WorldWideScience

Sample records for decimation filter design

  1. Two-stage nonrecursive filter/decimator

    International Nuclear Information System (INIS)

    Yoder, J.R.; Richard, B.D.

    1980-08-01

    A two-stage digital filter/decimator has been designed and implemented to reduce the sampling rate associated with the long-term computer storage of certain digital waveforms. This report describes the design selection and implementation process and serves as documentation for the system actually installed. A filter design with finite-impulse response (nonrecursive) was chosen for implementation via direct convolution. A newly-developed system-test statistic validates the system under different computer-operating environments

  2. Design and Implementation of Decimation Filter for 13-bit Sigma-Delta ADC Based on FPGA

    Directory of Open Access Journals (Sweden)

    Khalid Khaleel Mohammed

    2016-10-01

    Full Text Available A 13 bit Sigma-Delta ADC for a signal band of 40K Hz is designed in MATLAB Simulink and then implemented using Xilinx system generator tool.  The first order Sigma-Delta modulator is designed to work at a signal band of 40 KHz at an oversampling ratio (OSR of 256 with a sampling frequency of 20.48 MHz. The proposed decimation filter design is consists of a second order Cascaded Integrator Comb filter (CIC followed by two finite impulse response (FIR filters. This architecture reduces the need for multiplication which is need very large area. This architecture implements a decimation ratio of 256 and allows a maximum resolution of 13  bits in the output of the filter. The decimation filter was designed  and  tested  in  Xilinx  system  generator  tool  which  reduces  the  design  cycle  by  directly generating efficient VHDL code. The results obtained show that the overall Sigma-Delta ADC is able to achieve an ENOB (Effective Number Of Bit of 13.71 bits and SNR of 84.3 dB

  3. IMPLEMENTATION AND COMPARISON OF DIFFERENT CIC FILTER STRUCTURE FOR DECIMATION

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2013-06-01

    Full Text Available This paper briefs an implementation of different CIC filter architectures for decimation. The different decimation filter structures are implemented using cascaded integrator-comb filter to work for the down sampling ratio of 8. The prototype is designed with MATLAB Simulink model and it is converted to VHDL code using Xilinx system generator. Prototype is implemented in Virtex V- XC5VLX110T-3ff1136 FPGA kit and simulation results and device utilization reports are generated and tabulated. Finally different architectures are compared using number of used LUTs, Registers, Power consumption etc.

  4. Word-serial Architectures for Filtering and Variable Rate Decimation

    Directory of Open Access Journals (Sweden)

    Eugene Grayver

    2002-01-01

    Full Text Available A new flexible architecture is proposed for word-serial filtering and variable rate decimation/interpolation. The architecture is targeted for low power applications requiring medium to low data rate and is ideally suited for implementation on either an ASIC or an FPGA. It combines the small size and low power of an ASIC with the programmability and flexibility of a DSP. An efficient memory addressing scheme eliminates the need for power hungry shift registers and allows full reconfiguration. The decimation ratio, filter length and filter coefficients can all be changed in real time. The architecture takes advantage of coefficient symmetries in linear phase filters and in polyphase components.

  5. Area efficient decimation filter based on merged delay transformation for wireless applications

    International Nuclear Information System (INIS)

    Rashid, U.; Siddiq, F.; Muhammad, T.; Jamal, H.

    2013-01-01

    Expected by 2014 is the 4G standard for cellular wireless communications, which will improve bandwidth, connectivity and roaming for mobile and stationary devices, 4G and other wireless systems are currently hot topics of research and development in the communication field. In wireless technologies like Global System for Mobile (GSM), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi, decimation filters are essential part of transceivers being used. This paper describes a decimation filter which is efficient in terms of both the power consumption and the area used. The architecture is based upon Merged Delay Transformation (MDT). The existing Merged Delay Transformed Infinite Impulse Response (IIR) architecture is power efficient but requires larger area. The proposed and existing filters were implemented on Field-Programmable Gate Array (FPGA). The computational cost of the proposed filter is reduced to (3N/2 + 1) and M-1 times reduction in the number of multipliers in comparison to the existing FIR filter is achieved. The power consumption and speed remain nearly the same. (author)

  6. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes...... their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis...

  7. The analysis of decimation and interpolation in the linear canonical transform domain.

    Science.gov (United States)

    Xu, Shuiqing; Chai, Yi; Hu, Youqiang; Huang, Lei; Feng, Li

    2016-01-01

    Decimation and interpolation are the two basic building blocks in the multirate digital signal processing systems. As the linear canonical transform (LCT) has been shown to be a powerful tool for optics and signal processing, it is worthwhile and interesting to analyze the decimation and interpolation in the LCT domain. In this paper, the definition of equivalent filter in the LCT domain have been given at first. Then, by applying the definition, the direct implementation structure and polyphase networks for decimator and interpolator in the LCT domain have been proposed. Finally, the perfect reconstruction expressions for differential filters in the LCT domain have been presented as an application. The proposed theorems in this study are the bases for generalizations of the multirate signal processing in the LCT domain, which can advance the filter banks theorems in the LCT domain.

  8. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  9. Multirate Digital Filters Based on FPGA and Its Applications

    International Nuclear Information System (INIS)

    Sharaf El-Din, R.M.A.

    2013-01-01

    Digital Signal Processing (DSP) is one of the fastest growing techniques in the electronics industry. It is used in a wide range of application fields such as, telecommunications, data communications, image enhancement and processing, video signals, digital TV broadcasting, and voice synthesis and recognition. Field Programmable Gate Array (FPGA) offers good solution for addressing the needs of high performance DSP systems. The focus of this thesis is on one of the basic DSP functions, namely filtering signals to remove unwanted frequency bands. Multi rate Digital Filters (MDFs) are the main theme here. Theory and implementation of MDF, as a special class of digital filters, will be discussed. Multi rate digital filters represent a class of digital filters having a number of attractive features like, low requirements for the coefficient word lengths, significant saving in computation and storage requirements results in a significant reduction in its dynamic power consumption. This thesis introduces an efficient FPGA realization of a multi rate decimation filter with narrow pass-band and narrow transition band to reduce the frequency sample rate by factor of 64 for noise thermometer applications. The proposed multi rate decimation filter is composed of three stages; the first stage is a Cascaded Integrator Comb (CIC) decimation filter, the second stage is a two-coefficient Half-Band (HB) filter and the last stage is a sharper transition HB filter. The frequency responses of individual stages as well as the overall filter response have been demonstrated with full simulation using MATLAB. The design and implementation of the proposed MDF on FPGA (XILINX Virtex XCV800 BG432-4), using VHSIC Hardware Description Language (VHDL), has been introduced. The implementation areas of the proposed filter stages are compared. Using CIC-HB technique saves 18% of the design area, compared to using six stages HB decimation filters.

  10. LEARNING ONE-DIGIT DECIMAL NUMBERS BY MEASUREMENT AND GAME PREDICTING LENGTH

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-01-01

    Full Text Available This paper aims to describe how students develop understanding of one-digit decimals. To achieve the aim, Local Instruction Theory (LIT about the process of learning decimals and the means designed to support that learning are developed. Along with this idea, the framework of Realistic Mathematics Education (RME is proposed. Based on the aim, design research methodology is used. This paper discusses learning activities of three meetings from teaching experiment of the focus group students of the fourth grade elementary school in Surabaya: SDIT Al Ghilmani. The data indicated that the learning activities promoted the students’ understanding of one-digit decimal numbers.Keyword: measurement, decimal numbers, number line DOI: http://dx.doi.org/10.22342/jme.5.1.1447.35-46

  11. 5 Indicators of Decimal Understandings

    Science.gov (United States)

    Cramer, Kathleen; Monson, Debra; Ahrendt, Sue; Colum, Karen; Wiley, Bethann; Wyberg, Terry

    2015-01-01

    The authors of this article collaborated with fourth-grade teachers from two schools to support implementation of a research-based fraction and decimal curriculum (Rational Number Project: Fraction Operations and Initial Decimal Ideas). Through this study, they identified five indicators of rich conceptual understanding of decimals, which are…

  12. Correlation-based decimation in constraint satisfaction problems

    International Nuclear Information System (INIS)

    Higuchi, Saburo; Mezard, Marc

    2010-01-01

    We study hard constraint satisfaction problems using some decimation algorithms based on mean-field approximations. The message-passing approach is used to estimate, beside the usual one-variable marginals, the pair correlation functions. The identification of strongly correlated pairs allows to use a new decimation procedure, where the relative orientation of a pair of variables is fixed. We apply this novel decimation to locked occupation problems, a class of hard constraint satisfaction problems where the usual belief-propagation guided decimation performs poorly. The pair-decimation approach provides a significant improvement.

  13. Nifty Nines and Repeating Decimals

    Science.gov (United States)

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  14. A Sigma-Delta ADC with Decimation and Gain Control Function for a Bluetooth Receiver in 130 nm Digital CMOS

    Directory of Open Access Journals (Sweden)

    Koh Jinseok

    2006-01-01

    Full Text Available We present a discrete-time second-order multibit sigma-delta ADC that filters and decimates by two the input data samples. At the same time it provides gain control function in its input sampling stage. A 4-tap FIR switched capacitor (SC architecture was chosen for antialiasing filtering. The decimation-by-two function is realized using divided-by-two clock signals in the antialiasing filter. Antialiasing, gain control, and sampling functions are merged in the sampling network using SC techniques. This compact architecture allows operating the preceding blocks at twice the ADC's clock frequency, thus improving the noise performance of the wireless receiver channel and relaxing settling requirements of the analog building blocks. The presented approach has been validated and incorporated in a commercial single-chip Bluetooth radio realized in a 1.5 V 130 nm digital CMOS process. The measured antialiasing filtering shows better than 75 dB suppression at the folding frequency band edge. A 67 dB dynamic range was measured with a sampling frequency of 37.5MHz.

  15. Internal space decimation for lattice gauge theories

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1984-01-01

    By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)

  16. Primary teachers' subject matter knowledge: decimals

    Science.gov (United States)

    Ubuz, Behiye; Yayan, Betül

    2010-09-01

    The main objective of this study was to investigate primary teachers' subject matter knowledge in the domain of decimals and more elaborately to investigate their performance and difficulties in reading scale, ordering numbers, finding the nearest decimal and doing operations, such as addition and subtraction. The difficulties in these particular areas are analysed and suggestions are made regarding their causes. Further, factors that influence this knowledge were explored. The sample of the study was 63 primary teachers. A decimal concepts test including 18 tasks was administered and the total scores for the 63 primary teachers ranged from 3 to 18 with a mean and median of 12. Fifty per cent of the teachers were above the mean score. The detailed investigation of the responses revealed that the primary teachers faced similar difficulties that students and pre-service teachers faced. Discrepancy on teachers' knowledge revealed important differences based on educational level attained, but not the number of years of teaching experience and experience in teaching decimals. Some suggestions have been made regarding the implications for pre- and in-service teacher training.

  17. Hardware-efficient Implementation of Half-Band IIR Filter for Interpolation and Decimation

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Pracný, Peter; Bruun, Erik

    2013-01-01

    This brief deals with a simple heuristic method for the hardware optimization of a half-band infinite-impulse response (IIR) filter. The optimization method that is proposed here is intended for a quick design selection at the system level, without the need for computationally intensive calculati...

  18. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  19. FPGA Based Acceleration of Decimal Operations

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2011-01-01

    Field Programmable Gate-Arrays (FPGAs) can efficiently implement application specific processors in nonconventional number systems, such as the decimal (Binary- Coded Decimal, or BCD) number system required for accounting accuracy in financial applications. The main purpose of this work is to show...... an advanced input/output interface, can achieve a speed-up of about 10 over its execution on the CPU of the hosting computer....

  20. Decimal Classification Editions

    OpenAIRE

    Zenovia Niculescu

    2009-01-01

    The study approaches the evolution of Dewey Decimal Classification editions from the perspective of updating the terminology, reallocating and expanding the main and auxilary structure of Dewey indexing language. The comparative analysis of DDC editions emphasizes the efficiency of Dewey scheme from the point of view of improving the informational offer, through basic index terms, revised and developed, as well as valuing the auxilary notations.

  1. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  2. Formation of concept of decimal system in Mexican school children

    Directory of Open Access Journals (Sweden)

    L. Quintanar Rojas

    2013-04-01

    Full Text Available The present study deals with initial formation of concept of decimal system in second year of education at primary school in Mexico (City of Puebla. Our research is based on Activity Theory conception of teaching-learning process and of gradual introduction of scientific concepts in school age. The method has been designed and worked out with the help of actions in which logic, symbolic, spatial and mathematical aspects were implemented. All actions were introduced within divided activity of children in group guided by adult. A pretest-posttest design was used with an experimental group of Mexican school children. The results showed that children have developed the significant skills necessary for understanding the concept of decimal number system. They were also able to apply this concept for new kind if activity al the end of school year. Such new activity was solving of mathematic problems, which was not included in official school program. We consider that proposed method can be an approximation for solution of common difficulties which arise at primary school concerning teaching of mathematics.

  3. Automated electronic filter design

    CERN Document Server

    Banerjee, Amal

    2017-01-01

    This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.

  4. Real numbers as infinite decimals and irrationality of $\\sqrt{2}$

    OpenAIRE

    Klazar, Martin

    2009-01-01

    In order to prove irrationality of \\sqrt{2} by using only decimal expansions (and not fractions), we develop in detail a model of real numbers based on infinite decimals and arithmetic operations with them.

  5. Decimal Classification Editions

    Directory of Open Access Journals (Sweden)

    Zenovia Niculescu

    2009-01-01

    Full Text Available The study approaches the evolution of Dewey Decimal Classification editions from the perspective of updating the terminology, reallocating and expanding the main and auxilary structure of Dewey indexing language. The comparative analysis of DDC editions emphasizes the efficiency of Dewey scheme from the point of view of improving the informational offer, through basic index terms, revised and developed, as well as valuing the auxilary notations.

  6. Principios filosóficos en el desarrollo y funcionamiento de la Clasificación Decimal Dewey

    OpenAIRE

    Moyano-Grimaldo, Wilmer Arturo

    2017-01-01

    Objective. The philosophical foundations that support the use and development of the Dewey Decimal Classification (DDC) were explored. Design/Methodology/Approach. Different primary and secondary sources were reviewed to analyze the theories and ideas that founded the DDC. Results/Discussion. The DDC is a system that bases its scheme on the ideas put forward by Bacon and Hegel. However, its operation is due to what has been called “Decimal theory”. Conclusions. The DDC is a system of library ...

  7. HF filter design and computer simulation

    CERN Document Server

    Rhea, Randall W

    1994-01-01

    A book for engineers who design and build filters of all types, including lumped element, coaxial, helical, dielectric resonator, stripline and microstrip types. A thorough review of classic and modern filter design techniques, containing extensive practical design information of passband characteristics, topologies and transformations, component effects and matching. An excellent text for the design and construction of microstrip filters.

  8. Theory and design of microwave filters

    CERN Document Server

    Hunter, Ian

    2000-01-01

    This is a thorough, graduate-level text which provides a single source for filter design including basic circuit theory, network synthesis and the design of a variety of microwave filter structures. The aim is to present design theories followed by specific examples with numerical simulations of the designs, with pictures of real devices wherever possible. The book is aimed at designers, engineers and researchers working in microwave electronics who need to design or specify filters.

  9. Decimal multiplication using compressor based-BCD to binary converter

    Directory of Open Access Journals (Sweden)

    Sasidhar Mukkamala

    2018-02-01

    Full Text Available The objective of this work is to implement a scalable decimal to binary converter from 8 to 64 bits (i.e 2-digit to 16-digit using parallel architecture. The proposed converters, along with binary coded decimal (BCD adder and binary to BCD converters, are used in parallel implementation of Urdhva Triyakbhyam (UT-based 32-bit BCD multiplier. To increase the performance, compressor circuits were used in converters and multiplier. The designed hardware circuits were verified by behavioural and post layout simulations. The implementation was carried out using Virtex-6 Field Programmable Gate Array (FPGA and Application Specific Integrated Circuit (ASIC with 90-nm technology library platforms. The results on FPGA shows that compressor based converters and multipliers produced less amount of propagation delay with a slight increase of hardware resources. In case of ASIC implementation, a compressor based converter delay is equivalent to conventional converter with a slight increase of gate count. However, the reduction of delay is evident in case of compressor based multiplier.

  10. Dewey Decimal Classification: A Quagmire.

    Science.gov (United States)

    Gamaluddin, Ahmad Fouad

    1980-01-01

    A survey of 660 Pennsylvania school librarians indicates that, though there is limited professional interest in the Library of Congress Classification system, Dewey Decimal Classification (DDC) appears to be firmly entrenched. This article also discusses the relative merits of DDC, the need for a uniform system, librarianship preparation, and…

  11. Two-dimensional FIR compaction filter design

    NARCIS (Netherlands)

    Vijayakumar, N.; Prabhu, K.M.M.

    2001-01-01

    The design of signal-adapted multirate filter banks has been an area of research interest. The authors present the design of a 2-D finite impulse response (FIR) compaction filter followed by a 2-D FIR filter bank that packs the maximum energy of the input process into a few subbands. The energy

  12. Designing H-shaped micromechanical filters

    International Nuclear Information System (INIS)

    Arhaug, O P; Soeraasen, O

    2006-01-01

    This paper investigates the design constraints and possibilities given when designing a micromechanical band pass filter for intermediate frequencies (e.g. 10 MHz). The class of filters are based on coupled clamped-clamped beams constituting an H-shaped structure. A primary beam can electrostatically be activated in one of its different harmonic modes, setting the filter center frequency. The motion is transferred to an accompanying beam of equal dimensions by a mechanical coupling beam. The placement or coupling points of the quarterwavelength coupling beam which connects the vertically resonating beams is critical with respect to the bandwidth of the filters. Of special concern has been to investigate realistic dimensions allowing the filters to be processed by an actual foundry process and to find out how the choice of materials and actual dimensions would affect the performance

  13. Design, control, and implementation of LCL-filter-based shunt active power filters

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2011-01-01

    This paper concentrates on the design, control and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate harmonic currents produced by nonlinear loads in a three-phase three-wire power system. The use of LCL-filter at the output end of SAPF offer......-loop control system, and active damping implemented with fewer current sensors are all addressed here. An analytical design example is finally presented, being supported with experimental results, to verify its effectiveness and practicality.......This paper concentrates on the design, control and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate harmonic currents produced by nonlinear loads in a three-phase three-wire power system. The use of LCL-filter at the output end of SAPF offers...

  14. Conceptual Knowledge of Decimal Arithmetic

    Science.gov (United States)

    Lortie-Forgues, Hugues; Siegler, Robert S.

    2017-01-01

    In 2 studies (Ns = 55 and 54), the authors examined a basic form of conceptual understanding of rational number arithmetic, the direction of effect of decimal arithmetic operations, at a level of detail useful for informing instruction. Middle school students were presented tasks examining knowledge of the direction of effects (e.g., "True or…

  15. Children, algorithm and the decimal numeral system

    Directory of Open Access Journals (Sweden)

    Clélia Maria Ignatius Nogueira

    2010-08-01

    Full Text Available A large number of studies in Mathematics Education approach some possible problems in the study of algorithms in the early school years of arithmetic teaching. However, this discussion is not exhausted. In this feature, this article presents the results of a research which proposed to investigate if the arithmetic’s teaching, with emphasis in the fundamental operation’s algorithm, cooperate to build the mathematics knowledge, specifically of the Decimal Numeral System. In order to achieve this purpose, we interviewed, using the Piaget Critique Clinical Method, twenty students from a public school. The result’s analysis indicates that they mechanically reproduce the regular algorithm’s techniques without notice the relations between the techniques and the principle and the Decimal Numeral System’s properties.

  16. A Comparison between the Decimated Padé Approximant and Decimated Signal Diagonalization Methods for Leak Detection in Pipelines Equipped with Pressure Sensors.

    Science.gov (United States)

    Lay-Ekuakille, Aimé; Fabbiano, Laura; Vacca, Gaetano; Kitoko, Joël Kidiamboko; Kulapa, Patrice Bibala; Telesca, Vito

    2018-06-04

    Pipelines conveying fluids are considered strategic infrastructures to be protected and maintained. They generally serve for transportation of important fluids such as drinkable water, waste water, oil, gas, chemicals, etc. Monitoring and continuous testing, especially on-line, are necessary to assess the condition of pipelines. The paper presents findings related to a comparison between two spectral response algorithms based on the decimated signal diagonalization (DSD) and decimated Padé approximant (DPA) techniques that allow to one to process signals delivered by pressure sensors mounted on an experimental pipeline.

  17. A Comparison between the Decimated Padé Approximant and Decimated Signal Diagonalization Methods for Leak Detection in Pipelines Equipped with Pressure Sensors

    Directory of Open Access Journals (Sweden)

    Aimé Lay-Ekuakille

    2018-06-01

    Full Text Available Pipelines conveying fluids are considered strategic infrastructures to be protected and maintained. They generally serve for transportation of important fluids such as drinkable water, waste water, oil, gas, chemicals, etc. Monitoring and continuous testing, especially on-line, are necessary to assess the condition of pipelines. The paper presents findings related to a comparison between two spectral response algorithms based on the decimated signal diagonalization (DSD and decimated Padé approximant (DPA techniques that allow to one to process signals delivered by pressure sensors mounted on an experimental pipeline.

  18. Filter and Filter Bank Design for Image Texture Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Randen, Trygve

    1997-12-31

    The relevance of this thesis to energy and environment lies in its application to remote sensing such as for instance sea floor mapping and seismic pattern recognition. The focus is on the design of two-dimensional filters for feature extraction, segmentation, and classification of digital images with textural content. The features are extracted by filtering with a linear filter and estimating the local energy in the filter response. The thesis gives a review covering broadly most previous approaches to texture feature extraction and continues with proposals of some new techniques. 143 refs., 59 figs., 7 tabs.

  19. Design of Microwave Multibandpass Filters with Quasilumped Resonators

    Directory of Open Access Journals (Sweden)

    Dejan Miljanović

    2015-01-01

    Full Text Available Design of RF and microwave filters has always been the challenging engineering field. Modern filter design techniques involve the use of the three-dimensional electromagnetic (3D EM solvers for predicting filter behavior, yielding the most accurate filter characteristics. However, the 3D EM simulations are time consuming. In this paper, we propose electric-circuit models, instead of 3D EM models, suitable for design of RF and microwave filters with quasilumped coupled resonators. Using the diakoptic approach, the 3D filter structure is decomposed into domains that are modeled by electric networks. The coupling between these domains is modeled by capacitors and coupled inductors. Furthermore, we relate the circuit-element values to the physical dimensions of the 3D filter structure. We propose the filter design procedure that is based on the circuit models and fast circuit-level simulations, yielding the element values from which the physical dimensions can be obtained. The obtained dimensions should be slightly refined for achieving the desired filter characteristics. The mathematical problems encountered in the procedure are solved by numerical and symbolic computations. The procedure is exemplified by designing a triple-bandpass filter and validated by measurements on the fabricated filter. The simulation and experimental results are in good agreement.

  20. Polyphase Filter Banks for Embedded Sample Rate Changes in Digital Radio Front-Ends

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Le Moullec, Yannick; Koch, Peter

    2011-01-01

    . A non-maximally-decimated polyphase filter bank (where the number of data loads is not equal to the number of M subfilters) processes M subfilters in a time period that is less than or greater than the M data loads. A polyphase filter bank with five different resampling modes is used as a case study...

  1. Modeling, simulation, and design of SAW grating filters

    Science.gov (United States)

    Schwelb, Otto; Adler, E. L.; Slaboszewicz, J. K.

    1990-05-01

    A systematic procedure for modeling, simulating, and designing SAW (surface acoustic wave) grating filters, taking losses into account, is described. Grating structures and IDTs (interdigital transducers) coupling to SAWs are defined by cascadable transmission-matrix building blocks. Driving point and transfer characteristics (immittances) of complex architectures consisting of gratings, transducers, and coupling networks are obtained by chain-multiplying building-block matrices. This modular approach to resonator filter analysis and design combines the elements of lossy filter synthesis with the transmission-matrix description of SAW components. A multipole filter design procedure based on a lumped-element-model approximation of one-pole two-port resonator building blocks is given and the range of validity of this model examined. The software for simulating the performance of SAW grating devices based on this matrix approach is described, and its performance, when linked to the design procedure to form a CAD/CAA (computer-aided design and analysis) multiple-filter design package, is illustrated with a resonator filter design example.

  2. Design considerations for a suboptimal Kalman filter

    Science.gov (United States)

    Difilippo, D. J.

    1995-06-01

    In designing a suboptimal Kalman filter, the designer must decide how to simplify the system error model without causing the filter estimation errors to increase to unacceptable levels. Deletion of certain error states and decoupling of error state dynamics are the two principal model simplifications that are commonly used in suboptimal filter design. For the most part, the decisions as to which error states can be deleted or decoupled are based on the designer's understanding of the physics of the particular system. Consequently, the details of a suboptimal design are usually unique to the specific application. In this paper, the process of designing a suboptimal Kalman filter is illustrated for the case of an airborne transfer-of-alignment (TOA) system used for synthetic aperture radar (SAR) motion compensation. In this application, the filter must continuously transfer the alignment of an onboard Doppler-damped master inertial navigation system (INS) to a strapdown navigator that processes information from a less accurate inertial measurement unit (IMU) mounted on the radar antenna. The IMU is used to measure spurious antenna motion during the SAR imaging interval, so that compensating phase corrections can be computed and applied to the radar returns, thereby presenting image degradation that would otherwise result from such motions. The principles of SAR are described in many references, for instance. The primary function of the TOA Kalman filter in a SAR motion compensation system is to control strapdown navigator attitude errors, and to a less degree, velocity and heading errors. Unlike a classical navigation application, absolute positional accuracy is not important. The motion compensation requirements for SAR imaging are discussed in some detail. This TOA application is particularly appropriate as a vehicle for discussing suboptimal filter design, because the system contains features that can be exploited to allow both deletion and decoupling of error

  3. Design and control of LCL-filter with active damping for Active Power Filter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L

    2010-01-01

    of LCL-filter for APF is introduced, which is aimed for simplified the implementation. To suppress the resonance that may be excited in the system, which brings in stability problems, an active damping control strategy using the current feed-back of the filter capacitor is adopted. By selecting two equal......In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... or similar inductances, the filter designing become more simple and effective, meanwhile the capacitance requirement is minimized. A pole-zero automatic cancellation phenomenon is discussed in this paper, which can be applied to simplify the current regulator designing. The tuning method is presented, based...

  4. Generalized design of high performance shunt active power filter with output LCL filter

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    parameters, interactions between resonance damping and harmonic compensation, bandwidth design of the closed-loop system, and active damping implementation with fewer current sensors. These described design concerns, together with their generalized design procedure, are applied to an analytical example......This paper concentrates on the design, control, and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate for harmonic currents produced by nonlinear loads in a three-phase three-wire power system. With an LCL filter added at its output...

  5. Design and application of finite impulse response digital filters

    International Nuclear Information System (INIS)

    Miller, T.R.; Sampathkumaran, K.S.

    1982-01-01

    The finite impulse response (FIR) digital filter is a spatial domain filter with a frequency domain representation. The theory of the FIR filter is presented and techniques are described for designing FIR filters with known frequency response characteristics. Rational design principles are emphasized based on characterization of the imaging system using the modulation transfer function and physical properties of the imaged objects. Bandpass, Wiener, and low-pass filters were designed and applied to 201 Tl myocardial images. The bandpass filter eliminates low-frequency image components that represent background activity and high-frequency components due to noise. The Wiener, or minimum mean square error filter 'sharpens' the image while also reducing noise. The Wiener filter illustrates the power of the FIR technique to design filters with any desired frequency reponse. The low-pass filter, while of relative limited use, is presented to compare it with a popular elementary 'smoothing' filter. (orig.)

  6. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    International Nuclear Information System (INIS)

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-01-01

    A Department of Energy funded contract involved the development of porous metal as a HEPA filter, and the subsequent design of a full-scale regenerable HEPA filtration system (RHFS). This RHFS could replace the glass fiber HEPA filters currently being used on the high level waste (HLW) tank ventilation system with a system that would be moisture tolerant, durable, and cleanable in place. The origins of the contract are a 1996 investigation at the Savannah River Technology Center (SRTC) regarding the use of porous metal as a HEPA filter material. This contract was divided into Phases I, IIA and IIB. Phase I of the contract evaluated simple filter cylinders in a simulated High Level Waste (HLW) environment and the ability to clean and regenerate the filter media after fouling. Upon the successful completion of Phase I, Phase IIA was conducted, which included lab scale prototype testing and design of a full-scale system. The work completed under Phase IIA included development of a full-scale system design, development of a filter media meeting the HEPA filtration efficiency that would also be regenerable using prescribed cleaning procedures, and the testing of a single element system prototype at Savannah River. All contract objectives were met. The filter media selected was a nickel material already under development at Mott, which met the HEPA filtration efficiency standard. The Mott nickel media met and exceeded the HEPA requirement, providing 99.99% removal against a requirement of 99.97%. Double open-ended elements of this media were provided to the Savannah River Test Center for HLW simulation testing in the single element prototype filter. These elements performed well and further demonstrated the practicality of a metallic media regenerable HEPA filter system. An evaluation of the manufacturing method on many elements demonstrated the reproducibility to meet the HEPA filtration requirement. The full-scale design of the Mott RHFS incorporated several important

  7. Design of Active N-path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Nauta, Bram

    2013-01-01

    A design methodology for synthesis of active N-path bandpass filters is introduced. Based on this methodology, a 0.1-to-1.2 GHz tunable 6th-order N-path channel-select filter in 65 nm LP CMOS is introduced. It is based on coupling N-path filters with gyrators, achieving a “flat‿ passband shape and

  8. Design and construction of electronic filters

    International Nuclear Information System (INIS)

    Becerril Z, E.R.; Moreno P, C.; Salinas B, E.

    1979-01-01

    The design and construction of very low frequencies electronic filters which will be used for carrying out analysis of pile noise at Mexico's Nuclear Center Triga Mark III Reactor, in order to realize measurements of its parameters is presented. NIM norms and active filters with lineal integrated circuits were used: a. Band pass filter from 10 to 500 hertz, band width 50. b. Low pass filter from 0.001 to 10 hertz in 3 steps. c. Kalman Bucy filter, an analogical simulation of this filter was undertaken, obtained from a mathematical model of a Zero power experimental reactor, with the purpose to establish a control searching. (author)

  9. Modeling discrete and continuous entities with fractions and decimals.

    Science.gov (United States)

    Rapp, Monica; Bassok, Miriam; DeWolf, Melissa; Holyoak, Keith J

    2015-03-01

    When people use mathematics to model real-life situations, their use of mathematical expressions is often mediated by semantic alignment (Bassok, Chase, & Martin, 1998): The entities in a problem situation evoke semantic relations (e.g., tulips and vases evoke the functionally asymmetric "contain" relation), which people align with analogous mathematical relations (e.g., the noncommutative division operation, tulips/vases). Here we investigate the possibility that semantic alignment is also involved in the comprehension and use of rational numbers (fractions and decimals). A textbook analysis and results from two experiments revealed that both mathematic educators and college students tend to align the discreteness versus continuity of the entities in word problems (e.g., marbles vs. distance) with distinct symbolic representations of rational numbers--fractions versus decimals, respectively. In addition, fractions and decimals tend to be used with nonmetric units and metric units, respectively. We discuss the importance of the ontological distinction between continuous and discrete entities to mathematical cognition, the role of symbolic notations, and possible implications of our findings for the teaching of rational numbers. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  10. Design of Kalman filters for mobile robots

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Hansen, Karsten L.; Andersen, Nils Axel

    1999-01-01

    the mobile robot is equipped with a dual encoder system supported by some additional absolute measurements. A common filter type for this setup is the odometric filter, where readings from the odometry system on the robot are used together with the geometry of the robot movement as a model of the robot......Kalman filters have for a long time been widely used on mobile robots as a location estimator. Many different Kalman filter designs have been proposed, using models of various complexity. In this paper, two different design methods are evaluated and compared. Focus is put on the common setup where...... estimates. The Kalman filter normally consists of a time update followed by one or more data updates. However, it is shown that when using the kinematic filter, the encoder measurements should be fused prior to the time update for better performance....

  11. Design of 2-D rational digital filters

    International Nuclear Information System (INIS)

    Harris, D.B

    1981-01-01

    A novel 2-D rational filter design technique is presented which makes use of a reflection coefficient function (RCF) representation for the filter transfer function. The design problem is formulated in the frequency domain. A least-square error criterion is used though the usual error measure is augmented with barrier functions. These act to restrict the domain of approximation to the set of stable filters. Construction of suitable barrier functions is facilitated by the RCF characterization

  12. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  13. The theory and practice of the Dewey Decimal Classification system

    CERN Document Server

    Satija, M P

    2013-01-01

    The Dewey Decimal Classification system (DDC) is the world's most popular library classification system. The 23rd edition of the DDC was published in 2011. This second edition of The Theory and Practice of the Dewey Decimal Classification System examines the history, management and technical aspects of the DDC up to its latest edition. The book places emphasis on explaining the structure and number building techniques in the DDC and reviews all aspects of subject analysis and number building by the most recent version of the DDC. A history of, and introduction to, the DDC is followed by subjec

  14. Decimal Engine for Energy-Efficient Multicore Processors

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2014-01-01

    propose a hybrid BFP/DFP engine to perform BFP division and DFP addition, multiplication and division. The main purpose of this engine is to offload the binary floating-point units for this type of operations and reduce the latency for decimal operations, and power and temperature for the whole die....

  15. Properties of the Tent map for decimal fractions with fixed precision

    Science.gov (United States)

    Chetverikov, V. M.

    2018-01-01

    The one-dimensional discrete Tent map is a well-known example of a map whose fixed points are all unstable on the segment [0,1]. This map leads to the positivity of the Lyapunov exponent for the corresponding recurrent sequence. Therefore in a situation of general position, this sequence must demonstrate the properties of deterministic chaos. However if the first term of the recurrence sequence is taken as a decimal fraction with a fixed number “k” of digits after the decimal point and all calculations are carried out accurately, then the situation turns out to be completely different. In this case, first, the Tent map does not lead to an increase in significant digits in the terms of the sequence, and secondly, demonstrates the existence of a finite number of eventually periodic orbits, which are attractors for all other decimal numbers with the number of significant digits not exceeding “k”.

  16. Design of switched-capacitor filter circuits using low gain amplifiers

    CERN Document Server

    Serra, Hugo Alexandre de Andrade

    2015-01-01

    This book describes the design of switched-capacitor filter circuits using low gain amplifiers and demonstrates some techniques that can minimize the effects of parasitic capacitances during the design phase. Focus is given in the design of low-pass and band-pass SC filters, and how higher order filters can be achieved using cascaded biquadratic filter sections. The authors also describe a low voltage implementation of a low-pass SC filter.

  17. The Decimal Office: Administration as a Science in the Netherlands in the First Decades of the Twentieth Century

    NARCIS (Netherlands)

    van den Heuvel, C.

    2014-01-01

    In 1983 Boyd Rayward described the early diffusion abroad of the Dewey Decimal Classification (and indirectly of the Universal Decimal Classification) in Australia, Great Britain, Belgium, France, Switzerland, and Russia. Here, I discuss the enormous interest in the decimal system in the Netherlands

  18. A Novel Design of Sparse Prototype Filter for Nearly Perfect Reconstruction Cosine-Modulated Filter Banks

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2018-05-01

    Full Text Available Cosine-modulated filter banks play a major role in digital signal processing. Sparse FIR filter banks have lower implementation complexity than full filter banks, while keeping a good performance level. This paper presents a fast design paradigm for sparse nearly perfect-reconstruction (NPR cosine-modulated filter banks. First, an approximation function is introduced to reduce the non-convex quadratically constrained optimization problem to a linearly constrained optimization problem. Then, the desired sparse linear phase FIR prototype filter is derived through the orthogonal matching pursuit (OMP performed under the weighted l 2 norm. The simulation results demonstrate that the proposed scheme is an effective paradigm to design sparse NPR cosine-modulated filter banks.

  19. Rational-number comparison across notation: Fractions, decimals, and whole numbers.

    Science.gov (United States)

    Hurst, Michelle; Cordes, Sara

    2016-02-01

    Although fractions, decimals, and whole numbers can be used to represent the same rational-number values, it is unclear whether adults conceive of these rational-number magnitudes as lying along the same ordered mental continuum. In the current study, we investigated whether adults' processing of rational-number magnitudes in fraction, decimal, and whole-number notation show systematic ratio-dependent responding characteristic of an integrated mental continuum. Both reaction time (RT) and eye-tracking data from a number-magnitude comparison task revealed ratio-dependent performance when adults compared the relative magnitudes of rational numbers, both within the same notation (e.g., fractions vs. fractions) and across different notations (e.g., fractions vs. decimals), pointing to an integrated mental continuum for rational numbers across notation types. In addition, eye-tracking analyses provided evidence of an implicit whole-number bias when we compared values in fraction notation, and individual differences in this whole-number bias were related to the individual's performance on a fraction arithmetic task. Implications of our results for both cognitive development research and math education are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Some Aspects on Filter Design for Target Tracking

    Directory of Open Access Journals (Sweden)

    Bertil Ekstrand

    2012-01-01

    Full Text Available Tracking filter design is discussed. It is argued that the basis of the present stochastic paradigm is questionable. White process noise is not adequate as a model for target manoeuvring, stochastic least-square optimality is not relevant or required in practice, the fact that requirements are necessary for design is ignored, and root mean square (RMS errors are insufficient as performance measure. It is argued that there is no process noise and that the covariance of the assumed process noise contains the design parameters. Focus is on the basic tracking filter, the Kalman filter, which is convenient for clarity and simplicity, but the arguments and conclusions are relevant in general. For design the possibility of an observer transfer function approach is pointed out. The issues can also be considered as a consequence of the fact that there is a difference between estimation and design. The - filter is used for illustration.

  1. New iodine filter pack design

    International Nuclear Information System (INIS)

    Blackbee, B.A.

    1977-10-01

    To enable Naval Emergency Monitoring Teams to fulfil their role in the field it was necessary to locate or design a replacement filter pack for the collection of radioactive iodine air samples. Collaboration with the Berkeley Laboratories of the Central Electricity Generating Board provided the necessary starting point for a suitable type of package. Further development by NGTE (West Drayton) yielded the improved filter pack which is the subject of this memorandum. (author)

  2. From rational numbers to algebra: separable contributions of decimal magnitude and relational understanding of fractions.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2015-05-01

    To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Implementational Aspects of the Contourlet Filter Bank and Application in Image Coding

    Directory of Open Access Journals (Sweden)

    Truong T. Nguyen

    2009-02-01

    Full Text Available This paper analyzed the implementational aspects of the contourlet filter bank (or the pyramidal directional filter bank (PDFB, and considered its application in image coding. First, details of the binary tree-structured directional filter bank (DFB are presented, including a modification to minimize the phase delay factor and necessary steps for handling rectangular images. The PDFB is viewed as an overcomplete filter bank, and the directional filters are expressed in terms of polyphase components of the pyramidal filter bank and the conventional DFB. The aliasing effect of the conventional DFB and the Laplacian pyramid to the directional filters is then considered, and the conditions for reducing this effect are presented. The new filters obtained by redesigning the PDFBs satisfying these requirements have much better frequency responses. A hybrid multiscale filter bank consisting of the PDFB at higher scales and the traditional maximally decimated wavelet filter bank at lower scales is constructed to provide a sparse image representation. A novel embedded image coding system based on the image decomposition and a morphological dilation algorithm is then presented. The coding algorithm efficiently clusters the significant coefficients using progressive morphological operations. Context models for arithmetic coding are designed to exploit the intraband dependency and the correlation existing among the neighboring directional subbands. Experimental results show that the proposed coding algorithm outperforms the current state-of-the-art wavelet-based coders, such as JPEG2000, for images with directional features.

