WorldWideScience

Sample records for deep mrna sequencing

  1. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  2. On the optimal trimming of high-throughput mRNA sequence data

    Directory of Open Access Journals (Sweden)

    Matthew D MacManes

    2014-01-01

    Full Text Available The widespread and rapid adoption of high-throughput sequencing technologies has afforded researchers the opportunity to gain a deep understanding of genome level processes that underlie evolutionary change, and perhaps more importantly, the links between genotype and phenotype. In particular, researchers interested in functional biology and adaptation have used these technologies to sequence mRNA transcriptomes of specific tissues, which in turn are often compared to other tissues, or other individuals with different phenotypes. While these techniques are extremely powerful, careful attention to data quality is required. In particular, because high-throughput sequencing is more error-prone than traditional Sanger sequencing, quality trimming of sequence reads should be an important step in all data processing pipelines. While several software packages for quality trimming exist, no general guidelines for the specifics of trimming have been developed. Here, using empirically derived sequence data, I provide general recommendations regarding the optimal strength of trimming, specifically in mRNA-Seq studies. Although very aggressive quality trimming is common, this study suggests that a more gentle trimming, specifically of those nucleotides whose Phred score < 2 or < 5, is optimal for most studies across a wide variety of metrics.

  3. DeepSimulator: a deep simulator for Nanopore sequencing

    KAUST Repository

    Li, Yu

    2017-12-23

    Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent years. To keep pace with the explosion of the downstream data analytical tools, a versatile Nanopore sequencing simulator is needed to complement the experimental data as well as to benchmark those newly developed tools. However, all the currently available simulators are based on simple statistics of the produced reads, which have difficulty in capturing the complex nature of the Nanopore sequencing procedure, the main task of which is the generation of raw electrical current signals. Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments performed across four species show that the signals generated by our context-dependent model are more similar to the experimentally obtained signals than the ones generated by the official context-independent pore model. In terms of the simulated reads, we provide a parameter interface to users so that they can obtain the reads with different accuracies ranging from 83% to 97%. The reads generated by the default parameter have almost the same properties as the real data. Two case studies demonstrate the application of DeepSimulator to benefit the development of tools in de novo assembly and in low coverage SNP detection. Availability: The software can be accessed freely at: https://github.com/lykaust15/DeepSimulator.

  4. Quantitative phenotyping via deep barcode sequencing.

    Science.gov (United States)

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  5. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

    Science.gov (United States)

    Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.

    2018-05-01

    Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

  6. Expression profiles of mRNA and long noncoding RNA in the ovaries of letrozole-induced polycystic ovary syndrome rat model through deep sequencing.

    Science.gov (United States)

    Fu, Lu-Lu; Xu, Ying; Li, Dan-Dan; Dai, Xiao-Wei; Xu, Xin; Zhang, Jing-Shun; Ming, Hao; Zhang, Xue-Ying; Zhang, Guo-Qing; Ma, Ya-Lan; Zheng, Lian-Wen

    2018-05-30

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-aged women. However, the exact pathophysiology of PCOS remains largely unclear. We performed deep sequencing to investigate the mRNA and long noncoding RNA (lncRNA) expression profiles in the ovarian tissues of letrozole-induced PCOS rat model and control rats. A total of 2147 mRNAs and 158 lncRNAs were differentially expressed between the PCOS models and control. Gene ontology analysis indicated that differentially expressed mRNAs were associated with biological adhesion, reproduction, and metabolic process. Pathway analysis results indicated that these aberrantly expressed mRNAs were related to several specific signaling pathways, including insulin resistance, steroid hormone biosynthesis, PPAR signaling pathway, cell adhesion molecules, autoimmune thyroid disease, and AMPK signaling pathway. The relative expression levels of mRNAs and lncRNAs were validated through qRT-PCR. LncRNA-miRNA-mRNA network was constructed to explore ceRNAs involved in the PCOS model and were also verified by qRTPCR experiment. These findings may provide insight into the pathogenesis of PCOS and clues to find key diagnostic and therapeutic roles of lncRNA in PCOS. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    Science.gov (United States)

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  8. DeepSimulator: a deep simulator for Nanopore sequencing

    KAUST Repository

    Li, Yu; Han, Renmin; Bi, Chongwei; Li, Mo; Wang, Sheng; Gao, Xin

    2017-01-01

    or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments

  9. Poly(A)-tag deep sequencing data processing to extract poly(A) sites.

    Science.gov (United States)

    Wu, Xiaohui; Ji, Guoli; Li, Qingshun Quinn

    2015-01-01

    Polyadenylation [poly(A)] is an essential posttranscriptional processing step in the maturation of eukaryotic mRNA. The advent of next-generation sequencing (NGS) technology has offered feasible means to generate large-scale data and new opportunities for intensive study of polyadenylation, particularly deep sequencing of the transcriptome targeting the junction of 3'-UTR and the poly(A) tail of the transcript. To take advantage of this unprecedented amount of data, we present an automated workflow to identify polyadenylation sites by integrating NGS data cleaning, processing, mapping, normalizing, and clustering. In this pipeline, a series of Perl scripts are seamlessly integrated to iteratively map the single- or paired-end sequences to the reference genome. After mapping, the poly(A) tags (PATs) at the same genome coordinate are grouped into one cleavage site, and the internal priming artifacts removed. Then the ambiguous region is introduced to parse the genome annotation for cleavage site clustering. Finally, cleavage sites within a close range of 24 nucleotides and from different samples can be clustered into poly(A) clusters. This procedure could be used to identify thousands of reliable poly(A) clusters from millions of NGS sequences in different tissues or treatments.

  10. Sequences within the 5' untranslated region regulate the levels of a kinetoplast DNA topoisomerase mRNA during the cell cycle.

    Science.gov (United States)

    Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S

    1996-12-01

    Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA.

  11. Comparative analysis of transcriptomes in aerial stems and roots of Ephedra sinica based on high-throughput mRNA sequencing

    Directory of Open Access Journals (Sweden)

    Taketo Okada

    2016-12-01

    Full Text Available Ephedra plants are taxonomically classified as gymnosperms, and are medicinally important as the botanical origin of crude drugs and as bioresources that contain pharmacologically active chemicals. Here we show a comparative analysis of the transcriptomes of aerial stems and roots of Ephedra sinica based on high-throughput mRNA sequencing by RNA-Seq. De novo assembly of short cDNA sequence reads generated 23,358, 13,373, and 28,579 contigs longer than 200 bases from aerial stems, roots, or both aerial stems and roots, respectively. The presumed functions encoded by these contig sequences were annotated by BLAST (blastx. Subsequently, these contigs were classified based on gene ontology slims, Enzyme Commission numbers, and the InterPro database. Furthermore, comparative gene expression analysis was performed between aerial stems and roots. These transcriptome analyses revealed differences and similarities between the transcriptomes of aerial stems and roots in E. sinica. Deep transcriptome sequencing of Ephedra should open the door to molecular biological studies based on the entire transcriptome, tissue- or organ-specific transcriptomes, or targeted genes of interest.

  12. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    Science.gov (United States)

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  13. Geoseq: a tool for dissecting deep-sequencing datasets

    Directory of Open Access Journals (Sweden)

    Homann Robert

    2010-10-01

    Full Text Available Abstract Background Datasets generated on deep-sequencing platforms have been deposited in various public repositories such as the Gene Expression Omnibus (GEO, Sequence Read Archive (SRA hosted by the NCBI, or the DNA Data Bank of Japan (ddbj. Despite being rich data sources, they have not been used much due to the difficulty in locating and analyzing datasets of interest. Results Geoseq http://geoseq.mssm.edu provides a new method of analyzing short reads from deep sequencing experiments. Instead of mapping the reads to reference genomes or sequences, Geoseq maps a reference sequence against the sequencing data. It is web-based, and holds pre-computed data from public libraries. The analysis reduces the input sequence to tiles and measures the coverage of each tile in a sequence library through the use of suffix arrays. The user can upload custom target sequences or use gene/miRNA names for the search and get back results as plots and spreadsheet files. Geoseq organizes the public sequencing data using a controlled vocabulary, allowing identification of relevant libraries by organism, tissue and type of experiment. Conclusions Analysis of small sets of sequences against deep-sequencing datasets, as well as identification of public datasets of interest, is simplified by Geoseq. We applied Geoseq to, a identify differential isoform expression in mRNA-seq datasets, b identify miRNAs (microRNAs in libraries, and identify mature and star sequences in miRNAS and c to identify potentially mis-annotated miRNAs. The ease of using Geoseq for these analyses suggests its utility and uniqueness as an analysis tool.

  14. Exploratory Bioinformatics Study of lncRNAs in Alzheimer’s Disease mRNA Sequences with Application to Drug Development

    Directory of Open Access Journals (Sweden)

    T. Holden

    2013-01-01

    Full Text Available Long noncoding RNA (lncRNA within mRNA sequences of Alzheimer’s disease genes, namely, APP, APOE, PSEN1, and PSEN2, has been analyzed using fractal dimension (FD computation and correlation analysis. We examined lncRNA by comparing mRNA FD to corresponding coding DNA sequences (CDSs FD. APP, APOE, and PSEN1 CDSs select slightly higher FDs compared to the mRNA, while PSEN2 CDSs FDs are lower. The correlation coefficient for these sequences is 0.969. A comparative study of differentially expressed MAPK signaling pathway lncRNAs in pancreatic cancer cells shows a correlation of 0.771. Selection of higher FD CDSs could indicate interaction of Alzheimer’s gene products APP, APOE, and PSEN1. Including hypocretin sequences (where all CDSs have higher fractal dimensions than mRNA in the APP, APOE, and PSEN1 sequence analyses improves correlation, but the inclusion of erythropoietin (where all CDSs have higher FD than mRNA would suppress correlation, suggesting that HCRT, a hypothalamus neurotransmitter related to the wake/sleep cycle, might be better when compared to EPO, a glycoprotein hormone, for targeting Alzheimer’s disease drug development. Fractal dimension and entropy correlation have provided supporting evidence, consistent with evolutionary studies, for using a zebrafish model together with a mouse model, in HCRT drug development.

  15. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata

    Directory of Open Access Journals (Sweden)

    Yu Huaping

    2010-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants. Results In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (Citrus trifoliata which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from C. trifoliata flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in C. trifoliata. Conclusion Deep sequencing of short RNAs from C. trifoliata flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in C. trifoliata. These results show that regulatory miRNAs exist in agronomically important trifoliate orange

  16. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans.

    Science.gov (United States)

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-04-15

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.

  17. Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing.

    Science.gov (United States)

    Sahoo, Malaya K; Holubar, Marisa; Huang, ChunHong; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Waggoner, Jesse J; Troy, Stephanie B; Garcia-Garcia, Lourdes; Ferreyra-Reyes, Leticia; Maldonado, Yvonne; Pinsky, Benjamin A

    2017-07-01

    Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5' untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication. Copyright © 2017 Sahoo et al.

  18. DNA Replication Profiling Using Deep Sequencing.

    Science.gov (United States)

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  19. Uniform, optimal signal processing of mapped deep-sequencing data.

    Science.gov (United States)

    Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2013-07-01

    Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.

  20. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.

    Science.gov (United States)

    Matkovich, Scot J; Dorn, Gerald W

    2015-01-01

    MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.

  1. Sequence, 'subtle' alternative splicing and expression of the CYYR1 (cysteine/tyrosine-rich 1) mRNA in human neuroendocrine tumors

    International Nuclear Information System (INIS)

    Vitale, Lorenza; Coppola, Domenico; Strippoli, Pierluigi; Frabetti, Flavia; Huntsman, Shane A; Canaider, Silvia; Casadei, Raffaella; Lenzi, Luca; Facchin, Federica; Carinci, Paolo; Zannotti, Maria

    2007-01-01

    CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors. The CYYR1 mRNA coding sequence (CDS) was studied in 32 NE tumors by RT-PCR and sequence analysis. A subtle alternative splicing was identified generating two isoforms of CYYR1 mRNA differing in terms of the absence (CAG - isoform, the first described mRNA for CYYR1 locus) or the presence (CAG + isoform) of a CAG codon. When present, this specific codon determines the presence of an alanine residue, at the exon 3/exon 4 junction of the CYYR1 mRNA. The two mRNA isoform amounts were determined by quantitative relative RT-PCR in 29 NE tumors, 2 non-neuroendocrine tumors and 10 normal tissues. A bioinformatic analysis was performed to search for the existence of the two CYYR1 isoforms in other species. The CYYR1 CDS did not show differences compared to the reference sequence in any of the samples, with the exception of an NE tumor arising in the neck region. Sequence analysis of this tumor identified a change in the CDS 333 position (T instead of C), leading to the amino acid mutation P111S. NE tumor samples showed no significant difference in either CYYR1 CAG - or CAG + isoform expression compared to control tissues. CYYR1 CAG - isoform was significantly more expressed than CAG + isoform in NE tumors as well as in control samples investigated. Bioinformatic analysis revealed that only the genomic sequence of Pan troglodytes CYYR1 is consistent with the possible existence of the two described mRNA isoforms. A new 'subtle' splicing isoform (CAG + ) of CYYR1 mRNA, the sequence and

  2. Predicting effects of noncoding variants with deep learning-based sequence model.

    Science.gov (United States)

    Zhou, Jian; Troyanskaya, Olga G

    2015-10-01

    Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.

  3. Combined sequencing of mRNA and DNA from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Florian Mertes

    2016-06-01

    Full Text Available Combined transcriptome and whole genome sequencing of the same ultra-low input sample down to single cells is a rapidly evolving approach for the analysis of rare cells. Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating tumor cells and cells from early embryonic development are under investigation. Herein we describe a universal method applicable for the analysis of minute amounts of sample material (150 to 200 cells derived from sub-colony structures from human embryonic stem cells. The protocol comprises the combined isolation and separate amplification of poly(A mRNA and whole genome DNA followed by next generation sequencing. Here we present a detailed description of the method developed and an overview of the results obtained for RNA and whole genome sequencing of human embryonic stem cells, sequencing data is available in the Gene Expression Omnibus (GEO database under accession number GSE69471.

  4. Transcriptome sequences resolve deep relationships of the grape family.

    Science.gov (United States)

    Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong

    2013-01-01

    Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.

  5. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  6. miRBase: integrating microRNA annotation and deep-sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  7. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    Science.gov (United States)

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  8. Transcriptome sequences resolve deep relationships of the grape family.

    Directory of Open Access Journals (Sweden)

    Jun Wen

    Full Text Available Previous phylogenetic studies of the grape family (Vitaceae yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.

  9. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of

  10. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier

    KAUST Repository

    Kulmanov, Maxat

    2017-09-27

    Motivation A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. Results We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein–protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations.

  11. DeepProbe: Information Directed Sequence Understanding and Chatbot Design via Recurrent Neural Networks

    OpenAIRE

    Yin, Zi; Chang, Keng-hao; Zhang, Ruofei

    2017-01-01

    Information extraction and user intention identification are central topics in modern query understanding and recommendation systems. In this paper, we propose DeepProbe, a generic information-directed interaction framework which is built around an attention-based sequence to sequence (seq2seq) recurrent neural network. DeepProbe can rephrase, evaluate, and even actively ask questions, leveraging the generative ability and likelihood estimation made possible by seq2seq models. DeepProbe makes...

  12. Definition of the complete Schistosoma mansoni hemoglobinase mRNA sequence and gene expression in developing parasites.

    Science.gov (United States)

    el Meanawy, M A; Aji, T; Phillips, N F; Davis, R E; Salata, R A; Malhotra, I; McClain, D; Aikawa, M; Davis, A H

    1990-07-01

    Schistosoma mansoni uses a variety of proteases termed hemoglobinases to obtain nutrition from host globin. Previous reports have characterized cDNAs encoding 1 of these enzymes. However, these sequences did not define the primary structures of the mRNA and protein. The complete sequence of the 1390 base mRNA has now been determined. It encodes a 50 kDa primary translation product. In vitro translations coupled with immunoprecipitations and Western blots of parasite lysates allowed visualization of the 50 kDa form. Production of the 31 kDa mature hemoglobinase from the 50 kDa species involves removal of both NH2 and COOH terminal residues from the primary translation product. Expression of hemoglobinase mRNA and protein was examined during larval parasite development. Low levels were observed in young schistosomula. After 6-9 days in culture, high hemoglobinase levels were seen which correlated with the onset of red blood cell feeding. Immunoelectron microscopy was employed to examine hemoglobinase location and function. In adult worms the enzyme was associated with the gut lumen and gut epithelium. In cercariae, the protease was observed in the head gland, suggesting new roles for the protease.

  13. deepTools2: a next generation web server for deep-sequencing data analysis.

    Science.gov (United States)

    Ramírez, Fidel; Ryan, Devon P; Grüning, Björn; Bhardwaj, Vivek; Kilpert, Fabian; Richter, Andreas S; Heyne, Steffen; Dündar, Friederike; Manke, Thomas

    2016-07-08

    We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service at deeptools.ie-freiburg.mpg.de The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Accurate identification of RNA editing sites from primitive sequence with deep neural networks.

    Science.gov (United States)

    Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie

    2018-04-16

    RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.

  15. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  16. Analysis and prediction of translation rate based on sequence and functional features of the mRNA.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate. Prediction of mRNA's translation rate would provide valuable information for in-depth understanding of the translation mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate, featured by (1 integrating various sequence-derived and functional features, (2 applying the maximum relevance & minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and (3 being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was found that the following features were correlated with translation rate: codon usage frequency, some gene ontology enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein abundance and 5'UTR free energy. These findings might provide useful information for understanding the mechanisms of translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for annotating the translation rate of mRNAs in large-scale.

  17. Deep sequencing reveals different compositions of mRNA transcribed from the F8 gene in a panel of FVIII-producing CHO cell lines

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder; Bolt, Gert; Hansen, Jens J

    2015-01-01

    orders of magnitude lower than for antibodies. In the present study we investigated CHO DXB11 cells transfected with a plasmid encoding human coagulation factor VIII. Single cell clones were isolated from the pool of transfectants and a panel of 14 clones representing a dynamic range of FVIII...... FVIII productivity. It was found that three MTX resistant, nonproducing clones had different truncations of the F8 transcripts. We find that by using deep sequencing, in contrast to microarray technology, for determining the transcriptome from CHO transfectants, we are able to accurately deduce...

  18. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA–microRNA regulatory network in nasopharyngeal carcinoma model systems

    Directory of Open Access Journals (Sweden)

    Carol Ying-Ying Szeto

    2014-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein–Barr virus (EBV-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA–mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL, single nucleotide variant (SNV, and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies.

  19. DSAP: deep-sequencing small RNA analysis pipeline.

    Science.gov (United States)

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  20. Selection of mRNA 5'-untranslated region sequence with high translation efficiency through ribosome display

    International Nuclear Information System (INIS)

    Mie, Masayasu; Shimizu, Shun; Takahashi, Fumio; Kobatake, Eiry

    2008-01-01

    The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library

  1. LookSeq: A browser-based viewer for deep sequencing data

    OpenAIRE

    Manske, Heinrich Magnus; Kwiatkowski, Dominic P.

    2009-01-01

    Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an ov...

  2. pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A Sequences

    Directory of Open Access Journals (Sweden)

    Alexandra E Grier

    2016-01-01

    Full Text Available Increasing demand for large-scale synthesis of in vitro transcribed (IVT mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3′ polyadenosine (poly(A tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A tail lengths to ≃120 base pairs (bp. Here, we have developed a novel method for generation of extended poly(A tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A tracts up to ≃500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A tracts and 3′ termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s.

  3. Deep mRNA sequencing of the Tritonia diomedea brain transcriptome provides access to gene homologues for neuronal excitability, synaptic transmission and peptidergic signalling.

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    Full Text Available The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia, has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level.We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes. BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA.Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain.

  4. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Contaldo, Nicoletta; Makarova, Olga

    2011-01-01

    The diversity of phytoplasmas within single plants has not yet been fully investigated. In this project, deep amplicon sequencing was used to generate 50,926 phytoplasma sequences from 11 phytoplasma-infected grapevine samples from a PCR amplicon in the 5' end of the 16S region. After clustering ...

  5. A simple method for the parallel deep sequencing of full influenza A genomes

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Fordyce, Sarah Louise; Avila Arcos, Maria del Carmen

    2011-01-01

    Given the major threat of influenza A to human and animal health, and its ability to evolve rapidly through mutation and reassortment, tools that enable its timely characterization are necessary to help monitor its evolution and spread. For this purpose, deep sequencing can be a very valuable tool....... This study reports a comprehensive method that enables deep sequencing of the complete genomes of influenza A subtypes using the Illumina Genome Analyzer IIx (GAIIx). By using this method, the complete genomes of nine viruses were sequenced in parallel, representing the 2009 pandemic H1N1 virus, H5N1 virus...

  6. Unified Deep Learning Architecture for Modeling Biology Sequence.

    Science.gov (United States)

    Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang

    2017-10-09

    Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.

  7. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8.

    Directory of Open Access Journals (Sweden)

    Archana Shenoy

    2009-09-01

    Full Text Available The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript.To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8.We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.

  8. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.

    Science.gov (United States)

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan

    2018-02-15

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  9. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  10. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    Directory of Open Access Journals (Sweden)

    Wadim L. Matochko

    2013-01-01

    Full Text Available Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N×1 frequency vector n=ni, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N×N matrix and a stochastic sampling operator (Sa. The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of Sa and use them to define the sequencing operator (Seq. Sequencing without any bias and errors is Seq=Sa IN, where IN is a N×N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (CEN, which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.

  11. Matrin 3 binds and stabilizes mRNA.

    Directory of Open Access Journals (Sweden)

    Maayan Salton

    Full Text Available Matrin 3 (MATR3 is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM, whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  12. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Qi-Xing Huang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are considered to be very important in regulating the growth, development, behavior and stress response in animals and plants in post-transcriptional gene regulation. Pinewood nematode, Bursaphelenchus xylophilus, is an important invasive plant parasitic nematode in Asia. To have a comprehensive knowledge about miRNAs of the nematode is necessary for further in-depth study on roles of miRNAs in the ecological adaptation of the invasive species. METHODS AND FINDINGS: Five small RNA libraries were constructed and sequenced by Illumina/Solexa deep-sequencing technology. A total of 810 miRNA candidates (49 conserved and 761 novel were predicted by a computational pipeline, of which 57 miRNAs (20 conserved and 37 novel encoded by 53 miRNA precursors were identified by experimental methods. Ten novel miRNAs were considered to be species-specific miRNAs of B. xylophilus. Comparison of expression profiles of miRNAs in the five small RNA libraries showed that many miRNAs exhibited obviously different expression levels in the third-stage dispersal juvenile and at a cold-stressed status. Most of the miRNAs exhibited obviously down-regulated expression in the dispersal stage. But differences among the three geographic libraries were not prominent. A total of 979 genes were predicted to be targets of these authentic miRNAs. Among them, seven heat shock protein genes were targeted by 14 miRNAs, and six FMRFamide-like neuropeptides genes were targeted by 17 miRNAs. A real-time quantitative polymerase chain reaction was used to quantify the mRNA expression levels of target genes. CONCLUSIONS: Basing on the fact that a negative correlation existed between the expression profiles of miRNAs and the mRNA expression profiles of their target genes (hsp, flp by comparing those of the nematodes at a cold stressed status and a normal status, we suggested that miRNAs might participate in ecological adaptation and behavior regulation of the

  13. Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing.

    Science.gov (United States)

    Li, Guo; Liu, Yong; Liu, Chao; Su, Zhongwu; Ren, Shuling; Wang, Yunyun; Deng, Tengbo; Huang, Donghai; Tian, Yongquan; Qiu, Yuanzheng

    2016-09-06

    Radioresistance is one of the major factors limiting the therapeutic efficacy and prognosis of patients with nasopharyngeal carcinoma (NPC). Accumulating evidence has suggested that aberrant expression of long noncoding RNAs (lncRNAs) contributes to cancer progression. Therefore, here we identified lncRNAs associated with radioresistance in NPC. The differential expression profiles of lncRNAs associated with NPC radioresistance were constructed by next-generation deep sequencing by comparing radioresistant NPC cells with their parental cells. LncRNA-related mRNAs were predicted and analyzed using bioinformatics algorithms compared with the mRNA profiles related to radioresistance obtained in our previous study. Several lncRNAs and associated mRNAs were validated in established NPC radioresistant cell models and NPC tissues. By comparison between radioresistant CNE-2-Rs and parental CNE-2 cells by next-generation deep sequencing, a total of 781 known lncRNAs and 2054 novel lncRNAs were annotated. The top five upregulated and downregulated known/novel lncRNAs were detected using quantitative real-time reverse transcription-polymerase chain reaction, and 7/10 known lncRNAs and 3/10 novel lncRNAs were demonstrated to have significant differential expression trends that were the same as those predicted by deep sequencing. From the prediction process, 13 pairs of lncRNAs and their associated genes were acquired, and the prediction trends of three pairs were validated in both radioresistant CNE-2-Rs and 6-10B-Rs cell lines, including lncRNA n373932 and SLITRK5, n409627 and PRSS12, and n386034 and RIMKLB. LncRNA n373932 and its related SLITRK5 showed dramatic expression changes in post-irradiation radioresistant cells and a negative expression correlation in NPC tissues (R = -0.595, p < 0.05). Our study provides an overview of the expression profiles of radioresistant lncRNAs and potentially related mRNAs, which will facilitate future investigations into the

  14. Isolation and characterization of human glycophorin A cDNA clones by a synthetic oligonucleotide approach: nucleotide sequence and mRNA structure

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1986-01-01

    In an effort to understand the relationships among and the regulation of human glycophorins, the authors have isolated and characterized several glycophorin A-specific cDNA clones obtained from a human erythroleukemic K562 cell cDNA library. This was accomplished by using mixed synthetic oligonucleotides, corresponding to various regions of the known amino acid sequence, to prime the synthesis of the cDNA as well as to screen the cDNA library. They also used synthetic oligonucleotides to sequence the largest of the glycophorin cDNAs. The nucleotide sequence obtained suggests the presence of a potential leader peptide, consistent with the membrane localization of this glycoprotein. Examination of the structure of glycophorin mRNA by blot hybridization revealed the existence of several electrophoretically distinct mRNAs numbering three or four, depending on the size of the glycophorin cDNA used as a hybridization probe. The smaller cDNA hybridized to three mRNAs of approximately 2.8, 1.7, and 1.0 kilobases. In contrast, the larger cDNA hybridized to an additional mRNA of approximately 0.6 kilobases. Further examination of the relationships between these multiple mRNAs by blot hybridization was conducted with the use of exact-sequence oligonucleotide probes constructed from various regions of the cDNA representing portions of the amino acid sequence of glycophorin A with or without known homology with glycophorin B. In total, the results obtained are consistent with the hypothesis that the three larger mRNAs represent glycophorin A gene transcripts and that the smallest (0.6 kilobase) mRNA may be specific for glycophorin B

  15. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.

    Science.gov (United States)

    Sun, Tanlin; Zhou, Bo; Lai, Luhua; Pei, Jianfeng

    2017-05-25

    Protein-protein interactions (PPIs) are critical for many biological processes. It is therefore important to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease occurrence, and therapy design. Though various computational methods for predicting PPI have been developed, their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful results in diverse areas, but their effectiveness for PPI prediction has not been tested. We used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with previous methods. To our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI prediction, and the results demonstrate its potential in this field.

  16. Deep sequencing methods for protein engineering and design.

    Science.gov (United States)

    Wrenbeck, Emily E; Faber, Matthew S; Whitehead, Timothy A

    2017-08-01

    The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics.

    Directory of Open Access Journals (Sweden)

    Ehsaneddin Asgari

    Full Text Available We introduce a new representation and feature extraction method for biological sequences. Named bio-vectors (BioVec to refer to biological sequences in general with protein-vectors (ProtVec for proteins (amino-acid sequences and gene-vectors (GeneVec for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. In the present paper, we focus on protein-vectors that can be utilized in a wide array of bioinformatics investigations such as family classification, protein visualization, structure prediction, disordered protein identification, and protein-protein interaction prediction. In this method, we adopt artificial neural network approaches and represent a protein sequence with a single dense n-dimensional vector. To evaluate this method, we apply it in classification of 324,018 protein sequences obtained from Swiss-Prot belonging to 7,027 protein families, where an average family classification accuracy of 93%±0.06% is obtained, outperforming existing family classification methods. In addition, we use ProtVec representation to predict disordered proteins from structured proteins. Two databases of disordered sequences are used: the DisProt database as well as a database featuring the disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups. Using support vector machine classifiers, FG-Nup sequences are distinguished from structured protein sequences found in Protein Data Bank (PDB with a 99.8% accuracy, and unstructured DisProt sequences are differentiated from structured DisProt sequences with 100.0% accuracy. These results indicate that by only providing sequence data for various proteins into this model, accurate information about protein structure can be determined. Importantly, this model needs to be trained only once and can then be applied to extract a comprehensive set of information regarding proteins of interest. Moreover, this representation can be

  18. Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection.

    Science.gov (United States)

    Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N

    1998-10-01

    Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.

  19. miRBase: annotating high confidence microRNAs using deep sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2014-01-01

    We describe an update of the miRBase database (http://www.mirbase.org/), the primary microRNA sequence repository. The latest miRBase release (v20, June 2013) contains 24 521 microRNA loci from 206 species, processed to produce 30 424 mature microRNA products. The rate of deposition of novel microRNAs and the number of researchers involved in their discovery continue to increase, driven largely by small RNA deep sequencing experiments. In the face of these increases, and a range of microRNA annotation methods and criteria, maintaining the quality of the microRNA sequence data set is a significant challenge. Here, we describe recent developments of the miRBase database to address this issue. In particular, we describe the collation and use of deep sequencing data sets to assign levels of confidence to miRBase entries. We now provide a high confidence subset of miRBase entries, based on the pattern of mapped reads. The high confidence microRNA data set is available alongside the complete microRNA collection at http://www.mirbase.org/. We also describe embedding microRNA-specific Wikipedia pages on the miRBase website to encourage the microRNA community to contribute and share textual and functional information.

  20. LookSeq: a browser-based viewer for deep sequencing data.

    Science.gov (United States)

    Manske, Heinrich Magnus; Kwiatkowski, Dominic P

    2009-11-01

    Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.

  1. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2016-09-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.

  2. Natural selection and algorithmic design of mRNA.

    Science.gov (United States)

    Cohen, Barry; Skiena, Steven

    2003-01-01

    Messenger RNA (mRNA) sequences serve as templates for proteins according to the triplet code, in which each of the 4(3) = 64 different codons (sequences of three consecutive nucleotide bases) in RNA either terminate transcription or map to one of the 20 different amino acids (or residues) which build up proteins. Because there are more codons than residues, there is inherent redundancy in the coding. Certain residues (e.g., tryptophan) have only a single corresponding codon, while other residues (e.g., arginine) have as many as six corresponding codons. This freedom implies that the number of possible RNA sequences coding for a given protein grows exponentially in the length of the protein. Thus nature has wide latitude to select among mRNA sequences which are informationally equivalent, but structurally and energetically divergent. In this paper, we explore how nature takes advantage of this freedom and how to algorithmically design structures more energetically favorable than have been built through natural selection. In particular: (1) Natural Selection--we perform the first large-scale computational experiment comparing the stability of mRNA sequences from a variety of organisms to random synonymous sequences which respect the codon preferences of the organism. This experiment was conducted on over 27,000 sequences from 34 microbial species with 36 genomic structures. We provide evidence that in all genomic structures highly stable sequences are disproportionately abundant, and in 19 of 36 cases highly unstable sequences are disproportionately abundant. This suggests that the stability of mRNA sequences is subject to natural selection. (2) Artificial Selection--motivated by these biological results, we examine the algorithmic problem of designing the most stable and unstable mRNA sequences which code for a target protein. We give a polynomial-time dynamic programming solution to the most stable sequence problem (MSSP), which is asymptotically no more complex

  3. Protein Structure and the Sequential Structure of mRNA

    DEFF Research Database (Denmark)

    Brunak, Søren; Engelbrecht, Jacob

    1996-01-01

    entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment, By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets, These signals do not originate from......A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed, We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting...... protein, The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain, A complete search for GenBank nucleotide sequences coding for structural...

  4. Cytoplasmic protein binding to highly conserved sequences in the 3' untranslated region of mouse protamine 2 mRNA, a translationally regulated transcript of male germ cells

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Hecht, N.B.

    1991-01-01

    The expression of the protamines, the predominant nuclear proteins of mammalian spermatozoa, is regulated translationally during male germ-cell development. The 3' untranslated region (UTR) of protamine 1 mRNA has been reported to control its time of translation. To understand the mechanisms controlling translation of the protamine mRNAs, we have sought to identify cis elements of the 3' UTR of protamine 2 mRNA that are recognized by cytoplasmic factors. From gel retardation assays, two sequence elements are shown to form specific RNA-protein complexes. Protein binding sites of the two complexes were determined by RNase T1 mapping, by blocking the putative binding sites with antisense oligonucleotides, and by competition assays. The sequences of these elements, located between nucleotides + 537 and + 572 in protamine 2 mRNA, are highly conserved among postmeiotic translationally regulated nuclear proteins of the mammalian testis. Two closely linked protein binding sites were detected. UV-crosslinking studies revealed that a protein of about 18 kDa binds to one of the conserved sequences. These data demonstrate specific protein binding to a highly conserved 3' UTR of translationally regulated testicular mRNA

  5. CPSS: a computational platform for the analysis of small RNA deep sequencing data.

    Science.gov (United States)

    Zhang, Yuanwei; Xu, Bo; Yang, Yifan; Ban, Rongjun; Zhang, Huan; Jiang, Xiaohua; Cooke, Howard J; Xue, Yu; Shi, Qinghua

    2012-07-15

    Next generation sequencing (NGS) techniques have been widely used to document the small ribonucleic acids (RNAs) implicated in a variety of biological, physiological and pathological processes. An integrated computational tool is needed for handling and analysing the enormous datasets from small RNA deep sequencing approach. Herein, we present a novel web server, CPSS (a computational platform for the analysis of small RNA deep sequencing data), designed to completely annotate and functionally analyse microRNAs (miRNAs) from NGS data on one platform with a single data submission. Small RNA NGS data can be submitted to this server with analysis results being returned in two parts: (i) annotation analysis, which provides the most comprehensive analysis for small RNA transcriptome, including length distribution and genome mapping of sequencing reads, small RNA quantification, prediction of novel miRNAs, identification of differentially expressed miRNAs, piwi-interacting RNAs and other non-coding small RNAs between paired samples and detection of miRNA editing and modifications and (ii) functional analysis, including prediction of miRNA targeted genes by multiple tools, enrichment of gene ontology terms, signalling pathway involvement and protein-protein interaction analysis for the predicted genes. CPSS, a ready-to-use web server that integrates most functions of currently available bioinformatics tools, provides all the information wanted by the majority of users from small RNA deep sequencing datasets. CPSS is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/db/cpss/index.html or http://mcg.ustc.edu.cn/sdap1/cpss/index.html.

  6. Involvement of the 5'-leader sequence in coupling the stability of a human H3 histone mRNA with DNA replication

    International Nuclear Information System (INIS)

    Morris, T.; Marashi, F.; Weber, L.; Hickey, E.; Greenspan, D.; Bonner, J.; Stein, J.; Stein, G.

    1986-01-01

    Two lines of evidence derived from fusion gene constructs indicate that sequences residing in the 5'-nontranslated region of a cell cycle-dependent human H3 histone mRNA are involved in the selective destabilization that occurs when DNA synthesis is terminated. The experimental approach was to construct chimeric genes in which fragments of the mRNA coding regions of the H3 histone gene were fused with fragments of genes not expressed in a cell cycle-dependent manner. After transfection in HeLa S3 cells with the recombinant plasmids, levels of fusion mRNAs were determined by S1 nuclease analysis prior to and following DNA synthesis inhibition. When the first 20 nucleotides of an H3 histone mRNA leader were replaced with 89 nucleotides of the leader from a Drosophila heat-shock (hsp70) mRNA, the fusion transcript remained stable during inhibition of DNA synthesis, in contrast to the rapid destabilization of the endogenous histone mRNA in these cells. In a reciprocal experiment, a histone-globin fusion gene was constructed that produced a transcript with the initial 20 nucleotides of the H3 histone mRNA substituted for the human β-globin mRNA leader. In HeLa cells treated with inhibitors of DNA synthesis and/or protein synthesis, cellular levels of this histone-globin fusion mRNA appeared to be regulated in a manner similar to endogenous histone mRNA levels. These results suggest that the first 20 nucleotides of the leader are sufficient to couple histone mRNA stability with DNA replication

  7. Deep RNA Sequencing of the Skeletal Muscle Transcriptome in Swimming Fish

    NARCIS (Netherlands)

    Palstra, A.P.; Beltran, S.; Burgerhout, E.; Brittijn, S.A.; Magnoni, L.J.; Henkel, C.V.; Jansen, A.; Thillart, G.E.E.J.M.; Spaink, H.P.; Planas, J.V.

    2013-01-01

    Deep RNA sequencing (RNA-seq) was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss) with the specific objective to identify expressed genes and quantify the transcriptomic effects of

  8. Ultra-deep sequencing of intra-host rabies virus populations during cross-species transmission.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    2013-11-01

    Full Text Available One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (350 in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009 and geographic location (northern vs. southern. A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 20032010 were present at the sub-consensus level (as rare variants in the viral population in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environment conditions change.

  9. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  10. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    Science.gov (United States)

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  11. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Zhifu Sun

    Full Text Available We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+ and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A, and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER- cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER- cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5' end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER- breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.

