WorldWideScience

Sample records for decay heat experiments

  1. Decay heat experiment and validation of calculation code systems for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of {+-}10%. (author)

  2. Decay heat experiment and validation of calculation code systems for fusion reactor

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki

    1999-10-01

    Although accurate estimation of decay heat value is essential for safety analyses of fusion reactors against loss of coolant accidents and so on, no experimental work has been devoted to validating the estimation. Hence, a decay heat measurement experiment was performed as a task (T-339) of ITER/EDA. A new detector, the Whole Energy Absorption Spectrometer (WEAS), was developed for accurate and efficient measurements of decay heat. Decay heat produced in the thirty-two sample materials which were irradiated by 14-MeV neutrons at FNS/JAERI were measured with WEAS for a wide cooling time period from 1 min to 400 days. The data presently obtained were the first experimental decay heat data in the field of fusion. Validity of decay heat calculation codes of ACT4 and CINAC-V4, activation cross section libraries of FENDL/A-2.0 and JENDL Activation File, and decay data was investigated through analyses of the experiment. As a result, several points that should be modified were found in the codes and data. After solving the problems, it was demonstrated that decay heat valued calculated for most of samples were in good agreement with the experimental data. Especially for stainless steel 316 and copper, which were important materials for ITER, decay heat could be predicted with accuracy of ±10%. (author)

  3. RELAP5 and SIMMER-III code assessment on CIRCE decay heat removal experiments

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Polidori, Massimiliano; Meloni, Paride; Tarantino, Mariano; Di Piazza, Ivan

    2015-01-01

    Highlights: • The CIRCE DHR experiments simulate LOHS+LOF transients in LFR systems. • Decay heat removal by natural circulation through immersed heat exchangers is investigated. • The RELAP5 simulation of DHR experiments is presented. • The SIMMER-III simulation of DHR experiments is presented. • The focus is on the transition from forced to natural convection and stratification in a large pool. - Abstract: In the frame of THINS Project of the 7th Framework EU Program on Nuclear Fission Safety, some experiments were carried out on the large scale LBE-cooled CIRCE facility at the ENEA/Brasimone Research Center to investigate relevant safety aspects associated with the removal of decay heat through heat exchangers (HXs) immersed in the primary circuit of a pool-type lead fast reactor (LFR), under loss of heat sink (LOHS) accidental conditions. The start-up and operation of this decay heat removal (DHR) system relies on natural convection on the primary side and then might be affected by coolant mixing and temperature stratification phenomena occurring in the LBE pool. The main objectives of the CIRCE experimental campaign were to verify the behavior of the DHR system under representative accidental conditions and provide a valuable database for the assessment of both CFD and system codes. The reproduced accidental conditions refer to a station blackout scenario, namely a protected LOHS and loss of flow (LOF) transient. In this paper the results of 1D RELAP5 and 2D SIMMER-III simulations are compared with the experimental data of more representative DHR transients T-4 and T-5 in order to verify the capability of these codes to reproduce both forced and natural convection conditions observed in the primary circuit and the right operation of the DHR system for decay heat removal. Both codes are able to reproduce the stationary conditions and with some uncertainties the transition to natural convection conditions until the end of the transient phase. The trend

  4. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  5. Design of an experiment to measure the decay heat of an irradiated PWR fuel: MERCI experiment; Conception d'une experience de mesure de la puissance residuelle d'un combustible irradie: l'experience MERCI

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, St

    2002-11-01

    After a reactor shutdown, a significant quantity of energy known as 'decay heat' continues to be generated from the irradiated fuel. This heat source is due to the disintegration energy of fission products and actinides. Decay heat determination of an irradiated fuel is of the utmost importance for safety analysis as the design cooling systems, spent fuel transport, or handling. Furthermore, the uncertainty on decay heat has a straight economic impact. The unloading fuel spent time is an example. The purpose of MERCI experiment (irradiated fuel decay heat measurement) consists in qualifying computer codes, particularly the DARWIN code system developed by the CEA in relation to industrial organizations, as EDF, FRAMATOME and COGEMA. To achieve this goal, a UOX fuel is irradiated in the vicinity of the OSIRIS research reactor, and then the decay heat is measured by using a calorimeter. The objective is to reduce the decay heat uncertainties from 8% to 3 or 4% at short cooling times. A full simulation on computer of the MERCI experiment has been achieved: fuel irradiation analysis is performed using transport code TRIPOLI4 and evolution code DARWIN/PEPIN2, and heat transfer with CASTEM2000 code. The results obtained are used for the design of this experiment. Moreover, we propose a calibration procedure decreasing the influence of uncertainty measurements and an interpretation method of the experimental results and evaluation of associated uncertainties. (author)

  6. Experience with after-shutdown decay heat removal - BWRs and PWRs

    International Nuclear Information System (INIS)

    Haugh, J.J.; Mollerus, F.J.; Booth, H.R.

    1992-01-01

    Boiling-water reactors (BWRs) and pressurized-water reactors (PWRs) make use of residual heat removal systems (RHRSs) during reactor shutdown. RHRS operational events involving an actual loss or significant degradation of an RHRS during shutdown heat removal are often prompted or aggravated by complex, changing plant conditions and by concurrent maintenance operations. Events involving loss of coolant inventory, loss of decay heat removal capability, or inadvertent pressurization while in cold shutdown have occurred. Because fewer automatic protective fetures are operative during cold shutdowns, both prevention and termination of events depend heavily on operator action. The preservation of RHRS cooling should be an important priority in all shutdown operations, particularly where there is substantial decay heat and a reduced water inventory. 13 refs., 3 figs., 4 tabs

  7. Design of an experiment to measure the decay heat of an irradiated PWR fuel: MERCI experiment; Conception d'une experience de mesure de la puissance residuelle d'un combustible irradie: l'experience MERCI

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, St

    2002-11-01

    After a reactor shutdown, a significant quantity of energy known as 'decay heat' continues to be generated from the irradiated fuel. This heat source is due to the disintegration energy of fission products and actinides. Decay heat determination of an irradiated fuel is of the utmost importance for safety analysis as the design cooling systems, spent fuel transport, or handling. Furthermore, the uncertainty on decay heat has a straight economic impact. The unloading fuel spent time is an example. The purpose of MERCI experiment (irradiated fuel decay heat measurement) consists in qualifying computer codes, particularly the DARWIN code system developed by the CEA in relation to industrial organizations, as EDF, FRAMATOME and COGEMA. To achieve this goal, a UOX fuel is irradiated in the vicinity of the OSIRIS research reactor, and then the decay heat is measured by using a calorimeter. The objective is to reduce the decay heat uncertainties from 8% to 3 or 4% at short cooling times. A full simulation on computer of the MERCI experiment has been achieved: fuel irradiation analysis is performed using transport code TRIPOLI4 and evolution code DARWIN/PEPIN2, and heat transfer with CASTEM2000 code. The results obtained are used for the design of this experiment. Moreover, we propose a calibration procedure decreasing the influence of uncertainty measurements and an interpretation method of the experimental results and evaluation of associated uncertainties. (author)

  8. Application of least-squares method to decay heat evaluation

    International Nuclear Information System (INIS)

    Schmittroth, F.; Schenter, R.E.

    1976-01-01

    Generalized least-squares methods are applied to decay-heat experiments and summation calculations to arrive at evaluated values and uncertainties for the fission-product decay-heat from the thermal fission of 235 U. Emphasis is placed on a proper treatment of both statistical and correlated uncertainties in the least-squares method

  9. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  10. Development of limiting decay heat values

    International Nuclear Information System (INIS)

    Khotylev, V.A.; Thompson, J.W.; Gibb, R.A.

    1999-01-01

    A number of tools are used in the assessment of decay heat during an outage of the CANDU-6. Currently, the technical basis for all of these tools is 'CANDU Channel Decay Power', Reference 1. The methods used in that document were limited to channel decay powers. However, for most outage support analysis, decay heat limits are based on bundle heats. Since the production of that document in 1977, new versions of codes, and updates of general-purpose and CANDU-specific libraries have become available. These tools and libraries have both a more formal technical basis than Reference 1, and also a more formal validation base. Using these tools it is now possible to derive decay heat with more specific input parameters, such as fuel composition, heat per unit of fuel, and irradiation history, and to assign systematically derived uncertainty allowances to such decay heat values. In particular, we sought to examine a broad range of likely bundle histories, and thus establish a set of limiting bundle decay beat values, that could serve as a bounding envelope for use in Nuclear Safety Analysis. (author)

  11. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  12. Material composition and nuclear data libraries' influence on nickel-chromium alloys activation evaluation: a comparison with decay heat experiments

    CERN Document Server

    Cepraga, D G

    2000-01-01

    The paper presents the activation analyses on Inconel-600 nickel-chromium alloy. Three activation data libraries, namely the EAF-4.1, the EAF-97 and the FENDL/A-2, and the FENDL/D-2 decay data library, have been used to perform the calculation with the European activation code ANITA-4/M. The neutron flux distribution into the material samples was provided by JAERI as results of 3D Monte-Carlo MCNP transport code experiment simulation. A comparison with integral decay heat measurement performed at the Fusion Neutronics Source (FNS), JAERI, Tokai, Japan, is used to validate the computational approach. The calculation results are given and discussed. The impact of the material composition, including impurities, on the decay heat of samples irradiated in fusion-like neutron spectra is assessed and discussed. The discrepancies calculations-experiments are within the experimental errors, that is between 6% and 10%, except for the short cooling times (less than 40 min after the end of irradiation). To improve calcul...

  13. Decay heat uncertainty quantification of MYRRHA

    Directory of Open Access Journals (Sweden)

    Fiorito Luca

    2017-01-01

    Full Text Available MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.

  14. Study on diverse passive decay heat removal approach

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    One of the most important principles for nuclear safety is the decay heat removal in accidents. Passive decay heat removal systems are extremely helpful to enhance the safety. In currently design of many advanced nuclear reactors, kinds of passive systems are proposed or developed, such as the passive residual heat removal system, passive injection system, passive containment cooling system. These systems provide entire passive heat removal paths from core to ultimate heat sink. Various kinds of passive systems for decay heat removal are summarized; their common features or differences on heat removal paths and design principle are analyzed. It is found that, these passive decay heat removal paths are similarly common on and connected by several basic heat transfer modes and steps. By the combinations or connections of basic modes and steps, new passive decay heat removal approach or diverse system can be proposed. (authors)

  15. Study on diverse passive decay heat removal approach and principle

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    Decay heat removal in post-accident is one of the most important aspects concerned in the reactor safety analysis. Passive decay heat removal approach is used to enhance nuclear safety. In advanced reactors, decay heat is removed by multiple passive heat removal paths through core to ultimate heat sink by passive residual heat removal system, passive injection system, passive containment cooling system and so on. Various passive decay heat removal approaches are summarized in this paper, the common features and differences of their heat removal paths are analyzed, and the design principle of passive systems for decay heat removal is discussed. It is found that. these decay heat removal paths is combined by some basic heat transfer processes, by the combination of these basic processes, diverse passive decay heat removal approach or system design scheme can be drawn. (authors)

  16. Calculational tracking of decay heat for FFTF plant

    International Nuclear Information System (INIS)

    Cillan, T.F.; Carter, L.L.

    1985-01-01

    A detailed calculational monitoring of decay heat for each assembly on the Fast Flux Test Facility (FFTF) plant is obtained by utilizing a decay heat data base and user friendly computer programs to access the data base. Output includes the time-dependent decay heat for an assembly or a specific set of assemblies, and optional information regarding the curies of activated nuclides along the axial length of the assembly. The decay heat data base is updated periodically, usually at the end of each irradiation cycle. 1 ref., 2 figs

  17. Jeff-3 and decay heat calculations

    International Nuclear Information System (INIS)

    Huynh, T.D.

    2009-07-01

    The decay heat power, i.e. the residual heat generated by irradiated nuclear fuels, is a significant parameter to define the power of a reactor. A good evaluation of this power depends both on the accuracy of the processing algorithm and on the quality of the physical data used. This report describes the steps carried out, ranging from tests of consistency to the validation by calculations - experiments comparisons, allowing to choose the validated nuclear data. We have compared the Jeff-3 evaluation (only the file 8 containing decay data) with the Jeff-2.2 and Endf/B7.O evaluations through the computation of residual power. It appears that the residual powers computed by the DARWIN code from Jeff-3.1.1 data for short times agree more with experimental data. There is a slight discrepancy (∼ 2%) between Jeff-3.1 and Jeff-3.1.1 on the total residual power computed for PWR UO 2 fuel. For long decay times the discrepancy is more significant between Jeff-3.1.1 and Jeff-2 on the computation of detailed residual powers because some prevailing isotopes have more formation channels taken into account in Jeff-3 and Jeff-3.1.1 than in Jeff-2

  18. Study on thermalhydraulics of natural circulation decay heat removal in FBR. Experiment with water of typical reactor trip in the demonstration FBR

    International Nuclear Information System (INIS)

    Koga, Tomonari; Murakami, Takahiro; Eguchi, Yuzuru

    2010-01-01

    Intending to enhance safety and to reduce costs, an FBR plant is being developed in Japan. In relies solely on natural circulation of the primary cooling loop to remove a decay heat of the core after reactor trips. A water test was carried out to advance the development. The test used a 1/10 reduced scale model simulating the core and cooling systems. The experiments simulated representative accidents from steady state to decay heat removal through reactor trip and clarified thermal-hydraulic issues on the thermal circulation performance. Some modifications of the system design were proposed for solving serious problems of natural circulation. An improved design complying with the suggestions will make it possible for natural circulation of the cooling systems to remove the decay heat of the core without causing and unstable or unpredictable change. (author)

  19. Decay heat uncertainty quantification of MYRRHA

    OpenAIRE

    Fiorito Luca; Buss Oliver; Hoefer Axel; Stankovskiy Alexey; Eynde Gert Van den

    2017-01-01

    MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS) currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay hea...

  20. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  1. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  2. Strategy of experimental studies in PNC on natural convection decay heat removal

    International Nuclear Information System (INIS)

    Ieda, Y.; Kamide, H.; Ohshima, H.; Sugawara, S.; Ninokata, H.

    1993-01-01

    Experimental studies have been and are being carried out in PNC to establish the design and safety evaluation methods and the design and safety evaluation guide lines for decay heat removal by natural convection. A strategy of the experimental studies in PNC is described in this paper. The sphere of studies in PNC is to develop the evaluation methods to be available to DRACS as well as PRACS and IRACS for the plant where decay heat is removed by natural convection in some cases of loss of station service power. Similarity parameters related to natural convection are derived from the governing equations. The roles of both sodium and water experiments are defined in consideration of the importance of the similarity parameters and characteristics of scale model experiments. The experimental studies in PNC are reviewed. On the basis of the experimental results, recommended evaluation methods are shown for decay heat removal feature by natural convection. Future experimental works are also proposed. (author)

  3. Beta-decay and decay heat. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nicols, A.L.

    2006-01-01

    Experts on decay data and decay heat calculations participated in a Consultants' Meeting organized at IAEA Headquarters on 12-14 December 2005. Debate focused on the validation of decay heat calculations as a function of cooling time for fuel irradiated in power reactors through comparisons with experimental benchmark data. Both the current understanding and quantification of mean beta and gamma decay energies were reviewed with respect to measurements and the Gross Theory of Beta Decay. Particular emphasis was placed on the known development of total absorption gamma-ray spectroscopy (TAGS), and detailed discussions took place to formulate the measurement requirements for mean beta and gamma data of individual radionuclides. This meeting was organized in cooperation with the OECD/NEA Working Party for Evaluation and Cooperation (WPEC). Proposals and recommendations were made to resolve particular difficulties, and an initial list of fission products was produced for TAGS studies. The discussions, conclusions and recommendations of the meeting are briefly described in this report. (author)

  4. Reduction of weighing errors caused by tritium decay heating

    International Nuclear Information System (INIS)

    Shaw, J.F.

    1978-01-01

    The deuterium-tritium source gas mixture for laser targets is formulated by weight. Experiments show that the maximum weighing error caused by tritium decay heating is 0.2% for a 104-cm 3 mix vessel. Air cooling the vessel reduces the weighing error by 90%

  5. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  6. An application program for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Pham, Ngoc Son; Katakura, Jun-ichi

    2007-10-01

    The precise knowledge of decay heat is one of the most important factors in safety design and operation of nuclear power facilities. Furthermore, decay heat data also play an important role in design of fuel discharges, fuel storage and transport flasks, and in spent fuel management and processing. In this study, a new application program, called DHP (Decay Heat Power program), has been developed for exact decay heat summation calculations, uncertainty analysis, and for determination of the individual contribution of each fission product. The analytical methods were applied in the program without any simplification or approximation, in which all of linear and non-linear decay chains, and 12 decay modes, including ground state and meta-stable states, are automatically identified, and processed by using a decay data library and a fission yield data file, both in ENDF/B-VI format. The window interface of the program is designed with optional properties which is very easy for users to run the code. (author)

  7. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  8. Integral decay-heat measurements and comparisons to ENDF/B--IV and V

    International Nuclear Information System (INIS)

    England, T.R.; Schenter, R.E.; Schmittroth, F.