  4. Design and Implementation of Direct Form FIR Filter

    OpenAIRE

    Kumar, Hanny; Kumar, Kamal

    2016-01-01

    The research article presents the design of the direct form of the Finite Impulse Response (FIR) filter using VHDL programming language. Multimedia technology and broadband communication demand the low power and high performance design applications in Digital Signal Processing (DSP). The digital filters are most important element of the communication system and DSP. In the paper, 7 tap FIR filter is implemented in Xilinx 14.2 software and functionally simulated in Modelsim 10.1 b software. Th...

  5. Design of an S band narrow-band bandpass BAW filter

    Science.gov (United States)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  6. FPGA Implementation of Decimal Processors for Hardware Acceleration

    DEFF Research Database (Denmark)

    Borup, Nicolas; Dindorp, Jonas; Nannarelli, Alberto

    2011-01-01

    Applications in non-conventional number systems can benefit from accelerators implemented on reconfigurable platforms, such as Field Programmable Gate-Arrays (FPGAs). In this paper, we show that applications requiring decimal operations, such as the ones necessary in accounting or financial trans...... execution on the CPU of the hosting computer....

  7. Absolute air filtering equipment in the nuclear industrie. Design - Safety - Experience

    International Nuclear Information System (INIS)

    Lucas, J.C.

    1977-01-01

    The problems encountered in the design of absolute filters (HEPA FILTERS) are presented: glass-fibre filter papers; standards and characteristics: efficiency, fire-resistance, humidity-resistance, radiation-resistance, etc; various types of paper folding: deep folds and small folds, dihedrally mounted; filtering elements; designs; characteristics and quality control; The design of filtration equipment is also analysed: mounting in metal or concrete casings. French and American designs (Regulatory Guide 1-52); and gas-tight casings allowing contaminated filters to be renewed without breaking the gas-tight seal

  8. Decimal representations are not distinct from natural number representations – Evidence from a combined eye-tracking and computational modelling approach

    Directory of Open Access Journals (Sweden)

    Stefan eHuber

    2014-04-01

    Full Text Available Decimal fractions comply with the base-10 notational system of natural Arabic numbers. Nevertheless, recent research suggested that decimal fractions may be represented differently than natural numbers because two number processing effects (i.e., semantic interference and compatibility effects differed in their size between decimal fractions and natural numbers. In the present study, we examined whether these differences indeed indicate that decimal fractions are represented differently from natural numbers. Therefore, we provided an alternative explanation for the semantic congruity effect, namely a string length congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal fractions compared to natural numbers was driven by differences in processing strategy (sequential vs. parallel.To evaluate this claim, we manipulated the tenth and hundredth digits in a magnitude comparison task with participants' eye movements recorded, while the unit digits remained identical. In addition, we evaluated whether our empirical findings could be simulated by an extended version of our computational model originally developed to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study, we found evidence that participants processed decimal fractions more sequentially than natural numbers because of the identical leading digit. Importantly, our model was able to account for the smaller compatibility effect found for decimal fractions. Moreover, string length congruity was an alternative account for the prolonged reaction times for incongruent decimal pairs. Consequently, we suggest that representations of natural numbers and decimal fractions do not differ.

  9. Optimal design of active EMC filters

    Science.gov (United States)

    Chand, B.; Kut, T.; Dickmann, S.

    2013-07-01

    A recent trend in automotive industry is adding electrical drive systems to conventional drives. The electrification allows an expansion of energy sources and provides great opportunities for environmental friendly mobility. The electrical powertrain and its components can also cause disturbances which couple into nearby electronic control units and communication cables. Therefore the communication can be degraded or even permanently disrupted. To minimize these interferences, different approaches are possible. One possibility is to use EMC filters. However, the diversity of filters is very large and the determination of an appropriate filter for each application is time-consuming. Therefore, the filter design is determined by using a simulation tool including an effective optimization algorithm. This method leads to improvements in terms of weight, volume and cost.

  10. The Library of Congress, Dewey Decimal, and Universal Decimal Classification Systems are Incomplete and Unsystematic. A Review of: Zins, C., & Santos, P. L. V. A. C. (2011). Mapping the knowledge covered by library classification systems. Journal of the American Society for Information Science and Technology, 62(5), 877-901. doi:10.1002/asi.21481

    OpenAIRE

    Cari Merkley

    2011-01-01

    Objective – To determine the extent to which knowledge is currently addressed by the Library of Congress (LCC), Dewey Decimal (DDC), and Universal Decimal (UDC) classification systems.Design – Comparative analysis of the LCC, DDC, and UDC systems using Zin’s 10 Pillars of Knowledge.Setting – The Faculty of Philosophy and Science at a Brazilian university.Subjects – Forty one subject-related classes and 386 subclasses from the first two levels of the LCC, DDC, and UDC systems.Methods – To eval...

  11. An ERP Study of the Processing of Common and Decimal Fractions: How Different They Are

    Science.gov (United States)

    Zhang, Li; Wang, Qi; Lin, Chongde; Ding, Cody; Zhou, Xinlin

    2013-01-01

    This study explored event-related potential (ERP) correlates of common fractions (1/5) and decimal fractions (0.2). Thirteen subjects performed a numerical magnitude matching task under two conditions. In the common fraction condition, a nonsymbolic fraction was asked to be judged whether its magnitude matched the magnitude of a common fraction; in the decimal fraction condition, a nonsymbolic fraction was asked to be matched with a decimal fraction. Behavioral results showed significant main effects of condition and numerical distance, but no significant interaction of condition and numerical distance. Electrophysiological data showed that when nonsymbolic fractions were compared to common fractions, they displayed larger N1 and P3 amplitudes than when they were compared to decimal fractions. This finding suggested that the visual identification for nonsymbolic fractions was different under the two conditions, which was not due to perceptual differences but to task demands. For symbolic fractions, the condition effect was observed in the N1 and P3 components, revealing stimulus-specific visual identification processing. The effect of numerical distance as an index of numerical magnitude representation was observed in the P2, N3 and P3 components under the two conditions. However, the topography of the distance effect was different under the two conditions, suggesting stimulus specific semantic processing of common fractions and decimal fractions. PMID:23894491

  12. An ERP study of the processing of common and decimal fractions: how different they are.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available This study explored event-related potential (ERP correlates of common fractions (1/5 and decimal fractions (0.2. Thirteen subjects performed a numerical magnitude matching task under two conditions. In the common fraction condition, a nonsymbolic fraction was asked to be judged whether its magnitude matched the magnitude of a common fraction; in the decimal fraction condition, a nonsymbolic fraction was asked to be matched with a decimal fraction. Behavioral results showed significant main effects of condition and numerical distance, but no significant interaction of condition and numerical distance. Electrophysiological data showed that when nonsymbolic fractions were compared to common fractions, they displayed larger N1 and P3 amplitudes than when they were compared to decimal fractions. This finding suggested that the visual identification for nonsymbolic fractions was different under the two conditions, which was not due to perceptual differences but to task demands. For symbolic fractions, the condition effect was observed in the N1 and P3 components, revealing stimulus-specific visual identification processing. The effect of numerical distance as an index of numerical magnitude representation was observed in the P2, N3 and P3 components under the two conditions. However, the topography of the distance effect was different under the two conditions, suggesting stimulus specific semantic processing of common fractions and decimal fractions.

  13. Analog Electronic Filters Theory, Design and Synthesis

    CERN Document Server

    Dimopoulos, Hercules G

    2012-01-01

    Filters are essential subsystems in a huge variety of electronic systems. Filter applications are innumerable; they are used for noise reduction, demodulation, signal detection, multiplexing, sampling, sound and speech processing, transmission line equalization and image processing, to name just a few. In practice, no electronic system can exist without filters. They can be found in everything from power supplies to mobile phones and hard disk drives and from loudspeakers and MP3 players to home cinema systems and broadband Internet connections. This textbook introduces basic concepts and methods and the associated mathematical and computational tools employed in electronic filter theory, synthesis and design.  This book can be used as an integral part of undergraduate courses on analog electronic filters. Includes numerous, solved examples, applied examples and exercises for each chapter. Includes detailed coverage of active and passive filters in an independent but correlated manner. Emphasizes real filter...

  14. Design of Nonuniform Filter Bank Transceivers for Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Yuan-Pei Lin

    2007-01-01

    Full Text Available In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior frequency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming data rates and different quality-of-service requirements. To meet these requirements, we can either do resource allocation or design transceivers with a nonuniform bandwidth partition. In this paper, we propose a method for the design of nonuniform filter bank transceivers for frequency selective channels. Both frequency response and signal-to-interference ratio (SIR can be incorporated in the transceiver design. Moreover, the technique can be extended to the case of nonuniform filter bank transceivers with rational sampling factors. Simulation results show that nonuniform filter bank transceivers with good filter responses as well as high SIR can be obtained by the proposed design method.

  15. Perfect Reconstruction Conditions and Design of Oversampled DFT-Modulated Transmultiplexers

    Directory of Open Access Journals (Sweden)

    Siohan Pierre

    2006-01-01

    Full Text Available This paper presents a theoretical analysis of oversampled complex modulated transmultiplexers. The perfect reconstruction (PR conditions are established in the polyphase domain for a pair of biorthogonal prototype filters. A decomposition theorem is proposed that allows it to split the initial system of PR equations, that can be huge, into small independent subsystems of equations. In the orthogonal case, it is shown that these subsystems can be solved thanks to an appropriate angular parametrization. This parametrization is efficiently exploited afterwards, using the compact representation we recently introduced for critically decimated modulated filter banks. Two design criteria, the out-of-band energy minimization and the time-frequency localization maximization, are examined. It is shown, with various design examples, that this approach allows the design of oversampled modulated transmultiplexers, or filter banks with a thousand carriers, or subbands, for rational oversampling ratios corresponding to low redundancies. Some simulation results, obtained for a transmission over a flat fading channel, also show that, compared to the conventional OFDM, these designs may reduce the mean square error.

  16. Math Academy: Dining Out! Explorations in Fractions, Decimals, & Percents. Book 4: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…

  17. Design and fabrication of broadband rugate filter

    International Nuclear Information System (INIS)

    Zhang Jun-Chao; Fang Ming; Shao Yu-Chuan; Jin Yun-Xia; He Hong-Bo

    2012-01-01

    The design and the deposition of a rugate filter for broadband applications are discussed. The bandwidth is extended by increasing the rugate period continuously with depth. The width and the smoothness of the reflection band with the distribution of the periods are investigated. The improvement of the steepness of the stopband edges and the suppression of the side lobes in the transmission zone are realized by adding two apodized rugate structures with fixed periods at the external broadband rugate filter interfaces. The rapidly alternating deposition technology is used to fabricate a rugate filter sample. The measured transmission spectrum with a reflection bandwidth of approximately 505 nm is close to that of the designed broadband rugate filter except a transmittance peak in the stopband. Based on the analysis of the cross-sectional scanning electron microscopic image of the sample, it is found that the transmission peak is most likely to be caused by the instability of the deposition rate. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Design and control of an LCL-filter-based three-phase active rectifier

    DEFF Research Database (Denmark)

    Liserre, Marco; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    This paper proposes a step-by-step procedure for designing the LCL filter of a front-end three-phase active rectifier. The primary goal is to reduce the switching frequency ripple at a reasonable cost, while at the same time achieving a high-performance front-end rectifier (as characterized...... by a rapid dynamic response and good stability margin). An example LCL filter design is reported and a filter has been built and tested using the values obtained from this design. The experimental results demonstrate the performance of the design procedure both for the LCL filter and for the rectifier...... a powerful tool to design an LCL-filter-based active rectifier while avoiding trial-and-error procedures that can result in having to build several filter prototypes....

  19. Decimal Fraction Arithmetic: Logical Error Analysis and Its Validation.

    Science.gov (United States)

    Standiford, Sally N.; And Others

    This report illustrates procedures of item construction for addition and subtraction examples involving decimal fractions. Using a procedural network of skills required to solve such examples, an item characteristic matrix of skills analysis was developed to describe the characteristics of the content domain by projected student difficulties. Then…

  20. A Fuzzy Gravitational Search Algorithm to Design Optimal IIR Filters

    Directory of Open Access Journals (Sweden)

    Danilo Pelusi

    2018-03-01

    Full Text Available The goodness of Infinite Impulse Response (IIR digital filters design depends on pass band ripple, stop band ripple and transition band values. The main problem is defining a suitable error fitness function that depends on these parameters. This fitness function can be optimized by search algorithms such as evolutionary algorithms. This paper proposes an intelligent algorithm for the design of optimal 8th order IIR filters. The main contribution is the design of Fuzzy Inference Systems able to tune key parameters of a revisited version of the Gravitational Search Algorithm (GSA. In this way, a Fuzzy Gravitational Search Algorithm (FGSA is designed. The optimization performances of FGSA are compared with those of Differential Evolution (DE and GSA. The results show that FGSA is the algorithm that gives the best compromise between goodness, robustness and convergence rate for the design of 8th order IIR filters. Moreover, FGSA assures a good stability of the designed filters.

  1. Differential Mode EMI Filter Design for Isolated DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Makda, Ishtiyaq Ahmed; Nymand, Morten

    2014-01-01

    A Differential Mode EMI filter for a low input voltage high-current isolated dc-dc boost converter is designed and presented in this paper. The primary side Differential Mode noise voltage is low due to the high transformer turn ratio, however, the input current is very high and since the EMI limit...... also does not change for such converters, it requires greatly optimized design approach for the filter including the correct sizing of the filter components. A complete analytical filter design process is carried out such a way that the Differential Mode noise voltage source in the converter...... is identified first. The DM noise model is then established and based on the harmonic analysis of the noise source voltage waveform, the complete Differential Mode EMI filter, including the filter resonance damping branch, is designed for a 3kW isolated dc-dc boost converter. The noise model and its theoretical...

  2. Conceptual structure and the procedural affordances of rational numbers: relational reasoning with fractions and decimals.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2015-02-01

    The standard number system includes several distinct types of notations, which differ conceptually and afford different procedures. Among notations for rational numbers, the bipartite format of fractions (a/b) enables them to represent 2-dimensional relations between sets of discrete (i.e., countable) elements (e.g., red marbles/all marbles). In contrast, the format of decimals is inherently 1-dimensional, expressing a continuous-valued magnitude (i.e., proportion) but not a 2-dimensional relation between sets of countable elements. Experiment 1 showed that college students indeed view these 2-number notations as conceptually distinct. In a task that did not involve mathematical calculations, participants showed a strong preference to represent partitioned displays of discrete objects with fractions and partitioned displays of continuous masses with decimals. Experiment 2 provided evidence that people are better able to identify and evaluate ratio relationships using fractions than decimals, especially for discrete (or discretized) quantities. Experiments 3 and 4 found a similar pattern of performance for a more complex analogical reasoning task. When solving relational reasoning problems based on discrete or discretized quantities, fractions yielded greater accuracy than decimals; in contrast, when quantities were continuous, accuracy was lower for both symbolic notations. Whereas previous research has established that decimals are more effective than fractions in supporting magnitude comparisons, the present study reveals that fractions are relatively advantageous in supporting relational reasoning with discrete (or discretized) concepts. These findings provide an explanation for the effectiveness of natural frequency formats in supporting some types of reasoning, and have implications for teaching of rational numbers.

  3. Design of filtered epithermal neutron beams for BNC

    International Nuclear Information System (INIS)

    Greenwood, R.C.

    1986-01-01

    The design principles of filters (installed in nuclear reactors) to provide epithermal neutron beams suitable for use in 10 B Neutron Capture Therapy (BNCT) are reviewed. The goal of such filters is to provide epithermal neutron beams within an energy range of 1 keV to 30 keV with fluxes in excess of 5 x 10 8 neutrons/cm 2 .s, and having acceptably low contaminant fast neutron (> 30 keV) and gamma components. Filters considered for this application include 238 U, Sc, Fe/Al and Al/S. It is shown that in order to achieve a goal epithermal neutron flux of > 5 x 10 8 neutrons/cm 2 .s, such filters must be located in radial beam channels which view essentially the complete reactor core. Based on considerations of estimated epithermal fluxes, cost and availability of materials, and transmitted neutron energy spectrum, it is suggested that a filter consisting of elements of Al, S, Ti and V might prove to be an optimum design for BNCT applications. 13 references, 3 figures, 8 tables

  4. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    Science.gov (United States)

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  5. Why Is Learning Fraction and Decimal Arithmetic so Difficult?

    Science.gov (United States)

    Lortie-Forgues, Hugues; Tian, Jing; Siegler, Robert S.

    2015-01-01

    Fraction and decimal arithmetic are crucial for later mathematics achievement and for ability to succeed in many professions. Unfortunately, these capabilities pose large difficulties for many children and adults, and students' proficiency in them has shown little sign of improvement over the past three decades. To summarize what is known about…

  6. Amazing 7-day, super-simple, scripted guide to teaching or learning decimals

    CERN Document Server

    Kolby, Jeff

    2014-01-01

    Welcome to The Amazing 7-Day Super-Simple, Scripted Guide to Teaching or Learning Decimals. I have attempted to do just what the title says: make learning decimals super simple. I have also attempted to make it fun and even ear-catching. The reason for this is not that I am a frustrated stand-up comic, but because in my fourteen years of teaching the subject, I have come to realize that my jokes, even the bad ones, have a crazy way of sticking in my students' heads. And should I use a joke (even a bad one) repetitively, the associations become embedded in their brains, many times to their chag

  7. Design strategy for the combined system of shunt passive and series active filters

    OpenAIRE

    Fujita, Hideki; Akagi, Hirofumi

    1991-01-01

    A design strategy for the combined power filter for a three-phase twelve-pulse thyristor rectifier is proposed. The shunt passive filter, which can minimize the output voltage of the series active filter, is designed and tested in a prototype model. A specially designed shunt passive filter makes it possible to reduce the required rating of the series active filter to 60% compared with a conventional shunt passive filter

  8. Interpolation Filter Design for Hearing-Aid Audio Class-D Output Stage Application

    DEFF Research Database (Denmark)

    Pracný, Peter; Bruun, Erik; Llimos Muntal, Pere

    2012-01-01

    This paper deals with a design of a digital interpolation filter for a 3rd order multi-bit ΣΔ modulator with over-sampling ratio OSR = 64. The interpolation filter and the ΣΔ modulator are part of the back-end of an audio signal processing system in a hearing-aid application. The aim in this paper...... is to compare this design to designs presented in other state-of-the-art works ranging from hi-fi audio to hearing-aids. By performing comparison, trends and tradeoffs in interpolation filter design are indentified and hearing-aid specifications are derived. The possibilities for hardware reduction...... in the interpolation filter are investigated. Proposed design simplifications presented here result in the least hardware demanding combination of oversampling ratio, number of stages and number of filter taps among a number of filters reported for audio applications....

  9. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    Science.gov (United States)

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  10. Children's understanding of fraction and decimal symbols and the notation-specific relation to pre-algebra ability.

    Science.gov (United States)

    Hurst, Michelle A; Cordes, Sara

    2018-04-01

    Fraction and decimal concepts are notoriously difficult for children to learn yet are a major component of elementary and middle school math curriculum and an important prerequisite for higher order mathematics (i.e., algebra). Thus, recently there has been a push to understand how children think about rational number magnitudes in order to understand how to promote rational number understanding. However, prior work investigating these questions has focused almost exclusively on fraction notation, overlooking the open questions of how children integrate rational number magnitudes presented in distinct notations (i.e., fractions, decimals, and whole numbers) and whether understanding of these distinct notations may independently contribute to pre-algebra ability. In the current study, we investigated rational number magnitude and arithmetic performance in both fraction and decimal notation in fourth- to seventh-grade children. We then explored how these measures of rational number ability predicted pre-algebra ability. Results reveal that children do represent the magnitudes of fractions and decimals as falling within a single numerical continuum and that, despite greater experience with fraction notation, children are more accurate when processing decimal notation than when processing fraction notation. Regression analyses revealed that both magnitude and arithmetic performance predicted pre-algebra ability, but magnitude understanding may be particularly unique and depend on notation. The educational implications of differences between children in the current study and previous work with adults are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mechanical design and qualification of IR filter mounts and filter wheel of INSAT-3D sounder for low temperature

    Science.gov (United States)

    Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.

    2017-11-01

    Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.

  12. A new greedy search method for the design of digital IIR filter

    Directory of Open Access Journals (Sweden)

    Ranjit Kaur

    2015-07-01

    Full Text Available A new greedy search method is applied in this paper to design the optimal digital infinite impulse response (IIR filter. The greedy search method is based on binary successive approximation (BSA and evolutionary search (ES. The suggested greedy search method optimizes the magnitude response and the phase response simultaneously and also finds the lowest order of the filter. The order of the filter is controlled by a control gene whose value is also optimized along with the filter coefficients to obtain optimum order of designed IIR filter. The stability constraints of IIR filter are taken care of during the design procedure. To determine the trade-off relationship between conflicting objectives in the non-inferior domain, the weighting method is exploited. The proposed approach is effectively applied to solve the multiobjective optimization problems of designing the digital low-pass (LP, high-pass (HP, bandpass (BP, and bandstop (BS filters. It has been demonstrated that this technique not only fulfills all types of filter performance requirements, but also the lowest order of the filter can be found. The computational experiments show that the proposed approach gives better digital IIR filters than the existing evolutionary algorithm (EA based methods.

  13. Co-design of the LCL Filter and Control for Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Zhang, Yu; Xue, Mingyu; Li, Minying

    2014-01-01

    In most grid-connected inverters (GCI) with an LCL filter, since the design of both the LCL filter and the controller is done separately, considerable tuning efforts have to be exerted when compared to inverters using an L filter. Consequently, an integrated co-design of the filter and the contro...

  14. Dewey Decimal Classification for U. S. Conn: An Advantage?

    Science.gov (United States)

    Marek, Kate

    This paper examines the use of the Dewey Decimal Classification (DDC) system at the U. S. Conn Library at Wayne State College (WSC) in Nebraska. Several developments in the last 20 years which have eliminated the trend toward reclassification of academic library collections from DDC to the Library of Congress (LC) classification scheme are…

  15. Design and full scale test of a sand bed filter

    International Nuclear Information System (INIS)

    Kaercher, M.

    1991-01-01

    All French pressurized water reactor plants are equipped with a containment venting system. this system is designed and implemented by Electricite de France with the technical support of safety authorities (Institute of Protection and Nuclear Safety of Atomic Energy Commission). This paper covers the following items: main assumptions, sizing and design requirements; basic design of the filter resulting from PITEAS R and D program carried out between 1983 and 1989 at Cadarache nuclear center; full scale tests performed in 1990 on FUCHIA loop at Cadarache including description of the loop using plasma torches to generate CsOH aerosols in a steam - air flow, and preliminary results concerning thermohydraulic and thermic behavior under residual power simulated filtration efficiency with CsOH aerosols and iodine; complementary design, including hydrogen risk during condensation period, radiological shieldings of the filter, and heat removal after the filter closure; and conclusion on the validation of the filter

  16. Experimental use of iteratively designed rotation invariant correlation filters

    International Nuclear Information System (INIS)

    Sweeney, D.W.; Ochoa, E.; Schils, G.F.

    1987-01-01

    Iteratively designed filters are incorporated into an optical correlator for position, rotation, and intensity invariant recognition of target images. The filters exhibit excellent discrimination because they are designed to contain full information about the target image. Numerical simulations and experiments demonstrate detection of targets that are corrupted with random noise (SNR≅0.5) and also partially obscured by other objects. The complex valued filters are encoded in a computer generated hologram and fabricated directly using an electron-beam system. Experimental results using a liquid crystal spatial light modulator for real-time input show excellent agreement with analytical and numerical computations

  17. Nitinol Embolic Protection Filters: Design Investigation by Finite Element Analysis

    Science.gov (United States)

    Conti, Michele; de Beule, Matthieu; Mortier, Peter; van Loo, Denis; Verdonck, Pascal; Vermassen, Frank; Segers, Patrick; Auricchio, Ferdinando; Verhegghe, Benedict

    2009-08-01

    The widespread acceptance of carotid artery stenting (CAS) to treat carotid artery stenosis and its effectiveness compared with surgical counterpart, carotid endarterectomy (CEA), is still a matter of debate. Transient or permanent neurological deficits may develop in patients undergoing CAS due to distal embolization or hemodynamic changes. Design, development, and usage of embolic protection devices (EPDs), such as embolic protection filters, appear to have a significant impact on the success of CAS. Unfortunately, some drawbacks, such as filtering failure, inability to cross tortuous high-grade stenoses, malpositioning and vessel injury, still remain and require design improvement. Currently, many different designs of such devices are available on the rapidly growing dedicated market. In spite of such a growing commercial interest, there is a significant need for design tools as well as for careful engineering investigations and design analyses of such nitinol devices. The present study aims to investigate the embolic protection filter design by finite element analysis. We first developed a parametrical computer-aided design model of an embolic filter based on micro-CT scans of the Angioguard™ XP (Cordis Endovascular, FL) EPD by means of the open source pyFormex software. Subsequently, we used the finite element method to simulate the deployment of the nitinol filter as it exits the delivery sheath. Comparison of the simulations with micro-CT images of the real device exiting the catheter showed excellent correspondence with our simulations. Finally, we evaluated circumferential basket-vessel wall apposition of a 4 mm size filter in a straight vessel of different sizes and shape. We conclude that the proposed methodology offers a useful tool to evaluate and to compare current or new designs of EPDs. Further simulations will investigate vessel wall apposition in a realistic tortuous anatomy.

  18. Intelligent Optimize Design of LCL Filter for Three-Phase Voltage-Source PWM Rectifier

    DEFF Research Database (Denmark)

    Sun, Wei; Chen, Zhe; Wu, Xiaojie

    2009-01-01

    Compared to traditional L filter, a LCL filter is more effective on reducing harmonic distortion at switch frequency. So it is important to choose the LCL filter parameters to achieve good filtering effect. This paper introduces some traditional design methods. Design of a LCL filter by genetic a...

  19. Design and control of hybrid active power filters

    CERN Document Server

    Lam, Chi-Seng

    2014-01-01

    Design and Control of Hybrid Active Power Filters presents an overview of the current quality problems and their compensators. To get a balance between the system cost and performance, hybrid active power filters (HAPFs) are valuable. The book presents the coverage of resonance phenomena prevention capability, filtering performance and system robustness analysis of HAPF; nonlinear inverter current slope characteristics and their linear operation region requirement analysis of the hysteresis PWM for the HAPF; minimum inverter capacity design procedure of HAPF, adaptive dc-link voltage controller for the HAPF and the real design example of a 220V 10kVA HAPF, in which the system performance analysis method, minimum dc voltage deduction concept and adaptive dc voltage idea can be further extended into the other active compensators, such as APF, static synchronous compensator STATCOM, etc. This book will benefit researchers, graduate students, and electrical power engineers in the field of power-quality compensati...

  20. Design and fabrication of multi-dielectric thin film laser filters and mirrors

    International Nuclear Information System (INIS)

    Alsous, M. B.

    2005-01-01

    Multi-dielectric-film optical filters have designed as mirrors for frequency-doubled-Nd-YAG pumped Raman lasers at different wavelengths (435, 369.9, 319.8, 953.6, 683 nm), and for use in CVL pumped dye lasers: as beam-splitters, antireflection filters, and narrow-band filters. In this work, a theoretical design of these mirrors and filters is given. The treatment and optimization of these designs is detailed in order to overcome the difficulties and reach the final and suitable designs for our needs. In addition, we will describe the evaporation method and the best conditions to do it. These filters should be easy to make and able to resist the laser powers of the pulsed Nd-YAG laser (200mJ/pulse) and the output power of the CVL. Thus, we have adopted designs with the least number of layers and used materials and oxides, which could resist to high laser powers. These filters were tested with laser shots and the convenient designs that were able to support the laser power have been adopted. (Author)

  1. Design of UWB Filter with WLAN Notch

    Directory of Open Access Journals (Sweden)

    Harish Kumar

    2012-01-01

    Full Text Available UWB technology- (operating in broad frequency range of 3.1–10.6 GHz based filter with WLAN notch has shown great achievement for high-speed wireless communications. To satisfy the UWB system requirements, a band pass filter with a broad pass band width, low insertion loss, and high stop-band suppression are needed. UWB filter with wireless local area network (WLAN notch at 5.6 GHz and 3 dB fractional bandwidth of 109.5% using a microstrip structure is presented. Initially a two-transmission-pole UWB band pass filter in the frequency range 3.1–10.6 GHz is achieved by designing a parallel-coupled microstrip line with defective ground plane structure using GML 1000 substrate with specifications: dielectric constant 3.2 and thickness 0.762 mm at centre frequency 6.85 GHz. In this structure a λ/4 open-circuited stub is introduced to achieve the notch at 5.6 GHz to avoid the interference with WLAN frequency which lies in the desired UWB band. The design structure was simulated on electromagnetic circuit simulation software and fabricated by microwave integrated circuit technique. The measured VNA results show the close agreement with simulated results.

  2. Single-Chip FPGA Azimuth Pre-Filter for SAR

    Science.gov (United States)

    Gudim, Mimi; Cheng, Tsan-Huei; Madsen, Soren; Johnson, Robert; Le, Charles T-C; Moghaddam, Mahta; Marina, Miguel

    2005-01-01

    A field-programmable gate array (FPGA) on a single lightweight, low-power integrated-circuit chip has been developed to implement an azimuth pre-filter (AzPF) for a synthetic-aperture radar (SAR) system. The AzPF is needed to enable more efficient use of data-transmission and data-processing resources: In broad terms, the AzPF reduces the volume of SAR data by effectively reducing the azimuth resolution, without loss of range resolution, during times when end users are willing to accept lower azimuth resolution as the price of rapid access to SAR imagery. The data-reduction factor is selectable at a decimation factor, M, of 2, 4, 8, 16, or 32 so that users can trade resolution against processing and transmission delays. In principle, azimuth filtering could be performed in the frequency domain by use of fast-Fourier-transform processors. However, in the AzPF, azimuth filtering is performed in the time domain by use of finite-impulse-response filters. The reason for choosing the time-domain approach over the frequency-domain approach is that the time-domain approach demands less memory and a lower memory-access rate. The AzPF operates on the raw digitized SAR data. The AzPF includes a digital in-phase/quadrature (I/Q) demodulator. In general, an I/Q demodulator effects a complex down-conversion of its input signal followed by low-pass filtering, which eliminates undesired sidebands. In the AzPF case, the I/Q demodulator takes offset video range echo data to the complex baseband domain, ensuring preservation of signal phase through the azimuth pre-filtering process. In general, in an SAR I/Q demodulator, the intermediate frequency (fI) is chosen to be a quarter of the range-sampling frequency and the pulse-repetition frequency (fPR) is chosen to be a multiple of fI. The AzPF also includes a polyphase spatial-domain pre-filter comprising four weighted integrate-and-dump filters with programmable decimation factors and overlapping phases. To prevent aliasing of signals

  3. Design of the LC+trap filter for a current source rectifier

    DEFF Research Database (Denmark)

    Min, Huang; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    This paper investigates an LC + trap filter for current source converters to improve the switching harmonic attenuation. The resonant frequency characteristics of the filter of current source rectifier are analyzed. A filter design procedure is proposed based on the input power factor, filter...

  4. Design of digital trapezoidal shaping filter based on LabVIEW

    International Nuclear Information System (INIS)

    Liu Yujuan; Qin Guoxiu; Yang Zhihui; Zhang Xiaodong

    2013-01-01

    It describes the design of a digital trapezoidal shaping filter to nuclear signals based on LabVIEW. A method of optimizing the trapezoidal shaping filter's parameters was presented and tested, and the test results of the effect of shaping filter algorithm were studied. (authors)

  5. Renormalization group decimation technique for disordered binary harmonic chains

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1983-10-01

    The density of states of disordered binary harmonic chains is calculated using the Renormalization Group Decimation technique on the displacements of the masses from their equilibrium positions. The results are compared with numerical simulation data and with those obtained with the current method of Goncalves da Silva and Koiller. The advantage of our procedure over other methods is discussed. (author)

  6. Coefficients Calculation in Pascal Approximation for Passive Filter Design

    Directory of Open Access Journals (Sweden)

    George B. Kasapoglu

    2018-02-01

    Full Text Available The recently modified Pascal function is further exploited in this paper in the design of passive analog filters. The Pascal approximation has non-equiripple magnitude, in contrast of the most well-known approximations, such as the Chebyshev approximation. A novelty of this work is the introduction of a precise method that calculates the coefficients of the Pascal function. Two examples are presented for the passive design to illustrate the advantages and the disadvantages of the Pascal approximation. Moreover, the values of the passive elements can be taken from tables, which are created to define the normalized values of these elements for the Pascal approximation, as Zverev had done for the Chebyshev, Elliptic, and other approximations. Although Pascal approximation can be implemented to both passive and active filter designs, a passive filter design is addressed in this paper, and the benefits and shortcomings of Pascal approximation are presented and discussed.

  7. Grid Filter Design for a Multi-Megawatt Medium-Voltage Voltage Source Inverter

    DEFF Research Database (Denmark)

    Rockhill, A.A.; Liserre, Marco; Teodorescu, Remus

    2011-01-01

    This paper describes the design procedure and performance of an LCL grid filter for a medium-voltage neutral point clamped (NPC) converter to be adopted for a multimegawatt wind turbine. The unique filter design challenges in this application are driven by a combination of the medium voltage...... converter, a limited allowable switching frequency, component physical size and weight concerns, and the stringent limits for allowable injected current harmonics. Traditional design procedures of grid filters for lower power and higher switching frequency converters are not valid for a multi......-megawatt filter connecting a medium-voltage converter switching at low frequency to the electric grid. This paper demonstrates a frequency domain model based approach to determine the optimum filter parameters that provide the necessary performance under all operating conditions given the necessary design...

  8. Efficient Algorithms and Design for Interpolation Filters in Digital Receiver

    Directory of Open Access Journals (Sweden)

    Xiaowei Niu

    2014-05-01

    Full Text Available Based on polynomial functions this paper introduces a generalized design method for interpolation filters. The polynomial-based interpolation filters can be implemented efficiently by using a modified Farrow structure with an arbitrary frequency response, the filters allow many pass- bands and stop-bands, and for each band the desired amplitude and weight can be set arbitrarily. The optimization coefficients of the interpolation filters in time domain are got by minimizing the weighted mean squared error function, then converting to solve the quadratic programming problem. The optimization coefficients in frequency domain are got by minimizing the maxima (MiniMax of the weighted mean squared error function. The degree of polynomials and the length of interpolation filter can be selected arbitrarily. Numerical examples verified the proposed design method not only can reduce the hardware cost effectively but also guarantee an excellent performance.

  9. Modern analog filter analysis and design a practical approach

    CERN Document Server

    Raut, R

    2011-01-01

    Starting from the fundamentals, the present book describes methods of designing analog electronic filters and illustrates these methods by providing numerical and circuit simulation programs. The subject matters comprise many concepts and techniques that are not available in other text books on the market. To name a few - principle of transposition and its application in directly realizing current mode filters from well known voltage mode filters; an insight into the technological aspect of integrated circuit components used to implement an integrated circuit filter; a careful blending of basi

  10. Designing metallic iron based water filters: Light from methylene blue discoloration.

    Science.gov (United States)

    Btatkeu-K, B D; Tchatchueng, J B; Noubactep, C; Caré, S

    2016-01-15

    Available water filtration systems containing metallic iron (Fe(0) filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe(0) filters. A science-based design relies on valuable information on processes within a Fe(0) filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe(0) filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe(0)/sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe(0), Fe(0)/sand, Fe(0)/pumice and Fe(0)/sand/pumice. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity. Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe(0) system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe(0) filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An exact algorithm for optimal MAE stack filter design.

    Science.gov (United States)

    Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior

    2007-02-01

    We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.

  12. Chapter 8: Design and Control of Voltage Source Converters With LCL-Filters

    DEFF Research Database (Denmark)

    Pena-Alzola, Rafael; Blaabjerg, Frede

    2018-01-01

    presents many options for the LCL-filter design, passive damping design, and active damping design, and this chapter will present well-known practical methods. In this chapter, the LCL-filter design uses a step-by-step procedure with simple formulas that avoid trial-and-error iterations. Different......-type procedures result in a robust design against line inductance variations. The capacitor-current feedback method requires an additional sensor and the lead-lag network avoid additional sensors by using the capacitor voltage also for synchronization. The filter-based procedure presented in the chapter uses...

  13. Efficient design of multiplier-less digital channelizers using recombination non-uniform filter banks

    Directory of Open Access Journals (Sweden)

    Shaeen Kalathil

    2018-01-01

    Full Text Available A novel approach for the efficient realization of digital channelizers in software defined radios using recombination filter banks is proposed in this paper. Digital channelizer is the core of software defined radio. Computationally efficient design supporting multiple channels with different bandwidths and low complexity are inevitable requirements for the digital channelizers. Recombination filter banks method is used to obtain non-uniform filter banks with rational sampling factors, using a two stage structure. It consists of a uniform filter bank and trans-multiplexer. In this work, the uniform filter bank and trans-multiplexer are designed using cosine modulated filter banks. The prototype filter design is made simple, efficient and fast, using window method. The multiplier-less realization of recombination filter banks in the canonic signed digit space using nature inspired optimization algorithms, results in reduced implementation complexity.

  14. All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    Directory of Open Access Journals (Sweden)

    N. Stojanovic

    2014-09-01

    Full Text Available A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0, controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples.

  15. Equalization of Loudspeaker and Room Responses Using Kautz Filters: Direct Least Squares Design

    Directory of Open Access Journals (Sweden)

    Karjalainen Matti

    2007-01-01

    Full Text Available DSP-based correction of loudspeaker and room responses is becoming an important part of improving sound reproduction. Such response equalization (EQ is based on using a digital filter in cascade with the reproduction channel to counteract the response errors introduced by loudspeakers and room acoustics. Several FIR and IIR filter design techniques have been proposed for equalization purposes. In this paper we investigate Kautz filters, an interesting class of IIR filters, from the point of view of direct least squares EQ design. Kautz filters can be seen as generalizations of FIR filters and their frequency-warped counterparts. They provide a flexible means to obtain desired frequency resolution behavior, which allows low filter orders even for complex corrections. Kautz filters have also the desirable property to avoid inverting dips in transfer function to sharp and long-ringing resonances in the equalizer. Furthermore, the direct least squares design is applicable to nonminimum-phase EQ design and allows using a desired target response. The proposed method is demonstrated by case examples with measured and synthetic loudspeaker and room responses.

  16. Pupil filter design by using a Bessel functions basis at the image plane.

    Science.gov (United States)

    Canales, Vidal F; Cagigal, Manuel P

    2006-10-30

    Many applications can benefit from the use of pupil filters for controlling the light intensity distribution near the focus of an optical system. Most of the design methods for such filters are based on a second-order expansion of the Point Spread Function (PSF). Here, we present a new procedure for designing radially-symmetric pupil filters. It is more precise than previous procedures as it considers the exact expression of the PSF, expanded as a function of first-order Bessel functions. Furthermore, this new method presents other advantages: the height of the side lobes can be easily controlled, it allows the design of amplitude-only, phase-only or hybrid filters, and the coefficients of the PSF expansion can be directly related to filter parameters. Finally, our procedure allows the design of filters with very different behaviours and optimal performance.

  17. Gravitation search algorithm: Application to the optimal IIR filter design

    Directory of Open Access Journals (Sweden)

    Suman Kumar Saha

    2014-01-01

    Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.

  18. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Science.gov (United States)

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  19. Understanding decimal proportions: discrete representations, parallel access, and privileged processing of zero.