  12. Human apolipoprotein B (apoB) mRNA: Identification of two distinct apoB mRNAs, an mRNA with the apoB-100 sequence and an apoB mRNA containing a premature in-frame translational stop codon, in both liver and intestine

    International Nuclear Information System (INIS)

    Higuchi, K.; Hospattankar, A.V.; Law, S.W.; Meglin, N.; Cortright, J.; Brewer, H.B. Jr.

    1988-01-01

    Human apolipoprotein B (apoB) is present in plasma as two separate isoproteins, designated apoB-100 (512 kDa) and apoB-48 (250 kDa). ApoB is encoded by a single gene on chromosome 2, and a single nuclear mRNA is edited and processed into two separate apoB mRNAs. A 14.1-kilobase apoB mRNA codes for apoB-100, and the second mRNA, which codes for apoB-48, contains a premature stop codon generated by a single base substitution of cytosine to uracil at nucleotide 6,538, which converts the translated CAA codon coding for the amino acid glutamine at residue 2,153 in apoB-100 to a premature in-frame stop codon (UAA). Two 30-base synthetic oligonucleotides, designated apoB-Stop and apoB-Gln, were synthesized containing the complementary sequence to the stop codon (UAA) and glutamine codon (CAA), respectively. The combined results from these studies establish that both human intestine and liver contain the two distinct apoB mRNAs, an mRNA that codes for apoB-100 and an apoB mRNA that contains the premature stop codon, which codes for apoB-48. The premature in-frame stop codon is not tissue specific and is present in both human liver and intestine

  13. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M

    2018-01-01

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  14. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian

    2018-04-10

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  15. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support.

    Science.gov (United States)

    Yang, Kai-Chien; Yamada, Kathryn A; Patel, Akshar Y; Topkara, Veli K; George, Isaac; Cheema, Faisal H; Ewald, Gregory A; Mann, Douglas L; Nerbonne, Jeanne M

    2014-03-04

    Microarrays have been used extensively to profile transcriptome remodeling in failing human heart, although the genomic coverage provided is limited and fails to provide a detailed picture of the myocardial transcriptome landscape. Here, we describe sequencing-based transcriptome profiling, providing comprehensive analysis of myocardial mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) expression in failing human heart before and after mechanical support with a left ventricular (LV) assist device (LVAD). Deep sequencing of RNA isolated from paired nonischemic (NICM; n=8) and ischemic (ICM; n=8) human failing LV samples collected before and after LVAD and from nonfailing human LV (n=8) was conducted. These analyses revealed high abundance of mRNA (37%) and lncRNA (71%) of mitochondrial origin. miRNASeq revealed 160 and 147 differentially expressed miRNAs in ICM and NICM, respectively, compared with nonfailing LV. Among these, only 2 (ICM) and 5 (NICM) miRNAs are normalized with LVAD. RNASeq detected 18 480, including 113 novel, lncRNAs in human LV. Among the 679 (ICM) and 570 (NICM) lncRNAs differentially expressed with heart failure, ≈10% are improved or normalized with LVAD. In addition, the expression signature of lncRNAs, but not miRNAs or mRNAs, distinguishes ICM from NICM. Further analysis suggests that cis-gene regulation represents a major mechanism of action of human cardiac lncRNAs. The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.

  16. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    Science.gov (United States)

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  17. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  18. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  19. Workup of Human Blood Samples for Deep Sequencing of HIV-1 Genomes

    NARCIS (Netherlands)

    Cornelissen, Marion; Gall, Astrid; van der Kuyl, Antoinette; Wymant, Chris; Blanquart, François; Fraser, Christophe; Berkhout, Ben

    2018-01-01

    We describe a detailed protocol for the manual workup of blood (plasma/serum) samples from individuals infected with the human immunodeficiency virus type 1 (HIV-1) for deep sequence analysis of the viral genome. The study optimizing the assay was performed in the context of the BEEHIVE (Bridging

  20. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  1. A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology.

    Science.gov (United States)

    Kravatsky, Yuri; Chechetkin, Vladimir; Fedoseeva, Daria; Gorbacheva, Maria; Kravatskaya, Galina; Kretova, Olga; Tchurikov, Nickolai

    2017-11-23

    The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.

  2. Efficient forward propagation of time-sequences in convolutional neural networks using Deep Shifting

    NARCIS (Netherlands)

    K.L. Groenland (Koen); S.M. Bohte (Sander)

    2016-01-01

    textabstractWhen a Convolutional Neural Network is used for on-the-fly evaluation of continuously updating time-sequences, many redundant convolution operations are performed. We propose the method of Deep Shifting, which remembers previously calculated results of convolution operations in order

  3. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing.

    Science.gov (United States)

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-08-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome.

  4. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma

    Science.gov (United States)

    Lahuerta, Juan J.; Pepin, François; González, Marcos; Barrio, Santiago; Ayala, Rosa; Puig, Noemí; Montalban, María A.; Paiva, Bruno; Weng, Li; Jiménez, Cristina; Sopena, María; Moorhead, Martin; Cedena, Teresa; Rapado, Immaculada; Mateos, María Victoria; Rosiñol, Laura; Oriol, Albert; Blanchard, María J.; Martínez, Rafael; Bladé, Joan; San Miguel, Jesús; Faham, Malek; García-Sanz, Ramón

    2014-01-01

    We assessed the prognostic value of minimal residual disease (MRD) detection in multiple myeloma (MM) patients using a sequencing-based platform in bone marrow samples from 133 MM patients in at least very good partial response (VGPR) after front-line therapy. Deep sequencing was carried out in patients in whom a high-frequency myeloma clone was identified and MRD was assessed using the IGH-VDJH, IGH-DJH, and IGK assays. The results were contrasted with those of multiparametric flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). The applicability of deep sequencing was 91%. Concordance between sequencing and MFC and ASO-PCR was 83% and 85%, respectively. Patients who were MRD– by sequencing had a significantly longer time to tumor progression (TTP) (median 80 vs 31 months; P < .0001) and overall survival (median not reached vs 81 months; P = .02), compared with patients who were MRD+. When stratifying patients by different levels of MRD, the respective TTP medians were: MRD ≥10−3 27 months, MRD 10−3 to 10−5 48 months, and MRD <10−5 80 months (P = .003 to .0001). Ninety-two percent of VGPR patients were MRD+. In complete response patients, the TTP remained significantly longer for MRD– compared with MRD+ patients (131 vs 35 months; P = .0009). PMID:24646471

  5. A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology

    Directory of Open Access Journals (Sweden)

    Yuri Kravatsky

    2017-11-01

    Full Text Available The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs, requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s. Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s. The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi targets in human immunodeficiency virus 1 (HIV-1 subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.

  6. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  7. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Directory of Open Access Journals (Sweden)

    Piltz Sandra

    2011-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5 mouse brain. Results We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.

  8. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    Science.gov (United States)

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    OpenAIRE

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O?Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis

    2012-01-01

    : Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality c...

  10. Exploring the Mechanisms of Gastrointestinal Cancer Development Using Deep Sequencing Analysis

    International Nuclear Information System (INIS)

    Matsumoto, Tomonori; Shimizu, Takahiro; Takai, Atsushi; Marusawa, Hiroyuki

    2015-01-01

    Next-generation sequencing (NGS) technologies have revolutionized cancer genomics due to their high throughput sequencing capacity. Reports of the gene mutation profiles of various cancers by many researchers, including international cancer genome research consortia, have increased over recent years. In addition to detecting somatic mutations in tumor cells, NGS technologies enable us to approach the subject of carcinogenic mechanisms from new perspectives. Deep sequencing, a method of optimizing the high throughput capacity of NGS technologies, allows for the detection of genetic aberrations in small subsets of premalignant and/or tumor cells in noncancerous chronically inflamed tissues. Genome-wide NGS data also make it possible to clarify the mutational signatures of each cancer tissue by identifying the precise pattern of nucleotide alterations in the cancer genome, providing new information regarding the mechanisms of tumorigenesis. In this review, we highlight these new methods taking advantage of NGS technologies, and discuss our current understanding of carcinogenic mechanisms elucidated from such approaches

  11. Exploring the Mechanisms of Gastrointestinal Cancer Development Using Deep Sequencing Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tomonori; Shimizu, Takahiro; Takai, Atsushi; Marusawa, Hiroyuki, E-mail: maru@kuhp.kyoto-u.ac.jp [Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)

    2015-06-15

    Next-generation sequencing (NGS) technologies have revolutionized cancer genomics due to their high throughput sequencing capacity. Reports of the gene mutation profiles of various cancers by many researchers, including international cancer genome research consortia, have increased over recent years. In addition to detecting somatic mutations in tumor cells, NGS technologies enable us to approach the subject of carcinogenic mechanisms from new perspectives. Deep sequencing, a method of optimizing the high throughput capacity of NGS technologies, allows for the detection of genetic aberrations in small subsets of premalignant and/or tumor cells in noncancerous chronically inflamed tissues. Genome-wide NGS data also make it possible to clarify the mutational signatures of each cancer tissue by identifying the precise pattern of nucleotide alterations in the cancer genome, providing new information regarding the mechanisms of tumorigenesis. In this review, we highlight these new methods taking advantage of NGS technologies, and discuss our current understanding of carcinogenic mechanisms elucidated from such approaches.

  12. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  13. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne Vibeke

    2016-01-01

    a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2...

  14. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    Science.gov (United States)

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  15. High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Directory of Open Access Journals (Sweden)

    Gomes Paula

    2010-10-01

    Full Text Available Abstract Background Bathymodiolus azoricus is a deep-sea hydrothermal vent mussel found in association with large faunal communities living in chemosynthetic environments at the bottom of the sea floor near the Azores Islands. Investigation of the exceptional physiological reactions that vent mussels have adopted in their habitat, including responses to environmental microbes, remains a difficult challenge for deep-sea biologists. In an attempt to reveal genes potentially involved in the deep-sea mussel innate immunity we carried out a high-throughput sequence analysis of freshly collected B. azoricus transcriptome using gills tissues as the primary source of immune transcripts given its strategic role in filtering the surrounding waterborne potentially infectious microorganisms. Additionally, a substantial EST data set was produced and from which a comprehensive collection of genes coding for putative proteins was organized in a dedicated database, "DeepSeaVent" the first deep-sea vent animal transcriptome database based on the 454 pyrosequencing technology. Results A normalized cDNA library from gills tissue was sequenced in a full 454 GS-FLX run, producing 778,996 sequencing reads. Assembly of the high quality reads resulted in 75,407 contigs of which 3,071 were singletons. A total of 39,425 transcripts were conceptually translated into amino-sequences of which 22,023 matched known proteins in the NCBI non-redundant protein database, 15,839 revealed conserved protein domains through InterPro functional classification and 9,584 were assigned with Gene Ontology terms. Queries conducted within the database enabled the identification of genes putatively involved in immune and inflammatory reactions which had not been previously evidenced in the vent mussel. Their physical counterpart was confirmed by semi-quantitative quantitative Reverse-Transcription-Polymerase Chain Reactions (RT-PCR and their RNA transcription level by quantitative PCR (q

  16. DeepMirTar: a deep-learning approach for predicting human miRNA targets.

    Science.gov (United States)

    Wen, Ming; Cong, Peisheng; Zhang, Zhimin; Lu, Hongmei; Li, Tonghua

    2018-06-01

    MicroRNAs (miRNAs) are small noncoding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression by targeting messenger RNAs (mRNAs). Because the underlying mechanisms associated with miRNA binding to mRNA are not fully understood, a major challenge of miRNA studies involves the identification of miRNA-target sites on mRNA. In silico prediction of miRNA-target sites can expedite costly and time-consuming experimental work by providing the most promising miRNA-target-site candidates. In this study, we reported the design and implementation of DeepMirTar, a deep-learning-based approach for accurately predicting human miRNA targets at the site level. The predicted miRNA-target sites are those having canonical or non-canonical seed, and features, including high-level expert-designed, low-level expert-designed, and raw-data-level, were used to represent the miRNA-target site. Comparison with other state-of-the-art machine-learning methods and existing miRNA-target-prediction tools indicated that DeepMirTar improved overall predictive performance. DeepMirTar is freely available at https://github.com/Bjoux2/DeepMirTar_SdA. lith@tongji.edu.cn, hongmeilu@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  17. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh

    Science.gov (United States)

    2011-01-01

    Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic

  18. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem.

    Science.gov (United States)

    Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari

    2013-12-01

    Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Anne Bruun Krøigård

    Full Text Available Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  20. A glimpse at mRNA dynamics reveals cellular domains and rapid trafficking through granules

    NARCIS (Netherlands)

    Gemert, Alice Myriam Christi van

    2011-01-01

    mRNA transport and targeting are essential to gene expression regulation. Specific mRNA sequences can bind several proteins and together form RiboNucleoProtein particles (RNP). The various proteins within the RNP determine mRNA fate: translation, transport or decay. RNP composition varies with

  1. Direct quantification of human cytomegalovirus immediate-early and late mRNA levels in blood of lung transplant recipients by competitive nucleic acid sequence-based amplification

    NARCIS (Netherlands)

    Greijer, AE; Verschuuren, EAM; Harmsen, MC; Dekkers, CAJ; Adriaanse, HMA; The, TH; Middeldorp, JM

    The dynamics of active human cytomegalovirus (HCMV) infection was monitored by competitive nucleic acid sequence-based amplification (NASBA) assays for quantification of IE1 (UL123) and pp67 (UL65) mRNA expression levels In the blood of patients after lung transplantation. RNA was isolated from 339

  2. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David; Stingl, Ulrich

    2018-01-01

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  3. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David

    2018-05-09

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  4. An introduction to deep learning on biological sequence data: examples and solutions.

    Science.gov (United States)

    Jurtz, Vanessa Isabell; Johansen, Alexander Rosenberg; Nielsen, Morten; Almagro Armenteros, Jose Juan; Nielsen, Henrik; Sønderby, Casper Kaae; Winther, Ole; Sønderby, Søren Kaae

    2017-11-15

    Deep neural network architectures such as convolutional and long short-term memory networks have become increasingly popular as machine learning tools during the recent years. The availability of greater computational resources, more data, new algorithms for training deep models and easy to use libraries for implementation and training of neural networks are the drivers of this development. The use of deep learning has been especially successful in image recognition; and the development of tools, applications and code examples are in most cases centered within this field rather than within biology. Here, we aim to further the development of deep learning methods within biology by providing application examples and ready to apply and adapt code templates. Given such examples, we illustrate how architectures consisting of convolutional and long short-term memory neural networks can relatively easily be designed and trained to state-of-the-art performance on three biological sequence problems: prediction of subcellular localization, protein secondary structure and the binding of peptides to MHC Class II molecules. All implementations and datasets are available online to the scientific community at https://github.com/vanessajurtz/lasagne4bio. skaaesonderby@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    Science.gov (United States)

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  6. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules".

    Science.gov (United States)

    Wang, Wang-Xia; Wilfred, Bernard R; Xie, Kevin; Jennings, Mary H; Hu, Yanling Hu; Stromberg, Arnold J; Nelson, Peter T

    2010-01-01

    MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using an assay we validated previously-a "RIP-Chip" experimental design. RIP-Chip data provided a list of mRNAs recruited into the AGO-miRNP in correlation to each miRNA. These experimentally identified miRNA targets were analyzed for complementary six nucleotide "seed" sequences within the transfected miRNAs. We found that miR-124 targets tended to have sequences in the 3'UTR that would be recognized by the 5' seed of miR-124, as described in previous studies. By contrast, miR-107 targets tended to have 'seed' sequences in the mRNA open reading frame, but not the 3' UTR. Further, mRNA targets of miR-128 and miR-320 are less enriched for 6-mer seed sequences in comparison to miR-107 and miR-124. In sum, our data support the importance of the 5' seed in determining binding characteristics for some miRNAs; however, the "binding rules" are complex, and individual miRNAs can have distinct sequence determinants that lead to mRNA targeting.

  7. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples

    DEFF Research Database (Denmark)

    Fackenthal, James D; Yoshimatsu, Toshio; Zhang, Bifeng

    2016-01-01

    patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation...... to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS: mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary...... or agarose gel electrophoresis, followed by sequencing. RESULTS: We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS: These naturally occurring alternate-splicing events...

  8. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells.

    Directory of Open Access Journals (Sweden)

    Soraya Rumbo-Feal

    Full Text Available Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living and sessile (biofilm forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures and sessile (biofilm cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.

  9. Identification and Removal of Contaminant Sequences From Ribosomal Gene Databases: Lessons From the Census of Deep Life.

    Science.gov (United States)

    Sheik, Cody S; Reese, Brandi Kiel; Twing, Katrina I; Sylvan, Jason B; Grim, Sharon L; Schrenk, Matthew O; Sogin, Mitchell L; Colwell, Frederick S

    2018-01-01

    Earth's subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium , Aquabacterium , Ralstonia , and Acinetobacter . While the top five most frequently observed genera were Pseudomonas , Propionibacterium , Acinetobacter , Ralstonia , and Sphingomonas . The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA

  10. Protein model discrimination using mutational sensitivity derived from deep sequencing.

    Science.gov (United States)

    Adkar, Bharat V; Tripathi, Arti; Sahoo, Anusmita; Bajaj, Kanika; Goswami, Devrishi; Chakrabarti, Purbani; Swarnkar, Mohit K; Gokhale, Rajesh S; Varadarajan, Raghavan

    2012-02-08

    A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    Full Text Available Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp. We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m. We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla, Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm of sediment was significantly different from deeper layers. We found that qualitative (presence-absence and quantitative (relative number of reads data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation

  12. Hybridization-based reconstruction of small non-coding RNA transcripts from deep sequencing data.

    Science.gov (United States)

    Ragan, Chikako; Mowry, Bryan J; Bauer, Denis C

    2012-09-01

    Recent advances in RNA sequencing technology (RNA-Seq) enables comprehensive profiling of RNAs by producing millions of short sequence reads from size-fractionated RNA libraries. Although conventional tools for detecting and distinguishing non-coding RNAs (ncRNAs) from reference-genome data can be applied to sequence data, ncRNA detection can be improved by harnessing the full information content provided by this new technology. Here we present NorahDesk, the first unbiased and universally applicable method for small ncRNAs detection from RNA-Seq data. NorahDesk utilizes the coverage-distribution of small RNA sequence data as well as thermodynamic assessments of secondary structure to reliably predict and annotate ncRNA classes. Using publicly available mouse sequence data from brain, skeletal muscle, testis and ovary, we evaluated our method with an emphasis on the performance for microRNAs (miRNAs) and piwi-interacting small RNA (piRNA). We compared our method with Dario and mirDeep2 and found that NorahDesk produces longer transcripts with higher read coverage. This feature makes it the first method particularly suitable for the prediction of both known and novel piRNAs.

  13. Draft Genome Sequence of Deep-Sea Alteromonas sp. Strain V450 Isolated from the Marine Sponge Leiodermatium sp.

    Science.gov (United States)

    Wang, Guojun; Barrett, Nolan H; McCarthy, Peter J

    2017-02-02

    The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies. Copyright © 2017 Wang et al.

  14. Deep sequence characterisation of a divergent HPIV-4a from an adult with prolonged influenza-like illness

    Directory of Open Access Journals (Sweden)

    Katherine E. Arden

    2015-12-01

    Deep sequencing allowed identification and genomic characterisation of a possible pathogen from an ILI as well as being an important tool to aid future understanding of the linkages between viral genetic variation, transmission and disease prognosis.

  15. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    Science.gov (United States)

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  16. Enhanced arbovirus surveillance with deep sequencing: Identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes.

    Science.gov (United States)

    Coffey, Lark L; Page, Brady L; Greninger, Alexander L; Herring, Belinda L; Russell, Richard C; Doggett, Stephen L; Haniotis, John; Wang, Chunlin; Deng, Xutao; Delwart, Eric L

    2014-01-05

    Viral metagenomics characterizes known and identifies unknown viruses based on sequence similarities to any previously sequenced viral genomes. A metagenomics approach was used to identify virus sequences in Australian mosquitoes causing cytopathic effects in inoculated mammalian cell cultures. Sequence comparisons revealed strains of Liao Ning virus (Reovirus, Seadornavirus), previously detected only in China, livestock-infecting Stretch Lagoon virus (Reovirus, Orbivirus), two novel dimarhabdoviruses, named Beaumont and North Creek viruses, and two novel orthobunyaviruses, named Murrumbidgee and Salt Ash viruses. The novel virus proteomes diverged by ≥ 50% relative to their closest previously genetically characterized viral relatives. Deep sequencing also generated genomes of Warrego and Wallal viruses, orbiviruses linked to kangaroo blindness, whose genomes had not been fully characterized. This study highlights viral metagenomics in concert with traditional arbovirus surveillance to characterize known and new arboviruses in field-collected mosquitoes. Follow-up epidemiological studies are required to determine whether the novel viruses infect humans. © 2013 Elsevier Inc. All rights reserved.

  17. 3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2013-09-21

    Post-transcriptional 3' end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3' RACE coupled with high-throughput sequencing to characterize the 3' terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. The 3' terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3' terminus of an in vitro transcribed MRP RNA control and the differing 3' terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). 3' RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3' terminal sequences of noncoding RNAs.

  18. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  19. Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome.

    Directory of Open Access Journals (Sweden)

    Xiaobai Li

    Full Text Available Cymbidium ensifolium is a Chinese Cymbidium with an elegant shape, beautiful appearance, and a fragrant aroma. C. ensifolium has a long history of cultivation in China and it has excellent commercial value as a potted plant and cut flower. The development of C. ensifolium genomic resources has been delayed because of its large genome size. Taking advantage of technical and cost improvement of RNA-Seq, we extracted total mRNA from flower buds and mature flowers and obtained a total of 9.52 Gb of filtered nucleotides comprising 98,819,349 filtered reads. The filtered reads were assembled into 101,423 isotigs, representing 51,696 genes. Of the 101,423 isotigs, 41,873 were putative homologs of annotated sequences in the public databases, of which 158 were associated with floral development and 119 were associated with flowering. The isotigs were categorized according to their putative functions. In total, 10,212 of the isotigs were assigned into 25 eukaryotic orthologous groups (KOGs, 41,690 into 58 gene ontology (GO terms, and 9,830 into 126 Arabidopsis Kyoto Encyclopedia of Genes and Genomes (KEGG pathways, and 9,539 isotigs into 123 rice pathways. Comparison of the isotigs with those of the two related orchid species P. equestris and C. sinense showed that 17,906 isotigs are unique to C. ensifolium. In addition, a total of 7,936 SSRs and 16,676 putative SNPs were identified. To our knowledge, this transcriptome database is the first major genomic resource for C. ensifolium and the most comprehensive transcriptomic resource for genus Cymbidium. These sequences provide valuable information for understanding the molecular mechanisms of floral development and flowering. Sequences predicted to be unique to C. ensifolium would provide more insights into C. ensifolium gene diversity. The numerous SNPs and SSRs identified in the present study will contribute to marker development for C. ensifolium.

  20. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro

    International Nuclear Information System (INIS)

    Kawasaki, E.S.; Clark, S.S.; Coyne, M.Y.; Smith, S.D.; Champlin, R.; Witte, O.N.; McCormick, F.P.

    1988-01-01

    The Philadelphia chromosome is present in more than 95% of chronic myeloid leukemia patients and 13% of acute lymphocytic leukemia patients. The Philadelphia translocation, t(9;22), fuses the BCR and ABL genes resulting in the expression of leukemia-specific, chimeric BCR-ABL messenger RNAs. To facilitate diagnosis of these leukemias, the authors have developed a method of amplifying and detecting only the unique mRNA sequences, using an extension of the polymerase chain reaction technique. Diagnosis of chronic myeloid and acute lymphocytic leukemias by this procedure is rapid, much more sensitive than existing protocols, and independent of the presence or absence of an identifiable Philadelphia chromosome

  1. cDNA sequences of two inducible T-cell genes

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, B.S. (Indiana Univ. School of Medicine, Indianapolis (USA) Guthrie Research Institute, Sayre, PA (USA)); Weissman, S.M. (Yale Univ., New Haven, CT (USA))

    1989-03-01

    The authors have previously described a set of human T-lymphocyte-specific cDNA clones isolated by a modified differential screening procedure. Apparent full-length cDNAs containing the sequences of 14 of the 16 initial isolates were sequenced and were found to represent five different species of mRNA; three of the five species were identical to previously reported cDNA sequences of preproenkephalin, T-cell-replacing factor, and a serine esterase, respectively. The other two species, 4-1BB and L2G25B, were inducible sequences found in mRNA from both a cytolytic T-lymphocyte and a helper T-lymphocyte clone and were not previously described in T-cell mRNA; these mRNA sequences encode peptides of 256 and 92 amino acids, respectively. Both peptides contain putative leader sequences. The protein encoded by 4-1BB also has a potential membrane anchor segment and other features also seen in known receptor proteins.

  2. A Mechanistic Beta-Binomial Probability Model for mRNA Sequencing Data.

    Science.gov (United States)

    Smith, Gregory R; Birtwistle, Marc R

    2016-01-01

    A main application for mRNA sequencing (mRNAseq) is determining lists of differentially-expressed genes (DEGs) between two or more conditions. Several software packages exist to produce DEGs from mRNAseq data, but they typically yield different DEGs, sometimes markedly so. The underlying probability model used to describe mRNAseq data is central to deriving DEGs, and not surprisingly most softwares use different models and assumptions to analyze mRNAseq data. Here, we propose a mechanistic justification to model mRNAseq as a binomial process, with data from technical replicates given by a binomial distribution, and data from biological replicates well-described by a beta-binomial distribution. We demonstrate good agreement of this model with two large datasets. We show that an emergent feature of the beta-binomial distribution, given parameter regimes typical for mRNAseq experiments, is the well-known quadratic polynomial scaling of variance with the mean. The so-called dispersion parameter controls this scaling, and our analysis suggests that the dispersion parameter is a continually decreasing function of the mean, as opposed to current approaches that impose an asymptotic value to the dispersion parameter at moderate mean read counts. We show how this leads to current approaches overestimating variance for moderately to highly expressed genes, which inflates false negative rates. Describing mRNAseq data with a beta-binomial distribution thus may be preferred since its parameters are relatable to the mechanistic underpinnings of the technique and may improve the consistency of DEG analysis across softwares, particularly for moderately to highly expressed genes.

  3. Molecular evolution of adiponectin in Carnivora and its mRNA expression in relation to hepatic lipidosis.

    Science.gov (United States)

    Nieminen, Petteri; Rouvinen-Watt, Kirsti; Kapiainen, Suvi; Harris, Lora; Mustonen, Anne-Mari

    2010-09-15

    Adiponectin is a novel adipocyte-derived hormone with low circulating concentrations and/or mRNA expression in obesity and non-alcoholic fatty liver disease (NAFLD). The adiponectin mRNA of several Carnivora species was sequenced to enable further gene expression studies in this clade with potential experimental species to examine the connections of hypoadiponectinemia to hepatic lipidosis. In addition, adiponectin mRNA expression was studied in the retroperitoneal fat of the American mink (Neovison vison), as hepatic lipidosis with close similarities to NAFLD can be rapidly induced to the species by fasting. The mRNA expression was determined after overnight-7d of food deprivation and 28d of re-feeding and correlated to the liver fat %. The homologies between the determined carnivoran mRNA sequences and that of the domestic dog were 92.2-99.1%. As the mRNA expression was not affected by short-term fasting and did not correlate with the liver fat %, there seems to be no clear connection between adiponectin and the development of lipidosis in the American mink. In the future, the obtained sequences can be utilized in further studies of adiponectin expression in comparative endocrinology. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  5. Deep sequencing analysis of HBV genotype shift and correlation with antiviral efficiency during adefovir dipivoxil therapy.

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    Full Text Available Viral genotype shift in chronic hepatitis B (CHB patients during antiviral therapy has been reported, but the underlying mechanism remains elusive.38 CHB patients treated with ADV for one year were selected for studying genotype shift by both deep sequencing and Sanger sequencing method.Sanger sequencing method found that 7.9% patients showed mixed genotype before ADV therapy. In contrast, all 38 patients showed mixed genotype before ADV treatment by deep sequencing. 95.5% mixed genotype rate was also obtained from additional 200 treatment-naïve CHB patients. Of the 13 patients with genotype shift, the fraction of the minor genotype in 5 patients (38% increased gradually during the course of ADV treatment. Furthermore, responses to ADV and HBeAg seroconversion were associated with the high rate of genotype shift, suggesting drug and immune pressure may be key factors to induce genotype shift. Interestingly, patients with genotype C had a significantly higher rate of genotype shift than genotype B. In genotype shift group, ADV treatment induced a marked enhancement of genotype B ratio accompanied by a reduction of genotype C ratio, suggesting genotype C may be more sensitive to ADV than genotype B. Moreover, patients with dominant genotype C may have a better therapeutic effect. Finally, genotype shifts was correlated with clinical improvement in terms of ALT.Our findings provided a rational explanation for genotype shift among ADV-treated CHB patients. The genotype and genotype shift might be associated with antiviral efficiency.

  6. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  7. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    Science.gov (United States)

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  8. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin J

    2017-01-01

    Recent studies suggest that head and neck squamous cell carcinomas are very heterogeneous between patients; however the subclonal structure remains unexplored mainly due to studies using only a single biopsy per patient. To deconvolutethe clonal structure and describe the genomic cancer evolution......, we applied whole-exome sequencing combined with ultra-deep targeted sequencing on oral squamous cell carcinomas (OSCC). From each patient, a set of biopsies was sampled from distinct geographical sites in primary tumor and lymph node metastasis.We demonstrate that the included OSCCs show a high...

  9. Improved detection of CXCR4-using HIV by V3 genotyping: application of population-based and "deep" sequencing to plasma RNA and proviral DNA.

    Science.gov (United States)

    Swenson, Luke C; Moores, Andrew; Low, Andrew J; Thielen, Alexander; Dong, Winnie; Woods, Conan; Jensen, Mark A; Wynhoven, Brian; Chan, Dennison; Glascock, Christopher; Harrigan, P Richard

    2010-08-01

    Tropism testing should rule out CXCR4-using HIV before treatment with CCR5 antagonists. Currently, the recombinant phenotypic Trofile assay (Monogram) is most widely utilized; however, genotypic tests may represent alternative methods. Independent triplicate amplifications of the HIV gp120 V3 region were made from either plasma HIV RNA or proviral DNA. These underwent standard, population-based sequencing with an ABI3730 (RNA n = 63; DNA n = 40), or "deep" sequencing with a Roche/454 Genome Sequencer-FLX (RNA n = 12; DNA n = 12). Position-specific scoring matrices (PSSMX4/R5) (-6.96 cutoff) and geno2pheno[coreceptor] (5% false-positive rate) inferred tropism from V3 sequence. These methods were then independently validated with a separate, blinded dataset (n = 278) of screening samples from the maraviroc MOTIVATE trials. Standard sequencing of HIV RNA with PSSM yielded 69% sensitivity and 91% specificity, relative to Trofile. The validation dataset gave 75% sensitivity and 83% specificity. Proviral DNA plus PSSM gave 77% sensitivity and 71% specificity. "Deep" sequencing of HIV RNA detected >2% inferred-CXCR4-using virus in 8/8 samples called non-R5 by Trofile, and <2% in 4/4 samples called R5. Triplicate analyses of V3 standard sequence data detect greater proportions of CXCR4-using samples than previously achieved. Sequencing proviral DNA and "deep" V3 sequencing may also be useful tools for assessing tropism.

  10. Human α2-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript

    International Nuclear Information System (INIS)

    Lee, C.C.; Bowman, B.H.; Yang, F.

    1987-01-01

    The α 2 -HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encoded by a single mRNA transcript. The cDNA sequence predicts an 18-amino-acid signal peptide, followed by the A-chain sequence of AHSG. A heretofore unseen connecting sequence of 40 amino acids was deduced between the A- and B-chain sequences. The connecting sequence demonstrates the unique amino acid doublets and collagen triplets found in the A and B chains; it is not homologous with other reported amino acid sequences. The connecting sequence may be cleaved in a posttranslational step by limited proteolysis before mature AHSG is released into the circulation or may vary in its presence because of alternative processing. The AHSG cDNA was utilized for mapping the AHSG gene to the 3q21→qter region of human chromosome 3. The availability of the AHSG cDNA clone will facilitate the analysis of its genetic control and gene expression during development and bone formation

  11. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  12. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available Deep RNA sequencing (RNA-seq was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10 or swum (n = 10 for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides, a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.

  13. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  14. Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5' untranslated leader.

    Science.gov (United States)

    Wu, C J; Janssen, G R

    1996-10-01

    The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.

  15. Microbial Dark Matter: Unusual intervening sequences in 16S rRNA genes of candidate phyla from the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Jarett, Jessica; Stepanauskas, Ramunas; Kieft, Thomas; Onstott, Tullis; Woyke, Tanja

    2014-03-17

    The Microbial Dark Matter project has sequenced genomes from over 200 single cells from candidate phyla, greatly expanding our knowledge of the ecology, inferred metabolism, and evolution of these widely distributed, yet poorly understood lineages. The second phase of this project aims to sequence an additional 800 single cells from known as well as potentially novel candidate phyla derived from a variety of environments. In order to identify whole genome amplified single cells, screening based on phylogenetic placement of 16S rRNA gene sequences is being conducted. Briefly, derived 16S rRNA gene sequences are aligned to a custom version of the Greengenes reference database and added to a reference tree in ARB using parsimony. In multiple samples from deep subsurface habitats but not from other habitats, a large number of sequences proved difficult to align and therefore to place in the tree. Based on comparisons to reference sequences and structural alignments using SSU-ALIGN, many of these ?difficult? sequences appear to originate from candidate phyla, and contain intervening sequences (IVSs) within the 16S rRNA genes. These IVSs are short (39 - 79 nt) and do not appear to be self-splicing or to contain open reading frames. IVSs were found in the loop regions of stem-loop structures in several different taxonomic groups. Phylogenetic placement of sequences is strongly affected by IVSs; two out of three groups investigated were classified as different phyla after their removal. Based on data from samples screened in this project, IVSs appear to be more common in microbes occurring in deep subsurface habitats, although the reasons for this remain elusive.

  16. Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis.

    Science.gov (United States)

    Morfopoulou, Sofia; Mee, Edward T; Connaughton, Sarah M; Brown, Julianne R; Gilmour, Kimberly; Chong, W K 'Kling'; Duprex, W Paul; Ferguson, Deborah; Hubank, Mike; Hutchinson, Ciaran; Kaliakatsos, Marios; McQuaid, Stephen; Paine, Simon; Plagnol, Vincent; Ruis, Christopher; Virasami, Alex; Zhan, Hong; Jacques, Thomas S; Schepelmann, Silke; Qasim, Waseem; Breuer, Judith

    2017-01-01

    Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuV JL5 ) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuV JL5 associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuV JL5 isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections.

  17. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    OpenAIRE

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we sh...

  18. Sequencing Infrastructure Investments under Deep Uncertainty Using Real Options Analysis

    Directory of Open Access Journals (Sweden)

    Nishtha Manocha

    2018-02-01

    Full Text Available The adaptation tipping point and adaptation pathway approach developed to make decisions under deep uncertainty do not shed light on which among the multiple available pathways should be chosen as the preferred pathway. This creates the need to extend these approaches by means of suitable tools that can help sequence actions and subsequently enable the outlining of relevant policies. This paper presents two sequencing approaches, namely, the “Build to Target” and “Build Up” approach, to aid in sub-selecting a set of preferred pathways. Both approaches differ in the levels of flexibility they offer. They are exemplified by means of two case studies wherein the Net Present Valuation and the Real Options Analysis are employed as selection criterions. The results demonstrate the benefit of these two approaches when used in conjunction with the adaptation pathways and show how the pathways selected by means of a Build to Target approach generally have a value greater than, or at least the same as, the pathways selected by the Build Up approach. Further, this paper also demonstrates the capacity of Real Options to quantify and capture the economic value of flexibility, which cannot be done by traditional valuation approaches such as Net Present Valuation.

  19. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  20. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS.

    Science.gov (United States)

    Beverly, Michael; Hagen, Caitlin; Slack, Olga

    2018-02-01

    The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.

  1. Deep Sequencing Reveals the Complete Genome and Evidence for Transcriptional Activity of the First Virus-Like Sequences Identified in Aristotelia chilensis (Maqui Berry

    Directory of Open Access Journals (Sweden)

    Javier Villacreses

    2015-04-01

    Full Text Available Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1. High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs: ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV, Petuvirus genus. ORF1 encodes a movement protein (MP; ORF2 a Reverse Transcriptase (RT and a Ribonuclease H (RNase H domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs, AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq. Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant.

  2. Genomic variation in macrophage-cultured European porcine reproductive and respiratory syndrome virus Olot/91 revealed using ultra-deep next generation sequencing.

    Science.gov (United States)

    Lu, Zen H; Brown, Alexander; Wilson, Alison D; Calvert, Jay G; Balasch, Monica; Fuentes-Utrilla, Pablo; Loecherbach, Julia; Turner, Frances; Talbot, Richard; Archibald, Alan L; Ait-Ali, Tahar

    2014-03-04

    Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.

  3. 3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing

    Science.gov (United States)

    2013-01-01

    Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs. PMID:24053768

  4. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data.

