synthetic seismic data of the Red Sea are publicly available for testing algorithms to image and analyze the area\\'s interesting features. This study compiles a 2D viscoelastic model of the Red Sea and calculates a corresponding multicomponent synthetic seismic data set. The models and data sets are made publicly available for download. We hope this effort will encourage interested researchers to test their processing algorithms on this data set and model and share their results publicly as well.

  17. Egypt’s Red Sea Coast: Phylogenetic analysis of cultured microbial consortia in industrialized sites

    Directory of Open Access Journals (Sweden)

    Ghada A. Mustafa

    2014-08-01

    Full Text Available The Red Sea has a unique geography and ecosystem and its shores are very rich in mangrove, macro-algae and coral reefs. Different sources of pollution are affecting the Red Sea shores and waters which impacts biological life including microbial life. We assessed the effects of industrialization, along the Egyptian Red Sea coast in eight coastal sites and two lakes, on microbial life. The bacterial community in sediment samples was analyzed using bacterial 16S rDNApyrosequencing of V6-V4 hypervariable regions. Taxonomical assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled Red Sea sites. This includes Proteobacteria (68%, Firmicutes (13%, Fusobacteria (12%, Bacteriodetes (6% and Spirochetes (0.03%. Further analysis revealed distinct bacterial consortium formed mainly of: 1 marine Vibrio’s- suggesting a Marine Vibrio phenomenon 2 potential human pathogens and 3 oil-degrading bacteria. We discuss a distinct microbial consortium in Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; revealing the highest abundance of human pathogens versus no pathogens, respectively. Our results draw attention to the affects of industrialization on the Red Sea, and suggest further analysis to overcome hazardous affects on the impacted sites.

  18. Investigation and Isolation of Cellulase-Producing microorganisms in the Red Sea

    KAUST Repository

    Fatani, Siham

    2016-01-01

    Cellulolytic microorganisms are considered to be key players in biorefinery, especially for the utilization of plant biomass. These organisms have been isolated from various environments. The Red Sea is one of the seas with high biodiversity and a

  19. Mass-induced sea level variations in the Red Sea from GRACE, steric-corrected altimetry, in situ bottom pressure records, and hydrographic observations

    Science.gov (United States)

    Feng, W.; Lemoine, J.-M.; Zhong, M.; Hsu, H. T.

    2014-08-01

    An annual amplitude of ∼18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from the Gravity Recovery and Climate Experiment (GRACE) satellites and steric-corrected altimetry from 2003 to 2011. The annual mass variations in the region dominate the mean SLV, and generally reach maximum in late January/early February. The annual steric component of the mean SLV is relatively small (mass-induced SLV. In situ bottom pressure records at the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. In addition, the horizontal water mass flux of the Red Sea estimated from GRACE and steric-corrected altimetry is validated by hydrographic observations.

  20. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    Science.gov (United States)

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.