    Science.gov (United States)

    Varma, Sashank; Karl, Stacy R

    2013-05-01

    Much of the research on mathematical cognition has focused on the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, with considerably less attention paid to more abstract number classes. The current research investigated how people understand decimal proportions--rational numbers between 0 and 1 expressed in the place-value symbol system. The results demonstrate that proportions are represented as discrete structures and processed in parallel. There was a semantic interference effect: When understanding a proportion expression (e.g., "0.29"), both the correct proportion referent (e.g., 0.29) and the incorrect natural number referent (e.g., 29) corresponding to the visually similar natural number expression (e.g., "29") are accessed in parallel, and when these referents lead to conflicting judgments, performance slows. There was also a syntactic interference effect, generalizing the unit-decade compatibility effect for natural numbers: When comparing two proportions, their tenths and hundredths components are processed in parallel, and when the different components lead to conflicting judgments, performance slows. The results also reveal that zero decimals--proportions ending in zero--serve multiple cognitive functions, including eliminating semantic interference and speeding processing. The current research also extends the distance, semantic congruence, and SNARC effects from natural numbers to decimal proportions. These findings inform how people understand the place-value symbol system, and the mental implementation of mathematical symbol systems more generally. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Information hiding technology and application analysis based on decimal expansion of irrational numbers

    Science.gov (United States)

    Liu, Xiaoyong; Lu, Pei; Shao, Jianxin; Cao, Haibin; Zhu, Zhenmin

    2017-10-01

    In this paper, an information hiding method using decimal expansion of irrational numbers to generate random phase mask is proposed. Firstly, the decimal expansion parts of irrational numbers generate pseudo-random sequences using a new coding schemed, the irrational number and start and end bit numbers were used as keys in image information hiding. Secondly, we apply the coding schemed to the double phase encoding system, the pseudo-random sequences are taken to generate random phase masks. The mean square error is used to calculate the quality of the recovered image information. Finally, two tests had been carried out to verify the security of our method; the experimental results demonstrate that the cipher image has such features, strong robustness, key sensitivity, and resistance to brute force attack.

  1. The Design of Polymer Planar Optical Triplexer with MMI Filter and Directional Coupler

    Directory of Open Access Journals (Sweden)

    V. Jerabek

    2013-12-01

    Full Text Available Optical bidirectional WDM transceiver is a key component of the Passive Optical Network of the Fiber to the Home topology. Essential parts of such transceivers are filters that combine multiplexing and demultiplexing function of optical signal (triplexing filters. In this paper we report about a design of a new planar optical multi-wavelength selective system triplexing filter, which combines a multimode interference filter with directional coupler based on the epoxy polymer SU-8 on Si/SiO2 substrate. The optical triplexing filter was designed using the Beam Propagation Method. The aim of this project was to optimize the triplexing filter optical parameters and to minimize the planar optical wavelength selective system dimensions. The multimode interference filter was used for separation of downstream optical signal in designed optoelectronic integrated WDM transceiver. The directional coupler was used for adding of upstream optical signal.

  2. Moving beyond the presentation layer content and context in the Dewey Decimal Classification (DDC) system

    CERN Document Server

    Mitchell, Joan S

    2013-01-01

    Can the Dewey Decimal System meet the needs of the rapidly changing information environment?Moving Beyond the Presentation Layer explores the Dewey Decimal System from a variety of perspectives, each of which peels away a bit of the ?presentation layer??the familiar linear notational sequence-to reveal the content and context offered by the DDS. Library professionals from around the word examine how the content and context offered by the DDS can evolve to meet the needs of the changing information environment, with a special focus on the impact of the Internet on current and future

  3. Robust Design of LCL-Filters for Active Damping in Grid Converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Grid converters require a simple inductor or an LCL-filter to limit the current ripples. The LCL-filter is nowadays the preferred solution as it allows lower inductance values. In order to solve the stability concerns, active damping is preferred to passive damping since it does not use dissipative...... elements. However, large variations in the grid inductance and resonances arising from parallel converters may still compromise the system stability. This calls for a robust design of LCL-filters with active damping. This paper proposes a design flow with little iteration for two well-known methods, namely...... lead-lag network and current capacitor feedback. The proposed formulas for the resonance frequency, grid and converter inductance ratio, and capacitance of the LCL-filter allow calculating all the LCL-filter parameters. An estimation for the achieved Total Harmonic Distortion (THD) of the grid current...

  4. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components....... Hence, a new method is proposed in this paper to optimally design the passive damping circuit for the LCL filters and LCL with multi-tuned LC traps. In short, the optimization problem reduces to the proper choice of the multi-split capacitors or inductors in the high-order filter. Compared to existing...... filter resonance. The passive filters are designed, built and validated both analytically and experimentally for verification....

  5. Designing Asynchronous Circuits for Low Power: An IFIR Filter

    DEFF Research Database (Denmark)

    Nielsen, Lars Skovby; Sparsø, Jens

    1999-01-01

    This paper addresses the design of asynchronous circuits for low power through an example: a filter bank for a digital hearing aid. The asynchronous design re-implements an existing synchronous circuit which is used in a commercial product. For comparison, both designs have been fabricated...

  6. The singular value filter: a general filter design strategy for PCA-based signal separation in medical ultrasound imaging.

    Science.gov (United States)

    Mauldin, F William; Lin, Dan; Hossack, John A

    2011-11-01

    A general filtering method, called the singular value filter (SVF), is presented as a framework for principal component analysis (PCA) based filter design in medical ultrasound imaging. The SVF approach operates by projecting the original data onto a new set of bases determined from PCA using singular value decomposition (SVD). The shape of the SVF weighting function, which relates the singular value spectrum of the input data to the filtering coefficients assigned to each basis function, is designed in accordance with a signal model and statistical assumptions regarding the underlying source signals. In this paper, we applied SVF for the specific application of clutter artifact rejection in diagnostic ultrasound imaging. SVF was compared to a conventional PCA-based filtering technique, which we refer to as the blind source separation (BSS) method, as well as a simple frequency-based finite impulse response (FIR) filter used as a baseline for comparison. The performance of each filter was quantified in simulated lesion images as well as experimental cardiac ultrasound data. SVF was demonstrated in both simulation and experimental results, over a wide range of imaging conditions, to outperform the BSS and FIR filtering methods in terms of contrast-to-noise ratio (CNR) and motion tracking performance. In experimental mouse heart data, SVF provided excellent artifact suppression with an average CNR improvement of 1.8 dB with over 40% reduction in displacement tracking error. It was further demonstrated from simulation and experimental results that SVF provided superior clutter rejection, as reflected in larger CNR values, when filtering was achieved using complex pulse-echo received data and non-binary filter coefficients.

  7. Design, Fabrication and Installation of the Charcoal Filter Housing in RIPF

    International Nuclear Information System (INIS)

    Kim, Min Jin; Lim, I. C.; Bang, H. S.

    2008-05-01

    In the Hot Cell Bank 3 of the Radioisotope Production Facility, production and dispense of I-131 solution and capsule that are used for the diagnosis and treatment of thyroid cancer are made. The original charcoal filter housings installed in 1994 and were utilized until the leakage of a very small amount of radio-iodine was found due to the erroneous installation of the charcoal filter in the filter housing. Thus the production of I-131 was discontinued until the repair and performance testing of the filter housing and the inspection by the regulatory body were finished. Although the production of I-131 was resumed, there was a desire for installing the brand-new charcoal filter housing which has an intrinsically safe design and no possibility of leakage. This report describes the design, fabrication and installation of brand-new charcoal filter housing. And also were described the dismantlement of the old housings, the assessment of the structural integrity of the shielding concrete wall and the installation of the shielding doors

  8. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2010-01-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  9. Straight flavor of Binary Number in Decimal Number System

    OpenAIRE

    MD. Abdul Awal Ansary; Sushanta Acharjee

    2012-01-01

    Different number systems are available on the basis of their base numbers. For instance, decimal number system is of base 10, hexadecimal number system which base is 16 and, Binary number system which base is 2 etc. Some numbers systems are easy to understand by the human being and some are easy to understand by electronics machine for instance digital computers. Computers only can understand data and instructions that are stored in binary form, though we input the data and instruction in dec...

  10. Design of reproducible polarized and non-polarized edge filters using genetic algorithm

    International Nuclear Information System (INIS)

    Ejigu, Efrem Kebede; Lacquet, B M

    2010-01-01

    Recent advancement in optical fibre communications technology is partly due to the advancement of optical thin film technology. The advancement of optical thin film technology includes the development of new and existing optical filter design methods. The genetic algorithm is one of the new design methods that show promising results in designing a number of complicated design specifications. It is the finding of this study that the genetic algorithm design method, through its optimization capability, can give more reliable and reproducible designs of any specifications. The design method in this study optimizes the thickness of each layer to get to the best possible solution. Its capability and unavoidable limitations in designing polarized and non-polarized edge filters from absorptive and dispersive materials is well demonstrated. It is also demonstrated that polarized and non-polarized designs from the genetic algorithm are reproducible with great success. This research has accomplished the great task of formulating a computer program using the genetic algorithm in a Matlab environment for the design of a reproducible polarized and non-polarized filters of any sort from any kind of materials

  11. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2015-07-01

    Full Text Available A simple iterative technique for the design of nonuniform cosine modulated filter banks (CMFBS is presented in this paper. The proposed technique employs a single parameter for optimization. The nonuniform cosine modulated filter banks are derived by merging the adjacent filters of uniform cosine modulated filter banks. The prototype filter is designed with the aid of different adjustable window functions such as Kaiser, Cosh and Exponential, and by using the constrained equiripple finite impulse response (FIR digital filter design technique. In this method, either cut off frequency or passband edge frequency is varied in order to adjust the filter coefficients so that reconstruction error could be optimized/minimized to zero. Performance and effectiveness of the proposed method in terms of peak reconstruction error (PRE, aliasing distortion (AD, computational (CPU time, and number of iteration (NOI have been shown through the numerical examples and comparative studies. Finally, the technique is exploited for the subband coding of electrocardiogram (ECG and speech signals.

  12. Efficient design of FIR filter based low-pass differentiators for biomedical signal processing

    Directory of Open Access Journals (Sweden)

    Wulf Michael

    2016-09-01

    Full Text Available This paper describes an alternative design of linear phase low-pass differentiators with a finite impulse response (type III FIR filter. To reduce the number of necessary filter coefficients, the differentiator’s transfer function is approximated by a Fourier series of a triangle function. Thereby the filter’s transition steepness towards the stopband is intentionally reduced. It can be shown that the proposed design of low-pass differentiators yields to similar results as other published design recommendations, while the filter order can be significantly reduced.

  13. ACTIVE FILTER HARDWARE DESIGN and PERFORMANCE FOR THE DIII-D PLASMA CONTROL SYSTEM

    International Nuclear Information System (INIS)

    SELLERS, D.; FERRON, J.R; WALKER, M.L; BROESCH, J.D

    2004-03-01

    OAK-B135 The digital plasma control system (PCS), currently in operation on the DIII-D tokamak, requires inputs from a large number of sensors. Due to the nature of the digitizers and the relative noisy environment from which these signals are derived, each of the 32 signals must be conditioned via an active filter. Two different types of filters, Chebyshev and Bessel with fixed frequencies: 100 Hz Bessel was used for filtering the motional Stark effect diagnostic data. 800 Hz Bessel was designed to filter plasma control data and 1200 Hz Chebyshev is used with closed loop control of choppers. The performance of the plasma control system is greatly influenced by how well the actual filter responses match the software model used in the control system algorithms. This paper addresses the various issues facing the designer in matching the electrical design with the theoretical

  14. Design of quadrature mirror filter bank using Lagrange multiplier method based on fractional derivative constraints

    Directory of Open Access Journals (Sweden)

    B. Kuldeep

    2015-06-01

    Full Text Available Fractional calculus has recently been identified as a very important mathematical tool in the field of signal processing. Digital filters designed by fractional derivatives give more accurate frequency response in the prescribed frequency region. Digital filters are most important part of multi-rate filter bank systems. In this paper, an improved method based on fractional derivative constraints is presented for the design of two-channel quadrature mirror filter (QMF bank. The design problem is formulated as minimization of L2 error of filter bank transfer function in passband, stopband interval and at quadrature frequency, and then Lagrange multiplier method with fractional derivative constraints is applied to solve it. The proposed method is then successfully applied for the design of two-channel QMF bank with higher order filter taps. Performance of the QMF bank design is then examined through study of various parameters such as passband error, stopband error, transition band error, peak reconstruction error (PRE, stopband attenuation (As. It is found that, the good design can be obtained with the change of number and value of fractional derivative constraint coefficients.

  15. A New Filter Design Method for Disturbed Multilayer Hopfield Neural Networks

    Directory of Open Access Journals (Sweden)

    AHN, C. K.

    2011-05-01

    Full Text Available This paper investigates the passivity based filtering problem for multilayer Hopfield neural networks with external disturbance. A new passivity based filter design method for multilayer Hopfield neural networks is developed to ensure that the filtering error system is exponentially stable and passive from the external disturbance vector to the output error vector. The unknown gain matrix is obtained by solving a linear matrix inequality (LMI, which can be easily facilitated by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed filter.

  16. New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter.

    Science.gov (United States)

    Lin, Jie; Zhao, Hongyang; Ma, Yuan; Tan, Jiubin; Jin, Peng

    2016-05-16

    The binary phase filters have been used to achieve an optical needle with small lateral size. Designing a binary phase filter is still a scientific challenge in such fields. In this paper, a hybrid genetic particle swarm optimization (HGPSO) algorithm is proposed to design the binary phase filter. The HGPSO algorithm includes self-adaptive parameters, recombination and mutation operations that originated from the genetic algorithm. Based on the benchmark test, the HGPSO algorithm has achieved global optimization and fast convergence. In an easy-to-perform optimizing procedure, the iteration number of HGPSO is decreased to about a quarter of the original particle swarm optimization process. A multi-zone binary phase filter is designed by using the HGPSO. The long depth of focus and high resolution are achieved simultaneously, where the depth of focus and focal spot transverse size are 6.05λ and 0.41λ, respectively. Therefore, the proposed HGPSO can be applied to the optimization of filter with multiple parameters.

  17. Filtered atmospheric venting of LWR containments: the Swedish research programme and design concepts

    International Nuclear Information System (INIS)

    Graeslund, C.; Johansson, K.; Nilsson, L.; Tiren, I.

    1981-01-01

    An investigation of filtered atmospheric venting of LWR containments has been recommended by a governmental reactor safety committee as a means of reducing the large releases of radioactivity which it is believed could arise as a result of accidents beyond the design bases (class 9) in nuclear power plants. The purpose of the project is to provide the technical basis for evaluating the feasibility, effectiveness and costs of some vent filter design concepts. The main design objective is substantially to reduce releases to the atmosphere of those radioactive substances which could cause long-lasting contamination of large land areas resulting from accidents beyond the design basis. The degree to which that objective can be reached by applying vent-filter functions becomes the main design evaluation criterion. The governing principle for the vent filter design is to utilize passive components and functions to the greatest possible extent. The design concept is to vent the stream and gases from the containment into an underground tunnel containing a large bed of gravel where the steam is condensed. Non-condensable gases are vented through a sand filter at the outlet of the tunnel via a stack to the atmosphere. The tunnel volume envisaged is of the order of 100,000m 3 , and the length about 1000m. A deep tunnel in rock can be made to withstand the pressures from the burning of hydrogen-air mixtures. As an alternative method the condensing and filtering functions can be achieved by utilizing water pools built sub-surface in concrete structures. Concrete structures can also be built to withstand hydrogen burning. (author)

  18. Design Characteristics and Tobacco Metal Concentrations in Filtered Cigars.

    Science.gov (United States)

    Caruso, Rosalie V; O'Connor, Richard J; Travers, Mark J; Delnevo, Cristine D; Stephens, W Edryd

    2015-11-01

    While U.S. cigarette consumption has declined, cigar use has steadily increased, for reasons including price compared to cigarettes and the availability of filtered varieties resembling cigarettes, and flavors that have been banned in cigarettes (excluding menthol). Little published data exists on the design characteristics of such cigars. A variety of filtered cigar brands were tested for design characteristics such as whole cigar weight, ventilation, and per-cigar tobacco weight. Cigar sticks were then sent to the University of St. Andrews for metal concentration testing of As, Pb, Cr, Ni, and Cd. Large and small cigars were statistically different between cigar weight (p ≤ .001), per-cigar tobacco weight (p = .001), rod diameter (p = .006), and filter diameter (p = .012). The differences in mean ventilation (overall mean = 19.6%, min. = 0.84%, max. = 57.6%) across filtered cigar brands were found to be statistically significant (p = .031), and can be compared to the ventilation of the average of 2013 U.S. Marlboro Red, Gold, and Silver packs at 29% ventilation. There were no significant differences for metal concentrations between cigar types (p = .650), with Pb and As levels being similar to U.S. 2009 cigarette concentrations, Cd cigar levels being slightly higher, and Cr and Ni levels much lower than cigarette levels. With cigar use rising, and filtered cigars displaying substantial similarities to filtered cigarettes, more research on product characteristics is warranted. Future plans include testing tobacco alkaloid and more observation of cigar weight for tax bracket purposes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Modular filter design for the white-beam undulator/wiggler beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Brite, C.; Shu, D.; Nian, T.; Wang, Z.; Haeffner, D.; Alp, E.; Kuzay, T.

    1994-01-01

    A new filter has been designed at Argonne National Laboratory that is intended for the use in undulator/wiggler beamlines at the Advanced Photon Source. The water-cooled frame allows up to four individual filter foil banks simultaneously in the beam path. Additionally, the bottom of each frame holds two thin (20 μm) uncooled carbon filters in tandem for low-energy filtering. Therefore, a maximum of 625 filter selection combinations is theoretically possible. The design is intelligent, compact and modular, with great flexibility for the users. To prevent accidental movement of the filter, effort has been taken to provide a mechanically locked, fail-safe actuator system. Programming aspects are under development as part of our general personnel and equipment protection system. Aspects of the design and operational principles of the filter are presented in this paper

  20. Spatial filter lens design for the main laser of the National Ignition Facility

    International Nuclear Information System (INIS)

    Korniski, R.J.

    1998-01-01

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1ω) of 1 053microm Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3ω or λ=351microm) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ''Optical system design of the National Ignition Facility,'' by R Edward English. et al also found in this volume

  1. A novel optimized LCL-filter designing method for grid connected converter

    DEFF Research Database (Denmark)

    Guohong, Zeng; Rasmussen, Tonny Wederberg; Teodorescu, Remus

    2010-01-01

    This paper presents a new LCL-filters optimized designing method for grid connected voltage source converter. This method is based on the analysis of converter output voltage components and inherent relations among LCL-filter parameters. By introducing an optimizing index of equivalent total capa...

  2. A Novel Evolutionary Algorithm for Designing Robust Analog Filters

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.

  3. Ten-decimal tables of the logarithms of complex numbers and for the transformation from Cartesian to polar coordinates

    CERN Document Server

    Lyusternik, L A

    1965-01-01

    Ten-Decimal Tables of the Logarithms of Complex Numbers and for the Transformation from Cartesian to Polar Coordinates contains Tables of mathematical functions up to ten-decimal value. These tables are compiled in the Department for Approximate Computations of the Institute of Exact Mechanics and Computational Methods of the U.S.S.R. Academy of Sciences. The computations are carried out by this department in conjunction with the Computational-Experimental Laboratory of the Institute.This book will be of value to mathematicians and researchers.

  4. Design of adaptive filter amplifier in UV communication based on DSP

    Science.gov (United States)

    Lv, Zhaoshun; Wu, Hanping; Li, Junyu

    2016-10-01

    According to the problem of the weak signal at receiving end in UV communication, we design a high gain, continuously adjustable adaptive filter amplifier. Based on proposing overall technical indicators and analyzing its working principle of the signal amplifier, we use chip LMH6629MF and two chips of AD797BN to achieve three-level cascade amplification. And apply hardware of DSP TMS320VC5509A to implement digital filtering. Design and verification by Multisim, Protel 99SE and CCS, the results show that: the amplifier can realize continuously adjustable amplification from 1000 to 10000 times without distortion. Magnification error is <=%4@1000 10000. And equivalent input noise voltage of amplification circuit is <=6 nV/ √Hz @30KHz 45KHz, and realizing function of adaptive filtering. The design provides theoretical reference and technical support for the UV weak signal processing.

  5. Design of multi-wavelength tunable filter based on Lithium Niobate

    Science.gov (United States)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  6. Understanding Decimal Proportions: Discrete Representations, Parallel Access, and Privileged Processing of Zero

    Science.gov (United States)

    Varma, Sashank; Karl, Stacy R.

    2013-01-01

    Much of the research on mathematical cognition has focused on the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, with considerably less attention paid to more abstract number classes. The current research investigated how people understand decimal proportions--rational numbers between 0 and 1 expressed in the place-value symbol system. The results…

  7. MODEL-ORIENTED METHOD OF DESIGN IMPLEMENTATION WHEN CREATING DIGITAL FILTERS

    Directory of Open Access Journals (Sweden)

    V. Levinskyi

    2016-12-01

    Full Text Available This article discusses the example of model-oriented method of design and development of digital low-pass filters (LPF for automatic control systems (ACS. Typically, high frequency noise and disturbance attenuation is carried out by analogue LPF. However, technical implementation of analogue filters higher than the second order arouse certain difficulties related with the need of precise passive components ratings selection (resistors, capacitors. If the noise and disturbances spectral composition is known, it is possible to build digital LPF with the Nyquist frequency greater than the maximum frequency in the noise spectrum. Such possibility has appeared because of cheap, energy-efficient, high-speed 32-bit microcontrollers market entry. They have analogue signals sampling rate of 30 kHz and above. The traditional approach using the “manual” method of filter parameters calculation, obtaining their recurrence expressions and further program implementation requires high qualification and a lot of time consumption from the developer. An alternative to this approach is the model-oriented method of design (MOMD in MatLab environment when in the one environment the design of digital LPF, verificaton of its performance as a part of the ACS, generation and compilation of program codes for selected microcontroller family take place. MOMD can also be used in the designs of bandpass and bandstop filters for adaptive control systems or systems of technical diagnostics. If during the commissioning or the operation of ACS there is a need in digital LPF parameters change then this operation can be performed within half an hour. MOMD technology allows to significantly reduce the time for developing a specific product without loss of quality in its design ‘cause of extensive possibilities of MatLab development environment.

  8. Hardware Architecture of Polyphase Filter Banks Performing Embedded Resampling for Software-Defined Radio Front-Ends

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Le Moullec, Yannick; Koch, Peter

    2012-01-01

    , and power optimization for field programmable gate array (FPGA) based architectures in an M -path polyphase filter bank with modified N -path polyphase filter. Such systems allow resampling by arbitrary ratios while simultaneously performing baseband aliasing from center frequencies at Nyquist zones......In this paper, we describe resource-efficient hardware architectures for software-defined radio (SDR) front-ends. These architectures are made efficient by using a polyphase channelizer that performs arbitrary sample rate changes, frequency selection, and bandwidth control. We discuss area, time...... that are not multiples of the output sample rate. A non-maximally decimated polyphase filter bank, where the number of data loads is not equal to the number of M subfilters, processes M subfilters in a time period that is either less than or greater than the M data-load’s time period. We present a load...

  9. Significant decimal digits for energy representation on short-word computers

    International Nuclear Information System (INIS)

    Sartori, E.

    1989-01-01

    The general belief that single precision floating point numbers have always at least seven significant decimal digits on short word computers such as IBM is erroneous. Seven significant digits are required however for representing the energy variable in nuclear cross-section data sets containing sharp p-wave resonances at 0 Kelvin. It is suggested that either the energy variable is stored in double precision or that cross-section resonances are reconstructed to room temperature or higher on short word computers

  10. Harmonic filter design consideration for a tire-rubber factory

    Energy Technology Data Exchange (ETDEWEB)

    Zebardast, A. [Azad Univ., Tehran (Iran, Islamic Republic of). Abhar Branch]|[Sharif Univ., Tehran (Iran, Islamic Republic of); Mokhtari, H. [Azad Univ., Tehran (Iran, Islamic Republic of)

    2005-07-01

    Nonlinear loads and arc furnace loads are the main sources of harmonic currents in power distribution systems. Harmonic currents can cause reductions in system efficiency, and shorten the lifespan of transformers and capacitor banks. This paper provided details of a filter designed to attenuate harmonic currents at a tire company in Iran. The tire company was supplied by 3 distribution transformers and an emergency transformer. Main supply was through a 132 kV/20 kV transformer, which was connected to 2 A and B stations. The AC/DC drivers generated harmonics. Harmonic measurements were performed to determine the type and size of the required filters. A summary of site harmonic measurements was provided. A passive filter was placed at a medium voltage location. A sensitivity analysis was then performed in order to assess loading effects on filter performance. The analysis was performed on all possible configurations in the plant, including load change, capacitor bank step change, and transformer energization. Resonance conditions were also examined. Results showed that attention must be paid to the filter component rating in addition to potential resonant conditions. It was concluded that resonant conditions alter when system operating conditions change. 5 refs., 7 figs.

  11. Passivity-based design of robust passive damping for LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Passive damping is proven as a robust stabilizing technique for LCL-filtered voltage source converters. However, conventional design methods of passive dampers are based on the passive components only, while the inherent damping effect of time delay in the digital control system is overlooked....... In this paper, a frequency-domain passivity-based design approach is proposed, where the passive dampers are designed to eliminate the negative real part of the converter output admittance with closed-loop current control, rather than shaping the LCL-filter itself. Thus, the influence of time delay...... in the current control is included, which allows a relaxed design of the passive damper with the reduced power loss and improved stability robustness against grid parameters variations. Design procedures of two commonly used passive dampers with LCL-filtered VSCs are illustrated. Experimental results validate...

  12. LCL-Filter Design for Robust Active Damping in Grid-Connected Converters

    DEFF Research Database (Denmark)

    Pena-Alzola, Rafael; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    in the grid inductance may compromise system stability, and this problem is more severe for parallel converters. This situation, typical of rural areas with solar and wind resources, calls for robust LCL-filter design. This paper proposes a design procedure with remarkable results under severe grid inductance......Grid-connected converters employ LCL-filters, instead of simple inductors, because they allow lower inductances while reducing cost and size. Active damping, without dissipative elements, is preferred to passive damping for solving the associated stability problems. However, large variations...

  13. Mixed-integrator-based bi-quad cell for designing a continuous time filter

    International Nuclear Information System (INIS)

    Chen Yong; Zhou Yumei

    2010-01-01

    A new mixed-integrator-based bi-quad cell is proposed. An alternative synthesis mechanism of complex poles is proposed compared with source-follower-based bi-quad cells which is designed applying the positive feedback technique. Using the negative feedback technique to combine different integrators, the proposed bi-quad cell synthesizes complex poles for designing a continuous time filter. It exhibits various advantages including compact topology, high gain, no parasitic pole, no CMFB circuit, and high capability. The fourth-order Butterworth lowpass filter using the proposed cells has been fabricated in 0.18 μm CMOS technology. The active area occupied by the filter with test buffer is only 200 x 170 μm 2 . The proposed filter consumes a low power of 201 μW and achieves a 68.5 dB dynamic range. (semiconductor integrated circuits)

  14. Design and implement of pack filter module base on embedded firewall

    Science.gov (United States)

    Tian, Libo; Wang, Chen; Yang, Shunbo

    2011-10-01

    In the traditional security solution conditions, software firewall cannot intercept and respond the invasion before being attacked. And because of the high cost, the hardware firewall does not apply to the security strategy of the end nodes, so we have designed a kind of solution of embedded firewall with hardware and software. With ARM embedding Linux operating system, we have designed packet filter module and intrusion detection module to implement the basic function of firewall. Experiments and results show that that firewall has the advantages of low cost, high processing speed, high safety and the application of the computer terminals. This paper focuses on packet filtering module design and implementation.

  15. Design and Realization of FIR Filter for Inter Satellite Link at 50-90 MHZ Frequency using FPGA

    Directory of Open Access Journals (Sweden)

    Yuyu Wahyu

    2016-12-01

    Full Text Available In this paper, design and realization of FIR filter with a bandwidth of 40 MHz at 50-90 MHz frequency has been proposed. The design was destined to be implemented on the Inter Satellite Links (ISL. This kind of filter had been selected due to a need in linear phase responseon the ISL data communication. Equiripple method was used to design the filter becauseof its reliability in minimizing the magnitude errors. The design of this FIR filter was conducted with theoretical calculation and simulation using the R2012b Matlab. For the implementation, FPGA was used with a VHDL as the programming language with a help of Xilinx ISE Design Suite 14.5. Simulation results in Matlab and Simulink indicated that the filter design could be well implemented on ISL at frequency of 50 MHz - 90 MHz with stopband of 60 db. The phase responseresult of the realized design is quite linear so that the filter is suitable for data communication on the ISL.

  16. Hardware design of the median filter based on window structure and batcher′s oddeven sort network

    Directory of Open Access Journals (Sweden)

    SUN Kaimin

    2013-06-01

    Full Text Available Area and speed are two important factors to be considered in designing Median Filter with digital circuits.Area consideration requires the use of logical resources as little as possible,while speed consideration requires the system capable of working on higher clock frequencies,with as few clock cycles as possible to complete a frame filtering or real time filtering.This paper gives a new design of Median Filter,the hardware structure of which is a 3×3 window structure with two buffers.The filter function module is based on Batcher′s Odd-Even Sort network theory.Structural design is implemented in FPGA,verified by ModelSim software and realizes video image filtering.The experimental analysis shows that this new structure of Median Filter effectively decreases logical resources (merely using 741 Logic Elements,and accelerates the pixel processing speed up to 27MHz.This filter achieves realtime processing of video images of 30 frames/s.This design not only has a certain practicality,but also provides a reference for the hardware structure design ideas in digital image processing.

  17. Renormalization-group decimation technique for spectra, wave-functions and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1983-09-01

    The Renormalization Group decimation technique is very useful for problems described by 1-d nearest neighbour tight-binding model with or without translational invariance. We show how spectra, wave-functions and density of states can be calculated with little numerical work from the renormalized coefficients upon iteration. The results of this new procedure are verified using the model of Soukoulis and Economou. (author)

  18. The use of linear programming techniques to design optimal digital filters for pulse shaping and channel equalization

    Science.gov (United States)

    Houts, R. C.; Burlage, D. W.

    1972-01-01

    A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.

  19. DC-pass filter design with notch filters superposition for CPW rectenna at low power level

    Science.gov (United States)

    Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun

    2016-03-01

    In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.

  20. Efficient design of two-dimensional recursive digital filters. Final report

    International Nuclear Information System (INIS)

    Twogood, R.E.; Mitra, S.K.

    1980-01-01

    This report outlines the research progress during the period August 1978 to July 1979. This work can be divided into seven basic project areas. Project 1 deals with a comparative study of 2-D recursive and nonrecursive digital filters. The second project addresses a new design technique for 2-D half-plane recursive filters, and Projects 3 thru 5 deal with implementation issues. The sixth project presents our recent study of the applicability of array processors to 2-D digital signal processing. The final project involves our investigation into techniques for incorporating symmetry constraints on 2-D recursive filters in order to yield more efficient implementations

  1. Design and characteristics of L-C thin films filter at microwave frequency band

    Science.gov (United States)

    Kim, In-Sung; Min, Bok-Ki; Song, Jae-Sung

    2005-12-01

    Multifunction corresponding to multimedia age has furthermore required high integration to the devices at microwave band, so more evolution for multi-layer integration like system on chip(SoC) becomes to be necessary. In wireless mobile communication, portable mobile phones grew up to a huge market. Microwave devices have played an important role in the wireless communication systems. One challenge in the implementation of circuit integration is in the design of micro wave band pass filter with thin film MOM capacitor and spiral inductor. In this paper, Cu and TaO thin film with RF sputtering was deposited for inductor and capacitor on the SiO II/Si(100) substrate. MIM capacitor and spiral inductor was fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, an important devices for mobile communication. Based on the high-Q values of passive components, MIM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and was 5 dB for a 900 MHz filter. This paper also discusses a theoretical analysis and practical design to L-C band pass filter.

  2. Design of application specific long period waveguide grating filters using adaptive particle swarm optimization algorithms

    International Nuclear Information System (INIS)

    Semwal, Girish; Rastogi, Vipul

    2014-01-01

    We present design optimization of wavelength filters based on long period waveguide gratings (LPWGs) using the adaptive particle swarm optimization (APSO) technique. We demonstrate optimization of the LPWG parameters for single-band, wide-band and dual-band rejection filters for testing the convergence of APSO algorithms. After convergence tests on the algorithms, the optimization technique has been implemented to design more complicated application specific filters such as erbium doped fiber amplifier (EDFA) amplified spontaneous emission (ASE) flattening, erbium doped waveguide amplifier (EDWA) gain flattening and pre-defined broadband rejection filters. The technique is useful for designing and optimizing the parameters of LPWGs to achieve complicated application specific spectra. (paper)

  3. Designing an Inverter-based Operational Transconductance Amplifier-capacitor Filter with Low Power Consumption for Biomedical Applications.

    Science.gov (United States)

    Yousefinezhad, Sajad; Kermani, Saeed; Hosseinnia, Saeed

    2018-01-01

    The operational transconductance amplifier-capacitor (OTA-C) filter is one of the best structures for implementing continuous-time filters. It is particularly important to design a universal OTA-C filter capable of generating the desired filter response via a single structure, thus reducing the filter circuit power consumption as well as noise and the occupied space on the electronic chip. In this study, an inverter-based universal OTA-C filter with very low power consumption and acceptable noise was designed with applications in bioelectric and biomedical equipment for recording biomedical signals. The very low power consumption of the proposed filter was achieved through introducing bias in subthreshold MOSFET transistors. The proposed filter is also capable of simultaneously receiving favorable low-, band-, and high-pass filter responses. The performance of the proposed filter was simulated and analyzed via HSPICE software (level 49) and 180 nm complementary metal-oxide-semiconductor technology. The rate of power consumption and noise obtained from simulations are 7.1 nW and 10.18 nA, respectively, so this filter has reduced noise as well as power consumption. The proposed universal OTA-C filter was designed based on the minimum number of transconductance blocks and an inverter circuit by three transconductance blocks (OTA).

  4. Design Criteria for DC Link Filters in a Synchronous Generator-Phase Controlled Rectifier-Filter-Load System

    National Research Council Canada - National Science Library

    Greseth, Gregory

    1999-01-01

    .... The proposed Navy DC Zonal Electrical Distribution System (DC ZEDS) being designed for the new DD-21 utilizes a rectified ac generator output which is filtered and stepped to usable voltages by local dc-dc converters...

  5. Design optimisation of powers-of-two FIR filter using self-organising random immigrants GA

    Science.gov (United States)

    Chandra, Abhijit; Chattopadhyay, Sudipta

    2015-01-01

    In this communication, we propose a novel design strategy of multiplier-less low-pass finite impulse response (FIR) filter with the aid of a recent evolutionary optimisation technique, known as the self-organising random immigrants genetic algorithm. Individual impulse response coefficients of the proposed filter have been encoded as sum of signed powers-of-two. During the formulation of the cost function for the optimisation algorithm, both the frequency response characteristic and the hardware cost of the discrete coefficient FIR filter have been considered. The role of crossover probability of the optimisation technique has been evaluated on the overall performance of the proposed strategy. For this purpose, the convergence characteristic of the optimisation technique has been included in the simulation results. In our analysis, two design examples of different specifications have been taken into account. In order to substantiate the efficiency of our proposed structure, a number of state-of-the-art design strategies of multiplier-less FIR filter have also been included in this article for the purpose of comparison. Critical analysis of the result unambiguously establishes the usefulness of our proposed approach for the hardware efficient design of digital filter.

  6. Design and Analysis of a Micromachined LC Low Pass Filter For 2.4GHz Application

    Science.gov (United States)

    Saroj, Samruddhi R.; Rathee, Vishal R.; Pande, Rajesh S.

    2018-02-01

    This paper reports design and analysis of a passive low pass filter with cut-off frequency of 2.4 GHz using MEMS (Micro Electro-Mechanical Systems) technology. The passive components such as suspended spiral inductors and metal-insulator-metal (MIM) capacitor are arranged in T network form to implement LC low pass filter design. This design employs a simple approach of suspension thereby reducing parasitic losses to eliminate the performance degrading effects caused by integrating an off-chip inductor in the filter circuit proposed to be developed on a low cost silicon substrate using RF-MEMS components. The filter occupies only 2.1 mm x 0.66 mm die area and is designed using micro-strip transmission line placed on a silicon substrate. The design is implemented in High Frequency Structural Simulator (HFSS) software and fabrication flow is proposed for its implementation. The simulated results show that the design has an insertion loss of -4.98 dB and return loss of -2.60dB.

  7. Design of HTS filter for GSM-R communication system

    Science.gov (United States)

    Cui, Hongyu; Ji, Laiyun

    2018-04-01

    High-temperature superconducting materials with its excellent performance have increasingly been valued by industries, especially in the field of electronic information. The superconducting material has almost zero surface resistance, and the filter made of it has the characteristics of low insertion loss, high edge steepness and good out-of-band rejection. It has higher selectivity for the desired signal and thus less interference from adjacent channels Signal interference, and noise reduction coefficient can improve the ability to detect weak signals. This design is suitable for high temperature superconducting filter of GSM-R communication system, which can overcome many shortcomings of the traditional GSM-R. The filter is made of DyBCO, a high temperature superconducting thin film material based on magnesium oxide (MgO) substrate with the dielectric constant of 9.7, the center frequency at 887.5MHz, bandwidth of 5MHz.

  8. Moving Average Filter-Based Phase-Locked Loops: Performance Analysis and Design Guidelines

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ramezani, Malek; Guerrero, Josep M.

    2014-01-01

    this challenge, incorporating moving average filter(s) (MAF) into the PLL structure has been proposed in some recent literature. A MAF is a linear-phase finite impulse response filter which can act as an ideal low-pass filter, if certain conditions hold. The main aim of this paper is to present the control...... design guidelines for a typical MAF-based PLL. The paper starts with the general description of MAFs. The main challenge associated with using the MAFs is then explained, and its possible solutions are discussed. The paper then proceeds with a brief overview of the different MAF-based PLLs. In each case......, the PLL block diagram description is shown, the advantages and limitations are briefly discussed, and the tuning approach (if available) is evaluated. The paper then presents two systematic methods to design the control parameters of a typical MAF-based PLL: one for the case of using a proportional...

  9. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  10. Design and Optimisation of a Simple Filter Group for Reactive Power Distribution

    Directory of Open Access Journals (Sweden)

    Ryszard Klempka

    2016-01-01

    Full Text Available Basic methods are presented to design a simple filter group and a method of shaping the resultant of the filter group’s impedance characteristics (distribution of the characteristics’ extremes and then project equations were transformed into a uniform, common form that addresses issues of the reactive power distribution between component filters. The analysis also takes into account the filters’ detuning from the reduced harmonics and quality factors of passive elements. Another important factor of the analysis considered was the power grid equivalent impedance affecting the filtration effectiveness. A criterion for the filter group’s filtration effectiveness evaluation was proposed and optimisation was completed for the reactive power distribution between separate filters in the function of the power grid’s equivalent inductance.

  11. Design and manufacture of super-multilayer optical filters based on PARMS technology

    Science.gov (United States)

    Lü, Shaobo; Wang, Ruisheng; Ma, Jing; Jiang, Chao; Mu, Jiali; Zhao, Shuaifeng; Yin, Xiaojun

    2018-04-01

    Three multilayer interference optical filters, including a UV band-pass, a VIS dual-band-pass and a notch filter, were designed by using Ta2O5, Nb2O5, Al2O3 and SiO2 as high- and low-index materials. During the design of the coating process, a hybrid optical monitoring and RATE-controlled layer thickness control scheme was adopted. The coating process was simulated by using the optical monitoring system (OMS) Simulator, and the simulation result indicated that the layer thickness can be controlled within an error of less than ±0.1%. The three filters were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) coating machine. The measurements indicate that for the UV band-pass filter, the peak transmittance is higher than 95% and the blocking density is better than OD6 in the 300-1100 nm region, whereas for the dual-band-pass filter, the center wavelength positioning accuracy of the two passbands are less than ±2 nm, the peak transmittance is higher than 95% and blocking density is better than OD6 in the 300-950 nm region. Finally, for the notch filter, the minimum transmittance rates are >90% and >94% in the visible and near infrared, respectively, and the blocking density is better than OD5.5 at 808 nm.