    Results from recent integral decay-power experiments are presented and compared with summation calculations. The experiments include the decay power following thermal fission of 233 U, 235 U, and 239 Pu. The summation calculations use ENDF/B-IV decay data and yields from Versions IV and V. Limited comparisons of experimental β and γ spectra with summation calculations using ENDF/B-IV are included. Generalized least-squares methods are applied to the recent 235 U and 239 Pu decay-power experiments and summation calculations to arrive at evaluated values and uncertainties. Results for 235 U imply uncertainties less than 2% (1 sigma) for the ''infinite'' exposure case for all cooling times greater than 10 seconds. The uncertainties for 239 Pu are larger. Accurate analytical representations of the decay power are presented for 235 , 238 U, and 239 Pu for use in light-water reactors and as the nominal values in the new ANS 5.1 Draft Standard (1978). Comparisons of the nominal values with ENDF/B-IV and the 1973 ANS Draft Standard in current use are included. Gas content, important to decay-heat experiments, and absorption effects on decay power are reviewed. 37 figures, 8 tables

  9. Overview report of RAMONA-NEPTUN program on passive decay heat removal

    International Nuclear Information System (INIS)

    Weinberg, D.; Rust, K.; Hoffmann, H.

    1996-03-01

    The design of the advanced sodium-cooled European Fast Reactor provides a safety graded decay heat removal concept which ensures the coolability of the primary system by natural convection when forced cooling is lost. The findings of the RAMONA and NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The operation of the decay heat exchangers being installed in the upper plenum causes the formation of a thermal stratification associated with a pronounced temperature gradient. The vertical extent of the stratification and the qualitity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. A delayed startup time of the decay heat exchangers leads only to a slight increase of the temperatures in the upper plenum. A complete failure of half of the decay heat exchangers causes a higher temperature level in the primary system, but does not alter the global temperature distribution. The transient development of the temperatures is faster going on in a three-loop model than in a four-loop model due to the lower amount of heat stored in the compacter primary vessel. If no coolant reaches the core inlet side via the intermediate heat exchangers, the core remains coolable. In this case, cold water of the upper plenum penetrates into the subassemblies (thermosyphon effects) and the interwrapper spaces existing in the NEPTUN core. The core coolability from above is feasible without any difficulty though the temperatures increase to a minor degree at the top end of the core. The thermal hydraulic computer code FLUTAN was applied for the 3D numerical simulation of the majority of the steady state RAMONA and NEPTUN tests as well as for selected transient RAMONA tests. (orig./HP) [de

  10. Current status of decay heat measurements, evaluations, and needs

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1986-01-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs

  11. Advances in technologies for decay heat removal

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Berkovich, V.; Bianchi, A.; Chen B.; Meseth, J.; Vecchiarelli, J.; Vidard, M.

    1999-01-01

    The various decay heat removal concepts that have been used for the evolutionary water reactor plant designs developed worldwide are examined and common features identified. Although interesting new features of the 'classical' plants are mentioned, the emphasis is on passive core and containment decay heat removal systems. The various systems are classified according to the function they have to accomplish; they often share common characteristics and similar equipment. (author)

  12. Development of whole energy absorption spectrometer for decay heat measurement on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    To measure decay heat on fusion reactor materials irradiated by D-T neutrons, a Whole Energy Absorption Spectrometer (WEAS) consisting of a pair of large BGO (bismuth-germanate) scintillators was developed. Feasibility of decay heat measurement with WEAS for various materials and for a wide range of half-lives (seconds - years) was demonstrated by experiments at FNS. Features of WEAS, such as high sensitivity, radioactivity identification, and reasonably low experimental uncertainty of {approx} 10 %, were found. (author)

  13. Status of the Japanese decay heat standard

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1992-01-01

    Fission product decay heat power plays an important role in the safety evaluation of nuclear power plants, especially for the analysis of hypothetical reactor accident scenarios. The ANS-5.1 decay heat standard for safety evaluation issued in 1979 has been used widely, even in Japan. Since the issuance of the standard, several improvements have been made to measurements and summation calculations. Summation calculations, in particular, have improved because of the adoption of theoretically calculated decay energies for nuclides with incomplete decay data. Taking into consideration those improvements, the Atomic Energy Society of Japan (AESJ) organized a research committee on a standard for decay heat power in nuclear reactors in 1987. The committee issued its recommendation after more than 2 yr discussion. After the AESJ recommendation, the Nuclear Safety Commission of Japan also began to discuss whether the recommendation should be included in its regulatory guide. The commission concluded in 1992 that the recommendation should be approved for licensing analysis of reactors if three times the uncertainties attached to the recommendation are included in the analysis. The AESJ recommendation may now be used for the safety evaluation of reactors in Japan in addition to the standards already used, which include ANS-5.1 (1973), General Electric Corporation (GE) curve, and ANS-5.1 (1979)

  14. Analysis of decay heat removal by natural convection in PFBR

    International Nuclear Information System (INIS)

    Kasinathan, N.; Vaidyanathan, G.; Chetal, S.C.; Bhoje, S.B.

    1993-01-01

    PFBR is a 500 MWe, 1200 MWt pool type LMFBR. In order to assure reliable decay heat removal, four totally independent Safety Grade Decay Heat Removal Systems (SGDHRS) which removes heat directly from the hot pool, is provided. Each of the SGDHRS comprises of a hot pool dipped decay heat exchanger (DHX), a sodium - air heat exchanger (AHX) at a suitable elevation and associated piping and circuits. This paper brings out the step by step approach that have been taken to decide on the preliminary sizing of the SGDHRS components, and static and transient analysis to assess the adequacy of the Decay Heat Removal capacity of the SGDHRS during the worst of the foreseen design basis conditions. The maximum values the important safety related temperatures viz., clad hotspot, hot pool top surface, reactor inlet, fuel subassembly outlets etc., would reach, can be obtained only through a comprehensive transient analysis. In order to get quick and reasonably meaningful results, one dimensional thermal-hydraulics models for the core, hot and cold pools, IHX, DHX, AHX and various pipings were developed and a code DHDYN formulated. With this a total power failure situation followed by initiations of DHR half an hour later was studied and the results revealed the following: (i) clad hotspot temperature in the in-vessel stored spent fuel subassemblies could be held below 800 deg. C only if primary sodium flow through these subassemblies are increased up to three times the originally allocated flow in the design, (ii) hotpool top zone temperature reaches 572 deg. C, (iii) reactor inlet temperature reaches 482 deg. C, (iv) the hot pool top zone temperature cools down to 450 deg. C in about 25 h. Thus these results satisfactorily established the adequacy of the sizing and the capability of the SGDHRS. DHDYN code is also used to study the RAMONA water experiments conducted in Germany. Initial results available has brought out the conservative nature of the DHDYN predictions as compared

  15. Application study of the heat pipe to the passive decay heat removal system of the modular HTR

    International Nuclear Information System (INIS)

    Ohashi, K.; Okamoto, F.; Hayakawa, H.; Hayashi, T.

    2001-01-01

    To investigate the applicability of the heat pipe to the decay hat removal (DHR) system of the modular HTRs, preliminary study of the Heat Pipe DHR System was performed. The results show that the Heat Pipe DHR System is applicable to the modular HTRs and its heat removal capability is sufficient. Especially by applying the variable conductance heat pipe, the possibility of a fully passive DHR system with lower heat loss during normal operation is suggested. The experiments to obtain the fundamental characteristics data of the variable conductance heat pipe were carried out. The experimental results show very clear features of self-control characteristics. The experimental results and the experimental analysis results are also shown. (author)

  16. Contribution of short-lived nuclides to decay heat

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1987-01-01

    Comments are made on the calculation of decay heat, centering on evaluation of average decay energy. It is difficult to obtain sufficiently useful decay diagrams of short lived nucleides. High-energy levels are often missing in inferior decay diagrams, leading to an overestimation of the intensity of beta-rays at low-energy levels. Such an overestimation or underestimation due to the inferiority of a decay diagram is referred to as pandemonium effect. The pandemonium effect can be assessed by means of the ratio of the measured energy of the highest level of the daughter nuclide to the Q β -value of the beta-decay. When a satisfactory decay diagram cannot be obtained, the average decay energy has to be estimated by theoretical calculation. The gross theory for beta-decay proposed by Yamada and Takahashi is employed for the calculation. To carry out the calculation according to this theory, it is required to determine the value for the parameter Q 00 , the lowest energy of the daughter nuclide that meets the selection rule for beta-decay. Currently, Q 00 to be used for this purpose is estimated from data on the energy of the lowest level found in a decay diagram, even if it is inferior. Some examples of calculation of decay heat using the average beta- or gamma-ray energy are shown and compared with measurements. (author)

  17. Consistency among integral measurements of aggregate decay heat power

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H.; Sagisaka, M.; Oyamatsu, K.; Kukita, Y. [Nagoya Univ. (Japan)

    1998-03-01

    Persisting discrepancies between summation calculations and integral measurements force us to assume large uncertainties in the recommended decay heat power. In this paper, we develop a hybrid method to calculate the decay heat power of a fissioning system from those of different fissioning systems. Then, this method is applied to examine consistency among measured decay heat powers of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U and {sup 239}Pu at YAYOI. The consistency among the measured values are found to be satisfied for the {beta} component and fairly well for the {gamma} component, except for cooling times longer than 4000 s. (author)

  18. Total decay heat estimates in a proto-type fast reactor

    International Nuclear Information System (INIS)

    Sridharan, M.S.

    2003-01-01

    Full text: In this paper, total decay heat values generated in a proto-type fast reactor are estimated. These values are compared with those of certain fast reactors. Simple analytical fits are also obtained for these values which can serve as a handy and convenient tool in engineering design studies. These decay heat values taken as their ratio to the nominal operating power are, in general, applicable to any typical plutonium based fast reactor and are useful inputs to the design of decay-heat removal systems

  19. Neutrinoless Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Garfagnini, A.

    2014-08-01

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been per- formed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taking data and will provide new limits, should no signal be observed, in the next few years to come. The present contribution reviews the latest public results on double beta decay searches and gives an overview on the expected sensitivities of the experiments in construction which will be able to set stronger limits in the near future. EXO and KamLAND-Zen experiments are based on the decay of Xe 136 , GERDA and MAJORANA experiments are based on the decay of Ge 76 , and the CUORE experiment is based on the decay of Te 130

  20. Summary report of RAMONA investigations into passive decay heat removal

    International Nuclear Information System (INIS)

    Hoffmann, H.; Marten, K.; Weinberg, D.; Frey, H.H.; Rust, K.; Ieda, Y.; Kamide, H.; Ohshima, H.; Ohira, H.

    1995-07-01

    An important safety feature of an advanced sodium-cooled reactor (e.g. European Fast Reactor, EFR) is the passive decay heat removal. This passive concept is based on several direct reactor cooling systems operating independently from each other. Each of the systems consists of a sodium/sodium decay heat exchanger immersed in the primary vessel and connected via an intermediate sodium loop to a heat sink formed by a sodium/air heat exchanger installed in a stack with air inlet and outlet dampers. The decay heat is removed by natural convection on the sodium side and natural draft on the air side. To demonstrate the coolability of the pool-type primary system by buoyancy-driven natural circulation, tests were performed under steady-state and transient conditions in facilities of different scale and detail. All these investigations serve to understand the physical processes and to verify computer codes used to transfer the results to reactor conditions. RAMONA is the three-dimensional 1:20-scaled apparatus equipped with all active components. Water is used as simulant fluid for sodium. The maximum core power is 75 kW. The facility is equipped with about 250 thermocouples to register fluid temperatures. Velocities and mass flows are measured by Laser Doppler Anemometers and magneto-inductive flowmeters. Flow paths are visualized by tracers. The conclusion of the investigations is that the decay heat can be removed from the primary system by means of natural convection. Always flow paths develop, which ensure an effective cooling of all regions. This is even proved for extreme conditions, e.g. in case of delays of the decay heat exchanger startup, failures of several DHR chains, and a drop of the fluid level below the inlet windows of the IHXs and decay heat exchangers. (orig.) [de

  1. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions

  2. Properties of Fission-Product decay heat from Minor-Actinide fissioning systems

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro; Mori, Hideki

    2000-01-01

    The aggregate Fission-Product (FP) decay heat after a pulse fission is examined for Minor Actinide (MA) fissiles 237 Np, 241 Am, 243 Am, 242 Cm and 244 Cm. We find that the MA decay heat is comparable but smaller than that of 235 U except for cooling times at about 10 8 s (approx. = 3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than the one for 235 U. This difference is found to originate from the cumulative fission yield of 106 Ru (T 1/2 = 3.2x10 7 s). This nuclide is the parent of 106 Rh (T 1/2 = 29.8 s) which is the dominant source of the decay heat at 10 8 s (approx. = 3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for 244 Cm among the MA's at the cooling time. (author)

  3. Decay heat and gamma dose-rate prediction capability in spent LWR fuel

    International Nuclear Information System (INIS)

    Neely, G.J.; Schmittroth, F.

    1982-08-01

    The ORIGEN2 code was established as a valid means to predict decay heat from LWR spent fuel assemblies for decay times up to 10,000 year. Calculational uncertainties ranged from 8.6% to a maximum of 16% at 2.5 years and 300 years cooling time, respectively. The calculational uncertainties at 2.5 years cooling time are supported by experiment. Major sources of uncertainty at the 2.5 year cooling time were identifed as irradiation history (5.7%) and nuclear data together with calculational methods (6.3%). The QAD shielding code was established as a valid means to predict interior and exterior gamma dose rates of spent LWR fuel assemblies. A calculational/measurement comparison was done on two assemblies with different irradiation histories and supports a 35% calculational uncertainty at the 1.8 and 3.0 year decay times studied. Uncertainties at longer times are expected to increase, but not significantly, due to an increased contribution from the actinides whose inventories are assigned a higher uncertainty. The uncertainty in decay heat rises to a maximum of 16% due to actinide uncertainties. A previous study was made of the neutron emission rate from a typical Turkey Point Unit 3, Region 4 spent fuel assembly at 5 years decay time. A conservative estimate of the neutron dose rate at the assembly surface was less than 0.5 rem/hr

  4. Investigation on natural convection decay heat removal for the EFR status of the program

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, F [Kernforschungszentrum Karlsruhe (Germany); Essig, C [Siemens AG, Bergisch Gladbach (Germany); Georgeoura, S [AEA Reactor Service, Dounreay (United Kingdom); Tenchine, D [CEA Grenoble (France)

    1993-02-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  5. Investigation on natural convection decay heat removal for the EFR status of the program

    International Nuclear Information System (INIS)

    Hofmann, F.; Essig, C; Georgeoura, S.; Tenchine, D.

    1993-01-01

    The European Research and Development (R+D) Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes within the primary system and the direct reactor cooling circuits and include reactor experiments. (author)

  6. Decay heat removal for the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Zemanick, P.P.; Brown, N.W.

    1975-01-01

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. A statement of the high reliability of the Clinch River Breeder reactor Plant decay heat removal systems and a summary of the supporting arguments is presented. (U.S.)

  7. Decay Heat Removal for the Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zemanick, P. P.; Brown, N. W.

    1975-10-15

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. The paper closes with a statement of the high reliability of the Clinch River Breeder Reactor Plant decay heat removal systems and a summary of the supporting arguments. (author)

  8. Decay Heat Calculations for Reactors: Development of a Computer Code ADWITA

    International Nuclear Information System (INIS)

    Raj, Devesh

    2015-01-01

    Estimation of release of energy (decay heat) over an extended period of time after termination of neutron induced fission is necessary for determining the heat removal requirements when the reactor is shutdown, and for fuel storage and transport facilities as well as for accident studies. A Fuel Cycle Analysis Code, ADWITA (Activation, Decay, Waste Incineration and Transmutation Analysis) which can generate inventory based on irradiation history and calculate radioactivity and decay heat for extended period of cooling, has been written. The method and data involved in Fuel Cycle Analysis Code ADWITA and some results obtained shall also be presented. (author)

  9. Method for removal of decay heat of radioactive substances

    International Nuclear Information System (INIS)

    Hesky, H.; Wunderer, A.