    Science.gov (United States)

    Arango-Argoty, Gustavo; Garner, Emily; Pruden, Amy; Heath, Lenwood S; Vikesland, Peter; Zhang, Liqing

    2018-02-01

    Growing concerns about increasing rates of antibiotic resistance call for expanded and comprehensive global monitoring. Advancing methods for monitoring of environmental media (e.g., wastewater, agricultural waste, food, and water) is especially needed for identifying potential resources of novel antibiotic resistance genes (ARGs), hot spots for gene exchange, and as pathways for the spread of ARGs and human exposure. Next-generation sequencing now enables direct access and profiling of the total metagenomic DNA pool, where ARGs are typically identified or predicted based on the "best hits" of sequence searches against existing databases. Unfortunately, this approach produces a high rate of false negatives. To address such limitations, we propose here a deep learning approach, taking into account a dissimilarity matrix created using all known categories of ARGs. Two deep learning models, DeepARG-SS and DeepARG-LS, were constructed for short read sequences and full gene length sequences, respectively. Evaluation of the deep learning models over 30 antibiotic resistance categories demonstrates that the DeepARG models can predict ARGs with both high precision (> 0.97) and recall (> 0.90). The models displayed an advantage over the typical best hit approach, yielding consistently lower false negative rates and thus higher overall recall (> 0.9). As more data become available for under-represented ARG categories, the DeepARG models' performance can be expected to be further enhanced due to the nature of the underlying neural networks. Our newly developed ARG database, DeepARG-DB, encompasses ARGs predicted with a high degree of confidence and extensive manual inspection, greatly expanding current ARG repositories. The deep learning models developed here offer more accurate antimicrobial resistance annotation relative to current bioinformatics practice. DeepARG does not require strict cutoffs, which enables identification of a much broader diversity of ARGs. The

  5. Characterization of X chromosome inactivation using integrated analysis of whole-exome and mRNA sequencing.

    Directory of Open Access Journals (Sweden)

    Szabolcs Szelinger

    Full Text Available In females, X chromosome inactivation (XCI is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.

  6. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  7. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Liou Louis S

    2010-04-01

    Full Text Available Abstract Background MicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence matches are available in many databases. However, such matches have a high false positive rate and cannot identify tissue specificity of regulation. Results We describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict sense to: a represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b the seed sequence match is strictly conserved across mouse, human, rat and dog genomes, c the mRNA and microRNA expression levels can distinguish tumor from normal with high significance and d the microRNA/mRNA expression levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method using clear cell Renal Cell Carcinoma (ccRCC and matched normal kidney samples, limiting our analysis to mRNA targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX, VEGFA and SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of tumor suppressors LRRC2, PTPN13, SFRP1

  8. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    Science.gov (United States)

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  9. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Jersie-Christensen, Rosa R; Batth, Tanveer Singh

    2014-01-01

    per second or up to 600 new peptides sequenced per gradient minute. We identify 4400 proteins from one microgram of HeLa digest using a one hour gradient, which is an approximately 30% improvement compared to previous instrumentation. In addition, we show very deep proteome coverage can be achieved...... in less than 24 hours of analysis time by offline high pH reversed-phase peptide fractionation from which we identify more than 140,000 unique peptide sequences. This is comparable to state-of-the-art multi-day, multi-enzyme efforts. Finally the acquisition methods are evaluated for single...

  10. DeepRT: deep learning for peptide retention time prediction in proteomics

    OpenAIRE

    Ma, Chunwei; Zhu, Zhiyong; Ye, Jun; Yang, Jiarui; Pei, Jianguo; Xu, Shaohang; Zhou, Ruo; Yu, Chang; Mo, Fan; Wen, Bo; Liu, Siqi

    2017-01-01

    Accurate predictions of peptide retention times (RT) in liquid chromatography have many applications in mass spectrometry-based proteomics. Herein, we present DeepRT, a deep learning based software for peptide retention time prediction. DeepRT automatically learns features directly from the peptide sequences using the deep convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) model, which eliminates the need to use hand-crafted features or rules. After the feature learning, pr...

  11. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  12. Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.

    Science.gov (United States)

    García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús

    2017-08-10

    Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations

    Directory of Open Access Journals (Sweden)

    Aurélien Chateigner

    2015-07-01

    Full Text Available Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%. K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs. Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.

  14. Deep-sequencing to resolve complex diversity of apicomplexan parasites in platypuses and echidnas: Proof of principle for wildlife disease investigation.

    Science.gov (United States)

    Šlapeta, Jan; Saverimuttu, Stefan; Vogelnest, Larry; Sangster, Cheryl; Hulst, Frances; Rose, Karrie; Thompson, Paul; Whittington, Richard

    2017-11-01

    The short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus) are iconic egg-laying monotremes (Mammalia: Monotremata) from Australasia. The aim of this study was to demonstrate the utility of diversity profiles in disease investigations of monotremes. Using small subunit (18S) rDNA amplicon deep-sequencing we demonstrated the presence of apicomplexan parasites and confirmed by direct and cloned amplicon gene sequencing Theileria ornithorhynchi, Theileria tachyglossi, Eimeria echidnae and Cryptosporidium fayeri. Using a combination of samples from healthy and diseased animals, we show a close evolutionary relationship between species of coccidia (Eimeria) and piroplasms (Theileria) from the echidna and platypus. The presence of E. echidnae was demonstrated in faeces and tissues affected by disseminated coccidiosis. Moreover, the presence of E. echidnae DNA in the blood of echidnas was associated with atoxoplasma-like stages in white blood cells, suggesting Hepatozoon tachyglossi blood stages are disseminated E. echidnae stages. These next-generation DNA sequencing technologies are suited to material and organisms that have not been previously characterised and for which the material is scarce. The deep sequencing approach supports traditional diagnostic methods, including microscopy, clinical pathology and histopathology, to better define the status quo. This approach is particularly suitable for wildlife disease investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Deep-sequencing protocols influence the results obtained in small-RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Joern Toedling

    Full Text Available Second-generation sequencing is a powerful method for identifying and quantifying small-RNA components of cells. However, little attention has been paid to the effects of the choice of sequencing platform and library preparation protocol on the results obtained. We present a thorough comparison of small-RNA sequencing libraries generated from the same embryonic stem cell lines, using different sequencing platforms, which represent the three major second-generation sequencing technologies, and protocols. We have analysed and compared the expression of microRNAs, as well as populations of small RNAs derived from repetitive elements. Despite the fact that different libraries display a good correlation between sequencing platforms, qualitative and quantitative variations in the results were found, depending on the protocol used. Thus, when comparing libraries from different biological samples, it is strongly recommended to use the same sequencing platform and protocol in order to ensure the biological relevance of the comparisons.

  16. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.

  17. Single step production of Cas9 mRNA for zygote injection.

    Science.gov (United States)

    Redel, Bethany K; Beaton, Benjamin P; Spate, Lee D; Benne, Joshua A; Murphy, Stephanie L; O'Gorman, Chad W; Spate, Anna M; Prather, Randall S; Wells, Kevin D

    2018-03-01

    Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.

  18. Isolation and characterization of human glycophorin A cDNAs using a synthetic oligonucleotide approach: nucleotide sequence, mRNA structure and regulation by 12-O-tetradecanoylphorbol 13-acetate (TPA)

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1986-01-01

    The authors have previously shown that treatment of human erythroleukemic K562 cells with the tumor-promoting phorbol ester, TPA, results in a diminished expression of glycophorin A at the level of protein biosynthesis and in vitro mRNA translation activity. To further examine the structure, relationships and expression of human glycophorins they have successfully isolated and sequenced several glycophorin A specific cDNA clones derived from K562 cells, by making extensive use of mixed and exact synthetic oligonucleotides as primers and radioactively labeled probes. The nucleotide sequence obtained from the largest glycophorin A cDNA suggests the presence of a hydrophobic leader-like peptide of at least 19 amino acids. Northern gel analysis using both whole cDNA-plasmid and synthetic oligonucleotide probes revealed the existence of multiple mRNAs, three of which they believe to be glycophorin A-specific, whereas a fourth and smaller mRNA appears to be glycophorin B-specific. Furthermore, the abundance of all four glycophorin mRNAs were found to be extensively reduced following treatment of K562 cells with TPA suggesting coordinate regulation, possibly at the level of gene transcription

  19. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  20. Draft Genome Sequences of TwoThiomicrospiraStrains Isolated from the Brine-Seawater Interface of Kebrit Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan

    2016-03-11

    Two Thiomicrospira strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.

  1. Draft Genome Sequences of TwoThiomicrospiraStrains Isolated from the Brine-Seawater Interface of Kebrit Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan; Haroon, Mohamed; Zhang, Ruifu; Hikmawan, Tyas I.; Stingl, Ulrich

    2016-01-01

    Two Thiomicrospira strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.

  2. A theoretical justification for single molecule peptide sequencing.

    Directory of Open Access Journals (Sweden)

    Jagannath Swaminathan

    2015-02-01

    Full Text Available The proteomes of cells, tissues, and organisms reflect active cellular processes and change continuously in response to intracellular and extracellular cues. Deep, quantitative profiling of the proteome, especially if combined with mRNA and metabolite measurements, should provide an unprecedented view of cell state, better revealing functions and interactions of cell components. Molecular diagnostics and biomarker discovery should benefit particularly from the accurate quantification of proteomes, since complex diseases like cancer change protein abundances and modifications. Currently, shotgun mass spectrometry is the primary technology for high-throughput protein identification and quantification; while powerful, it lacks high sensitivity and coverage. We draw parallels with next-generation DNA sequencing and propose a strategy, termed fluorosequencing, for sequencing peptides in a complex protein sample at the level of single molecules. In the proposed approach, millions of individual fluorescently labeled peptides are visualized in parallel, monitoring changing patterns of fluorescence intensity as N-terminal amino acids are sequentially removed, and using the resulting fluorescence signatures (fluorosequences to uniquely identify individual peptides. We introduce a theoretical foundation for fluorosequencing and, by using Monte Carlo computer simulations, we explore its feasibility, anticipate the most likely experimental errors, quantify their potential impact, and discuss the broad potential utility offered by a high-throughput peptide sequencing technology.

  3. Subglacial Lake Vostok (Antarctica accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya.

    Directory of Open Access Journals (Sweden)

    Yury M Shtarkman

    Full Text Available Lake Vostok, the 7(th largest (by volume and 4(th deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier, limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes.

  4. AthMethPre: a web server for the prediction and query of mRNA m6A sites in Arabidopsis thaliana.

    Science.gov (United States)

    Xiang, Shunian; Yan, Zhangming; Liu, Ke; Zhang, Yaou; Sun, Zhirong

    2016-10-18

    N 6 -Methyladenosine (m 6 A) is the most prevalent and abundant modification in mRNA that has been linked to many key biological processes. High-throughput experiments have generated m 6 A-peaks across the transcriptome of A. thaliana, but the specific methylated sites were not assigned, which impedes the understanding of m 6 A functions in plants. Therefore, computational prediction of mRNA m 6 A sites becomes emergently important. Here, we present a method to predict the m 6 A sites for A. thaliana mRNA sequence(s). To predict the m 6 A sites of an mRNA sequence, we employed the support vector machine to build a classifier using the features of the positional flanking nucleotide sequence and position-independent k-mer nucleotide spectrum. Our method achieved good performance and was applied to a web server to provide service for the prediction of A. thaliana m 6 A sites. The server also provides a comprehensive database of predicted transcriptome-wide m 6 A sites and curated m 6 A-seq peaks from the literature for query and visualization. The AthMethPre web server is the first web server that provides a user-friendly tool for the prediction and query of A. thaliana mRNA m 6 A sites, which is freely accessible for public use at .

  5. High-resolution deep sequencing reveals biodiversity, population structure, and persistence of HIV-1 quasispecies within host ecosystems

    Directory of Open Access Journals (Sweden)

    Yin Li

    2012-12-01

    Full Text Available Abstract Background Deep sequencing provides the basis for analysis of biodiversity of taxonomically similar organisms in an environment. While extensively applied to microbiome studies, population genetics studies of viruses are limited. To define the scope of HIV-1 population biodiversity within infected individuals, a suite of phylogenetic and population genetic algorithms was applied to HIV-1 envelope hypervariable domain 3 (Env V3 within peripheral blood mononuclear cells from a group of perinatally HIV-1 subtype B infected, therapy-naïve children. Results Biodiversity of HIV-1 Env V3 quasispecies ranged from about 70 to 270 unique sequence clusters across individuals. Viral population structure was organized into a limited number of clusters that included the dominant variants combined with multiple clusters of low frequency variants. Next generation viral quasispecies evolved from low frequency variants at earlier time points through multiple non-synonymous changes in lineages within the evolutionary landscape. Minor V3 variants detected as long as four years after infection co-localized in phylogenetic reconstructions with early transmitting viruses or with subsequent plasma virus circulating two years later. Conclusions Deep sequencing defines HIV-1 population complexity and structure, reveals the ebb and flow of dominant and rare viral variants in the host ecosystem, and identifies an evolutionary record of low-frequency cell-associated viral V3 variants that persist for years. Bioinformatics pipeline developed for HIV-1 can be applied for biodiversity studies of virome populations in human, animal, or plant ecosystems.

  6. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

    Science.gov (United States)

    Kannan, Kalpana; Wang, Liguo; Wang, Jianghua; Ittmann, Michael M.; Li, Wei; Yen, Laising

    2011-01-01

    Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer. PMID:21571633

  7. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  8. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.

    Science.gov (United States)

    Gredell, Joseph A; Berger, Angela K; Walton, S Patrick

    2008-07-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5'- and 3'-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5'-end or 3'-end were silenced, on average, approximately 10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate si

  9. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    Science.gov (United States)

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O’Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M.; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J.; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A.; Turner, Daniel J.; Rubio, Valentin Ruano; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C.; Ferdig, Michael T.; Amambua-Ngwa, Alfred; Conway, David J.; Takala-Harrison, Shannon; Plowe, Christopher V.; Rayner, Julian C.; Rockett, Kirk A.; Clark, Taane G.; Newbold, Chris I.; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P.

    2013-01-01

    Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome. PMID:22722859

  10. Genomic region operation kit for flexible processing of deep sequencing data.

    Science.gov (United States)

    Ovaska, Kristian; Lyly, Lauri; Sahu, Biswajyoti; Jänne, Olli A; Hautaniemi, Sampsa

    2013-01-01

    Computational analysis of data produced in deep sequencing (DS) experiments is challenging due to large data volumes and requirements for flexible analysis approaches. Here, we present a mathematical formalism based on set algebra for frequently performed operations in DS data analysis to facilitate translation of biomedical research questions to language amenable for computational analysis. With the help of this formalism, we implemented the Genomic Region Operation Kit (GROK), which supports various DS-related operations such as preprocessing, filtering, file conversion, and sample comparison. GROK provides high-level interfaces for R, Python, Lua, and command line, as well as an extension C++ API. It supports major genomic file formats and allows storing custom genomic regions in efficient data structures such as red-black trees and SQL databases. To demonstrate the utility of GROK, we have characterized the roles of two major transcription factors (TFs) in prostate cancer using data from 10 DS experiments. GROK is freely available with a user guide from >http://csbi.ltdk.helsinki.fi/grok/.

  11. Geochemical features and effects on deep-seated fluids during the May-June 2012 southern Po Valley seismic sequence

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2012-10-01

    Full Text Available A periodic sampling of the groundwaters and dissolved and free gases in selected deep wells located in the area affected by the May-June 2012 southern Po Valley seismic sequence has provided insight into seismogenic-induced changes of the local aquifer systems. The results obtained show progressive changes in the fluid geochemistry, allowing it to be established that deep-seated fluids were mobilized during the seismic sequence and reached surface layers along faults and fractures, which generated significant geochemical anomalies. The May-June 2012 seismic swarm (mainshock on May 29, 2012, M 5.8; 7 shocks M >5, about 200 events 3 > M > 5 induced several modifications in the circulating fluids. This study reports the preliminary results obtained for the geochemical features of the waters and gases collected over the epicentral area from boreholes drilled at different depths, thus intercepting water and gases with different origins and circulation. The aim of the investigations was to improve our knowledge of the fluids circulating over the seismic area (e.g. origin, provenance, interactions, mixing of different components, temporal changes. This was achieved by collecting samples from both shallow and deep-drilled boreholes, and then, after the selection of the relevant sites, we looked for temporal changes with mid-to-long-term monitoring activity following a constant sampling rate. This allowed us to gain better insight into the relationships between the fluid circulation and the faulting activity. The sampling sites are listed in Table 1, along with the analytical results of the gas phase. […

  12. Cloning of cDNA sequences of a progestin-regulated mRNA from MCF7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalbos, D; Westley, B; Alibert, C; Rochefort, H

    1986-01-24

    A cDNA clone corresponding to an mRNA regulated by the progestin R5020, has been isolated by differential screening of a cDNA library from the MCF7 breast cancer cell line, which contains estrogen and progesterone receptors. This probe hybridized with a single species of poly A + RNA of 8-kb molecular weight as shown by Northern blot analysis and could also be used to total RNA preparation. This recombinant cone hybridized specifically to an mRNA coding for a 250,000 daltons protein when translated in vitro. This protein was identical to the 250 kDa progestin-regulated protein that the authors previously described as shown by immunoprecipitation with specific rabbit polyclonal antibodies. Dose-response curve and specificity studies show that the accumulation of the Pg8 mRNA and that of the 250-kDa protein was increased by 5 to 30-fold following progestin treatment and that this effect was mediated by the progesterone receptor. Time course of induction indicated that the accumulation of mRNA was rapid and preceded that of the protein. This is the first report on a cloned cDNA probe of progestin-regulated mRNA in human cell lines.

  13. Analysis of the 3’ untranslated regions of α-tubulin and S-crystallin mRNA and the identification of CPEB in dark- and light-adapted octopus retinas

    Science.gov (United States)

    Kelly, Shannan; Yamamoto, Hideki

    2008-01-01

    Purpose We previously reported the differential expression and translation of mRNA and protein in dark- and light-adapted octopus retinas, which may result from cytoplasmic polyadenylation element (CPE)–dependent mRNA masking and unmasking. Here we investigate the presence of CPEs in α-tubulin and S-crystallin mRNA and report the identification of cytoplasmic polyadenylation element binding protein (CPEB) in light- and dark-adapted octopus retinas. Methods 3’-RACE and sequencing were used to isolate and analyze the 3’-UTRs of α-tubulin and S-crystallin mRNA. Total retinal protein isolated from light- and dark-adapted octopus retinas was subjected to western blot analysis followed by CPEB antibody detection, PEP-171 inhibition of CPEB, and dephosphorylation of CPEB. Results The following CPE-like sequence was detected in the 3’-UTR of isolated long S-crystallin mRNA variants: UUUAACA. No CPE or CPE-like sequences were detected in the 3’-UTRs of α-tubulin mRNA or of the short S-crystallin mRNA variants. Western blot analysis detected CPEB as two putative bands migrating between 60-80 kDa, while a third band migrated below 30 kDa in dark- and light-adapted retinas. Conclusions The detection of CPEB and the identification of the putative CPE-like sequences in the S-crystallin 3’-UTR suggest that CPEB may be involved in the activation of masked S-crystallin mRNA, but not in the regulation of α-tubulin mRNA, resulting in increased S-crystallin protein synthesis in dark-adapted octopus retinas. PMID:18682811

  14. mRNA processing in yeast

    International Nuclear Information System (INIS)

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  15. Deep learning

    CERN Document Server

    Goodfellow, Ian; Courville, Aaron

    2016-01-01

    Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language proces...

  16. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    Science.gov (United States)

    2011-01-01

    Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the

  17. Deep Learning and Its Applications in Biomedicine.

    Science.gov (United States)

    Cao, Chensi; Liu, Feng; Tan, Hai; Song, Deshou; Shu, Wenjie; Li, Weizhong; Zhou, Yiming; Bo, Xiaochen; Xie, Zhi

    2018-02-01

    Advances in biological and medical technologies have been providing us explosive volumes of biological and physiological data, such as medical images, electroencephalography, genomic and protein sequences. Learning from these data facilitates the understanding of human health and disease. Developed from artificial neural networks, deep learning-based algorithms show great promise in extracting features and learning patterns from complex data. The aim of this paper is to provide an overview of deep learning techniques and some of the state-of-the-art applications in the biomedical field. We first introduce the development of artificial neural network and deep learning. We then describe two main components of deep learning, i.e., deep learning architectures and model optimization. Subsequently, some examples are demonstrated for deep learning applications, including medical image classification, genomic sequence analysis, as well as protein structure classification and prediction. Finally, we offer our perspectives for the future directions in the field of deep learning. Copyright © 2018. Production and hosting by Elsevier B.V.

  18. Phylogenetic and genome-wide deep-sequencing analyses of canine parvovirus reveal co-infection with field variants and emergence of a recent recombinant strain.

    Directory of Open Access Journals (Sweden)

    Ruben Pérez

    Full Text Available Canine parvovirus (CPV, a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population and a major recombinant strain (86.7%. The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity.

  19. Phylogenetic and Genome-Wide Deep-Sequencing Analyses of Canine Parvovirus Reveal Co-Infection with Field Variants and Emergence of a Recent Recombinant Strain

    Science.gov (United States)

    Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina

    2014-01-01

    Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348

  20. FATHEAD MINNOW VITELLOGENIN: CDNA SEQUENCE AND MRNA AND PROTEIN EXPRESSION AFTER 17 BETA-ESTRADIOL TREATMENT

    Science.gov (United States)

    In the present study, a sensitive ribonuclease protection assay (RPA) for VTG mRNA was developed for the fathead minnow (Pimephales promelas), a species proposed for routine endocrine-disrupting chemical (EDC) screening.

  1. Draft Genome Sequence of Pseudoalteromonas sp. Strain XI10 Isolated from the Brine-Seawater Interface of Erba Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan; Haroon, Mohamed; Zhang, Ruifu; Hikmawan, Tyas I.; Stingl, Ulrich

    2016-01-01

    Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.

  2. Draft Genome Sequence of Pseudoalteromonas sp. Strain XI10 Isolated from the Brine-Seawater Interface of Erba Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan

    2016-03-10

    Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.

  3. Foundations of Sequence-to-Sequence Modeling for Time Series

    OpenAIRE

    Kuznetsov, Vitaly; Mariet, Zelda

    2018-01-01

    The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practiti...

  4. Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA

    Directory of Open Access Journals (Sweden)

    Raúl Ortiz

    2017-07-01

    Full Text Available Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs.

  5. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments

    Science.gov (United States)

    Stow, Dorrik A. V.; Shanmugam, Ganapathy

    1980-01-01

    A comparative study of the sequence of sedimentary structures in ancient and modern fine-grained turbidites is made in three contrasting areas. They are (1) Holocene and Pleistocene deep-sea muds of the Nova Scotian Slope and Rise, (2) Middle Ordovician Sevier Shale of the Valley and Ridge Province of the Southern Appalachians, and (3) Cambro-Ordovician Halifax Slate of the Meguma Group in Nova Scotia. A standard sequence of structures is proposed for fine-grained turbidites. The complete sequence has nine sub-divisions that are here termed T 0 to T 8. "The lower subdivision (T 0) comprises a silt lamina which has a sharp, scoured and load-cast base, internal parallel-lamination and cross-lamination, and a sharp current-lineated or wavy surface with 'fading-ripples' (= Type C etc. …)." (= Type C ripple-drift cross-lamination, Jopling and Walker, 1968). The overlying sequence shows textural and compositional grading through alternating silt and mud laminae. A convolute-laminated sub-division (T 1) is overlain by low-amplitude climbing ripples (T 2), thin regular laminae (T 3), thin indistinct laminae (T 4), and thin wipsy or convolute laminae (T 5). The topmost three divisions, graded mud (T 6), ungraded mud (T 7) and bioturbated mud (T 8), do not have silt laminae but rare patchy silt lenses and silt pseudonodules and a thin zone of micro-burrowing near the upper surface. The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites and is approximately equivalent to Bouma's (C)DE divisions. The repetition of partial sequences characterizes different parts of the slope/base-of-slope/basin plain environment, and represents deposition from different stages of evolution of a large, muddy, turbidity flow. Microstructural detail and sequence are well preserved in ancient and even slightly metamorphosed sediments. Their recognition is important for determining depositional processes and for palaeoenvironmental interpretation.

  6. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    International Nuclear Information System (INIS)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.; Ruiz-Opazo, N.

    1987-01-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a λ gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundant mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source

  7. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.; Ruiz-Opazo, N.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundant mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.

  8. Deep sequencing shows low-level oncogenic hepatitis B virus variants persists post-liver transplant despite potent anti-HBV prophylaxis.

    Science.gov (United States)

    Lau, K C K; Osiowy, C; Giles, E; Lusina, B; van Marle, G; Burak, K W; Coffin, C S

    2018-01-06

    Recent studies suggest that withdrawal of hepatitis B immune globulin (HBIG) and nucleos(t)ide analogues (NA) prophylaxis may be considered in HBV surface antigen (HBsAg)-negative liver transplant (LT) recipients with a low risk of disease recurrence. However, the frequency of occult HBV infection (OBI) and HBV variants after LT in the current era of potent NA therapy is unknown. Twelve LT recipients on prophylaxis were tested in matched plasma and peripheral blood mononuclear cells (PBMCs) for HBV quasispecies by in-house nested PCR and next-generation sequencing of amplicons. HBV covalently closed circular DNA (cccDNA) was detected in Hirt DNA isolated from PBMCs with cccDNA-specific primers and confirmed by nucleic acid hybridization and Sanger sequencing. HBV mRNA in PBMC was detected with reverse-transcriptase nested PCR. In LT recipients on immunosuppressive therapy (10/12 male; median age 57.5 [IQR: 39.8-66.5]; median follow-up post-LT 60 months; 6 pre-LT hepatocellular carcinoma [HCC]), 9 were HBsAg-. HBV DNA was detected in all plasma and PBMC tested; cccDNA and/or mRNA was detected in the PBMC of 10/12 patients. Significant HBV quasispecies diversity (ie 143-2212 nonredundant HBV species) was noted in both sites, and single nucleotide polymorphisms associated with cirrhosis and HCC were detected at varying frequencies. In conclusion, OBI and HBV variants associated with severe liver disease persist in LT recipients on prophylaxis. Although HBV control and cccDNA transcriptional silencing may occur despite immunosuppression, complete virological eradication does not occur in LT recipients with a history of HBV-related end-stage liver disease. © 2018 John Wiley & Sons Ltd.

  9. DeepLoc: prediction of protein subcellular localization using deep learning

    DEFF Research Database (Denmark)

    Almagro Armenteros, Jose Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2017-01-01

    The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from...... knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict...... current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc . Example code is available at https://github.com/JJAlmagro/subcellular_localization . The dataset is available at http...

  10. Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging.

    Science.gov (United States)

    Logan, Grace; Newman, Joseph; Wright, Caroline F; Lasecka-Dykes, Lidia; Haydon, Daniel T; Cottam, Eleanor M; Tuthill, Tobias J

    2017-10-18

    Non-enveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals and human. In the picornavirus family of non-enveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses. Importance In order to transmit their genetic material to a new host, non-enveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many non-enveloped RNA viruses the requirements for this critical part of the viral life cycle remain poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple and transferable to the

  11. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

    Directory of Open Access Journals (Sweden)

    Green Carla B

    2001-05-01

    Full Text Available Abstract Background Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. Results cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. Conclusion The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

  12. The Extent of mRNA Editing Is Limited in Chicken Liver and Adipose, but Impacted by Tissular Context, Genotype, Age, and Feeding as Exemplified with a Conserved Edited Site in COG3

    Directory of Open Access Journals (Sweden)

    Pierre-François Roux

    2016-02-01

    Full Text Available RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors.

  13. Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning

    International Nuclear Information System (INIS)

    Han, J.H.; Stratowa, C.; Rutter, W.J.

    1987-01-01

    The authors have cloned a full-length putative rat pancreatic lysophospholipase cDNA by an improved mRNA isolation method and cDNA cloning strategy using [ 32 P]-labelled nucleotides. These new methods allow the construction of a cDNA library from the adult rat pancreas in which the majority of recombinant clones contained complete sequences for the corresponding mRNAs. A previously recognized but unidentified long and relatively rare cDNA clone containing the entire sequence from the cap site at the 5' end to the poly(A) tail at the 3' end of the mRNA was isolated by single-step screening of the library. The size, amino acid composition, and the activity of the protein expressed in heterologous cells strongly suggest this mRNA codes for lysophospholipase

  14. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    Directory of Open Access Journals (Sweden)

    Ching-Ping Lin

    Full Text Available We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911. In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum, two monocots (Oryza sativa and Zea mays, two gymnosperms (Pinus taeda and Ginkgo biloba and one moss (Physcomitrella patens. Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants.

  15. Characterization of a major late herpes simplex virus type 1 mRNA.

    Science.gov (United States)

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  16. Production of HIV-1 vif mRNA Is Modulated by Natural Nucleotide Variations and SLSA1 RNA Structure in SA1D2prox Genomic Region

    Directory of Open Access Journals (Sweden)

    Masako Nomaguchi

    2017-12-01

    Full Text Available Genomic RNA of HIV-1 contains localized structures critical for viral replication. Its structural analysis has demonstrated a stem-loop structure, SLSA1, in a nearby region of HIV-1 genomic splicing acceptor 1 (SA1. We have previously shown that the expression level of vif mRNA is considerably altered by some natural single-nucleotide variations (nSNVs clustering in SLSA1 structure. In this study, besides eleven nSNVs previously identified by us, we totally found nine new nSNVs in the SLSA1-containing sequence from SA1, splicing donor 2, and through to the start codon of Vif that significantly affect the vif mRNA level, and designated the sequence SA1D2prox (142 nucleotides for HIV-1 NL4-3. We then examined by extensive variant and mutagenesis analyses how SA1D2prox sequence and SLSA1 secondary structure are related to vif mRNA level. While the secondary structure and stability of SLSA1 was largely changed by nSNVs and artificial mutations introduced to restore the original NL4-3 form from altered ones by nSNVs, no clear association of the two SLSA1 properties with vif mRNA level was observed. In contrast, when naturally occurring SA1D2prox sequences that contain multiple nSNVs were examined, we attained significant inverse correlation between the vif level and SLSA1 stability. These results may suggest that SA1D2prox sequence adapts over time, and also that the altered SA1D2prox sequence, SLSA1 stability, and vif level are mutually related. In total, we show here that the entire SA1D2prox sequence and SLSA1 stability critically contribute to the modulation of vif mRNA level.

  17. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  18. The pokeweed leaf mRNA transcriptome and its regulation by jasmonic acid.

    Directory of Open Access Journals (Sweden)

    Kira C.M. Neller

    2016-03-01

    Full Text Available The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP, a ribosome inactivating protein (RIP that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA, a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141.

  19. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics.

    Science.gov (United States)

    Wang, Chen; Han, Jian; Liu, Chonghuai; Kibet, Korir Nicholas; Kayesh, Emrul; Shangguan, Lingfei; Li, Xiaoying; Fang, Jinggui

    2012-03-29

    MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved mi

  20. Identification of microRNAs from Amur grape (vitis amurensis Rupr. by deep sequencing and analysis of microRNA variations with bioinformatics

    Directory of Open Access Journals (Sweden)

    Wang Chen

    2012-03-01

    Full Text Available Abstract Background MicroRNA (miRNA is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr. is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72

  1. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  2. Peptide inhibitors of botulinum neurotoxin by mRNA display

    International Nuclear Information System (INIS)

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H.

    2005-01-01

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs

  3. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-01-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  4. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  5. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b.

    Science.gov (United States)

    Akuta, Norio; Suzuki, Fumitaka; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Ikeda, Kenji; Kumada, Hiromitsu

    2014-08-01

    Using ultra-deep sequencing technology, the present study was designed to investigate the evolution of simeprevir-resistant variants (amino acid substitutions of aa80, aa155, aa156, and aa168 positions in HCV NS3 region) over time. In Toranomon Hospital, 18 Japanese patients infected with HCV genotype 1b, received triple therapy of simeprevir/PEG-IFN/ribavirin (DRAGON or CONCERT study). Sustained virological response rate was 67%, and that was significantly higher in patients with IL28B rs8099917 TT than in those with non-TT. Six patients, who did not achieve sustained virological response, were tested for resistant variants by ultra-deep sequencing, at the baseline, at the time of re-elevation of viral loads, and at 96 weeks after the completion of treatment. Twelve of 18 resistant variants, detected at re-elevation of viral load, were de novo resistant variants. Ten of 12 de novo resistant variants become undetectable over time, and that five of seven resistant variants, detected at baseline, persisted over time. In one patient, variants of Q80R at baseline (0.3%) increased at 96-week after the cessation of treatment (10.2%), and de novo resistant variants of D168E (0.3%) also increased at 96-week after the cessation of treatment (9.7%). In conclusion, the present study indicates that the emergence of simeprevir-resistant variants after the start of treatment could not be predicted at baseline, and the majority of de novo resistant variants become undetectable over time. Further large-scale prospective studies should be performed to investigate the clinical utility in detecting simeprevir-resistant variants. © 2014 Wiley Periodicals, Inc.

  6. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population.

    Science.gov (United States)

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.

  7. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    Directory of Open Access Journals (Sweden)

    Kudrna David

    2011-03-01

    Full Text Available Abstract Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1 digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb to 157 Kb (Eg_Ba, very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×, contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae

  8. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    Directory of Open Access Journals (Sweden)

    Jana Sachsenröder

    Full Text Available BACKGROUND: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2 with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. RESULTS: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9% and mammalian viruses (23.9%; 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV, represents a novel pig virus. CONCLUSION: The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures

  9. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  10. Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Jie Xiong

    Full Text Available BACKGROUND: The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST database limited the quality of the original genome annotation. METHODOLOGY/PRINCIPAL FINDINGS: This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96% of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs and an updated (larger size estimate of the T. thermophila transcriptome: 57 Mb, or about 55% of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS events distributed over 5.2% of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8% of the genes originally predicted by the gene finder, to correct coding sequence boundaries and intron-exon junctions for about a third, and to reassign microarray probes and correct earlier microarray data. CONCLUSIONS/SIGNIFICANCE: RNA-seq data significantly improve the genome annotation and provide a fully comprehensive view of the global transcriptome of T. thermophila. To our knowledge, 5.2% of T. thermophila genes with AS is the highest percentage of genes showing AS reported in a unicellular eukaryote. Tetrahymena thus becomes an excellent unicellular

  11. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Clark Virginia L

    2011-01-01

    Full Text Available Abstract Background Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. Results We determined that 198 chromosomal genes were differentially expressed (~10% of the genome in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. Conclusions Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.

  12. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE

    DEFF Research Database (Denmark)

    Valen, Eivind; Pascarella, Giovanni; Chalk, Alistair

    2009-01-01

    in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth...

  13. DeepPVP: phenotype-based prioritization of causative variants using deep learning

    KAUST Repository

    Boudellioua, Imene

    2018-05-02

    Background: Prioritization of variants in personal genomic data is a major challenge. Recently, computational methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these methods, pathogenicity prediction is combined with a semantic similarity measure to prioritize not only variants that are likely to be dysfunctional but those that are likely involved in the pathogenesis of a patient\\'s phenotype. Results: We have developed DeepPVP, a variant prioritization method that combined automated inference with deep neural networks to identify the likely causative variants in whole exome or whole genome sequence data. We demonstrate that DeepPVP performs significantly better than existing methods, including phenotype-based methods that use similar features. DeepPVP is freely available at https://github.com/bio-ontology-research-group/phenomenet-vp Conclusions: DeepPVP further improves on existing variant prioritization methods both in terms of speed as well as accuracy.

  14. Personalized mapping of the deep brain with a white matter attenuated inversion recovery (WAIR) sequence at 1.5-tesla: Experience based on a series of 156 patients.

    Science.gov (United States)

    Zerroug, A; Gabrillargues, J; Coll, G; Vassal, F; Jean, B; Chabert, E; Claise, B; Khalil, T; Sakka, L; Feschet, F; Durif, F; Boyer, L; Coste, J; Lemaire, J-J

    2016-08-01

    Deep brain mapping has been proposed for direct targeting in stereotactic functional surgery, aiming to personalize electrode implantation according to individual MRI anatomy without atlas or statistical template. We report our clinical experience of direct targeting in a series of 156 patients operated on using a dedicated Inversion Recovery Turbo Spin Echo sequence at 1.5-tesla, called White Matter Attenuated Inversion Recovery (WAIR). After manual contouring of all pertinent structures and 3D planning of trajectories, 312 DBS electrodes were implanted. Detailed anatomy of close neighbouring structures, whether gray nuclei or white matter regions, was identified during each planning procedure. We gathered the experience of these 312 deep brain mappings and elaborated consistent procedures of anatomical MRI mapping for pallidal, subthalamic and ventral thalamic regions. We studied the number of times the central track anatomically optimized was selected for implantation of definitive electrodes. WAIR sequence provided high-quality images of most common functional targets, successfully used for pure direct stereotactic targeting: the central track corresponding to the optimized primary anatomical trajectory was chosen for implantation of definitive electrodes in 90.38%. WAIR sequence is anatomically reliable, enabling precise deep brain mapping and direct stereotactic targeting under routine clinical conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Heterogeneity of rat tropoelastin mRNA revealed by cDNA cloning

    International Nuclear Information System (INIS)

    Pierce, R.A.; Deak, S.B.; Stolle, C.A.; Boyd, C.D.