  12. Electromagnetic design methods in systems-on-chip: integrated filters for wireless CMOS RFICs

    International Nuclear Information System (INIS)

    Contopanagos, Harry

    2005-01-01

    We present general methods for designing on-chip CMOS passives and utilizing these integrated elements to design on-chip CMOS filters for wireless communications. These methods rely on full-wave electromagnetic numerical calculations that capture all the physics of the underlying foundry technologies. This is especially crucial for deep sub-micron CMOS technologies as it is important to capture the physical effects of finite (and mediocre) Q-factors limited by material losses and constraints on expensive die area, low self-resonance frequencies and dual parasitics that are particularly prevalent in deep sub-micron CMOS processes (65 nm-0.18 μm. We use these integrated elements in an ideal synthesis of a Bluetooth/WLAN pass-band filter in single-ended or differential architectures, and show the significant deviations of the on-chip filter response from the ideal one. We identify which elements in the filter circuit need to maximize their Q-factors and which Q-factors do not affect the filter performance. This saves die area, and predicts the FET parameters (especially transconductances) and negative-resistance FET topologies that have to be integrated in the filter to restore its performance. (invited paper)

  13. Electromagnetic design methods in systems-on-chip: integrated filters for wireless CMOS RFICs

    Energy Technology Data Exchange (ETDEWEB)

    Contopanagos, Harry [Institute for Microelectronics, NCSR ' Demokritos' , PO Box 60228, GR-153 10 Aghia Paraskevi, Athens (Greece)

    2005-01-01

    We present general methods for designing on-chip CMOS passives and utilizing these integrated elements to design on-chip CMOS filters for wireless communications. These methods rely on full-wave electromagnetic numerical calculations that capture all the physics of the underlying foundry technologies. This is especially crucial for deep sub-micron CMOS technologies as it is important to capture the physical effects of finite (and mediocre) Q-factors limited by material losses and constraints on expensive die area, low self-resonance frequencies and dual parasitics that are particularly prevalent in deep sub-micron CMOS processes (65 nm-0.18 {mu}m. We use these integrated elements in an ideal synthesis of a Bluetooth/WLAN pass-band filter in single-ended or differential architectures, and show the significant deviations of the on-chip filter response from the ideal one. We identify which elements in the filter circuit need to maximize their Q-factors and which Q-factors do not affect the filter performance. This saves die area, and predicts the FET parameters (especially transconductances) and negative-resistance FET topologies that have to be integrated in the filter to restore its performance. (invited paper)

  14. Design Optimization of Vena Cava Filters: An application to dual filtration devices

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Wang, S L; Diachin, D P

    2009-12-03

    Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parameterized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of thrombus trapped along the cava wall reduces the disruption to the flow, but increases the area exposed to abnormal wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parameterizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.

  15. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    Science.gov (United States)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  16. A numerical design approach for single amplifier, Active-RC Butterworth filter of order 5

    OpenAIRE

    Gaunholt, Hans

    2007-01-01

    A design method is presented for the design of all pole lowpass active-RC filters applying operational amplifiers. The operational amplifier model used is the integrator model: omegat/s where omegat is the unity gain frequency. The design method is used for the design of a fifth order Butterworth filter applying just one operational amplifier coupled as a unity gain amplifier. It is shown that the influence from the real operational amplifier may be reduced by trimming just one resistor in th...

  17. Guided-mode resonant filters and reflectors: Principles, design, and fabrication

    Science.gov (United States)

    Niraula, Manoj

    In this dissertation, we overview the operational principles of these resonant periodic structures, discuss the methods of their design and fabrication, and propose and demonstrate novel functionalities for spatial and spectral filtering, and unpolarized wideband reflection. Fashioned with materially sparse gratings, these optical devices are easy to fabricate and integration friendly compared to their traditional multi-layer counterparts making their research and development critical for practical applications. We study, theoretically, modal properties and parametric dependence of resonant periodic bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. We provide the first experimental demonstration of high-efficiency and narrow-linewidth resonant bandpass filter applying a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband, high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. We demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of resonant periodic devices. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both

  18. Epistemic Trust and Education: Effects of Informant Reliability on Student Learning of Decimal Concepts

    Science.gov (United States)

    Durkin, Kelley; Shafto, Patrick

    2016-01-01

    The epistemic trust literature emphasizes that children's evaluations of informants' trustworthiness affects learning, but there is no evidence that epistemic trust affects learning in academic domains. The current study investigated how reliability affects decimal learning. Fourth and fifth graders (N = 122; M[subscript age] = 10.1 years)…

  19. Magnetic filter field for ELISE––Concepts and design

    International Nuclear Information System (INIS)

    Fröschle, M.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Schiesko, L.; Wünderlich, D.

    2013-01-01

    Highlights: ► ELISE is an important intermediate step toward the full size ITER injector ion source ► It is one of the first ion sources equipped with a magnetic filter field formed by a PG current. ► The magnetic filter field is responsible for the performance of the source ► It controls the currents of extracted negative ions and co-extracted electrons ► The ELISE magnetic filter field meets all actual scientific findings ► It has a vast variability for future investigations and optimizations. -- Abstract: Negative ion neutral beam injection heating systems as planned for ITER need efficient precautions in the plasma source to minimize the co-extraction of electrons and destruction of negative ions. One solution is to apply a magnetic filter field of several mT, which reduces the electron temperature and the amount of electrons in the extraction region in front of the plasma grid. For the small IPP prototype sources it has been found, that both, the absolute value of the magnetic flux density in the extraction region as well as its integral along the distance from plasma driver to plasma grid has an important influence on the performance of the source. In the ITER ion sources, a strong current of several kA driven through the plasma grid is used to create the transversal magnetic field. The test bed ELISE (Extraction from a Large Ion Source Experiment) at IPP Garching houses the first negative ion source with the full width of the ITER source, with a similar aperture arrangement of the extraction system and with a magnetic filter field formed by a plasma grid current. One issue of the research at this test facility will be to explore and optimize the magnetic filter field. The paper summarizes experiences and results of previous filter field test campaigns and presents the magnetic filter field design for ELISE

  20. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air...) All single air-purifying respirator filter units will be tested in an atmosphere concentration of 100...

  1. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...

  2. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  3. A filter-mediated communication model for design collaboration in building construction.

    Science.gov (United States)

    Lee, Jaewook; Jeong, Yongwook; Oh, Minho; Hong, Seung Wan

    2014-01-01

    Multidisciplinary collaboration is an important aspect of modern engineering activities, arising from the growing complexity of artifacts whose design and construction require knowledge and skills that exceed the capacities of any one professional. However, current collaboration in the architecture, engineering, and construction industries often fails due to lack of shared understanding between different participants and limitations of their supporting tools. To achieve a high level of shared understanding, this study proposes a filter-mediated communication model. In the proposed model, participants retain their own data in the form most appropriate for their needs with domain-specific filters that transform the neutral representations into semantically rich ones, as needed by the participants. Conversely, the filters can translate semantically rich, domain-specific data into a neutral representation that can be accessed by other domain-specific filters. To validate the feasibility of the proposed model, we computationally implement the filter mechanism and apply it to a hypothetical test case. The result acknowledges that the filter mechanism can let the participants know ahead of time what will be the implications of their proposed actions, as seen from other participants' points of view.

  4. Criteria for calculating the efficiency of HEPA filters during and after design basis accidents

    International Nuclear Information System (INIS)

    Bergman, W.; First, M.W.; Anderson, W.L.; Gilbert, H.; Jacox, J.W.

    1994-12-01

    We have reviewed the literature on the performance of high efficiency particulate air (HEPA) filters under normal and abnormal conditions to establish criteria for calculating the efficiency of HEPA filters in a DOE nonreactor nuclear facility during and after a Design Basis Accident (DBA). The literature review included the performance of new filters and parameters that may cause deterioration in the filter performance such as filter age, radiation, corrosive chemicals, seismic and rough handling, high temperature, moisture, particle clogging, high air flow and pressure pulses. The deterioration of the filter efficiency depends on the exposure parameters; in severe exposure conditions the filter will be structurally damaged and have a residual efficiency of 0%. Despite the many studies on HEPA filter performance under adverse conditions, there are large gaps and limitations in the data that introduce significant error in the estimates of HEPA filter efficiencies under DBA conditions. Because of this limitation, conservative values of filter efficiency were chosen when there was insufficient data

  5. A Generic Current Mode Design for Multifunction Grounded Capacitor Filters Employing Log-Domain Technique

    Directory of Open Access Journals (Sweden)

    N. A. Shah

    2011-01-01

    Full Text Available A generic design (GD for realizing an nth order log-domain multifunction filter (MFF, which can yield four possible stable filter configurations, each offering simultaneously lowpass (LP, highpass (HP, and bandpass (BP frequency responses, is presented. The features of these filters are very simple, consisting of merely a few exponential transconductor cells and capacitors; all grounded elements, capable of absorbing the shunt parasitic capacitances, responses are electronically tuneable, and suitable for monolithic integration. Furthermore, being designed using log-domain technique, it offers all its advantages. As an example, 5th-order MFFs are designed in each case and their performances are evaluated through simulation. Lastly, a comparative study of the MFFs is also carried, which helps in selecting better high-order MFF for a given application.

  6. Design of Chebychev’s Low Pass Filters Using Nonuniform Transmission Lines

    Directory of Open Access Journals (Sweden)

    Said Attamimi

    2016-03-01

    Full Text Available Transmission lines are utilized in many applications to convey energy as well as information. Nonuniform transmission lines (NTLs are obtained through variation of the characteristic quantities along the axial direction. Such NTLs can be used to design network elements, like matching circuits, delay equalizers, filters, VLSI interconnections, etc. In this work, NTLs were analyzed with a numerical method based on the implementation of method of moment. In order to approximate the voltage and current distribution along the transmission line, a sum of basis functions with unknown amplitudes was introduced. As basis function, a constant function was used. In this work, we observed several cases such as lossless and lossy uniform transmission lines with matching and arbitrary load. These cases verified the algorithm developed in this work. The second example consists of nonuniform transmission lines in the form of abruptly changing transmission lines. This structure was used to design a Chebychev’s low pass filter. The calculated reflection and transmission factors of the filters showed some coincidences with the measurements.

  7. Performance Analysis and Design Strategy for a Second-Order, Fixed-Gain, Position-Velocity-Measured (α-β-η-θ Tracking Filter

    Directory of Open Access Journals (Sweden)

    Kenshi Saho

    2017-07-01

    Full Text Available We present a strategy for designing an α - β - η - θ filter, a fixed-gain moving-object tracking filter using position and velocity measurements. First, performance indices and stability conditions for the filter are analytically derived. Then, an optimal gain design strategy using these results is proposed and its relationship to the position-velocity-measured (PVM Kalman filter is shown. Numerical analyses demonstrate the effectiveness of the proposed strategy, as well as a performance improvement over the traditional position-only-measured α - β filter. Moreover, we apply an α - β - η - θ filter designed using this strategy to ultra-wideband Doppler radar tracking in numerical simulations. We verify that the proposed strategy can easily design the gains for an α - β - η - θ filter based on the performance of the ultra-wideband Doppler radar and a rough approximation of the target’s acceleration. Moreover, its effectiveness in predicting the steady state performance in designing the position-velocity-measured Kalman filter is also demonstrated.

  8. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    Science.gov (United States)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  9. Design of Passive Power Filter for Hybrid Series Active Power Filter using Estimation, Detection and Classification Method

    Science.gov (United States)

    Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.

    2016-06-01

    This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.

  10. Design of LLCL-filter for grid-connected converter to improve stability and robustness

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    of the switching frequency range. The resonance frequencies of the LLCL-filters based grid-connected converters are sensitive to the grid impedance as well as cable capacitance, which may influence the stability of the overall system. This paper proposes a new parameter design method for LLCL-filter from the point...

  11. Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection

    Energy Technology Data Exchange (ETDEWEB)

    Kontson, Kimberly, E-mail: Kimberly.Kontson@fda.hhs.gov; Jennings, Robert J. [Department of Bioengineering, University of Maryland, College Park, Maryland 20742 and Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity

  12. Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection

    International Nuclear Information System (INIS)

    Kontson, Kimberly; Jennings, Robert J.

    2015-01-01

    Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity

  13. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    Science.gov (United States)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  14. Designing manufacturable filters for a 16-band plenoptic camera using differential evolution

    Science.gov (United States)

    Doster, Timothy; Olson, Colin C.; Fleet, Erin; Yetzbacher, Michael; Kanaev, Andrey; Lebow, Paul; Leathers, Robert

    2017-05-01

    A 16-band plenoptic camera allows for the rapid exchange of filter sets via a 4x4 filter array on the lens's front aperture. This ability to change out filters allows for an operator to quickly adapt to different locales or threat intelligence. Typically, such a system incorporates a default set of 16 equally spaced at-topped filters. Knowing the operating theater or the likely targets of interest it becomes advantageous to tune the filters. We propose using a modified beta distribution to parameterize the different possible filters and differential evolution (DE) to search over the space of possible filter designs. The modified beta distribution allows us to jointly optimize the width, taper and wavelength center of each single- or multi-pass filter in the set over a number of evolutionary steps. Further, by constraining the function parameters we can develop solutions which are not just theoretical but manufacturable. We examine two independent tasks: general spectral sensing and target detection. In the general spectral sensing task we utilize the theory of compressive sensing (CS) and find filters that generate codings which minimize the CS reconstruction error based on a fixed spectral dictionary of endmembers. For the target detection task and a set of known targets, we train the filters to optimize the separation of the background and target signature. We compare our results to the default 16 at-topped non-overlapping filter set which comes with the plenoptic camera and full hyperspectral resolution data which was previously acquired.

  15. Selected solutions and design features from the design of remotely handled filters and the technology of remote filter handling. Previous operating experience with these components in the PASSAT facility

    International Nuclear Information System (INIS)

    Jannakos, K.; Lange, W.; Potgeter, G.; Furrer, J.; Wilhelm, J.G.

    1981-01-01

    In a prototype filter offgas cleaning system for reprocessing plants (PASSAT) built at the Karlsruhe Nuclear Research Center a fullscale filter cell with remotely handled filters for aerosol and iodine removal and the corresponding remote handling systems for exchange, bagging out, packaging and disposal of spent filter elements has been installed and run in trial operation since July 1978. The filters and the replacement techniques have been tested for the past two years or so and so far have always worked satisfactory over the test period involving some 150 replacement events. Neither wear nor corrosion phenomena were found in the filter housings and the replacement systems. The seals and clamping devices were selected so that during operation the prescribed leak rates of -3 Torr l/s were always maintained on the filter lid, the seat of the filter element and the cell lock. The total clamping loads for the filter element and the filter lid amount to approx. 20 kN. The force necessary to separate the filter element from the filter housing is approx. 3.5 kN. No ruptures of seals or gaskets were to be detected. The design of the filters and of the handling systems has been found satisfactorily in the cold test operation so far and can be recommended for use in nuclear facilities. In all experiments conducted until now PASSAT has worked without any failure. All operating data required in the specifications were met in the test period. The maximum pressure loss in the system with loaded filter elements amounts to some 3000 mm of water. After operation with iodine and NO/sub x/, plant components exposed to 100% relative humidity and condensate showed corrosion

  16. The design of a 4’th order Bandpass Butterworth filter with one operational amplifier.

    OpenAIRE

    Gaunholt, Hans

    2008-01-01

    A numerical design method is presented for the design of all pole band pass active-RC filters applying just one operational amplifier. The operational amplifier model used is the integrator model: ωt/s where ωt is the unity gain fre-quency. The design method is used for the design of a fourth order band pass filter with Butterworth poles applying just one operational amplifier coupled as a unity gain amplifier. The unity gain amplifiers have the advantage of providing low power consumption, y...

  17. Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Supriya Dhabal

    2014-01-01

    Full Text Available We present a novel hybrid algorithm based on particle swarm optimization (PSO and simulated annealing (SA for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.

  18. Design of a Balun Bandpass Filter with Asymmetrical Coupled Microstrip Lines

    Science.gov (United States)

    Wang, Xuedao; Wang, Jianpeng; Zhang, Gang; Huang, Feng

    2017-07-01

    A new microstrip coupled-line balun topology and its application to the balun bandpass filter (BPF) with a triple mode response are proposed in this paper. The involved balun structure is composed of two back-to-back quarter-wavelength (λ/4) asymmetrical coupled-line sections. Detailed design formulas based on the asymmetrical coupled-line theory are given to validate the feasibility of the balun. Besides, to obtain filtering performance simultaneously, the balun is then effectively integrated with a pair of triple mode resonators. To demonstrate the design concept of the balun BPF, a prototype operating at 2.4 GHz with the fractional bandwidth (FBW) of about 19.2 % is designed, fabricated, and measured. Results indicate that between the two balanced outputs, the amplitude imbalance is less than 0.3 dB and the phase difference is within 180°±5° inside the whole passband. Both simulated and experimental results are in good agreement.

  19. Differential mode EMI filter design for ultra high efficiency partial parallel isolated full-bridge boost converter

    DEFF Research Database (Denmark)

    Makda, Ishtiyaq Ahmed; Nymand, M.

    2013-01-01

    for such application, it calls for a carefully optimized EMI filter which is designed and implemented in this work. Moreover, the negative input impedance of the regulated converter is extremely low; well-designed filter damping branch is also included. Differential mode noise is analyzed analytically for a 3KW/400V...

  20. Analysis and Design of Offset QPSK Using Redundant Filter Banks

    International Nuclear Information System (INIS)

    Fernandez-Vazquez, Alfonso; Jovanovic-Dolecek, Gordana

    2013-01-01

    This paper considers the analysis and design of OQPSK digital modulation. We first establish the discrete time formulation, which allows us to find the equivalent redundant filter banks. It is well known that redundant filter banks are related with redundant transformation of the Frame theory. According to the Frame theory, the redundant transformations and corresponding representations are not unique. In this way, we show that the solution to the pulse shaping problem is not unique. Then we use this property to minimize the effect of the channel noise in the reconstructed symbol stream. We evaluate the performance of the digital communication using numerical examples.

  1. Design optimization of the distributed modal filtering rod fiber for increasing single mode bandwidth

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko

    2012-01-01

    . Large preform tolerances are compensated during the fiber draw resulting in ultra low NA fibers with very large cores. In this paper, design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared...... LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled from the outer fiber. However, achieving ultra low NA for single-mode (SM) guidance is challenging, and thus different design strategies must be applied to filter out higher order modes (HOMs). The novel...... distributed modal filtering (DMF) design presented here enables SM guidance, and previous results have shown a SM mode field diameter of 60 μm operating in a 20 nm SM bandwidth. The DMF rod fiber has high index ring-shaped inclusions acting as resonators enabling SM guidance through modal filtering of HOMs...

  2. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper...... limit. In order to achieve the desired filter performance with optimal values of the filter parameters, the use of a LC trap branch with the conventional LCL filter is proposed. The expressions for the resonant frequencies of the proposed line filter are derived and used in the design to selectively...

  3. Design of multiplier-less sharp non-uniform cosine modulated filter banks for efficient channelizers in software defined radio

    Directory of Open Access Journals (Sweden)

    Shaeen Kalathil

    2016-03-01

    Full Text Available Forthcoming software defined radios require filter banks which satisfy stringent specifications efficiently with low implementation complexity. Cosine modulated filter banks (CMFB have simple and efficient design procedure. The different wireless standards have different channel spacing or bandwidths and hence demand non-uniform decomposition of subbands. The non-uniform CMFB can be obtained from a uniform CMFB in a simple and efficient approach by merging the adjacent channels of the uniform CMFB. Very narrow transition width filters with low complexity can be achieved using frequency response masking (FRM filter as prototype filter. The complexity is further reduced by the multiplier-less realization of filter banks in which the least number of signed power of two (SPT terms is achieved by representing the filter coefficients using canonic signed digit (CSD representation and then optimizing using suitable modified meta-heuristic algorithms. Hybrid meta-heuristic algorithms are used in this paper. A hybrid algorithm combines the qualities of two meta-heuristic algorithms and results in improved performances with low implementation complexity. Highly frequency selective filter banks characterized by small passband ripple, narrow transition width and high stopband attenuation with non-uniform decomposition of subbands can be designed with least the implementation complexity, using this approach. A digital channelizer can be designed for SDR implementations, using the proposed approach. In this paper, the non-uniform CMFB is designed for various existing wireless standards.

  4. Miniaturized dielectric waveguide filters

    OpenAIRE

    Sandhu, MY; Hunter, IC

    2016-01-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  5. Design and evaluation of three-level composite filters obtained by optimizing a compromise average performance measure

    Science.gov (United States)

    Hendrix, Charles D.; Vijaya Kumar, B. V. K.

    1994-06-01

    Correlation filters with three transmittance levels (+1, 0, and -1) are of interest in optical pattern recognition because they can be implemented on available spatial light modulators and because the zero level allows us to include a region of support (ROS). The ROS can provide additional control over the filter's noise tolerance and peak sharpness. A new algorithm based on optimizing a compromise average performance measure (CAPM) is proposed for designing three-level composite filters. The performance of this algorithm is compared to other three-level composite filter designs using a common image database and using figures of merit such as the Fisher ratio, error rate, and light efficiency. It is shown that the CAPM algorithm yields better results.

  6. LCL filter design for three-phase two-level power factor correction using line impedance stabilization network

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2016-01-01

    This paper presents LCL filter design method for three-phase two-level power factor correction (PFC) using line impedance stabilization network (LISN). A straightforward LCL filter design along with variation in grid impedance is not simply achievable and inevitably lead to an iterative solution...... for filter. By introducing of fast power switches for PFC applications such as silicon-carbide, major current harmonics around the switching frequency drops in the region that LISN can actively provide well-defined impedance for measuring the harmonics (i.e. 9 kHz- 30MHz). Therefore, LISN can be replaced...... is derived using the current ripple behavior of converter-side inductor. The grid-side inductor is achieved as a function of LISN impedance to fulfill the grid regulation. To verify the analyses, an LCL filter is designed for a 5 kW SiC-based PFC. The simulation and experimental results support the validity...

  7. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    Science.gov (United States)

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio

  8. Design and Implementation of Data Acquisition System Based on Digital Filtering Method for the Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    LI Yang

    2017-02-01

    Full Text Available Aiming at the problem of high frequency noise interference in the ECT data acquisition system,on the basis of analysis of the ECT system data acquisition and control principles,we designed an improved distributed algorithm FIR low-pass digital filter combined with FPGA technology and digital filtering principle. The sampling frequency of the filter is 1 .5 MHz,the pass band cutoff frequency is 20MHz,and the design method is window function. We used the FDATooI toolbox in Matlab to extract and quantify the filter coefficients and the Quarters to simulate the simulation. Experimental results showed that the FIR digital filter can achieve the filtering function of the high frequency signal in the data acquisition system. Compared with the traditional DA algorithm,it has the advantages of small resource consumption and high acquisition speed and some other characteristics.

  9. Ammonia-nitrogen and Phosphate Reduction by Bio-Filter using Factorial Design

    Science.gov (United States)

    Kasmuri, Norhafezah; Ashikin Mat Damin, Nur; Omar, Megawati

    2018-02-01

    Untreated landfill leachate is known to have endangered the environment. As such new treatment must be sought to ensure its cost-effective and sustainable treatment. Thus this paper reports the effectiveness of bio-filter to remove pollutants. In this research, the reduction of nutrients concentration was evaluated in two conditions: using bio-filter and without bio-filter. Synthetic wastewater was used in the batch culture. It was conducted within 21 days in the initial mediums of 100 mg/L ammonia-nitrogen. The nitrification medium consisted of 100 mg/L of ammonia-nitrogen while the nitrite assay had none. The petri dish experiment was also conducted to observe the existence of any colony. The results showed 22% of ammonia- nitrogen reduction and 33% phosphate in the nitrification medium with the bio-filter. The outcome showed that the bio-filter was capable to reduce the concentration of pollutants by retaining the slow growing bacteria (AOB and NOB) on the plastic carrier surface. The factorial design was applied to study the effect of the initial ammonia-nitrogen concentration and duration on nitrite-nitrogen removal. Finally, a regression equation was produced to predict the rate of nitrite-nitrogen removal without conducting extended experiments and to reduce the number of trials experiment.

  10. A Novel Approach to the Design of Passive Filters in Electric Grids

    Science.gov (United States)

    Filho da Costa Castro, José; Lima, Lucas Ramalho; Belchior, Fernando Nunes; Ribeiro, Paulo Fernando

    2016-12-01

    The design of shunt passive filters has been a topic of constant research since the 70's. Due to the lower cost, passive shunt filters are still considered a preferred option. This paper presents a novel approach for the placement and sizing of passive filters through ranking solutions based on the minimization of the total harmonic distortion (THDV) of the supply system rather than one specific bus, without neglecting the individual harmonic distortions. The developed method was implemented using Matlab/Simulink and applied to a test system. The results shown that is possible to minimize the total voltage harmonic distortion using a system approach during the filter selection. Additionally, since the method is mainly based on a heurist approach, it avoids the complexity associated with of use of advanced mathematical tools such as artificial intelligence techniques. The analyses contemplate a sinusoidal voltage utility and also the condition with background distortion utility.

  11. Parallel power electronics filters in three-phase four-wire systems principle, control and design

    CERN Document Server

    Wong, Man-Chung; Lam, Chi-Seng

    2016-01-01

    This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems. .

  12. Optimal filter design with progressive genetic algorithm for local damage detection in rolling bearings

    Science.gov (United States)

    Wodecki, Jacek; Michalak, Anna; Zimroz, Radoslaw

    2018-03-01

    Harsh industrial conditions present in underground mining cause a lot of difficulties for local damage detection in heavy-duty machinery. For vibration signals one of the most intuitive approaches of obtaining signal with expected properties, such as clearly visible informative features, is prefiltration with appropriately prepared filter. Design of such filter is very broad field of research on its own. In this paper authors propose a novel approach to dedicated optimal filter design using progressive genetic algorithm. Presented method is fully data-driven and requires no prior knowledge of the signal. It has been tested against a set of real and simulated data. Effectiveness of operation has been proven for both healthy and damaged case. Termination criterion for evolution process was developed, and diagnostic decision making feature has been proposed for final result determinance.

  13. Flexible time-varying filter banks

    Science.gov (United States)

    Tuncer, Temel E.; Nguyen, Truong Q.

    1993-09-01

    Linear phase maximally flat FIR Butterworth filter approximations are discussed and a new filter design method is introduced. This variable cutoff filter design method uses the cosine modulated versions of a prototype filter. The design procedure is simple and different variants of this procedure can be used to obtain close to optimum linear phase filters. Using this method, flexible time-varying filter banks with good reconstruction error are introduced. These types of oversampled filter banks have small magnitude error which can be easily controlled by the appropriate choice of modulation frequency. This error can be further decreased by magnitude equalization without increasing the computational complexity considerably. Two dimensional design examples are also given.

  14. Development and analysis of vent-filtered containment conceptual designs

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Walling, H.C.

    1980-01-01

    Conceptual filtered-vented containment systems have been postulated for a reference large, dry, pressurized water reactor containment, and the systems have been analyzed to determine design parameters, actuation/operation requirements, and overall feasibility. The primary design challenge has been found to emanate from pressure spikes caused by core debris bed interactions with water and by hydrogen deflagrations. Circumvention of the pressure spikes may require a more complicated actuation logic than has previously been considered. Otherwise, major reductions in consequences for certain severe accidents appear to be possible with relatively simple systems. A probabilistic assessment of competing risks remains to be performed

  15. Design and Analysis of Robust Active Damping for LCL Filters using Digital Notch Filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2017-01-01

    Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp the reso......Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp...... the resonance, where the notch frequency should be aligned exactly to the resonant frequency of the LCL filter. However, parameter variations of the LCL filter as well as the time delay appearing in digital control systems will induce resonance drifting, and thus break this alignment, possibly deteriorating...... the original damping. In this paper, the effectiveness of the notch filter based active damping is firstly explored, considering the drifts of the resonant frequency. It is revealed that, when the resonant frequency drifts away from its nominal value, the phase lead or lag introduced by the notch filter may...

  16. Design and evaluation of a filter-based chairside amalgam separation system

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Mark E. [Naval Institute for Dental and Biomedical Research, 310A B Street, Great Lakes, Illinois 60088 (United States)], E-mail: mark.stone@yahoo.com; Cohen, Mark E.; Berry, Denise L.; Ragain, James C. [Naval Institute for Dental and Biomedical Research, 310A B Street, Great Lakes, Illinois 60088 (United States)

    2008-06-15

    This study evaluated the ability of a chairside filtration system to remove particulate-based mercury (Hg) from dental-unit wastewater. Prototypes of the chairside filtration system were designed and fabricated using reusable filter chambers with disposable filter elements. The system was installed in five dental operatories utilizing filter elements with nominal pore sizes of 50{mu}m, 15{mu}m, 1{mu}m, 0.5{mu}m, or with no system installed (control). Daily chairside wastewater samples were collected on ten consecutive days from each room and brought to the laboratory for processing. After processing the wastewater samples, Hg concentrations were determined with cold vapor atomic absorption spectrometry (USEPA method 7470A). Filter systems were exchanged after ten samples were collected so that all five of the configurations were evaluated in each room (with assignment order balanced by a Latin Square). The numbers of surfaces of amalgam placed and removed per day were tracked in each room. In part two, new filter systems with the 0.5{mu}m filter elements were installed in the five dental operatories and vacuum levels at the high-velocity evacuation cannula tip were measured with a vacuum gauge. In part three of the study, the chairside filtration system utilizing 0.5{mu}m and 15{mu}m filter elements was evaluated utilizing the ISO 11143 testing protocol, a laboratory test of amalgam separator efficiency utilizing amalgam samples of known particle size distribution. Mean Hg per chair per day (no filter installed) was 1087.38mg (SD = 993.92mg). Mean Hg per chair per day for the 50{mu}m, 15{mu}m, 1{mu}m, 0.5{mu}m filter configurations was 79.13mg (SD = 71.40mg), 23.55mg (SD = 23.25mg), 17.68mg (SD = 17.35mg), and 4.25mg (SD = 6.35mg), respectively (n = 50 for all groups). Calculated removal efficiencies from the clinical samples were 92.7%, 97.8%, 98.4%, and 99.6%, respectively. ANCOVA on data from the four filter groups, with amalgam-surfaces-removed included as a

  17. Design and implementation of predictive filtering system for current reference generation of active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Tomislav; Milun, Stanko; Petrovic, Goran [FESB University of Split, Faculty of Electrical Engineering, Machine Engineering and Naval Architecture, R. Boskovica bb, 21000, Split (Croatia)

    2007-02-15

    The shunt active power filters are used to attenuate the harmonic currents in power systems by injecting equal but opposite compensating currents. Successful control of the active filters requires an accurate current reference. In this paper the current reference determination based on predictive filtering structure is presented. Current reference was obtained by taking the difference of load current and its fundamental harmonic. For fundamental harmonic determination with no time delay a combination of digital predictive filter and low pass filter is used. The proposed method was implemented on a laboratory prototype of a three-phase active power filter. The algorithm for current reference determination was adapted and implemented on DSP controller. Simulation and experimental results show that the active power filter with implemented predictive filtering structure gives satisfactory performance in power system harmonic attenuation. (author)

  18. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy.

    Science.gov (United States)

    Grevillot, L; Stock, M; Vatnitsky, S

    2015-10-21

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  19. Proposal of a calculation methodology for the preliminary design of a coalescing filter

    International Nuclear Information System (INIS)

    Gonzalez Dobrosky, Cintia

    2015-01-01

    Coalescing filters are described which are equipments for capture and recovery of mist most efficient, inexpensive and have fewer limitations of application. The operation, equations and ideal characteristics of filter media of these models are explained. A methodology for design and scale-up of this type of equipment for liquid recovery in gaseous currents is proposed from experimental tests, in order to guide the interested reader in its making. (author) [es

  20. Design and fabrication of a 100 GHz channel-drop filter

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Evgenya I [Los Alamos National Laboratory; Earley, Lawrence M [Los Alamos National Laboratory; Heath, Cynthia E [Los Alamos National Laboratory; Shchegolkov, Dmitry Y [Los Alamos National Laboratory

    2008-01-01

    We have designed and are fabricating a novel passive mm-wave spectrometer based on a Photonic Band Gap (PBG) channel-drop filter (CDF). There is a need for a compact wide-band versatile and configurable mm-wave spectrometer for applications in mm-wave communications, radio astronomy, and radar receivers for remote sensing and nonproliferation.

  1. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  2. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  3. [Design Method Analysis and Performance Comparison of Wall Filter for Ultrasound Color Flow Imaging].

    Science.gov (United States)

    Wang, Lutao; Xiao, Jun; Chai, Hua

    2015-08-01

    The successful suppression of clutter arising from stationary or slowly moving tissue is one of the key issues in medical ultrasound color blood imaging. Remaining clutter may cause bias in the mean blood frequency estimation and results in a potentially misleading description of blood-flow. In this paper, based on the principle of general wall-filter, the design process of three classes of filters, infinitely impulse response with projection initialization (Prj-IIR), polynomials regression (Pol-Reg), and eigen-based filters are previewed and analyzed. The performance of the filters was assessed by calculating the bias and variance of a mean blood velocity using a standard autocorrelation estimator. Simulation results show that the performance of Pol-Reg filter is similar to Prj-IIR filters. Both of them can offer accurate estimation of mean blood flow speed under steady clutter conditions, and the clutter rejection ability can be enhanced by increasing the ensemble size of Doppler vector. Eigen-based filters can effectively remove the non-stationary clutter component, and further improve the estimation accuracy for low speed blood flow signals. There is also no significant increase in computation complexity for eigen-based filters when the ensemble size is less than 10.

  4. Design and Simulation of a T-Type Lymphocyte Cells Filter on a Microfluidic System

    Directory of Open Access Journals (Sweden)

    Daniel A. Quiroga T.

    2016-01-01

    Full Text Available This work consisted in designing and validating, by experimental computational simulation, a T-Lymphocites filtering system based on microfluidics for hiv virus detection. Material and methods: It was used AutoDesk® Inventor simulation tool was used with which the microflui­dic system design was performed. The filter system was tested by a computer simulation in the AutoDesk® Simulation cfd (computational fluid dynamics software, simulation tool in which different particles with different diameters (5 μm, 10 μm, 15 μm flow through the system to test. Results and conclusions: Results showed that this system allowed to pass the expected particles, however, it also was observed that it allows bigger particles than desired, for this reason it is neces­sary to keep on working on system perfectioning. Filtering system efficiency was of a 33.33 %.

  5. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    Science.gov (United States)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  6. Low-sensitivity H ∞ filter design for linear delta operator systems with sampling time jitter

    Science.gov (United States)

    Guo, Xiang-Gui; Yang, Guang-Hong

    2012-04-01

    This article is concerned with the problem of designing H ∞ filters for a class of linear discrete-time systems with low-sensitivity to sampling time jitter via delta operator approach. Delta-domain model is used to avoid the inherent numerical ill-condition resulting from the use of the standard shift-domain model at high sampling rates. Based on projection lemma in combination with the descriptor system approach often used to solve problems related to delay, a novel bounded real lemma with three slack variables for delta operator systems is presented. A sensitivity approach based on this novel lemma is proposed to mitigate the effects of sampling time jitter on system performance. Then, the problem of designing a low-sensitivity filter can be reduced to a convex optimisation problem. An important consideration in the design of correlation filters is the optimal trade-off between the standard H ∞ criterion and the sensitivity of the transfer function with respect to sampling time jitter. Finally, a numerical example demonstrating the validity of the proposed design method is given.

  7. The intractable cigarette 'filter problem'.

    Science.gov (United States)

    Harris, Bradford

    2011-05-01

    When lung cancer fears emerged in the 1950s, cigarette companies initiated a shift in cigarette design from unfiltered to filtered cigarettes. Both the ineffectiveness of cigarette filters and the tobacco industry's misleading marketing of the benefits of filtered cigarettes have been well documented. However, during the 1950s and 1960s, American cigarette companies spent millions of dollars to solve what the industry identified as the 'filter problem'. These extensive filter research and development efforts suggest a phase of genuine optimism among cigarette designers that cigarette filters could be engineered to mitigate the health hazards of smoking. This paper explores the early history of cigarette filter research and development in order to elucidate why and when seemingly sincere filter engineering efforts devolved into manipulations in cigarette design to sustain cigarette marketing and mitigate consumers' concerns about the health consequences of smoking. Relevant word and phrase searches were conducted in the Legacy Tobacco Documents Library online database, Google Patents, and media and medical databases including ProQuest, JSTOR, Medline and PubMed. 13 tobacco industry documents were identified that track prominent developments involved in what the industry referred to as the 'filter problem'. These reveal a period of intense focus on the 'filter problem' that persisted from the mid-1950s to the mid-1960s, featuring collaborations between cigarette producers and large American chemical and textile companies to develop effective filters. In addition, the documents reveal how cigarette filter researchers' growing scientific knowledge of smoke chemistry led to increasing recognition that filters were unlikely to offer significant health protection. One of the primary concerns of cigarette producers was to design cigarette filters that could be economically incorporated into the massive scale of cigarette production. The synthetic plastic cellulose acetate

  8. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  9. How to include frequency dependent complex permeability Into SPICE models to improve EMI filters design?

    Science.gov (United States)

    Sixdenier, Fabien; Yade, Ousseynou; Martin, Christian; Bréard, Arnaud; Vollaire, Christian

    2018-05-01

    Electromagnetic interference (EMI) filters design is a rather difficult task where engineers have to choose adequate magnetic materials, design the magnetic circuit and choose the size and number of turns. The final design must achieve the attenuation requirements (constraints) and has to be as compact as possible (goal). Alternating current (AC) analysis is a powerful tool to predict global impedance or attenuation of any filter. However, AC analysis are generally performed without taking into account the frequency-dependent complex permeability behaviour of soft magnetic materials. That's why, we developed two frequency-dependent complex permeability models able to be included into SPICE models. After an identification process, the performances of each model are compared to measurements made on a realistic EMI filter prototype in common mode (CM) and differential mode (DM) to see the benefit of the approach. Simulation results are in good agreement with the measured ones especially in the middle frequency range.

  10. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    Science.gov (United States)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  11. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  12. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  13. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench

  14. Wide Bandpass and Narrow Bandstop Microstrip Filters based on Hilbert fractal geometry: design and simulation results.

    Directory of Open Access Journals (Sweden)

    Yaqeen S Mezaal

    Full Text Available This paper presents new Wide Bandpass Filter (WBPF and Narrow Bandstop Filter (NBSF incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems.

  15. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    International Nuclear Information System (INIS)

    Comani, S; Mantini, D; Alleva, G; Luzio, S Di; Romani, G L

    2005-01-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz

  16. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization

    Science.gov (United States)

    Verly, Pierre G.

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  17. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    Science.gov (United States)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  18. Design of bandwidth tunable HTS filter using H-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We have developed a bandwidth tuning method for use in high-temperature superconducting (HTS) microstrip filters. Several H-shaped waveguides are placed between the resonators, and the bandwidth is adjusted by changing the switch states of the waveguides. The coupling coefficients between the resonators are controlled by switching the connection or isolation of the center gaps of the waveguides so as to tune the bandwidth. The effects of using this method were evaluated by simulation using a filter composed of 3-pole half-wavelength straight-line resonators with an H-shaped waveguide between each pair and additional electric pads for post-tuning trimming. The filter was designed to have a center frequency of 5 GHz and a bandwidth of 100 MHz by using an electromagnetic simulator based on the moment method. The simulation showed that bandwidth tuning of 150 MHz can be obtained by using H-shaped waveguides to adjust the coupling coefficients. It also showed that using additional electric pads around the feed lines, which was previously shown to be useful for trimming to improve insertion loss after center-frequency tuning, is also useful for bandwidth tuning.