    1981-01-01

    In this process, the decay heat from radioactive substances is removed by means of a liquid carried in the coolant loop. The liquid is partially evaporated by the decay heat. The steam is used to drive the liquid through the loop. When a static pressure level equivalent to the pressure drop in the loop is exceeded, the steam is separated from the liquid, condensed, and the condensate is reunited with the return flow of liquid for partial evaporation. (orig.) [de

  10. Investigation on natural convection decay heat removal for the EFR: Status of the program

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H; Weinberg, D [Kernforschungszentrum Karlsruhe GmbH, IATF, Karlsruhe (Germany); Webster, R [AEA Reactor Services, Dounreay (United Kingdom)

    1991-07-01

    The European Research and Development Program on decay heat removal by natural convection for the European Fast Reactor (EFR) covers the calculational methods and the model experiments performed for code validation. The studies concentrate on important physical effects of the cooling modes withinthe primary system and the direct reactor cooling circuits and include fundamental tests as well as reactor experiments. (author)

  11. Summary report of NEPTUN investigations into the steady state thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Rust, K.; Weinberg, D.; Hoffmann, H.; Frey, H.H.; Baumann, W.; Hain, K.; Leiling, W.; Hayafune, H.; Ohira, H.

    1995-12-01

    During the course of steady state NEPTUN investigations, the effects of different design and operating parameters were studied; in particular: The shell design of the above core sturcture, the core power, the number of decay heat exchangers put in operation, the complete flow path blockage at the primary side of the intermediate heat exchangers, and the fluid level in the primary vessel. The findings of the NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The interwrapper flow makes an essential contribution to that behavior. The decay heat exchangers installed in the upper plenum cause a thermal stratification associated with a pronounced gradient. The vertical extent of the stratification and the quantity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. An increase of the core power or a reduction of the number of decay heat exchangers being in operation leads to a higher temperature level in the primary system but does not alter the global temperature distribution. In the case that no coolant enters the inlet windows at the primary side of the intermediate and decay heat exchangers, the core remains coolable as far as the primary vessel is filled with fluid up to a minimum level. Cold water penetrates from the upper plenum into the core and removes the decay heat. The thermal hydraulic computer code FLUTAN was applied for the three-dimensional numerical simulation of the majority of NEPTUN tests reported here. The comparison of computed against experimental data indicates a qualitatively and quantitatively satisfying agreement of the findings with respect to the field of isotherms as well as the temperature profiles in the upper plenum and within the core region of very complex geometry. (orig./HP) [de

  12. Sensitivity and uncertainty analysis for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Rebah, J.; Lee, Y.K.; Nimal, J.C.; Nimal, B.; Luneville, L.; Duchemin, B.

    1994-01-01

    The calculated uncertainty in decay heat due to the uncertainty in basic nuclear data given in the CEA86 Library, is presented. Uncertainties in summation calculation arise from several sources: fission product yields, half-lives and average decay energies. The correlation between basic data is taken into account. The uncertainty analysis were obtained for thermal-neutron-induced fission of U235 and Pu239 in the case of burst fission and irradiation time. The calculated decay heat in this study is compared with experimental results and with new calculation using the JEF2 Library. (from authors) 6 figs., 19 refs

  13. An evaluation of nodalization/decay heat/ volatile fission product release models in ISAAC code

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong; Kim, Dong Ha

    2003-03-01

    An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for an optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

  14. The effect of load factor on fission product decay heat from discharged reactor fuel

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1978-07-01

    A sum-of-exponentials expression representing the decay heat power following a burst thermal irradiation of 235 U has been used to investigate the effect of load factor during irradiation on subsequent decay heat production. A sequence of random numbers was used to indicate reactor 'on' and 'off' periods for irradiations which continued for a total of 1500 days at power and were followed by 100 days cooling. It was found that for these conditions decay heat is almost proportional to load factor. Estimates of decay heat uncertainty arising from the random irradiation pattern are also given. (author)

  15. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  16. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.

  17. A review of U-235 decay heat measurements and calculations

    International Nuclear Information System (INIS)

    Walker, W.H.

    1979-08-01

    Recent scintillator measurements of fission product decay β and γ power, and calorimetric measurements of their sum are analyzed to obtain estimates of E sub(β) and E sub(γ), the β and γ components of the delayed energy per fission in a reactor. Calculations using the ENDF/B-4 fission product file are compared to the measured results and used to estimate the contributions to E sub(β) and E sub(γ) for decay times greater than 10 5 s. A value of E sub(ν), the anti-neutrino component, consistent with the measured component is also calculated. It is found that the decay heat measured in two calorimetric experiments (the sum of the β and γ components) is about 15 percent greater than the separately-measured energies (averages of five β and two γ measurements). Thus, depending on normalization, E sub(β) and E sub(γ) can vary widely. After all experimental uncertainties are taken into account the range of possible values has as lower limits the values calculated using ENDF/B-4, with upper limits about 40 percent greater. (author)

  18. A proposed Regulatory Guide basis for spent fuel decay heat

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.; Renier, J.P.

    1991-01-01

    A proposed revision to Regulatory Guide 3.54, ''Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation'' has been developed for the US Nuclear Regulatory Commission. The proposed revision includes a data base of decay heat rates calculated as a function of burnup, specific power, cooling time, initial fuel 235 U enrichment and assembly type (i.e., PWR or BWR). Validation of the calculational method was done by comparison with existing measured decay heat rates. Procedures for proper use of the data base, adjustment formulae accounting for effects due to differences in operating history and initial enrichment, and a defensible safety factor were derived. 15 refs., 6 tabs

  19. A decay heat removal methodology for reuseable orbital transfer vehicles

    Science.gov (United States)

    McDaniel, Patrick J.; Perkins, David R.

    1992-07-01

    Operation of a nuclear thermal rocket(NTR) as the propulsion system for a reusable orbital transfer vehicle has been considered. This application is the most demanding in terms of designing a multiple restart capability for an NTR. The requirements on a NTR cooling system associated with the nuclear decay heat stored during operation have been evaluated, specifically for a Particle Bed Reactor(PBR) configuration. A three mode method of operation has been identified as required to adequately remove the nuclear decay heat.

  20. AEA studies on passive decay heat removal in advanced reactors

    International Nuclear Information System (INIS)

    Lillington, J.N.

    1994-01-01

    The main objectives of the UK study were: to identify, describe and compare different types of systems proposed in current designs; to identify key scenarios in which passive decay heat removal systems play an important preventative or mitigative role; to assess the adequacy of the relevant experimental database; to assess the applicability and suitability of current generation models/codes for predicting passive decay heat removal; to assess the potential effectiveness of different systems in respect of certain key licensing questions

  1. Passive decay heat removal from the core region

    International Nuclear Information System (INIS)

    Hichen, E.F.; Jaegers, H.

    2002-01-01

    The decay heat in commercial Light Water Reactors is commonly removed by active and redundant safety systems supported by emergency power. For advanced power plant designs passive safety systems using a natural circulation mode are proposed: several designs are discussed. New experimental data gained with the NOKO and PANDA facilities as well as operational data from the Dodewaard Nuclear Power Plant are presented and compared with new calculations by different codes. In summary, the effectiveness of these passive decay heat removal systems have been demonstrated: original geometries and materials and for the NOKO facility and the Dodewaard Reactor typical thermal-hydraulic inlet and boundary conditions have been used. With several codes a good agreement between calculations and experimental data was achieved. (author)

  2. A passive decay-heat removal system for an ABWR based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2017-01-15

    Highlights: • A passive decay heat removal system for an ABWR is discussed using combined system of the reactor and an air cooler. • Effect of number of pass of the finned heat transfer tubes on heat removal is investigated. • The decay heat can be removed by air coolers with natural convection. • Two types of air cooler are evaluated, i.e., steam condensing and water cooling types. • Measures how to improve the heat removal rate and to make compact air cooler are discussed. - Abstract: This paper describes the capability of an air cooling system (ACS) operated under natural convection conditions to remove decay heat from the core of an Advanced Boiling Water Reactor (ABWR). The motivation of the present research is the Fukushima Severe Accident (SA). The plant suffered damages due to the tsunami and entered a state of Station Blackout (SBO) during which seawater cooling was not available. To prevent this kind of situation, we proposed a passive decay heat removal system (DHRS) in the previous study. The plant behavior during the SBO was calculated using the system code NETFLOW++ assuming an ABWR with the ACS. However, decay heat removal under an air natural convection was difficult. In the present study, a countermeasure to increase heat removal rate is proposed and plant transients with the ACS are calculated under natural convection conditions. The key issue is decreasing pressure drop over the tube banks in order to increase air flow rate. The results of the calculations indicate that the decay heat can be removed by the air natural convection after safety relief valves are actuated many times during a day. Duct height and heat transfer tube arrangement of the AC are discussed in order to design a compact and efficient AC for the natural convection mode. As a result, a 4-pass heat transfer tubes with 2-row staggered arrangement is the candidate of the AC for the DHRS under the air natural convection conditions. The heat removal rate is re-evaluated as

  3. Analysis and testing of W-DHR system for decay heat removal in the lead-cooled ELSY reactor

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Meloni, Paride; Polidori, Massimiliano; Gaggini, Piero; Labanti, Valerio; Tarantino, Mariano; Cinotti, Luciano; Presciuttini, Leonardo

    2009-01-01

    An innovative LFR system that complies with GEN IV goals is under design in the frame of ELSY European project. ELSY is a lead-cooled pool-type reactor of about 1500 MW thermal power which normally relies on the secondary system for decay heat removal. Since the secondary system is not safety-grade and must be fully depressurized in case of detection of a steam generator tube rupture, an independent and much reliable decay heat removal (DHR) system is foreseen on the primary side. Owing to the limited capability of the Reactor Vessel Air Cooling System (RVACS) in this large power reactor, additional safety-grade loops equipped with coolers immersed in the primary coolant are necessary for an efficient removal of decay heat. Some of these loops (W-DHR) are of innovative design and may operate with water at atmospheric pressure. In the frame of the ICE program to be performed on the integral facility CIRCE at ENEA/Brasimone research centre within the EUROTRANS European project, integral circulation experiments with core heat transport and heat removal by steam generator will be conducted in a reactor pool-type configuration. Taking advantage from this experimental program, a mock-up of W-DHR heat exchanger will be tested in order to investigate its functional behavior for decay heat removal. Some pre-test calculations of W-DHR heat exchanger operation in CIRCE have been performed with the RELAP5 thermal-hydraulic code in order to support the heat exchanger design and test conduct. In this paper the experimental activity to be conducted in CIRCE and main results from W-DHR pre-test calculations are presented, along with a preliminary investigation of the W-DHR system efficiency in ELSY configuration. (author)

  4. Tests for removal of decay heat by natural convection

    International Nuclear Information System (INIS)

    Kashiwagi, E.; Wataru, M.; Gomi, Y.; Hattori, Y.; Ozaki, S.

    1993-01-01

    Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)

  5. Analysis of a convection loop for GFR post-LOCA decay heat removal

    International Nuclear Information System (INIS)

    Williams, W.C.; Hejzlar, P.; Saha, P.

    2004-01-01

    A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA gas-cooled fast reactor (GFR). The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO 2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO 2 outdoes helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops. (authors)

  6. Double beta decay: experiments

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2006-01-01

    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  7. WAD, a program to calculate the heat produced by alpha decay

    International Nuclear Information System (INIS)

    Jarvis, R.G.; Bretzlaff, C.I.

    1982-09-01

    The FORTRAN program WAD (Watts from Alpha Decay) deals with the alpha and beta decay chains to be encountered in advanced fuel cycles for CANDU reactors. The data library covers all necessary alpha-emitting and beta-emitting nuclides and the program calculates the heat produced by alpha decay. Any permissible chain can be constructed very simply

  8. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  9. On Error Analysis of ORIGEN Decay Data Library Based on ENDF/B-VII.1 via Decay Heat Estimation after a Fission Event

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Gil, Choong-Sup; Lee, Young-Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The method is strongly dependent on the available nuclear structure data, i.e., fission product yield data and decay data. Consequently, the improvements in the nuclear structure data could have guaranteed more reliable decay heat estimation for short cooling times after fission. The SCALE-6.1.3 code package includes the ENDF/B-VII.0-based fission product yield data and ENDF/B-VII.1-based decay data libraries for the ORIGEN-S code. The generation and validation of the new ORIGEN-S yield data libraries based on the recently available fission product yield data such as ENDF/B-VII.1, JEFF-3.1.1, JENDL/FPY-2011, and JENDL-4.0 have been presented in the previous study. According to the study, the yield data library in the SCALE-6.1.3 could be regarded as the latest one because it resulted in almost the same outcomes as the ENDF/B-VII.1. A research project on the production of the nuclear structure data for decay heat estimation of nuclear fuel has been carried out in Korea Atomic Energy Research Institute (KAERI). The data errors contained in the ORIGEN-S decay data library of SCALE-6.1.3 have been clearly identified by their changing variables. Also, the impacts of the decay data errors have been analyzed by estimating the decay heats for the fission product nuclides and their daughters after {sup 235}U thermal-neutron fission. Although the impacts of decay data errors are quite small, it reminds us the possible importance of decay data when estimating the decay heat for short cooling times after a fission event.

  10. Evaluation of Heat Removal Performance of Passive Decay Heat Removal system for S-CO{sub 2} Cooled Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The modular systems is able to be transported by large trailer. Moreover, dry cooling system is applied for waste heat removal. The characteristics of MMR takes wide range of construction area from coast to desert, isolated area and disaster area. In MMR, Passive decay heat removal system (PDHRS) is necessary for taking the advantage on selection of construction area where external support cannot be offered. The PDHRS guarantees to protect MMR without external support. In this research, PDHRS of MMR is introduced and decay heat removal performance is analyzed. The PDHRS guarantees integrity of reactor coolant system. The high level of decay heat (2 MW) can be removed by PDHRS without offsite power.

  11. Post shut-down decay heat removal from nuclear reactor core by natural convection loops in sodium pool

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, A. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Sundararajan, T., E-mail: tsundar@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Parthasarathy, U.; Velusamy, K. [Nuclear Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-05-15

    Highlights: • Transient simulations are performed for a worst case scenario of station black-out. • Inter-wrapper flow between various sub-assemblies reduces peak core temperature. • Various natural convection paths limits fuel clad temperatures below critical level. - Abstract: The 500 MWe Indian pool type Prototype Fast Breeder Reactor (PFBR) has a passive core cooling system, known as the Safety Grade Decay Heat Removal System (SGDHRS) which aids to remove decay heat after shut down phase. Immediately after reactor shut down the fission products in the core continue to generate heat due to beta decay which exponentially decreases with time. In the event of a complete station blackout, the coolant pump system may not be available and the safety grade decay heat removal system transports the decay heat from the core and dissipates it safely to the atmosphere. Apart from SGDHRS, various natural convection loops in the sodium pool carry the heat away from the core and deposit it temporarily in the sodium pool. The buoyancy driven flow through the small inter-wrapper gaps (known as inter-wrapper flow) between fuel subassemblies plays an important role in carrying the decay heat from the sub-assemblies to the hot sodium pool, immediately after reactor shut down. This paper presents the transient prediction of flow and temperature evolution in the reactor subassemblies and the sodium pool, coupled with the safety grade decay heat removal system. It is shown that with a properly sized decay heat exchanger based on liquid sodium and air chimney stacks, the post shutdown decay heat can be safely dissipated to atmospheric air passively.

  12. Experimental and analytical studies for the validation of HTR-VGD and primary cell passive decay heat removal. Supplement. Calculations

    International Nuclear Information System (INIS)

    Geiss, M.; Giannikos, A.; Hejzlar, P.; Kneer, A.

    1993-04-01

    The alternative concept for a modular HTR-reactor design by Siempelkamp, Krefeld, using a prestressed cast iron vessel (VGD) combined with a cast iron/concrete module for the primary cell with integrated passive decay heat removal system was fully qualified with respect to operational and accidental thermal loads. The main emphasis was to confirm and validate the passive decay heat removal capability. An experimental facility (INWA) was designed, instrumented and operated with an appropriate electrical heating system simulating steady-state operational and transient accidental thermal loads. The experiments were accompanied by extensive computations concerning the combination of conductive, radiative and convective energy transport mechanisms in the different components of the VGD/primary cell structures, as well as elastic-plastic stress analyses of the VGD. In addition, a spectrum of potential alternatives for passive energy removed options have been parametrically examined. The experimental data clearly demonstrate that the proposed Siempelkamp-design is able to passively and safely remove the decay heat for operational and accidental conditions without invalidating technological important thermal limits. This also holds in case of failures of both the natural convection system and ultimate heat sink by outside concrete water film cooling. (orig./HP) [de

  13. Kaon decay experiments at J-PARC

    International Nuclear Information System (INIS)

    Nanjo, Hajime

    2015-01-01

    Three kaon-decay experiments, E14 (KOTO), E36, and E06 (TREK), are being performed or planned in the Hadron Experimental Facility of J-PARC. The J-PARC accelerator provides 30-GeV intense proton beam with a slow-extraction method, which is one of the key points to achieve the physics goals for the experiments. In this article, the features of the kaon decay as a tool to explore new physics beyond the Standard Model are explained. The J-PARC accelerator and the Hadron Experimental Facility are briefly described. The three kaon-decay experiments are introduced, all of which are sensitive to the new physics beyond the Standard Model. (author)

  14. Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage

  15. Experiences with on line fault detection system for protection system logic and decay heat removal system logic in Dhruva

    International Nuclear Information System (INIS)

    Ramkumar, N.; Dutta, P.K.; Darbhe, M.D.; Bharadwaj, G.