    1990-01-01

    A λgt11 library constructed from poly(A+) RNA isolated from aortic tissue of neonatal rats was screened for rat tropoelastin cDNAs. The first, screen, utilizing a human tropoelastin cDNA clone, provided rat tropoelastin cDNAs spanning 2.3 kb of carboxy-terminal coding sequence and extended into the 3'-untranslated region. A subsequent screen using a 5' rat tropoelastin cDNA clone yielded clones extending into the amino-terminal signal sequence coding region. Sequence analysis of these clones has provided the complete derived amino acid sequence of rat tropoelastin and allowed alignment and comparison with published bovine cDNA sequence. While the overall structure of rat tropoelastin is similar to bovine sequence, numerous substitutions, deletions, and insertions demonstrated considerable heterogeneity between species. In particular, the pentapeptide repeat VPGVG, characteristic of all tropoelastins analyzed to date, is replaced in rat tropoelastin by a repeating pentapeptide, IPGVG. The hexapeptide repeat VGVAPG, the bovine elastin receptor binding peptide, is not encoded by rat tropoelastin cDNAs. Variations in coding sequence between rat tropoelastin CDNA clones were also found which may represent mRNA heterogeneity produced by alternative splicing of the rat tropoelastin pre-mRNA

  16. Deep Recurrent Neural Networks for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Abdulmajid Murad

    2017-11-01

    Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.

  17. Deep Recurrent Neural Networks for Human Activity Recognition.

    Science.gov (United States)

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  18. AMID: Accurate Magnetic Indoor Localization Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Namkyoung Lee

    2018-05-01

    Full Text Available Geomagnetic-based indoor positioning has drawn a great attention from academia and industry due to its advantage of being operable without infrastructure support and its reliable signal characteristics. However, it must overcome the problems of ambiguity that originate with the nature of geomagnetic data. Most studies manage this problem by incorporating particle filters along with inertial sensors. However, they cannot yield reliable positioning results because the inertial sensors in smartphones cannot precisely predict the movement of users. There have been attempts to recognize the magnetic sequence pattern, but these attempts are proven only in a one-dimensional space, because magnetic intensity fluctuates severely with even a slight change of locations. This paper proposes accurate magnetic indoor localization using deep learning (AMID, an indoor positioning system that recognizes magnetic sequence patterns using a deep neural network. Features are extracted from magnetic sequences, and then the deep neural network is used for classifying the sequences by patterns that are generated by nearby magnetic landmarks. Locations are estimated by detecting the landmarks. AMID manifested the proposed features and deep learning as an outstanding classifier, revealing the potential of accurate magnetic positioning with smartphone sensors alone. The landmark detection accuracy was over 80% in a two-dimensional environment.

  19. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Lende, Ted van der; Kok, Jan; Venema, Gerard

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression.

  20. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  1. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    Science.gov (United States)

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  2. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.

    Science.gov (United States)

    Belew, Ashton T; Advani, Vivek M; Dinman, Jonathan D

    2011-04-01

    Although first discovered in viruses, previous studies have identified operational -1 ribosomal frameshifting (-1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast -1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five -1 RF signals. Ablation of the -1 RF signals or of NMD stabilizes this mRNA, and changes in -1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous -1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that -1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence -1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that -1 RF is a broadly used post-transcriptional regulator of gene expression.

  3. Deep Sequencing Reveals Uncharted Isoform Heterogeneity of the Protein-Coding Transcriptome in Cerebral Ischemia.

    Science.gov (United States)

    Bhattarai, Sunil; Aly, Ahmed; Garcia, Kristy; Ruiz, Diandra; Pontarelli, Fabrizio; Dharap, Ashutosh

    2018-06-03

    Gene expression in cerebral ischemia has been a subject of intense investigations for several years. Studies utilizing probe-based high-throughput methodologies such as microarrays have contributed significantly to our existing knowledge but lacked the capacity to dissect the transcriptome in detail. Genome-wide RNA-sequencing (RNA-seq) enables comprehensive examinations of transcriptomes for attributes such as strandedness, alternative splicing, alternative transcription start/stop sites, and sequence composition, thus providing a very detailed account of gene expression. Leveraging this capability, we conducted an in-depth, genome-wide evaluation of the protein-coding transcriptome of the adult mouse cortex after transient focal ischemia at 6, 12, or 24 h of reperfusion using RNA-seq. We identified a total of 1007 transcripts at 6 h, 1878 transcripts at 12 h, and 1618 transcripts at 24 h of reperfusion that were significantly altered as compared to sham controls. With isoform-level resolution, we identified 23 splice variants arising from 23 genes that were novel mRNA isoforms. For a subset of genes, we detected reperfusion time-point-dependent splice isoform switching, indicating an expression and/or functional switch for these genes. Finally, for 286 genes across all three reperfusion time-points, we discovered multiple, distinct, simultaneously expressed and differentially altered isoforms per gene that were generated via alternative transcription start/stop sites. Of these, 165 isoforms derived from 109 genes were novel mRNAs. Together, our data unravel the protein-coding transcriptome of the cerebral cortex at an unprecedented depth to provide several new insights into the flexibility and complexity of stroke-related gene transcription and transcript organization.

  4. Characterization and Development of EST-SSRs by Deep Transcriptome Sequencing in Chinese Cabbage (Brassica rapa L. ssp. pekinensis

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2015-01-01

    Full Text Available Simple sequence repeats (SSRs are among the most important markers for population analysis and have been widely used in plant genetic mapping and molecular breeding. Expressed sequence tag-SSR (EST-SSR markers, located in the coding regions, are potentially more efficient for QTL mapping, gene targeting, and marker-assisted breeding. In this study, we investigated 51,694 nonredundant unigenes, assembled from clean reads from deep transcriptome sequencing with a Solexa/Illumina platform, for identification and development of EST-SSRs in Chinese cabbage. In total, 10,420 EST-SSRs with over 12 bp were identified and characterized, among which 2744 EST-SSRs are new and 2317 are known ones showing polymorphism with previously reported SSRs. A total of 7877 PCR primer pairs for 1561 EST-SSR loci were designed, and primer pairs for twenty-four EST-SSRs were selected for primer evaluation. In nineteen EST-SSR loci (79.2%, amplicons were successfully generated with high quality. Seventeen (89.5% showed polymorphism in twenty-four cultivars of Chinese cabbage. The polymorphic alleles of each polymorphic locus were sequenced, and the results showed that most polymorphisms were due to variations of SSR repeat motifs. The EST-SSRs identified and characterized in this study have important implications for developing new tools for genetics and molecular breeding in Chinese cabbage.

  5. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    Science.gov (United States)

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available

  6. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen.

    Science.gov (United States)

    Deng, Dawei; Li, Yang; Xue, Jianpeng; Wang, Jie; Ai, Guanhua; Li, Xin; Gu, Yueqing

    2015-01-01

    Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem-loop-stem oligonucleotide sequences attached by Au-S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.

  7. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing.

    Science.gov (United States)

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2014-12-01

    Freshwater ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria. We describe for the first time genomes of two novel clades, acMicro (Micrococcineae, related to Luna2,) and acAMD (Actinomycetales, related to acTH1). Besides, an aggregate of contigs belonged to a new branch of the Acidimicrobiales. All are estimated to have small genomes (approximately 1.2 Mb), and their GC content varied from 40 to 61%. One of the Micrococcineae genomes encodes a proteorhodopsin, a rhodopsin type reported for the first time in Actinobacteria. The remarkable potential capacity of some of these genomes to transform recalcitrant plant detrital material, particularly lignin-derived compounds, suggests close linkages between the terrestrial and aquatic realms. Moreover, abundances of Actinobacteria correlate inversely to those of Cyanobacteria that are responsible for prolonged and frequently irretrievable damage to freshwater ecosystems. This suggests that they might serve as sentinels of impending ecological catastrophes. © 2014 John Wiley & Sons Ltd.

  8. Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors.

    Science.gov (United States)

    Singh, Savita; Zheng, Yun; Jagadeeswaran, Guru; Ebron, Jey Sabith; Sikand, Kavleen; Gupta, Sanjay; Sunker, Ramanjulu; Shukla, Girish C

    2016-02-28

    Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Identification and characterization of novel serum microRNA candidates from deep sequencing in cervical cancer patients.

    Science.gov (United States)

    Juan, Li; Tong, Hong-li; Zhang, Pengjun; Guo, Guanghong; Wang, Zi; Wen, Xinyu; Dong, Zhennan; Tian, Ya-ping

    2014-09-03

    Small non-coding microRNAs (miRNAs) are involved in cancer development and progression, and serum profiles of cervical cancer patients may be useful for identifying novel miRNAs. We performed deep sequencing on serum pools of cervical cancer patients and healthy controls with 3 replicates and constructed a small RNA library. We used MIREAP to predict novel miRNAs and identified 2 putative novel miRNAs between serum pools of cervical cancer patients and healthy controls after filtering out pseudo-pre-miRNAs using Triplet-SVM analysis. The 2 putative novel miRNAs were validated by real time PCR and were significantly decreased in cervical cancer patients compared with healthy controls. One novel miRNA had an area under curve (AUC) of 0.921 (95% CI: 0.883, 0.959) with a sensitivity of 85.7% and a specificity of 88.2% when discriminating between cervical cancer patients and healthy controls. Our results suggest that characterizing serum profiles of cervical cancers by Solexa sequencing may be a good method for identifying novel miRNAs and that the validated novel miRNAs described here may be cervical cancer-associated biomarkers.

  10. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  11. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    Science.gov (United States)

    Wong, Lai-Ping; Lai, Jason Kuan-Han; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Cheng, Anthony Youzhi; Pillai, Nisha Esakimuthu; Liu, Xuanyao; Xu, Wenting; Chen, Peng; Foo, Jia-Nee; Tan, Linda Wei-Lin; Koo, Seok-Hwee; Soong, Richie; Wenk, Markus Rene; Lim, Wei-Yen; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2014-05-01

    South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  12. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing.

    Science.gov (United States)

    Cornman, Robert Scott; Boncristiani, Humberto; Dainat, Benjamin; Chen, Yanping; vanEngelsdorp, Dennis; Weaver, Daniel; Evans, Jay D

    2013-03-07

    Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li's D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens.

  13. The 0.3-kb fragment containing the R-U5-5'leader sequence of Friend murine leukemia virus influences the level of protein expression from spliced mRNA.

    Science.gov (United States)

    Choo, Yeng Cheng; Seki, Yohei; Machinaga, Akihito; Ogita, Nobuo; Takase-Yoden, Sayaka

    2013-04-19

    A neuropathogenic variant of Friend murine leukemia virus (Fr-MLV) clone A8 induces spongiform neurodegeneration when infected into neonatal rats. Studies with chimeras constructed from the A8 virus and the non-neuropathogenic Fr-MLV clone 57 identified a 0.3-kb KpnI-AatII fragment containing a R-U5-5'leader sequence as an important determinant for inducing spongiosis, in addition to the env gene of A8 as the primary determinant. This 0.3-kb fragment contains a 17-nucleotide difference between the A8 and 57 sequences. We previously showed that the 0.3-kb fragment influences expression levels of Env protein in both cultured cells and rat brain, but the corresponding molecular mechanisms are not well understood. Studies with expression vectors constructed from the full-length proviral genome of Fr-MLV that incorporated the luciferase (luc) gene instead of the env gene found that the vector containing the A8-0.3-kb fragment yielded a larger amount of spliced luc-mRNA and showed higher expression of luciferase when compared to the vector containing the 57-0.3-kb fragment. The amount of total transcripts from the vectors, the poly (A) tail length of their mRNAs, and the nuclear-cytoplasm distribution of luc-mRNA in transfected cells were also evaluated. The 0.3-kb fragment did not influence transcription efficiency, mRNA polyadenylation or nuclear export of luc-mRNA. Mutational analyses were carried out to determine the importance of nucleotides that differ between the A8 and 57 sequences within the 0.3-kb fragment. In particular, seven nucleotides upstream of the 5'splice site (5'ss) were found to be important in regulating the level of protein expression from spliced messages. Interestingly, these nucleotides reside within the stem-loop structure that has been speculated to limit the recognition of 5'ss. The 0.3-kb fragment containing the R-U5-5'leader sequence of Fr-MLV influences the level of protein expression from the spliced-mRNA by regulating the splicing

  14. Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.

    Science.gov (United States)

    Stefanis, N C; Bresnick, J N; Kerwin, R W; Schofield, W N; McAllister, G

    1998-01-01

    The D4 dopamine (DA) receptor has been proposed to be a target for the development of a novel antipsychotic drug based on its pharmacological and distribution profile. There is much interest in whether D4 DA receptor levels are altered in schizophrenia, but the lack of an available receptor subtype-specific radioligand made this difficult to quantitate. In this study, we examined whether D4 mRNA levels are altered in different brain regions of schizophrenics compared to controls. Ribonuclease protection assays were carried out on total RNA samples isolated postmortem from frontal cortex and caudate brain regions of schizophrenics and matched controls. 32P-labelled RNA probes to the D4 DA receptor and to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), were hybridised with the RNA samples, digested with ribonucleases to remove unhybridised probe, and separated on 6% sequencing gels. Densitometer analysis on the subsequent autoradiogams was used to calculate the relative optical density of D4 mRNA compared to G3PDH mRNA. Statistical analysis of the data revealed a 3-fold higher level (P<0.011) of D4 mRNA in the frontal cortex of schizophrenics compared to controls. No increase was seen in caudate. D4 receptors could play a role in mediating dopaminergic activity in frontal cortex, an activity which may be malfunctioning in schizophrenia.

  15. A deep learning method for lincRNA detection using auto-encoder algorithm.

    Science.gov (United States)

    Yu, Ning; Yu, Zeng; Pan, Yi

    2017-12-06

    RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly

  16. Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1T) from a deep-sea hydrothermal vent chimney

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, A [U.S. Department of Energy, Joint Genome Institute; Gu, Wei [U.S. Department of Energy, Joint Genome Institute; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Pan, Chongle [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1 T was the first isolate within the phylum ThermusDeinococcus to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1 T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1(T)) from a deep-sea hydrothermal vent chimney.

    Science.gov (United States)

    Copeland, Alex; Gu, Wei; Yasawong, Montri; Lapidus, Alla; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Tindall, Brian J; Sikorski, Johannes; Göker, Markus; Detter, John C; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2012-03-19

    Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1(T) was the first isolate within the phylum "Thermus-Deinococcus" to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1(T) is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Discovery of Bovine Digital Dermatitis-Associated Treponema spp. in the Dairy Herd Environment by a Targeted Deep-Sequencing Approach

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Weiss Nielsen, Martin; Ingerslev, Hans-Christian

    2014-01-01

    The bacteria associated with the infectious claw disease bovine digital dermatitis (DD) are spirochetes of the genus Treponema; however, their environmental reservoir remains unknown. To our knowledge, the current study is the first report of the discovery and phylogenetic characterization of r...... of this disease among cows within a herd as well as between herds. To address the issue of DD infection reservoirs, we searched for evidence of DD-associated treponemes in fresh feces, in slurry, and in hoof lesions by deep sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene coupled...... with identification at the operational-taxonomic-unit level. Using treponeme-specific primers in this high-throughput approach, we identified small amounts of DNA (on average 0.6% of the total amount of sequence reads) from DD-associated treponemes in 43 of 64 samples from slurry and cow feces collected from six...

  19. mRNA Cancer Vaccines-Messages that Prevail.

    Science.gov (United States)

    Grunwitz, Christian; Kranz, Lena M

    2017-01-01

    During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.

  20. Principles of mRNA transport in yeast.

    Science.gov (United States)

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  1. An introduction to Deep learning on biological sequence data - Examples and solutions

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Johansen, Alexander Rosenberg; Nielsen, Morten

    2017-01-01

    Deep neural network architectures such as convolutional and long short-term memory networks have become increasingly popular as machine learning tools during the recent years. The availability of greater computational resources, more data, new algorithms for training deep models and easy to use....... Here, we aim to further the development of deep learning methods within biology by providing application examples and ready to apply and adapt code templates. Given such examples, we illustrate how architectures consisting of convolutional and long short-term memory neural networks can relatively...

  2. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  3. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  4. Eukaryotic initiation factor 3 (eIF3) and 5’ mRNA leader sequences as agents of translational regulation in Arabidopsis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    von Arnim, Albrecht G. [Univ. of Tennessee, Knoxville, TN (United States)

    2015-02-04

    Protein synthesis, or translation, consumes a sizable fraction of the cell’s energy budget, estimated at 5% and up to 50% in differentiated and growing cells, respectively. Plants also invest significant energy and biomass to construct and maintain the translation apparatus. Translation is regulated by a variety of external stimuli. Compared to transcriptional control, attributes of translational control include reduced sensitivity to stochastic fluctuation, a finer gauge of control, and more rapid responsiveness to environmental stimuli. Yet, our murky understanding of translational control allows few generalizations. Consequently, translational regulation is underutilized in the context of transgene regulation, although synthetic biologists are now beginning to appropriate RNA-level gene regulation into their regulatory circuits. We also know little about how translational control contributes to the diversity of plant form and function. This project explored how an emerging regulatory mRNA sequence element, upstream open reading frames (uORFs), is integrated with the general translation initiation machinery to permit translational regulation on specific mRNAs.

  5. Deep sequencing and flow cytometric characterization of expanded effector memory CD8+CD57+ T cells frequently reveals T-cell receptor Vβ oligoclonality and CDR3 homology in acquired aplastic anemia.

    Science.gov (United States)

    Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S

    2018-05-01

    Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.

  6. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    Science.gov (United States)

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  7. Detection and quantitative analysis of actin mRNA by in situ hybridization with an oligodeoxynucleotide probe

    International Nuclear Information System (INIS)

    Taneja, K.; Singer, R.

    1987-01-01

    In situ hybridization is a useful method for localizing specific nucleic acid sequences intracellularly and for studying regulation of gene expression. Recently synthetic oligonucleotides have been successfully used as probes in this technique. Since they can be made easily to specific nucleic acid regions, they may be the best approach for analysis of a gene family of highly conserved sequences. They have analyzed these probes for the development of an in situ hybridization method. Oligonucleotides were made to different regions of chick beta-actin mRNA and used for detection of these sequences in a culture of chicken fibroblasts and myoblasts. They found that synthetic DNAs have different efficiencies of hybridization, indicating that not all target sequences are equivalent. They have investigated in detail a particular probe to the actin mRNA coding region and have optimized hybridization parameters. When hybridization was quantitated it was found that an oligonucleotide end labelled with 35 S or 32 P was capable of detecting several thousand messages per cell with a signal-to-noise ratio of 10:1. In situ hybridization confirmed the specificity of the hybridization as well as the background level. Increase in the number of oligonucleotides used should increase the signal-to-noise ratio-proportionately. Under particular circumstances the specificity of oligonucleotides make them an important reagent for in situ hybridization

  8. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    Science.gov (United States)

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen

    Directory of Open Access Journals (Sweden)

    Deng D

    2015-04-01

    Full Text Available Dawei Deng,* Yang Li,* Jianpeng Xue, Jie Wang, Guanhua Ai, Xin Li, Yueqing GuDepartment of Biomedical Engineering, China Pharmaceutical University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: Messenger RNA (mRNA, a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP beacon containing a bare gold nanoparticle (AuNP as fluorescence quencher and thiol-terminated fluorescently labeled stem–loop–stem oligonucleotide sequences attached by Au–S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.Keywords: molecular beacon, bioinformatics, gold nanoparticle, STAT5b mRNA, visual detection

  10. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    Science.gov (United States)

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-07

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier

    KAUST Repository

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert

    2017-01-01

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often

  12. Invited talk: Deep Learning Meets Physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Deep Learning has emerged as one of the most successful fields of machine learning and artificial intelligence with overwhelming success in industrial speech, text and vision benchmarks. Consequently it evolved into the central field of research for IT giants like Google, facebook, Microsoft, Baidu, and Amazon. Deep Learning is founded on novel neural network techniques, the recent availability of very fast computers, and massive data sets. In its core, Deep Learning discovers multiple levels of abstract representations of the input. The main obstacle to learning deep neural networks is the vanishing gradient problem. The vanishing gradient impedes credit assignment to the first layers of a deep network or to early elements of a sequence, therefore limits model selection. Major advances in Deep Learning can be related to avoiding the vanishing gradient like stacking, ReLUs, residual networks, highway networks, and LSTM. For Deep Learning, we suggested self-normalizing neural networks (SNNs) which automatica...

  13. Novel sequence variations in LAMA2 and SGCG genes modulating cis-acting regulatory elements and RNA secondary structure

    Directory of Open Access Journals (Sweden)

    Olfa Siala

    2010-01-01

    Full Text Available In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA and SGCG (c.*102A/C genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c.*102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression.

  14. Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context.

    Science.gov (United States)

    Candresse, Thierry; Filloux, Denis; Muhire, Brejnev; Julian, Charlotte; Galzi, Serge; Fort, Guillaume; Bernardo, Pauline; Daugrois, Jean-Heindrich; Fernandez, Emmanuel; Martin, Darren P; Varsani, Arvind; Roumagnac, Philippe

    2014-01-01

    Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs) and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non

  15. Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context.

    Directory of Open Access Journals (Sweden)

    Thierry Candresse

    Full Text Available Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS of both virus-derived small interfering RNAs (siRNAs and virion-associated nucleic acids (VANA for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae, but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV. This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non

  16. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Lai-Ping Wong

    2014-05-01

    Full Text Available South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP. The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP. SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  17. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo.

    Science.gov (United States)

    Wharton, Tammy H; Nomie, Krystle J; Wharton, Robin P

    2018-01-01

    Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3'-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described-repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3'-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.

  18. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  19. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

    NARCIS (Netherlands)

    I. Tachmazidou (Ioanna); Süveges, D. (Dániel); J. Min (Josine); G.R.S. Ritchie (Graham R.S.); Steinberg, J. (Julia); K. Walter (Klaudia); V. Iotchkova (Valentina); J.A. Schwartzentruber (Jeremy); J. Huang (Jian); Y. Memari (Yasin); McCarthy, S. (Shane); Crawford, A.A. (Andrew A.); C. Bombieri (Cristina); M. Cocca (Massimiliano); A.-E. Farmaki (Aliki-Eleni); T.R. Gaunt (Tom); P. Jousilahti (Pekka); M.N. Kooijman (Marjolein ); Lehne, B. (Benjamin); G. Malerba (Giovanni); S. Männistö (Satu); A. Matchan (Angela); M.C. Medina-Gomez (Carolina); S. Metrustry (Sarah); A. Nag (Abhishek); I. Ntalla (Ioanna); L. Paternoster (Lavinia); N.W. Rayner (Nigel William); C. Sala (Cinzia); W.R. Scott (William R.); H.A. Shihab (Hashem A.); L. Southam (Lorraine); B. St Pourcain (Beate); M. Traglia (Michela); K. Trajanoska (Katerina); Zaza, G. (Gialuigi); W. Zhang (Weihua); M.S. Artigas; Bansal, N. (Narinder); M. Benn (Marianne); Chen, Z. (Zhongsheng); P. Danecek (Petr); Lin, W.-Y. (Wei-Yu); A. Locke (Adam); J. Luan (Jian'An); A.K. Manning (Alisa); Mulas, A. (Antonella); C. Sidore (Carlo); A. Tybjaerg-Hansen; A. Varbo (Anette); M. Zoledziewska (Magdalena); C. Finan (Chris); Hatzikotoulas, K. (Konstantinos); A.E. Hendricks (Audrey E.); J.P. Kemp (John); A. Moayyeri (Alireza); Panoutsopoulou, K. (Kalliope); Szpak, M. (Michal); S.G. Wilson (Scott); M. Boehnke (Michael); F. Cucca (Francesco); Di Angelantonio, E. (Emanuele); C. Langenberg (Claudia); C.M. Lindgren (Cecilia M.); McCarthy, M.I. (Mark I.); A.P. Morris (Andrew); B.G. Nordestgaard (Børge); R.A. Scott (Robert); M.D. Tobin (Martin); N.J. Wareham (Nick); P.R. Burton (Paul); J.C. Chambers (John); Smith, G.D. (George Davey); G.V. Dedoussis (George); J.F. Felix (Janine); O.H. Franco (Oscar); Gambaro, G. (Giovanni); P. Gasparini (Paolo); C.J. Hammond (Christopher J.); A. Hofman (Albert); V.W.V. Jaddoe (Vincent); M.E. Kleber (Marcus); J.S. Kooner (Jaspal S.); M. Perola (Markus); C.L. Relton (Caroline); S.M. Ring (Susan); F. Rivadeneira Ramirez (Fernando); V. Salomaa (Veikko); T.D. Spector (Timothy); O. Stegle (Oliver); D. Toniolo (Daniela); A.G. Uitterlinden (André); I.E. Barroso (Inês); C.M.T. Greenwood (Celia); Perry, J.R.B. (John R.B.); Walker, B.R. (Brian R.); A.S. Butterworth (Adam); Y. Xue (Yali); R. Durbin (Richard); K.S. Small (Kerrin); N. Soranzo (Nicole); N.J. Timpson (Nicholas); E. Zeggini (Eleftheria)

    2016-01-01

    textabstractDeep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the

  20. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

    DEFF Research Database (Denmark)

    Tachmazidou, Ioanna; Süveges, Dániel; Min, Josine L

    2017-01-01

    Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader alleli...

  1. VDR mRNA overexpression is associated with worse prognostic factors in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    June Young Choi

    2017-03-01

    Full Text Available The purpose of this study was to assess the relationship between vitamin D receptor gene (VDR expression and prognostic factors in papillary thyroid cancer (PTC. mRNA sequencing and somatic mutation data from The Cancer Genome Atlas (TCGA were analyzed. VDR mRNA expression was compared to clinicopathologic variables by linear regression. Tree-based classification was applied to find cutoff and patients were split into low and high VDR group. Logistic regression, Kaplan–Meier analysis, differentially expressed gene (DEG test and pathway analysis were performed to assess the differences between two VDR groups. VDR mRNA expression was elevated in PTC than that in normal thyroid tissue. VDR expressions were high in classic and tall-cell variant PTC and lateral neck node metastasis was present. High VDR group was also associated with classic and tall cell subtype, AJCC stage IV and lower recurrence-free survival. DEG test reveals that 545 genes were upregulated in high VDR group. Thyroid cancer-related pathways were enriched in high VDR group in pathway analyses. VDR mRNA overexpression was correlated with worse prognostic factors such as subtypes of papillary thyroid carcinoma that are known to be worse prognosis, lateral neck node metastasis, advanced stage and recurrence-free survival.

  2. Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease.

    Science.gov (United States)

    Mattijssen, Sandy; Hinson, Ella R; Onnekink, Carla; Hermanns, Pia; Zabel, Bernhard; Cresswell, Peter; Pruijn, Ger J M

    2011-07-01

    RNase MRP is a conserved endoribonuclease, in humans consisting of a 267-nucleotide RNA associated with 7-10 proteins. Mutations in its RNA component lead to several autosomal recessive skeletal dysplasias, including cartilage-hair hypoplasia (CHH). Because the known substrates of mammalian RNase MRP, pre-ribosomal RNA, and RNA involved in mitochondrial DNA replication are not likely involved in CHH, we analyzed the effects of RNase MRP (and the structurally related RNase P) depletion on mRNAs using DNA microarrays. We confirmed the upregulation of the interferon-inducible viperin mRNA by RNAi experiments and this appeared to be independent of the interferon response. We detected two cleavage sites for RNase MRP/RNase P in the coding sequence of viperin mRNA. This is the first study providing direct evidence for the cleavage of a mRNA by RNase MRP/RNase P in human cells. Implications for the involvement in the pathophysiology of CHH are discussed.

  3. Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes

    Directory of Open Access Journals (Sweden)

    Jones Sophie

    2012-08-01

    Full Text Available Abstract Background Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be used for collecting RNA samples, but rigorous testing of their capacity to withstand adverse storage conditions has not been fully explored. Methods Three gametocyte dilutions: 10/μL, 1.0/μL and 0.1/μL were spotted onto Whatman™ 903 Protein Saver Cards, FTA Classic Cards and 3MM filter papers that were stored under frozen, cold chain or tropical conditions for up to 13 weeks . RNA was extracted, then detected by quantitative nucleic acid sequence-based amplification (QT-NASBA and reverse-transcriptase PCR (RT-PCR. Results Successful gametocyte detection was more frequently observed from the Whatman 903 Protein Saver Card compared to the Whatman FTA Classic Card, by both techniques (p  Conclusions This study indicates the Whatman 903 Protein Saver Card is better for Pfs25 mRNA sampling compared to the Whatman FTA Classic Card, and that the Whatman 3MM filter paper may prove to be a satisfactory cheaper option for Pfs25 mRNA sampling. When appropriately dried, filter papers provide a useful approach to Pfs25 mRNA sampling, especially in settings where storage in RNA-protecting buffer is not possible.

  4. Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA.

    OpenAIRE

    Esumi, H; Takahashi, Y; Sekiya, T; Sato, S; Nagase, S; Sugimura, T

    1982-01-01

    Analbuminemic rats, which lack serum albumin, were previously found to have no albumin mRNA in the cytoplasm of the liver. In the present study, the existence of nuclear albumin mRNA precursors in the liver of analbuminemic rats was examined by RNA X cDNA hybridization kinetics. Albumin mRNA precursors were present in the nuclei of analbuminemic rat liver at almost normal levels, despite the absence of albumin mRNA from the cytoplasm. Nuclear RNA of analbuminemic rat liver was subjected to el...

  5. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) Infected With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With a DNA Vaccine Against VHSV

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Jørgensen, Hanne

    2011-01-01

    and are incorporated into the RNA-Induced Silencing Complex (RISC), which target specific mRNA sequences, causing either mRNA degradation or translation repression. This results in altered mRNA and protein profiles characteristic of a particular cellular phenotype or physiological state. By targeting immune relevant m...

  6. Dis3- and exosome subunit-responsive 3′ mRNA instability elements

    International Nuclear Information System (INIS)

    Kiss, Daniel L.; Hou, Dezhi; Gross, Robert H.; Andrulis, Erik D.

    2012-01-01

    Highlights: ► Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. ► Identified novel 3′ UTR cis-acting element that destabilizes a reporter mRNA. ► Show exosome subunits are required for cis-acting element-mediated mRNA instability. ► Define precise sequence requirements of novel cis-acting element. ► Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3′–5′ exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3′ untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette—harboring four elements—destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA

  7. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing

    OpenAIRE

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-01-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resoluti...

  8. Deep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition

    OpenAIRE

    Zhang, Zewang; Sun, Zheng; Liu, Jiaqi; Chen, Jingwen; Huo, Zhao; Zhang, Xiao

    2016-01-01

    A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, we build a novel deep recurrent convolutional network for acoustic modeling and then apply deep resid...

  9. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Directory of Open Access Journals (Sweden)

    Michael S Brewer

    Full Text Available BACKGROUND: Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. RESULTS: The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly. As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. CONCLUSIONS: The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic

  10. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda) mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Science.gov (United States)

    Brewer, Michael S; Swafford, Lynn; Spruill, Chad L; Bond, Jason E

    2013-01-01

    Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect

  11. Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture

    OpenAIRE

    Park, Seong Hyeon; Kim, ByeongDo; Kang, Chang Mook; Chung, Chung Choo; Choi, Jun Won

    2018-01-01

    In this paper, we propose a deep learning based vehicle trajectory prediction technique which can generate the future trajectory sequence of surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short-term memory (LSTM) based encoder and generates the future trajectory sequence using the LSTM based decoder. This structure produces the $K$ most likely trajectory candidates over occupancy grid ma...

  12. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    Science.gov (United States)

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  13. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Konstantin Okonechnikov

    Full Text Available Analysis of fusion transcripts has become increasingly important due to their link with cancer development. Since high-throughput sequencing approaches survey fusion events exhaustively, several computational methods for the detection of gene fusions from RNA-seq data have been developed. This kind of analysis, however, is complicated by native trans-splicing events, the splicing-induced complexity of the transcriptome and biases and artefacts introduced in experiments and data analysis. There are a number of tools available for the detection of fusions from RNA-seq data; however, certain differences in specificity and sensitivity between commonly used approaches have been found. The ability to detect gene fusions of different types, including isoform fusions and fusions involving non-coding regions, has not been thoroughly studied yet. Here, we propose a novel computational toolkit called InFusion for fusion gene detection from RNA-seq data. InFusion introduces several unique features, such as discovery of fusions involving intergenic regions, and detection of anti-sense transcription in chimeric RNAs based on strand-specificity. Our approach demonstrates superior detection accuracy on simulated data and several public RNA-seq datasets. This improved performance was also evident when evaluating data from RNA deep-sequencing of two well-established prostate cancer cell lines. InFusion identified 26 novel fusion events that were validated in vitro, including alternatively spliced gene fusion isoforms and chimeric transcripts that include intergenic regions. The toolkit is freely available to download from http:/bitbucket.org/kokonech/infusion.

  14. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure.

    Directory of Open Access Journals (Sweden)

    Gabriela Moura

    Full Text Available BACKGROUND: Codon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. METHODOLOGIES/PRINCIPAL FINDINGS: We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context. CONCLUSIONS: The data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage.

  15. Sequence-specific bias correction for RNA-seq data using recurrent neural networks.

    Science.gov (United States)

    Zhang, Yao-Zhong; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2017-01-25

    The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited for biological problems that require automatic or hierarchical feature representation for biological data when prior knowledge is limited. In this work, we address the sequence-specific bias correction problem for RNA-seq data redusing Recurrent Neural Networks (RNNs) to model nucleotide sequences without pre-determining sequence structures. The sequence-specific bias of a read is then calculated based on the sequence probabilities estimated by RNNs, and used in the estimation of gene abundance. We explore the application of two popular RNN recurrent units for this task and demonstrate that RNN-based approaches provide a flexible way to model nucleotide sequences without knowledge of predetermined sequence structures. Our experiments show that training a RNN-based nucleotide sequence model is efficient and RNN-based bias correction methods compare well with the-state-of-the-art sequence-specific bias correction method on the commonly used MAQC-III data set. RNNs provides an alternative and flexible way to calculate sequence-specific bias without explicitly pre-determining sequence structures.

  16. Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence

    OpenAIRE

    Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun

    2015-01-01

    Background: There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. Methods: All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinform...

  17. A retinoic acid-inducible mRNA from F9 teratocarcinoma cells encodes a novel protease inhibitor homologue.

    Science.gov (United States)

    Wang, S Y; Gudas, L J

    1990-09-15

    We have previously isolated several cDNA clones specific for mRNA species that increase in abundance during the retinoic acid-associated differentiation of F9 teratocarcinoma stem cells. One of these mRNAs, J6, encodes a approximately 40 kDa protein as assayed by hybrid selection and in vitro translation (Wang, S.-Y., LaRosa, G., and Gudas, L. J. (1985) Dev. Biol. 107, 75-86). The time course of J6 mRNA expression is similar to those of both laminin B1 and collagen IV (alpha 1) messages following retinoic acid addition. To address the functional role of this protein, we have isolated a full-length cDNA clone complementary to this approximately 40-kDa protein mRNA. Sequence analysis reveals an open reading frame of 406 amino acids (Mr 45,652). The carboxyl-terminal portion of this predicted protein contains a region that is homologous to the reactive sites found among members of the serpin (serine protease inhibitor) family. The predicted reactive site (P1-P1') of this J6 protein is Arg-Ser, which is the same as that of antithrombin III. Like ovalbumin and human monocyte-derived plasminogen activator inhibitor (mPAI-2), which are members of the serpin gene family, the J6 protein appears to have no typical amino-terminal signal sequence.

  18. Prevalence of Hepatitis C Virus Subgenotypes 1a and 1b in Japanese Patients: Ultra-Deep Sequencing Analysis of HCV NS5B Genotype-Specific Region

    Science.gov (United States)

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Miyamura, Tatsuo; Nakatani, Sueli M.; Ono, Suzane Kioko; Takahashi-Nakaguchi, Azusa; Gonoi, Tohru; Yokosuka, Osamu

    2013-01-01

    Background Hepatitis C virus (HCV) subgenotypes 1a and 1b have different impacts on the treatment response to peginterferon plus ribavirin with direct-acting antivirals (DAAs) against patients infected with HCV genotype 1, as the emergence rates of resistance mutations are different between these two subgenotypes. In Japan, almost all of HCV genotype 1 belongs to subgenotype 1b. Methods and Findings To determine HCV subgenotype 1a or 1b in Japanese patients infected with HCV genotype 1, real-time PCR-based method and Sanger method were used for the HCV NS5B region. HCV subgenotypes were determined in 90% by real-time PCR-based method. We also analyzed the specific probe regions for HCV subgenotypes 1a and 1b using ultra-deep sequencing, and uncovered mutations that could not be revealed using direct-sequencing by Sanger method. We estimated the prevalence of HCV subgenotype 1a as 1.2-2.5% of HCV genotype 1 patients in Japan. Conclusions Although real-time PCR-based HCV subgenotyping method seems fair for differentiating HCV subgenotypes 1a and 1b, it may not be sufficient for clinical practice. Ultra-deep sequencing is useful for revealing the resistant strain(s) of HCV before DAA treatment as well as mixed infection with different genotypes or subgenotypes of HCV. PMID:24069214

  19. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific.

    Directory of Open Access Journals (Sweden)

    Sayaka eMino

    2013-04-01

    Full Text Available Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 P. hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough. Although the strains share > 98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types, indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.

  20. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    Science.gov (United States)

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  2. Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing.