  19. Calculation of aerodynamics of aerosol filter designs for cleaning of heavy liquid metal cooler reactor gas loops

    International Nuclear Information System (INIS)

    Valery P Melnikov; Pyotr N Martynov; Albert K Papovyants; Ivan V Yagodkin

    2005-01-01

    Full text of publication follows: One of the basic performances of aerosol filters is the aerodynamic resistance to the flow of gaseous medium to be cleaned. Calculation of the aerodynamics of aerosol filters in reference to the gas loops of reactor installations with heavy liquid metal coolant (HLMC) allows the design of the structural components of filters to be optimized to provide minimum initial resistance values. It is established that owing to various factors aerosol particles of different concentration and disperse composition are present always in the gas spaces of heavy liquid metal cooled reactor gas loops. To prevent the negative effect of aerosols on the equipment of the gas loops, it is reasonable to use filters of multistep design with sections of preliminary and fine cleaning to catch micron and submicron particles, respectively. A computer program and technique have been developed to evaluate the aerodynamics of folded aerosol filters for different parameters of their structural components, taking account of the aerosol spectrum and concentration. The algorithm of the calculation is presented by the example of a two-step design assembled in single vessel; the filter dimensions and pattern of the air flow to be cleaned are determined under the given boundary conditions. The evaluation of the aerodynamic resistance of filters was performed with consideration for local resistances and resistances of all the structural components of the filter (sudden constriction, expansion, the flow in air channels, filtering material and so on). Correlations have been derived for the resistance of air channels, filtering materials of preliminary and fine cleaning sections as a function of such parameters as the section depth (50-500 mm), the height of separators (3,5-20 mm), the filtering surface area (1,5-30 m 2 ). Based on the calculation results, the auto-similarity domain was brought out for the minimal values of filter resistances as a function of the ratio of

  20. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  1. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soltes, Jaroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, (Czech Republic); Viererbl, Ladislav; Lahodova, Zdena; Koleska, Michal; Vins, Miroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic)

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which has a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated values

  2. T-S Fuzzy Model-Based Approximation and Filter Design for Stochastic Time-Delay Systems with Hankel Norm Criterion

    Directory of Open Access Journals (Sweden)

    Yanhui Li

    2014-01-01

    Full Text Available This paper investigates the Hankel norm filter design problem for stochastic time-delay systems, which are represented by Takagi-Sugeno (T-S fuzzy model. Motivated by the parallel distributed compensation (PDC technique, a novel filtering error system is established. The objective is to design a suitable filter that guarantees the corresponding filtering error system to be mean-square asymptotically stable and to have a specified Hankel norm performance level γ. Based on the Lyapunov stability theory and the Itô differential rule, the Hankel norm criterion is first established by adopting the integral inequality method, which can make some useful efforts in reducing conservativeness. The Hankel norm filtering problem is casted into a convex optimization problem with a convex linearization approach, which expresses all the conditions for the existence of admissible Hankel norm filter as standard linear matrix inequalities (LMIs. The effectiveness of the proposed method is demonstrated via a numerical example.

  3. Topology optimization of microwave waveguide filters

    DEFF Research Database (Denmark)

    Aage, Niels; Johansen, Villads Egede

    2017-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap...... optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share...... little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering....

  4. A Method for Designing FIR Filters with Arbitrary Magnitude Characteristic Used for Modeling Human Audiogram

    Directory of Open Access Journals (Sweden)

    SZOPOS, E.

    2012-05-01

    Full Text Available This paper presents an iterative method for designing FIR filters that implement arbitrary magnitude characteristics, defined by the user through a set of frequency-magnitude points (frequency samples. The proposed method is based on the non-uniform frequency sampling algorithm. For each iteration a new set of frequency samples is generated, by processing the set used in the previous run; this implies changing the samples location around the previous frequency values and adjusting their magnitude through interpolation. If necessary, additional samples can be introduced, as well. After each iteration the magnitude characteristic of the resulting filter is determined by using the non-uniform DFT and compared with the required one; if the errors are larger than the acceptable levels (set by the user a new iteration is run; the length of the resulting filter and the values of its coefficients are also taken into consideration when deciding a re-run. To demonstrate the efficiency of the proposed method a tool for designing FIR filters that match human audiograms was implemented in LabVIEW. It was shown that the resulting filters have smaller coefficients than the standard one, and can also have lower order, while the errors remain relatively small.

  5. Design and operation of nitrifying trickling filters in recirculating aquaculture: a review

    NARCIS (Netherlands)

    Eding, E.H.; Kamstra, A.; Verreth, J.A.J.; Huisman, E.A.; Klapwijk, A.

    2006-01-01

    This review deals with the main mechanisms and parameters affecting design and performance of trickling filters in aquaculture. Relationships between nitrification rates and easily accessible process parameters, like bulk phase concentration of TAN, O2, organic matter (COD), nitrite, temperature,

  6. Stochastic simulation and robust design optimization of integrated photonic filters

    Directory of Open Access Journals (Sweden)

    Weng Tsui-Wei

    2016-07-01

    Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  7. Determination of Decimal Reduction Time of Peracetic Acid Used in Brewery Industry for Disinfection Purposes

    OpenAIRE

    , N. Lajçi; , X. Lajçi; , B. Baruti

    2016-01-01

    Disinfection operation is of great importance within the beer processing industry for beer safety reasons. Microbiological risk management is essential in the production of high-quality beer since quality defects may lead to substantial economic losses. The objective of this research was to investigate the effect of commercial peracetic acid (PAA) concentration for disinfection and the resistance of microorganisms in beer based on the decimal reduction time (D-value), and reduction 6-log10 of...

  8. Conditioning the full waveform inversion gradient to welcome anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.

  9. Conditioning the full waveform inversion gradient to welcome anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-08-05

    Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.

  10. PSpice for filters and transmission lines

    CERN Document Server

    Tobin, Paul

    2007-01-01

    In this book, PSpice for Filters and Transmission Lines, we examine a range of active and passive filters where each design is simulated using the latest Cadence Orcad V10.5 PSpice capture software. These filters cannot match the very high order digital signal processing (DSP) filters considered in PSpice for Digital Signal Processing, but nevertheless these filters have many uses. The active filters considered were designed using Butterworth and Chebychev approximation loss functions rather than using the 'cookbook approach' so that the final design will meet a given specification in an exact

  11. Criteria for calculating the efficiency of deep-pleated HEPA filters with aluminum separators during and after design basis accidents

    International Nuclear Information System (INIS)

    Bergman, W.; First, M.W.; Anderson, W.L.

    1995-01-01

    We have reviewed the literature on the performance of HEPA filters under normal and abnormal conditions to establish criteria for calculating the efficiency of HEPA filters in a DOE nonreactor nuclear facility during and after a Design Basis Accident (DBA). This study is only applicable to the standard deep-pleated HEPA filter with aluminum separators as specified in ASME N509[1]. Other HEPA filter designs such as the mini-pleat and separatorless filters are not included in this study. The literature review included the performance of new filters and parameters that may cause deterioration in the filter performance such as filter age, radiation, corrosive chemicals, seismic and rough handling, high temperature, moisture, particle clogging, high air flow and pressure pulses. The deterioration of the filter efficiency depends on the exposure parameters; in severe exposure conditions the filter will be damaged and have a residual efficiency of 0%. There are large gaps and limitations in the data that introduce significant error in the estimates of HEPA filter efficiencies under DBA conditions. Because of this limitation, conservative values of filter efficiency were chosen. The estimation of the efficiency of the HEPA filters under DBA conditions involves three steps: (1) The filter pressure drop and environmental parameters are determined during and after the DBA, (2) Comparing the filter pressure drop to a set of threshold values above which the filter is damaged. There is a different threshold value for each combination of environmental parameters, and (3) Determining the filter efficiency. If the filter pressure drop is greater than the threshold value, the filter is damaged and is assigned 0% efficiency. If the pressure drop is less, then the filter is not damaged and the efficiency is determined from literature values of the efficiency at the environmental conditions

  12. Criteria for calculating the efficiency of deep-pleated HEPA filters with aluminum separators during and after design basis accidents

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; First, M.W.; Anderson, W.L. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    We have reviewed the literature on the performance of HEPA filters under normal and abnormal conditions to establish criteria for calculating the efficiency of HEPA filters in a DOE nonreactor nuclear facility during and after a Design Basis Accident (DBA). This study is only applicable to the standard deep-pleated HEPA filter with aluminum separators as specified in ASME N509[1]. Other HEPA filter designs such as the mini-pleat and separatorless filters are not included in this study. The literature review included the performance of new filters and parameters that may cause deterioration in the filter performance such as filter age, radiation, corrosive chemicals, seismic and rough handling, high temperature, moisture, particle clogging, high air flow and pressure pulses. The deterioration of the filter efficiency depends on the exposure parameters; in severe exposure conditions the filter will be damaged and have a residual efficiency of 0%. There are large gaps and limitations in the data that introduce significant error in the estimates of HEPA filter efficiencies under DBA conditions. Because of this limitation, conservative values of filter efficiency were chosen. The estimation of the efficiency of the HEPA filters under DBA conditions involves three steps: (1) The filter pressure drop and environmental parameters are determined during and after the DBA, (2) Comparing the filter pressure drop to a set of threshold values above which the filter is damaged. There is a different threshold value for each combination of environmental parameters, and (3) Determining the filter efficiency. If the filter pressure drop is greater than the threshold value, the filter is damaged and is assigned 0% efficiency. If the pressure drop is less, then the filter is not damaged and the efficiency is determined from literature values of the efficiency at the environmental conditions.

  13. Optimal experiment design in a filtering context with application to sampled network data

    OpenAIRE

    Singhal, Harsh; Michailidis, George

    2010-01-01

    We examine the problem of optimal design in the context of filtering multiple random walks. Specifically, we define the steady state E-optimal design criterion and show that the underlying optimization problem leads to a second order cone program. The developed methodology is applied to tracking network flow volumes using sampled data, where the design variable corresponds to controlling the sampling rate. The optimal design is numerically compared to a myopic and a naive strategy. Finally, w...

  14. Multiplier-free filters for wideband SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2001-01-01

    This paper derives a set of parameters to be optimized when designing filters for digital demodulation and range prefiltering in SAR systems. Aiming at an implementation in field programmable gate arrays (FPGAs), an approach for the design of multiplier-free filters is outlined. Design results...... are presented in terms of filter complexity and performance. One filter has been coded in VHDL and preliminary results indicate that the filter can meet a 2 GHz input sample rate....

  15. DESIGN OF DYADIC-INTEGER-COEFFICIENTS BASED BI-ORTHOGONAL WAVELET FILTERS FOR IMAGE SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION

    Directory of Open Access Journals (Sweden)

    P.B. Chopade

    2014-05-01

    Full Text Available This paper presents image super-resolution scheme based on sub-pixel image registration by the design of a specific class of dyadic-integer-coefficient based wavelet filters derived from the construction of a half-band polynomial. First, the integer-coefficient based half-band polynomial is designed by the splitting approach. Next, this designed half-band polynomial is factorized and assigned specific number of vanishing moments and roots to obtain the dyadic-integer coefficients low-pass analysis and synthesis filters. The possibility of these dyadic-integer coefficients based wavelet filters is explored in the field of image super-resolution using sub-pixel image registration. The two-resolution frames are registered at a specific shift from one another to restore the resolution lost by CCD array of camera. The discrete wavelet transform (DWT obtained from the designed coefficients is applied on these two low-resolution images to obtain the high resolution image. The developed approach is validated by comparing the quality metrics with existing filter banks.

  16. Design and implementation of FIR filter based on STM32F103x

    Directory of Open Access Journals (Sweden)

    ZHENG Zhendong

    2013-08-01

    Full Text Available STM32F1 series processors are based on ST's new generation of ARM cortex-M3 processor core to meet the industrial control,medical,consumer and other areas of application requirements. At the same time,ST companies also launched a set of DSP function library for the STM32F10x series,enabling common digital signal processing. In this paper,a set of FIRfilter design and implementation is proposed for the STM32F10x series. Experiments show that the integer filter coefficients can replace the float coefficients in FIRfilter design. When the sampling rate is 256 samples per second,the FIRfilter is of the order of 128 and takes only 1.5ms to finish filtering 256 samples,fully meeting the design requirements for industrial control systems.

  17. A Novel (DDCC-SFG-Based Systematic Design Technique of Active Filters

    Directory of Open Access Journals (Sweden)

    M. Fakhfakh

    2013-09-01

    Full Text Available This paper proposes a novel idea for the synthesis of active filters that is based on the use of signal-flow graph (SFG stamps of differential difference current conveyors (DDCCs. On the basis of an RLC passive network or a filter symbolic transfer function, an equivalent SFG is constructed. DDCCs’ SFGs are identified inside the constructed ‘active’ graph, and thus the equivalent circuit can be easily synthesized. We show that the DDCC and its ‘derivatives’, i.e. differential voltage current conveyors and the conventional current conveyors, are the main basic building blocks in such design. The practicability of the proposed technique is showcased via three application examples. Spice simulations are given to show the viability of the proposed technique.

  18. Application of Evolution Strategies to the Design of Tracking Filters with a Large Number of Specifications

    Directory of Open Access Journals (Sweden)

    Jesús García Herrero

    2003-07-01

    Full Text Available This paper describes the application of evolution strategies to the design of interacting multiple model (IMM tracking filters in order to fulfill a large table of performance specifications. These specifications define the desired filter performance in a thorough set of selected test scenarios, for different figures of merit and input conditions, imposing hundreds of performance goals. The design problem is stated as a numeric search in the filter parameters space to attain all specifications or at least minimize, in a compromise, the excess over some specifications as much as possible, applying global optimization techniques coming from evolutionary computation field. Besides, a new methodology is proposed to integrate specifications in a fitness function able to effectively guide the search to suitable solutions. The method has been applied to the design of an IMM tracker for a real-world civil air traffic control application: the accomplishment of specifications defined for the future European ARTAS system.

  19. Interdigital filter design

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2009-10-01

    Full Text Available to the general inverter-coupled resonator bandpass filter structure in Figure 2 [6] by using the inverter shown in Figure 3. The admittance of the inverter in Figure 3 is 4 J= Y mn sin(βl) (1) where β is the propagation factor and l is the length... of the resonators (a quarter wavelength in this case). While the series quarter-wave line alone can approximate an inverter, the structure shown in Figure 3 is more accurate over wide bandwidths. At this point the circuits in Figures 1 and 2 still differ because...

  20. The intractable cigarette ‘filter problem’

    Science.gov (United States)

    2011-01-01

    Background When lung cancer fears emerged in the 1950s, cigarette companies initiated a shift in cigarette design from unfiltered to filtered cigarettes. Both the ineffectiveness of cigarette filters and the tobacco industry's misleading marketing of the benefits of filtered cigarettes have been well documented. However, during the 1950s and 1960s, American cigarette companies spent millions of dollars to solve what the industry identified as the ‘filter problem’. These extensive filter research and development efforts suggest a phase of genuine optimism among cigarette designers that cigarette filters could be engineered to mitigate the health hazards of smoking. Objective This paper explores the early history of cigarette filter research and development in order to elucidate why and when seemingly sincere filter engineering efforts devolved into manipulations in cigarette design to sustain cigarette marketing and mitigate consumers' concerns about the health consequences of smoking. Methods Relevant word and phrase searches were conducted in the Legacy Tobacco Documents Library online database, Google Patents, and media and medical databases including ProQuest, JSTOR, Medline and PubMed. Results 13 tobacco industry documents were identified that track prominent developments involved in what the industry referred to as the ‘filter problem’. These reveal a period of intense focus on the ‘filter problem’ that persisted from the mid-1950s to the mid-1960s, featuring collaborations between cigarette producers and large American chemical and textile companies to develop effective filters. In addition, the documents reveal how cigarette filter researchers' growing scientific knowledge of smoke chemistry led to increasing recognition that filters were unlikely to offer significant health protection. One of the primary concerns of cigarette producers was to design cigarette filters that could be economically incorporated into the massive scale of cigarette

  1. A neural network-based optimal spatial filter design method for motor imagery classification.

    Directory of Open Access Journals (Sweden)

    Ayhan Yuksel

    Full Text Available In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.

  2. Spatio-spectral color filter array design for optimal image recovery.

    Science.gov (United States)

    Hirakawa, Keigo; Wolfe, Patrick J

    2008-10-01

    In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array-a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and-after proving sub-optimality of a wide class of existing array patterns-provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.

  3. Asymmetric designed sintered metal filter elements in the HTF process of LILW vitrification plant

    International Nuclear Information System (INIS)

    Roehlig, Rainer

    2005-01-01

    Sintered metal filter elements have been used for years and have been successfully in operation in different application. The technical and economical advantages of only recently developed asymmetric Metallic Membranes elements, which operate as a surface filter, will be shown in comparison with standard sintered metal filter cartridges. The permeability, particle retention and back flushing performance have been improved. In order to achieve this, an asymmetric structure was designed in which an active filtration layer is applied onto a coarse porous metal support material made out of the same alloy. The economical benefits for customers are low maintenance and reduced investment cost as well as defined particle retention as is required by the users

  4. A Design of a Terahertz Microstrip Bandstop Filter with Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Arjun Kumar

    2013-01-01

    Full Text Available A planar microstrip terahertz (THz bandstop filter has been proposed with defected ground structure with high insertion loss (S21 in a stopband of −25.8 dB at 1.436 THz. The parameters of the circuit model have been extracted from the EM simulation results. A dielectric substrate of Benzocyclobutene (BCB is used to realize a compact bandstop filter using modified hexagonal dumbbell-shape defected ground structure (DB-DGS. In this paper, a defected ground structure topology is used in a λ/4, 50 Ω microstrip line at THz frequency range for compactness. No article has been reported on the microstrip line at terahertz frequency regime using DGS topology. The proposed filter can be used for sensing and detection in biomedical instruments in DNA testing. All the simulations/cosimulations are carried out using a full-wave EM simulator CST V.9 Microwave Studio, HFSS V.10, and Agilent Design Suite (ADS.

  5. OPTIMIZATION OF ADVANCED FILTER SYSTEMS; TOPICAL

    International Nuclear Information System (INIS)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-01-01

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  6. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  7. Input filter compensation for switching regulators

    Science.gov (United States)

    Lee, F. C.; Kelkar, S. S.

    1982-01-01

    The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested.

  8. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    International Nuclear Information System (INIS)

    Remmes, N; Courneyea, L; Corner, S; Beltran, C; Kemp, B; Kruse, J; Herman, M; Stoker, J

    2014-01-01

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak, 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter

  9. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    Energy Technology Data Exchange (ETDEWEB)

    Remmes, N; Courneyea, L; Corner, S; Beltran, C; Kemp, B; Kruse, J; Herman, M [Mayo Clinic, Rochester, MN (United States); Stoker, J [MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak, 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.

  10. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  11. Design of low complexity sharp MDFT filter banks with perfect reconstruction using hybrid harmony-gravitational search algorithm

    Directory of Open Access Journals (Sweden)

    V. Sakthivel

    2015-12-01

    Full Text Available The design of low complexity sharp transition width Modified Discrete Fourier Transform (MDFT filter bank with perfect reconstruction (PR is proposed in this work. The current trends in technology require high data rates and speedy processing along with reduced power consumption, implementation complexity and chip area. Filters with sharp transition width are required for various applications in wireless communication. Frequency response masking (FRM technique is used to reduce the implementation complexity of sharp MDFT filter banks with PR. Further, to reduce the implementation complexity, the continuous coefficients of the filters in the MDFT filter banks are represented in discrete space using canonic signed digit (CSD. The multipliers in the filters are replaced by shifters and adders. The number of non-zero bits is reduced in the conversion process to minimize the number of adders and shifters required for the filter implementation. Hence the performances of the MDFT filter bank with PR may degrade. In this work, the performances of the MDFT filter banks with PR are improved using a hybrid Harmony-Gravitational search algorithm.

  12. Avoiding the Use of Exhausted Drinking Water Filters: A Filter-Clock Based on Rusting Iron

    Directory of Open Access Journals (Sweden)

    Arnaud Igor Ndé-Tchoupé

    2018-05-01

    Full Text Available Efficient but affordable water treatment technologies are currently sought to solve the prevalent shortage of safe drinking water. Adsorption-based technologies are in the front-line of these efforts. Upon proper design, universally applied materials (e.g., activated carbons, bone chars, metal oxides are able to quantitatively remove inorganic and organic pollutants as well as pathogens from water. Each water filter has a defined removal capacity and must be replaced when this capacity is exhausted. Operational experience has shown that it may be difficult to convince some low-skilled users to buy new filters after a predicted service life. This communication describes the quest to develop a filter-clock to encourage all users to change their filters after the designed service life. A brief discussion on such a filter-clock based on rusting of metallic iron (Fe0 is presented. Integrating such filter-clocks in the design of water filters is regarded as essential for safeguarding public health.

  13. Efficient Architecture and Implementation of Vector Median Filter in Co-Design Context

    Directory of Open Access Journals (Sweden)

    N. Masmoudi

    2007-09-01

    Full Text Available This work presents an efficient fast parallel architecture of the Vector Median Filter (VMF using combined hardware/software (HW/SW implementation. The hardware part of the system is implemented using VHDL language, whereas the software part is developed using C/C++ language. The software part of the embedded system uses the NIOS-II softcore processor and the operating system used is μClinux. The comparison between the software and HW/SW solutions shows that adding a hardware part in the design attempts to speed up the filtering process compared to the software solution. This efficient embedded system implementation can perform well in several image processing applications.

  14. Active RC filter based implementation analysis part of two channel hybrid filter bank

    Directory of Open Access Journals (Sweden)

    Stojanović Vidosav

    2014-01-01

    Full Text Available In the present paper, a new design method for continuous-time powersymmetric active RC filters for Hybrid Filter Bank (HFB is proposed. Some theoretical properties of continious-time power-symmetric filters bank in a more general perspective are studied. This includes the derivation of a new general analytical form, and a study of poles and zeros locations in s-plane. In the proposed design method the analytic solution of filter coefficients is solved in sdomain using only one nonlinear equation Finally, the proposed approximation is compared to standard approximations. It was shown that attenuation and group delay characteristic of the proposed filter lie between Butterworth and elliptic characteristics. [Projekat Ministarstva nauke Republike Srbije, br. 32009TR

  15. Wireless sensor platform for harsh environments

    Science.gov (United States)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor); Toygur, Lemi (Inventor); He, Yunli (Inventor)

    2009-01-01

    Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna.

  16. Rotation speed measurement for turbine governor: torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    Houry, M.P.; Bourles, H.

    1996-01-01

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this speed is a problem of a great practical importance for turbine governor. A good filtering of this speed must meet two requirements: it must cut frequencies of the shaft torsion oscillation and it must not reduce or delay the signal in the pass-band, i.e. at lower frequencies. At Electricite de France, the speed measure is used to set in motion the fast valving system as quickly as possible, after a short circuit close to the unit or rather an islanding. It is difficult to satisfy these two requirements by using conventional filtering methods. The standard solution consists in a first order filter: at Electricite de France, its time constant is equal to 80 ms. We have decided to improve this filtering by designing a new filter which cuts the frequencies of the shaft torsion oscillation without reducing the bandwidth to the speed measure. If one uses conventional methods to obtain a band stop filter, it is easy to obtain the desired magnitude but not a phase near zero in the whole pass-band. Therefore, we have chosen to design the filter by using Kalman'a theory. The measurement noise is modeled as a colored one, generated by a very lightly damped system driven by a while noise. The resulting Kalman filter is an effective band stop filter, whose phase nicely remains near zero in the whole pass-band. The digital simulations we made and the tests we carried out with the Electricite de France Micro Network laboratory show the advantages of the rotation speed filter we designed using Kalman's theory. With the proposed filter, the speed measure filtering is better in terms of reduction and phase shift. the result is that there are less untimely solicitations of the fast valving system. Consequently, this device improves the power systems stability by minimizing the risks of deep perturbations due to a temporary lack of generation and the risks of under-speed loss

  17. Designing Programme Implementation Strategies to Increase the Adoption and Use of Biosand Water Filters in Rural India

    OpenAIRE

    Tommy K.K. Ngai; Richard A. Fenner

    2014-01-01

    Low-cost household water treatment systems are innovations designed to improve the quality of drinking water at the point of use. This study investigates how an NGO can design appropriate programme strategies in order to increase the adoption and sustained use of household sand filters in rural India. A system dynamics computer model was developed and used to assess 18 potential programme strategies for their effectiveness in increasing filter use at two and ten years into the future, under s...

  18. A Low Cost Structurally Optimized Design for Diverse Filter Types

    Science.gov (United States)

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image

  19. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  20. Conditioning the full-waveform inversion gradient to welcome anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-04-23

    Multiparameter full-waveform inversion (FWI) suffers from complex nonlinearity in the objective function, compounded by the eventual trade-off between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which small scattering-angles of the gradient update are initially muted out. The model update hierarchical filtering strategy include applying varying degrees of filtering to the different anisotropic parameter updates, a feature not easily accessible to simple data decimation. Using FWI and reflection-based FWI, when the modeled data are obtained with the single-scattering theory, allows access to additional low model wavenumber components. Combining such access to wavenumbers with scattering-angle filters applied to the individual parameter gradients allows for multiple strategies to avoid complex FWI nonlinearity as well as the parameter trade-off.

  1. Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter.

    Science.gov (United States)

    Tilsch, Markus; Hendrix, Karen

    2008-05-01

    A triple bandpass filter (28 solutions received) and a nonpolarizing beam splitter (23 solutions received) were the subjects of the design contest held in conjunction with the 2007 Optical Interference Coatings topical meeting of the Optical Society of America. Fifteen designers participated using a wide spectrum of design approaches and optimization strategies to create the submissions. The results differ significantly, but all meet the contest requirements. Fabien Lemarchand wins both contests by submitting the thinnest (6254 nm) triple bandpass design and the widest (61.7 nm) nonpolarizing beam-splitter design. Michael Trubetskov is in second place, followed by Vladimir Pervak in both contests. The submitted designs are described and evaluated.

  2. Preliminary design of an advanced programmable digital filter network for large passive acoustic ASW systems. [Parallel processor

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, T.; Widdoes, Jr., L. C.; Wood, L.

    1976-09-30

    The design of an extremely high performance programmable digital filter of novel architecture, the LLL Programmable Digital Filter, is described. The digital filter is a high-performance multiprocessor having general purpose applicability and high programmability; it is extremely cost effective either in a uniprocessor or a multiprocessor configuration. The architecture and instruction set of the individual processor was optimized with regard to the multiple processor configuration. The optimal structure of a parallel processing system was determined for addressing the specific Navy application centering on the advanced digital filtering of passive acoustic ASW data of the type obtained from the SOSUS net. 148 figures. (RWR)

  3. Design of Orthogonal Filtered Multitone Modulation Systems and Comparison among Efficient Realizations

    Directory of Open Access Journals (Sweden)

    Moret Nicola

    2010-01-01

    Full Text Available Abstract We address the efficient realization of a filtered multitone (FMT modulation system and its orthogonal design. FMT modulation can be viewed as a Discrete Fourier Transform (DFT modulated filter bank (FB. It generalizes the popular orthogonal frequency division multiplexing (OFDM scheme by deploying frequency confined subchannel pulses. We compare three realizations that have been described by Cvetković and Vetterli (1998, and Weiss and Stewart (2000, and Tonello (2006. A detailed derivation of them is performed in the time-domain via the exploitation of different FB polyphase decompositions. We then consider the design of an orthogonal FMT system and we exploit the third realization which allows simplifying the orthogonal FB design and obtaining a block diagonal system matrix with independent subblocks. A numerical method is then presented to obtain an orthogonal FB with well frequency confined subchannel pulses for arbitrarily large number of subchannels. Several examples of pulses with minimal length are reported and their performance is evaluated in typical multipath fading channels. Finally, we compare the orthogonal FMT system with a cyclically prefixed OFDM system in the IEEE 802.11 wireless LAN channel. In this scenario, FMT with minimal length pulses and single tap subchannel equalization outperforms the OFDM system in achievable rate.

  4. Design of Orthogonal Filtered Multitone Modulation Systems and Comparison among Efficient Realizations

    Directory of Open Access Journals (Sweden)

    Andrea M. Tonello

    2010-01-01

    Full Text Available We address the efficient realization of a filtered multitone (FMT modulation system and its orthogonal design. FMT modulation can be viewed as a Discrete Fourier Transform (DFT modulated filter bank (FB. It generalizes the popular orthogonal frequency division multiplexing (OFDM scheme by deploying frequency confined subchannel pulses. We compare three realizations that have been described by Cvetković and Vetterli (1998, and Weiss and Stewart (2000, and Tonello (2006. A detailed derivation of them is performed in the time-domain via the exploitation of different FB polyphase decompositions. We then consider the design of an orthogonal FMT system and we exploit the third realization which allows simplifying the orthogonal FB design and obtaining a block diagonal system matrix with independent subblocks. A numerical method is then presented to obtain an orthogonal FB with well frequency confined subchannel pulses for arbitrarily large number of subchannels. Several examples of pulses with minimal length are reported and their performance is evaluated in typical multipath fading channels. Finally, we compare the orthogonal FMT system with a cyclically prefixed OFDM system in the IEEE 802.11 wireless LAN channel. In this scenario, FMT with minimal length pulses and single tap subchannel equalization outperforms the OFDM system in achievable rate.

  5. Design of Orthogonal Filtered Multitone Modulation Systems and Comparison among Efficient Realizations

    Science.gov (United States)

    Moret, Nicola; Tonello, Andrea M.

    2010-12-01

    We address the efficient realization of a filtered multitone (FMT) modulation system and its orthogonal design. FMT modulation can be viewed as a Discrete Fourier Transform (DFT) modulated filter bank (FB). It generalizes the popular orthogonal frequency division multiplexing (OFDM) scheme by deploying frequency confined subchannel pulses. We compare three realizations that have been described by Cvetković and Vetterli (1998), and Weiss and Stewart (2000), and Tonello (2006). A detailed derivation of them is performed in the time-domain via the exploitation of different FB polyphase decompositions. We then consider the design of an orthogonal FMT system and we exploit the third realization which allows simplifying the orthogonal FB design and obtaining a block diagonal system matrix with independent subblocks. A numerical method is then presented to obtain an orthogonal FB with well frequency confined subchannel pulses for arbitrarily large number of subchannels. Several examples of pulses with minimal length are reported and their performance is evaluated in typical multipath fading channels. Finally, we compare the orthogonal FMT system with a cyclically prefixed OFDM system in the IEEE 802.11 wireless LAN channel. In this scenario, FMT with minimal length pulses and single tap subchannel equalization outperforms the OFDM system in achievable rate.

  6. High-Speed Rapid-Single-Flux-Quantum Multiplexer and Demultiplexer Design and Testing

    Science.gov (United States)

    2007-08-22

    Herr, N. Vukovic , C. A. Mancini, M. F. Bocko, and M. J . Feldman, "High speed testing of a four-bit RSFQ decimation digital filter," IEEE Trans. Appl...61] A. M. Herr, C. A. Mancini, N. Vukovic , M. F. Bocko, and M. J . Feldman, "High-speed operation of a 64-bit circular shift register," IEEE Trans...10-19 J . A rich library of basic cells such as flip-flops, buffers, adders, multipliers, clock generator circuits, and phase-locking circuits have been

  7. Statistically-Efficient Filtering in Impulsive Environments: Weighted Myriad Filters

    Directory of Open Access Journals (Sweden)

    Juan G. Gonzalez

    2002-01-01

    Full Text Available Linear filtering theory has been largely motivated by the characteristics of Gaussian signals. In the same manner, the proposed Myriad Filtering methods are motivated by the need for a flexible filter class with high statistical efficiency in non-Gaussian impulsive environments that can appear in practice. Myriad filters have a solid theoretical basis, are inherently more powerful than median filters, and are very general, subsuming traditional linear FIR filters. The foundation of the proposed filtering algorithms lies in the definition of the myriad as a tunable estimator of location derived from the theory of robust statistics. We prove several fundamental properties of this estimator and show its optimality in practical impulsive models such as the α-stable and generalized-t. We then extend the myriad estimation framework to allow the use of weights. In the same way as linear FIR filters become a powerful generalization of the mean filter, filters based on running myriads reach all of their potential when a weighting scheme is utilized. We derive the “normal” equations for the optimal myriad filter, and introduce a suboptimal methodology for filter tuning and design. The strong potential of myriad filtering and estimation in impulsive environments is illustrated with several examples.

  8. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers 32.5 dB dynamic range with digitally configurable voltage gain of 40 dB down to 7.5 dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and +50 dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 mm 2 . The LNA, TA, and mixer consume less than 15.3 mA at a supply voltage of 1.4 V.

  9. Charge-Domain Signal Processing of Direct RF Sampling Mixer with Discrete-Time Filters in Bluetooth and GSM Receivers

    Directory of Open Access Journals (Sweden)

    Ho Yo-Chuol

    2006-01-01

    Full Text Available RF circuits for multi-GHz frequencies have recently migrated to low-cost digital deep-submicron CMOS processes. Unfortunately, this process environment, which is optimized only for digital logic and SRAM memory, is extremely unfriendly for conventional analog and RF designs. We present fundamental techniques recently developed that transform the RF and analog circuit design complexity to digitally intensive domain for a wireless RF transceiver, so that it enjoys benefits of digital and switched-capacitor approaches. Direct RF sampling techniques allow great flexibility in reconfigurable radio design. Digital signal processing concepts are used to help relieve analog design complexity, allowing one to reduce cost and power consumption in a reconfigurable design environment. The ideas presented have been used in Texas Instruments to develop two generations of commercial digital RF processors: a single-chip Bluetooth radio and a single-chip GSM radio. We further present details of the RF receiver front end for a GSM radio realized in a 90-nm digital CMOS technology. The circuit consisting of low-noise amplifier, transconductance amplifier, and switching mixer offers dB dynamic range with digitally configurable voltage gain of 40 dB down to dB. A series of decimation and discrete-time filtering follows the mixer and performs a highly linear second-order lowpass filtering to reject close-in interferers. The front-end gains can be configured with an automatic gain control to select an optimal setting to form a trade-off between noise figure and linearity and to compensate the process and temperature variations. Even under the digital switching activity, noise figure at the 40 dB maximum gain is 1.8 dB and dBm IIP2 at the 34 dB gain. The variation of the input matching versus multiple gains is less than 1 dB. The circuit in total occupies 3.1 . The LNA, TA, and mixer consume less than mA at a supply voltage of 1.4 V.

  10. Design and implementation of a multiband digital filter using FPGA to extract the ECG signal in the presence of different interference signals.

    Science.gov (United States)

    Aboutabikh, Kamal; Aboukerdah, Nader

    2015-07-01

    In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    Science.gov (United States)

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Laboratory for filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1987-07-01

    Filters used for mine draining in brown coal surface mines are tested by the Mine Draining Department of Poltegor. Laboratory tests of new types of filters developed by Poltegor are analyzed. Two types of tests are used: tests of scale filter models and tests of experimental units of new filters. Design and operation of the test stands used for testing mechanical properties and hydraulic properties of filters for coal mines are described: dimensions, pressure fluctuations, hydraulic equipment. Examples of testing large-diameter filters for brown coal mines are discussed.

  13. Synthesis and design of waveguide band-stop filters without out-of-band spurious responses for plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Montejo-Garai, Jose R., E-mail: jr@etc.upm.es [Departamento de Electromagnetismo y Teoria de Circuitos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, Madrid 20840 (Spain); Leal-Sevillano, Carlos A. [Departamento de Electromagnetismo y Teoria de Circuitos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, Madrid 20840 (Spain); Ruiz-Cruz, Jorge A. [Escuela Politecnica Superior, Universidad Autonoma de Madrid, C/Fco. Tomas y Valiente 11, Madrid 28409 (Spain); Rebollar, Jesus M. [Departamento de Electromagnetismo y Teoria de Circuitos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, Madrid 20840 (Spain); Estrada, Teresa [T. Laboratorio Nacional de Fusion, Asociacion Euratom-CIEMAT, Madrid 28040 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A rigorous systematic design process based on circuit synthesis is proposed for band-stop filters. Black-Right-Pointing-Pointer The new compact E-plane waveguide structure reduces drastically the unwanted resonances in a very large pass band. Black-Right-Pointing-Pointer The manufacturing process together with the computation effort is significantly reduced. Black-Right-Pointing-Pointer Experimental results validate the state-of-art electrical responses. - Abstract: Band-stop or notch filters play a crucial role in plasma diagnosis systems to protect receivers from the stray radiation. In this work, a rigorous design process based on circuit synthesis in addition to an extremely compact E-plane waveguide structure is proposed for this kind of filters. On the one hand, the transfer function verifying the rejection specification is analytically obtained, fixing the minimum number of required cavities. On the other hand, a coupling structure that reduces drastically the unwanted resonances in filters with a very large pass band requirement, is presented. This coupling between the rejection cavities and the main rectangular waveguide has additional advantages; (a) unlike typical inductive irises, large coupling coefficients can be implemented (b) a pure E-plane configuration is achieved, which simplifies the manufacturing and also reduces significantly the computational effort. Experimental validation is demonstrated by two pseudo-elliptic fifth-order band-stop filters fabricated and measured in Ka and V bands. In both cases, the filters are free of spurious resonances in their total operation bands.

  14. Synthesis and design of waveguide band-stop filters without out-of-band spurious responses for plasma diagnosis

    International Nuclear Information System (INIS)

    Montejo-Garai, José R.; Leal-Sevillano, Carlos A.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.; Estrada, Teresa

    2012-01-01

    Highlights: ► A rigorous systematic design process based on circuit synthesis is proposed for band-stop filters. ► The new compact E-plane waveguide structure reduces drastically the unwanted resonances in a very large pass band. ► The manufacturing process together with the computation effort is significantly reduced. ► Experimental results validate the state-of-art electrical responses. - Abstract: Band-stop or notch filters play a crucial role in plasma diagnosis systems to protect receivers from the stray radiation. In this work, a rigorous design process based on circuit synthesis in addition to an extremely compact E-plane waveguide structure is proposed for this kind of filters. On the one hand, the transfer function verifying the rejection specification is analytically obtained, fixing the minimum number of required cavities. On the other hand, a coupling structure that reduces drastically the unwanted resonances in filters with a very large pass band requirement, is presented. This coupling between the rejection cavities and the main rectangular waveguide has additional advantages; (a) unlike typical inductive irises, large coupling coefficients can be implemented (b) a pure E-plane configuration is achieved, which simplifies the manufacturing and also reduces significantly the computational effort. Experimental validation is demonstrated by two pseudo-elliptic fifth-order band-stop filters fabricated and measured in Ka and V bands. In both cases, the filters are free of spurious resonances in their total operation bands.

  15. An evaluation of different delivery methods for teaching binary, hex and decimal conversion

    Directory of Open Access Journals (Sweden)

    Daniel Kempthorne

    Full Text Available The ability to convert between binary, hexadecimal, and decimal numbering systems is a fundamental skill commonly taught to tertiary-level computing and ICT students. This paper presents the results of a multiple year investigation into the application of differing approaches for the teaching and learning of these skills. Specifically, the study compares traditional lectures, games, and group activities with student levels of academic achievement. Student prior experience with numbering system conversion is also analysed. The study reveals that, overall, the game-based approach resulted in the highest average test scores; however, when students were divided into groups with and without prior experience, the students with prior experience performed better with a traditional lecture approach.

  16. Dewey Decimal Classification Online Project: Interim Reports to the Council on Library Resources, April 1984, September 1984, and February 1985.

    Science.gov (United States)

    Markey, Karen; Demeyer, Anh N.