    2001-01-01

    Dhruva is a 100 MW (Thermal) natural uranium fuelled, vertical core, tank type multi purpose research reactor with heavy water acting as moderator, coolant and reflector. Helium is used as cover gas for heavy water system. Reactor Protection System and Decay Heat Removal System (DHRS) have triplicated instrumented channels. The logic for these systems are hybrid in nature with a mixture of relay logic and solid state logic. Fine Impulse Technique(FIT) is employed for On-line fault detection in the solid state logics of these systems. The FIT systems were designed in the early eighties. Operating experiences over the past 15 years has revealed certain deficiencies. In view of this, a microcomputer based state of the art FIT systems for logics of Reactor Protection System and DHRS are being implemented with improved functionalities built into them. This paper describes the operating experience of old FIT systems and improved features of the proposed new FIT systems. (author)

  16. Review of modern double beta decay experiments

    Science.gov (United States)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ˜ 0.01-0.1 eV are discussed.

  17. Passive Decay Heat Removal System for Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    Dry cooling system is applied as waste heat removal system therefore it is able to consider wide construction site. Schematic figure of the reactor is shown in Fig. 1. In safety features, the reactor has double containment and passive decay heat removal (PDHR) system. The double containment prevents leakage from reactor coolant system to be emitted into environment. The passive decay heat removal system copes with design basis accidents (DBAs). Micros Modular Reactor (MMR) which has been being developed in KAIST is S-CO{sub 2} gas cooled reactor and shows many advantages. The S-CO{sub 2} power cycle reduces size of compressor, and it makes small size of power plant enough to be transported by trailer.The passive residual heat removal system is designed and thermal hydraulic (TH) analysis on coolant system is accomplished. In this research, the design process and TH analysis results are presented. PDHR system is designed for MMR and coolant system with the PDHR system is analyzed by MARS-KS code. Conservative assumptions are applied and the results show that PDHR system keeps coolant system under the design limitation.

  18. Decay heat rates calculated using ORIGEN-S and CINDER10 with common data libraries

    International Nuclear Information System (INIS)

    Brady, M.C.; Hermann, O.W.; Beard, C.A.; Bohnhoff, W.J.; England, T.R.

    1991-01-01

    A set of two benchmark problems were proposed as part of an international comparison of decay heat codes. Problem specifications included explicit fission-yield, decay and capture data libraries to be used in the calculations. This paper describes the results obtained using these common data to perform the benchmark calculations with two popular depletion codes, ORIGEN-S and CINDER10. Short descriptions of the methods used by each of these codes are also presented. Results from other contributors to the international comparison are discussed briefly. This comparison of decay heat codes using common data libraries demonstrates that discrepant results in calculated decay heat rates are the result of differences in the nuclear data input to the codes and not the method of solution. 15 refs., 2 figs., 8 tabs

  19. Review of modern double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, A. S., E-mail: barabash@itep.ru [Institute of Theoretical and Experimental Physics (NRC ”Kurchatov Institute”), B. Cheremushkinskaya 25, Moscow (Russian Federation)

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  20. Study on decay heat removal capability of reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    Nishi, Y.; Kinoshita, I.

    1991-01-01

    The reactor vessel auxiliary cooling system (RVACS) is a simple, Passive decay heat removal system for an LMFBR. However, the heat removal capacity of this system is small compared to that of an immersed type of decay heat exchanger. In this study, a high-porosity porous body is proposed to enhance the RVACS's heat transfer performance to improve its applicability. The objectives of this study are to propose a new method which is able to use thermal radiation effectively, to confirm its heat removal capability and to estimate its applicability limit of RVACS for an LMFBR. Heat transfer tests were conducted in an experimental facility with a 3.5 m heat transfer height to evaluate the heat transfer performance of the high-porosity porous body. Using the experimental results, plant transient analyses were performed for a 300 MWe pool type LMFBR under a Total Black Out (TBO) condition to confirm the heat removal capability. Furthermore, the relationship between heat removal capability and thermal output of a reactor were evaluated using a simple parameter model

  1. Measurements of decay heat and gamma-ray intensity of spent LWR fuel assemblies

    International Nuclear Information System (INIS)

    Vogt, J.; Agrenius, L.; Jansson, P.; Baecklin, A.; Haakansson, A.; Jacobsson, S.

    1999-01-01

    Calorimetric measurements of the decay heat of a number of BWR and PWR fuel assemblies have been performed in the pools at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel, CLAB. Gamma-ray measurements, using high-resolution gamma-ray spectroscopy (HRGS), have been carried out on the same fuel assemblies in order to test if it is possible to find a simple and accurate correlation between the 137 CS -intensity and the decay heat for fuel with a cooling time longer than 10-12 years. The results up to now are very promising and may ultimately lead to a qualified method for quick and accurate determination of the decay heat of old fuel by gamma-ray measurements. By means of the gamma spectrum the operator declared data on burnup, cooling time and initial enrichment can be verified as well. CLAB provides a unique opportunity in the world to follow up the decay heat of individual fuel assemblies during several decades to come. The results will be applicable for design and operation of facilities for wet and dry interim storage and subsequent encapsulation for final disposal of the fuel. (author)

  2. Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor. Comparisons of the decay heat removal characteristics on lead, lead-bismuth and sodium cooled reactors

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Ohshima, Hiroyuki; Yamaguchi, Akira

    2000-04-01

    The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. In this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube failure accidents in a steam generator. In this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in Equivalent plant' with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. In conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to confirm the heat transfer reduction by the oxidized film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance. (author)

  3. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  4. Passive safety systems for decay heat removal of MRX

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, M; Iida, H; Hoshi, T [Japan Atomic Energy Research Inst., Ibaraki (Japan). Nuclear Ship System Lab.

    1996-12-01

    The MRX (marine Reactor X) is an advanced marine reactor, its design has been studied in Japan Atomic Energy Research Institute. It is characterized by four features, integral type PWR, in-vessel type control rod drive mechanisms, water-filled containment vessel and passive decay heat removal system. A water-filled containment vessel is of great advantage since it ensures compactness of a reactor plant by realizing compact radiation shielding. The containment vessel also yields passive safety of MRX in the event of a LOCA by passively maintaining core flooding without any emergency water injection. Natural circulation of water in the vessels (reactor and containment vessels) is one of key factors of passive decay heat removal systems of MRX, since decay heat is transferred from fuel rods to atmosphere by natural circulation of the primary water, water in the containment vessel and thermal medium in heat pipe system for the containment vessel water cooling in case of long terms cooling after a LOCA as well as after reactor scram. Thus, the ideal of water-filled containment vessel is considered to be very profitable and significant in safety and economical point of view. This idea is, however, not so familiar for a conventional nuclear system, so experimental and analytical efforts are carried out for evaluation of hydrothermal behaviours in the reactor pressure vessel and in the containment vessel in the event of a LOCA. The results show the effectiveness of the new design concept. Additional work will also be conducted to investigate the practical maintenance of instruments in the containment vessel. (author). 4 refs, 9 figs, 2 tabs.

  5. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely.

  6. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    International Nuclear Information System (INIS)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu

    2016-01-01

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely

  7. Control of the ASTRA decay heat removal system

    International Nuclear Information System (INIS)

    Nedelik, A.

    1982-11-01

    To ensure a minimum of core cooling even under severest accident conditions (loss of reactor pool water) a core spray system for decay heat removal has been installed at the ASTRA-reactor. The automatic and manual control of the system, its power supply and test procedures are shortly described. (Author)

  8. Heat wave experiments on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Erckmann, V.; Gasparino, U.; Giannone, L.; Maassberg, H.; Tutter, M.

    1993-01-01

    Power modulation with well localized ECRH power deposition at both 70 and 140 GHz, has been used to generate temperature perturbations which propagate away from the deposition region. Radiometry of the ECE is used to diagnose the generated temperature perturbation as a function of distance to the deposition zone. The decay of the amplitude and the delay of the wave provide the information to determine the electron thermal diffusivity. This value is then compared with the one derived from a global power balance. It is found that both values agree with the error bars. The technique has also been applied in recent experiments during L-H-mode transitions in W7-AS demonstrating a significant reduction in the effective heat diffusivity in the plasma core during the H-phase. The modulated ECRH causes a modulation of the Shafranov shift. Interference of the prompt shift with the heat wave results in an apparent asymmetry of the decay length of the heat wave with respect to the plasma centre. (orig.)

  9. Theory of ionospheric heating experiments

    International Nuclear Information System (INIS)

    Cragin, B.L.

    1975-01-01

    A brief description of the F region ionospheric heating experiments is given including some historical notes and a brief summary of the observations. A theory for the phenomenon of ''artificial spread F'' is presented. The explanation is in terms of scattering by approximately field-aligned, large scale ionization density irregularities, which are produced by a thermal version of the stimulated Brillouin scattering instability in which the heating wave decays into another electromagnetic wave and an electrostatic wave of very low frequency. This thermal instability differs from conventional stimulated Brillouin scattering in that the low frequency wave is driven by differential heating in the interference pattern of the two electromagnetic waves, rather than by the usual ponderomotive force. Some aspects of the theory of the phenomenon of ''wide-band attenuation'' or ''anomalous absorption'' of a probing electromagnetic wave. Some general results from the theory of wave propagation in a random medium are used to derive equations describing the absorption of a probing electromagnetic wave due to scattering (by large scale irregularities) into new electromagnetic waves or (by small scale irregularities) into electron plasma oscillations

  10. Transient testing of the FFTF for decay-heat removal by natural convection

    International Nuclear Information System (INIS)

    Beaver, T.R.; Johnson, H.G.; Stover, R.L.

    1982-06-01

    This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented

  11. Extension of hybrid micro-depletion model for decay heat calculation in the DYN3D code

    International Nuclear Information System (INIS)

    Bilodid, Yurii; Fridman, Emil; Shwageraus, E.

    2017-01-01

    This work extends the hybrid micro-depletion methodology, recently implemented in DYN3D, to the decay heat calculation by accounting explicitly for the heat contribution from the decay of each nuclide in the fuel.

  12. Extension of hybrid micro-depletion model for decay heat calculation in the DYN3D code

    Energy Technology Data Exchange (ETDEWEB)

    Bilodid, Yurii; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety; Kotlyar, D. [Georgia Institute of Technology, Atlanta, GA (United States); Shwageraus, E. [Cambridge Univ. (United Kingdom)

    2017-06-01

    This work extends the hybrid micro-depletion methodology, recently implemented in DYN3D, to the decay heat calculation by accounting explicitly for the heat contribution from the decay of each nuclide in the fuel.

  13. Decay heat removal plan of the SNR-300: a licensed concept

    International Nuclear Information System (INIS)

    Morgenstern, F.H.; Gyr, W.; Stoetzel, H.; Vossebrecker, H.

    1976-01-01

    The report describes how the decay heat removal plan of the SNR-300 has been established in 3 essential licensing steps, thus giving a very significant example for the slow but steady progress in the overall licensing process of the plant. (1) Introduction of an ECCS in addition to the 3 main heat transfer chains as a back-up for rather unlikely and undefined occurrences, 1970; (2) Experimental and computational demonstration of a reliable functioning of the in-vessel natural convection of the fluid flow, 1974; and (3) Proof of fulfilling the general safety and specific reliability criteria for the overall decay heat removal plan; i.e., the 3 main heat transfer chains with specific installations on the steam/water system side and the ECCS, 1976. Some special problem areas, for instance the cavity concept provided for the pipe fracture accident, have still to be licensed, but they do not contribute considerably to the overall risk

  14. Studies related to emergency decay heat removal in EBR-II

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1979-01-01

    Experimental and analytical studies related to emergency decay heat removal by natural circulation in the EBR-II heat transport circuits are described. Three general categories of natural circulation plant transients are discussed and the resultant reactor flow and temperature response to these events are presented. these categories include the following: (1) loss of forced flow from decay power and low initial flow rates; (2) reactor scram with a delayed loss of forced flow; and (3) loss of forced flow with a plant protective system activated scram. In all cases, the transition from forced to natural convective flow was smooth and the peak in-core temperature rises were small to moderate. Comparisons between experimental measurements in EBR-II and analytical predictions of the NATDEMO code are included

  15. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  16. Proceedings of workshop on K-decay experiments

    International Nuclear Information System (INIS)

    Nakai, Kozi

    1989-08-01

    The elementary particle experiment using the 12 GeV proton synchrotron in the National Laboratory for High Energy Physics (KEK) develops centering around the large scale experiment on K-meson decay. In this case, the ideal precision physics is pursued, and efforts have been exerted to improve the experimental techniques. At present the experiment on searching for rare K-decay is advancing. Next, the experiment on searching for CP nonconservation process will be begun. However, these experiments are in severe competition with those in BNL and Fermilab which have powerful accelerators, therefore it is desirable to grasp well the development of the international research plans. Therefore, in order to obtain the quideline for the experimental plan using the KEK proton synchrotron hereafter, the workshop on K-decay was held on July 11∼12, 1989. In this workshop, Arisaka (UCLA), Numao (TRIUMF) and Yamanaka (Fermilab) returned from USA and lectured on the present status of the experiment and the future perspective. The impression of the planner of the proton synchrotron experiment plan on the experiments are recorded. (K.I.)

  17. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.; California Univ., Berkeley

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  18. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal, and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  19. Parametric decay instabilities in ECR heated plasmas

    International Nuclear Information System (INIS)

    Porkolab, M.

    1982-01-01

    The possibility of parametric excitation of electron Bernstein waves and low frequency ion oscillations during ECR heating at omega/sub o/ approx. = l omega/sub ce/, l = 1,2 is examined. In particular, the thresholds for such instabilities are calculated. It is found that Bernstein waves and lower hybrid quasi-modes have relatively low homogeneous where T/sub e/ approx. = T/sub i/. Thus, these processes may lead to nonlinear absorption and/or scattering of the incident pump wave. The resulting Bernstein waves may lead to either more effective heating (especially during the start-up phase) or to loss of microwave energy if the decay waves propagate out of the system before their energy is absorbed by particles. While at omega/sub o/ = omega/sub UH/ the threshold is reduced due to the WKB enhancement of the pump wave, (and this instability may be important in tokamaks) in EBT's and tandem mirrors the instability at omega /sub o/ greater than or equal to 2 omega/sub ce/ may be important. The instability may persist even if omega > 2 omega/sub ce/ and this may be the case during finite beta depression of the magnetic field in which case the decay waves may be trapped in the local magnetic well so that convective losses are minimized. The excited fluctuations may lead to additional scattering of the ring electrons and the incident microwave fields. Application of these calculations to ECR heating of tokamaks, tandem mirrors, and EBT's will be examined

  20. Decay heat removal and transient analysis in accidental conditions in the EFIT reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Meloni, P.; Polidori, M.; Casamirra, M.; Castiglia, F.; Giardina, M.

    2007-01-01

    The development of a conceptual design of an industrial scale transmutation facility (EFIT) of several 100 MW thermal power based on Accelerator Driven System (ADS) is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related Decay Heat Removal (DHR) system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which lead to the Loss of Heat Sink (LOHS). In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1-D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios. (author)

  1. Decay Heat Removal and Transient Analysis in Accidental Conditions in the EFIT Reactor

    Directory of Open Access Journals (Sweden)

    Giacomino Bandini

    2008-01-01

    Full Text Available The development of a conceptual design of an industrial-scale transmutation facility (EFIT of several 100 MW thermal power based on accelerator-driven system (ADS is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related decay heat removal (DHR system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which are caused by a loss-of-heat sink (LOHS. In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios.