    Science.gov (United States)

    Wang, Binbin; Li, Lin; Zhu, Ying; Zhang, Wei; Wang, Xi; Chen, Beili; Li, Tengyan; Pan, Hong; Wang, Jing; Kee, Kehkooi; Cao, Yunxia

    2017-10-01

    Does a novel heterozygous KHDRBS1 variant, identified using whole-exome sequencing (WES) in two patients with primary ovarian insufficiency (POI) in a pedigree, cause defects in mRNA alternative splicing? The heterozygous variant of KHDRBS1 was confirmed to cause defects in alternative splicing of many genes involved in DNA replication and repair. Studies in mice revealed that Khdrbs1 deficient females are subfertile, which manifests as delayed sexual maturity and significantly reduced numbers of secondary and pre-antral follicles. No mutation of KHDRBS1, however, has been reported in patients with POI. This genetic and functional study used WES to find putative mutations in a POI pedigree. Altogether, 215 idiopathic POI patients and 400 healthy controls were screened for KHDRBS1 mutations. Two POI patients were subjected to WES to identify sequence variants. Mutational analysis of the KHDRBS1 gene in 215 idiopathic POI patients and 400 healthy controls were performed. RNA-sequencing was carried out to find the mis-regulation of gene expression due to KHDRBS1 mutation. Bioinformatics was used to analyze the change in alternative splicing events. We identified a heterozygous mutation (c.460A > G, p.M154V) in KHDRBS1 in two patients. Further mutational analysis of 215 idiopathic POI patients with the KHDRBS1 gene found one heterozygous mutation (c.263C > T, p.P88L). We failed to find these two mutations in 400 healthy control women. Using RNA-sequencing, we found that the KGN cells expressing the M154V KHDRBS1 mutant had different expression of 66 genes compared with wild-type (WT) cells. Furthermore, 145 genes were alternatively spliced in M154V cells, and these genes were enriched for DNA replication and repair function, revealing a potential underlying mechanism of the pathology that leads to POI. Although the in vitro assays demonstrated the effect of the KHDRBS1 variant on alternative splicing, further studies are needed to validate the in vivo effects on germ

  3. Inspecting Targeted Deep Sequencing of Whole Genome Amplified DNA Versus Fresh DNA for Somatic Mutation Detection: A Genetic Study in Myelodysplastic Syndrome Patients.

    Science.gov (United States)

    Palomo, Laura; Fuster-Tormo, Francisco; Alvira, Daniel; Ademà, Vera; Armengol, María Pilar; Gómez-Marzo, Paula; de Haro, Nuri; Mallo, Mar; Xicoy, Blanca; Zamora, Lurdes; Solé, Francesc

    2017-08-01

    Whole genome amplification (WGA) has become an invaluable method for preserving limited samples of precious stock material and has been used during the past years as an alternative tool to increase the amount of DNA before library preparation for next-generation sequencing. Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic stem cell disorders characterized by presenting somatic mutations in several myeloid-related genes. In this work, targeted deep sequencing has been performed on four paired fresh DNA and WGA DNA samples from bone marrow of MDS patients, to assess the feasibility of using WGA DNA for detecting somatic mutations. The results of this study highlighted that, in general, the sequencing and alignment statistics of fresh DNA and WGA DNA samples were similar. However, after variant calling and when considering variants detected at all frequencies, there was a high level of discordance between fresh DNA and WGA DNA (overall, a higher number of variants was detected in WGA DNA). After proper filtering, a total of three somatic mutations were detected in the cohort. All somatic mutations detected in fresh DNA were also identified in WGA DNA and validated by whole exome sequencing.

  4. Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements.

    Directory of Open Access Journals (Sweden)

    Pegine Walrad

    2009-02-01

    Full Text Available The genome of Trypanosoma brucei is unusual in being regulated almost entirely at the post-transcriptional level. In terms of regulation, the best-studied genes are procyclins, which encode a family of major surface GPI-anchored glycoproteins (EP1, EP2, EP3, GPEET that show differential expression in the parasite's tsetse-fly vector. Although procyclin mRNA cis-regulatory sequences have provided the paradigm for post-transcriptional control in kinetoplastid parasites, trans-acting regulators of procyclin mRNAs are unidentified, despite intensive effort over 15 years. Here we identify the developmental regulator, TbZFP3, a CCCH-class predicted RNA binding protein, as an isoform-specific regulator of Procyclin surface coat expression in trypanosomes. We demonstrate (i that endogenous TbZFP3 shows sequence-specific co-precipitation of EP1 and GPEET, but not EP2 and EP3, procyclin mRNA isoforms, (ii that ectopic overexpression of TbZFP3 does not perturb the mRNA abundance of procyclin transcripts, but rather that (iii their protein expression is regulated in an isoform-specific manner, as evidenced by mass spectrometric analysis of the Procyclin expression signature in the transgenic cell lines. The TbZFP3 mRNA-protein complex (TbZFP3mRNP is identified as a trans-regulator of differential surface protein expression in trypanosomes. Moreover, its sequence-specific interactions with procyclin mRNAs are compatible with long-established predictions for Procyclin regulation. Combined with the known association of TbZFP3 with the translational apparatus, this study provides a long-sought missing link between surface protein cis-regulatory signals and the gene expression machinery in trypanosomes.

  5. Deep sequencing as a method of typing bluetongue virus isolates.

    Science.gov (United States)

    Rao, Pavuluri Panduranga; Reddy, Yella Narasimha; Ganesh, Kapila; Nair, Shreeja G; Niranjan, Vidya; Hegde, Nagendra R

    2013-11-01

    Bluetongue (BT) is an economically important endemic disease of livestock in tropics and subtropics. In addition, its recent spread to temperate regions like North America and Northern Europe is of serious concern. Rapid serotyping and characterization of BT virus (BTV) is an essential step in the identification of origin of the virus and for controlling the disease. Serotyping of BTV is typically performed by serum neutralization, and of late by nucleotide sequencing. This report describes the near complete genome sequencing and typing of two isolates of BTV using Illumina next generation sequencing platform. Two of the BTV RNAs were multiplexed with ten other unknown samples. Viral RNA was isolated and fragmented, reverse transcribed, the cDNA ends were repaired and ligated with a multiplex oligo. The genome library was amplified using primers complementary to the ligated oligo and subjected to single and paired end sequencing. The raw reads were assembled using a de novo method and reference-based assembly was performed based on the contig data. Near complete sequences of all segments of BTV were obtained with more than 20× coverage, and single read sequencing method was sufficient to identify the genotype and serotype of the virus. The two viruses used in this study were typed as BTV-1 and BTV-9E. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis

    Science.gov (United States)

    Onouchi, Hitoshi; Nagami, Yoko; Haraguchi, Yuhi; Nakamoto, Mari; Nishimura, Yoshiko; Sakurai, Ryoko; Nagao, Nobuhiro; Kawasaki, Daisuke; Kadokura, Yoshitomo; Naito, Satoshi

    2005-01-01

    Expression of the Arabidopsis CGS1 gene that codes for cystathionine γ-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5′ end points near the 5′ edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer. PMID:16027170

  7. Cloning the human lysozyme cDNA: Inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells

    International Nuclear Information System (INIS)

    Chung, L.P.; Keshav, S.; Gordon, S.

    1988-01-01

    Lysozyme is a major secretory product of human and rodent macrophages and a useful marker for myelomonocytic cells. Based on the known human lysozyme amino acid sequence, oligonucleotides were synthesized and used as probes to screen a phorbol 12-myristate 13-acetate-treated U937 cDNA library. A full-length human lysozyme cDNA clone, pHL-2, was obtained and characterized. Sequence analysis shows that human lysozyme, like chicken lysozyme, has in 18-amino-acid-long signal peptide, but unlike the chicken lysozyme cDNA, the human lysozyme cDNA has a >1-kilobase-long 3' nontranslated sequence. Interestingly, within this 3' region, an inverted repeat of the Alu family of repetitive sequences was discovered. In RNA blot analyses, DNA probes prepared from pHL-2 can be used to detect lysozyme mRNA not only from human but also from mouse and rat. Moreover, by in situ hybridization, complementary RNA transcripts have been used as probes to detect lysozyme mRNA in mouse macrophages and Paneth cells. This human lysozyme cDNA clone is therefore likely to be a useful molecular probe for studying macrophage distribution and gene expression

  8. Detection of siRNA Mediated Target mRNA Cleavage Activities in Human Cells by a Novel Stem-Loop Array RT-PCR Analysis

    Science.gov (United States)

    2016-09-07

    sequences of the target mRNA, and a double stranded stem at the 5′ end that forms a stem -loop to function as a forceps to stabilize the secondary...E-mjournal homepage: www.elsevier.com/locate/bbrepDetection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem -loop...challenges for the accurate and efficient detection and verification of cleavage sites on target mRNAs. Here we used a sensitive stem -loop array reverse

  9. Evolutionary process of deep-sea bathymodiolus mussels.

    Science.gov (United States)

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  10. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    Science.gov (United States)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  11. MiR-200a is involved in rat epididymal development by targeting β-catenin mRNA

    Institute of Scientific and Technical Information of China (English)

    Xiaojiang Wu; Botao Zhao; Wei Li; Yue Chen; Ruqiang Liang; Lin Li; Youxin Jin; Kangcheng Ruan

    2012-01-01

    The expression of 350 microRNAs (miRNAs) in epididymis of rat from postnatal development to adult (from postnatal days 7-70) was profiled with home-made miRNA microarray.Among them,48 miRNAs changed significantly, in which the expression of miR-200a increased obviously with time,in a good agreement with that obtained from northern blot analysis.The real-time quantitative-polymerase chain reaction result indicated that temporal expression of rat β-catenin was exactly inversed to that of miR-200a during rat epididymal development,implying that miR-200a might also target β-catenin mRNA in rat epididymis as reported by Saydam et al.in humans.The bioinformatic analysis indicated that 3' untranslated region of rat β-catenin mRNA did contain a putative binding site for miR-200a.Meanwhile,it was found that the sequence of this binding site was different from that of human β-catenin mRNA with a deletion of two adjacent nucleotides (U and C).But the results of luciferase targeting assay in HEK 293T cells and the overexpression of miR-200a in rat NRK cells demonstrated that miR-200a did target rat β-catenin mRNA and cause the suppression of its expression.All these results show that miR-200a should be involved in rat epididymal development by targeting β-catenin mRNA of rat and suppressing its expression.

  12. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    Energy Technology Data Exchange (ETDEWEB)

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  13. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli

    International Nuclear Information System (INIS)

    Zhang Weici; Xiao Weihua; Wei Haiming; Zhang Jian; Tian Zhigang

    2006-01-01

    Codon usage and thermodynamic optimization of the 5'-end of mRNA have been applied to improve the efficiency of human protein production in Escherichia coli. However, high level expression of human protein in E. coli is still a challenge that virtually depends upon each individual target genes. Using human interleukin 10 (huIL-10) and interferon α (huIFN-α) coding sequences, we systematically analyzed the influence of several major factors on expression of human protein in E. coli. The results from huIL-10 and reinforced by huIFN-α showed that exposing AUG initiator codon from base-paired structure within mRNA itself significantly improved the translation of target protein, which resulted in a 10-fold higher protein expression than the wild-type genes. It was also noted that translation process was not affected by the retained short-range stem-loop structure at Shine-Dalgarno (SD) sequences. On the other hand, codon-optimized constructs of huIL-10 showed unimproved levels of protein expression, on the contrary, led to a remarkable RNA degradation. Our study demonstrates that exposure of AUG initiator codon from long-range intra-strand secondary structure at 5'-end of mRNA may be used as a general strategy for human protein production in E. coli

  14. Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes.

    Science.gov (United States)

    Jones, Sophie; Sutherland, Colin J; Hermsen, Cornelus; Arens, Theo; Teelen, Karina; Hallett, Rachel; Corran, Patrick; van der Vegte-Bolmer, Marga; Sauerwein, Robert; Drakeley, Chris J; Bousema, Teun

    2012-08-08

    Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be used for collecting RNA samples, but rigorous testing of their capacity to withstand adverse storage conditions has not been fully explored. Three gametocyte dilutions: 10/μL, 1.0/μL and 0.1/μL were spotted onto Whatman™ 903 Protein Saver Cards, FTA Classic Cards and 3MM filter papers that were stored under frozen, cold chain or tropical conditions for up to 13 weeks . RNA was extracted, then detected by quantitative nucleic acid sequence-based amplification (QT-NASBA) and reverse-transcriptase PCR (RT-PCR). Successful gametocyte detection was more frequently observed from the Whatman 903 Protein Saver Card compared to the Whatman FTA Classic Card, by both techniques (pFTA Classic Card but not the 903 Protein Saver Card or Whatman 3MM filter paper. The sensitivity of gametocyte detection was decreased when papers were stored at high humidity. This study indicates the Whatman 903 Protein Saver Card is better for Pfs25 mRNA sampling compared to the Whatman FTA Classic Card, and that the Whatman 3MM filter paper may prove to be a satisfactory cheaper option for Pfs25 mRNA sampling. When appropriately dried, filter papers provide a useful approach to Pfs25 mRNA sampling, especially in settings where storage in RNA-protecting buffer is not possible.

  15. Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (uTE) sequences with spiral acquisition

    International Nuclear Information System (INIS)

    Goto, Hajimu; Fujii, Masahiko; Iwama, Yuki; Aoyama, Nobukazu; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    The objective of this study was to evaluate the sensitivity of ultrashort echo time (uTE) sequence for visualisation of calcified deep layers of articular cartilage. MRI with a uTE sequence was performed on five healthy volunteers. Signals from the calcified deep layers of the articular knee cartilage were evaluated on uTE subtraction images and computed tomography images. The calcified deep layers of the articular cartilage changed from having a low to a high signal when imaged with a uTE sequence. The reported uTE sequence was effective in imaging the deep layers of the knee cartilage.

  16. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    Science.gov (United States)

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org. Copyright © 2014 Wiley Periodicals, Inc.

  17. Inaugural Genomics Automation Congress and the coming deluge of sequencing data.

    Science.gov (United States)

    Creighton, Chad J

    2010-10-01

    Presentations at Select Biosciences's first 'Genomics Automation Congress' (Boston, MA, USA) in 2010 focused on next-generation sequencing and the platforms and methodology around them. The meeting provided an overview of sequencing technologies, both new and emerging. Speakers shared their recent work on applying sequencing to profile cells for various levels of biomolecular complexity, including DNA sequences, DNA copy, DNA methylation, mRNA and microRNA. With sequencing time and costs continuing to drop dramatically, a virtual explosion of very large sequencing datasets is at hand, which will probably present challenges and opportunities for high-level data analysis and interpretation, as well as for information technology infrastructure.

  18. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism.

    Science.gov (United States)

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-11-20

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.

  19. Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells.

    Science.gov (United States)

    Salton, S R; Fischberg, D J; Dong, K W

    1991-05-01

    Nerve growth factor (NGF) plays a critical role in the development and survival of neurons in the peripheral nervous system. Following treatment with NGF but not epidermal growth factor, rat pheochromocytoma (PC12) cells undergo neural differentiation. We have cloned a nervous system-specific mRNA, NGF33.1, that is rapidly and relatively selectively induced by treatment of PC12 cells with NGF and basic fibroblast growth factor in comparison with epidermal growth factor. Analysis of the nucleic acid and predicted amino acid sequences of the NGF33.1 cDNA clone suggested that this clone corresponded to the NGF-inducible mRNA called VGF (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393-395, 1985; R. Possenti, J. D. Eldridge, B. M. Paterson, A. Grasso, and A. Levi, EMBO J. 8:2217-2223, 1989). We have used the NGF33.1 cDNA clone to isolate and characterize the VGF gene, and in this paper we report the complete sequence of the VGF gene, including 853 bases of 5' flank revealed TATAA and CCAAT elements, several GC boxes, and a consensus cyclic AMP response element-binding protein binding site. The VGF promoter contains sequences homologous to other NGF-inducible, neuronal promoters. We further show that VGF mRNA is induced in PC12 cells to a greater extent by depolarization and by phorbol-12-myristate-13-acetate treatment than by 8-bromo-cyclic AMP treatment. By Northern (RNA) and RNase protection analysis, VGF mRNA is detectable in embryonic and postnatal central and peripheral nervous tissues but not in a number of nonneural tissues. In the cascade of events which ultimately leads to the neural differentiation of NGF-treated PC12 cells, the VGF gene encodes the most rapidly and selectively regulated, nervous-system specific mRNA yet identified.

  20. Trace maps for arbitrary substitution sequences

    International Nuclear Information System (INIS)

    Avishai, Y.

    1993-01-01

    The discovery of quasi-crystals and their 1-dimensional modeling have led to a deep mathematical study of Schroedinger operators with an arbitrary deterministic potential sequence. In this work we address this problem and find trace maps for an arbitrary substitution sequence. our trace maps have lower dimensionality than those of Kolar and Nori, which make them quite attractive for actual applications. (authors)

  1. Deep Sequencing of 71 Candidate Genes to Characterize Variation Associated with Alcohol Dependence.

    Science.gov (United States)

    Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Kumar, Gaurav; Aberg, Karolina A; Nerella, Srilaxmi; Xie, Linying; Collins, Ann L; Crowley, James J; Quackenbush, Corey R; Hilliard, Christopher E; Shabalin, Andrey A; Vrieze, Scott I; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; McGue, Matt; Maes, Hermine; Iacono, William G; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J

    2017-04-01

    Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies. We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate. No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10 -5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10 -5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family. To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD. Copyright © 2017 by the Research Society on

  2. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    Science.gov (United States)

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  3. PATACSDB—the database of polyA translational attenuators in coding sequences

    Directory of Open Access Journals (Sweden)

    Malgorzata Habich

    2016-02-01

    Full Text Available Recent additions to the repertoire of gene expression regulatory mechanisms are polyadenylate (polyA tracks encoding for poly-lysine runs in protein sequences. Such tracks stall the translation apparatus and induce frameshifting independently of the effects of charged nascent poly-lysine sequence on the ribosome exit channel. As such, they substantially influence the stability of mRNA and the amount of protein produced from a given transcript. Single base changes in these regions are enough to exert a measurable response on both protein and mRNA abundance; this makes each of these sequences a potentially interesting case study for the effects of synonymous mutation, gene dosage balance and natural frameshifting. Here we present PATACSDB, a resource that contain a comprehensive list of polyA tracks from over 250 eukaryotic genomes. Our data is based on the Ensembl genomic database of coding sequences and filtered with algorithm of 12A-1 which selects sequences of polyA tracks with a minimal length of 12 A’s allowing for one mismatched base. The PATACSDB database is accessible at: http://sysbio.ibb.waw.pl/patacsdb. The source code is available at http://github.com/habich/PATACSDB, and it includes the scripts with which the database can be recreated.

  4. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  5. Epigenetic mechanisms involved in differential MDR1 mRNA expression between gastric and colon cancer cell lines and rationales for clinical chemotherapy

    Directory of Open Access Journals (Sweden)

    Kim Kyung-Jong

    2008-08-01

    Full Text Available Abstract Background The membrane transporters such as P-glycoprotein (Pgp, the MDR1 gene product, are one of causes of treatment failure in cancer patients. In this study, the epigenetic mechanisms involved in differential MDR1 mRNA expression were compared between 10 gastric and 9 colon cancer cell lines. Methods The MDR1 mRNA levels were determined using PCR and real-time PCR assays after reverse transcription. Cytotoxicity was performed using the MTT assay. Methylation status was explored by quantification PCR-based methylation and bisulfite DNA sequencing analyses. Results The MDR1 mRNA levels obtained by 35 cycles of RT-PCR in gastric cancer cells were just comparable to those obtained by 22 cycles of RT-PCR in colon cancer cells. Real-time RT-PCR analysis revealed that MDR1 mRNA was not detected in the 10 gastric cancer cell lines but variable MDR1 mRNA levels in 7 of 9 colon cancer cell lines except the SNU-C5 and HT-29 cells. MTT assay showed that Pgp inhibitors such as cyclosporine A, verapamil and PSC833 sensitized Colo320HSR (colon, highest MDR1 expression but not SNU-668 (gastric, highest and SNU-C5 (gastric, no expression to paclitaxel. Quantification PCR-based methylation analysis revealed that 90% of gastric cancer cells, and 33% of colon cancer cells were methylated, which were completely matched with the results obtained by bisulfite DNA sequencing analysis. 5-aza-2'-deoxcytidine (5AC, a DNA methyltransferase inhibitor increased the MDR1 mRNA levels in 60% of gastric cells, and in 11% of colon cancer cells. Trichostatin A (TSA, histone deacetylase inhibitor increased the MDR1 mRNA levels in 70% of gastric cancer cells and 55% of colon cancer cells. The combined treatment of 5AC with TSA increased the MDR1 mRNA levels additively in 20% of gastric cancer cells, but synergistically in 40% of gastric and 11% of colon cancer cells. Conclusion These results indicate that the MDR1 mRNA levels in gastric cancer cells are significantly

  6. Presence and Expression of Microbial Genes Regulating Soil Nitrogen Dynamics Along the Tanana River Successional Sequence

    Science.gov (United States)

    Boone, R. D.; Rogers, S. L.

    2004-12-01

    We report on work to assess the functional gene sequences for soil microbiota that control nitrogen cycle pathways along the successional sequence (willow, alder, poplar, white spruce, black spruce) on the Tanana River floodplain, Interior Alaska. Microbial DNA and mRNA were extracted from soils (0-10 cm depth) for amoA (ammonium monooxygenase), nifH (nitrogenase reductase), napA (nitrate reductase), and nirS and nirK (nitrite reductase) genes. Gene presence was determined by amplification of a conserved sequence of each gene employing sequence specific oligonucleotide primers and Polymerase Chain Reaction (PCR). Expression of the genes was measured via nested reverse transcriptase PCR amplification of the extracted mRNA. Amplified PCR products were visualized on agarose electrophoresis gels. All five successional stages show evidence for the presence and expression of microbial genes that regulate N fixation (free-living), nitrification, and nitrate reduction. We detected (1) nifH, napA, and nirK presence and amoA expression (mRNA production) for all five successional stages and (2) nirS and amoA presence and nifH, nirK, and napA expression for early successional stages (willow, alder, poplar). The results highlight that the existing body of previous process-level work has not sufficiently considered the microbial potential for a nitrate economy and free-living N fixation along the complete floodplain successional sequence.

  7. Deep Packet/Flow Analysis using GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Qian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wu, Wenji [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-11-12

    Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Since the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.

  8. Low levels of PRB3 mRNA are associated with dopamine-agonist resistance and tumor recurrence in prolactinomas.

    Science.gov (United States)

    Wang, Fei; Gao, Hua; Li, Chuzhong; Bai, Jiwei; Lu, Runchun; Cao, Lei; Wu, Yongtu; Hong, Lichuan; Wu, Yonggang; Lan, Xiaolei; Zhang, Yazhuo

    2014-01-01

    Prolactinomas, or prolactin-secreting adenomas, constitute the most common type of hyperfunctioning pituitary adenoma. Dopamine agonists are used as first-line medication for prolactinomas, but the tumors are resistant to the therapy in 5-18 % of patients. To explore potential mechanisms of resistance to bromocriptine (a dopamine agonist), we analyzed six responsive prolactinomas and six resistant prolactinomas by whole-exome sequencing. We identified ten genes with sequence variants that were differentially found in the two groups of tumors. The expression of these genes was then quantified by real-time reverse-transcription PCR (RT-qPCR) in the 12 prolactinomas and in six normal pituitary glands. The mRNA levels of one of the genes, PRB3, were about fourfold lower in resistant prolactinomas than in the responsive tumors (p = 0.02). Furthermore, low PRB3 expression was also associated with tumor recurrence. Our results suggest that low levels of PRB3 mRNA may have a role in dopamine-agonist resistance and tumor recurrence of prolactinomas.

  9. Tentative mapping of transcription-induced interchromosomal interaction using chimeric EST and mRNA data.

    Directory of Open Access Journals (Sweden)

    Per Unneberg

    Full Text Available Recent studies on chromosome conformation show that chromosomes colocalize in the nucleus, bringing together active genes in transcription factories. This spatial proximity of actively transcribing genes could provide a means for RNA interaction at the transcript level. We have screened public databases for chimeric EST and mRNA sequences with the intent of mapping transcription-induced interchromosomal interactions. We suggest that chimeric transcripts may be the result of close encounters of active genes, either as functional products or "noise" in the transcription process, and that they could be used as probes for chromosome interactions. We have found a total of 5,614 chimeric ESTs and 587 chimeric mRNAs that meet our selection criteria. Due to their higher quality, the mRNA findings are of particular interest and we hope that they may serve as food for thought for specialists in diverse areas of molecular biology.

  10. Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events.

    Directory of Open Access Journals (Sweden)

    Xianxin Li

    Full Text Available Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA in a single type of cancer.Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of 'key' miRNAs may result in the global aberration of one or more pathways or processes as a whole.This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or

  11. Cloning and sequence analysis of cDNA coding for rat nucleolar protein C23

    International Nuclear Information System (INIS)

    Ghaffari, S.H.; Olson, M.O.J.

    1986-01-01

    Using synthetic oligonucleotides as primers and probes, the authors have isolated and sequenced cDNA clones encoding protein C23, a putative nucleolus organizer protein. Poly(A + ) RNA was isolated from rat Novikoff hepatoma cells and enriched in C23 mRNA by sucrose density gradient ultracentrifugation. Two deoxyoligonuleotides, a 48- and a 27-mer, were synthesized on the basis of amino acid sequence from the C-terminal half of protein C23 and cDNA sequence data from CHO cell protein. The 48-mer was used a primer for synthesis of cDNA which was then inserted into plasmid pUC9. Transformed bacterial colonies were screened by hybridization with 32 P labeled 27-mer. Two clones among 5000 gave a strong positive signal. Plasmid DNAs from these clones were purified and characterized by blotting and nucleotide sequence analysis. The length of C23 mRNA was estimated to be 3200 bases in a northern blot analysis. The sequence of a 267 b.p. insert shows high homology with the CHO cDNA with only 9 nucleotide differences and an identical amino acid sequence. These studies indicate that this region of the protein is highly conserved

  12. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    International Nuclear Information System (INIS)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-01-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, 32 P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV

  13. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  14. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  15. In vitro detection of mdr1 mRNA in murine leukemia cells with 111In-labeled oligonucleotide

    International Nuclear Information System (INIS)

    Bai Jingming; Yokoyama, Kunihiko; Kinuya, Seigo; Michigishi, Takatoshi; Tonami, Norihisa; Shiba, Kazuhiro; Matsushita, Ryo; Nomura, Masaaki

    2004-01-01

    The feasibility of intracellular mdr1 mRNA expression detection with radiolabeled antisense oligonucleotide (ODN) was investigated in the murine leukemia cell line, P388/S, and its subclonal, adriamycin-resistant cell line, P388/R. The expression level of mdr1 mRNA was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Existence of the multidrug resistance (MDR) phenomenon was assessed via cellular uptake of 99m Tc-sestamibi (MIBI), a known substrate for P-glycoprotein. A 15-mer phosphorothioate antisense ODN complementary to the sequences located at -1 to 14 of mdr1 mRNA and its corresponding sense ODN were conjugated with the cyclic anhydride of diethylene triamine penta-acetic acid (cDTPA) via an amino group linked to the terminal phosphate at the 5' end at pH 8-9. The DTPA-ODN complexes at concentrations of 0.1-17.4 μMwere reacted with 111 InCl 3 at pH 5 for 1 h. The hybridization affinity of labeled ODN was evaluated with size-exclusion high-performance liquid chromatography following incubation with the complementary sequence. Cellular uptake of labeled ODN was examined in vitro. Furthermore, enhancing effects of synthetic lipid carriers (Transfast) on transmembrane delivery of ODN were assessed. P388/R cells displayed intense mdr1 mRNA expression in comparison with P388/S cells. 99m Tc-MIBI uptake in P388/S cells was higher than that in P388/R cells. Specific radioactivity up to 1,634 MBq/nmol was achieved via elevation of added radioactivity relative to ODN molar amount. The hybridization affinity of antisense 111 In-ODN was preserved at approximately 85% irrespective of specific activity. Cellular uptake of antisense 111 In-ODN did not differ from that of sense 111 In-ODN in either P388/S cells or P388/R cells. However, lipid carrier incorporation significantly increased transmembrane delivery of 111 In-ODN; moreover, specific uptake of antisense 111 In-ODN was demonstrated in P388/R cells. Radiolabeling of ODN at high specific

  16. GnRH mRNA levels in male three-spined sticklebacks, Gasterosteus aculeatus, under different reproductive conditions.

    Science.gov (United States)

    Shao, Yi Ta; Tseng, Yung Che; Chang, Chia-Hao; Yan, Hong Young; Hwang, Pung Pung; Borg, Bertil

    2015-02-01

    In vertebrates, reproduction is regulated by the brain-pituitary-gonad (BPG) axis, where the gonadotropin-releasing hormone (GnRH) is one of the key components. However, very little is known about the possible role of GnRH in the environmental and feedback control of fish reproduction. To investigate this, full-length gnrh2 (chicken GnRH II) and gnrh3 (salmon GnRH) sequences of male three-spined sticklebacks (Gasterosteus aculeatus), which are clustered with the taxa of the same GnRH type as other Euteleostei, were cloned and annotated. gnrh1 is absent in this species. The mRNA levels of gnrh2 and gnrh3 in the sticklebacks' brain were measured under breeding and post-breeding conditions as well as in castrated and sham-operated breeding fish and castrated/sham-operated fish kept under long-day (LD 16:8) and short-day (LD 8:16) conditions. Fully breeding males had considerably higher mRNA levels of gnrh2 and gnrh3 in the thalamus (Th) and in the telencephalon and preoptic area (T+POA), respectively, than post-breeding males. Sham-operated breeding males have higher gnrh3 mRNA levels than the corresponding castrated males. Moreover, higher gnrh2 mRNA levels in the Th and higher gnrh3 mRNA levels in the T+POA and hypothalamus (HypTh) were also found in long-day sham-operated males than in sham-operated fish kept under an inhibitory short day photoperiod. Nevertheless, gnrh2 and gnrh3 mRNA levels were not up-regulated in castrated males kept under long-day photoperiod, which suggests that positive feedbacks on the brain-pituitary-gonad axis are necessary for this response. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Sequence and expression analyses of porcine ISG15 and ISG43 genes.

    Science.gov (United States)

    Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei

    2009-08-01

    The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.

  18. Identification of microRNAs Involved in the Host Response to Enterovirus 71 Infection by a Deep Sequencing Approach

    Directory of Open Access Journals (Sweden)

    Lunbiao Cui

    2010-01-01

    Full Text Available Role of microRNA (miRNA has been highlighted in pathogen-host interactions recently. To identify cellular miRNAs involved in the host response to enterovirus 71 (EV71 infection, we performed a comprehensive miRNA profiling in EV71-infected Hep2 cells through deep sequencing. 64 miRNAs were found whose expression levels changed for more than 2-fold in response to EV71 infection. Gene ontology analysis revealed that many of these mRNAs play roles in neurological process, immune response, and cell death pathways, which are known to be associated with the extreme virulence of EV71. To our knowledge, this is the first study on host miRNAs expression alteration response to EV71 infection. Our findings supported the hypothesis that certain miRNAs might be essential in the host-pathogen interactions.

  19. Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing.

    Science.gov (United States)

    Chimienti, Guglielmina; Piredda, Roberta; Pepe, Gabriella; van der Werf, Inez Dorothé; Sabbatini, Luigia; Crecchio, Carmine; Ricciuti, Patrizia; D'Erchia, Anna Maria; Manzari, Caterina; Pesole, Graziano

    2016-10-01

    Comprehensive studies of the biodiversity of the microbial epilithic community on monuments may provide critical insights for clarifying factors involved in the colonization processes. We carried out a high-throughput investigation of the communities colonizing the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. The metagenomic analysis of sequences revealed the presence of Archaea, Bacteria, and Eukarya. Bacteria were Actinobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria, Chloroflexi, Firmicutes and Candidatus Saccharibacteria. The predominant phylum was Actinobacteria, with the orders Actynomycetales and Rubrobacteriales, represented by the genera Pseudokineococcus, Sporichthya, Blastococcus, Arthrobacter, Geodermatophilus, Friedmanniella, Modestobacter, and Rubrobacter, respectively. Cyanobacteria sequences showing strong similarity with an uncultured bacterium sequence were identified. The presence of the green algae Oocystaceae and Trebuxiaceae was revealed. The microbial diversity was explored at qualitative and quantitative levels, evaluating the richness (the number of operational taxonomic units (OTUs)) and the abundance of reads associated with each OTU. The rarefaction curves approached saturation, suggesting that the majority of OTUs were recovered. The results highlighted a structured community, showing low diversity, made up of extremophile organisms adapted to desiccation and UV radiation. Notably, the microbiome appeared to be composed not only of microorganisms possibly involved in biodeterioration but also of carbonatogenic bacteria, such as those belonging to the genus Arthrobacter, which could be useful in bioconservation. Our investigation demonstrated that molecular tools, and in particular the easy-to-run next-generation sequencing, are powerful to perform a microbiological diagnosis in order to plan restoration and protection strategies.

  20. Deep Sequencing of Plant and Animal DNA Contained within Traditional Chinese Medicines Reveals Legality Issues and Health Safety Concerns

    Science.gov (United States)

    Coghlan, Megan L.; Haile, James; Houston, Jayne; Murray, Dáithí C.; White, Nicole E.; Moolhuijzen, Paula; Bellgard, Matthew I.; Bunce, Michael

    2012-01-01

    Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when

  1. Search for antisense copies of beta-globin mRNA in anemic mouse spleen

    Directory of Open Access Journals (Sweden)

    Taylor John M

    2001-03-01

    Full Text Available Abstract Background Previous studies by Volloch and coworkers have reported that during the expression of high levels of β-globin mRNA in the spleen of anemic mice, they could also detect small but significant levels of an antisense (AS globin RNA species, which they postulated might have somehow arisen by RNA-directed RNA synthesis. For two reasons we undertook to confirm and possibly extend these studies. First, previous studies in our lab have focussed on what is an unequivocal example of host RNA-directed RNA polymerase activity on the RNA genome of human hepatitis delta virus. Second, if AS globin species do exist they could in turn form double-stranded RNA species which might induce post-transcriptional gene silencing, a phenomenon somehow provoked in eukaryotic cells by AS RNA sequences. Results We reexamined critical aspects of the previous globin studies. We used intraperitoneal injections of phenylhydrazine to induce anemia in mice, as demonstrated by the appearance and ultimate disappearance of splenomegaly. While a 30-fold increase in globin mRNA was detected in the spleen, the relative amount of putative AS RNA could be no more than 0.004%. Conclusions Contrary to earlier reports, induction of a major increase in globin transcripts in the mouse spleen was not associated with a detectable level of antisense RNA to globin mRNA.

  2. mRNA related to insulin family in human placenta

    International Nuclear Information System (INIS)

    Younes, M.A.; D'Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-01-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A + ) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A + ) RNA templates. Five hundred transformants were initially screened by colony hybridization using a 32 P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II

  3. mRNA related to insulin family in human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.A.; D' Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  4. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shi, CY; Yang, H; Wei, CL; Yu, O; Zhang, ZZ; Sun, J; Wan, XC

    2011-01-01

    time PCR (qRT-PCR). An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.

  5. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    Directory of Open Access Journals (Sweden)

    Chen Qi

    2011-02-01

    analyzed by RT-PCR and quantitative real time PCR (qRT-PCR. Conclusions An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.

  6. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    Science.gov (United States)

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  8. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea

    Directory of Open Access Journals (Sweden)

    Dawn B. Goldsmith

    2015-06-01

    Full Text Available Deep sequencing of the viral phoH gene, a host-derived auxiliary metabolic gene, was used to track viral diversity throughout the water column at the Bermuda Atlantic Time-series Study (BATS site in the summer (September and winter (March of three years. Viral phoH sequences reveal differences in the viral communities throughout a depth profile and between seasons in the same year. Variation was also detected between the same seasons in subsequent years, though these differences were not as great as the summer/winter distinctions. Over 3,600 phoH operational taxonomic units (OTUs; 97% sequence identity were identified. Despite high richness, most phoH sequences belong to a few large, common OTUs whereas the majority of the OTUs are small and rare. While many OTUs make sporadic appearances at just a few times or depths, a small number of OTUs dominate the community throughout the seasons, depths, and years.

  9. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes.

    Science.gov (United States)

    Sittka, Alexandra; Sharma, Cynthia M; Rolle, Katarzyna; Vogel, Jörg

    2009-01-01

    The bacterial Sm-like protein, Hfq, is a key factor for the stability and function of small non-coding RNAs (sRNAs) in Escherichia coli. Homologues of this protein have been predicted in many distantly related organisms yet their functional conservation as sRNA-binding proteins has not entirely been clear. To address this, we expressed in Salmonella the Hfq proteins of two eubacteria (Neisseria meningitides, Aquifex aeolicus) and an archaeon (Methanocaldococcus jannaschii), and analyzed the associated RNA by deep sequencing. This in vivo approach identified endogenous Salmonella sRNAs as a major target of the foreign Hfq proteins. New Salmonella sRNA species were also identified, and some of these accumulated specifically in the presence of a foreign Hfq protein. In addition, we observed specific RNA processing defects, e.g., suppression of precursor processing of SraH sRNA by Methanocaldococcus Hfq, or aberrant accumulation of extracytoplasmic target mRNAs of the Salmonella GcvB, MicA or RybB sRNAs. Taken together, our study provides evidence of a conserved inherent sRNA-binding property of Hfq, which may facilitate the lateral transmission of regulatory sRNAs among distantly related species. It also suggests that the expression of heterologous RNA-binding proteins combined with deep sequencing analysis of RNA ligands can be used as a molecular tool to dissect individual steps of RNA metabolism in vivo.