    This research project focuses on the implementation and testing of the Dewey Decimal Classification (DDC) system as an online searcher's tool for subject access, browsing, and display in an online catalog. The research project comprises 12 activities. The three interim reports in this document cover the first seven of these activities: (1) obtain…

  17. Preliminary Design of Molecular Sieve for Removing Organic Iodide in Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tong Kyu; Shin, So Eun; Lee, Byung Chul [Heungdeok IT Valley Bldg., Yongin (Korea, Republic of); Kim, Hong Hyun; Lee, Kyung Jun [Gemvax and KAEL Inc., Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, to increase the DF for gaseous iodine species, especially organic iodide, molecular sieve filled by silver exchanged zeolites is proposed and designed preliminarily. Its aerodynamic analysis is also performed and presented. In order to increase the DF for gaseous organic iodide, deep-bed type molecular sieve was proposed and designed preliminarily. Total 1,620kg of silver exchanged zeolites were filled evenly in 10 beds of the molecular sieve. The safety factor in the case of 20m{sup 3}/s will be smaller than the counterpart of the standard case (6m{sup 3}/s). However, if the adsorption capacity of the zeolites is larger than 3.09mg/g when the residence time is 0.09 second, the designed molecular sieve can be used at 20m3/s of volumetric flow rate. The removal efficiency for organic iodide should be considered as well as economical aspects in the design of molecular sieve. In the event of nuclear power plant (NPP) severe accident, the nuclear reactor containment might suffer damage resulting from overpressure caused by decay heat. In order to prevent this containment damage, containment venting has been considered as one of effective methods. However, since vented gases contain radioactive fission products, they should be filtered to be released to environment. Generally, containment filtered venting system (CFVS) is installed on NPP to achieve this aim. Even though great amount of efforts have been devoted to developing the CFVS using various filtering methods, the decontaminant factor (DF) for radioactive gaseous iodide is still unsatisfactory while DFs for radioactive aerosols and elemental iodine are very high.

  18. Numerical Study on Self-Cleaning Canister Filter With Add-On Filter Cap

    Directory of Open Access Journals (Sweden)

    Mohammed Akmal Nizam

    2017-01-01

    Full Text Available Filtration in a turbo machinery system such as a gas turbine will ensure that the air entering the inlet is free from contaminants that could bring damage to the main system. Self-cleaning filter systems for gas turbines are designed for continuously efficient flow filtration. A good filter would be able to maintain its effectiveness over a longer time period, prolonging the duration between filter replacements and providing lower pressure drop over its operating lifetime. With this goal in mind, the current study is focused on the difference in pressure loss of the benchmark Salutary Avenue Self-cleaning filter in comparison to a new design with an add-on filter cap. Geometry for the add-on filter cap will be based from Salutary Avenue Manufacturing Sdn.Bhd. SOLIDWORKS software was used to model the geometry of the filter, while simulation analysis on the flow through the filter was done using Computational Fluid Dynamic (CFD software. The simulations are based on a low velocity condition, in which the parameter for the inlet velocity are set at 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s respectively. From the simulation data obtained for the inlet velocities considered, the pressure drop reduction of the modified filter compared to the benchmark was found to be between 7.59% and 30.18%. All in all, the modification of the filter cap produced a lower pressure drop in comparison with the benchmark filter; an improvement of 27.02% for the total pressure drop was obtained.

  19. Design of a Miniaturized X-Band Diplexer Based on Novel One-Third-Mode Substrate Integrated Resonator Filters

    Science.gov (United States)

    Zhang, Hao; Kang, Wei; Wu, Wen

    2017-12-01

    In this paper, a miniaturized diplexer designed with two novel one-third-mode substrate integrated resonator (OTMSIR) filters has been presented. The one-third triangular resonator cavity with two transmission zeros (TZs) and two transmission poles is investigated. TZs are implemented by taking cross couplings of lower order modes in this design. The diplexer is then obtained by integrating two different sizes of OTMSIR filters with a common T-junction structure. A X-band diplexer operating at 10 GHz and 11.5 GHz is designed on a substrate with a dielectric constant of 3.55 to verify the above design concept. This novel structure features more compact size, better transmission performance, higher out of band rejection and easier integration compared with other circuits. A good agreement is obtained between the simulations and the measured results.

  20. Filter-design perspective applied to dynamical decoupling of a multi-qubit system

    International Nuclear Information System (INIS)

    Su Zhikun; Jiang Shaoji

    2012-01-01

    We employ the filter-design perspective and derive the filter functions according to nested Uhrig dynamical decoupling (NUDD) and symmetric dynamical decoupling (SDD) in the pure-dephasing spin-boson model with N qubits. The performances of NUDD and SDD are discussed in detail for a two-qubit system. The analysis shows that (i) SDD outperforms NUDD for the bath with a soft cutoff while NUDD approaches SDD as the cutoff becomes harder; (ii) if the qubits are coupled to a common reservoir, SDD helps to protect the decoherence-free subspace while NUDD destroys it; (iii) when the imperfect control pulses with finite width are considered, NUDD is affected in both the high-fidelity regime and coherence time regime while SDD is affected in the coherence time regime only. (paper)

  1. Design and use of guided mode resonance filters for refractive index sensing

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon

    This Ph.D. thesis is concerned with the design and use of guided mode resonance filters (GMRF) for applications in refractive index sensing. GMRFs are optical nanostructures capable of efficiently and resonantly reflecting a narrow wavelength interval of incident broad band light. They combine...... to changes in refractive index that occur within the region overlapped by the quasi guided mode, and GMRFs are thus well suited for optical sensing and tunable filter applications. They produce a polarization dependent response and can be optically characterized in both reflection and transmission......, a lift-off process, and reactive ion etching. After an introduction to the history and principles of GMRFs, the thesis describes the state-of-the-art of relevant research in the field, covers the necessary theoretical background required to understand their operation, and discusses the fabrication...

  2. Design and FPGA Implementation of Variable Cutoff Frequency Filter based on Continuously Variable Fractional Delay Structure and Interpolation Technique

    Directory of Open Access Journals (Sweden)

    Sumedh Dhabu

    2015-09-01

    Full Text Available This paper presents the design and FPGA implementation of interpolated continuously variable fractional delay structure based filter (ICVFD filter with fine control over the cutoff frequency. In the ICVFD filter, each unit delay of the prototype lowpass filter is replaced by a continuously variable fractional delay (CVFD element proposed in this paper. The CVFD element requires the same number of multiplications as that of the second-order fractional delay structure used in the existing fractional delay structure based variable filter (FDS based filter, however it provides fractional delays corresponding to the higher-order fractional delay structures. Hence, the proposed ICVFD filter provides wider cutoff frequency range compared to the FDS based filter. The ICVFD filter is also capable of providing variable bandpass and highpass responses. We use two-stage approach for the FPGA implementation of the ICVFD filter. First, we use pipelining stages to shorten the critical path and improve the operating frequency. Then, we make use of specific hardware resource, i.e. RAM-based Shift Register (SRL to further improve the operating frequency and resource usage.

  3. Design and Analysis of Multilayered Waveguide Structure With Metal-Dielectric Gratings for Sensing With Reflection Narrowband Notch Filter

    Directory of Open Access Journals (Sweden)

    Guiju ZHANG

    2015-11-01

    Full Text Available Developments in micro and nanofabrication technologies have led a variety of grating waveguide structures (GWS being proposed and implemented in optics and laser application systems. A new design of multilayered nanostructure double-grating is described for reflection notch filter. Thin metal film and dielectric film are used and designed with one-dimensional composite gratings. The results calculated by rigorous coupled-wave analysis (RCWA present that the thin metal film between substrate and grating can produce significant attenuated reflections and efficiency in a broad reflected spectral range. The behavior of such a reflection filter is evaluated for refractive index sensing, which can be applied inside the integrated waveguide structure while succeeding cycles in measurement. The filter peaks are designed and obtained in a visible range with full width half maximum (FWHM of several nanometers to less than one nanometer. The multilayered structure shows a sensitivity of refractive index of 220nm/RIU as changing the surroundings. The reflection spectra are studied under different periods, depths and duty cycles. The passive structure and its characteristics can achieve practical applications in various fields, such as optical sensing, color filtering, Raman spectroscopy and laser technology.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9625

  4. Design and analysis of planar printed microwave and PBG filters using an FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Lu, Y.L.; Chen, Y.C.

    2004-01-01

    In this paper, various planar printed microwave and photonic band-gap (PBG) filters have been designed and analyzed by applying the finite difference time domain method, together with an unsplit-anisotropic perfectly matched layer technique as treatments of boundary conditions. The implemented so...

  5. Rotation speed measurement for turbine governor: torsion filtering by using Kalman filter

    International Nuclear Information System (INIS)

    Houry, M.P.; Bourles, H.

    1995-11-01

    The rotation speed of a turbogenerator is disturbed by its shaft torsion. Obtaining a filtered measure of this sped a problem of a great practical importance for turbine governor. A good filtering of this speed must meet two requirements: it must cut frequencies of the shaft torsion oscillation and it must not reduce or delay the signal in the pass-band. i.e. at lower frequencies. At Electricite de France, the speed measure is used to set in motion the fast valving system as quickly as possible, after a short circuit close to the unit (to contribute to the stability) or after an islanding (to quickly reach a balance with the house load). It is difficult to satisfy these two requirements by using conventional filtering methods. The standard solution consists in a first order filter: at Electricite de France, its time constant is equal to 80 ms; We have decided to improve this filtering by designing a new filter which cuts the frequencies of the shaft torsion oscillation without reducing the bandwidth of the speed measure. If one uses conventional methods to obtain a band-stop filter (for instance a Butterworth, a Chebyshev or an elliptic band-stop filter),it is easy to obtain the desired magnitude but not a phase near zero in the whole pass-band. Therefore, we have chosen to design the filter by using Kalman's theory. The measurement noise is modeled as a colored one, generated by a very lightly damped system driven by a white noise. The resulting Kalman filter is an effective band-stop filter, whose phase nicely remains near zero in the whole pass-band. (authors). 13 refs., 12 figs

  6. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  7. Factors Influencing HEPA Filter Performance

    International Nuclear Information System (INIS)

    Parsons, M.S.; Waggoner, Ch.A.

    2009-01-01

    Properly functioning HEPA air filtration systems depend on a variety of factors that start with the use of fully characterized challenge conditions for system design and then process control during operation. This paper addresses factors that should be considered during the design phase as well as operating parameters that can be monitored to ensure filter function and lifetime. HEPA filters used in nuclear applications are expected to meet design, fabrication, and performance requirements set forth in the ASME AG-1 standard. The DOE publication Nuclear Air Cleaning Handbook (NACH) is an additional guidance document for design and operation HEPA filter systems in DOE facilities. These two guidelines establish basic maximum operating parameters for temperature, maximum aerosol particle size, maximum particulate matter mass concentration, acceptable differential pressure range, and filter media velocity. Each of these parameters is discussed along with data linking variability of each parameter with filter function and lifetime. Temporal uncertainty associated with gas composition, temperature, and absolute pressure of the air flow can have a direct impact on the volumetric flow rate of the system with a corresponding impact on filter media velocity. Correlations between standard units of flow rate (standard meters per minute or cubic feet per minute) versus actual units of volumetric flow rate are shown for variations in relative humidity for a 70 deg. C to 200 deg. C temperature range as an example of gas composition that, uncorrected, will influence media velocity. The AG-1 standard establishes a 2.5 cm/s (5 feet per minute) ceiling for media velocities of nuclear grade HEPA filters. Data are presented that show the impact of media velocities from 2.0 to 4.0 cm/s media velocities (4 to 8 fpm) on differential pressure, filter efficiency, and filter lifetime. Data will also be presented correlating media velocity effects with two different particle size

  8. All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    OpenAIRE

    N. Stojanovic; N. Stamenkovic; V. Stojanovic

    2014-01-01

    A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev f...

  9. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Science.gov (United States)

    Zhang, J.; Zeng, L. H.; Hu, C. L.; Yan, W. S.; Pennec, Yan; Hu, N.

    2018-03-01

    For the elastic SV (transverse) waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young's modulus, such as polymethylmethacrylate (PMMA), compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ˜20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  10. Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization

    International Nuclear Information System (INIS)

    Su Xiaoxing; Ma Tianxue; Wang Yuesheng

    2011-01-01

    If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.

  11. Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Ma Tianxue; Wang Yuesheng, E-mail: xxsu@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2011-10-15

    If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.

  12. Autoregressive Moving Average Graph Filtering

    OpenAIRE

    Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert

    2016-01-01

    One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...

  13. A novel optimization design approach for Contourlet directional filter banks

    NARCIS (Netherlands)

    Zhang, Songjun; Yang, Guoan; Cheng, Zhengxing; van de Wetering, H.M.M.; Ikuta, Chihiro; Nishio, Yoshifumi

    2014-01-01

    A Contourlet transform, an expansion of a wavelet transform, is a double filter bank structure composed of Laplacian Pyramid and directional filter banks. Several wavelet filters of preferable performance have been developed for wavelet transforms, e.g. CDF (Cohen, Daubechies and Feauveau) 9/7

  14. Interrelationships Among Several Variables Reflecting Quantitative Thinking in Elementary School Children with Particular Emphasis upon Those Measures Involving Metric and Decimal Skills

    Science.gov (United States)

    Selman, Delon; And Others

    1976-01-01

    The relationships among measures of quantitative thinking in first through fifth grade children assigned either to an experimental math program emphasizing tactile, manipulative, or individual activity in learning metric and decimal concepts, or to a control group, were examined. Tables are presented and conclusions discussed. (Author/JKS)

  15. Design and experimentally measure a high performance metamaterial filter

    Science.gov (United States)

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  16. Design of Current-Controller with PR-regulator for LCL-Filter Based Grid-Connected Converter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg

    2010-01-01

    In the application of LCL-filter based converters, the structure and parameters of current-controller is very important for the system stability and output current quality. This paper presents a filter-capacitor current feedback control scheme for grid-connected converter. The controller...... is consisted of a proportional-resonance regulator and a proportional regulator. Unlike the existing control strategy with unit capacitor current feedback, the proposed method applies the proportional regulator to the feedback path, which can decouple these two regulators, and simplify the tuning process...... of the control strategy and the proposed current controller design method are verified by the simulation results of a 50kVA grid-connected inverter....

  17. Topology optimization of microwave waveguide filters

    DEFF Research Database (Denmark)

    Aage, Niels; Johansen, Villads Egede

    2017-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimizat......We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap...... little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering....

  18. Design of 2-D Recursive Filters Using Self-adaptive Mutation Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Lianghong Wu

    2011-08-01

    Full Text Available This paper investigates a novel approach to the design of two-dimensional recursive digital filters using differential evolution (DE algorithm. The design task is reformulated as a constrained minimization problem and is solved by an Self-adaptive Mutation DE algorithm (SAMDE, which adopts an adaptive mutation operator that combines with the advantages of the DE/rand/1/bin strategy and the DE/best/2/bin strategy. As a result, its convergence performance is improved greatly. Numerical experiment results confirm the conclusion. The proposedSAMDE approach is effectively applied to test a numerical example and is compared with previous design methods. The computational experiments show that the SAMDE approach can obtain better results than previous design methods.

  19. Filtering in the time and frequency domains

    CERN Document Server

    Blinchikoff, Herman

    2001-01-01

    Long regarded as a classic of filter theory and design, this book stands as the most comprehensive treatment of filtering techniques, devices and concepts as well as pertinent mathematical relationships. Analysis and theory are supplemented by detailed design curves, fully explained examples and problem and answer sections. Discussed are the derivation of filtering functions, Fourier, Laplace, Hilbert and z transforms, lowpass responses, the transformation of lowpass into other filter types, the all-pass function, the effect of losses on theoretical responses, matched filtering, methods of tim

  20. Downsampling Non-Uniformly Sampled Data

    Directory of Open Access Journals (Sweden)

    Fredrik Gustafsson

    2007-10-01

    Full Text Available Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate non-uniformly sampled signals, which are all based on interpolation. The interpolation is done in different domains, and the inter-sample behavior does not need to be known. The first one interpolates the signal to a uniformly sampling, after which standard decimation can be applied. The second one interpolates a continuous-time convolution integral, that implements the antialias filter, after which every Dth sample can be picked out. The third frequency domain approach computes an approximate Fourier transform, after which truncation and IFFT give the desired result. Simulations indicate that the second approach is particularly useful. A thorough analysis is therefore performed for this case, using the assumption that the non-uniformly distributed sampling instants are generated by a stochastic process.

  1. A new design of a miniature filter on microstrip resonators with an interdigital structure of conductors

    Science.gov (United States)

    Belyaev, B. A.; Serzhantov, A. M.; Bal'va, Ya. F.; Leksikov, An. A.; Galeev, R. G.

    2015-05-01

    A microstrip bandpass filter of new design based on original resonators with an interdigital structure of conductors has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and much smaller size than analogs. It is established that a broad stop band, extending up to a sixfold central bandpass frequency, is determined by low unloaded Q of higher resonance mode and weak coupling of resonators in the pass band. It is shown for the first time that, as the spacing of interdigital stripe conductors decreases, the Q of higher resonance mode monotonically drops, while the Q value for the first operating mode remains high. A prototype fourth-order filter with a central frequency of 0.9 GHz manufactured on a ceramic substrate with dielectric permittivity ɛ = 80 has microstrip topology dimensions of 9.5 × 4.6 × 1 mm3. The electrodynamic 3D model simulations of the filter characteristics agree well with the results of measurements.

  2. Robust filtering for uncertain systems a parameter-dependent approach

    CERN Document Server

    Gao, Huijun

    2014-01-01

    This monograph provides the reader with a systematic treatment of robust filter design, a key issue in systems, control and signal processing, because of the fact that the inevitable presence of uncertainty in system and signal models often degrades the filtering performance and may even cause instability. The methods described are therefore not subject to the rigorous assumptions of traditional Kalman filtering. The monograph is concerned with robust filtering for various dynamical systems with parametric uncertainties, and focuses on parameter-dependent approaches to filter design. Classical filtering schemes, like H2 filtering and H¥ filtering, are addressed, and emerging issues such as robust filtering with constraints on communication channels and signal frequency characteristics are discussed. The text features: ·        design approaches to robust filters arranged according to varying complexity level, and emphasizing robust filtering in the parameter-dependent framework for the first time; ·...

  3. Application of design for six sigma methodology on portable water filter that uses membrane filtration system: A preliminary study

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jusoh, Suhada; Zaini Yunos, Muhamad; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.

    2017-09-01

    Portable water filter has grown significantly in recent years. The use of water bottles as a water drink stuff using hand pump water filtration unit has been suggested to replace water bottled during outdoor recreational activities and for emergency supplies. However, quality of water still the issue related to contaminated water due to the residual waste plants, bacteria, and so on. Based on these issues, the study was carried out to design a portable water filter that uses membrane filtration system by applying Design for Six Sigma. Design for Six Sigma methodology consists of five stages which is Define, Measure, Analyze, Design and Verify. There were several tools have been used in each stage in order to come out with a specific objective. In the Define stage, questionnaire approach was used to identify the needs of portable water filter in the future from potential users. Next, Quality Function Deployment (QFD) tool was used in the Measure stage to measure the users’ needs into engineering characteristics. Based on the information in the Measure stage, morphological chart and weighted decision matrix tools were used in the Analyze stage. This stage performed several activities including concept generation and selection. Once the selection of the final concept completed, detail drawing was made in the Design stage. Then, prototype was developed in the Verify stage to conduct proof-of-concept testing. The results that obtained from each stage have been reported in this paper. From this study, it can be concluded that the application of Design for Six Sigma in designing a future portable water filter that uses membrane filtration system is a good start in looking for a new alternative concept with a completed supporting document.

  4. Numerical study of canister filters with alternatives filter cap configurations

    Science.gov (United States)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  5. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2018-03-01

    Full Text Available For the elastic SV (transverse waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young’s modulus, such as polymethylmethacrylate (PMMA, compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ∼20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  6. Alternate MIMO AF relaying networks with interference alignment: Spectral efficient protocol and linear filter design

    KAUST Repository

    Park, Kihong

    2013-02-01

    In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.

  7. Optimal IIR filter design using Gravitational Search Algorithm with Wavelet Mutation

    Directory of Open Access Journals (Sweden)

    S.K. Saha

    2015-01-01

    Full Text Available This paper presents a global heuristic search optimization technique, which is a hybridized version of the Gravitational Search Algorithm (GSA and Wavelet Mutation (WM strategy. Thus, the Gravitational Search Algorithm with Wavelet Mutation (GSAWM was adopted for the design of an 8th-order infinite impulse response (IIR filter. GSA is based on the interaction of masses situated in a small isolated world guided by the approximation of Newtonian’s laws of gravity and motion. Each mass is represented by four parameters, namely, position, active, passive and inertia mass. The position of the heaviest mass gives the near optimal solution. For better exploitation in multidimensional search spaces, the WM strategy is applied to randomly selected particles that enhance the capability of GSA for finding better near optimal solutions. An extensive simulation study of low-pass (LP, high-pass (HP, band-pass (BP and band-stop (BS IIR filters unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass band and stop band ripples, smaller transition width and higher stop band attenuation with assured stability.

  8. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  9. On filtering over Îto-Volterra observations

    Directory of Open Access Journals (Sweden)

    Michael V. Basin

    2000-01-01

    Full Text Available In this paper, the Kalman-Bucy filter is designed for an Îto-Volterra process over Ito-Volterra observations that cannot be reduced to the case of a differential observation equation. The Kalman-Bucy filter is then designed for an Ito-Volterra process over discontinuous Ito-Volterra observations. Based on the obtained results, the filtering problem over discrete observations with delays is solved. Proofs of the theorems substantiating the filtering algorithms are given.

  10. Filter Design for Failure Detection and Isolation in the Presence of Modeling Erros and Disturbances

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1996-01-01

    The design problem of filters for robust Failure Detectionand Isolation, (FDI) is addressed in this paper. The failure detectionproblem will be considered with respect to both modeling errors anddisturbances. Both an approach based on failure detection observes aswell as an approach based...

  11. Analytical Design of Passive LCL Filter for Three-phase Two-level Power Factor Correction Rectifiers

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper proposes a comprehensive analytical LCL filter design method for three-phase two-level power factor correction rectifiers (PFCs). The high frequency converter current ripple generates the high frequency current harmonics that need to be attenuated with respect to the grid standards...

  12. Multiple-scale stochastic processes: Decimation, averaging and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Stefano, E-mail: stefano.bo@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Celani, Antonio [Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 - Trieste (Italy)

    2017-02-07

    The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.

  13. AgBufferBuilder: A geographic information system (GIS) tool for precision design and performance assessment of filter strips

    Science.gov (United States)

    M. G. Dosskey; S. Neelakantan; T. G. Mueller; T. Kellerman; M. J. Helmers; E. Rienzi

    2015-01-01

    Spatially nonuniform runoif reduces the water qua1iry perfortnance of constant- width filter strips. A geographic inlormation system (Gls)-based tool was developed and tested that ernploys terrain analysis to account lor spatially nonuniform runoffand produce more ellbctive filter strip designs.The computer program,AgBufTerBuilder, runs with ATcGIS versions 10.0 and 10...

  14. Special design of an electric filter

    International Nuclear Information System (INIS)

    Tiesler, H.

    1979-01-01

    The wet electric filter to clean champ waste gases is characterized in that the separation electrodes are at the same time cooling surfaces. The transport of the coolant through the tubes forming the cooling channel is performed by means of mechanical convergence, the heat transport by convection. (GL) [de

  15. Noise Reduction with Optimal Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2016-01-01

    In this paper, the problem of noise reduction is addressed as a linear filtering problem in a novel way by using concepts from subspace-based enhancement methods, resulting in variable span linear filters. This is done by forming the filter coefficients as linear combinations of a number...... included in forming the filter. Using these concepts, a number of different filter designs are considered, like minimum distortion, Wiener, maximum SNR, and tradeoff filters. Interestingly, all these can be expressed as special cases of variable span filters. We also derive expressions for the speech...... demonstrate the advantages and properties of the variable span filter designs, and their potential performance gain compared to widely used speech enhancement methods....

  16. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  17. The design of a 3 GHz thermionic RF-gun and energy filter for MAX-lab

    CERN Document Server

    Anderberg, B; Demirkan, M; Eriksson, M; Malmgren, L; Werin, S

    2002-01-01

    A new pre-injector has been designed for the MAX-laboratory. It consists of an RF-gun and a magnetic energy filter. The newly designed RF-gun geometry will be operated at 3 GHz in the thermionic mode using a BaO cathode. The pre-injector will provide a 2.3 MeV electron beam in 3 ps micro pulses to a new injector system currently under construction.

  18. Cryptosporidium: A Guide to Water Filters

    Science.gov (United States)

    ... Tap Water Many but not all available home water filters remove Cryptosporidium . Some filter designs are more suitable for removal of Cryptosporidium than others. Filters that have the words "reverse osmosis" on the label protect against Cryptosporidium . Some other ...

  19. La introducción del sistema métrico decimal y los libros de texto en España

    OpenAIRE

    Picado, Miguel; Rico, Luis

    2012-01-01

    El artículo resalta la relevancia de los libros de texto en la difusión de determinados conocimientos matemáticos. Este alcance se ejemplifica con resultados de un estudio histórico realizado sobre funcionalidad y características de los textos de matemáticas en la introducción y difusión del sistema métrico decimal en España en el período 1849-1892.

  20. Design of Cancelable Palmprint Templates Based on Look Up Table

    Science.gov (United States)

    Qiu, Jian; Li, Hengjian; Dong, Jiwen

    2018-03-01

    A novel cancelable palmprint templates generation scheme is proposed in this paper. Firstly, the Gabor filter and chaotic matrix are used to extract palmprint features. It is then arranged into a row vector and divided into equal size blocks. These blocks are converted to corresponding decimals and mapped to look up tables, forming final cancelable palmprint features based on the selected check bits. Finally, collaborative representation based classification with regularized least square is used for classification. Experimental results on the Hong Kong PolyU Palmprint Database verify that the proposed cancelable templates can achieve very high performance and security levels. Meanwhile, it can also satisfy the needs of real-time applications.

  1. Novel Design of Recursive Differentiator Based on Lattice Wave Digital Filter

    Directory of Open Access Journals (Sweden)

    R. Barsainya

    2017-04-01

    Full Text Available In this paper, a novel design of third and fifth order differentiator based on lattice wave digital filter (LWDF, established on optimizing L_1-error approximation function using cuckoo search algorithm (CSA is proposed. We present a novel realization of minimum multiplier differentiator using LWD structure leading to requirement of optimizing only N coefficients for Nth order differentiator. The gamma coefficients of lattice wave digital differentiator (LWDD are computed by minimizing the L_1-norm fitness function leading to a flat response. The superiority of the proposed LWDD is evident by comparing it with other differentiators mentioned in the literature. The magnitude response of the designed LWDD is found to be of high accuracy with flat response in a wide frequency range. The simulation and statistical results validates that the designed minimum multiplier LWDD circumvents the existing one in terms of minimum absolute magnitude error, mean relative error (dB and efficient structural realization, thereby making the proposed LWDD a promising approach to digital differentiator design.

  2. Design and engineering of IZO/Ag/glass solar filters for low-emissivity window performance

    Science.gov (United States)

    Hernandez-Mainet, Luis C.; Aguilar, Miguel A.; Tamargo, Maria C.; Falcony, Ciro

    2017-10-01

    The electricity consumption in houses and commercial buildings generates about 18% of greenhouse gas emission. A critical issue of building energy consumption is heat and cooling loss through the window. Low-emissivity windows control thermal radiation through glass without decreasing the intensity of visible light. They are made up of optical filter coatings grown on a flat glass surface. Solar filters based on Ag/IZO multilayer films are grown and simulated on glass substrate. The targeted structure designs are grown by a sputtering system and characterized by scanning electron microscopy and x-ray diffraction techniques. To accurately simulate transmission spectrum, silver (Ag) and IZO optical constants were estimated by fitting ellipsometric data at different thicknesses. Transmission spectrum shows a good agreement among experiment and simulation. In addition, optical constant curves strongly show layer thickness dependence in both materials. In particular, the ultrathin Ag layer displays a percolation threshold in the vicinity of 15 nm, which leads to surface plasmon resonance with absorption at about 450 nm. These types of optical filter coatings would have potential applications as low-emission windows.

  3. CMOS Bit-Stream Band-Pass Beamforming

    Science.gov (United States)

    2016-03-31

    unlimited. with direct IF sampling, most of the signal processing, including digital down-conversion ( DDC ), is carried out in the digital domain, and I/Q...level digitized signals are directly processed without decimation filtering for I/Q DDC and phase shifting. This novel BSP approach replaces bulky...positive feedback. The resonator center frequency of fs/4 (260MHz) simplifies the design of DDC . 4b tunable capacitors adjust the center frequency

  4. Potential for HEPA filter damage from water spray systems in filter plenums

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W. [Lawrence Livermore National Lab., CA (United States); Fretthold, J.K. [Rocky Flats Safe Sites of Colorado, Golden, CO (United States); Slawski, J.W. [Department of Energy, Germantown, MD (United States)

    1997-08-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for BEPA filter damage during fires has also occurred in the field. A fire in a four-stage, BEPA filter plenum at Rocky Flats in 1980 caused the first three stages of BEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenums, additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk. 22 refs., 15 figs.

  5. Effect of Filter Arrangement in PGNAA Collimator Design for TRIGA Reactor: A MCNPX Study

    International Nuclear Information System (INIS)

    Hanafi Ithnin; Mohamad Hairie Rabir; Roslan Yahya

    2016-01-01

    Prompt Gamma Neutron Activation Analysis, PGNAA is known as a very powerful nuclear instrument in elemental analysis. The combination of volumetric measurement, range of elemental that can be detected and non-destructive nature of this technique, makes it very useful in analyzing various samples. In order to elevate the PGNAA system, it demand high thermal neutron flux to ensure the neutron activation and intensity of the produced prompt gamma is satisfactory. In the aim to develop reactor based PGNAA system, computer software, MCNPX is used as a tool to simulate the best production of thermal neutron. Hence, provide valuable information for optimizing collimator designs of the PGNAA system. Therefore in this study, different arrangement of bismuth and sapphire filter were made to evaluate its effect on the production of thermal neutron flux. The result shows, different filters arrangement in the collimator influenced the production of neutron flux. Ultimately the result of this study will be a significant contribution to the knowledge and a great assist in designing collimator for TRIGA reactor based PGNAA system. (author)

  6. Plasma grid design for optimized filter field configuration for the NBI test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, R.; Gutser, R.; Heinemann, B.; Froeschle, M.; Riedl, R.

    2009-01-01

    Maintenance-free RF sources for negative hydrogen ions with moderate extraction areas (100-200 cm 2 ) have been successfully developed in the last years at IPP Garching in the test facilities BATMAN and MANITU. A facility with larger extraction area (1000 cm 2 ), ELISE, is being designed with a 'half-size' ITER-like extraction system, pulsed ion acceleration up to 60 kV for 10 s and plasma generation up to 1 h. Due to the large size of the source, the magnetic filter field (FF) cannot be produced solely by permanent magnets. Therefore, an additional magnetic field produced by current flowing through the plasma grid (PG current) is required. The filter field homogeneity and the interaction with the electron suppression magnetic field have been studied in detail by finite element method (FEM) during the ELISE design phase. Significant improvements regarding the field homogeneity have been introduced compared to the ITER reference design. Also, for the same PG current a 50% higher field in front of the grid has been achieved by optimizing the plasma grid geometry. Hollow spaces have been introduced in the plasma grid for a more homogeneous PG current distribution. The introduction of hollow spaces also allows the insertion of permanent magnets in the plasma grid.

  7. Field evaluation of prototype electrofibrous filters

    International Nuclear Information System (INIS)

    Kuhl, W.D.; Bergman, W.; Biermann, A.H.; Lum, B.Y.

    1982-01-01

    New prototype electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. Two prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposal prefilter is effectively prolonging the HEPA filter life. An earlier prototype of the rolling prefilter was upgraded to meet the increased requirements for installation in a nuclear facility. This upgraded prototype was evaluated in the fire test facility at LLNL and shown to be effective in protecting HEPA filters from plugging under the most severe smoke conditions. The last prototype described in this report is a recirculating air filter. After demonstrating a high performance in laboratory tests the unit was shipped to Savannah River where it is awaiting installation in a Pu fuel fabrication facility. An analysis of the particulate problem in Savannah River indicates that four recirculating air filter will save $172,000 per year in maintenance costs

  8. Designing organic spin filters in the coherent tunneling regime.

    Science.gov (United States)

    Herrmann, Carmen; Solomon, Gemma C; Ratner, Mark A

    2011-06-14

    Spin filters, that is, systems which preferentially transport electrons of a certain spin orientation, are an important element for spintronic schemes and in chemical and biological instances of spin-selective electronic communication. We study the relation between molecular structure and spin filtering functionality employing a theoretical analysis of both model and stable organic radicals based on substituted benzene, which are bound to gold electrodes, with a combination of density functional theory and the Landauer-Imry-Büttiker approach. We compare the spatial distribution of the spin density and of the frontier central subsystem molecular orbitals, and local contributions to the transmission. Our results suggest that the delocalization of the singly occupied molecular orbital and of the spin density onto the benzene ring connected to the electrodes, is a good, although not the sole indicator of spin filtering functionality. The stable radicals under study do not effectively act as spin filters, while the model phenoxy-based radicals are effective due to their much larger spin delocalization. These conclusions may also be of interest for electron transfer experiments in electron donor-bridge-acceptor complexes.

  9. Filter design for failure detection and isolation in the presence of modeling errors and disturbances

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    1996-01-01

    The design problem of filters for robust failure detection and isolation, (FDI) is addressed in this paper. The failure detection problem will be considered with respect to both modeling errors and disturbances. Both an approach based on failure detection observers as well as an approach based...

  10. Design and operation of a filter reactor for continuous production of a selected pharmaceutical intermediate

    DEFF Research Database (Denmark)

    Christensen, Kim Müller; Pedersen, Michael Jønch; Dam-Johansen, Kim

    2012-01-01

    in tetrahydrofuran solvent. The use of the filter reactor design was explored by examining the transferability of a synthesis step in a present full-scale semi-batch pharmaceutical production into continuous processing. The main advantages of the new continuous minireactor system, compared to the conventional semi...

  11. The intractable cigarette ‘filter problem’

    OpenAIRE

    Harris, Bradford

    2011-01-01

    Background When lung cancer fears emerged in the 1950s, cigarette companies initiated a shift in cigarette design from unfiltered to filtered cigarettes. Both the ineffectiveness of cigarette filters and the tobacco industry's misleading marketing of the benefits of filtered cigarettes have been well documented. However, during the 1950s and 1960s, American cigarette companies spent millions of dollars to solve what the industry identified as the ‘filter problem’. These extensive filter resea...

  12. Evaluation of the Retrieval of Nuclear Science Document References Using the Universal Decimal Classification as the Indexing Language for a Computer-Based System

    Science.gov (United States)

    Atherton, Pauline; And Others

    A single issue of Nuclear Science Abstracts, containing about 2,300 abstracts, was indexed by Universal Decimal Classification (UDC) using the Special Subject Edition of UDC for Nuclear Science and Technology. The descriptive cataloging and UDC-indexing records formed a computer-stored data base. A systematic random sample of 500 additional…

  13. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  14. Generalized Selection Weighted Vector Filters

    Directory of Open Access Journals (Sweden)

    Rastislav Lukac

    2004-09-01

    Full Text Available This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03 in Grado, Italy.

  15. A novel patch-field design using an optimized grid filter for passively scattered proton beams

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Dong Lei; Mohan, Radhe

    2007-01-01

    For tumors with highly complex shapes, a 'patching' strategy is often used in passively scattered proton therapy to match the sharp distal edge of the spread-out Bragg peak (SOBP) of the patch field to the lateral penumbra of the through field at 50% dose level. The differences in the dose gradients at the distal edge and at the lateral penumbra could cause hot and cold doses at the junction. In this note, we describe an algorithm developed to optimize the range compensator design to yield a more uniform dose distribution at the junction. The algorithm is based on the fact that the distal fall-off of the SOBP can be tailored using a grid filter that is placed perpendicular to the beam's path. The filter is optimized so that the distal fall-off of the patch field complements the lateral penumbra fall-off of the through field. In addition to optimizing the fall-off, the optimization process implicitly accounts for the limitations of conventional compensator design algorithms. This algorithm uses simple ray tracing to determine the compensator shape and ignore scatter. The compensated dose distribution may therefore differ substantially from the intended dose distribution, especially when complex heterogeneities are encountered, such as those in the head and neck. In such a case, an adaptive optimization strategy can be used to optimize the 'grid' filter locally considering the tissue heterogeneities. The grid filter thus obtained is superimposed on the original range compensator so that the composite compensator leads to a more uniform dose distribution at the patch junction. An L-shaped head and neck tumor was used to demonstrate the validity of the proposed algorithm. A robustness analysis with focus on range uncertainty effect is carried out. (note)

  16. Optimal digital filtering in gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Messai, A.; Nour, A.; Abdellani, I.

    2009-01-01

    In this paper, we address the subject of the digital nuclear spectroscopy as seen as a counterpart of the classic analogue approach. Consequently, we will present the design as well as the implementation on a DSP (Digital Signal Processor) board, of the various necessary digital pulse processing techniques via digital filtering in order to provide the principal tasks which often take place in a generic 'Gamma' digital spectroscopic setup. The first part will be devoted to the design of the digital IIR filter used for the charge preamplifier's slow-pole compensation. This will be followed by the practical estimation of the power spectral density relating to the electrical noise components present at the spectrometer's input. Thereafter, a very detailed attention will be given to the design of the digital optimal filter to be used for the charge measurements. We follow by another FIR filter that deals with the digital estimation of the reference line of measurements. Finally, we give a hardware implementation of the designed filters on the board: 'TMS320C6713-DSK', a DSP KIT developed by 'DIGITAL Spectrum'. (authors)

  17. Scaling of Supply Voltage in Design of Energy Saver FIR Filter on 28nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Bishwajeet; Jain, Vishal; Sharma, Rashmi

    2017-01-01

    In this work, we are going to analyze the effect of main supply voltage, auxiliary supply voltage, local voltage of different power bank, and supply voltage in GTX transceiver and BRAM on power dissipation of our FIR design using Verilog during implementation on 28nm FPGA. We have also taken three.......33%, 86%, 90.67%, 65.33%, 52%, and 48.67% reduction in IO power dissipation of FIR Filter design on CSG324 package of Artix-7 FPGA family....

  18. Projects on filter testing in Sweden

    International Nuclear Information System (INIS)

    Normann, B.; Wiktorsson, C.

    1985-01-01

    The Swedish nuclear power program comprises twelve light water reactors. Nine are boiling water reactors of ASEA-ATOM design and three are pressurized water reactors of Westinghouse design. Of these, ten are in operation and two are under construction and planned to go into operation during late 1984 and early 1985, respectively. Frequent tests on the penetration of particles through HEPA filters, regular tests on the adsorption of methyl iodide in the stand-by carbon filter units by laboratory testing are discussed. The proposed new regulations are based on many years of experience of filter system operation and of tests in-situ and in the laboratory. Moisture and water are factors that affect the functioning of filters. In addition, high loading of dust can give rise to increased penetration through HEPA filters, however pinholes could have less influence on the total penetration. Laboratory tests show that DOP particles retain 30-40% in 90 mm carbon filters (8-12 mesh). However no effect on the ability of carbon to adsorb methyl iodide after DOP contamination in combined carbon/HEPA filters has been observed. Leakage from ventilation ducts can cause radioactive contamination problems during filter testing with radioiodine. In-situ testing of control-room filters has been performed using inactive methyl iodide. A type of carbon bed not previously used in Sweden has been introduced. Testing of this filter type is discussed

  19. The design and construction of large diameter pre-filter packed recovery wells at the Ninth Avenue Superfund Site

    International Nuclear Information System (INIS)

    Lombardo, S.L.; Maley, T.J.; Bono, B.A.