  2. Removal of decay heat by specially designed isolation condensers for advanced heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, M L; Bhatia, S K [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    For Advanced Heavy Water Reactor (AHWR), removal of decay heat and containment heat is being considered by passive means. For this, special type of isolation condensers are designed. Isolation condensers when submerged in a pool of water, are the best choice because condensation of high temperature steam is an extremely efficient heat transfer mechanism. By the use of isolation condensers, not only heat is removed but also pressure and temperature of the system are automatically controlled without losing the coolant and without using conventional safety relief valves. In this paper, design optimisation studies of isolation condensers of different types with natural circulation for the removal of core decay heat for AHWR is presented. (author). 8 refs., 2 figs.

  3. Specialists' meeting on evaluation of decay heat removal by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR.

  4. Specialists' meeting on evaluation of decay heat removal by natural convection

    International Nuclear Information System (INIS)

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR

  5. The status of thermal-hydraulic studies on the decay heat removal by natural convection using RAMONA and NEPTUN models

    International Nuclear Information System (INIS)

    Hoffmann, H.; Hain, K.; Marten, K.; Rust, K.; Weinberg, D.; Ohira, H.

    2004-01-01

    Thermal-hydraulic experiments were performed with water in order to simulate the decay heat removal by natural convection in a pool-type sodium-cooled reactor. Two test rigs of different scales were used, namely RAMONA (1:20) and NEPTUN (1:5). RAMONA served to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. The investigations cover nominal and non-nominal operation conditions. These data provide a broad basis for the verification of computer programs. Numerical analyses performed with the three-dimensional FLUTAN code indicated that the thermal-hydraulic processes can be quantitatively simulated even for the very complex geometry of the NEPTUN test rig. (author)

  6. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2016-11-15

    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  7. Microscopic beta and gamma data for decay-heat needs

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1983-01-01

    Microscopic beta and gamma data for decay-heat needs are defined as absolute-intensity spectral distributions of beta and gamma rays following radioactive decay of radionuclides created by, or following, the fission process. Four well-known evaluated data files, namely the US ENDF/B-V, the UK UKFPDD-2, the French BDN (for fission products), and the Japanese JNDC Nuclear Data Library, are reviewed. Comments regarding the analyses of experimental data (particularly gamma-ray data) are given; the need for complete beta-ray spectral measurements is emphasized. Suggestions on goals for near-term future experimental measurements are presented. 34 references

  8. In-calandria retention of corium in Indian PHWR - experimental simulations with decay heat

    International Nuclear Information System (INIS)

    Nayak, A.K.

    2015-01-01

    The severe accident at Fukushima has compelled the nuclear community to relook at the safety of existing nuclear power plants (NPP) against natural origin events of beyond design basis and prolonged station black out (SBO). A major lesson learned is to assess the capability of the safety systems to cool the reactor core and spent fuel storage facilities in the event of a prolonged station black out (SBO). Similar safety review is planned for the Indian Pressurized Heavy Water Reactors (PHWRs) considering a prolonged SBO. The Indian PHWR is a heavy water-moderated and cooled, natural uranium-fuelled reactor in which the horizontal fuel channels are submerged in a pool of heavy water moderator located inside the calandria vessel. The calandria vessel is surrounded by a calandria vault having large volume of light water. Concerns are raised that in the event of an unmitigated SBO, it may result into a low probable severe accident leading to core melt down. The core melt may further fail the calandria vessel in case the melt is not quenched. If the calandria vessel fails, the corium shall interact with the cold calandria vault water and concrete resulting in generation of large amount of non-condensable gases and steam which will lead to over pressurization of containment and may cause its failure. Therefore, in-calandria corium retention via external cooling using vault water can be considered as an important accident management program in PHWR. In this strategy, the core melt retains inside the calandria vessel by continually removing the stored heat and decay heat through outer surface of the vessel by cooling water and maintaining the integrity of the vessel. The present study focuses on experimental investigation in a scaled facility of an Indian PHWR to investigate the coolability of molten corium with simulated decay heat by using the calandria vault water. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics

  9. Studies on the characteristics of the separated type heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Iigaki, Kazuhiko; Ohashi, Kazutaka; Hayakawa, Hitoshi; Yamada, Masao.

    1995-01-01

    This study is the fundamental research by experiments to aim at the development of the complete passive decay heat removal system on the modular reactor systems by the form of the separated type of heat pipe system utilizing the features of both the big latent heat for vaporization from water to steam and easy transportation characteristics. Special intention in our study on the fundamental experiments is to look for the effects in such a separated type of heat pipe system to introduce non-condensible gas such as nitrogen gas together with the working fluid of water. Many interesting findings have been obtained so far on the experiments for the variable conductance heat pipe characteristics from viewpoint of the actual application on the aim said above. This study has been carried out by the joint study between Tokai University and Fuji Electric Co., Ltd. and this paper is made up from the several papers presented so far at both the national and international symposiums under the name of joint study of the both bodies. (author)

  10. Summary report of NEPTUN investigations into transient thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Weinberg, D.; Hoffmann, H.; Rust, K.; Frey, H.H.; Hain, K.; Leiling, W.; Hayafune, H.

    1995-12-01

    The results corroborate the findings of tests with the RAMONA model. With the core power reduction at scram and the start of the decay heat exchangers operation cold fluid is delivered into the prevailing upper plenum. A temperature stratification develops with distinct large temperature gradients. The onset of natural convection is mainly influenced by two effects, namely, the temperature increase on the intermediate heat exchangers primary sides as a result of which the downward pressures are reduced, and the startup of the decay heat exchangers which leads to a decrease of the buoyancy forces in the core. The temperatures of the upper plenum are systematically reduced as soon as the decay heat exchangers are in operation. Then mixed fluid in the hot plenum reaches the intermediate heat exchangers inlet windows and causes an increase in the core flow rate. The primary pump coastdown curve influences the primary system thermal hydraulics only during the first thousand seconds after scram. The longer the pumps operate the more cold fluid is delivered via the core to the upper plenum. The delay of the start of the decay heat exchangers operation separates the two effects which influence the core mass flow, namely the heatup of the intermediate heat exchangers as well as the formation of the stratification in the upper plenum. Increasing the power as well as the operation of only half of the available decay heat exchangers increase the system temperatures. A permeable above core structure produces a temperature stratification along the total upper plenum, and therefore a lower temperature gradient in the region between core outlet and lower edge of the above core structure, in comparison to the impermeable design. A complete flow path blockage of the primary fluid through the intermediate heat exchangers leads to an enhanced cooling effect of the interstitial flow and gives rise to a thermosiphon effect inside the core elements. (orig./GL) [de

  11. A PRA case study of extended long term decay heat removal for shutdown risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Ragland, W.A.; Hill, D.J.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL). The results of this PRA have shown that the decay heat removal system for EBR-II is extremely robust and reliable. In addition, the methodology used demonstrates how the actions of other systems not normally used for actions of other systems not normally used for decay heat removal can be used to expand the mission time of the decay heat removal system and further increase its reliability. The methodology may also be extended to account for the impact of non-safety systems in enhancing the reliability of other dedicated safety systems

  12. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    Science.gov (United States)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  13. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  14. Development of a new decay heat removal system for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sim, Yoon Sub; Park, Rae Young; Kim, Seyun

    2007-01-01

    The heat removal capacity of a RCCS is one of the major parameters limiting the capacity of a HTGR based on a passive safety system. To improve the plant economy of a HTGR, the decay heat removal capacity needs to be improved. For this, a new analysis system of an algebraic method for the performance of various RCCS designs was set up and the heat transfer characteristics and performance of the designs were analyzed. Based on the analysis results, a new passive decay heat removal system with a substantially improved performance, LFDRS was developed. With the new system, one can have an expectation that the heat removal capacity of a HTGR could be doubled

  15. Preliminary study of the decay heat removal strategy for the gas demonstrator allegro

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Gusztáv, E-mail: gusztav.mayer@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, P.O. Box 49, H-1525 Budapest (Hungary); Bentivoglio, Fabrice, E-mail: fabrice.bentivoglio@cea.fr [CEA/DEN/DM2S/STMF/LMES, F-38054, Grenoble (France)

    2015-05-15

    Highlights: • Improved decay heat removal strategy was adapted for the 75 MW ALLEGRO MOX core. • New nitrogen injection strategy was proposed for the DEC LOCA transients. • Preliminary CATHARE study shows that most of the investigated transients fulfill criteria. • Further improvements and optimizations are needed for nitrogen injection. - Abstract: The helium cooled Gas Fast Reactor (GFR) is one of the six reactor concepts selected in the frame of the Generation IV International Forum. Since no gas cooled fast reactor has ever been built, a medium power demonstrator reactor – named ALLEGRO – is necessary on the road towards the 2400 MWth GFR power reactor. The French Commissariat à l’Energie Atomique (CEA) completed a wide range of studies during the early stage of development of ALLEGRO, and later the ALLEGRO reactor concept was developed in several European Union projects in parallel with the GFR2400. The 75 MW thermal power ALLEGRO is currently developed in the frame of the European ALLIANCE project. As a result of the collaboration between CEA and the Hungarian Academy of Sciences Centre for Energy Research (MTA EK) new improvements were done in the safety approach of ALLEGRO. A complete Decay Heat Removal (DHR) strategy was devised, relying on the primary circuits as a first way to remove decay heat using pony-motors to drive the primary blowers, and on the secondary and tertiary circuits being able to work in forced or natural circulation. Three identical dedicated loops circulating in forced convection are used as a second way to remove decay heat, and these loops can circulate in natural convection for pressurized transients, providing a third way to remove decay heat in case of accidents when the primary circuit is still under pressure. The possibility to use nitrogen to enhance both forced and natural circulation is discussed. This DHR strategy is supported by a wide range of accident transient simulations performed using the CATHARE2 code

  16. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco

    2016-01-01

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  17. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it

    2016-08-15

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  18. Deposition of aerosols formed by HCDA due to decay heat transport in inner containment atmospheres

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1976-01-01

    Coupling of decay heat transfer by aerosol-laden inner containment atmospheres with aerosol deposition from such atmospheres leads to useful and simple models for calculation of the time dependence of the aerosol mass concentration. Special attention is given to thermophoretic deposition (dry case) and condensation followed by gravitational deposition (wet case). Attractive features of the models are: 1) coagulation can be omitted and therefore complicated and doubtful calculations on coagulation are avoided, 2) material and particle size of the aerosol are not important for the aerosol decay rate, 3) the aerosol decay rate is related to the decay heat production which is known function of time, and the relevant part of it must be assessed usually for other purposes as well. (orig.) [de

  19. Derivation of decay heat benchmarks for U235 and Pu239 by a least squares fit to measured data

    International Nuclear Information System (INIS)

    Tobias, A.

    1989-05-01

    A least squares technique used by previous authors has been applied to an extended set of available decay heat measurements for both U235 and Pu239 to yield simultaneous fits to the corresponding beta, gamma and total decay heat. The analysis takes account of both systematic and statistical uncertainties, including correlations, via calculations which use covariance matrices constructed for the measured data. The results of the analysis are given in the form of beta, gamma and total decay heat estimates following fission pulses and a range of irradiation times in both U235 and Pu239. These decay heat estimates are considered to form a consistent set of benchmarks for use in the assessment of summation calculations. (author)

  20. Detailed comparison between decay heat data calculated by the summation method and integral measurements

    International Nuclear Information System (INIS)

    Rudstam, G.

    1979-01-01

    The fission product library FPLIB has been used for a calculation of the decay heat effect in nuclear fuel. The results are compared with integral determinations and with results obtained using the ENDF/BIV data base. In the case of the beta part, and also for the total decay heat, the FPLIB-data seem to be superior to the ENDF/BIV-data. The experimental integral data are in many cases reproduced within the combined limits of error of the methods. (author)

  1. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions

  2. Electron heating caused by the ion-acoustic decay instability in a finite-length system

    International Nuclear Information System (INIS)

    Rambo, P.W.; Woo, W.; DeGroot, J.S.; Mizuno, K.

    1984-01-01

    The ion-acoustic decay instability is investigated for a finite-length plasma with density somewhat below the cutoff density of the electromagnetic driver (napprox.0.7n/sub c/). For this regime, the heating in a very long system can overpopulate the electron tail and cause linear saturation of the low phase velocity electron plasma waves. For a short system, the instability is nonlinearly saturated at larger amplitude by ion trapping. Absorption can be significantly increased by the large-amplitude ion waves. These results compare favorably with microwave experiments

  3. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2017-01-01

    Full Text Available This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-cooled lithium-lead has the highest total decay heat at longer decay times in comparison to the helium-cooled design which has the lowest total decay heat. In addition, major nuclides were identified for water-cooled lithium-lead in W armour, Eurofer, and LiPb. In addition, great attention has been dedicated to the analysis of the decay heat and activity both from the different water-cooled lithium-lead blanket modules for the entire reactor and from each water-cooled lithium-lead blanket module separately. The neutron induced activation and decay heat at shutdown were calculated by the FISPACT code, using the neutron flux densities and spectra that were provided by the preceding MCNP neutron transport calculations.

  4. Optimized design of an ex-vessel cooling thermosyphon for decay heat removal in SFR

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Song, Sub Lee; Chang, Soon Heung

    2017-01-01

    Passive decay heat removal and sodium fire are two major key issues of nuclear safety in sodium-cooled fast reactor (SFR). Several decay heat removal systems (DHR) were suggested for SFR around the world so far. Those DHRS mainly classified into two concepts: Direct reactor cooling system and ex-vessel cooling system. Direct reactor cooling method represented by PDHRS from PGSFR has disadvantages on its additional in-vessel structure and potential sodium fire risk due to the sodium-filled heat exchanger exposed to air. Contrastively, ex-vessel cooling method represented by RVACS from PRISM has low decay heat removal performance, which cannot be applicable to large scale reactors, generally over 1000 MWth. No passive DHRSs which can solve both side of disadvantages has been suggested yet. The goal of this study was to propose ex-vessel cooling system using two-phase closed thermosyphon to compensate the disadvantages of the past DHRSs. Reference reactor was Innovative SFR (iSFR), a pool-type SFR designed by KAIST and featured by extended core lifetime and increased thermal efficiency. Proposed ex-vessel cooling system consisted of 4 trains of thermosyphons and designed to remove 1% of thermal power with 10% of margin. The scopes of this study were design of proposed passive DHRS, validation of system analysis and optimization of system design. Mercury was selected as working fluid to design ex-vessel thermosyphon in consideration of system geometry, operating temperature and required heat flux. SUS 316 with chrome coated liner was selected as case material to resist against high corrosivity of mercury. Thermosyphon evaporator was covered on the surface of reactor vessel as the geometry of hollow shell filled with mercury. Condenser was consisted of finned tube bundles and was located in isolated water pool, the ultimate heat sink. Operation limits and thermal resistance was estimated to guarantee whether the design was adequate. System analysis was conducted by in

  5. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Lap-Yan, C.; Wie, T. Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  6. A revised ANS standard for decay heat from fission products

    International Nuclear Information System (INIS)

    Schrock, V.E.

    1978-01-01

    The draft ANS 5.1 standard on decay heat was published in 1971 and given minor revision in 1973. Its basis was the best estimate working curve developed by K. Shure in 1961. Liberal uncertainties were assigned to the standard values because of lack of data for short cooling times and large discrepancies among experimental data. Research carried out over the past few years has greatly improved the knowledge of this phenomenon and a major revision of the standard has been completed. Very accurate determination of the decay heat is now possible, expecially within the first 10 4 seconds, where the influence of neutron capture in fission products may be treated as a small correction to the idealized zero capture case. The new standard accounts for differences among fuel nuclides. It covers cooling time to 10 9 seconds, but provides only an ''upper bound'' on the capture correction in the interval 10 4 9 seconds. (author)

  7. Passive decay heat removal by sump cooling after core meltdown

    International Nuclear Information System (INIS)

    Knebel, J.U.; Mueller, U.

    1996-01-01

    This article presents the basic physical phenomena and scaling criteria of decay heat removal from a large coolant pool by single-phase and two-phase natural circulation flow. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives first measurement results of the 1:20 linearly scaled plane two-dimensional SUCOS-2D test facility. The experimental results of the model geometry are transformed to prototype conditions

  8. Parametric Decay during HHFW on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bernabei, S.; Biewer, T.; Diem, S.; Hosea, J.; LeBlanc, B.; Phillips, C.K.; Ryan, P.; Swain, D.W.

    2005-01-01

    High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (T i >> T e ). This heating is found to be anisotropic with T perp > T par . Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave (ω > 13ω ci ) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping, and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power, and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios, they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves

  9. The use of dielectric heating in particulate bed dryout experiments

    International Nuclear Information System (INIS)

    Stevens, G.F.; Willshire, S.J.