  10. Identification of a Flavivirus Sequence in a Marine Arthropod.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    Full Text Available Phylogenetic analysis has yet to uncover the early origins of flaviviruses. In this study, I mined a database of expressed sequence tags in order to discover novel flavivirus sequences. Flavivirus sequences were identified in a pool of mRNA extracted from the sea spider Endeis spinosa (Pycnogonida, Pantopoda. Reconstruction of the translated sequences and BLAST analysis matched the sequence to the flavivirus NS5 gene. Additional sequences corresponding to envelope and the NS5 MTase domain were also identified. Phylogenetic analysis of homologous NS5 sequences revealed that Endeis spinosa NS5 (ESNS5 is likely related to classical insect-specific flaviviruses. It is unclear if ESNS5 represents genetic material from an active viral infection or an integrated viral genome. These data raise the possibility that classical insect-specific flaviviruses and perhaps medically relevant flaviviruses, evolved from progenitors that infected marine arthropods.

  11. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Science.gov (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  12. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  13. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    Science.gov (United States)

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study,next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina NextSeq 500 instrument [corrected]. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  14. Congruent Deep Relationships in the Grape Family (Vitaceae Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    Full Text Available Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera. The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study,next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina NextSeq 500 instrument [corrected]. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  15. Molecular cloning and distribution of oxytocin/vasopressin-like mRNA in the blue swimming crab, Portunus pelagicus, and its inhibitory effect on ovarian steroid release.

    Science.gov (United States)

    Saetan, Jirawat; Kruangkum, Thanapong; Phanthong, Phetcharat; Tipbunjong, Chittipong; Udomuksorn, Wandee; Sobhon, Prasert; Sretarugsa, Prapee

    2018-04-01

    This study was aimed to characterize the full length of mRNA of oxytocin/vasopressin (OT/VP)-like mRNA in female Portunus pelagicus (PpelOT/VP-like mRNA) using a partial PpelOT/VP-like sequence obtained previously in our transcriptome analysis (Saetan, 2014) to construct the primers. The PpelOT/VP-like mRNA was 626 bp long and it encoded the preprohormones containing 158 amino acids. This preprohormone consisted of a signal peptide, an active nonapeptide (CFITNCPPG) followed by the dibasic cleavage site (GKR), and the neurophysin domain. Sequence alignment of the PpelOT/VP-like peptide with those of other animals revealed strong molecular conservation. Phylogenetic analysis of encoded proteins revealed that the PpelOT/VP-like peptide was clustered within the group of crustacean OT/VP-like peptide. Analysis by RT-PCR revealed the expression of mRNA transcripts in the eyestalk, brain, ventral nerve cord (VNC), ovary, intestine and gill. The in situ hybridization demonstrated the cellular localizations of the transcripts in the central nervous system (CNS) and ovary tissues. In the eyestalk, the mRNA expression was observed in the neuronal clusters 1-5 but not in the sinus gland complex. In the brain and the VNC, the transcripts were detected in all neuronal clusters but not in the glial cell. In the ovary, the transcripts were found in all stages of oocytes (Oc1, Oc2, Oc3, and Oc4). In addition, synthetic PpelOT/VP-like peptide could inhibit steroid release from the ovary. The knowledge gained from this study will provide more understanding on neuro-endocrinological controls in this crab species. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon Oncorhynchus tshawytscha, a poikilothermic vertebrate

    Science.gov (United States)

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  17. Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence.

    Science.gov (United States)

    Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun

    2015-01-01

    There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.

  18. MicroRNAs in Amoebozoa: deep sequencing of the small RNA population in the social amoeba Dictyostelium discoideum reveals developmentally regulated microRNAs.

    Science.gov (United States)

    Avesson, Lotta; Reimegård, Johan; Wagner, E Gerhart H; Söderbom, Fredrik

    2012-10-01

    The RNA interference machinery has served as a guardian of eukaryotic genomes since the divergence from prokaryotes. Although the basic components have a shared origin, silencing pathways directed by small RNAs have evolved in diverse directions in different eukaryotic lineages. Micro (mi)RNAs regulate protein-coding genes and play vital roles in plants and animals, but less is known about their functions in other organisms. Here, we report, for the first time, deep sequencing of small RNAs from the social amoeba Dictyostelium discoideum. RNA from growing single-cell amoebae as well as from two multicellular developmental stages was sequenced. Computational analyses combined with experimental data reveal the expression of miRNAs, several of them exhibiting distinct expression patterns during development. To our knowledge, this is the first report of miRNAs in the Amoebozoa supergroup. We also show that overexpressed miRNA precursors generate miRNAs and, in most cases, miRNA* sequences, whose biogenesis is dependent on the Dicer-like protein DrnB, further supporting the presence of miRNAs in D. discoideum. In addition, we find miRNAs processed from hairpin structures originating from an intron as well as from a class of repetitive elements. We believe that these repetitive elements are sources for newly evolved miRNAs.

  19. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.

    Science.gov (United States)

    Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan

    2018-05-24

    High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.

  20. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain and intestine of the swamp eel, Monopterus albus, exposed to freshwater, terrestrial conditions, environmental ammonia or salinity stress

    Directory of Open Access Journals (Sweden)

    C Y Toh

    2011-12-01

    Full Text Available The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can survive long period of emersion, has high environmental and tissue ammonia tolerance, and acclimate from fresh to brackish water. This study was undertaken to clone and sequence gdh expressed in the liver, intestine and brain of M. albus, to verify whether more than one form of gdh were expressed, and to examine the gdh mRNA expressions in these three organs in fish exposed to various adverse conditions using quantitative real-time PCR. Only one gdh gene sequence, consisted of a 133 bp 5’ UTR, a CDS region spanning 1629 bp and a 3’ UTR of approximately 717 bp, was obtained from the liver, intestine and brain of M. albus. The translated Gdh amino acid sequence from the liver of M. albus had 542 residues and was confirmed to be Gdh1a. It had sequence identity of >90% with Oncorhynchus mykiss Gdh1a, Salmo salar Gdh1a1, Bostrychus sinensis Gdh1a and Tribolodon hakonensis Gdh1a, and formed a monophyletic clade with B. sinensis Gdh1a, Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2 and O. mykiss Gdh1a. An increase in mRNA expression of gdh1a could be essential for increased glutamate production in support of increases in glutamine synthesis under certain environmental condition. Indeed, exposure of M. albus to 1 day of terrestrial conditions or 75 mmol l-1 NH4Cl, but not brackish water, resulted in a significant increase in gdh1a mRNA expression in the liver. However, exposure to brackish water, but not terrestrial conditions or 75 mmol l-1 NH4Cl, lead to a significant increase in the intestinal mRNA expression of gdh1a. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus. Our results indicate for the first time that gdh mRNA expression was differentially up-regulated in the liver and intestine of M. albus, in responses to ammonia toxicity and

  1. Deep sequencing-based identification of small regulatory RNAs in Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Wen Xu

    Full Text Available Synechocystis sp. PCC 6803 is a genetically tractable model organism for photosynthesis research. The genome of Synechocystis sp. PCC 6803 consists of a circular chromosome and seven plasmids. The importance of small regulatory RNAs (sRNAs as mediators of a number of cellular processes in bacteria has begun to be recognized. However, little is known regarding sRNAs in Synechocystis sp. PCC 6803. To provide a comprehensive overview of sRNAs in this model organism, the sRNAs of Synechocystis sp. PCC 6803 were analyzed using deep sequencing, and 7,951,189 reads were obtained. High quality mapping reads (6,127,890 were mapped onto the genome and assembled into 16,192 transcribed regions (clusters based on read overlap. A total number of 5211 putative sRNAs were revealed from the genome and the 4 megaplasmids, and 27 of these molecules, including four from plasmids, were confirmed by RT-PCR. In addition, possible target genes regulated by all of the putative sRNAs identified in this study were predicted by IntaRNA and analyzed for functional categorization and biological pathways, which provided evidence that sRNAs are indeed involved in many different metabolic pathways, including basic metabolic pathways, such as glycolysis/gluconeogenesis, the citrate cycle, fatty acid metabolism and adaptations to environmentally stress-induced changes. The information from this study provides a valuable reservoir for understanding the sRNA-mediated regulation of the complex physiology and metabolic processes of cyanobacteria.

  2. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming.

    Science.gov (United States)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-07-14

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp). This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3' strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3' tail of 1-3 A-nucleotides (nt) and we present evidence that this product is subsequently trimmed by the poly(A)-specific ribonuclease (PARN).

  3. mRNA localization mechanisms in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Lysangela R Alves

    Full Text Available Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.

  4. PGC-1α mRNA Level and Oxidative Capacity of the Plantaris Muscle in Rats with Metabolic Syndrome, Hypertension, and Type 2 Diabetes

    International Nuclear Information System (INIS)

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Gu, Ning; Takeda, Isao; Ishioka, Noriaki; Tsuda, Kinsuke; Ishihara, Akihiko

    2011-01-01

    We examined the fiber profiles and the mRNA levels of peroxisome proliferator-activated receptors (PPARα and PPARδ/β) and of the PPARγ coactivator-1α (PGC-1α) in the plantaris muscles of 15-week-old control (WR), metabolic syndrome (CP), hypertensive (SHR), and type 2 diabetic (GK) rats. The deep regions in the muscles of SHR and GK rats exhibited lower percentages of high-oxidative type I and IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR and CP rats. The surface regions in the muscles of CP, SHR, and GK rats exhibited lower percentages of high-oxidative type IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR rats. The muscles of SHR and GK rats had lower oxidative enzyme activity compared with WR rats. The muscles of SHR rats had the lowest PPARδ/β mRNA level. In addition, the muscles of SHR and GK rats had lower PGC-1α mRNA level compared with WR and CP rats. We concluded that the plantaris muscles of rats with hypertension and type 2 diabetes have lower oxidative capacity, which is associated with the decreased level of PGC-1α mRNA

  5. Deep sequencing of the Trypanosoma cruzi GP63 surface proteases reveals diversity and diversifying selection among chronic and congenital Chagas disease patients.

    Science.gov (United States)

    Llewellyn, Martin S; Messenger, Louisa A; Luquetti, Alejandro O; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B N; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A

    2015-04-01

    Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target--ND5--was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I gene family suggests a link between genetic diversity within this gene

  6. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster.

    Directory of Open Access Journals (Sweden)

    Shigeharu Kinoshita

    Full Text Available BACKGROUND: Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell formation-related genes candidates. PRINCIPAL FINDINGS: We employed the GS FLX 454 system and constructed transcriptome data sets from pallial mantle and pearl sac, which form the nacreous layer, and from the mantle edge, which forms the prismatic layer in P. fucata. We sequenced 260477 reads and obtained 29682 unique sequences. We also screened novel nacreous and prismatic gene candidates by a combined analysis of sequence and expression data sets, and identified various genes encoding lectin, protease, protease inhibitors, lysine-rich matrix protein, and secreting calcium-binding proteins. We also examined the expression of known nacreous and prismatic genes in our EST library and identified novel isoforms with tissue-specific expressions. CONCLUSIONS: We constructed EST data sets from the nacre- and prism-producing tissues in P. fucata and found 29682 unique sequences containing novel gene candidates for nacreous and prismatic layer formation. This is the first report of deep sequencing of ESTs in the shell-forming tissues of P. fucata and our data provide a powerful tool for a comprehensive understanding of the molecular mechanisms of molluscan biomineralization.

  7. Altered expression of asparagine synthetase mRNA in human leukemic and carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.O.; Guzowski, D.E.; Millan, C.A. [North Shore Univ. Hospital/Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine. Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.

  8. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Han, Mingyuan; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan

    2017-01-01

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of 126 -LQxxLxxxGL- 135 . In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine arteritis virus.

  9. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mingyuan, E-mail: hanming@umich.edu; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2017-05-15

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of {sub 126}-LQxxLxxxGL-{sub 135}. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine

  10. Deep Illumina-based shotgun sequencing reveals dietary effects on the structure and function of the fecal microbiome of growing kittens.

    Directory of Open Access Journals (Sweden)

    Oliver Deusch

    Full Text Available Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome.Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high-protein, low-carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC were collected at 8, 12 and 16 weeks of age (n = 6 per group. A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007 between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022 enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome.These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary

  11. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.

    Science.gov (United States)

    Kim, Hui Kwon; Min, Seonwoo; Song, Myungjae; Jung, Soobin; Choi, Jae Woo; Kim, Younggwang; Lee, Sangeun; Yoon, Sungroh; Kim, Hyongbum Henry

    2018-03-01

    We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets.

  12. Nucleotide sequence of the gene coding for human factor VII, a vitamin K-dependent protein participating in blood coagulation

    International Nuclear Information System (INIS)

    O'Hara, P.J.; Grant, F.J.; Haldeman, B.A.; Gray, C.L.; Insley, M.Y.; Hagen, F.S.; Murray, M.J.

    1987-01-01

    Activated factor VII (factor VIIa) is a vitamin K-dependent plasma serine protease that participates in a cascade of reactions leading to the coagulation of blood. Two overlapping genomic clones containing sequences encoding human factor VII were isolated and characterized. The complete sequence of the gene was determined and found to span about 12.8 kilobases. The mRNA for factor VII as demonstrated by cDNA cloning is polyadenylylated at multiple sites but contains only one AAUAAA poly(A) signal sequence. The mRNA can undergo alternative splicing, forming one transcript containing eight segments as exons and another with an additional exon that encodes a larger prepro leader sequence. The latter transcript has no known counterpart in the other vitamin K-dependent proteins. The positions of the introns with respect to the amino acid sequence encoded by the eight essential exons of factor VII are the same as those present in factor IX, factor X, protein C, and the first three exons of prothrombin. These exons code for domains generally conserved among members of this gene family. The comparable introns in these genes, however, are dissimilar with respect to size and sequence, with the exception of intron C in factor VII and protein C. The gene for factor VII also contains five regions made up of tandem repeats of oligonucleotide monomer elements. More than a quarter of the intron sequences and more than a third of the 3' untranslated portion of the mRNA transcript consist of these minisatellite tandem repeats

  13. Salinity Regulates Claudin mRNA and Protein Expression in the Teleost Gill

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Baltzegar, David A; Ozden, Ozkan

    2008-01-01

    The teleost gill carries out NaCl uptake in fresh water (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight junctional claudins during salinity...... was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer and staining appears more intense in gill of FW versus SW fish. Additionally, tilapia claudin 28a and 30 genes were characterized......, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated...

  14. Alternative Polyadenylation and Nonsense-Mediated Decay Coordinately Regulate the Human HFE mRNA Levels

    Science.gov (United States)

    Martins, Rute; Proença, Daniela; Silva, Bruno; Barbosa, Cristina; Silva, Ana Luísa; Faustino, Paula; Romão, Luísa

    2012-01-01

    Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its

  15. The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity

    Science.gov (United States)

    Diehl, T.; Kraft, T.; Kissling, E.; Wiemer, S.

    2017-09-01

    In July 2013, a sequence of more than 340 earthquakes was induced by reservoir stimulations and well-control procedures following a gas kick at a deep geothermal drilling project close to the city of St. Gallen, Switzerland. The sequence culminated in an ML 3.5 earthquake, which was felt within 10-15 km from the epicenter. High-quality earthquake locations and 3-D reflection seismic data acquired in the St. Gallen project provide a unique data set, which allows high-resolution studies of earthquake triggering related to the injection of fluids into macroscopic fault zones. In this study, we present a high-precision earthquake catalog of the induced sequence. Absolute locations are constrained by a coupled hypocenter-velocity inversion, and subsequent double-difference relocations image the geometry of the ML 3.5 rupture and resolve the spatiotemporal evolution of seismicity. A joint interpretation of earthquake and seismic data shows that the majority of the seismicity occurred in the pre-Mesozoic basement, hundreds of meters below the borehole and the targeted Mesozoic sequence. We propose a hydraulic connectivity between the reactivated fault and the borehole, likely through faults mapped by seismic data. Despite the excellent quality of the seismic data, the association of seismicity with mapped faults remains ambiguous. In summary, our results document that the actual hydraulic properties of a fault system and hydraulic connections between its fault segments are complex and may not be predictable upfront. Incomplete knowledge of fault structures and stress heterogeneities within highly complex fault systems additionally challenge the degree of predictability of induced seismicity related to underground fluid injections.

  16. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    Science.gov (United States)

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  17. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

    Science.gov (United States)

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-01-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations. PMID:26206155

  18. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus.

    Science.gov (United States)

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus , occurring in 48 of the 61 Ilarvirus -positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus -like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus -like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus -like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the

  19. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus

    Directory of Open Access Journals (Sweden)

    Wycliff M. Kinoti

    2017-06-01

    Full Text Available The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV and Apple mosaic virus (ApMV were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples

  20. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  1. ARMOUR - A Rice miRNA: mRNA Interaction Resource.

    Science.gov (United States)

    Sanan-Mishra, Neeti; Tripathi, Anita; Goswami, Kavita; Shukla, Rohit N; Vasudevan, Madavan; Goswami, Hitesh

    2018-01-01

    ARMOUR was developed as A Rice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

  2. Large-Scale Genotyping-by-Sequencing Indicates High Levels of Gene Flow in the Deep-Sea Octocoral Swiftia simplex (Nutting 1909 on the West Coast of the United States.

    Directory of Open Access Journals (Sweden)

    Meredith V Everett

    Full Text Available Deep-sea corals are a critical component of habitat in the deep-sea, existing as regional hotspots for biodiversity, and are associated with increased assemblages of fish, including commercially important species. Because sampling these species is so difficult, little is known about the connectivity and life history of deep-sea octocoral populations. This study evaluates the genetic connectivity among 23 individuals of the deep-sea octocoral Swiftia simplex collected from Eastern Pacific waters along the west coast of the United States. We utilized high-throughput restriction-site associated DNA (RAD-tag sequencing to develop the first molecular genetic resource for the deep-sea octocoral, Swiftia simplex. Using this technique we discovered thousands of putative genome-wide SNPs in this species, and after quality control, successfully genotyped 1,145 SNPs across individuals sampled from California to Washington. These SNPs were used to assess putative population structure across the region. A STRUCTURE analysis as well as a principal coordinates analysis both failed to detect any population differentiation across all geographic areas in these collections. Additionally, after assigning individuals to putative population groups geographically, no significant FST values could be detected (FST for the full data set 0.0056, and no significant isolation by distance could be detected (p = 0.999. Taken together, these results indicate a high degree of connectivity and potential panmixia in S. simplex along this portion of the continental shelf.

  3. T-lymphocyte cytokine mRNA expression in cystic echinococcosis.

    Science.gov (United States)

    Fauser, S; Kern, P

    1997-04-01

    In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.

  4. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  5. Genetic analysis of tumorigenesis: XXXII. Localization of constitutionally amplified KRAS sequences to Chinese hamster chromosomes X and Y by in situ hybridization.

    Science.gov (United States)

    Stenman, G; Anisowicz, A; Sager, R

    1988-11-01

    The KRAS gene is constitutionally amplified in the Chinese hamster. We have mapped the amplified sequences by in situ hybridization to two major sites on the X and Y chromosomes, Xq4 and Yp2. No autosomal site was detected despite a search under relaxed hybridization conditions. KRAS DNA is amplified about 50-fold compared to a human cell line known to have a diploid number of KRAS sequences, whereas mRNA expression is 5- to 10-fold lower than in normal human cells. While mRNA expression levels do not necessarily parallel gene copy number, the low expression level strongly suggests that the amplified sequences are transcriptionally silent. It is suggested that the amplified sequences arose from the original KRAS gene on chromosome 8 and that the KRAS sequences on the Y chromosome arose by X-Y recombination.

  6. MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Prakash Radhakrishnan

    Full Text Available Transmembrane mucins, MUC4 and MUC16 are associated with tumor progression and metastatic potential in human pancreatic adenocarcinoma. We discovered that miR-200c interacts with specific sequences within the coding sequence of MUC4 and MUC16 mRNAs, and evaluated the regulatory nature of this association. Pancreatic cancer cell lines S2.028 and T3M-4 transfected with miR-200c showed a 4.18 and 8.50 fold down regulation of MUC4 mRNA, and 4.68 and 4.82 fold down regulation of MUC16 mRNA compared to mock-transfected cells, respectively. A significant reduction of glycoprotein expression was also observed. These results indicate that miR-200c overexpression regulates MUC4 and MUC16 mucins in pancreatic cancer cells by directly targeting the mRNA coding sequence of each, resulting in reduced levels of MUC4 and MUC16 mRNA and protein. These data suggest that, in addition to regulating proteins that modulate EMT, miR-200c influences expression of cell surface mucins in pancreatic cancer.

  7. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alpha administration

    International Nuclear Information System (INIS)

    Romanowski, W.; Braczkowski, R.; Nowakowska-Zajdel, E.; Muc-Wierzgon, M.; Zubelewicz-Szkodzinska, B.; Kosiewicz, J.; Korzonek, I.

    2006-01-01

    Introduction: Interferon a (IFN-a) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-a administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-a on GH mRNA expression in the rat anterior pituitary. Objective: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-a. Material and methods: Rats were administered an intraperitoneal injection of IFN-a or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31 - base 35S -labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. Results: Acute administration of interferon a increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. Conclusion: A single IFN-a administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-a. (author) GH mRNA, anterior pituitary, interferon

  8. Integrative analysis of deep sequencing data identifies estrogen receptor early response genes and links ATAD3B to poor survival in breast cancer.

    Directory of Open Access Journals (Sweden)

    Kristian Ovaska

    Full Text Available Identification of responsive genes to an extra-cellular cue enables characterization of pathophysiologically crucial biological processes. Deep sequencing technologies provide a powerful means to identify responsive genes, which creates a need for computational methods able to analyze dynamic and multi-level deep sequencing data. To answer this need we introduce here a data-driven algorithm, SPINLONG, which is designed to search for genes that match the user-defined hypotheses or models. SPINLONG is applicable to various experimental setups measuring several molecular markers in parallel. To demonstrate the SPINLONG approach, we analyzed ChIP-seq data reporting PolII, estrogen receptor α (ERα, H3K4me3 and H2A.Z occupancy at five time points in the MCF-7 breast cancer cell line after estradiol stimulus. We obtained 777 ERa early responsive genes and compared the biological functions of the genes having ERα binding within 20 kb of the transcription start site (TSS to genes without such binding site. Our results show that the non-genomic action of ERα via the MAPK pathway, instead of direct ERa binding, may be responsible for early cell responses to ERα activation. Our results also indicate that the ERα responsive genes triggered by the genomic pathway are transcribed faster than those without ERα binding sites. The survival analysis of the 777 ERα responsive genes with 150 primary breast cancer tumors and in two independent validation cohorts indicated the ATAD3B gene, which does not have ERα binding site within 20 kb of its TSS, to be significantly associated with poor patient survival.

  9. Stimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Freake, H.C.; Oppenheimer, J.H.

    1987-05-01

    In liver, thyroid hormone rapidly induces S14 mRNA, which encodes a small acidic protein. This sequence is abundantly expressed only in lipogenic tissues and is thought to have some function in fat metabolism. In the euthyroid rat, we measured 20-fold higher levels of S14 mRNA in interscapular brown adipose tissue than liver. Furthermore, whereas in liver or epididymal fat, hypothyroidism resulted in an 80% fall in S14 mRNA, in brown fat the level of this sequence increased a further 3-fold. In all three tissues, the expression of S14 mRNA correlated well with lipogenesis, as assessed by /sup 3/H/sub 2/O incorporation. Physiological activation of brown fat by chronic cold exposure or cafeteria feeding increased the concentration of S14 mRNA in this tissue and again this was accompanied by a greater rate of fatty acid synthesis. Overall, in liver and white and brown adipose tissue, S14 mRNA and lipogenesis were well correlated and strongly suggest a function of the S14 protein related to fat synthesis. These studies suggest that the S14 protein and lipogenesis may be important for thyroid hormone-induced and brown adipose tissue thermogenesis and that stimulation of these functions in hypothyroid brown fat is a consequence of decreased thyroid hormone-induced thermogenesis elsewhere.

  10. Stimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis

    International Nuclear Information System (INIS)

    Freake, H.C.; Oppenheimer, J.H.

    1987-01-01

    In liver, thyroid hormone rapidly induces S14 mRNA, which encodes a small acidic protein. This sequence is abundantly expressed only in lipogenic tissues and is thought to have some function in fat metabolism. In the euthyroid rat, we measured 20-fold higher levels of S14 mRNA in interscapular brown adipose tissue than liver. Furthermore, whereas in liver or epididymal fat, hypothyroidism resulted in an 80% fall in S14 mRNA, in brown fat the level of this sequence increased a further 3-fold. In all three tissues, the expression of S14 mRNA correlated well with lipogenesis, as assessed by 3 H 2 O incorporation. Physiological activation of brown fat by chronic cold exposure or cafeteria feeding increased the concentration of S14 mRNA in this tissue and again this was accompanied by a greater rate of fatty acid synthesis. Overall, in liver and white and brown adipose tissue, S14 mRNA and lipogenesis were well correlated and strongly suggest a function of the S14 protein related to fat synthesis. These studies suggest that the S14 protein and lipogenesis may be important for thyroid hormone-induced and brown adipose tissue thermogenesis and that stimulation of these functions in hypothyroid brown fat is a consequence of decreased thyroid hormone-induced thermogenesis elsewhere

  11. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing.

    Science.gov (United States)

    He, Bifang; Tjhung, Katrina F; Bennett, Nicholas J; Chou, Ying; Rau, Andrea; Huang, Jian; Derda, Ratmir

    2018-01-19

    Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.

  12. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle.

    Science.gov (United States)

    Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L

    2007-01-01

    The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.

  13. Molecular cloning, sequence characterization and expression pattern of Rab18 gene from watermelon (Citrullus lanatus).

    Science.gov (United States)

    Xinli, Xiao; Lei, Peng

    2015-03-04

    The complete mRNA sequence of watermelon Rab18 gene was amplified through the rapid amplification of cDNA ends (RACE) method. The full-length mRNA was 1010 bp containing a 645 bp open reading frame, which encodes a protein of 214 amino acids. Sequence analysis revealed that watermelon Rab18 protein shares high homology with the Rab18 of cucumber (99%), muskmelon (98%), Morus notabilis (90%), tomato (89%), wine grape (89%) and potato (88%). Phylogenetic analysis revealed that watermelon Rab18 gene has a closer genetic relationship with Rab18 gene of cucumber and muskmelon. Tissue expression profile analysis indicated that watermelon Rab18 gene was highly expressed in root, stem and leaf, moderately expressed in flower and weakly expressed in fruit.

  14. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    Science.gov (United States)

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  15. Differential genomic arrangements in Caryophyllales through deep transcriptome sequencing of A. hypochondriacus.

    Directory of Open Access Journals (Sweden)

    Meeta Sunil

    Full Text Available Genome duplication event in edible dicots under the orders Rosid and Asterid, common during the oligocene period, is missing for species under the order Caryophyllales. Despite this, grain amaranths not only survived this period but display many desirable traits missing in species under rosids and asterids. For example, grain amaranths display traits like C4 photosynthesis, high-lysine seeds, high-yield, drought resistance, tolerance to infection and resilience to stress. It is, therefore, of interest to look for minor genome rearrangements with potential functional implications that are unique to grain amaranths. Here, by deep sequencing and assembly of 16 transcriptomes (86.8 billion bases we have interrogated differential genome rearrangement unique to Amaranthus hypochondriacus with potential links to these phenotypes. We have predicted 125,581 non-redundant transcripts including 44,529 protein coding transcripts identified based on homology to known proteins and 13,529 predicted as novel/amaranth specific coding transcripts. Of the protein coding de novo assembled transcripts, we have identified 1810 chimeric transcripts. More than 30% and 19% of the gene pairs within the chimeric transcripts are found within the same loci in the genomes of A. hypochondriacus and Beta vulgaris respectively and are considered real positives. Interestingly, one of the chimeric transcripts comprises two important genes, namely DHDPS1, a key enzyme implicated in the biosynthesis of lysine, and alpha-glucosidase, an enzyme involved in sucrose catabolism, in close proximity to each other separated by a distance of 612 bases in the genome of A. hypochondriacus in a convergent configuration. We have experimentally validated that transcripts of these two genes are also overlapping in the 3' UTR with their expression negatively correlated from bud to mature seed, suggesting a potential link between the high seed lysine trait and unique genome organization.

  16. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    Scarpati, E.M.; Wen, D.; Broze, G.J. Jr.; Miletich, J.P.; Flandermeyer, R.R.; Siegel, N.R.; Sadler, J.E.

    1987-01-01

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  17. Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network

    Directory of Open Access Journals (Sweden)

    Buzhong Zhang

    2018-05-01

    Full Text Available Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibility, which is based on a stacked deep bidirectional recurrent neural network applied to sequence profiles. To capture more long-range sequence information, a merging operator was proposed when bidirectional information from hidden nodes was merged for outputs. Three types of merging operators were used in our improved model, with a long short-term memory network performing as a hidden computing node. The trained database was constructed from 7361 proteins extracted from the PISCES server using a cut-off of 25% sequence identity. Sequence-derived features including position-specific scoring matrix, physical properties, physicochemical characteristics, conservation score and protein coding were used to represent a residue. Using this method, predictive values of continuous relative solvent-accessible area were obtained, and then, these values were transformed into binary states with predefined thresholds. Our experimental results showed that our deep learning method improved prediction quality relative to current methods, with mean absolute error and Pearson’s correlation coefficient values of 8.8% and 74.8%, respectively, on the CB502 dataset and 8.2% and 78%, respectively, on the Manesh215 dataset.

  18. Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network.

    Science.gov (United States)

    Zhang, Buzhong; Li, Linqing; Lü, Qiang

    2018-05-25

    Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibility, which is based on a stacked deep bidirectional recurrent neural network applied to sequence profiles. To capture more long-range sequence information, a merging operator was proposed when bidirectional information from hidden nodes was merged for outputs. Three types of merging operators were used in our improved model, with a long short-term memory network performing as a hidden computing node. The trained database was constructed from 7361 proteins extracted from the PISCES server using a cut-off of 25% sequence identity. Sequence-derived features including position-specific scoring matrix, physical properties, physicochemical characteristics, conservation score and protein coding were used to represent a residue. Using this method, predictive values of continuous relative solvent-accessible area were obtained, and then, these values were transformed into binary states with predefined thresholds. Our experimental results showed that our deep learning method improved prediction quality relative to current methods, with mean absolute error and Pearson's correlation coefficient values of 8.8% and 74.8%, respectively, on the CB502 dataset and 8.2% and 78%, respectively, on the Manesh215 dataset.

  19. mRNA decay proteins are targeted to poly(A+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Itzel López-Rosas

    -body-like structures in E. histolytica. Our findings should open up opportunities for deciphering the mechanisms of mRNA degradation and RNA-based gene silencing in this deep-branching eukaryote.

  20. RANDNA: a random DNA sequence generator.

    Science.gov (United States)

    Piva, Francesco; Principato, Giovanni

    2006-01-01

    Monte Carlo simulations are useful to verify the significance of data. Genomic regularities, such as the nucleotide correlations or the not uniform distribution of the motifs throughout genomic or mature mRNA sequences, exist and their significance can be checked by means of the Monte Carlo test. The test needs good quality random sequences in order to work, moreover they should have the same nucleotide distribution as the sequences in which the regularities have been found. Random DNA sequences are also useful to estimate the background score of an alignment, that is a threshold below which the resulting score is merely due to chance. We have developed RANDNA, a free software which allows to produce random DNA or RNA sequences setting both their length and the percentage of nucleotide composition. Sequences having the same nucleotide distribution of exonic, intronic or intergenic sequences can be generated. Its graphic interface makes it possible to easily set the parameters that characterize the sequences being produced and saved in a text format file. The pseudo-random number generator function of Borland Delphi 6 is used, since it guarantees a good randomness, a long cycle length and a high speed. We have checked the quality of sequences generated by the software, by means of well-known tests, both by themselves and versus genuine random sequences. We show the good quality of the generated sequences. The software, complete with examples and documentation, is freely available to users from: http://www.introni.it/en/software.

  1. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing.

    Science.gov (United States)

    Bergfors, Assar; Leenheer, Daniël; Bergqvist, Anders; Ameur, Adam; Lennerstrand, Johan

    2016-02-01

    Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Gene expression in the deep biosphere.

    Science.gov (United States)

    Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F

    2013-07-11

    Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.

  3. Deep Sequence Analysis of AgoshRNA Processing Reveals 3’ A Addition and Trimming

    Directory of Open Access Journals (Sweden)

    Alex Harwig

    2015-01-01

    Full Text Available The RNA interference (RNAi pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA, was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2 slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp. This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3’ strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3’ tail of 1–3 A-nucleotides (nt and we present evidence that this product is subsequently trimmed by the poly(A-specific ribonuclease (PARN.

  4. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    Science.gov (United States)

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  5. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    Science.gov (United States)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  6. Primary structure of human pancreatic protease E determined by sequence analysis of the cloned mRNA

    International Nuclear Information System (INIS)

    Shen, W.; Fletcher, T.S.; Largman, C.

    1987-01-01

    Although protease E was isolated from human pancreas over 10 years ago, its amino acid sequence and relationship to the elastases have not been established. The authors report the isolation of a cDNA clone for human pancreatic protease E and determination of the nucleic acid sequence coding for the protein. The deduced amino acid sequence contains all of the features common to serine proteases. The substrate binding region is highly homologous to those of porcine and rat elastases 1, explaining the similar specificity for alanine reported for protease E and these elastases. However, the amino acid sequence outside the substrate binding region is less than 50% conserved, and there is a striking difference in the overall net charge for protease E (6-) and elastases 1 (8+). These findings confirm that protease E is a new member of the serine protease family. They have attempted to identify amino acid residues important for the interaction between elastases and elastin by examining the amino acid sequence differences between elastases and protease E. In addition to the large number of surface charge changes which are outside the substrate binding region, there are several changes which might be crucial for elastolysis: Leu-73/Arg-73; Arg-217A/Ala-217A; Arg-65A/Gln-65A; and the presence of two new cysteine residues (Cys-98 and Cys-99B) which computer modeling studies predict could form a new disulfide bond, not previously observed for serine proteases. They also present evidence which suggests that human pancreas does not synthesize a basic, alanine-specific elastase similar to porcine elastase 1

  7. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma.

    Science.gov (United States)

    Giridhar, Karthik V; Sosa, Carlos P; Hillman, David W; Sanhueza, Cristobal; Dalpiaz, Candace L; Costello, Brian A; Quevedo, Fernando J; Pitot, Henry C; Dronca, Roxana S; Ertz, Donna; Cheville, John C; Donkena, Krishna Vanaja; Kohli, Manish

    2017-11-03

    The Memorial Sloan Kettering Cancer Center (MSKCC) prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC) patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR) of 0.14, p < 0.0001, 95% confidence interval (CI) 0.04-0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05-0.34) were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only ( p < 0.0001). Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.

  8. Estrogens and growth factors induce the mRNA of the 52K-pro-cathepsin-D secreted by breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cavailles, V; Augereau, P; Garcia, M; Rochefort, H

    1988-03-25

    The estrogen-induced 52K protein secreted by human breast cancer cells is a lysosomal protease recently identified as a pro-cathepsin D by sequencing several cDNA clones isolated from MCF/sub 7/ cells. Using one of these clones, the authors detected, in MCF/sub 7/ cells a 2.2 kb mRNA whose level was rapidly increased 4- to 10-fold by estradiol, but not by other classes of steroids. Other mitogens, such as epidermal growth factor and insulin, also induced the 2.2 kb mRNA in a dose-dependent manner. Induction with epidermal growth factor was as rapid but was 2- to 3-fold lower than with estradiol. Antiestrogens had no effect on the 52K-cathepsin-D mRNA in MCF/sub 7/ cells, but became estrogen agonists in two antiestrogen-resistant sublines R/sub 27/ and LY2. The use of transcription and translation inhibitors and nuclear run-on experiments indicate that estradiol enhances transcription of the 52K-cathepsin-D gene in MCF/sub 7/ cells.

  9. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Science.gov (United States)

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  10. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2015-07-01

    Full Text Available Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields, to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.

  11. Inferring microRNA regulation of mRNA with partially ordered samples of paired expression data and exogenous prediction algorithms.

    Directory of Open Access Journals (Sweden)

    Brian Godsey

    Full Text Available MicroRNAs (miRs are known to play an important role in mRNA regulation, often by binding to complementary sequences in "target" mRNAs. Recently, several methods have been developed by which existing sequence-based target predictions can be combined with miR and mRNA expression data to infer true miR-mRNA targeting relationships. It has been shown that the combination of these two approaches gives more reliable results than either by itself. While a few such algorithms give excellent results, none fully addresses expression data sets with a natural ordering of the samples. If the samples in an experiment can be ordered or partially ordered by their expected similarity to one another, such as for time-series or studies of development processes, stages, or types, (e.g. cell type, disease, growth, aging, there are unique opportunities to infer miR-mRNA interactions that may be specific to the underlying processes, and existing methods do not exploit this. We propose an algorithm which specifically addresses [partially] ordered expression data and takes advantage of sample similarities based on the ordering structure. This is done within a Bayesian framework which specifies posterior distributions and therefore statistical significance for each model parameter and latent variable. We apply our model to a previously published expression data set of paired miR and mRNA arrays in five partially ordered conditions, with biological replicates, related to multiple myeloma, and we show how considering potential orderings can improve the inference of miR-mRNA interactions, as measured by existing knowledge about the involved transcripts.