    1992-01-01

    Large diameter groundwater/oil recovery wells were installed in an unconfined sand aquifer at the Ninth Avenue Superfund Site in Gary, Indiana. To assure adequate filter packs, prefilter packed groundwater/oil recovery wells were selected to minimize silting by using appropriate screen slot size and filter pack. A properly sized filter pack was necessary to prevent the formation material from entering the well. During field drilling operations, open-quotes having sandsclose quotes and silting of existing wells were encountered. By using sieve analyses of the native aquifer soil, described by Driscoll (1989), the filter pack and screen slot size were selected. Prefilter packed well screens were selected for this site to assure the presence of a uniform filter pack, thus minimizing siltation in the wells. A prefilter packed well screen consists of a double screen with the interstitial space filled with granular filter pack material designed specifically for site conditions. These wells provide the adequate filter pack without the need to add additional filter pack material outside the well screen. Wells were installed using 12 1/4 inch ID hollow stem augers. This methodology is EPA-approved, expeditious, and inexpensive. Level B personal protective equipment was required during installation. Therefore, the advantages of hollow stem drilling include short drilling time and no circulation fluids. The 14 recovery wells were successfully installed in 14 days using the hollow stem auger drilling technique. Observations during well development revealed little or no silt present in purged groundwater

  20. Designing Programme Implementation Strategies to Increase the Adoption and Use of Biosand Water Filters in Rural India

    Directory of Open Access Journals (Sweden)

    Tommy K.K. Ngai

    2014-06-01

    Full Text Available Low-cost household water treatment systems are innovations designed to improve the quality of drinking water at the point of use. This study investigates how an NGO can design appropriate programme strategies in order to increase the adoption and sustained use of household sand filters in rural India. A system dynamics computer model was developed and used to assess 18 potential programme strategies for their effectiveness in increasing filter use at two and ten years into the future, under seven scenarios of how the external context may plausibly evolve. The results showed that the optimal choice of strategy is influenced by the macroeconomic situation, donor funding, presence of alternative options, and the evaluation time frame. The analysis also revealed some key programme management challenges, including the trade-off between optimising short- or long-term gains, and counter-intuitive results, such as higher subsidy fund allocation leading to fewer filter distribution, and technology advances leading to fewer sales. This study outlines how an NGO can choose effective strategies in consideration of complex system interactions. This study demonstrated that small NGOs can dramatically increase their programme outcomes without necessarily increasing operational budget.

  1. Design and analysis of dual-resonant filters in visible and infra-red region based on polymer LPWG

    Science.gov (United States)

    Sharma, Mukesh; Kushwaha, Aniruddha Singh; Pal, Suchandan

    2013-01-01

    Long-period waveguide gratings (LPWGs), by using a SU-8 polymer-based channel waveguide along with NOA61 optical epoxy coated upper- and lower-cladding, are designed and theoretical analyzed. Grating period of ~ 68μm is considered with optimized grating tooth-heights, so that the transmission spectra of the gratings show strong rejection bands both at visible (450 - 460 nm) and infrared (1530 - 1540 nm) wavelength regions. Phase-matching graphs are studied in order to observe the change in resonance wavelength of the grating with the variation of waveguide parameters. LPWG-based band pass filter are also designed and analyzed by considering the same set of polymer materials. Further, temperature sensitivity of these LPWGs is analyzed theoretically. These types of waveguide gratingbased filters can widely be used for visible and infrared wavelength sensing applications.

  2. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  3. Design and fabrication of ultrathin silicon-nitride membranes for use in UV-visible airgap-based MEMS optical filters

    International Nuclear Information System (INIS)

    Ghaderi, Mohammadamir; Wolffenbuttel, Reinoud F.

    2016-01-01

    MEMS-based airgap optical filters are composed of quarter-wave thick high-index dielectric membranes that are separated by airgaps. The main challenge in the fabrication of these filters is the intertwined optical and mechanical requirements. The thickness of the layers decreases with design wavelength, which makes the optical performance in the UV more susceptible to fabrication tolerances, such as thickness and composition of the deposited layers, while the ability to sustain a certain level of residual stress by the structural strength becomes more critical. Silicon-nitride has a comparatively high Young's modulus and good optical properties, which makes it a suitable candidate as the membrane material. However, both the mechanical and optical properties in a silicon-nitride film strongly depend on the specifics of the deposition process. A design trade-off is required between the mechanical strength and the index of refraction, by tuning the silicon content in the silicon-nitride film. However, also the benefit of a high index of refraction in a silicon-rich film should be weighed against the increased UV optical absorption. This work presents the design, fabrication, and preliminary characterization of one and three quarter-wave thick silicon-nitride membranes with a one-quarter airgap and designed to give a spectral reflectance at 400 nm. The PECVD silicon-nitride layers were initially characterized, and the data was used for the optical and mechanical design of the airgap filters. A CMOS compatible process based on polysilicon sacrificial layers was used for the fabrication of the membranes. Optical characterization results are presented. (paper)

  4. UV Bandpass Optical Filter for Microspectometers

    NARCIS (Netherlands)

    Correia, J.H.; Emadi, A.R.; Wolffenbuttel, R.F.

    2006-01-01

    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in

  5. A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection

    Directory of Open Access Journals (Sweden)

    Kim Pyung Soo

    2017-04-01

    Full Text Available In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.

  6. Similitude study of a moving bed granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  7. Remote filter handling machine for Sizewell B

    International Nuclear Information System (INIS)

    Barker, D.

    1993-01-01

    Two Filter Handling machines (FHM) have been supplied to Nuclear Electric plc for use at Sizewell B Power Station. These machines have been designed and built following ALARP principles with the functional objective being to remove radioactive filter cartridges from a filter housing and replace them with clean filter cartridges. Operation of the machine is achieved by the prompt of each distinct task via an industrial computer or the prompt of a full cycle using the automatic mode. The design of the machine features many aspects demonstrating ALARP while keeping the machine simple, robust and easy to maintain. (author)

  8. A design aid for sizing filter strips using buffer area ratio

    Science.gov (United States)

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Nonuniform field runoff can reduce the effectiveness of filter strips that are a uniform size along a field margin. Effectiveness can be improved by placing more filter strip where the runoff load is greater and less where the load is smaller. A modeling analysis was conducted of the relationship between pollutant trapping efficiency and the ratio of filter strip area...

  9. Recirculating electric air filter for use in confined spaces

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.; Kuhl, W.

    1985-01-01

    We have developed recirculating electric air filters for use in confined spaces where the existing ventilation system is not adequate for removing suspended particles. Two experimental filters were built and evaluated, both of which consisted of a cylindrical cartridge filter fitted over an air blower. In one design the cylindrical cartridge is a disposable unit with the electrodes and filter medium built as an integrated unit. The second design has a cylindrical cartridge that can be easily disassembled to allow replacement of the filter medium. Both designs were evaluated in a 354-ft 3 test cell using NaCl aerosols. The second design was installed and evaluated in a chamber where highly radioactive 238 PuO 2 powder is formed into pellets. We have derived equations that describe the theory of recirculating air filters. The predicted performance compares well with experimental measurements under controlled conditions. 2 refs., 7 figs., 1 tab. (DT)

  10. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    Science.gov (United States)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  11. Design and construction of a Wien velocity filter for AMS facilities

    CERN Document Server

    Catana, D; Enachescu, M; Plostinaru, V D; Vata, I; Rohrer, L

    2001-01-01

    Many experiments in atomic and nuclear physics using accelerated particles require accurate ion beams with respect to their atomic number, mass number and ion charge. These requirements have special important for experiments of accelerated mass spectrometry. Double focussing analyzing magnets perform the mass selection of charged ions. However, the magnetic analyzer cannot distinguish between particles with equal charge and having the same mass-velocity product. A simple way of resolving this degeneracy is to use a Wien velocity filter, WVF, in conjunction with the magnet analyzers. The design and construction of a WVF is presented together with experiments performed to determine the separation power. A velocity separation DELTA v/v = 1/100 was obtained. The design in this separate arrangements of fields is simple and straightforward. The construction can be achieved in a usual workshop. The applications of the WVF are manifold, e.g., AMS, ERDA, RBS, etc. (authors)

  12. Design and construction of a Wien velocity filter for AMS facilities

    International Nuclear Information System (INIS)

    Catana, D.; Stan-Sion, C.; Enachescu, M.; Plostinaru, D.; Vata, I.; Rohrer, L.

    2001-01-01

    Many experiments in atomic and nuclear physics using accelerated particles require accurate ion beams with respect to their atomic number, mass number and ion charge. These requirements have special important for experiments of accelerated mass spectrometry. Double focussing analyzing magnets perform the mass selection of charged ions. However, the magnetic analyzer cannot distinguish between particles with equal charge and having the same mass-velocity product. A simple way of resolving this degeneracy is to use a Wien velocity filter, WVF, in conjunction with the magnet analyzers. The design and construction of a WVF is presented together with experiments performed to determine the separation power. A velocity separation Δv/v = 1/100 was obtained. The design in this separate arrangements of fields is simple and straightforward. The construction can be achieved in a usual workshop. The applications of the WVF are manifold, e.g., AMS, ERDA, RBS, etc. (authors)

  13. Greater subject access to Dewey Decimal Classification’s notation, with special reference to Indonesia’s geography, period and language notations

    OpenAIRE

    Sulistyo-Basuki, L.

    2007-01-01

    Although Indonesian libraries have been using Dewey Decimal Classification for more than half century, since 1952 until present times, from 15th through 22nd editions still many Indonesian librarians and users complained on certain DDC notation which they thought didn’t reflect the true condition of Indonesia as well as the real needs of the users. This paper proposed some modification and corrections for DDC notations especially those notations on languages in Indonesia including Bahasa Indo...

  14. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    International Nuclear Information System (INIS)

    Paul, J.D.

    1993-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements, the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper presents the results of air flow uniformity testing for six different filter housing/ductwork configurations and discusses if any of those variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases

  15. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  16. A Controlled Design of Ripple-Like Polyamide-6 Nanofiber/Nets Membrane for High-Efficiency Air Filter.

    Science.gov (United States)

    Zhang, Shichao; Liu, Hui; Zuo, Fenglei; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-03-01

    The filtration capacity of fibrous media for airborne particles is restricted by their thick diameter, low porosity, and limited frontal area. The ability to solve this problem would have broad technological implications for various air filtration applications; despite many past efforts, it remains a great challenge to achieve. Herein, a facile and scalable strategy to fabricate the ripple-like polyamide-6 nanofiber/nets (PA-6 NF/N) air filter via combining electrospinning/netting technique with receiving substrate design is demonstrated. This proposed approach allows the scaffold filaments to orderly embed into 2D PA-6 nanonets layer with Steiner-tree structures and nanoscale diameter of ≈20 nm, resulting in the ripple-like membrane with extremely small pore size, highly porous structure, and hugely extended frontal surface, by facilely adjusting its pleat span and pleat pitch. These unique structural advantages enable the ripple-like PA-6 NF/N filter to filtrate the ultrafine particles with high removal efficiency of 99.996%, low air resistance of 95 Pa, and robust quality factor of >0.11 Pa -1 ; using its superlight weight of 0.9 g m -2 and physical sieving manner. This approach has the potentialities to give rise to a novel generation of filter media displaying enhanced filtration capacity for various applications thanks to their nanoscale features and designed macrostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Power Efficient Design of Parallel/Serial FIR Filters in RNS

    DEFF Research Database (Denmark)

    Petricca, Massimo; Albicocco, Pietro; Cardarilli, Gian Carlo

    2012-01-01

    It is well known that the Residue Number System (RNS) provides an efficient implementation of parallel FIR filters especially when the filter order and the dynamic range are high. The two main drawbacks of RNS, need of converters and coding overhead, make a serialized implementation of the FIR...

  18. Thermal and structural behavior of filters and windows for synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Wang, Z.; Hahn, U.; Dejus, R.; Kuzay, T.

    1993-01-01

    This report contains the following discussions: Introduction: Use of filters and windows in the front end designs; An interactive code for 3D graphic viewing of absorbed power in filters/windows and a new heat load generation algorithm for the finite element analysis; Failure criteria and analysis methods for the filter and window assembly; Comparison with test data and existing devices in HASYLAB; Cooling the filter: Radiation cooling or conduction cooling?; Consideration of window and filter thickness: Thicker or thinner?; Material selection criteria for filters/windows; Photon transmission through filters/windows; Window and filter design for APS undulators; Window and filter design for APS wigglers; and Window design for APS bending magnet front ends

  19. Experience with HEPA filters at United States nuclear installations

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1977-01-01

    Part 50 of Title 10 of the United States Code of Federal Regulations requires that a number of atmosphere cleanup systems be included in the design of commercial nuclear power plants to be licensed in the United States. These filtering systems are to contain high efficiency particulate air (HEPA) filters for removal of radioactive particulate matter generated during normal and accident conditions. Recommendations for the design, testing and maintenance of the filtering systems and HEPA filter components are contained in a number of United States Nuclear Regulatory Commission documents and industry standards. This paper will discuss this published guidance available to designers of filtering systems and the plant operators of U.S. commercial nuclear power plants. The paper will also present a survey of published reports of experience with HEPA filters, failures and possible causes for the failures, and other abnormal occurrences pertaining to HEPA filters installed in U.S. nuclear power installations. A discussion will be included of U.S. practices for qualification of HEPA filters before installation, and verification of continued performance capability at scheduled intervals during operation

  20. Multichannel Signal Enhancement using Non-Causal, Time-Domain Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Benesty, Jacob

    2013-01-01

    In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non-causal. W......In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non......-causal, multichannel filters for enhancement based on an orthogonal decomposition is proposed. The evaluation shows that there is a potential gain in noise reduction and signal distortion by introducing non-causality. Moreover, experiments on real-life speech show that we can improve the perceptual quality....

  1. Analog Filter Design Rules for Multilevel Polybinary Signaling Generation

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Cavallero, Francisco javier Vaquero; Tafur Monroy, Idelfonso

    2014-01-01

    Polybinary signaling has gained attention lately due to its generation simplicity and reduced spectral usage. This paper presents a study on the requirements for analog filters for the generation of multilevel polybinary signals with three to nine levels.......Polybinary signaling has gained attention lately due to its generation simplicity and reduced spectral usage. This paper presents a study on the requirements for analog filters for the generation of multilevel polybinary signals with three to nine levels....

  2. Evaluation of self-contained HEPA filter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, T.E. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    This paper presents the results of an evaluation of a self-contained high-efficiency particulate air filter (SHEPA) used in nuclear applications. A SCHEPA consists of filter medium encapsulated in a casing that is part of the system boundary. The SCHEPA filter serves as a combination of filter housing and filter. The filter medium is attached directly to the casing using adhesive as a bonding agent. A cylindrical connection in the middle of the end caps connects the filter assembly to adjoining ductwork. The SCHEPA must perform the functions of a filter housing, filter frame, and filter. It was recognized that the codes and standards do not address the SCHEPA specifically. Therefore, the investigation evaluated the SCHEPA against current codes and standards related to the functional requirements of an air-cleaning system. The specific standards used are required by DOE Order 6430.1A{sup 1} and include ASME N509{sup 3}, ASME N510{sup 4}, ERDA 76-21{sup 5}, MIL-F-51068F{sup 6}, NFPA 90A, {sup 7} and NFPA 91{sup 8}. The evaluation does not address whether the SCHEPA as a standard (off-the-shelf) filter could be upgraded to meet the current code requirements for an air-cleaning unit. The evaluation also did not consider how the SCHEPA was used in a system (e.g., whether it was under positive or negative pressure or whether it served as an air inlet filter to prevent contamination releases under system pressurization). The results of the evaluation show that, the SCHEPA filter does not meet design, fabrication, testing, and documentation requirements of ASME N509{sup 3} and ASME N510{sup 4}. The paper will identify these deficiencies. Specific exhaust system requirements and application should be considered when an evaluation of the SCHEPA filter is being performed in existing systems. When new designs are being comtemplated, other types of HEPA filter housings can be used in lieu of the SCHEPA filter.

  3. Dewey Decimal Classification Online Project: Evaluation of a Library Schedule and Index Integrated into the Subject Searching Capabilities of an Online Catalog. Final Report.

    Science.gov (United States)

    Markey, Karen; Demeyer, Anh N.

    In this research project, subject terms from the Dewey Decimal Classification (DDC) Schedules and Relative Index were incorporated into an online catalog as searcher's tools for subject access, browsing, and display. Four features of the DDC were employed to help searchers browse for and match their own subject terms with the online catalog's…

  4. Design and development of laser eye protection filter

    International Nuclear Information System (INIS)

    Ahmed, K; Khan, A N; Rauf, A; Gul, A; Aslam, M

    2013-01-01

    Laser based devices, have been operational for measurement of distances horizontally and vertically in avionics and surveillance industries. These equipments are functional on pulsed Nd:YAG laser at 1064nm, this wavelength elevate the risk of eye exposure to personnel at unexpected levels. In this paper the eye protection filters, for the wavelength 1064nm were developed with soft (ZnS) and hard (TiO 2 ) coating materials by using thin film vacuum coating technique. The damage threshold of the filter is 0.2 J/cm 2 . Transmission characteristics are measured and discussed. Optical damage threshold (for eye 5 × 10 −6 J/cm2) at various distances is also simulated.

  5. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  6. Development of a noise filter for radiation thickness gagemeter

    International Nuclear Information System (INIS)

    Jee, C. W.; Kim, Y. T.; Lee, H. H.

    1995-01-01

    The objective of this study is to develop a filter which attenuates sensor noises of radiation thickness gagemeters of the fifth stand of TCM No. 1 in Pohang steel works. The thickness control loop for the fifth stand is modelled as a system for filter design, where the system input is the speed control input and the system output is the gagemeter output. In the design of a filter, the system is described by an ARMAX(AutoRegressive Moving-Average with auXiliary input) model. The parameters of this model are then estimated by using a recursive least square method. Secondly, the ARMAX model, the estimated system, is transformed into an observer canonical state space form. Thirdly, Kalman filtering is applied to obtain optimal estimates of the state and hence those of thickness measurements of steel strips. In addition, a separate low pass filter is designed, which is directly applicable to the gagemeter outputs. Finally, the designed filter algorithms are implemented and tested on a VMEbus board computer under VxWorks real-time operating system. (author)

  7. Design of LCL-filters with LCL resonance frequencies beyond the Nyquist frequency for grid-connected inverters

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2015-01-01

    , and this observation is so far not discussed in the literature. In this case, very cost-effective LCL-filter design can be achieved for grid-connected converters whose dominant switching harmonics may appear at double of the switching frequency, e.g. in unipolar modulated three-level full bridge converters and 12...

  8. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  9. Filtered atmospheric venting of LWR containments

    International Nuclear Information System (INIS)

    Hoegberg, L.; Ahlstroem, P.E.; Bachofner, E.; Graeslund, C.; Johansson, K.; Nilsson, L.; Persson, Aa.; Eriksson, B.

    1981-03-01

    The FILTRA project is a cooperative Swedish programme which started in February 1980. It is aimed at investigating the possibility of reducing the risk for a large release of radioactivity, assuming a severe reactor accident. The project has been focused on filtered venting of the reactor containment. The first stage of the project has dealt with two types of severe accident sequences, namely core meltdown as a result of the complete loss of water supplies to the reactor pressure vessel and insufficient cooling of the reactor containment. Some important conclusion are the following. The applicability of computer models used to describe various phenomena in the accident sequence must be scrutinized. The details of the design of the containment are important and must be taken into consideration in a more accurate manner than in previous analyses. A pressure relief area of less than 1 m 2 appears to be adequate. The following principles should guide the technical design of filtered venting systems, namely reduction of the risk for the release of those radioactive substances which could cause long term land contamination, provision for a passive function of the vent filter system during the first 24 hours and achievement of filtering capabilities which make leakages in severe accidents comparable to the leakages of radioactive substances in less severe accidents, which do not necessarily actuate the pressure relief system. Nothing indicates that a system for filtered venting of a BWR containment would have a significant negative effect on the safety within the framework of the design basis. Efforts should be directed towards designing a filtered venting system for a BWR such as Barsebaeck. (authors)

  10. Air filters for use at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Linder, P [Aktiebolaget Atomenergi, Studsvik, Nykoeping (Sweden)

    1970-12-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment.

  11. Air filters for use at nuclear facilities

    International Nuclear Information System (INIS)

    Linder, P.

    1970-01-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment

  12. Program plan for the investigation of vent-filtered containment conceptual designs for light water reactors

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1979-10-01

    The implementation of a containment venting and filtration capability has been suggested as a means for reducing the risk from fuel melt accidents in light water reactors. The risk reduction potential of such systems depends upon the dual function of venting containment to prevent overpressurization from the generation of steam and noncondensibles and filtering the effluent to limit the release of radioactive materials. This report addresses the major issues involved in such an accident mitigation system and discusses the engineering, technical, and economic questions that will have to be studied before judgments can be made regarding feasibility and effectiveness. A program plan is presented for research leading to the formulation of design requirements for vent-filter containment systems and to a comprehensive assessment of the values versus impacts of such systems

  13. Time-area efficient multiplier-free filter architectures for FPGA implementation

    DEFF Research Database (Denmark)

    Shajaan, Mohammad; Nielsen, Karsten; Sørensen, John Aasted

    1995-01-01

    Simultaneous design of multiplier-free filters and their hardware implementation in Xilinx field programmable gate array (XC4000) is presented. The filter synthesis method is a new approach based on cascade coupling of low order sections. The complexity of the design algorithm is 𝒪 (filter o...

  14. Structural performance of HEPA filters under simulated tornado conditions

    International Nuclear Information System (INIS)

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m 3 /s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits

  15. Noise Reduction of Measurement Data using Linear Digital Filters

    Directory of Open Access Journals (Sweden)

    Hitzmann B.

    2007-12-01

    Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.

  16. Design of LCL Filters With LCL Resonance Frequencies Beyond the Nyquist Frequency for Grid-Connected Converters

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    , and this observation is so far not discussed in the literature. In this case, a very cost-effective LCL filter design can be achieved for the grid-connected converters, whose dominant switching harmonics may appear at double the switching frequency, e.g., in unipolar-modulated three-level full-bridge converters and 12...

  17. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  18. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  19. Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter

    KAUST Repository

    Luo, Xiaodong

    2011-12-01

    A robust ensemble filtering scheme based on the H∞ filtering theory is proposed. The optimal H∞ filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used in the Kalman filter. By design, the H∞ filter is more robust than the Kalman filter, in the sense that the estimation error in the H∞ filter in general has a finite growth rate with respect to the uncertainties in assimilation, except for a special case that corresponds to the Kalman filter. The original form of the H∞ filter contains global constraints in time, which may be inconvenient for sequential data assimilation problems. Therefore a variant is introduced that solves some time-local constraints instead, and hence it is called the time-local H∞ filter (TLHF). By analogy to the ensemble Kalman filter (EnKF), the concept of ensemble time-local H∞ filter (EnTLHF) is also proposed. The general form of the EnTLHF is outlined, and some of its special cases are discussed. In particular, it is shown that an EnKF with certain covariance inflation is essentially an EnTLHF. In this sense, the EnTLHF provides a general framework for conducting covariance inflation in the EnKF-based methods. Some numerical examples are used to assess the relative robustness of the TLHF–EnTLHF in comparison with the corresponding KF–EnKF method.

  20. 78 FR 69113 - Statutorily Mandated Designation of Difficult Development Areas for 2014

    Science.gov (United States)

    2013-11-18

    ... identical (to four decimal places) to the last area selected, and its inclusion resulted in only a minor... designated and on geographic definitions, contact Michael K. Hollar, Senior Economist, Economic Development..., 2000 Census, and Metropolitan Area Definitions Data from the 2010 Census on total population of...

  1. Debris filtering efficiency and its effect on long term cooling capability

    International Nuclear Information System (INIS)

    Jung, Min-Su; Kim, Kyu-Tae

    2013-01-01

    Highlights: • Debris filtering efficiencies for two debris filter designs used in PWRs are provided. • Various debris used in the tests are selected to simulate actual debris found in PWRs. • Debris filter efficiency is explained by flow-hole size and grid strap height. • The effect of debris filters on flow blockage during LTC after a LOCA is described. -- Abstract: A cutting-edge debris-filter designs, Protective Grid (P-grid) and Guardian Grid (G-grid) attached to the upper part of bottom nozzle, have been employed for the PWRs in Korea since 2000s to protect the fuel from debris-induced fuel failures. The debris-filter efficiency of the P-grid and G-grid designs is improved by relatively smaller flow areas formed by the grid straps and dimples. The debris-filter efficiency of the P-grid design is further improved by the relatively smaller flow-hole bottom nozzle. The debris-filter flow tests employing eighteen debris types showed that the debris-filter efficiencies of the P-grid and G-grid designs are 91 and 96%, respectively, while that of the SYS80 fuel design having only the standard flow-hole bottom nozzle is 26%. The slightly better debris-filter efficiency of the G-grid design against the P-grid design may be explained by relatively smaller flow areas at the G-grid dimple region as well as by the relatively longer solid end plug and the higher G-grid strap. The P-grid design may capture circular shapes of debris larger than 3.44 mm in diameter at the flow holes formed by the P-grid dimples, whereas the G-grid design may capture circular shapes of debris larger than 2.54 mm in diameter at the flow holes formed by the G-grid dimples. The aforementioned difference in the debris-filter efficiency between the P-grid and G-grid designs may be predicted by the solid modeling technique generating three-dimensional flow paths. Using the minimum flow-hole areas generated by the P-grid and G-grid designs, on the other hand, the effect of debris injected from

  2. Multistage parallel-serial time averaging filters

    International Nuclear Information System (INIS)

    Theodosiou, G.E.

    1980-01-01

    Here, a new time averaging circuit design, the 'parallel filter' is presented, which can reduce the time jitter, introduced in time measurements using counters of large dimensions. This parallel filter could be considered as a single stage unit circuit which can be repeated an arbitrary number of times in series, thus providing a parallel-serial filter type as a result. The main advantages of such a filter over a serial one are much less electronic gate jitter and time delay for the same amount of total time uncertainty reduction. (orig.)

  3. Origini Concettuali di Errori che si Riscontrano Nel Confrontare Numeri Decimali e Frazioni=Conceptual Sources of Difficulties Concerning the Ordering of Decimal Numbers and the Comparison of Fractions.

    Science.gov (United States)

    Bonotto, C.

    1993-01-01

    Examined fifth-grade students' survey responses to investigate incorrect rules that derive from children's efforts to interpret decimals as integers or as fractions. Regarding fractions, difficulties arise because only the whole-part approach to fractions is presented in elementary school. (Author/MDH)

  4. Evaluation of prototype electrofibrous filters for nuclear ventilation ducts

    International Nuclear Information System (INIS)

    Bergman, W.; Kuhl, W.D.; Biermann, A.H.; Johnson, J.S.; Lum, B.Y.

    1983-01-01

    Two prototype electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. These prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposable prefilter is effectively prolonging the HEPA filter life

  5. Evaluation of prototype electrofibrous filters for nuclear-ventilation ducts

    International Nuclear Information System (INIS)

    Bergman, W.; Kuhl, W.D.; Biermann, A.H.; Johnson, J.S.; Lum, B.Y.

    1982-01-01

    Two prototypes electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. These prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposable prefilter is effectively prolonging the HEPA filter life

  6. Cost/benefit evaluation of electrofibrous air filters

    International Nuclear Information System (INIS)

    Bergman, W.; Kuhl, W.; Biermann, A.; Lum, B.

    1986-01-01

    Experimental electric air filters based on the principle of superimposing an electric field over conventional fibrous air filters have been developed. The different experimental electric filters described in this report include prefilters for use in glove boxes and in ventilation systems, re-circulating air filters, electric HEPA filters, and high efficiency, high temperature air filters. In each case the large improvement in filter efficiency that occurs when a mechanical filter is electrified is demonstrated. Also a significant increase in the particle loading capacity of filters in many of our evaluations is demonstrated. Both laboratory and field test results are presented. This paper also demonstrates that the performance of all of our electric filter designs, except one, can be matched by conventional mechanical air filters and usually at a lower cost. The one exception is the high temperature, high efficiency electric air filter. In that case there is no mechanical filter media that can match the performance of the electric air filter. Our findings show that electric air filters are only cost effective compared to mechanical air filters when the performance of the mechanical air filter cannot be further improved by mechanical means. (author)

  7. H-/H∞ structural damage detection filter design using an iterative linear matrix inequality approach

    International Nuclear Information System (INIS)

    Chen, B; Nagarajaiah, S

    2008-01-01

    The existence of damage in different members of a structure can be posed as a fault detection problem. It is also necessary to isolate structural members in which damage exists, which can be posed as a fault isolation problem. It is also important to detect the time instants of occurrence of the faults/damage. The structural damage detection filter developed in this paper is a model-based fault detection and isolation (FDI) observer suitable for detecting and isolating structural damage. In systems, possible faults, disturbances and noise are coupled together. When system disturbances and sensor noise cannot be decoupled from faults/damage, the detection filter needs to be designed to be robust to disturbances as well as sensitive to faults/damage. In this paper, a new H - /H ∞ and iterative linear matrix inequality (LMI) technique is developed and a new stabilizing FDI filter is proposed, which bounds the H ∞ norm of the transfer function from disturbances to the output residual and simultaneously does not degrade the component of the output residual due to damage. The reduced-order error dynamic system is adopted to form bilinear matrix inequalities (BMIs), then an iterative LMI algorithm is developed to solve the BMIs. The numerical example and experimental verification demonstrate that the proposed algorithm can successfully detect and isolate structural damage in the presence of measurement noise

  8. Time-area efficient multiplier-free recursive filter architectures for FPGA implementation

    DEFF Research Database (Denmark)

    Shajaan, Mohammad; Sørensen, John Aasted

    1996-01-01

    Simultaneous design of multiplier-free recursive filters (IIR filters) and their hardware implementation in Xilinx field programmable gate array (XC4000) is presented. The hardware design methodology leads to high performance recursive filters with sampling frequencies in the interval 15-21 MHz (...

  9. 77 FR 59629 - Statutorily Mandated Designation of Difficult Development Areas for 2013

    Science.gov (United States)

    2012-09-28

    ... ranking ratio, as described above, was identical (to four decimal places) to the last area selected, and... questions on how areas are designated and on geographic definitions, contact Michael K. Hollar, Senior... year. 2010 Census, 2000 Census, and Metropolitan Area Definitions Data from the 2010 Census on total...

  10. Collection of aerosols in high efficiency particulate air filters

    International Nuclear Information System (INIS)

    Pratt, R.P.; Green, B.L.

    1987-01-01

    The investigation of the performance of HEPA filters of both minipleat and conventional deep pleat designs has continued at Harwell. Samples of filters from several manufacturers have been tested against the UKAEA/BNF plc filter purchasing specification. No unexpected problems have come to light in these tests, apart from some evidence to suggest that although meeting the specification minipleat filters are inherently weaker in burst strength terms than conventional filters. In addition tests have been carried out to investigate the dust loading versus pressure drop characteristics of both designs of filters using a range of test dusts - ASHRAE dust, carbon black, BS 2831 No. 2 test dust and sodium chloride. In parallel with laboratory test work a more fundamental study on the effects of geometric arrangement of filter media within the filter frame has been carried out on behalf of the UKAEA by Loughborough University. The results of this study has been the development of a mathematical model to predict the dust load versus pressure drop characteristic as a function of filter media geometry. This has produced good agreement with laboratory test results using a challenge aerosol in the 1-5 μm size range. Further observations have been made to enhance understanding of the deposition of aerosols within the filter structure. The observations suggest that the major influence on dust loading is the depth of material collected in the flow channel as a surface deposition, and this explains the relatively poor performance of the minipleat design of filter

  11. Development of filters and housings for use on active plant

    International Nuclear Information System (INIS)

    Hackney, S.; Pratt, R.P.

    1983-01-01

    New designs of housings for conventional HEPA filters have been developed and are now in use. A further design is planned for future use. The main features to be developed are the engineering of double door systems to replace bag posting and other methods of filter changing which expose personnel to hazardous environments and the addition of a secondary containment to reduce the role of the gasket seal in the filtration efficiency. Also under development are circular geometry filters of HEPA standard which offer significant advantages over rectangular filters for applications requiring remote shielded change facilities. Two types of filter construction are being evaluated, conventional radial flow cartridge filters and spiral-wound, axial-flow filters. The application of circular filters for primary filter systems on active plant is in hand. A push-through change system has been developed for a new cell facility under construction at Harwell. Existing rectangular filters on a high activity cell are being replaced with clusters of small cartridge filters to overcome changing and disposal problems. A similar system but using 1700 m 3 /h filters for large volume off-gas treatment is also being studied. A remote change shielded filter installation is being developed for use in high alpha, beta, gamma extract systems. The design incorporates large cartridge filters in sealed drums with remote transfer and connection to duct work in the facility. A novel application of the use of double-lid technology removes the need for separate shut off dampers and enables the drums to be sealed for all transfer operations

  12. Design of Filter for a Class of Switched Linear Neutral Systems

    Directory of Open Access Journals (Sweden)

    Caiyun Wu

    2013-01-01

    Full Text Available This paper is concerned with the filtering problem for a class of switched linear neutral systems with time-varying delays. The time-varying delays appear not only in the state but also in the state derivatives. Based on the average dwell time approach and the piecewise Lyapunov functional technique, sufficient conditions are proposed for the exponential stability of the filtering error dynamic system. Then, the corresponding solvability condition for a desired filter satisfying a weighted performance is established. All the conditions obtained are delay-dependent. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theory.

  13. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  14. Economical Implementation of a Filter Engine in an FPGA

    Science.gov (United States)

    Kowalski, James E.

    2009-01-01

    A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be

  15. Sufficient Condition for Estimation in Designing H∞ Filter-Based SLAM

    Directory of Open Access Journals (Sweden)

    Nur Aqilah Othman

    2015-01-01

    Full Text Available Extended Kalman filter (EKF is often employed in determining the position of mobile robot and landmarks in simultaneous localization and mapping (SLAM. Nonetheless, there are some disadvantages of using EKF, namely, the requirement of Gaussian distribution for the state and noises, as well as the fact that it requires the smallest possible initial state covariance. This has led researchers to find alternative ways to mitigate the aforementioned shortcomings. Therefore, this study is conducted to propose an alternative technique by implementing H∞ filter in SLAM instead of EKF. In implementing H∞ filter in SLAM, the parameters of the filter especially γ need to be properly defined to prevent finite escape time problem. Hence, this study proposes a sufficient condition for the estimation purposes. Two distinct cases of initial state covariance are analysed considering an indoor environment to ensure the best solution for SLAM problem exists along with considerations of process and measurement noises statistical behaviour. If the prescribed conditions are not satisfied, then the estimation would exhibit unbounded uncertainties and consequently results in erroneous inference about the robot and landmarks estimation. The simulation results have shown the reliability and consistency as suggested by the theoretical analysis and our previous findings.

  16. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters

    Directory of Open Access Journals (Sweden)

    Luis Medina

    2017-11-01

    Full Text Available Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU and the other for Field-Programmable Gate Array (FPGA. The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.

  17. Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering

    CERN Document Server

    Chang, Xiao-Heng

    2012-01-01

    "Takagi-Sugeno Fuzzy Systems Non-fragile H-infinity Filtering" investigates the problem of non-fragile H-infinity filter design for T-S fuzzy systems. The nonlinear plant is represented by a T-S fuzzy model. Given a T-S fuzzy system, the objective of this book is to design an H-infinity filter with the gain variations such that the filtering error system guarantees a prescribed H-infinity performance level. Furthermore, it demonstrates that the solution of non-fragile H-infinity filter design problem can be obtained by solving a set of linear matrix inequalities (LMIs). The intended audiences are graduate students and researchers both from the fields of engineering and mathematics. Dr. Xiao-Heng Chang is an Associate Professor at the College of Engineering, Bohai University, Jinzhou, Liaoning, China. He is also a Postdoctoral Researcher at the College of Information Science and Engineering, Northeastern University, Shenyang, China.

  18. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  19. New Passive Filter Design Method for Overvoltage Suppression and Bearing Currents Mitigation in a Long Cable Based PWM Inverter-Fed Motor Drive System

    DEFF Research Database (Denmark)

    Jiang, Yanmin; Wu, Weimin; He, Yuanbin

    2017-01-01

    would cause serious deterioration of the motor and cable. A passive overvoltage suppression technique of low-loss 'RL-plus-C' filter was proposed recently. It has not only some merits of simple structure, low cost, and good robustness, but also a significant merit of low power dissipation. In order...... to further mitigate the bearing currents, this paper proposes two new power filters and their design method. The theoretical analysis and the design method are introduced in detail. Experimental results are in good agreement with the theoretical analysis....

  20. Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.

    Science.gov (United States)

    Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng

    2011-10-01

    This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.

  1. In-situ testing of HEPA filters in the nuclear Karlsruhe filter system

    International Nuclear Information System (INIS)

    Ohlmeyer, M.; Stotz, W.

    1977-01-01

    Nuclear plant operators and filter manufacturers are endeavouring to improve environmental protection by intensifying process control and/or improving filter quality. In-situ testing is an important element in these efforts since it represents a direct means of checking the success or otherwise of a particular development. The arrangements for in-situ testing should satisfy the following minimum requirements: the staff should not be exposed to risk during the test; the test method should be objective and reproducible as well as being as sensitive as possible; the test method should permit detection of individual leaks in the filter system so that they can be remedied as efficiently as possible; the test equipment should not necessitate modifications to the extract systems or plant construction; the test should be simple and capable of being carried out with a minimum of effort and equipment. GfK has developed the 'Nuclear-Karlsruhe' filter housing in accordance with these principles. This housing permits in-situ testing similar to the DIN 24184 visual oil-fog test or the DOP test. External visual checks on the general condition of the filter is also possible. A safe system of filter changing with a specially designed plastic bag attachment at an accessible height considerably increases the degree of protection of operating personnel

  2. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    Brenton Steele

    2003-11-01

    Full Text Available Ternary filters have tap values limited to −1, 0, or +1. This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  3. Iodine filters in nuclear power stations

    International Nuclear Information System (INIS)

    Wilhelm, J.G.

    1977-04-01

    On the basis of calculated and recorded release rates of nuclear power plants, the significance of iodine releases in the invironmental impact relative to other nuclides is discussed. The release pathways for iodine in LWR-type reactors and the efficiency of various methods to lower the activity release are given. The airborne species of iodine are discussed with regard to their removal in iodine sorption filters and environmental impact. The technical status of iodine removal by means of iodine sorption filters is studied for normal operation and accident conditions in nuclear power stations on the basis of the data given in the relevant literature for the efficiency of a number of iodine sorption materials. The applicability of concepts for ventilation and containment and their influence on iodine filter systems are discussed. Design, structure, and testing of iodine sorption filters are treated in detail; recommendations for design are given, and failure sources are mentioned. (orig.) [de

  4. Development of acid-resistant HEPA filter components

    International Nuclear Information System (INIS)

    Terada, K.; Woodard, R.W.; Buttedahl, O.I.

    1981-01-01

    Laboratory and in-service tests of various HEPA filter media and separators were conducted to establish their relative resistances to HNO 3 -HF vapors. Filter medium of glass fiber with Nomex additive and aluminum separators with an epoxy-vinyl coating have performed quite well in the acid environment in the laboratory, and in prototype-filters placed in service in a plenum at Rocky Flats. Proprietary filters with new design and/or components were also tested in service with generally good results

  5. S-shaped magnetic macroparticle filter for cathodic arc deposition

    International Nuclear Information System (INIS)

    Anders, S.; Anders, A.; Dickinson, M.R.; MacGill, R.A.; Brown, I.G.

    1996-01-01

    A new magnetic macroparticle filter design consisting of two 90 o filters forming an S-shape is described. Transport properties of this S-filter are investigated using Langmuir and deposition probes. It is shown that filter efficiency is product of the efficiencies of two 90 o filters and the deposition rate is still acceptably high to perform thin film deposition. Films of amorphous hard carbon have been deposited using a 90 o filter and the S-filter, and macroparticle content of the films are compared

  6. Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    OpenAIRE

    Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.

    2016-01-01

    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1 to 2 MHz at the COoler SYnchrotron COSY at J\\"ulich. The device will be used in a future experiment that aims at measuring the proton and deuteron ...