    1984-09-01

    Decay-heated, liquid-saturated debris beds arise in hypothetical severe accidents with LMFBR and PWR, and a large international effort is currently engaged in experimental studies of the cooling limitations of such beds. Dryout is one of the important cooling limitations. Dielectric heating offers a means of closely simulating decay heating in beds of irregular particles, and is under development at AEE Winfrith for application to experimental studies of dryout. This report describes progress to date. (author)

  10. Effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of Beech (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available This research was conducted to determine the effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of beech according to EN113 and ASTM-D1037 standards respectively. The heat treatment with raw cotton seed oil was carried out in the cylinder at the temperatures of 130 and 170oC for 30 and 60 minutes. Oil uptake, density, volumetric swelling, water absorption and weight loss exposed to decay were measured. Oil uptake at 30 and 60 min were determined 10.5 and 13.3 Kg/cm3 respectively. Oil-heat treated samples at 30min and 130°C indicated the maximum density with 87.7% increase. According to results, oil-heat treatment improved water repellency and dimensional stability. Water absorption in 130°C and 60 minutes decreased 76% in comparison with control. Decay resistance of oil soaked samples for 60minutes was 80.2% more than control samples. Oil-heat treatment compared with oil treatment improved decay resistance, this effect was significant at 30 min. The temperature rise of oil–heat treatment at 30 minutes improved decay resistance, but the improvement under same level of temperature with increase time was not significant.

  11. On heat transfer characteristics of real and simulant melt pool experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Nourgaliev R.R.; Sehgal, B.R. [Royal Institute of Technology, Stockholm (Sweden)

    1995-09-01

    The paper presents results of analytical studies of natural convection heat transfer in scaled and/or simulant melt pool experiments related to the PWR in-vessel melt retention issue. Specific reactor-scale effects of a large decay-heated core melt pool in the reactor pressure vessel lower plenum are first reviewed, and then the current analytical capability of describing physical processes under prototypical situations is examined. Experiments and experimental approaches are analysed by focusing on their ability to represent prototypical situations. Calculations are carried out in order to assess the significance of some selected effects, including variations in melt properties, pool geometry and heating conditions. Rayleigh numbers in the present analysis are limited to 10{sup 12}, where uncertainties in turbulence modeling are not overriding other uncertainties. The effects of fluid Prandtl number on heat transfer to the lowermost part of cooled pool walls are examined for square and semicircular cavities. Calculations are performed also to explore limitations of using side-wall heating and direct electrical heating in reproducing the physical picture of interest. Needs for further experimental and analytical efforts are discussed as well.

  12. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within ±10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the 92 Mo(n, 2n) 91g Mo reaction in FENDL, and lack of activation cross section data, e.g., the 138 Ba(n, 2n) 137m Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  13. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within {+-}10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the {sup 92}Mo(n, 2n){sup 91g}Mo reaction in FENDL, and lack of activation cross section data, e.g., the {sup 138}Ba(n, 2n){sup 137m}Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  14. Impact of the total absorption gamma-ray spectroscopy on FP decay heat calculations

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Tachibana, Takahiro; Katakura, Jun-ichi

    2004-01-01

    We calculated the average β- and γ-ray energies, E β and E γ , for 44 short-lived isotopes of Rb, Sr, Y, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu from the data by Greenwood et al, who measured the β-feed in the decay of these nuclides using the total absorption γ-ray spectrometer. These E β and E γ were incorporated into the decay files from JENDL, JEF2.2 and ENDF-B/VI, and the decay heats were calculated. The results were compared with the integral measurements by the University of Tokyo, ORNL and Lowell. In the case of JENDL, where the correction for the so-called Pandemonium effect is applied on the basis of the gross theory, the very good agreement is no longer maintained. The γ-ray component is overestimated in the cooling time range from 3 to 300 seconds, suggesting a kind of an over-correction as for the Pandemonium effect. We have to evaluate both the applicability of the TAGS results and the correction method itself in order to generate a more consistent data basis for decay heat summation calculations. (author)

  15. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  16. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  17. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  18. Performance of ALMR passive decay heat removal system

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hunsbedt, A.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the small (471 MWt) modular reactor to the environmental air by natural convection heat transfer. The system has no active components, requires no operator action to initiate, and is inherently reliable. The RVACS can perform its function under off-normal or degraded operating conditions without significant loss in performance. Several such events are described and the RVACS thermal performance for each is given and compared to the normal operation performance. The basic RVACS performance as well as the performance during several off-normal events have been updated to reflect design changes for recycled fuel with minor actinides for end of equilibrium cycle conditions. The performance results for several other off-normal events involving various degrees of RVACS air flow passage blockages are presented. The results demonstrated that the RVACS is unusually tolerant to a wide range of postulated faults. (author)

  19. Prospects for studying penguin decays in LHCb experiments

    International Nuclear Information System (INIS)

    Barsuk, S. Ya.; Pakhlova, G. V.; Belyaev, I. M.

    2006-01-01

    Investigation of loop penguin decays of beauty hadrons seems promising in testing the predictions of the Standard Model of electroweak and strong interactions and in seeking new phenomena beyond the Standard Model. The possibility of studying the radiative penguin decays B 0 → K* 0 γ, B 0 s → φγ, and B 0 → ωγ and the gluonic penguin decays B 0 → φK 0 S and B 0 s → φφ in LHCb experiments is discussed

  20. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  1. Evaluation of spent fuel isotopics, radiation spectra and decay heat using the scale computational system

    International Nuclear Information System (INIS)

    Parks, C.V.; Hermann, O.W.; Ryman, J.C.

    1986-01-01

    In order to be a self-sufficient system for transport/storage cask shielding and heat transfer analysis, the SCALE system developers included modules to evaluate spent fuel radiation spectra and decay heat. The primary module developed for these analyses is ORIGEN-S which is an updated verision of the original ORIGEN code. The COUPLE module was also developed to enable ORIGEN-S to easily utilize multigroup cross sections and neutron flux data during a depletion analysis. Finally, the SAS2 control module was developed for automating the depletion and decay via ORIGEN-S while using burnup-dependent neutronic data based on a user-specified fuel assembly and reactor history. The ORIGEN-S data libraries available for depletion and decay have also been significantly updated from that developed with the original ORIGEN code

  2. General classification and analysis of neutron β-decay experiments

    International Nuclear Information System (INIS)

    Gudkov, V.; Greene, G.L.; Calarco, J.R.

    2006-01-01

    A general analysis of the sensitivities of neutron β-decay experiments to manifestations of possible interaction beyond the standard model is carried out. In a consistent fashion, we take into account all known radiative and recoil corrections arising in the standard model. This provides a description of angular correlations in neutron decay in terms of one parameter, which is accurate to the level of ∼10 -5 . Based on this general expression, we present an analysis of the sensitivities to new physics for selected neutron decay experiments. We emphasize that the usual parametrization of experiments in terms of the tree-level coefficients a,A, and B is inadequate when the experimental sensitivities are at the same or higher level relative to the size of the corrections to the tree-level description

  3. Uncertainties on decay heat power due to fission product data uncertainties; Incertitudes sur la puissance residuelle dues aux incertitudes sur les donnees de produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, J

    1998-08-01

    Following a reactor shutdown, after the fission process has completely faded out, a significant quantity of energy known as 'decay heat' continues to be generated in the core. The knowledge with a good precision of the decay heat released in a fuel after reactor shutdown is necessary for: residual heat removal for normal operation or emergency shutdown condition, the design of cooling systems and spent fuel handling. By the summation calculations method, the decay heat is equal to the sum of the energies released by individual fission products. Under taking into account all nuclides that contribute significantly to the total decay heat, the results from summation method are comparable with the measured ones. Without the complete covariance information of nuclear data, the published uncertainty analyses of fission products decay heat summation calculation give underestimated errors through the variance/covariance analysis in consideration of correlation between the basic nuclear data, we calculate in this work the uncertainties on the decay heat associated with the summation calculations. Contribution to the total error of decay heat comes from uncertainties in three terms: fission yields, half-lives and average beta and gamma decay energy. (author)

  4. ALPHA - The long-term passive decay heat removal and aerosol retention program

    International Nuclear Information System (INIS)

    Guentay, S.; Varadi, G.; Dreier, J.

    1996-01-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs

  5. ALPHA - The long-term passive decay heat removal and aerosol retention program

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, S; Varadi, G; Dreier, J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    The Paul Scherrer Institute initiated the major new experimental and analytical program ALPHA in 1990. The program is aimed at understanding the long-term decay heat removal and aerosol questions for the next generation of Passive Light Water Reactors. The ALPHA project currently includes four major items: the large-scale, integral system behaviour test facility PANDA, which will be used to examine multidimensional effects of the SBWR decay heat removal system; an investigation of the thermal hydraulics of natural convection and mixing in pools and large volumes (LINX); a separate-effects study of aerosols transport and deposition in plenum and tubes (AIDA); while finally, data from the PANDA facility and supporting separate effects tests will be used to develop and qualify models and provide validation of relevant system codes. The paper briefly reviews the above four topics and current status of the experimental facilities. (author). 3 refs, 12 figs.

  6. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  7. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    International Nuclear Information System (INIS)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05)

  8. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  9. Code ACTIVE for calculation of the transmutation, induced activity and decay heat in neutron irradiation

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Harada, Yuhei; Asami, Naoto.

    1976-03-01

    The computer code ACTIVE has been prepared for calculation of the transmutation rate, induced activity and decay heat. Calculations are carried out with activation chain and spatial distribution of neutron energy spectrum. The spatial distribution of secondary gamma-ray source due to the unstable nuclides is also obtainable. Special attension is paid to the short life decays. (auth.)

  10. Studies on the characteristics of the separated heat pipe system with non-condensible gas for the use of the passive decay heat removal in reactor systems

    International Nuclear Information System (INIS)

    Hayashi, Takao; Ishi, Takayuki; Hayakawa, Hitoshi; Ohashi, Kazutaka

    1997-01-01

    Experiments on the separated heat pipe system of variable conductance type, which enclose non-condensible gas, have been carried out with intention of applying such system to passive decay heat removal of the modular reactors such as HTR plant. Basic experiments have been carried out on the experimental apparatus consisting of evaporator, vapor transfer tube, condenser tube and return tube which returns the condensed liquid back to the evaporator. Water and methanol were examined as the working fluids and nitrogen gas was enclosed as the non-condensible gas. The behaviors of the system were examined for the parametric changes of the heat input under the various pressures of nitrogen gas initially enclosed, including the case without enclosing N 2 gas for the comparison. The results of the experiments shows very clear features of self control characteristics. The self control mechanism was made clear, that is, in such system in which the condensing area in the condenser expands automatically in accordance with the increase of the heat input to keep the system temperature nearly constant. The working temperature of the system are clearly dependent on the pressure of the non-condensable gas initially enclosed, with higher system working temperature with higher initial gas pressure enclosed. The analyses were done on water and methanol as the working fluids, which show very good agreement with the experimental results. A lot of attractive applications are expected including the self switching feature with minimum heat loss during normal operation with maintaining the sufficient heat removal at accidents. (author)

  11. Application of optimal estimation techniques to FFTF decay heat removal analysis

    International Nuclear Information System (INIS)

    Nutt, W.T.; Additon, S.L.; Parziale, E.A.

    1979-01-01

    The verification and adjustment of plant models for decay heat removal analysis using a mix of engineering judgment and formal techniques from control theory are discussed. The formal techniques facilitate dealing with typical test data which are noisy, redundant and do not measure all of the plant model state variables directly. Two pretest examples are presented. 5 refs

  12. Decay heat from products of 235U thermal fission by fast-response boil-off calorimetry

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Bendt, P.J.

    1977-09-01

    A cryogenic boil-off calorimeter was used to measure the decay heat from the products of thermal-neutron-induced fission of 235 U. Data are presented for cooling times between 10 and 10 5 s following a 2 x 10 4 s irradiation at constant thermal-neutron flux. The experimental uncertainty (1 sigma) in these measurements was approximately 2 percent, except at the shortest cooling times where it rose to approximately 4 percent. The beta and gamma energy from an irradiated 235 U sample was absorbed in a thermally isolated 52-kg copper block that was held at 4 K by an internal liquid helium reservoir. The absorbed energy evaporated liquid helium from the reservoir and a hot-film anemometer flowmeter recorded the evolution rate of the boil-off gas. The decay heat was calculated from the gas-flow rate using the heat of vaporization of helium. The calorimeter had a thermal time constant of 0.85 s. The energy loss caused by gamma leakage from the absorber was less than or equal to 3 percent; a correction was made by Monte Carlo calculations based on experimentally determined gamma spectra. The data agree within the combined uncertainties with summation calculations using the ENDF/B-IV data base. The experimental data were combined with summation calculations to give the decay heat for infinite (10 13 s) irradiation

  13. Probabilistic analysis of the loss of the decay heat removal function for Creys-Malville reactor

    International Nuclear Information System (INIS)

    Lanore, J.M.; Villeroux-Lombard, C.; Bouscatie, F.; Pavret de la Rochefordiere, A.

    1982-01-01

    The classical fault tree/event tree methods do not take into account the dependence in time of the systems behaviour during the sequences, and that is quite unrealistic for the decay heat removal function. It was then necessary to use a new methodology based on functional states of the whole system and on transition laws between these states. Thus, the probabilistic analysis of the decay heat removal function for Creys-Malville plant is performed in a global way. The main accident sequences leading to the loss of the function are then determined a posteriori. The weak points are pointed out, in particular the importance of common mode failures

  14. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  15. A background free double beta decay experiment

    International Nuclear Information System (INIS)

    Giomataris, I

    2011-01-01

    We present a new detection scheme for rejecting backgrounds in neutrino-less double beta decay experiments. It relies on the detection of Cherenkov light emitted by electrons in the MeV region. The momentum threshold is tuned to reach a good discrimination between background and good events. We consider many detector concepts and a range of target materials. The most promising is the high-pressure 136 Xe emitter where the required energy threshold is easily adjusted. Combination of this concept and a high pressure Time Projection Chamber could provide an optimal solution. A simple and low cost effective solution is the use of the Spherical Proportional Counter that provides, using a single read-out channel, two delayed signals from ionization and Cherenkov light. In solid-state double beta decay emitters, because of its higher density, the considered process is out of energy range. An escape will be the fabrication of double decay emitters having lower density by using for instance the aerogel technique. It is surprising that a technology used for particle identification in high-energy physics becomes a powerful tool for rejecting backgrounds in such low-energy experiments.

  16. The GERDA Neutrinoless Double Beta-Decay Experiment

    International Nuclear Information System (INIS)

    Majorovits, Bela A.

    2007-01-01

    Neutrinoless double beta (0νββ)-decay is the key process to gain understanding of the nature of neutrinos. The GErmanium Detector Array (GERDA) is designed to search for 0νββ-decay of the isotope 76 Ge. Germanium crystals enriched in 76 Ge, acting as source and detector simultaneously, will be submerged directly into an ultra pure cooling medium that also serves as a radiation shield. This concept will allow for a reduction of the background by up to two orders of magnitudes with respect to earlier experiments

  17. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  18. A decay heat removal system requiring no external energy

    International Nuclear Information System (INIS)

    Costes, D.; Fermandjian, J.

    1983-12-01

    A new Decay heat Removal System is described for PWR's with dry containment, i.e. a containment building which encloses no permanent reserve of cooling water. This new system is intended to provide a high level of safety since it uses no external energy, but only the thermodynamic energy of the air-steam-liquid water mixture generated in the containment after the failure of the primary circuit (''LOCA'') or of the secondary circuit. Thermodynamics of the system is evaluated first: after some design considerations, the use of the system for protecting actual PWR's is addressed

  19. The final measurements of the muon decay parameters from the TWIST experiment

    International Nuclear Information System (INIS)

    Bayes, R

    2013-01-01

    The TWIST (TRIUMF Weak Interaction Symmetry Test) experiment probes the Lorentz structure of the weak interaction using muon decay. This structure has a very well defined form under the Standard Model (SM) which makes precise predictions for the shape of the decay positron spectrum with respect to momentum and angle. The shape of the spectrum may be described under some rather general assumptions using a set of decay parameters whose values according to the SM are ρ = δ = 3/4, η = 0, and ξ = 1. TWIST uses a large sample of muon decays in a large acceptance spectrometer to measure the decay parameters to an order of magnitude greater precision than previous measurements. This experiment saw its last year of data collection in 2007. As TWIST is a systematics dominated experiment, much effort has been spent on refinements of the estimates of the systematic uncertainties over previous TWIST results. These proceedings will discuss the measures taken to achieve the precision goal of parts in 10 4 , and the physics implications of the experiment.