  12. Deep sequencing reveals a novel closterovirus associated with wild rose leaf rosette disease.

    Science.gov (United States)

    He, Yan; Yang, Zuokun; Hong, Ni; Wang, Guoping; Ning, Guogui; Xu, Wenxing

    2015-06-01

    A bizarre virus-like symptom of a leaf rosette formed by dense small leaves on branches of wild roses (Rosa multiflora Thunb.), designated as 'wild rose leaf rosette disease' (WRLRD), was observed in China. To investigate the presumed causal virus, a wild rose sample affected by WRLRD was subjected to deep sequencing of small interfering RNAs (siRNAs) for a complete survey of the infecting viruses and viroids. The assembly of siRNAs led to the reconstruction of the complete genomes of three known viruses, namely Apple stem grooving virus (ASGV), Blackberry chlorotic ringspot virus (BCRV) and Prunus necrotic ringspot virus (PNRSV), and of a novel virus provisionally named 'rose leaf rosette-associated virus' (RLRaV). Phylogenetic analysis clearly placed RLRaV alongside members of the genus Closterovirus, family Closteroviridae. Genome organization of RLRaV RNA (17,653 nucleotides) showed 13 open reading frames (ORFs), except ORF1 and the quintuple gene block, most of which showed no significant similarities with known viral proteins, but, instead, had detectable identities to fungal or bacterial proteins. Additional novel molecular features indicated that RLRaV seems to be the most complex virus among the known genus members. To our knowledge, this is the first report of WRLRD and its associated closterovirus, as well as two ilarviruses and one capilovirus, infecting wild roses. Our findings present novel information about the closterovirus and the aetiology of this rose disease which should facilitate its control. More importantly, the novel features of RLRaV help to clarify the molecular and evolutionary features of the closterovirus. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  13. Cloning and sequence analysis of serine proteinase of Gloydius ussuriensis venom gland

    International Nuclear Information System (INIS)

    Sun Dejun; Liu Shanshan; Yang Chunwei; Zhao Yizhuo; Chang Shufang; Yan Weiqun

    2005-01-01

    Objective: To construct a cDNA library by using mRNA from Gloydius ussuriensis (G. Ussuriensis) venom gland, to clone and analyze serine proteinase gene from the cDNA library. Methods: Total RNA was isolated from venom gland of G. ussuriensis, mRNA was purified by using mRNA isolation Kit. The whole length cDNA was synthesized by means of smart cDNA synthesis strategy, and amplified by long distance PCR procedure, lately cDAN was cloned into vector pBluescrip-sk. The recombinant cDNA was transformed into E. coli DH5α. The cDNA of serine proteinase gene in the venom gland of G. ussuriensis was detected and amplified using the in situ hybridization. The cDNA fragment was inserted into pGEMT vector, cloned and its nucleotide sequence was determined. Results: The capacity of cDNA library of venom gland was above 2.3 x 10 6 . Its open reading frame was composed of 702 nucleotides and coded a protein pre-zymogen of 234 amino acids. It contained 12 cysteine residues. The sequence analysis indicated that the deduced amino acid sequence of the cDNA fragment shared high identity with the thrombin-like enzyme genes of other snakes in the GenBank. the query sequence exhibited strong amino acid sequence homology of 85% to the serine proteas of T. gramineus, thrombin-like serine proteinase I of D. acutus and serine protease catroxase II of C. atrox respectively. Based on the amino acid sequences of other thrombin-like enzymes, the catalytic residues and disulfide bridges of this thrombin-like enzyme were deduced as follows: catalytic residues, His 41 , Asp 86 , Ser 180 ; and six disulfide bridges Cys 7 -Cys 139 , Cys 26 -Cys 42 , Cys 74 -Cys 232 , Cys 118 -Cys 186 , Cys 150 -Cys 165 , Cys 176 -Cys 201 . Conclusion: The capacity of cDNA library of venom gland is above 2.3 x 10 6 , overtop the level of 10 5 capicity. The constructed cDNA library of G. ussuriensis venom gland would be helpful platform to detect new target genes and further gene manipulate. The cloned serine

  14. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  15. Mechanisms controlling mRNA processing and translation : decoding the regulatory layers defining gene expression through RNA sequencing

    NARCIS (Netherlands)

    Klerk, Eleonora de

    2015-01-01

    The work described in this thesis focuses on the mechanisms that give rise to alternative mRNAs and their alternative translation into proteins. Each of the described studies has been based on a specific set of high-throughput RNA sequencing technologies. An overview of the available RNA sequencing

  16. ARMOUR – A Rice miRNA: mRNA Interaction Resource

    Directory of Open Access Journals (Sweden)

    Neeti Sanan-Mishra

    2018-05-01

    Full Text Available ARMOUR was developed as ARice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

  17. mRNA Traffic Control Reviewed: N6-Methyladenosine (m6 A) Takes the Driver's Seat.

    Science.gov (United States)

    Visvanathan, Abhirami; Somasundaram, Kumaravel

    2018-01-01

    Messenger RNA is a flexible tool box that plays a key role in the dynamic regulation of gene expression. RNA modifications variegate the message conveyed by the mRNA. Similar to DNA and histone modifications, mRNA modifications are reversible and play a key role in the regulation of molecular events. Our understanding about the landscape of RNA modifications is still rudimentary in contrast to DNA and histone modifications. The major obstacle has been the lack of sensitive detection methods since they are non-editing events. However, with the advent of next-generation sequencing techniques, RNA modifications are being identified precisely at single nucleotide resolution. In recent years, methylation at the N6 position of adenine (m 6 A) has gained the attention of RNA biologists. The m 6 A modification has a set of writers (methylases), erasers (demethylases), and readers. Here, we provide a summary of interesting facts, conflicting findings, and recent advances in the technical and functional aspects of the m 6 A epitranscriptome. © 2017 WILEY Periodicals, Inc.

  18. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    Directory of Open Access Journals (Sweden)

    Sabah Kadri

    Full Text Available microRNAs (miRNAs are small (20-23 nt, non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin and Patiria miniata (sea star are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc. to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads. Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common. We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html.

  19. RNA Deep Sequencing Reveals Differential MicroRNA Expression during Development of Sea Urchin and Sea Star

    Science.gov (United States)

    Kadri, Sabah; Hinman, Veronica F.; Benos, Panayiotis V.

    2011-01-01

    microRNAs (miRNAs) are small (20–23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. PMID:22216218

  20. Human-associated fungi in deep subseafloor sediment?

    Science.gov (United States)

    Fulfer, V. M.; Kirkpatrick, J. B.; D'Hondt, S.

    2015-12-01

    Recent studies have reported fungi in marine sediment samples from depths as great as 1740 meters below seafloor (mbsf) (Rédou et al., 2014). Such studies have utilized a variety of techniques to identify fungi, including cultivation of isolates, amplicon sequencing, and metagenomics. Six recent studies of marine sediment collectively identify nearly 100 fungal taxa at the genus and species levels (Damare et al., 2006; Lai et al., 2007; Edgcomb et al., 2010; Singh et al., 2010; Orsi et al., 2013; Rédou et al., 2014). Known marine taxa are rarely identified by these studies. For individual studies with more than two taxa, between 16% and 57% of the fungal taxa are human microflora or associated with human environments (e.g., human skin or indoor air). For example, three of the six studies identified Malassezia species that are common skin inhabitants of humans and dogs. Although human-associated taxa have been identified in both shallow and deep sediment, they pose a particularly acute problem for deep subseafloor samples, where claims of a eukaryotic deep biosphere are most striking; depending on the study, 25% to 38% of species identified in sediment taken at depths greater than 40 meters are human-associated. Only one to three species have been reported from each of the four samples taken at depths greater than one km (eight species total; Rédou et al., 2014). Of these eight species, three are human-associated. This ubiquity of human-associated microflora is very problematic for interpretations of an indigenous deep subseafloor fungal community; either human-associated taxa comprise a large fraction of marine sedimentary fungi, or sample and analytical contamination is so widespread that the extent and ubiquity of a deep subseafloor fungal community remains uncertain. This highlights the need for stringent quality control measures throughout coring, sampling, and recovery of marine sediment, and when cultivating, extracting, and/or sequencing fungi from

  1. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4

    DEFF Research Database (Denmark)

    Johansson, Peter; Aoude, Lauren G; Wadt, Karin

    2016-01-01

    Next generation sequencing of uveal melanoma (UM) samples has identified a number of recurrent oncogenic or loss-of-function mutations in key driver genes including: GNAQ, GNA11, EIF1AX, SF3B1 and BAP1. To search for additional driver mutations in this tumor type we carried out whole......, instead, a BRCA mutation signature predominated. In addition to mutations in the known UM driver genes, we found a recurrent mutation in PLCB4 (c.G1888T, p.D630Y, NM_000933), which was validated using Sanger sequencing. The identical mutation was also found in published UM sequence data (1 of 56 tumors......-genome or whole-exome sequencing of 28 tumors or primary cell lines. These samples have a low mutation burden, with a mean of 10.6 protein changing mutations per sample (range 0 to 53). As expected for these sun-shielded melanomas the mutation spectrum was not consistent with an ultraviolet radiation signature...

  2. Viral metagenomics: Analysis of begomoviruses by illumina high-throughput sequencing

    KAUST Repository

    Idris, Ali

    2014-03-12

    Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes) (genus, Begomovirus; family, Geminiviridae) were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA). Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS). CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  3. Viral Metagenomics: Analysis of Begomoviruses by Illumina High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Ali Idris

    2014-03-01

    Full Text Available Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes (genus, Begomovirus; family, Geminiviridae were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA. Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS. CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions.

  4. Complete genome sequence of a tomato infecting tomato mottle mosaic virus in New York

    Science.gov (United States)

    Complete genome sequence of an emerging isolate of tomato mottle mosaic virus (ToMMV) infecting experimental nicotianan benthamiana plants in up-state New York was obtained using small RNA deep sequencing. ToMMV_NY-13 shared 99% sequence identity to ToMMV isolates from Mexico and Florida. Broader d...

  5. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans.

    Science.gov (United States)

    Zhu, Wenhui; Liu, Shanshan; Liu, Jia; Zhou, Yan; Lin, Huancai

    2018-05-01

    Adherence capacity is one of the principal virulence factors of Streptococcus mutans, and adhesion virulence factors are controlled by small RNAs (sRNAs) at the post-transcriptional level in various bacteria. Here, we aimed to identify and decipher putative adhesion-related sRNAs in clinical strains of S. mutans. RNA deep-sequencing was performed to identify potential sRNAs under different adhesion conditions. The expression of sRNAs was analysed by quantitative real-time PCR (qRT-PCR), and bioinformatic methods were used to predict the functional characteristics of sRNAs. A total of 736 differentially expressed candidate sRNAs were predicted, and these included 352 sRNAs located on the antisense to mRNA (AM) and 384 sRNAs in intergenic regions (IGRs). The top 7 differentially expressed sRNAs were successfully validated by qRT-PCR in UA159, and 2 of these were further confirmed in 100 clinical isolates. Moreover, the sequences of two sRNAs were conserved in other Streptococcus species, indicating a conserved role in such closely related species. A good correlation between the expression of sRNAs and the adhesion of 100 clinical strains was observed, which, combined with GO and KEGG, provides a perspective for the comprehension of sRNA function annotation. This study revealed a multitude of novel putative adhesion-related sRNAs in S. mutans and contributed to a better understanding of information concerning the transcriptional regulation of adhesion in S. mutans.

  6. The complete mitochondrial genome of the deep-sea sponge Poecillastra laminaris (Astrophorida, Vulcanellidae).

    Science.gov (United States)

    Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A

    2016-05-01

    The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.

  7. Comparison of illumina and 454 deep sequencing in participants failing raltegravir-based antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Jonathan Z Li

    Full Text Available The impact of raltegravir-resistant HIV-1 minority variants (MVs on raltegravir treatment failure is unknown. Illumina sequencing offers greater throughput than 454, but sequence analysis tools for viral sequencing are needed. We evaluated Illumina and 454 for the detection of HIV-1 raltegravir-resistant MVs.A5262 was a single-arm study of raltegravir and darunavir/ritonavir in treatment-naïve patients. Pre-treatment plasma was obtained from 5 participants with raltegravir resistance at the time of virologic failure. A control library was created by pooling integrase clones at predefined proportions. Multiplexed sequencing was performed with Illumina and 454 platforms at comparable costs. Illumina sequence analysis was performed with the novel snp-assess tool and 454 sequencing was analyzed with V-Phaser.Illumina sequencing resulted in significantly higher sequence coverage and a 0.095% limit of detection. Illumina accurately detected all MVs in the control library at ≥0.5% and 7/10 MVs expected at 0.1%. 454 sequencing failed to detect any MVs at 0.1% with 5 false positive calls. For MVs detected in the patient samples by both 454 and Illumina, the correlation in the detected variant frequencies was high (R2 = 0.92, P<0.001. Illumina sequencing detected 2.4-fold greater nucleotide MVs and 2.9-fold greater amino acid MVs compared to 454. The only raltegravir-resistant MV detected was an E138K mutation in one participant by Illumina sequencing, but not by 454.In participants of A5262 with raltegravir resistance at virologic failure, baseline raltegravir-resistant MVs were rarely detected. At comparable costs to 454 sequencing, Illumina demonstrated greater depth of coverage, increased sensitivity for detecting HIV MVs, and fewer false positive variant calls.

  8. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    Science.gov (United States)

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Regulatory Roles for Long ncRNA and mRNA

    International Nuclear Information System (INIS)

    Karapetyan, Armen R.; Buiting, Coen; Kuiper, Renske A.; Coolen, Marcel W.

    2013-01-01

    Recent advances in high-throughput sequencing technology have identified the transcription of a much larger portion of the genome than previously anticipated. Especially in the context of cancer it has become clear that aberrant transcription of both protein-coding and long non-coding RNAs (lncRNAs) are frequent events. The current dogma of RNA function describes mRNA to be responsible for the synthesis of proteins, whereas non-coding RNA can have regulatory or epigenetic functions. However, this distinction between protein coding and regulatory ability of transcripts may not be that strict. Here, we review the increasing body of evidence for the existence of multifunctional RNAs that have both protein-coding and trans-regulatory roles. Moreover, we demonstrate that coding transcripts bind to components of the Polycomb Repressor Complex 2 (PRC2) with similar affinities as non-coding transcripts, revealing potential epigenetic regulation by mRNAs. We hypothesize that studies on the regulatory ability of disease-associated mRNAs will form an important new field of research

  10. Regulatory Roles for Long ncRNA and mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Armen R.; Buiting, Coen; Kuiper, Renske A.; Coolen, Marcel W., E-mail: M.Coolen@gen.umcn.nl [Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB (Netherlands)

    2013-04-26

    Recent advances in high-throughput sequencing technology have identified the transcription of a much larger portion of the genome than previously anticipated. Especially in the context of cancer it has become clear that aberrant transcription of both protein-coding and long non-coding RNAs (lncRNAs) are frequent events. The current dogma of RNA function describes mRNA to be responsible for the synthesis of proteins, whereas non-coding RNA can have regulatory or epigenetic functions. However, this distinction between protein coding and regulatory ability of transcripts may not be that strict. Here, we review the increasing body of evidence for the existence of multifunctional RNAs that have both protein-coding and trans-regulatory roles. Moreover, we demonstrate that coding transcripts bind to components of the Polycomb Repressor Complex 2 (PRC2) with similar affinities as non-coding transcripts, revealing potential epigenetic regulation by mRNAs. We hypothesize that studies on the regulatory ability of disease-associated mRNAs will form an important new field of research.

  11. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    International Nuclear Information System (INIS)

    Nakamori, Taizo; Fujimori, Akira; Kinoshita, Keiji; Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi

    2010-01-01

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by γ-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  12. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, Taizo, E-mail: taizo@ynu.ac.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Fujimori, Akira [Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kinoshita, Keiji [Nagoya University Avian Bioscience Research Centre, Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-05-15

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  13. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    Science.gov (United States)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  14. Hamp1 mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice.

    Science.gov (United States)

    McLachlan, Stela; Page, Kathryn E; Lee, Seung-Min; Loguinov, Alex; Valore, Erika; Hui, Simon T; Jung, Grace; Zhou, Jie; Lusis, Aldons J; Fuqua, Brie; Ganz, Tomas; Nemeth, Elizabeta; Vulpe, Chris D

    2017-11-01

    Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin ( Hamp1 ) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels. NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least

  15. BPP: a sequence-based algorithm for branch point prediction.

    Science.gov (United States)

    Zhang, Qing; Fan, Xiaodan; Wang, Yejun; Sun, Ming-An; Shao, Jianlin; Guo, Dianjing

    2017-10-15

    Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. djguo@cuhk.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.

    Science.gov (United States)

    Fernandez-Valverde, Selene L; Calcino, Andrew D; Degnan, Bernard M

    2015-05-15

    The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3' and 5' untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3' UTRs. The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.

  17. Discrepancy between Hepatitis C Virus Genotypes and NS4-Based Serotypes: Association with Their Subgenomic Sequences

    Directory of Open Access Journals (Sweden)

    Nan Nwe Win

    2017-01-01

    Full Text Available Determination of hepatitis C virus (HCV genotypes plays an important role in the direct-acting agent era. Discrepancies between HCV genotyping and serotyping assays are occasionally observed. Eighteen samples with discrepant results between genotyping and serotyping methods were analyzed. HCV serotyping and genotyping were based on the HCV nonstructural 4 (NS4 region and 5′-untranslated region (5′-UTR, respectively. HCV core and NS4 regions were chosen to be sequenced and were compared with the genotyping and serotyping results. Deep sequencing was also performed for the corresponding HCV NS4 regions. Seventeen out of 18 discrepant samples could be sequenced by the Sanger method. Both HCV core and NS4 sequences were concordant with that of genotyping in the 5′-UTR in all 17 samples. In cloning analysis of the HCV NS4 region, there were several amino acid variations, but each sequence was much closer to the peptide with the same genotype. Deep sequencing revealed that minor clones with different subgenotypes existed in two of the 17 samples. Genotyping by genome amplification showed high consistency, while several false reactions were detected by serotyping. The deep sequencing method also provides accurate genotyping results and may be useful for analyzing discrepant cases. HCV genotyping should be correctly determined before antiviral treatment.

  18. Comparison of Human and Guinea Pig Acetylcholinesterase Sequences and Rates of Oxime-Assisted Reactivation

    Science.gov (United States)

    2010-01-01

    of appropriate animal model systems. For OP poisoning, the guinea pig (Cavia porcellus) is a commonly used animal model because guinea pigs more...endogenous bioscavenger in vivo. Although guinea pigs historically have been used to test OP poisoning therapies, it has been found recently that guinea pig AChE...transcribed mRNA encoding guinea pig AChE, amplified the resulting cDNA, and sequenced this product. The nucleotide and deduced amino acid sequences of

  19. Bioinformatics for whole-genome shotgun sequencing of microbial communities.

    Directory of Open Access Journals (Sweden)

    Kevin Chen

    2005-07-01

    Full Text Available The application of whole-genome shotgun sequencing to microbial communities represents a major development in metagenomics, the study of uncultured microbes via the tools of modern genomic analysis. In the past year, whole-genome shotgun sequencing projects of prokaryotic communities from an acid mine biofilm, the Sargasso Sea, Minnesota farm soil, three deep-sea whale falls, and deep-sea sediments have been reported, adding to previously published work on viral communities from marine and fecal samples. The interpretation of this new kind of data poses a wide variety of exciting and difficult bioinformatics problems. The aim of this review is to introduce the bioinformatics community to this emerging field by surveying existing techniques and promising new approaches for several of the most interesting of these computational problems.

  20. U.V. repair in deep-sea bacteria

    International Nuclear Information System (INIS)

    Lutz, L.; Yayanos, A.A.

    1986-01-01

    Exposure of cells to light of less than 320 nanometers wavelengths may lead to lethal lesions and perhaps carcinogenesis. Many organisms have evolved mechanisms to repair U.V. light-induced damage. Organisms such as deep-sea bacteria are presumably never exposed to U.V. light and perhaps occasionally to visible from bioluminescence. Thus, the repair of U.V. damage in deep-sea bacterial DNA might be inefficient and repair by photoreactivation unlikely. The bacteria utilized in this investigation are temperature sensitive and barophilic. Four deep-sea isolates were chosen for this study: PE-36 from 3584 m, CNPT-3 from 5782 m, HS-34 from 5682 m, and MT-41 from 10,476 m, all are from the North Pacific ocean. The deep-sea extends from 1100 m to depths greater than 7000 m. It is a region of relatively uniform conditions. The temperature ranges from 5 to -1 0 C. There is no solar light in the deep-sea. Deep-sea bacteria are sensitive to U.V. light; in fact more sensitive than a variety of terrestrial and sea-surface bacteria. All four isolates demonstrate thymine dimer repair. Photoreactivation was observed in only MT-41. The other strains from shallower depths displayed no photoreactivation. The presence of DNA sequences homologous to the rec A, uvr A, B, and C and phr genes of E. coli have been examined by Southern hybridization techniques

  1. mRNA transfection of mouse and human neural stem cell cultures

    OpenAIRE

    McLenachan, Samuel; Zhang, D.; Palomo, A.B.; Edel, Michael John; Chen, F.K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has ...

  2. DEEP: a general computational framework for predicting enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2014-11-05

    Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer\\'s properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/.

  3. DEEP: a general computational framework for predicting enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Kalnis, Panos; Bajic, Vladimir B.

    2014-01-01

    Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer's properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/.

  4. DeepPy: Pythonic deep learning

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces DeepPy – a deep learning framework built on top of NumPy with GPU acceleration. DeepPy bridges the gap between highperformance neural networks and the ease of development from Python/NumPy. Users with a background in scientific computing in Python will quickly...... be able to understand and change the DeepPy codebase as it is mainly implemented using high-level NumPy primitives. Moreover, DeepPy supports complex network architectures by letting the user compose mathematical expressions as directed graphs. The latest version is available at http...

  5. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Karthik V. Giridhar

    2017-11-01

    Full Text Available The Memorial Sloan Kettering Cancer Center (MSKCC prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR of 0.14, p < 0.0001, 95% confidence interval (CI 0.04–0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05–0.34 were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only (p < 0.0001. Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.

  6. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism

    Directory of Open Access Journals (Sweden)

    Llopis Ana

    2010-03-01

    Full Text Available Abstract Background Gene expression is achieved by the coordinated action of multiple factors to ensure a perfect synchrony from chromatin epigenetic regulation through to mRNA export. Sus1 is a conserved mRNA export/transcription factor and is a key player in coupling transcription initiation, elongation and mRNA export. In the nucleus, Sus1 is associated to the transcriptional co-activator SAGA and to the NPC associated complex termed TREX2/THSC. Through these associations, Sus1 mediates the nuclear dynamics of different gene loci and facilitate the export of the new transcripts. Results In this study, we have investigated whether the yeast Sus1 protein is linked to factors involved in mRNA degradation pathways. We provide evidence for genetic interactions between SUS1 and genes coding for components of P-bodies such as PAT1, LSM1, LSM6 and DHH1. We demonstrate that SUS1 deletion is synthetic lethal with 5'→3' decay machinery components LSM1 and PAT1 and has a strong genetic interaction with LSM6 and DHH1. Interestingly, Sus1 overexpression led to an accumulation of Sus1 in cytoplasmic granules, which can co-localise with components of P-bodies and stress granules. In addition, we have identified novel physical interactions between Sus1 and factors associated to P-bodies/stress granules. Finally, absence of LSM1 and PAT1 slightly promotes the Sus1-TREX2 association. Conclusions In this study, we found genetic and biochemical association between Sus1 and components responsible for cytoplasmic mRNA metabolism. Moreover, Sus1 accumulates in discrete cytoplasmic granules, which partially co-localise with P-bodies and stress granules under specific conditions. These interactions suggest a role for Sus1 in gene expression during cytoplasmic mRNA metabolism in addition to its nuclear function.

  7. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome

    Directory of Open Access Journals (Sweden)

    Scoté-Blachon Céline

    2008-09-01

    Full Text Available Abstract Background "Open" transcriptome analysis methods allow to study gene expression without a priori knowledge of the transcript sequences. As of now, SAGE (Serial Analysis of Gene Expression, LongSAGE and MPSS (Massively Parallel Signature Sequencing are the mostly used methods for "open" transcriptome analysis. Both LongSAGE and MPSS rely on the isolation of 21 pb tag sequences from each transcript. In contrast to LongSAGE, the high throughput sequencing method used in MPSS enables the rapid sequencing of very large libraries containing several millions of tags, allowing deep transcriptome analysis. However, a bias in the complexity of the transcriptome representation obtained by MPSS was recently uncovered. Results In order to make a deep analysis of mouse hypothalamus transcriptome avoiding the limitation introduced by MPSS, we combined LongSAGE with the Solexa sequencing technology and obtained a library of more than 11 millions of tags. We then compared it to a LongSAGE library of mouse hypothalamus sequenced with the Sanger method. Conclusion We found that Solexa sequencing technology combined with LongSAGE is perfectly suited for deep transcriptome analysis. In contrast to MPSS, it gives a complex representation of transcriptome as reliable as a LongSAGE library sequenced by the Sanger method.

  8. Deep ART Neural Model for Biologically Inspired Episodic Memory and Its Application to Task Performance of Robots.

    Science.gov (United States)

    Park, Gyeong-Moon; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2017-06-26

    Robots are expected to perform smart services and to undertake various troublesome or difficult tasks in the place of humans. Since these human-scale tasks consist of a temporal sequence of events, robots need episodic memory to store and retrieve the sequences to perform the tasks autonomously in similar situations. As episodic memory, in this paper we propose a novel Deep adaptive resonance theory (ART) neural model and apply it to the task performance of the humanoid robot, Mybot, developed in the Robot Intelligence Technology Laboratory at KAIST. Deep ART has a deep structure to learn events, episodes, and even more like daily episodes. Moreover, it can retrieve the correct episode from partial input cues robustly. To demonstrate the effectiveness and applicability of the proposed Deep ART, experiments are conducted with the humanoid robot, Mybot, for performing the three tasks of arranging toys, making cereal, and disposing of garbage.

  9. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export.

    Science.gov (United States)

    Karijolich, John; Zhao, Yang; Alla, Ravi; Glaunsinger, Britt

    2017-06-02

    Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA-RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication

    International Nuclear Information System (INIS)

    Barr, John N.; Elliott, Richard M.; Dunn, Ewan F.; Wertz, Gail W.

    2003-01-01

    Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are transcribed to give a single mRNA and replicated to generate an antigenome that is the template for synthesis of further genomic RNA strands. We modified an existing cDNA-derived RNA synthesis system to allow identification of BUNV RNA replication and transcription products by direct metabolic labeling. Direct RNA analysis allowed us to distinguish between template activities that affected either RNA replication or mRNA transcription, an ability that was not possible using previous reporter gene expression assays. We generated genome analogs containing the entire nontranslated terminal sequences of the S, M, and L BUNV segments surrounding a common sequence. Analysis of RNAs synthesized from these templates revealed that the relative abilities of BUNV segments to perform RNA replication was M > L > S. Exchange of segment-specific terminal nucleotides identified a 12-nt region located within both the 3' and 5' termini of the M segment that correlated with its high replication ability

  11. Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos

    Directory of Open Access Journals (Sweden)

    Rachel E. Jennings

    2017-11-01

    Full Text Available To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.

  12. HIV-1 transmission patterns in antiretroviral therapy-naive, HIV-infected North Americans based on phylogenetic analysis by population level and ultra-deep DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Lisa L Ross

    Full Text Available Factors that contribute to the transmission of human immunodeficiency virus type 1 (HIV-1, especially drug-resistant HIV-1 variants remain a significant public health concern. In-depth phylogenetic analyses of viral sequences obtained in the screening phase from antiretroviral-naïve HIV-infected patients seeking enrollment in EPZ108859, a large open-label study in the USA, Canada and Puerto Rico (ClinicalTrials.gov NCT00440947 were examined for insights into the roles of drug resistance and epidemiological factors that could impact disease dissemination. Viral transmission clusters (VTCs were initially predicted from a phylogenetic analysis of population level HIV-1 pol sequences obtained from 690 antiretroviral-naïve subjects in 2007. Subsequently, the predicted VTCs were tested for robustness by ultra deep sequencing (UDS using pyrosequencing technology and further phylogenetic analyses. The demographic characteristics of clustered and non-clustered subjects were then compared. From 690 subjects, 69 were assigned to 1 of 30 VTCs, each containing 2 to 5 subjects. Race composition of VTCs were significantly more likely to be white (72% vs. 60%; p = 0.04. VTCs had fewer reverse transcriptase and major PI resistance mutations (9% vs. 24%; p = 0.002 than non-clustered sequences. Both men-who-have-sex-with-men (MSM (68% vs. 48%; p = 0.001 and Canadians (29% vs. 14%; p = 0.03 were significantly more frequent in VTCs than non-clustered sequences. Of the 515 subjects who initiated antiretroviral therapy, 33 experienced confirmed virologic failure through 144 weeks while only 3/33 were from VTCs. Fewer VTCs subjects (as compared to those with non-clustering virus had HIV-1 with resistance-associated mutations or experienced virologic failure during the course of the study. Our analysis shows specific geographical and drug resistance trends that correlate well with transmission clusters defined by HIV sequences of similarity

  13. Deep sequencing of the oral microbiome reveals signatures of periodontal disease.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available The oral microbiome, the complex ecosystem of microbes inhabiting the human mouth, harbors several thousands of bacterial types. The proliferation of pathogenic bacteria within the mouth gives rise to periodontitis, an inflammatory disease known to also constitute a risk factor for cardiovascular disease. While much is known about individual species associated with pathogenesis, the system-level mechanisms underlying the transition from health to disease are still poorly understood. Through the sequencing of the 16S rRNA gene and of whole community DNA we provide a glimpse at the global genetic, metabolic, and ecological changes associated with periodontitis in 15 subgingival plaque samples, four from each of two periodontitis patients, and the remaining samples from three healthy individuals. We also demonstrate the power of whole-metagenome sequencing approaches in characterizing the genomes of key players in the oral microbiome, including an unculturable TM7 organism. We reveal the disease microbiome to be enriched in virulence factors, and adapted to a parasitic lifestyle that takes advantage of the disrupted host homeostasis. Furthermore, diseased samples share a common structure that was not found in completely healthy samples, suggesting that the disease state may occupy a narrow region within the space of possible configurations of the oral microbiome. Our pilot study demonstrates the power of high-throughput sequencing as a tool for understanding the role of the oral microbiome in periodontal disease. Despite a modest level of sequencing (~2 lanes Illumina 76 bp PE and high human DNA contamination (up to ~90% we were able to partially reconstruct several oral microbes and to preliminarily characterize some systems-level differences between the healthy and diseased oral microbiomes.

  14. Oral Microbiome of Deep and Shallow Dental Pockets In Chronic Periodontitis

    Science.gov (United States)

    Ge, Xiuchun; Rodriguez, Rafael; Trinh, My; Gunsolley, John; Xu, Ping

    2013-01-01

    We examined the subgingival bacterial biodiversity in untreated chronic periodontitis patients by sequencing 16S rRNA genes. The primary purpose of the study was to compare the oral microbiome in deep (diseased) and shallow (healthy) sites. A secondary purpose was to evaluate the influences of smoking, race and dental caries on this relationship. A total of 88 subjects from two clinics were recruited. Paired subgingival plaque samples were taken from each subject, one from a probing site depth >5 mm (deep site) and the other from a probing site depth ≤3mm (shallow site). A universal primer set was designed to amplify the V4–V6 region for oral microbial 16S rRNA sequences. Differences in genera and species attributable to deep and shallow sites were determined by statistical analysis using a two-part model and false discovery rate. Fifty-one of 170 genera and 200 of 746 species were found significantly different in abundances between shallow and deep sites. Besides previously identified periodontal disease-associated bacterial species, additional species were found markedly changed in diseased sites. Cluster analysis revealed that the microbiome difference between deep and shallow sites was influenced by patient-level effects such as clinic location, race and smoking. The differences between clinic locations may be influenced by racial distribution, in that all of the African Americans subjects were seen at the same clinic. Our results suggested that there were influences from the microbiome for caries and periodontal disease and these influences are independent. PMID:23762384

  15. A deep learning pipeline for Indian dance style classification

    Science.gov (United States)

    Dewan, Swati; Agarwal, Shubham; Singh, Navjyoti

    2018-04-01

    In this paper, we address the problem of dance style classification to classify Indian dance or any dance in general. We propose a 3-step deep learning pipeline. First, we extract 14 essential joint locations of the dancer from each video frame, this helps us to derive any body region location within the frame, we use this in the second step which forms the main part of our pipeline. Here, we divide the dancer into regions of important motion in each video frame. We then extract patches centered at these regions. Main discriminative motion is captured in these patches. We stack the features from all such patches of a frame into a single vector and form our hierarchical dance pose descriptor. Finally, in the third step, we build a high level representation of the dance video using the hierarchical descriptors and train it using a Recurrent Neural Network (RNN) for classification. Our novelty also lies in the way we use multiple representations for a single video. This helps us to: (1) Overcome the RNN limitation of learning small sequences over big sequences such as dance; (2) Extract more data from the available dataset for effective deep learning by training multiple representations. Our contributions in this paper are three-folds: (1) We provide a deep learning pipeline for classification of any form of dance; (2) We prove that a segmented representation of a dance video works well with sequence learning techniques for recognition purposes; (3) We extend and refine the ICD dataset and provide a new dataset for evaluation of dance. Our model performs comparable or better in some cases than the state-of-the-art on action recognition benchmarks.

  16. Time and space resolved deep metagenomics to investigate selection pressures on low abundant species in complex environments

    DEFF Research Database (Denmark)

    Albertsen, Mads; Saunders, Aaron Marc; Nielsen, Kåre Lehmann

    and between EBPR plants we sequenced a total of 10 samples from 3 different plants over a 3 year period at a depth of 25 Gb each. In addition, one time point was selected for deep sequencing, generating 200 Gb of sequence divided between replicates. Quantitative FISH analysis using >30 oligonucleotide probes...

  17. A deep learning framework for causal shape transformation.

    Science.gov (United States)

    Lore, Kin Gwn; Stoecklein, Daniel; Davies, Michael; Ganapathysubramanian, Baskar; Sarkar, Soumik

    2018-02-01

    Recurrent neural network (RNN) and Long Short-term Memory (LSTM) networks are the common go-to architecture for exploiting sequential information where the output is dependent on a sequence of inputs. However, in most considered problems, the dependencies typically lie in the latent domain which may not be suitable for applications involving the prediction of a step-wise transformation sequence that is dependent on the previous states only in the visible domain with a known terminal state. We propose a hybrid architecture of convolution neural networks (CNN) and stacked autoencoders (SAE) to learn a sequence of causal actions that nonlinearly transform an input visual pattern or distribution into a target visual pattern or distribution with the same support and demonstrated its practicality in a real-world engineering problem involving the physics of fluids. We solved a high-dimensional one-to-many inverse mapping problem concerning microfluidic flow sculpting, where the use of deep learning methods as an inverse map is very seldom explored. This work serves as a fruitful use-case to applied scientists and engineers in how deep learning can be beneficial as a solution for high-dimensional physical problems, and potentially opening doors to impactful advance in fields such as material sciences and medical biology where multistep topological transformations is a key element. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water masses, suggesting a high dispersal......Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial...... communities in three basins of the eastern South Atlantic Ocean to determine diversity and biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521 phylotypes with 98% identity...

  19. Gene Prediction in Metagenomic Fragments with Deep Learning

    Directory of Open Access Journals (Sweden)

    Shao-Wu Zhang

    2017-01-01

    Full Text Available Next generation sequencing technologies used in metagenomics yield numerous sequencing fragments which come from thousands of different species. Accurately identifying genes from metagenomics fragments is one of the most fundamental issues in metagenomics. In this article, by fusing multifeatures (i.e., monocodon usage, monoamino acid usage, ORF length coverage, and Z-curve features and using deep stacking networks learning model, we present a novel method (called Meta-MFDL to predict the metagenomic genes. The results with 10 CV and independent tests show that Meta-MFDL is a powerful tool for identifying genes from metagenomic fragments.

  20. A novel homozygous stop-codon mutation in human HFE responsible for nonsense-mediated mRNA decay.

    Science.gov (United States)

    Padula, Maria Carmela; Martelli, Giuseppe; Larocca, Marilena; Rossano, Rocco; Olivieri, Attilio

    2014-09-01

    HFE-hemochromatosis (HH) is an autosomal disease characterized by excessive iron absorption. Homozygotes for H63D variant, and still less H63D heterozygotes, generally do not express HH phenotype. The data collected in our previous study in the province of Matera (Basilicata, Italy) underlined that some H63D carriers showed altered iron metabolism, without additional factors. In this study, we selected a cohort of 10/22 H63D carriers with severe biochemical iron overload (BIO). Additional analysis was performed for studying HFE exons, exon-intron boundaries, and untranslated regions (UTRs) by performing DNA extraction, PCR amplification and sequencing. The results showed a novel substitution (NM_000410.3:c.847C>T) in a patient exon 4 (GenBankJQ478433); it introduces a premature stop-codon (PTC). RNA extraction and reverse-transcription were also performed. Quantitative real-time PCR was carried out for verifying if our aberrant mRNA is targeted for nonsense-mediated mRNA decay (NMD); we observed that patient HFE mRNA was expressed much less than calibrator, suggesting that the mutated HFE protein cannot play its role in iron metabolism regulation, resulting in proband BIO. Our finding is the first evidence of a variation responsible for a PTC in iron cycle genes. The genotype-phenotype correlation observed in our cases could be related to the additional mutation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. RISC RNA sequencing for context-specific identification of in vivo microRNA targets.

    Science.gov (United States)

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2011-01-07

    MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.

  2. Sex chromosomes and germline transcriptomics explored by single-cell sequencing and RNA-tomography

    NARCIS (Netherlands)

    Vértesy, Ábel

    2018-01-01

    In our study of germ cell differentiation, we applied two recently developed technologies on the germline of various model organisms: single-cell mRNA sequencing and RNA-tomography. For the first time we could look at gene expression with such a high resolution, and this led us to discover the

  3. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    Science.gov (United States)

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  4. Consequences of metaphase II oocyte cryopreservation on mRNA content.