  7. A Performance Comparison Between Extended Kalman Filter and Unscented Kalman Filter in Power System Dynamic State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve......-linear state estimator is developed in MatLab to solve states by applying the unscented Kalman filter (UKF) and Extended Kalman Filter (EKF) algorithm. Finally, a DSE model is built for a 14 bus power system network to evaluate the proposed algorithm for the networks.This article will focus on comparing...

  8. Design and experimental verification of a dual-band metamaterial filter

    Science.gov (United States)

    Zhu, Hong-Yang; Yao, Ai-Qin; Zhong, Min

    2016-10-01

    In this paper, we present the design, simulation, and experimental verification of a dual-band free-standing metamaterial filter operating in a frequency range of 1 THz-30 THz. The proposed structure consists of periodically arranged composite air holes, and exhibits two broad and flat transmission bands. To clarify the effects of the structural parameters on both resonant transmission bands, three sets of experiments are performed. The first resonant transmission band shows a shift towards higher frequency when the side width w 1 of the main air hole is increased. In contrast, the second resonant transmission band displays a shift towards lower frequency when the side width w 2 of the sub-holes is increased, while the first resonant transmission band is unchanged. The measured results indicate that these resonant bands can be modulated individually by simply optimizing the relevant structural parameters (w 1 or w 2) for the required band. In addition, these resonant bands merge into a single resonant band with a bandwidth of 7.7 THz when w 1 and w 2 are optimized simultaneously. The structure proposed in this paper adopts different resonant mechanisms for transmission at different frequencies and thus offers a method to achieve a dual-band and low-loss filter. Project supported by the Doctorate Scientific Research Foundation of Hezhou University, China (Grant No. HZUBS201503), the Promotion of the Basic Ability of Young and Middle-aged Teachers in Universities Project of Guangxi Zhuang Autonomous Region, China (Grant No. KY2016YB453), the Guangxi Colleges and Universities Key Laboratory Symbolic Computation, China, Engineering Data Processing and Mathematical Support Autonomous Discipline Project of Hezhou University, China (Grant No. 2016HZXYSX01).

  9. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  10. High-temperature superconducting passive microwave devices, filters and antennas

    International Nuclear Information System (INIS)

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  11. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  12. Spatial filters on demand based on aperiodic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gailevicius, Darius; Purlys, Vytautas; Peckus, Martynas; Gadonas, Roaldas [Laser Research Center, Department of Quantum Electronics, Vilnius University (Lithuania); Staliunas, Kestutis [DONLL, Departament de Fisica, Universitat Politecnica de Catalunya (UPC), Terrassa (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2017-08-15

    Photonic Crystal spatial filters, apart from stand-alone spatial filtering function, can also suppress multi-transverse-mode operation in laser resonators. Here it is shown that such photonic crystals can be designed by solving the inverse problem: for a given spatial filtering profile. Optimized Photonic Crystal filters were fabricated in photosensitive glass. Experiments have shown that such filters provide a more pronounced filtering effect for total and partial transmissivity conditions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Design of photon energy compensation filters for the new four element CaSO4:Dy TLD badge

    International Nuclear Information System (INIS)

    Mishra, D.R.; Kulkarni, M.S.; Pradeep, Ratna; Kannan, S.

    2001-01-01

    A new four element TLD badge using CaSO 4 :Dy is being developed for the estimation of personal dose equivalents Hp(10) and Hp(0.07) and to discriminate them in the mix field (low energy x-ray and high energy γ-ray). Design of energy compensation filters for the new TLD badge is discussed. The total metal filter thickness is kept less than 1 mm. The first and second elements of the badge are planned to be open and plastic (≅180 gm/cm 2 ) window. For the third element a combination of 0.2 mm Sn + 0.7mm Cu + 0.1 mm Al with mass thickness ≅ 1100 mg/cm 2 is proposed which gives energy dependent response similar to Hp(10) within ± 20% (above 80 keV). For the fourth dosimeter a filter combination of 0.4 mm Al + 0.07 mm Sn is proposed which gives Hp(10)xR response for diagnostic x-rays within ± 10% in the mix field. (author)

  14. Transfemoral Filter Eversion Technique following Unsuccessful Retrieval of Option Inferior Vena Cava Filters: A Single Center Experience.

    Science.gov (United States)

    Posham, Raghuram; Fischman, Aaron M; Nowakowski, Francis S; Bishay, Vivian L; Biederman, Derek M; Virk, Jaskirat S; Kim, Edward; Patel, Rahul S; Lookstein, Robert A

    2017-06-01

    This report describes the technical feasibility of using the filter eversion technique after unsuccessful retrieval attempts of Option and Option ELITE (Argon Medical Devices, Inc, Athens, Texas) inferior vena cava (IVC) filters. This technique entails the use of endoscopic forceps to evert this specific brand of IVC filter into a sheath inserted into the common femoral vein, in the opposite direction in which the filter is designed to be removed. Filter eversion was attempted in 25 cases with a median dwell time of 134 days (range, 44-2,124 d). Retrieval success was 100% (25/25 cases), with an overall complication rate of 8%. This technique warrants further study. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  15. Low power adder based auditory filter architecture.

    Science.gov (United States)

    Rahiman, P F Khaleelur; Jayanthi, V S

    2014-01-01

    Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT) based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%.

  16. Low Power Adder Based Auditory Filter Architecture

    Directory of Open Access Journals (Sweden)

    P. F. Khaleelur Rahiman

    2014-01-01

    Full Text Available Cochlea devices are powered up with the help of batteries and they should possess long working life to avoid replacing of devices at regular interval of years. Hence the devices with low power consumptions are required. In cochlea devices there are numerous filters, each responsible for frequency variant signals, which helps in identifying speech signals of different audible range. In this paper, multiplierless lookup table (LUT based auditory filter is implemented. Power aware adder architectures are utilized to add the output samples of the LUT, available at every clock cycle. The design is developed and modeled using Verilog HDL, simulated using Mentor Graphics Model-Sim Simulator, and synthesized using Synopsys Design Compiler tool. The design was mapped to TSMC 65 nm technological node. The standard ASIC design methodology has been adapted to carry out the power analysis. The proposed FIR filter architecture has reduced the leakage power by 15% and increased its performance by 2.76%.

  17. Design Principles of A Sigma-delta Flux-gate Magnetometer

    Science.gov (United States)

    Magnes, W.; Valavanoglou, A.; Pierce, D.; Frank, A.; Schwingenschuh, K.

    A state-of-the-art flux-gate magnetometer is characterised by magnetic field resolution of several pT in a wide frequency range, low power consumption, low weight and high robustness. Therefore, flux-gate magnetometers are frequently used for ground-based Earth's field observation as well as for measurements aboard scientific space missions. But both traditional analogue and recently developed digital flux-gate magnetometers need low power and high-resolution analogue-to-digital converters for signal quan- tization. The disadvantage of such converters is the low radiation hardness. This fact has led to the idea of combining a traditional analogue flux-gate regulation circuit with that of a discretely realized sigma-delta converter in order to get a radiation hard and further miniaturized magnetometer. The name sigma-delta converter is derived from putting an integrator in front of a 1-bit delta modulator which forms the sigma-delta loop. It is followed by a digital decimation filter realized in a field-programmable gate array (FPGA). The flux-gate regulation and the sigma-delta loop are quite similar in the way of realizing the integrator and feedback circuit, which makes it easy to com- bine these two systems. The presented talk deals with the design principles and the results of a first bread board model.

  18. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  19. Late washing filter cleaning cycle demonstration

    International Nuclear Information System (INIS)

    Meyer, M.L.; McCabe, D.J.

    1992-01-01

    The DWPF Late Washing Facility will filter cesium and potassium tetraphenyl borate (TPB) solids using a Mott sintered metal filter, identical to the filter now used in the In-tank Precipitation Facility. The purpose of the late wash step is primarily to remove the nitrite salts from the slurry prior to delivery to DWPF. Periodic chemical cleaning of the filter will be required, presumably after each batch although the actual required frequency could not be determined on the lab-scale. Minimization of chemical cleaning solution volumes is key to maximizing the attainment of the Late Wash facility. This report summarizes work completed in experiments designed to identify minimum cleaning solution requirements

  20. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    Science.gov (United States)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  1. Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

    1994-10-01

    The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

  2. Stochastic stacking without filters

    International Nuclear Information System (INIS)

    Johnson, R.P.; Marriner, J.

    1982-12-01

    The rate of accumulation of antiprotons is a critical factor in the design of p anti p colliders. A design of a system to accumulate higher anti p fluxes is presented here which is an alternative to the schemes used at the CERN AA and in the Fermilab Tevatron I design. Contrary to these stacking schemes, which use a system of notch filters to protect the dense core of antiprotons from the high power of the stack tail stochastic cooling, an eddy current shutter is used to protect the core in the region of the stack tail cooling kicker. Without filters one can have larger cooling bandwidths, better mixing for stochastic cooling, and easier operational criteria for the power amplifiers. In the case considered here a flux of 1.4 x 10 8 per sec is achieved with a 4 to 8 GHz bandwidth

  3. Signal Enhancement with Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Benesty, Jacob; Christensen, Mads Græsbøll; Jensen, Jesper Rindom

    . Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal...... the time and STFT domains, and, lastly, in time-domain binaural enhancement. In these contexts, the properties of these filters are analyzed in terms of their noise reduction capabilities and desired signal distortion, and the analyses are validated and further explored in simulations....

  4. Multi-Canister overpack internal HEPA filters

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The rationale for locating a filter assembly inside each Multi-Canister Overpack (MCO) rather than include the filter in the Cold Vacuum Drying (CVD) process piping system was to eliminate the potential for contamination to the operators, processing equipment, and the MCO. The internal HEPA filters provide essential protection to facility workers from alpha contamination, both external skin contamination and potential internal depositions. Filters installed in the CVD process piping cannot mitigate potential contamination when breaking the process piping connections. Experience with K-Basin material has shown that even an extremely small release can result in personnel contamination and costly schedule disruptions to perform equipment and facility decontamination. Incorporating the filter function internal to the MCO rather than external is consistent with ALARA requirements of 10 CFR 835. Based on the above, the SNF Project position is to retain the internal HEPA filters in the MCO design

  5. Sensitivity filtering from a continuum mechanics perspective

    DEFF Research Database (Denmark)

    Sigmund, Ole; Maute, Kurt

    2012-01-01

    In topology optimization filtering is a popular approach for preventing numerical instabilities. This short note shows that the well-known sensitivity filtering technique, that prevents checkerboards and ensures mesh-independent designs in density-based topology optimization, is equivalent to min...... to minimizing compliance for nonlocal elasticity problems known from continuum mechanics. Hence, the note resolves the long-standing quest for finding an explanation and physical motivation for the sensitivity filter....

  6. Filterability and Sludge Concentration in Membrane Bioreactors

    NARCIS (Netherlands)

    Lousada-Ferreira, M.

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of

  7. Signal Enhancement with Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Benesty, Jacob; Christensen, Mads Græsbøll; Jensen, Jesper Rindom

    This book introduces readers to the novel concept of variable span speech enhancement filters, and demonstrates how it can be used for effective noise reduction in various ways. Further, the book provides the accompanying Matlab code, allowing readers to easily implement the main ideas discussed....... Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal......-to-noise ratio, Wiener, and tradeoff filters (including their new generalizations) can be obtained using the variable span filter framework. It then illustrates how the variable span filters can be applied in various contexts, namely in single-channel STFT-based enhancement, in multichannel enhancement in both...

  8. High efficiency particulate air filter experience survey

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1983-01-01

    Causes and magnitude of HEPA filter changeouts and failures at DOE sites for the years 1977 to 1979 were evaluated. Conclusions inferred from the data follow: HEPA filters have been generally performing the task they were designed for; most changeouts have been made because of filter plugging, preventive maintenance, or precautionary reasons rather than evidence of filter failure; where failures have been experienced, records generally have not been adequate to determine the cause of failure; where cause of failure has been determined, damage attributed to personnel handling and installation has been substantially more prevalent than that from filter environmental exposure. The need for improved personnel training in handling and installation was stressed. Some reduction in filter failure frequency can be achieved by improving the acid and moisture resistance of filters, and providing adequate pretreatment of air prior to HEPA filtration

  9. Analysis and Design of Notch Filter-Based PLLs for Grid-Connected Applications Electric Power Systems Research

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Using multiple notch filters (NFs) inside the control loop of a standard PLL is a basic strategy to improve its filtering capability. Often, adaptive NFs (ANFs) are employed for this purpose as they can block the disturbance components even under off-nominal grid frequencies. This advantage...... is at the cost of a rather considerable increase in the PLL implementation complexity and computational effort, particularly when ANFs have their own frequency estimation mechanism. The non-adaptive NFs (NNFs), contrary to ANFs, are easy to implement. They, however, have received a little attention in PLL...... applications. Therefore, their performance characteristics are rather unclear. To gain insight about the advantages and disadvantages of NNF-based PLLs (NNF-PLLs), analysis and design of these PLLs is conducted in this paper. This procedure includes: (1) selecting the appropriate number of NNFs inside the PLL...

  10. Potential-controlled filtering in quantum star graphs

    International Nuclear Information System (INIS)

    Turek, Ondřej; Cheon, Taksu

    2013-01-01

    We study the scattering in a quantum star graph with a Fülöp–Tsutsui coupling in its vertex and with external potentials on the lines. We find certain special couplings for which the probability of the transmission between two given lines of the graph is strongly influenced by the potential applied on another line. On the basis of this phenomenon we design a tunable quantum band-pass spectral filter. The transmission from the input to the output line is governed by a potential added on the controlling line. The strength of the potential directly determines the passband position, which allows to control the filter in a macroscopic manner. Generalization of this concept to quantum devices with multiple controlling lines proves possible. It enables the construction of spectral filters with more controllable parameters or with more operation modes. In particular, we design a band-pass filter with independently adjustable multiple passbands. We also address the problem of the physical realization of Fülöp–Tsutsui couplings and demonstrate that the couplings needed for the construction of the proposed quantum devices can be approximated by simple graphs carrying only δ potentials. - Highlights: ► Spectral filtering devices based on quantum graphs are designed theoretically. ► The passband is controlled by the application of macroscopic potentials on lines. ► The filters are built upon special Fulop–Tsutsui type couplings at graph vertices. ► A method of construction of Fulop–Tsutsui vertices from delta potentials is devised.

  11. New filterability and compressibility test cell design for nuclear products

    Energy Technology Data Exchange (ETDEWEB)

    Féraud, J.P. [CEA Marcoule, DTEC/SGCS/LGCI, BP 17171, 30207 Bagnols-sur-Cèze (France); Bourcier, D., E-mail: damien.bourcier@cea.fr [CEA Marcoule, DTEC/SGCS/LGCI, BP 17171, 30207 Bagnols-sur-Cèze (France); Ode, D. [CEA Marcoule, DTEC/SGCS/LGCI, BP 17171, 30207 Bagnols-sur-Cèze (France); Puel, F. [Université Lyon 1, Villeurbanne (France); CNRS, UMR5007, Laboratoire d‘Automatique et de Génie des Procédés (LAGEP), CPE-Lyon, 43 bd du 11 Novembre 1918, 69100 Villeurbanne (France)

    2013-12-15

    Highlights: • Test easily usable without tools in a glove box. • The test minimizes the slurry volume necessary for this type of study. • The test characterizes the flow resistance in a porous medium in formation. • The test is performed at four pressure levels to determine the compressibility. • The technical design ensures reproducible flow resistance measurements. -- Abstract: Filterability and compressibility tests are often carried out at laboratory scale to obtain data required to scale up solid/liquid separation processes. Current technologies, applied with a constant pressure drop, enable specific resistance and cake formation rate measurement in accordance with a modified Darcy's law. The new test cell design described in this paper is easily usable without tools in a glove box and minimizes the slurry volume necessary for this type of study. This is an advantage for investigating toxic and hazardous products such as radioactive materials. Uranium oxalate precipitate slurries were used to test and validate this new cell. In order to reduce the test cell volume, a statistical approach was applied on 8 results obtained with cylindrical test cells of 1.8 cm and 3 cm in diameter. Wall effects can therefore be ignored despite the small filtration cell diameter, allowing tests to be performed with only about one-tenth of the slurry volume of a standard commercial cell. The significant reduction in the size of this experimental device does not alter the consistency of filtration data which may be used in the design of industrial equipment.

  12. New filterability and compressibility test cell design for nuclear products

    International Nuclear Information System (INIS)

    Féraud, J.P.; Bourcier, D.; Ode, D.; Puel, F.

    2013-01-01

    Highlights: • Test easily usable without tools in a glove box. • The test minimizes the slurry volume necessary for this type of study. • The test characterizes the flow resistance in a porous medium in formation. • The test is performed at four pressure levels to determine the compressibility. • The technical design ensures reproducible flow resistance measurements. -- Abstract: Filterability and compressibility tests are often carried out at laboratory scale to obtain data required to scale up solid/liquid separation processes. Current technologies, applied with a constant pressure drop, enable specific resistance and cake formation rate measurement in accordance with a modified Darcy's law. The new test cell design described in this paper is easily usable without tools in a glove box and minimizes the slurry volume necessary for this type of study. This is an advantage for investigating toxic and hazardous products such as radioactive materials. Uranium oxalate precipitate slurries were used to test and validate this new cell. In order to reduce the test cell volume, a statistical approach was applied on 8 results obtained with cylindrical test cells of 1.8 cm and 3 cm in diameter. Wall effects can therefore be ignored despite the small filtration cell diameter, allowing tests to be performed with only about one-tenth of the slurry volume of a standard commercial cell. The significant reduction in the size of this experimental device does not alter the consistency of filtration data which may be used in the design of industrial equipment

  13. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space

    Directory of Open Access Journals (Sweden)

    Shaeen Kalathil

    2015-11-01

    Full Text Available This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB using canonic signed digit (CSD coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.

  14. Performance and optimisation of trickling filters on eel farms

    NARCIS (Netherlands)

    Kamstra, A.; Heul, van der J.W.; Nijhof, M.

    1998-01-01

    The design of trickling filters used on commercial eel farms differs considerably with respect to dimensions, hydraulic and substrate loads and filter medium applied. In this paper, a model, developed for ammonium removal in a pilot-scale trickling filter, has been validated for a range of

  15. DNN Filter Bank Cepstral Coefficients for Spoofing Detection

    DEFF Research Database (Denmark)

    Yu, Hong; Tan, Zheng-Hua; Zhang, Yiming

    2017-01-01

    With the development of speech synthesis techniques, automatic speaker verification systems face the serious challenge of spoofing attack. In order to improve the reliability of speaker verification systems, we develop a new filter bank-based cepstral feature, deep neural network (DNN) filter bank...... cepstral coefficients, to distinguish between natural and spoofed speech. The DNN filter bank is automatically generated by training a filter bank neural network (FBNN) using natural and synthetic speech. By adding restrictions on the training rules, the learned weight matrix of FBNN is band limited...... and sorted by frequency, similar to the normal filter bank. Unlike the manually designed filter bank, the learned filter bank has different filter shapes in different channels, which can capture the differences between natural and synthetic speech more effectively. The experimental results on the ASVspoof...

  16. Ammonia transformation in a biotrickling air filter

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Nielsen, Marie Louise; Andersen, Mathias

    2007-01-01

    A simple, tubular biotrickling filter was designed for optimal removal of ammonia and odour in ventilation air from a pig house. The removal and transformation of ammonia was studied in detail by analysis and modelling of chemical gradients through the filter. Good correspondence between measurem...

  17. Engineering considerations in the use of artificial filter beds

    International Nuclear Information System (INIS)

    Richards, R.T.

    1978-01-01

    Artificial filter bed intakes utilize a prepared granular filter material to prevent entrance of debris and aquatic life into a water withdrawal facility. The relatively large quantities of water and the service reliability required for power plant cooling water systems present major engineering problems for the artificial filter concept, many of which have not been resolved. These problems include development of a suitable and stable filter medium; design of a reliable backwash system which is both effective and environmentally acceptable; meeting of all site-imposed restrictions relating to natural river turbidity, flooding characteristics, channel stability, and ice loads; and provision of the complex civil and mechanical engineering design inherent in such a system. Extensive model testing may be required for further engineering development of this system. The preliminary engineering for an artificial filter system is discussed in connection with a proposed 1.6-m 3 /s-capacity (25,000-gpm capacity) filter in the Columbia River

  18. Resonance Damping and Parameter Design Method for LCL-LC Filter Interfaced Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Li, Zipeng; Jiang, Aiting; Shen, Pan

    2016-01-01

    , this paper presents a systematic design method for the LCL-LC filtered grid-connected photovoltaic (PV) system. With this method, controller parameters and the active damping feedback coefficient are easily obtained by specifying the system stability and dynamic performance indices, and it is more convenient......-frequency harmonics attenuation ability, but the resonant problem affects the system stability remarkably. In this paper, active damping based on the capacitor voltage feedback is proposed using the concept of the equivalent virtual impedance in parallel with the capacitor. With the consideration of system delay...... to optimize the system performance according to the predefined satisfactory region. Finally, the simulation results are presented to validate the proposed design method and control scheme....

  19. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  20. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  1. Gaussian shaping filter for nuclear spectrometry

    International Nuclear Information System (INIS)

    Menezes, A.S.C. de.

    1980-01-01

    A theorical study of a gaussian shaping filter, using Pade approximation, for using in gamma spectroscopy is presented. This approximation has proved superior to the classical cascade RC integrators approximation in therms of signal-to-noise ratio and pulse simmetry. An experimental filter was designed, simulated in computer, constructed, and tested in the laboratory. (author) [pt

  2. Design of low noise class D amplifiers using an integrated filter

    International Nuclear Information System (INIS)

    Wang Haishi; Zhang Bo

    2012-01-01

    This paper investigates the noise sources in a single-ended class D amplifier (SECDA) and suggests corresponding ways to lower the noise. The total output noise could be expressed as a function of the gain and noises from different sources. According to the function, the bias voltage (V B ) is a primary noise source, especially for a SECDA with a large gain. A low noise SECDA is obtained by integrating a filter into the SECDA to lower the noise of the V B . The filter utilizes an active resister and an 80 pF capacitance to get a 3 Hz pole. A noise test and fast Fourier transform analysis show that the noise performance of this SECDA is the same as that of a SECDA with an external filter. (semiconductor integrated circuits)

  3. IMC-PID-fractional-order-filter controllers design for integer order systems.

    Science.gov (United States)

    Maâmar, Bettayeb; Rachid, Mansouri

    2014-09-01

    One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Argonne National Laboratory - West's approach to filter characterization

    International Nuclear Information System (INIS)

    Miller, T. A.

    1999-01-01

    Like other DOE facilities, ANL-W uses a variety of nuclear grade, industrial grade, or furnace-type particulate filters to control airborne radioactivity and hazardous contaminants in radiological containment structures or processes. As designed, these filters entrain and ultimately concentrate contaminants in the media. Toxic metal contaminants include cadmium, chromium, lead; and mercury present in sufficient concentrations to exhibit the hazardous waste characteristic of toxicity as defined in 40 CFR 261.24. Radionuclide contaminants deposited in the media may at times accumulate in sufficient quantity to classify the filter as transuranic or remote-handled waste. Upon their removal from the ventilation system, these particulate filters become wastes, which must be characterized to determine their hazardous and radioactive classifications. A well defined filter characterization process is essential for the proper/consistent waste characterization and minimization and for maintaining personnel radiological exposures as-low-as-reasonably-achievable (ALARA) (1,2). ANL-W has developed an approach to filter sampling and characterization to meet these needs. The ANL-W filter sampling and characterization process is designed to ensure representative sampling and/or process knowledge is utilized in characterizing the filters. The data obtained through sampling and/or process knowledge is used to show compliance with the Resource Conservation and Recovery Act (3) and Treatment/Storage/Disposal Facility Waste Acceptance Criteria. The ANL-W filter characterization involves the collection of process information, filter handling and sampling, sample analysis, data management filter characterization, and waste handling. Each element of the process is streamlined to ensure proper characterization while minimizing radiological exposure to maintenance workers, samplers, laboratory personnel, and waste handlers

  5. Speckle Reduction and Structure Enhancement by Multichannel Median Boosted Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Yang Zhi

    2004-01-01

    Full Text Available We propose a new approach to reduce speckle noise and enhance structures in speckle-corrupted images. It utilizes a median-anisotropic diffusion compound scheme. The median-filter-based reaction term acts as a guided energy source to boost the structures in the image being processed. In addition, it regularizes the diffusion equation to ensure the existence and uniqueness of a solution. We also introduce a decimation and back reconstruction scheme to further enhance the processing result. Before the iteration of the diffusion process, the image is decimated and a subpixel shifted image set is formed. This allows a multichannel parallel diffusion iteration, and more importantly, the speckle noise is broken into impulsive or salt-pepper noise, which is easy to remove by median filtering. The advantage of the proposed technique is clear when it is compared to other diffusion algorithms and the well-known adaptive weighted median filtering (AWMF scheme in both simulation and real medical ultrasound images.

  6. Investigations into the design of a filter system for PWR containment venting

    International Nuclear Information System (INIS)

    Dillmann, H.G.; Wilhelm, J.G.

    1991-01-01

    The reactors of power stations in the Federal Republic of Germany are being or have already been equipped with systems for containment venting under severe accident conditions. Two different offgas cleaning systems are available. One system, realizing a complete passive filtering concept, consists of a multistage metal fiber filter for coarse particulates and aerosol removal and an additional molecular sieve filter for gaseous iodine retention connected in series. The requirements made with respect to aerosol filtration includes among others the capability of retaining 60 kg of a recondensing aerosol with a 0.5 μm mean geometric mass diameter. BaSO 4 and SnO 2 were used as tracer aerosols in the experiments. All the decontamination factors were > 1,000. Vaporous iodine is removed on molecular sieve filters (zeolite filters) subsequent to airborne particulate filtration. As Ag-zeolites act as catalysts in the H 2 O 2 reaction and thus might give rise to a violent exothermal reaction, the catalytic effect was suppressed by substituting mixed doping for doping solely with silver. The removal efficiencies achieved with Ag-zeolites and zeolites with mixed doping in air-steam mixtures are indicated, and investigations of the catalytic behavior in air-steam-H 2 mixtures are described

  7. User Interaction with User-Adaptive Information Filters

    NARCIS (Netherlands)

    H. Cramer; V. Evers; M. van Someren; B. Wielinga; S. Besselink; L. Rutledge (Lloyd); N. Stash; L. Aroyo (Lora)

    2007-01-01

    htmlabstractUser-adaptive information filters can be a tool to achieve timely delivery of the right information to the right person, a feat critical in crisis management. This paper explores interaction issues that need to be taken into account when designing a user-adaptive information filter. Two

  8. Optimal Performance Simulation of a Metal Fiber Filter for Capturing Radioactive Aerosols

    International Nuclear Information System (INIS)

    Lee, Seung Uk; Lee, Chan Hyun; Park, Min Chan; Lee, Jaek Eun

    2016-01-01

    In this study, the metal fiber filter used for removing radioactive aerosol is systematically dissected and studied in order to figure out the optimal design which can be applied to the actual operation conditions in nuclear heating, ventilation and air conditioning (HVAC) systems for particle collection. In order to derive the optimal design for metal fiber HEPA filter, a numerical model is developed and its results are compared to experimental data to test reliability. Moreover, sensitivity analysis is performed using important parameters to determine which parameters have large influence on the filter performance. Using the model developed in this study, optimal design parameters for pleated metal fiber filters are derived which include fiber diameter less than 4 μm, solidity larger than 0.2, filter thickness larger than 1 mm, and face velocity lower than 5 cm/s. With these conditions, the metal filter qualified for the HEPA filter standard which specified 99.97% efficiency in the 0.3 μm particle size range.

  9. Active filter for the DESY III dipole circuit

    International Nuclear Information System (INIS)

    Bothe, W.

    1991-01-01

    The DESY 3 dipole circuit is now operated in a ramp mode cycle with 3.6 s repetition rate. Excitation is done by a 12-pulse thyristor converter, followed by a passive filter. The existing current control could be improved by addition of an active filter. The use of a more efficient passive filter reduces the size of the active filter and does not deteriorate the dynamic behavior. The design of the control loops and the results of the simulation are presented

  10. Model Adaptation for Prognostics in a Particle Filtering Framework

    Science.gov (United States)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  11. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device's operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  12. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad

    2017-11-03

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device\\'s operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  13. User interaction with user-adaptive information filters

    NARCIS (Netherlands)

    Cramer, H.S.M.; Evers, V.; Someren, van M.W.; Wielinga, B.J.; Besselink, S.; Rutledge, L.W.; Stash, N.; Aroyo, L.M.; Aykin, N.M.

    2007-01-01

    User-adaptive information filters can be a tool to achieve timely delivery of the right information to the right person, a feat critical in crisis management. This paper explores interaction issues that need to be taken into account when designing a user-adaptive information filter. Two case studies

  14. Imaging spectrometer using a liquid crystal tunable filter

    Science.gov (United States)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  15. Switching non-local vector median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  16. Convergence Performance of Adaptive Algorithms of L-Filters

    Directory of Open Access Journals (Sweden)

    Robert Hudec

    2003-01-01

    Full Text Available This paper deals with convergence parameters determination of adaptive algorithms, which are used in adaptive L-filters design. Firstly the stability of adaptation process, convergence rate or adaptation time, and behaviour of convergence curve belong among basic properties of adaptive algorithms. L-filters with variety of adaptive algorithms were used to their determination. Convergence performances finding of adaptive filters is important mainly for their hardware applications, where filtration in real time or adaptation of coefficient filter with low capacity of input data are required.

  17. Signal enhancement with variable span linear filters

    CERN Document Server

    Benesty, Jacob; Jensen, Jesper R

    2016-01-01

    This book introduces readers to the novel concept of variable span speech enhancement filters, and demonstrates how it can be used for effective noise reduction in various ways. Further, the book provides the accompanying Matlab code, allowing readers to easily implement the main ideas discussed. Variable span filters combine the ideas of optimal linear filters with those of subspace methods, as they involve the joint diagonalization of the correlation matrices of the desired signal and the noise. The book shows how some well-known filter designs, e.g. the minimum distortion, maximum signal-to-noise ratio, Wiener, and tradeoff filters (including their new generalizations) can be obtained using the variable span filter framework. It then illustrates how the variable span filters can be applied in various contexts, namely in single-channel STFT-based enhancement, in multichannel enhancement in both the time and STFT domains, and, lastly, in time-domain binaural enhancement. In these contexts, the properties of ...

  18. LC Filter Design for Wide Band Gap Device Based Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Vadstrup, Casper; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    the LC filter with a higher cut off frequency and without damping resistors. The selection of inductance and capacitance is chosen based on capacitor voltage ripple and current ripple. The filter adds a base load to the inverter, which increases the inverter losses. It is shown how the modulation index...

  19. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  20. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study

    Science.gov (United States)

    Marini, Francesco; Demeter, Elise; Roberts, Kenneth C.; Chelazzi, Leonardo

    2016-01-01

    Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction

  1. ATLAS TDAQ/DCS Event filter : Supervision Requirements

    CERN Document Server

    Bee, C P; Meessen, C; Qian, Z; Touchard, F; Green, P; Pinfold, J L; Wheeler, S; Negri, A; Scannicchio, D A; Vercesi, V

    2002-01-01

    The second iteration of the Software Development Process of the ATLAS Event Filter has been launched. A summary of the design phase of the first iteration is given in the introduction. The document gives constraints, use cases, functional and non-functional requirements for the Supervision sub-system of the Event Filter.

  2. Bayesian signal processing classical, modern, and particle filtering methods

    CERN Document Server

    Candy, James V

    2016-01-01

    This book aims to give readers a unified Bayesian treatment starting from the basics (Baye's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on "Sequential Bayesian Detection," a new section on "Ensemble Kalman Filters" as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to "fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical "sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed an...

  3. A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design

    International Nuclear Information System (INIS)

    Tromp, R.M.; Hannon, J.B.; Ellis, A.W.; Wan, W.; Berghaus, A.; Schaff, O.

    2010-01-01

    We describe a new design for an aberration-corrected low energy electron microscope (LEEM) and photo electron emission microscope (PEEM), equipped with an in-line electron energy filter. The chromatic and spherical aberrations of the objective lens are corrected with an electrostatic electron mirror that provides independent control over the chromatic and spherical aberration coefficients C c and C 3 , as well as the mirror focal length, to match and correct the aberrations of the objective lens. For LEEM (PEEM) the theoretical resolution is calculated to be ∼1.5 nm (∼4 nm). Unlike previous designs, this instrument makes use of two magnetic prism arrays to guide the electron beam from the sample to the electron mirror, removing chromatic dispersion in front of the mirror by symmetry. The aberration correction optics was retrofitted to an uncorrected instrument with a base resolution of 4.1 nm in LEEM. Initial results in LEEM show an improvement in resolution to ∼2 nm.

  4. Analysis and Design of a High-Order Discrete-Time Passive IIR Low-Pass Filter

    NARCIS (Netherlands)

    Tohidian, M.; Madadi, I.; Staszewski, R.B.

    2014-01-01

    In this paper, we propose a discrete-time IIR low-pass filter that achieves a high-order of filtering through a charge-sharing rotation. Its sampling rate is then multiplied through pipelining. The first stage of the filter can operate in either a voltage-sampling or charge-sampling mode. It uses

  5. 75 FR 54902 - Statutorily Mandated Designation of Difficult Development Areas and Qualified Census Tracts for 2011

    Science.gov (United States)

    2010-09-09

    ... ranking ratio, as described above, was identical (to four decimal places) to the last area selected, and... FURTHER INFORMATION CONTACT: For questions on how areas are designated and on geographic definitions... metropolitan area definitions incorporating 2000 Census data in OMB Bulletin No. 03- 04 on June 6, 2003, and...

  6. Optimization-based particle filter for state and parameter estimation

    Institute of Scientific and Technical Information of China (English)

    Li Fu; Qi Fei; Shi Guangming; Zhang Li

    2009-01-01

    In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.

  7. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  8. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  9. Adaptabilidad de la Clasificación Decimal Dewey para la organización de contenidos: de los estantes a la Web

    OpenAIRE

    Moyano-Grimaldo, Wilmer Arturo

    2017-01-01

    Resumen Desde el año 1876, cuando Melvil Dewey publicó la primera edición de su sistema de clasificación bibliográfico, este ha ido evolucionando como un sistema de clasificación muy firme y adaptable que permite organizar de manera práctica el conocimiento, incluso en la Internet. El presente artículo, es derivado de una investigación doctoral desarrollada durante 5 años acerca de diferentes aspectos semánticos, epistemológicos, históricos y tecnológicos de la Clasificación Decimal Dewey, in...

  10. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  11. Research and Design on Trigger System Based on Acoustic Delay Correlation Filtering

    Directory of Open Access Journals (Sweden)

    Zhiyong Lei

    2014-01-01

    Full Text Available In the exterior trajectory test, there usually needs a muzzle or a gun muzzle trigger system to be used as start signal for other measuring device, the customary trigger systems include off- target, infrared and acoustic detection system. But inherent echo reflection of the acoustic detection system makes the original signal of sound trigger submerged in various echo interference for bursts and shooting in a closed room, so that it can’t produce accurate trigger. In order to solve this defect, this paper analyzed the mathematical model based on acoustic delay correlation filtering in detail, then put forward the constraint condition with minimum path for delay correlation filtering. In this constraint condition, delay correlation filtering can do de-noising operation accurately. In order to verify accuracy and actual performance of the model, a MEMS sound sensor was used to implement mathematical model onto project, experimental results show that this system can filter out the every path sound bounce echoes of muzzle shock wave signal and produce the desired trigger signal accurately.

  12. In-place HEPA filter penetration test

    International Nuclear Information System (INIS)

    Bergman, W.; Wilson, K.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical

  13. A Novel SFG Structure for C-T Highpass Filters

    DEFF Research Database (Denmark)

    Nielsen, Ivan Riis

    1992-01-01

    This paper presents the design of a sixth order elliptic highpass filter having a passband frequency of 3.0KHz, a passband ripple of 1.0dB and a stopband attenuation of 50dB. The filter is based on a novel integrator based SFG describing a passive prototype filter; this SFG is simulated using...

  14. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    Science.gov (United States)

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be

  15. Design of a Narrow Bandwidth Bandpass Filter Using Compact Spiral Resonator with Chirality

    Directory of Open Access Journals (Sweden)

    Weiping Li

    2016-01-01

    Full Text Available In this article, a compact narrow-bandpass filter with high selectivity and improved rejection level is presented. For miniaturization, a pair of double negative (DNG cells consisting of quasi-planar chiral resonators are cascaded and electrically loaded to a microstrip transmission line; short ended stubs are introduced to expand upper rejection band. The structure is analyzed using equivalent circuit models and simulated based on EM simulation software. For validation, the proposed filter is fabricated and measured. The measured results are in good agreement with the simulated ones. By comparing to other filters in the references, it is shown that the proposed filter has the advantage of skirt selectivity and compact size, so it can be integrated more conveniently in modern wireless communication systems and microwave planar circuits.

  16. Filters involving derivatives with application to reconstruction from scanned halftone images

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Jensen, Kim S.

    1995-01-01

    This paper presents a method for designing finite impulse response (FIR) filters for samples of a 2-D signal, e.g., an image, and its gradient. The filters, which are called blended filters, are decomposable in three filters, each separable in 1-D filters on subsets of the data set. Optimality...... in the minimum mean square error sense (MMSE) of blended filtering is shown for signals with separable autocorrelation function. Relations between correlation functions for signals and their gradients are derived. Blended filters may be composed from FIR Wiener filters using these relations. Simple blended...... is achievable with blended filters...

  17. An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking

    Science.gov (United States)

    Raihan A. V, Dilshad; Chakravorty, Suman

    2018-03-01

    Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.

  18. An active trap filter for high-power voltage source converters

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    This paper proposes a power electronic based device to actively trap the switching current ripples for highpower converters. Control principle and system design of the active trap filter are discussed first. Comparisons of the active trap filter with LCL and LLCL filters are then carried out...

  19. Alexander fractional differential window filter for ECG denoising.

    Science.gov (United States)

    Verma, Atul Kumar; Saini, Indu; Saini, Barjinder Singh

    2018-06-01

    The electrocardiogram (ECG) non-invasively monitors the electrical activities of the heart. During the process of recording and transmission, ECG signals are often corrupted by various types of noises. Minimizations of these noises facilitate accurate detection of various anomalies. In the present paper, Alexander fractional differential window (AFDW) filter is proposed for ECG signal denoising. The designed filter is based on the concept of generalized Alexander polynomial and the R-L differential equation of fractional calculus. This concept is utilized to formulate a window that acts as a forward filter. Thereafter, the backward filter is constructed by reversing the coefficients of the forward filter. The proposed AFDW filter is then obtained by averaging of the forward and backward filter coefficients. The performance of the designed AFDW filter is validated by adding the various type of noise to the original ECG signal obtained from MIT-BIH arrhythmia database. The two non-diagnostic measure, i.e., SNR, MSE, and one diagnostic measure, i.e., wavelet energy based diagnostic distortion (WEDD) have been employed for the quantitative evaluation of the designed filter. Extensive experimentations on all the 48-records of MIT-BIH arrhythmia database resulted in average SNR of 22.014 ± 3.806365, 14.703 ± 3.790275, 13.3183 ± 3.748230; average MSE of 0.001458 ± 0.00028, 0.0078 ± 0.000319, 0.01061 ± 0.000472; and average WEDD value of 0.020169 ± 0.01306, 0.1207 ± 0.061272, 0.1432 ± 0.073588, for ECG signal contaminated by the power line, random, and the white Gaussian noise respectively. A new metric named as morphological power preservation measure (MPPM) is also proposed that account for the power preservance (as indicated by PSD plots) and the QRS morphology. The proposed AFDW filter retained much of the original (clean) signal power without any significant morphological distortion as validated by MPPM measure that were 0

  20. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    Science.gov (United States)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.