  20. Extra dimensions and neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Gozdz, Marek; Kaminski, Wieslaw A.; Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is one of the few phenomena, belonging to the nonstandard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0ν2β experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a nondirect 'experimental' verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg-Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed-Dimopoulos-Dvali model

  1. Measurements of $B \\to \\mu^{+} \\mu^{-}$ decays using the LHCb experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00400160

    This dissertation documents a study of very rare $B$-meson decays at the LHCb experiment, using data taken during the first experiment run of the Large Hadron Collider (LHC) and during the second experiment run until September 2016. The LHCb experiment was designed to test the Standard Model of particle physics and to search for New Physics effects that go beyond the scope of the Standard Model through the decay of $b$ hadrons produced in high energy proton-proton collisions at the LHC. The measurements described in this dissertation are made using data samples of proton-proton collisions with integrated luminosities of 1.0, 2.0 and 1.4 fb$^{-1}$, collected at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The branching fractions of the very rare $B^{0} \\to \\mu^{+} \\mu^{-}$ and $B_{s}^{0} \\to \\mu^{+} \\mu^{-}$ decays and the effective lifetime of $B_{s}^{0} \\to \\mu^{+} \\mu^{-}$ decays are precisely predicted by the Standard Model and are sensitive to effects from New Physics. New Physics processes...

  2. Reliability assessment on decay heat removal system of a fast reactor

    International Nuclear Information System (INIS)

    Hioki, Kazumasa

    1991-01-01

    The reliability of a decay heat removal system (DHRS) is influenced by the success criteria, the components which constitute the system, the support systems configuration, and the mission time. Assessments were performed to investigate quantitatively the effects of these items. Failure probabilities of DHRS under forced or natural circulation modes were calculated and then components and systems of large importance for each mode were identified. (author)

  3. $B$ flavour tagging using charm decays at the LHCb experiment

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Muller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2015-10-05

    An algorithm is described for tagging the flavour content at production of neutral $B$ mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a $B$ meson with the charge of a reconstructed secondary charm hadron from the decay of the other $b$ hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes $B^+ \\to J/\\psi \\, K^+$ and $B^0 \\to J/\\psi \\, K^{*0}$ using $3.0\\mathrm{\\,fb}^{-1}$ of data collected by the LHCb experiment at $pp$ centre-of-mass energies of $7\\mathrm{\\,TeV}$ and $8\\mathrm{\\,TeV}$. Its tagging power on these samples of $B \\to J/\\psi \\, X$ decays is $(0.30 \\pm 0.01 \\pm 0.01) \\%$.

  4. The Soudan 2 proton decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1989-01-01

    The Soudan 2 proton decay experiment is now 1/4 complete and assembled at the bottom of the Soudan iron mine in northern Minnesota, USA. When completed, it will be an 100 ton, fine grained, iron calorimeter. It is comprised of 256 identical modules. The cavity is 14 /times/ 72 /times/ 11 /times/ m (w /times/ 1 /times/ h) large enough to accommodate a 3300 ton detector of similar design. The detector samples track positions every 15, 10, and 2mm along the three spatial coordinations. Thus, the detector will have excellent tracking capabilities for the low energy charged particles and electromagnetic showers expected from nucleon decay candidates and neutrino background events. In addition, for such events the energy of particles observed is sufficiently low that they will stop inside the detector. The measurement of the ionization deposited as a function of track length allows the determination of track and will yield some information on the particle type. In addition to the dE/dx measurements the Soudan 2 detector has several advantages over previous nucleon decay detectors. The honeycomb geometry has very isotropic detection compared with other tracking detectors. The thin steel and local triggering system produces a low trigger threshold giving excellent efficiency for multiparticle decay nodes or ones with missing energy due to neutrinos. 8 figs

  5. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and γ ray spectrum. FPGS90

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting γ ray and β ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted γ ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library 'JNDC Nuclear Data Library of Fission Products - second version -', which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author)

  6. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and {gamma} ray spectrum. FPGS90

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting {gamma} ray and {beta} ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted {gamma} ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library `JNDC Nuclear Data Library of Fission Products - second version -`, which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author).

  7. Heating experiments of JT-60

    International Nuclear Information System (INIS)

    1987-01-01

    In JT-60, after the finish of the first stage Joule experiment, the heating facilities were installed, and the heating experiment was started in August, 1986. As to neutral beam injection, the beam injection experiment at the maximum rating 20 MW carried out, and also as to RF, the injection experiment up to 1.4 MW was carried out in both ion cyclotron and low band hybrid waves. The results worthy of special mention in the heating experiment were the success in the current drive up to 1.7 MA at maximum using low band hybrid waves and the improvement of plasma confinement characteristics obtained by the compound heating of NBI and RF. In this paper, the main results of these heating experiments and their significance are explained. The JT-60 is the testing facilities for attaining the critical plasma condition by additionally heating the plasma which is generated by Joule electric discharge with NBI and RF heatings. The experimental operation cycle of the JT-60 consists of the unit cycle of two weeks, and the number of days in operation is nine days. The temperature of heated plasma rose to 70 million deg C in the 20 MW NBI heating. Hereafter, the improvement of confinement time by increasing the stored energy of plasma is attempted. (Kako, I.)

  8. Novel measurement method of heat and light detection for neutrinoless double beta decay

    Science.gov (United States)

    Kim, G. B.; Choi, J. H.; Jo, H. S.; Kang, C. S.; Kim, H. L.; Kim, I.; Kim, S. R.; Kim, Y. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Li, J.; Oh, S. Y.; So, J. H.

    2017-05-01

    We developed a cryogenic phonon-scintillation detector to search for 0νββ decay of 100Mo. The detector module, a proto-type setup of the AMoRE experiment, has a scintillating 40Ca100MoO4 absorber composed of 100Mo-enriched and 48Ca-depleted elements. This new detection method employs metallic magnetic calorimeters (MMCs) as the sensor technology for simultaneous detection of heat and light signals. It is designed to have high energy and timing resolutions to increase sensitivity to probe the rare event. The detector, which is composed of a 200 g 40Ca100MoO4 crystal and phonon/photon sensors, showed an energy resolution of 8.7 keV FWHM at 2.6 MeV, with a weak temperature dependence in the range of 10-40 mK. Using rise-time and mean-time parameters and light/heat ratios, the proposed method showed a strong capability of rejecting alpha-induced events from electron events with as good as 20σ separation. Moreover, we discussed how the signal rise-time improves the rejection efficiency for random coincidence signals.

  9. Design of Passive Decay Heat Removal System using Mercury Thermosyphon for SFR

    Energy Technology Data Exchange (ETDEWEB)

    You, Byung Hyun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, thermosyphon application is suggested to accomplish the fully passive safety grade system and compactness of components via enhance the heat removal performance. A two-phase evaporating thermosyphon operates when the evaporator is heated, the working fluid start boiling, the vapor that is formed moves to the condenser, where it is condensed on the walls, giving up the heat of phase change to the cooling fluid. Gravity forces cause the condensate to condensed liquid flow to the evaporator again. These processes occur continuously, which causes transfer of heat from evaporator to condenser vice versa. After the thermal design and performance evaluation, the results were compared with the performance of conventional DRACS system. For the same amount of decay heat removal performance of PDRC system of KALIMER-600 mercury thermosyphon system can archive around 30∼50% of compactness. For the detailed design, improved analytical model and experimental data for the validation will be required to specify the new DHR system.

  10. An Operators View of Reliability Testing and Decay Heat Rejection Systems

    International Nuclear Information System (INIS)

    Henderson, J.D.C.

    1975-01-01

    The object of this paper is to review the in-situ testing of DHR systems, and to convey policy rather than to indicate a definitive test programme. The test policy is aimed primarily at commissioning the plant and secondly at providing such support for reliability predictions as is practical. Provisions for removal of decay heat from the core and from the reactor tank are described in papers by Broadley and Davies

  11. Activity inventories and decay heat calculations for a DEMO with HCPB and HCLL blanket modules

    International Nuclear Information System (INIS)

    Stankunas, Gediminas; Tidikas, Andrius; Pereslavstev, Pavel; Catalán, Juan; García, Raquel; Ogando, Francisco; Fischer, Ulrich

    2016-01-01

    Highlights: • The afterheat and activity inventories were calculated for Eurofer steel which is the reference structural material for DEMO. • The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short and longer cooling times. • The comparison calculations were performed for a single outboard blanket module of the HCLL DEMO assuming High-Temperature Ferritic–Martensitic (HT-FM) steel and SS-316 (LN) as structural material. - Abstract: Activation inventories, decay heat and radiation doses are important nuclear quantities which need to be assessed on a reliable basis for the safe operation of a fusion nuclear power reactor. The afterheat and activity inventories were shown to be dominated by the Eurofer steel which is the reference structural material for DEMO. The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short (a few days) and longer (more than a year) cooling times. As for the alternative steels, the induced radioactivity was turned out to be lowest for the SS-316 until about 200 years after shut-down. Afterwards, the activity level of SS-316 steel was found to be the highest. For these times, the activity of both Eurofer and the HT-FM steel is about one order of magnitude lower.

  12. Activity inventories and decay heat calculations for a DEMO with HCPB and HCLL blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Tidikas, Andrius [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Pereslavstev, Pavel [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Catalán, Juan; García, Raquel; Ogando, Francisco [Departamento de Ingeniería Energética, UNED, 28040 Madrid (Spain); Fischer, Ulrich [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • The afterheat and activity inventories were calculated for Eurofer steel which is the reference structural material for DEMO. • The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short and longer cooling times. • The comparison calculations were performed for a single outboard blanket module of the HCLL DEMO assuming High-Temperature Ferritic–Martensitic (HT-FM) steel and SS-316 (LN) as structural material. - Abstract: Activation inventories, decay heat and radiation doses are important nuclear quantities which need to be assessed on a reliable basis for the safe operation of a fusion nuclear power reactor. The afterheat and activity inventories were shown to be dominated by the Eurofer steel which is the reference structural material for DEMO. The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short (a few days) and longer (more than a year) cooling times. As for the alternative steels, the induced radioactivity was turned out to be lowest for the SS-316 until about 200 years after shut-down. Afterwards, the activity level of SS-316 steel was found to be the highest. For these times, the activity of both Eurofer and the HT-FM steel is about one order of magnitude lower.

  13. A scintillating bolometer array for double beta decay studies: The LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gironi, L., E-mail: luca.gironi@mib.infn.it [Università degli Studi di Milano-Bicocca, Milano (Italy); INFN – Sezione di Milano-Bicocca, Milano (Italy)

    2016-07-11

    The main goal of the LUCIFER experiment is to study the neutrinoless double beta decay, a rare process allowed if neutrinos are Majorana particles. Although aiming at a discovery, in the case of insufficient sensitivity the LUCIFER technique will be the demonstrator for a higher mass experiment able to probe the entire inverted hierarchy region of the neutrino mass. In order to achieve this challenging result, high resolution detectors with active background discrimination capability are required. This very interesting possibility can be largely fulfilled by scintillating bolometers thanks to the simultaneous read-out of heat and light emitted by the interactions in the detector or by pulse shape analysis. - Highlights: • The LUCIFER technique will be the demonstrator for a higher mass experiment. • Scintillating bolometers allow high energy resolution and background discrimination. • The first choice for the LUCIFER tower are ZnSe crystals. • The LUCIFER setup will consist of an array of 30 individual single module detectors. • An array of ZnMoO4 crystals allowed the bolometric observation of the 2vDBD of {sup 100}Mo.

  14. Double Beta Decay Experiments: Present Status and Prospects for the Future

    Science.gov (United States)

    Barabash, A. S.

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ˜ (0.01-0.1) eV are discussed. The main attention is paid to experiments of CUORE, GERDA, MAJORANA, EXO, KamLAND-Zen-2, SuperNEMO and SNO+. Possibilities of low-temperature scintillating bolometers on the basis of inorganic crystals (ZnSe, ZnMoO4, Li2MoO4, CaMoO4 and CdWO4) are considered too.

  15. Natural convection heat transfer in SIGMA experiment

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull

    2004-01-01

    A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on

  16. PandaX-III neutrinoless double beta decay experiment

    Science.gov (United States)

    Wang, Shaobo; PandaX-III Collaboration

    2017-09-01

    The PandaX-III experiment uses high pressure Time Projection Chambers (TPCs) to search for neutrinoless double-beta decay of Xe-136 with high energy resolution and sensitivity at the China Jin-Ping underground Laboratory II (CJPL-II). Fine-pitch Microbulk Micromegas will be used for charge amplification and readout in order to reconstruct both the energy and track of the neutrinoless double-beta decay event. In the first phase of the experiment, the detector, which contains 200 kg of 90% Xe-136 enriched gas operated at 10 bar, will be immersed in a large water tank to ensure 5 m of water shielding. For the second phase, a ton-scale experiment with multiple TPCs will be constructed to improve the detection probability and sensitivity. A 20-kg scale prototype TPC with 7 Micromegas modules has been built to optimize the design of Micromegas readout module, study the energy calibration of TPC and develop algorithm of 3D track reconstruction.

  17. Decay heat and activity of the structural materials of the fuel and blanket assemblies of the second and third core of KNK II

    International Nuclear Information System (INIS)

    Winterhagen, D.

    1986-06-01

    The decay heat and activity caused by structural materials have been calculated for the fuel assemblies of KNK II (second and third core) with a residence time of 720 equivalent full-power days (efpd) and the blanket assemblies with 1880 efpd. The values are given for the different zones of the assemblies (head, active zone, fission gas plenum, foot and stellite area) for decay times from 1 to 20 years. For decay times beyond 2 years more than 80 % of the decay heat are caused by the Co60-decay, more than 60 % of which result from the stellite in the foot area [de

  18. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  19. Effects of proliferation on the decay of thermotolerance in Chinese hamster cells.

    Science.gov (United States)

    Armour, E P; Li, G C; Hahn, G M

    1985-09-01

    Development and decay of thermotolerance were observed in Chinese hamster HA-1 cells. The thermotolerance kinetics of exponentially growing and fed plateau-phase cells were compared. Following a 10-min heat exposure at 45 degrees C, cells in both growth states had similar rates of development of tolerance to a subsequent 45-min exposure at 45 degrees C. This thermotolerant state started to decay between 12 and 24 hr after the initial heat exposure. The decay appeared to initiate slightly sooner in the exponentially growing cells when compared to the fed plateau-phase cells. During the decay phase, the rate of thermotolerance decay was similar in the two growth conditions. In other experiments, cells were induced to divide at a slower rate by chronic growth (3 months) in a low concentration of fetal calf serum. Under these low serum conditions cells became more sensitive to heat and the rate of decay of thermotolerance remained the same for exponentially growing cells. Plateau-phase cells were also more sensitive, but thermotolerance decayed more rapidly in these cells. Although dramatic cell cycle perturbations were seen in the exponentially growing cells, these changes appeared not to be related to thermotolerance kinetics.

  20. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A.S.

    2010-01-01

    conditions, need to be powered either by the power grid or by batteries for at least 24 hours. The specific contributions of the present research - aimed at achieving enhanced passivity of the DHR system for the GFR - are design and analysis related to (1) the injection of heavy gas into the primary circuit after a LOCA, to enable natural convection cooling at an intermediate-pressure level, and (2) an autonomous Brayton loop to evacuate decay heat at low primary pressure in case of a loss of the guard containment pressure. Both these developments reduce the dependence on blower power availability considerably. First, the thermal-hydraulic codes used in the study - TRACE and CATHARE - are validated for gas cooling. The validation includes benchmark comparisons between the codes, serving to identify the sensitivity of the results to the different modeling assumptions. The parameters found to be the most sensitive in this analysis, such as heat transfer and friction models, are then validated via a detailed re-analysis of earlier PSI (EIR, at the time) gas-loop experiments conducted in the 1970's. Conclusions and recommendations on the models to be used for transient analysis are derived. In general, it has been shown that the agreement, between experiments and the correlations for heat transfer and friction used in TRACE and CATHARE, is quite satisfactory. The thus validated codes are then used in the two detailed, DHR improvement studies carried out. The first improvement of the reference DHR strategy is the heavy gas injection. Assuming a DHR blower failure after a LOCA, the helium pressure in the guard containment is not high enough to evacuate the decay heat by natural convection. To improve the natural convection, the effects of injecting different heavy gases (N 2 , CO 2 , Ar and a N 2 /He mixture) into the primary circuit were analyzed, in order to address the possibility of dealing with DHR-blower failure while accepting an intermediate back-up pressure in the guard

  1. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A. S.