    Science.gov (United States)

    Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L

    2011-04-01

    We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities.

    Science.gov (United States)

    Gilbert, Jack A; Field, Dawn; Huang, Ying; Edwards, Rob; Li, Weizhong; Gilna, Paul; Joint, Ian

    2008-08-22

    Sequencing the expressed genetic information of an ecosystem (metatranscriptome) can provide information about the response of organisms to varying environmental conditions. Until recently, metatranscriptomics has been limited to microarray technology and random cloning methodologies. The application of high-throughput sequencing technology is now enabling access to both known and previously unknown transcripts in natural communities. We present a study of a complex marine metatranscriptome obtained from random whole-community mRNA using the GS-FLX Pyrosequencing technology. Eight samples, four DNA and four mRNA, were processed from two time points in a controlled coastal ocean mesocosm study (Bergen, Norway) involving an induced phytoplankton bloom producing a total of 323,161,989 base pairs. Our study confirms the finding of the first published metatranscriptomic studies of marine and soil environments that metatranscriptomics targets highly expressed sequences which are frequently novel. Our alternative methodology increases the range of experimental options available for conducting such studies and is characterized by an exceptional enrichment of mRNA (99.92%) versus ribosomal RNA. Analysis of corresponding metagenomes confirms much higher levels of assembly in the metatranscriptomic samples and a far higher yield of large gene families with >100 members, approximately 91% of which were novel. This study provides further evidence that metatranscriptomic studies of natural microbial communities are not only feasible, but when paired with metagenomic data sets, offer an unprecedented opportunity to explore both structure and function of microbial communities--if we can overcome the challenges of elucidating the functions of so many never-seen-before gene families.

  6. Sequencing and De Novo Transcriptome Assembly of Brachypodium sylvaticum (Poaceae

    Directory of Open Access Journals (Sweden)

    Samuel E. Fox

    2013-03-01

    Full Text Available Premise of the study: We report the de novo assembly and characterization of the transcriptomes of Brachypodium sylvaticum (slender false-brome accessions from native populations of Spain and Greece, and an invasive population west of Corvallis, Oregon, USA. Methods and Results: More than 350 million sequence reads from the mRNA libraries prepared from three B. sylvaticum genotypes were assembled into 120,091 (Corvallis, 104,950 (Spain, and 177,682 (Greece transcript contigs. In comparison with the B. distachyon Bd21 reference genome and GenBank protein sequences, we estimate >90% exome coverage for B. sylvaticum. The transcripts were assigned Gene Ontology and InterPro annotations. Brachypodium sylvaticum sequence reads aligned against the Bd21 genome revealed 394,654 single-nucleotide polymorphisms (SNPs and >20,000 simple sequence repeat (SSR DNA sites. Conclusions: To our knowledge, this is the first report of transcriptome sequencing of invasive plant species with a closely related sequenced reference genome. The sequences and identified SNP variant and SSR sites will provide tools for developing novel genetic markers for use in genotyping and characterization of invasive behavior of B. sylvaticum.

  7. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  8. Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology, Research Institute of Radiology, Seoul (Korea, Republic of); Inje University, Department of Radiology, Busan Paik Hospital, Busan (Korea, Republic of); Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology, Research Institute of Radiology, Seoul (Korea, Republic of); Lee, Jung Kyo [University of Ulsan College of Medicine, Asan Medical Center, Department of Neurosurgery, Seoul (Korea, Republic of); Lee, Chong Sik; Chung, Sun J. [University of Ulsan College of Medicine, Asan Medical Center, Department of Neurology, Seoul (Korea, Republic of); Cho, So Hyun [Department of Radiology, Busan (Korea, Republic of); Lee, Gyoung Ro [Philips HealthCare Korea, Seoul (Korea, Republic of)

    2015-09-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an accepted treatment for advanced Parkinson's disease (PD). However, targeting the STN is difficult due to its relatively small size and variable location. The purpose of this study was to assess which of the following sequences obtained with the 3.0 T MR system can accurately delineate the STN: coronal 3D fluid-attenuated inversion recovery (FLAIR), 2D T2*-weighted fast-field echo (T2*-FFE) and 2D T2-weighted turbo spin-echo (TSE) sequences. We included 20 consecutive patients with PD who underwent 3.0 T MR for DBS targeting. 3D FLAIR, 2D T2*-FFE and T2-TSE images were obtained for all study patients. Image quality and demarcation of the STN were analysed using 4-point scales, and contrast ratio (CR) of the STN and normal white matter was calculated. The Friedman test was used to compare the three sequences. In qualitative analysis, the 2D T2*-FFE image showed more artefacts than 3D FLAIR or 2D T2-TSE, but the difference did not reach statistical significance. 3D FLAIR images showed significantly superior demarcation of the STN compared with 2D T2*-FFE and T2-TSE images (P < 0.001, respectively). The CR of 3D FLAIR was significantly higher than that of 2D T2*-FFE or T2-TSE images in multiple comparison correction (P < 0.001), but there was no significant difference in the CR between 2D T2*-FFE and T2-TSE images. Coronal 3D FLAIR images showed the most accurate demarcation of the STN for DBS targeting among coronal 3D FLAIR, 2D T2*-FFE and T2-TSE images. (orig.)

  9. Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease

    International Nuclear Information System (INIS)

    Heo, Young Jin; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Lee, Jung Kyo; Lee, Chong Sik; Chung, Sun J.; Cho, So Hyun; Lee, Gyoung Ro

    2015-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an accepted treatment for advanced Parkinson's disease (PD). However, targeting the STN is difficult due to its relatively small size and variable location. The purpose of this study was to assess which of the following sequences obtained with the 3.0 T MR system can accurately delineate the STN: coronal 3D fluid-attenuated inversion recovery (FLAIR), 2D T2*-weighted fast-field echo (T2*-FFE) and 2D T2-weighted turbo spin-echo (TSE) sequences. We included 20 consecutive patients with PD who underwent 3.0 T MR for DBS targeting. 3D FLAIR, 2D T2*-FFE and T2-TSE images were obtained for all study patients. Image quality and demarcation of the STN were analysed using 4-point scales, and contrast ratio (CR) of the STN and normal white matter was calculated. The Friedman test was used to compare the three sequences. In qualitative analysis, the 2D T2*-FFE image showed more artefacts than 3D FLAIR or 2D T2-TSE, but the difference did not reach statistical significance. 3D FLAIR images showed significantly superior demarcation of the STN compared with 2D T2*-FFE and T2-TSE images (P < 0.001, respectively). The CR of 3D FLAIR was significantly higher than that of 2D T2*-FFE or T2-TSE images in multiple comparison correction (P < 0.001), but there was no significant difference in the CR between 2D T2*-FFE and T2-TSE images. Coronal 3D FLAIR images showed the most accurate demarcation of the STN for DBS targeting among coronal 3D FLAIR, 2D T2*-FFE and T2-TSE images. (orig.)

  10. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    Directory of Open Access Journals (Sweden)

    Xiang Li-xin

    2010-08-01

    Full Text Available Abstract Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host

  11. DRREP: deep ridge regressed epitope predictor.

    Science.gov (United States)

    Sher, Gene; Zhi, Degui; Zhang, Shaojie

    2017-10-03

    The ability to predict epitopes plays an enormous role in vaccine development in terms of our ability to zero in on where to do a more thorough in-vivo analysis of the protein in question. Though for the past decade there have been numerous advancements and improvements in epitope prediction, on average the best benchmark prediction accuracies are still only around 60%. New machine learning algorithms have arisen within the domain of deep learning, text mining, and convolutional networks. This paper presents a novel analytically trained and string kernel using deep neural network, which is tailored for continuous epitope prediction, called: Deep Ridge Regressed Epitope Predictor (DRREP). DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV, AntiJen, and SEQ194. DRREP was compared to numerous state of the art epitope predictors, including the most recently published predictors called LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance improvement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%), with its performance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP and LBtope achieved an AUC of 0.702. DRREP is an analytically trained deep neural network, thus capable of learning in a single step through regression. By combining the features of deep learning, string kernels, and convolutional networks, the system is able to perform residue-by-residue prediction of continues epitopes with higher accuracy than the current state of the art predictors.

  12. HuB (elavl2 mRNA is restricted to the germ cells by post-transcriptional mechanisms including stabilisation of the message by DAZL.

    Directory of Open Access Journals (Sweden)

    Sophie E Wiszniak

    Full Text Available The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3'UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3'UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3'UTR. Our study suggests that DAZL specifically binds the HuB 3'UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein.

  13. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network

    Science.gov (United States)

    Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke

    2018-06-01

    Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.

  14. Development of quantitative analysis method for mRNA in Mycobacterium leprae and slow-growing acid-fast bacteria using radioisotope

    International Nuclear Information System (INIS)

    Nakanaga, Kazue; Maeda, Shinji; Matsuoka, Masanori; Kashiwabara, Yoshiko

    2000-01-01

    Since RNase protection assay (RPA) system for specific detection of mRNA from M. lepra was established in the previous year, modification of the system was attempted to detect a trace amount of mRNA in this study. Thus, RNA amplification was examined using nucleic aid sequence-based amplification method (NASBA). Since 32 P CTP was used as an isotope for synthesis of anti-sense RNA probe in the previous method, the label compound was exchanged to that with a lower energy in this study, resulting that the half life of the probe was increased and handling of the probe became easier. Several short bands consisting of 100-130b were detected in total RNA sample of M.marinum and M.choelonae by RPA using T1 probe (194-762, 580b). Whereas the new probe M1 detected longer bands of about 350b from M.marinum RNA and of 250b from M.chelonae, M. bovis BCG and M. kansaii. However, T1 probe was more suitable for specific detection of M.leprae hsp 65 than M1 probe because high and low homogeneous regions are coexisting in the gene. Specific mRNA was detectable from only 3 pg of total RNA by the use of NASBA. RNA recovery for QIAGEN was about 50%, however, the sensitivity of NASBA method was estimated to be several ten to hundred thousands times higher, suggesting that this method is very effective for detection and determination of trace amount of mRNA. (M.N.)

  15. Development of quantitative analysis method for mRNA in Mycobacterium leprae and slow-growing acid-fast bacteria using radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Nakanaga, Kazue; Maeda, Shinji; Matsuoka, Masanori; Kashiwabara, Yoshiko [National Inst. of Infectious Deseases, Tokyo (Japan)

    2000-02-01

    Since RNase protection assay (RPA) system for specific detection of mRNA from M. lepra was established in the previous year, modification of the system was attempted to detect a trace amount of mRNA in this study. Thus, RNA amplification was examined using nucleic aid sequence-based amplification method (NASBA). Since {sup 32}P CTP was used as an isotope for synthesis of anti-sense RNA probe in the previous method, the label compound was exchanged to that with a lower energy in this study, resulting that the half life of the probe was increased and handling of the probe became easier. Several short bands consisting of 100-130b were detected in total RNA sample of M.marinum and M.choelonae by RPA using T1 probe (194-762, 580b). Whereas the new probe M1 detected longer bands of about 350b from M.marinum RNA and of 250b from M.chelonae, M. bovis BCG and M. kansaii. However, T1 probe was more suitable for specific detection of M.leprae hsp 65 than M1 probe because high and low homogeneous regions are coexisting in the gene. Specific mRNA was detectable from only 3 pg of total RNA by the use of NASBA. RNA recovery for QIAGEN was about 50%, however, the sensitivity of NASBA method was estimated to be several ten to hundred thousands times higher, suggesting that this method is very effective for detection and determination of trace amount of mRNA. (M.N.)

  16. Deep Sea Coral voucher sequence dataset - Identification of deep-sea corals collected during the 2009 - 2014 West Coast Groundfish Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data for this project resides in the West Coast Groundfish Bottom Trawl Survey Database. Deep-sea corals are often components of trawling bycatch, though their...

  17. Unveiling the Biodiversity of Deep-Sea Nematodes through Metabarcoding: Are We Ready to Bypass the Classical Taxonomy?

    Science.gov (United States)

    Dell'Anno, Antonio; Carugati, Laura; Corinaldesi, Cinzia; Riccioni, Giulia; Danovaro, Roberto

    2015-01-01

    Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intra-genomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects

  18. High-throughput verification of transcriptional starting sites by Deep-RACE

    DEFF Research Database (Denmark)

    Olivarius, Signe; Plessy, Charles; Carninci, Piero

    2009-01-01

    We present a high-throughput method for investigating the transcriptional starting sites of genes of interest, which we named Deep-RACE (Deep–rapid amplification of cDNA ends). Taking advantage of the latest sequencing technology, it allows the parallel analysis of multiple genes and is free...

  19. Detection of a high-molecular-weight LHRH precursor by cell-free translation of mRNA from human, rat, and mouse hypothalamus

    International Nuclear Information System (INIS)

    Curtis, A.; Szelke, M.; Fink, G.

    1986-01-01

    Large precursors have also been predicted using the immunoprecipitation technique which relies upon the identification of large immunoreactive molecules following in vitro translation of mRNA. The mRNA is presumed to represent the largest form of a nascent precursor polypeptide molecule irrespective of the number of biosynthetic cleavage steps which are necessary to liberate the active peptide. However, as has been shown for somatostatin, nonprotein modifications may be made which apparently increase molecular weight, such as glycosylation or phosphorylation of the molecule. The authors employed the immunoprecipitation technique to confirm earlier chromatographic studies that the hypothalamic decapeptide, luteinizing hormone releasing hormone (LHRH) is also synthesized by way of a large precursor form. The authors' finding show that the translation of hypothalamic mRNA produces a primary translation product with an apparent molecule weight of 28,000 which contains an amino acid sequence immunologically similar to that of biologically active LHRH. The procedure involved the incorporation of a radioactive amino acid into polypeptides synthesized by in vitro translation of hypothalamic messenger RNA. The resulting complex protein mixture was immunoprecipitated with a specific anti-LHRH serum, and the immunoprecipitate was identified by polyacrylamide gel electrophoresis and autoradiography

  20. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  1. Regulatory Roles for Long ncRNA and mRNA

    Directory of Open Access Journals (Sweden)

    Marcel W. Coolen

    2013-04-01

    Full Text Available Recent advances in high-throughput sequencing technology have identified the transcription of a much larger portion of the genome than previously anticipated. Especially in the context of cancer it has become clear that aberrant transcription of both protein-coding and long non-coding RNAs (lncRNAs are frequent events. The current dogma of RNA function describes mRNA to be responsible for the synthesis of proteins, whereas non-coding RNA can have regulatory or epigenetic functions. However, this distinction between protein coding and regulatory ability of transcripts may not be that strict. Here, we review the increasing body of evidence for the existence of multifunctional RNAs that have both protein-coding and trans-regulatory roles. Moreover, we demonstrate that coding transcripts bind to components of the Polycomb Repressor Complex 2 (PRC2 with similar affinities as non-coding transcripts, revealing potential epigenetic regulation by mRNAs. We hypothesize that studies on the regulatory ability of disease-associated mRNAs will form an important new field of research.

  2. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.

    Directory of Open Access Journals (Sweden)

    James X Sun

    2018-02-01

    Full Text Available A key constraint in genomic testing in oncology is that matched normal specimens are not commonly obtained in clinical practice. Thus, while well-characterized genomic alterations do not require normal tissue for interpretation, a significant number of alterations will be unknown in whether they are germline or somatic, in the absence of a matched normal control. We introduce SGZ (somatic-germline-zygosity, a computational method for predicting somatic vs. germline origin and homozygous vs. heterozygous or sub-clonal state of variants identified from deep massively parallel sequencing (MPS of cancer specimens. The method does not require a patient matched normal control, enabling broad application in clinical research. SGZ predicts the somatic vs. germline status of each alteration identified by modeling the alteration's allele frequency (AF, taking into account the tumor content, tumor ploidy, and the local copy number. Accuracy of the prediction depends on the depth of sequencing and copy number model fit, which are achieved in our clinical assay by sequencing to high depth (>500x using MPS, covering 394 cancer-related genes and over 3,500 genome-wide single nucleotide polymorphisms (SNPs. Calls are made using a statistic based on read depth and local variability of SNP AF. To validate the method, we first evaluated performance on samples from 30 lung and colon cancer patients, where we sequenced tumors and matched normal tissue. We examined predictions for 17 somatic hotspot mutations and 20 common germline SNPs in 20,182 clinical cancer specimens. To assess the impact of stromal admixture, we examined three cell lines, which were titrated with their matched normal to six levels (10-75%. Overall, predictions were made in 85% of cases, with 95-99% of variants predicted correctly, a significantly superior performance compared to a basic approach based on AF alone. We then applied the SGZ method to the COSMIC database of known somatic variants

  3. Use of whole genome deep sequencing to define emerging minority variants in virus envelope genes in herpesvirus treated with novel antimicrobial K21.

    Science.gov (United States)

    Tweedy, Joshua G; Prusty, Bhupesh K; Gompels, Ursula A

    2017-10-01

    New antivirals are required to prevent rising antimicrobial resistance from replication inhibitors. The aim of this study was to analyse the range of emerging mutations in herpesvirus by whole genome deep sequencing. We tested human herpesvirus 6 treatment with novel antiviral K21, where evidence indicated distinct effects on virus envelope proteins. We treated BACmid cloned virus in order to analyse mechanisms and candidate targets for resistance. Illumina based next generation sequencing technology enabled analyses of mutations in 85 genes to depths of 10,000 per base detecting low prevalent minority variants (<1%). After four passages in tissue culture the untreated virus accumulated mutations in infected cells giving an emerging mixed population (45-73%) of non-synonymous SNPs in six genes including two envelope glycoproteins. Strikingly, treatment with K21 did not accumulate the passage mutations; instead a high frequency mutation was selected in envelope protein gQ2, part of the gH/gL complex essential for herpesvirus infection. This introduced a stop codon encoding a truncation mutation previously observed in increased virion production. There was reduced detection of the glycoprotein complex in infected cells. This supports a novel pathway for K21 targeting virion envelopes distinct from replication inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Deep Microbial Ecosystems in the U.S. Great Basin: A Second Home for Desulforudis audaxviator?

    Science.gov (United States)

    Moser, D. P.

    2012-12-01

    Deep subsurface microbial ecosystems have attracted scientific and public interest in recent years. Of deep habitats so far investigated, continental hard rock environments may be the least understood. Our Census of Deep Life (CoDL) project targets deep microbial ecosystems of three little explored (for microbiology), North American geological provinces: the Basin and Range, Black Hills, and Canadian Shield. Here we focus on the Basin and Range, specifically radioactive fluids from nuclear device test cavities (U12N.10 tunnel and ER-EC-11) at the Nevada National Security Site (NNSS) and non-radioactive samples from a deep dolomite aquifer associated with Death Valley, CA (BLM-1 and Nevares Deep Well 2). Six pyrotag sequencing runs were attempted at the Marine Biology Lab (MBL) (bacterial v6v4 amplification for all sites and archaeal v6v4 amplification for BLM-1 and Nevares DW2). Of these, DNA extracts from five samples (all but Nevares DW2 Arch) successfully amplified. Bacterial libraries were generally dominated by Proteobacteria, Firmicutes, and Nitrospirae (ER-EC-11: Proteobacteria (45%), Deinococcus-Thermus (35%), Firmicutes (15%); U12N.10: Proteobacteria (37%), Firmicutes (32%), Nitrospirae (15%), Bacteroidetes (11%); BLM-1 (Bact): Firmicutes (93%); and Nevares DW2: Firmicutes (51%), Proteobacteria (16%), Nitrospirae (15%)). The BLM-1 (Arch) library contained >99% Euryarchaeota, with 98% of sequences represented by a single uncharacterized species of Methanothermobacter. Alpha diversity was calculated using the MBL VAMPS (Visualization and Analysis of Microbial Population Structures) system; showing the highest richness at both the phylum and genus levels in U12N.10 (Sp = 42; Sg = 341), and the lowest (Sp = 3; Sg = 11) in the BLM-1(Arch) library. Diversity was covered well at this depth of sequencing (~20,000 reads per sample) based on rarefaction analysis. One Firmicute lineage, candidatus D. audaxviator, has been shown to dominate microbial communities from

  5. Organism-specific rRNA capture system for application in next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sai-Kam Li

    Full Text Available RNA-sequencing is a powerful tool in studying RNomics. However, the highly abundance of ribosomal RNAs (rRNA and transfer RNA (tRNA have predominated in the sequencing reads, thereby hindering the study of lowly expressed genes. Therefore, rRNA depletion prior to sequencing is often performed in order to preserve the subtle alteration in gene expression especially those at relatively low expression levels. One of the commercially available methods is to use DNA or RNA probes to hybridize to the target RNAs. However, there is always a concern with the non-specific binding and unintended removal of messenger RNA (mRNA when the same set of probes is applied to different organisms. The degree of such unintended mRNA removal varies among organisms due to organism-specific genomic variation. We developed a computer-based method to design probes to deplete rRNA in an organism-specific manner. Based on the computation results, biotinylated-RNA-probes were produced by in vitro transcription and were used to perform rRNA depletion with subtractive hybridization. We demonstrated that the designed probes of 16S rRNAs and 23S rRNAs can efficiently remove rRNAs from Mycobacterium smegmatis. In comparison with a commercial subtractive hybridization-based rRNA removal kit, using organism-specific probes is better in preserving the RNA integrity and abundance. We believe the computer-based design approach can be used as a generic method in preparing RNA of any organisms for next-generation sequencing, particularly for the transcriptome analysis of microbes.

  6. Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters.

    Science.gov (United States)

    Chandra, Vikas; Das, Tapojyoti; Gulati, Puneet; Biswas, Nidhan K; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N; Deb, Sumit; Saha, Suniti K; Chowdhury, Anup K; Ghosh, Subhashish; Rudin, Charles M; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.

  7. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data.

    Science.gov (United States)

    Zheng, Ling-Ling; Li, Jun-Hao; Wu, Jie; Sun, Wen-Ju; Liu, Shun; Wang, Ze-Lin; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2016-01-04

    Small non-coding RNAs (e.g. miRNAs) and long non-coding RNAs (e.g. lincRNAs and circRNAs) are emerging as key regulators of various cellular processes. However, only a very small fraction of these enigmatic RNAs have been well functionally characterized. In this study, we describe deepBase v2.0 (http://biocenter.sysu.edu.cn/deepBase/), an updated platform, to decode evolution, expression patterns and functions of diverse ncRNAs across 19 species. deepBase v2.0 has been updated to provide the most comprehensive collection of ncRNA-derived small RNAs generated from 588 sRNA-Seq datasets. Moreover, we developed a pipeline named lncSeeker to identify 176 680 high-confidence lncRNAs from 14 species. Temporal and spatial expression patterns of various ncRNAs were profiled. We identified approximately 24 280 primate-specific, 5193 rodent-specific lncRNAs, and 55 highly conserved lncRNA orthologs between human and zebrafish. We annotated 14 867 human circRNAs, 1260 of which are orthologous to mouse circRNAs. By combining expression profiles and functional genomic annotations, we developed lncFunction web-server to predict the function of lncRNAs based on protein-lncRNA co-expression networks. This study is expected to provide considerable resources to facilitate future experimental studies and to uncover ncRNA functions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Maximum entropy methods for extracting the learned features of deep neural networks.

    Science.gov (United States)

    Finnegan, Alex; Song, Jun S

    2017-10-01

    New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.

  9. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  10. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  11. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  12. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    Science.gov (United States)

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  13. Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes.

    Science.gov (United States)

    Liu, Chunyu; Fetterman, Jessica L; Liu, Poching; Luo, Yan; Larson, Martin G; Vasan, Ramachandran S; Zhu, Jun; Levy, Daniel

    2018-03-01

    Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.

  14. CodonLogo: a sequence logo-based viewer for codon patterns.

    Science.gov (United States)

    Sharma, Virag; Murphy, David P; Provan, Gregory; Baranov, Pavel V

    2012-07-15

    Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/.

  15. Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast.

    Science.gov (United States)

    Pinel, Dominic; Colatriano, David; Jiang, Heng; Lee, Hung; Martin, Vincent Jj

    2015-01-01

    Identifying the genetic basis of complex microbial phenotypes is currently a major barrier to our understanding of multigenic traits and our ability to rationally design biocatalysts with highly specific attributes for the biotechnology industry. Here, we demonstrate that strain evolution by meiotic recombination-based genome shuffling coupled with deep sequencing can be used to deconstruct complex phenotypes and explore the nature of multigenic traits, while providing concrete targets for strain development. We determined genomic variations found within Saccharomyces cerevisiae previously evolved in our laboratory by genome shuffling for tolerance to spent sulphite liquor. The representation of these variations was backtracked through parental mutant pools and cross-referenced with RNA-seq gene expression analysis to elucidate the importance of single mutations and key biological processes that play a role in our trait of interest. Our findings pinpoint novel genes and biological determinants of lignocellulosic hydrolysate inhibitor tolerance in yeast. These include the following: protein homeostasis constituents, including Ubp7p and Art5p, related to ubiquitin-mediated proteolysis; stress response transcriptional repressor, Nrg1p; and NADPH-dependent glutamate dehydrogenase, Gdh1p. Reverse engineering a prominent mutation in ubiquitin-specific protease gene UBP7 in a laboratory S. cerevisiae strain effectively increased spent sulphite liquor tolerance. This study advances understanding of yeast tolerance mechanisms to inhibitory substrates and biocatalyst design for a biomass-to-biofuel/biochemical industry, while providing insights into the process of mutation accumulation that occurs during genome shuffling.

  16. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture

    DEFF Research Database (Denmark)

    Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang

    2015-01-01

    . Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication...

  18. Development of polymorphic genic-SSR markers by cDNA library sequencing in boxwood, Buxus spp. (Buxaceae)

    Science.gov (United States)

    Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens ‘Vardar Valley’ and seque...

  19. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  20. The Pekin duck programmed death-ligand 1: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis.

    Science.gov (United States)

    Yao, Q; Fischer, K P; Tyrrell, D L; Gutfreund, K S

    2015-04-01

    Programmed death ligand-1 (PD-L1) plays an important role in the attenuation of adaptive immune responses in higher vertebrates. Here, we describe the identification of the Pekin duck PD-L1 orthologue (duPD-L1) and its gene structure. The duPD-L1 cDNA encodes a 311-amino acid protein that has an amino acid identity of 78% and 42% with chicken and human PD-L1, respectively. Mapping of the duPD-L1 cDNA with duck genomic sequences revealed an exonic structure of its coding sequence similar to those of other vertebrates but lacked a noncoding exon 1. Homology modelling of the duPD-L1 extracellular domain was compatible with the tandem IgV-like and IgC-like IgSF domain structure of human PD-L1 (PDB ID: 3BIS). Residues known to be important for receptor binding of human PD-L1 were mostly conserved in duPD-L1 within the N-terminus and the G sheet, and partially conserved within the F sheet but not within sheets C and C'. DuPD-L1 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung and spleen and very low levels of expression in muscle, kidney and brain. Mitogen stimulation of duck peripheral blood mononuclear cells transiently increased duPD-L1 mRNA expression. Our observations demonstrate evolutionary conservation of the exonic structure of its coding sequence, the extracellular domain structure and residues implicated in receptor binding, but the role of the longer cytoplasmic tail in avian PD-L1 proteins remains to be determined. © 2014 John Wiley & Sons Ltd.

  1. Cloning of zebrafish activin type IIB receptor (ActRIIB) cDNA and mRNA expression of ActRIIB in embryos and adult tissues.

    Science.gov (United States)

    Garg, R R; Bally-Cuif, L; Lee, S E; Gong, Z; Ni, X; Hew, C L; Peng, C

    1999-07-20

    A full-length cDNA encoding for activin type IIB receptor (ActRIIB) was cloned from zebrafish embryos. It encodes a protein with 509 amino acids consisting of a signal peptide, an extracellular ligand binding domain, a single transmembrane region, and an intracellular kinase domain with predicted serine/threonine specificity. The extracellular domain shows 74-91% sequence identity to human, bovine, mouse, rat, chicken, Xenopus and goldfish activin type IIB receptors, while the transmembrane region and the kinase domain show 67-78% and 82-88% identity to these known activin IIB receptors, respectively. In adult zebrafish, ActRIIB mRNA was detected by RT-PCR in the gonads, as well as in non-reproductive tissues, including the brain, heart and muscle. In situ hybridization on ovarian sections further localized ActRIIB mRNA to cytoplasm of oocytes at different stages of development. Using whole-mount in situ hybridization, ActRIIB mRNA was found to be expressed at all stages of embryogenesis examined, including the sphere, shield, tail bud, and 6-7 somite. These results provide the first evidence that ActRIIB mRNA is widely distributed in fish embryonic and adult tissues. Cloning of zebrafish ActRIIB demonstrates that this receptor is highly conserved during vertebrate evolution and provides a basis for further studies on the role of activin in reproduction and development in lower vertebrates.

  2. Evaluation of automatic time gain compensated in-vivo ultrasound sequences

    DEFF Research Database (Denmark)

    Axelsen, Martin Christian; Røeboe, Kristian Frostholm; Hemmsen, Martin Christian

    2010-01-01

    algorithm for automatic time gain compensation (TGC) on in-vivo ultrasound sequences. Forty ultrasound sequences were recorded from the abdomen of two healthy volunteers. Each sequence of 5 sec was recorded with 40 frames/sec. Post processing each frame, a mask is created wherein anechoic and hyper echoic...... regions are mapped. Near field hyper intensity and deep areas with low signal strength are also included in the mask. The algorithm uses this mask to create a parallel image where anechoic and hyper echoic regions are eliminated. From this, the mean power is calculated as a function of depth. The power...

  3. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    Science.gov (United States)

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  4. Two distinct genes for ADP/ATP translocase are expressed at the mRNA level in adult human liver

    International Nuclear Information System (INIS)

    Houldsworth, J.; Attardi, G.

    1988-01-01

    Several clones hybridizing with a bovine ADP/ATP translocase cDNA were isolated from an adult human liver cDNA library in the vector pEX1. DNA sequence analysis revealed that these clones encode two distinct forms of translocase. In particular, two clones specifying the COOH-end-proximal five-sixths of the protein exhibit a 9% amino acid sequence divergence and totally dissimilar 3' untranslated regions. One of these cDNAs is nearly identical in sequence to an ADP/ATP translocase clone (hp2F1) recently isolated from a human fibroblast cDNA library with three amino acid changes and a few differences in the 3' untranslated region. Another clone isolated from the pEX1 library contains a reading frame encoding the remaining, NH 2 -end-proximal, 37 amino acids of the translocase. This sequence differs significantly (14% amino acid sequence divergence) from the corresponding segment of hp2F1, and the 5' untranslated regions of the two clones are totally dissimilar. RNA transfer hybridization experiments utilizing the clones isolated from the pEX1 library revealed the presence in HeLa cells of three distinct mRNA species. The pattern of hybridization and the sizes of these mRNAs suggest a greater complexity of organization and expression of the ADP/ATP translocase genes in human cells than indicated by the analysis of the cDNA clones

  5. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  6. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    International Nuclear Information System (INIS)

    Bloch, Donald B.; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-01-01

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: → A two-hybrid assay was developed to study interactions in macromolecular complexes. → The assay was applied to interactions between components of mRNA P-bodies. → The assay effectively and efficiently identified protein interaction domains. → P-body assembly in mammalian cells differs from that in other species.

  7. Cough event classification by pretrained deep neural network.

    Science.gov (United States)

    Liu, Jia-Ming; You, Mingyu; Wang, Zheng; Li, Guo-Zheng; Xu, Xianghuai; Qiu, Zhongmin

    2015-01-01

    Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a key step in the cough monitor. The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back propogation tuning the neural network so that it can predict the observation probability associated with each HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough HMM is found in the sequence. The experiments were conducted on a dataset that was collected from 22 patients with respiratory diseases. Patient dependent (PD) and patient independent (PI) experimental settings were used to evaluate the models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10% in PI, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity with maximal 14% error reduction on both PD and PI. In this paper, we tried pretrained deep neural network in

  8. Taxonomic research on deep-sea macrofauna in the South China Sea using the Chinese deep-sea submersible Jiaolong.

    Science.gov (United States)

    Li, Xinzheng

    2017-07-01

    This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong. To date, 6 new species have been described, including the sponges Lophophysema eversa, Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae, Uroptychus spinulosus and Globospongicola jiaolongi; some newly recorded species from the South China Sea have also been reported. The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li (2015), as has the mitochondrial genome of the glass sponge L. eversa by Zhang et al. (2016). The population structures of two dominant species, the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons, from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough, were compared using molecular analysis. The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  9. Assessing mRNA nuclear export in mammalian cells by microinjection.

    Science.gov (United States)

    Lee, Eliza S; Palazzo, Alexander F

    2017-08-15

    The nuclear export of mRNAs is an important yet little understood part of eukaryotic gene expression. One of the easiest methods for monitoring mRNA export in mammalian tissue culture cells is through the microinjection of DNA plasmids into the nucleus and monitoring the distribution of the transcribed product over time. Here we describe how to setup a microscope equipped with a micromanipulator used in cell microinjections, and we explain how to perform a nuclear mRNA export assay and obtain the nuclear export rate for any given mRNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    Science.gov (United States)

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent

  11. Analyses of Tissue Culture Adaptation of Human Herpesvirus-6A by Whole Genome Deep Sequencing Redefines the Reference Sequence and Identifies Virus Entry Complex Changes.

    Science.gov (United States)

    Tweedy, Joshua G; Escriva, Eric; Topf, Maya; Gompels, Ursula A

    2017-12-31

    Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally "cloned" by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis.

  12. mRNA Fragments in In-Vitro Culture Media are Associated with Bovine Preimplantation Embryonic Development

    Directory of Open Access Journals (Sweden)

    Jenna eKropp

    2015-08-01

    Full Text Available In vitro production (IVP systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerated conditioned media. Differential expression was confirmed by quantitative real-time PCR for

  13. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  14. When less is more: 'slicing' sequencing data improves read decoding accuracy and de novo assembly quality.

    Science.gov (United States)

    Lonardi, Stefano; Mirebrahim, Hamid; Wanamaker, Steve; Alpert, Matthew; Ciardo, Gianfranco; Duma, Denisa; Close, Timothy J

    2015-09-15

    As the invention of DNA sequencing in the 70s, computational biologists have had to deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequencing. In this work, we investigate the opposite problem, that is, the challenge of dealing with excessive depth of sequencing. We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing increases over a certain threshold, sequencing errors make these two problems harder and harder (instead of easier, as one would expect with error-free data), and as a consequence the quality of the solution degrades with more and more data. For the first problem, we propose an effective solution based on 'divide and conquer': we 'slice' a large dataset into smaller samples of optimal size, decode each slice independently, and then merge the results. Experimental results on over 15 000 barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of the decoding and the final assembly. For the second problem, we show for the first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing data. Python scripts to process slices and resolve decoding conflicts are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/MIyZHs stelo@cs.ucr.edu or timothy.close@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. subsurface sequence delineation and saline water mapping of lagos

    African Journals Online (AJOL)

    A subsurface sequence delineation and saline water mapping of Lagos State was carried out. Ten (10) deep boreholes with average depth of 300 m were drilled within the sedimentary basin. The boreholes were lithologically and geophysically logged. The driller's lithological logs aided by gamma and resistivity logs, ...

  16. Accumulation of defence-related transcripts and cloning of a chitinase mRNA from pea leaves (Pisum sativum L.) inoculated with Ascochyta pisi Lib

    DEFF Research Database (Denmark)

    Vad, Knud; de Neergaard, Eigil; Madriz-Ordeñana, Kenneth

    1993-01-01

    The race specific resistance of pea to Ascochyta pisi Lib. was shown to be exhibited as a hypersensitive response associated with the production of polyphenolic substances in epidermal and mesophyll cells. The levels of transcripts representing a pathogenesis-related (PR) protein (chitinase......) and an enzyme of phytoalexin biosynthesis (chalcone synthase) were shown to accumulate more rapidly during the hypersensitive response than during lesion development in the compatible interaction. A full-length (1143 bp) cDNA sequence of a pea chitinase (EC 3.2.1.14) (coding for an approx. 34 500 Da protein......) was deduced by combining the overlapping sequences of three clones obtained following PCR amplification of cDNA prepared from mRNA isolated 24 h after inoculation of pea leaves with Ascochyta pisi. The combined sequences were identified as a class I chitinase corresponding to the basic A1-chitinase enzyme...

  17. DEEPre: sequence-based enzyme EC number prediction by deep learning

    KAUST Repository

    Li, Yu

    2017-10-20

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number.We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre\\'s ability to capture the functional difference of enzyme isoforms.The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  18. DEEPre: sequence-based enzyme EC number prediction by deep learning

    KAUST Repository

    Li, Yu; Wang, Sheng; Umarov, Ramzan; Xie, Bingqing; Fan, Ming; Li, Lihua; Gao, Xin

    2017-01-01

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number.We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre's ability to capture the functional difference of enzyme isoforms.The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  19. Deep soft tissue leiomyoma of the thigh

    International Nuclear Information System (INIS)

    Watson, G.M.T.; Saifuddin, A.; Sandison, A.

    1999-01-01

    A case of ossified leiomyoma of the deep soft tissues of the left thigh is presented. The radiographic appearance suggested a low-grade chondrosarcoma. MRI of the lesion showed signal characteristics similar to muscle on both T1- and T2-weighted spin echo sequences with linear areas of high signal intensity on T1-weighted images consistent with medullary fat in metaplastic bone. Histopathological examination of the resected specimen revealed a benign ossified soft tissue leiomyoma. (orig.)

  20. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.