    2010-09-01

    powered either by the power grid or by batteries for at least 24 hours. The specific contributions of the present research aimed at achieving enhanced passivity of the DHR system for the GFR are design and analysis related to (1) the injection of heavy gas into the primary circuit after a LOCA, to enable natural convection cooling at an intermediate-pressure level, and (2) an autonomous Brayton loop to evacuate decay heat at low primary pressure in case of a loss of the guard containment pressure. Both these developments reduce the dependence on blower power availability considerably. First, the thermal-hydraulic codes used in the study – TRACE and CATHARE – are validated for gas cooling. The validation includes benchmark comparisons between the codes, serving to identify the sensitivity of the results to the different modeling assumptions. The parameters found to be the most sensitive in this analysis, such as heat transfer and friction models, are then validated via a detailed re-analysis of earlier PSI (EIR, at the time) gas-loop experiments conducted in the 1970s. Conclusions and recommendations on the models to be used for transient analysis are derived. In general, it has been shown that the agreement, between experiments and the correlations for heat transfer and friction used in TRACE and CATHARE, is quite satisfactory. The thus validated codes are then used in the two detailed, DHR improvement studies carried out. The first improvement of the reference DHR strategy is the heavy gas injection. Assuming a DHR blower failure after a LOCA, the helium pressure in the guard containment is not high enough to evacuate the decay heat by natural convection. To improve the natural convection, the effects of injecting different heavy gases (N 2 , CO 2 , Ar and a N 2 /He mixture) into the primary circuit were analyzed, in order to address the possibility of dealing with DHR-blower failure while accepting an intermediate back-up pressure in the guard containment

  2. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  3. Possible design of PBR for passive decay heat removal

    International Nuclear Information System (INIS)

    Sambuu, Odmaa; Obara, Toru

    2016-01-01

    Conditions for design parameters of above-ground and underground, prismatic high-temperature gas-cooled reactor (HTGR)s for passive decay heat removal based on fundamental heat transfer mechanisms were obtained in the previous works. In the present study, analogous conditions were obtained for pebble bed reactors by performing the same procedure using the model for heat transfer in porous media of COMSOL 4.3a software, and the results were compared. For the power density profile, several approximated distributions together with original one throughout the 10-MWt high-temperature gas-cooled reactor-test module (HTR-10) were used, and it was found that an HTR-10 with a uniform power density profile has the higher safety margin than those with other profiles. In other words, the safety features of a PBR can be enhanced by flattening the power density profile. We also found that a prismatic HTGR with a uniform power density profile throughout the core has a greater safety margin than a PBR with the same design characteristics. However, when the power density profile is not flattened during the operation, the PBR with the linear power density profile has more safety margin than the prismatic HTGR with the same design parameters and with the power density profile by cosine and Bessel functions. (author)

  4. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  5. Improved Design Concept for ensuring the Passive Decay Heat Removal Performance of an SFR

    International Nuclear Information System (INIS)

    Eoh, Jae Hyuk; Lee, Tae Ho; Han, Ji Woong; Kim, Seong O

    2011-01-01

    In order to enhance the operational reliability of a purely passive decay heat removal system in KALIMER, which is named as PDRC, three design options to prevent a sodium freezing in an intermediate decay heat removal circuit were proposed, and their feasibilities was quantitatively evaluated. For all the options, more specific design considerations were made to confirm their feasibility to properly materialize their concepts in a practical system design procedure, and the general definitions for a purely passive concept and its design features have been discussed. A numerical study to evaluate the coastdown flow effect of the primary pump was performed to figure out the early stage DHR capability inside reactor pool during a loss of normal heat sink accident. The thermal-hydraulic calculations have been made by using the COMMIX-1AR/P code, and it was found that the initiation of heat removal by DHX could be accelerated by the increase of the coastdown time but it needs a large-sized flywheel. For the demonstration of the innovative concept, a large scale sodium thermal-hydraulic test facility is currently being designed. It is very difficult to reproduce both a hydrodynamic and a thermodynamic similarity to the prototype plant if the thermal driving head is determined by structure-to-fluid heat transfer under natural circulation flow. Hence the similitude requirements for the sodium thermal-hydraulic test facility employing natural convection heat transfer were developed, and the preliminary design data of the test facility by implementing proper scaling methodologies was produced. The design restrictions imposed on the test facility and the scaling distortions of the design data to the full-scale system were also discussed

  6. Semiconductor-based experiments for neutrinoless double beta decay search

    International Nuclear Information System (INIS)

    Barnabé Heider, Marik

    2012-01-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116 Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76 Ge. Their aim is to achieve a background ⩽10 −3 counts/(kg⋅y⋅keV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76 Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  7. Beta and gamma decay heat evaluation for the thermal fission of 235U

    International Nuclear Information System (INIS)

    Schenter, G.K.; Schmittroth, F.

    1979-01-01

    Beta and gamma fission product decay heat curves are evaluated for the thermal fission of 235 U. Experimental data that include beta, gamma, and total measurements are combined with summation calculations based on ENDF/B in a consistent evaluation. Least-squares methods are used that take proper account of data uncertainties and correlations. 4 figures, 2 tables

  8. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  9. The Majorana Double Beta Decay Experiment:. Present Status

    Science.gov (United States)

    Aguayo, E.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Beene, J. R.; Bergevin, M.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y.-D.; Christofferson, C. D.; Collar, J. I.; Combs, D. C.; Cooper, R. J.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Fields, N.; Finnerty, P.; Fraenkle, F. M.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, A.; Hoppe, E. W.; Horton, M.; Howard, S.; Howe, M. A.; Johnson, R. A.; Keeter, K. J.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; Laferriere, B. D.; Laroque, B. H.; Leon, J.; Leviner, L. E.; Loach, J. C.; Macmullin, S.; Marino, M. G.; Martin, R. D.; Mei, D.-M.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Perumpilly, G.; Prior, G.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Steele, D.; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, K.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V. I.; Zhang, C.

    2013-11-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay (0νββ) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.

  10. Experiments on the Heat Transfer and Natural Circulation Characteristics of the Passive Residual Heat Removal System for the Advanced Integral Type Reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul

    2004-01-01

    Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)

  11. Method and device to remove the decay heat produced in the core of a nuclear reactor

    International Nuclear Information System (INIS)

    Loimann, E.; Reutler, H.

    1977-01-01

    For decay haet removal of the HTGR the heat absorbed by the top reflector is discharged by means of heat exchangers. For this purpose the heat exchangers are arranged between the top bricks consisting of graphite blocks. By convection or forced circulation with the aid of pumps the liquid coolant is flowing in a cycle between the individual heat exchangers connected in parallel and a heat sink arranged outside the containment. The distributing and collection pipes are mounted between the upper and lower thermal shield. The heat exchanger compartments themselves consist of double-walled hollow bodies with a disc-shaped section and a columnar part extending from there to one side respectively. (RW) [de

  12. Rare K+ decays from experiment E787

    International Nuclear Information System (INIS)

    Jain, V.

    2000-01-01

    This paper presents the latest results from experiment E787, at Brookhaven National Laboratory, on K + -> π + νbar ν and radiative K + decays. The result for K + -> π + νbar ν uses data collected in runs taken during 1995, 1996 and 1997. In addition, they discuss plans for future measurements of K + -> π + νbar ν

  13. Development of margin assessment methodology of decay heat removal function against external hazards. (2) Tornado PRA methodology

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2014-01-01

    Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi nuclear power station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 10 -10 /ry. (author)

  14. The ratio between the decay heat output and activity content of discharged magnox fuel

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1977-01-01

    Values of the ratio between activity and heat production rate have been calculated for magnox fuel irradiated to 3500 and 8000 MWd.Te -1 and for cooling times of 100, 200 and 500 days. Results are expressed in terms of both MeV.decay -1 and MCi.KW -1 . The results indicate that: for these irradiation and cooling conditions 21 nuclides account for over 99% of the total activity; the calculated values show only small variations with burn-up and cooling time, although the mean energy per decay does fall slightly at 500 days cooling: so for many purposes a median value of 0.63 MeV.decay -1 (0.27 MCi.MW -1 ) may be used; the calculated values have standard deviations ranging from 2.6% at 100 days cooling to 9% at 500 days cooling. (author)

  15. Experimental investigations on scaled models for the SNR-2 decay heat removal by natural convection

    International Nuclear Information System (INIS)

    Hoffmann, H.; Weinberg, D.; Tschoeke, H.; Frey, H.H.; Pertmer, G.

    1986-01-01

    Scaled water models are used to prove the mode of function of the decay heat removal by natural convection for the SNR-2. The 2D and 3D models were designed to reach the characteristic numbers (Richardson, Peclet) of the reactor. In the experiments on 2D models the position of the immersed cooler (IC) and the power were varied. Temperature fields and velocities were measured. The IC installed as a separate component in the hot plenum resulted in a very complex flow behavior and low temperatures. Integrating the IC in the IHX showed a very simple circulating flow and high temperatures within the hot plenum. With increasing power only slightly rising temperature differences within the core and IC were detected. Recalculations using the COMMIX 1B code gave qualitatively satisfying results. (author)

  16. A megawatt-level 28 GHz heating system for the National Spherical Torus Experiment Upgrade

    Directory of Open Access Journals (Sweden)

    Taylor G.

    2015-01-01

    Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at axial toroidal fields of ≤ 1 T and plasma currents, Ip ≤ 2 MA. The development of non-inductive (NI plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0 before the plasma becomes overdense. The increased Te(0 will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  17. A value/impact assessment for alternative decay heat removal systems

    International Nuclear Information System (INIS)

    Cave, L.; Kastenberg, W.E.; Lin, K.Y.

    1984-01-01

    A Value/Impact assessment for several alternative decay heat removal systems has been carried out using several measures. The assessment is based on an extension of the methodology presented in the Value/Impact Handbook and includes the effects of uncertainty. The assessment was carried out as a function of site population density, existing plant features, and new plant features. Value/Impact measures based on population dose are shown to be sensitive to site, while measures which monetize and aggregate risk are less so. The latter are dominated by on-site costs such as replacement power costs. (orig.)

  18. Reconstruction of photon conversions in {tau} lepton decays in the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boehler, Michael

    2009-04-15

    The ATLAS experiment is one of the experiments at the Large Hadron Collider (LHC) which is designed for the search of new elementary particles. To discover the Higgs boson or precisely measure SUSY scenarios, {tau} lepton final states are very powerful decay channels. Therefore the {tau} lepton decay modes have to be identified correctly. Due to interactions between photons from hadronic decay products of the {tau} lepton and detector material electron-positron pairs (photon conversions) may be produced. These lead to additional charged tracks changing the reconstructed {tau} lepton track multiplicity. To avoid such missidentifications, this thesis introduces an explicit photon conversion identification in the very dense {tau} lepton decay environment. Existing tools had to be modified and a new electron identification method has been developed especially for this task. As a first result, the corrected {tau} lepton track multiplicity is presented. (orig.)

  19. Reconstruction of photon conversions in τ lepton decays in the ATLAS experiment

    International Nuclear Information System (INIS)

    Boehler, Michael

    2009-04-01

    The ATLAS experiment is one of the experiments at the Large Hadron Collider (LHC) which is designed for the search of new elementary particles. To discover the Higgs boson or precisely measure SUSY scenarios, τ lepton final states are very powerful decay channels. Therefore the τ lepton decay modes have to be identified correctly. Due to interactions between photons from hadronic decay products of the τ lepton and detector material electron-positron pairs (photon conversions) may be produced. These lead to additional charged tracks changing the reconstructed τ lepton track multiplicity. To avoid such missidentifications, this thesis introduces an explicit photon conversion identification in the very dense τ lepton decay environment. Existing tools had to be modified and a new electron identification method has been developed especially for this task. As a first result, the corrected τ lepton track multiplicity is presented. (orig.)

  20. Search of Neutrinoless Double Beta Decay with the GERDA Experiment

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hoffmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicksó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Seitz, H.; Selivalenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-04-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0 νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). In the first phase of the experiment, a 90% confidence level (C.L.) sensitivity of 2.4 ṡ1025 yr on the 0 νββ decay half-life was achieved with a 21.6 kgṡyr exposure and an unprecedented background index in the region of interest of 10-2 counts/(keVṡkgṡyr). No excess of signal events was found, and an experimental lower limit on the half-life of 2.1 ṡ 1025 yr (90% C.L.) was established. Correspondingly, the limit on the effective Majorana neutrino mass is mee < 0.2- 0.4 eV, depending on the considered nuclear matrix element. The previous claim for evidence of a 0 νββ decay signal is strongly disfavored, and the field of research is open again.

  1. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  2. Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS

    Science.gov (United States)

    Zatschler, S.; COBRA Collaboration

    2017-09-01

    In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.

  3. Localized dryout: An approach for managing the thermal hydrologi-cal effects of decay heat at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T. A.; Nitao, J.J.; Ramspott, L.D.

    1995-11-01

    For a nuclear waste repository in the unsaturated zone at Yucca Mountain, there are two thermal loading approaches to using decay heat constructively -- that is, to substantially reduce relative humidity and liquid flow near waste packages for a considerable time, and thereby limit waste package degradation and radionuclide dissolution and release. ''Extended dryout'' achieves these effects with a thermal load high enough to generate large-scale (coalesced) rock dryout. ''Localized dryout''(which uses wide drift spacing and a thermal load too low for coalesced dryout) achieves them by maintaining a large temperature difference between the waste package and drift wall; this is done with close waste package spacing (generating a high line-heat load) and/or low-thermal-conductivity backfill in the drift. Backfill can greatly reduce relative humidity on the waste package in both the localized and extended dryout approaches. Besides using decay heat constructively, localized dryout reduces the possibility that far-field temperature rise and condensate buildup above the drifts might adversely affect waste isolation

  4. Multi-bundle sodium experiments for thermohydraulics in core subassemblies during natural circulation decay heat removal operation

    International Nuclear Information System (INIS)

    Kamide, H.; Ieda, Y.; Toda, S.; Isozaki, T.; Sugawara, S.

    1993-01-01

    Two types of multi-subassembly sodium experiments, CCTL-CFR tests and PLANDTL-DHX tests, have been carried out in order to investigate thermohydraulics in a fast reactor core during natural circulation. Basic experiments are carried out in CCTL-CFR test rig without inter-wrapper gap and under steady state. Integral experiments are performed in PLANDTL-DHX test rig with the inter-wrapper gap and a dip cooler in an upper plenum under steady state and transient conditions. The first series of the experiments and post analyses showed that inter-subassembly heat transfer had significant effects on the transverse temperature distribution in the subassembly and was strongly coupled with intra-subassembly flow redistribution. And the cold sodium provided by the dip cooler could reduce the hot spot temperature in the pin bundle mainly via the inter-wrapper gap. (author)

  5. Multi-bundle sodium experiments for thermohydraulics in core subassemblies during natural circulation decay heat removal operation

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, H; Ieda, Y; Toda, S; Isozaki, T; Sugawara, S [Reactor Engineering Section, O-arai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation, Narita, O-arai, Ibaraki-ken (Japan)

    1993-02-01

    Two types of multi-subassembly sodium experiments, CCTL-CFR tests and PLANDTL-DHX tests, have been carried out in order to investigate thermohydraulics in a fast reactor coreduring natural circulation. Basic experiments are carried out in CCTL-CFR test rig without inter-wrapper gap and under steady state. Integral experiments are performed in PLANDTL-DHX test rig with the inter-wrapper gap and a dip cooler in an upper plenum under steady state and transient conditions. The first series of the experiments and post analyses showed that inter-subassembly heat transfer had significant effects on the transverse temperature distribution in the subassembly and was strongly coupled with intra-subassembly flow redistribution. And the cold sodium provided by the dip cooler could reduce the hot spot temperature in the pin bundle mainly via the inter-wrapper gap. (author)

  6. Spectroscopy and decay properties with b-hadrons at the ATLAS experiment

    CERN Document Server

    Toms, Konstantin; The ATLAS collaboration

    2015-01-01

    We present the latest results from the ATLAS experiment on hadron decays and spectroscopy, including observation of the B_c(2S) state, production of the B_c+ meson, branching ratio measurements of B_c->J/psiD(), extraction of fragmentation fractions fs/fd via reconstructed Bs->J/psiPhi and Bd->J/psiK decays, and studies of the decay properties of the Lambda_b. We also present the results of searches for the Xb, the bottomonium counterpart to the X(3872) exotic charmonium state.

  7. The CUORE neutrinoless double-beta decay experiment

    International Nuclear Information System (INIS)

    Banks, T.I.

    2014-01-01

    CUORE is an upcoming experiment designed to search for neutrinoless double-beta decay (0νββ) decay in 130 Te. Observation of the process would be a major finding because it would unambiguously establish that neutrinos are Majorana particles (i.e., their own antiparticles) as well as provide information about the absolute neutrino mass scale. The CUORE detector will consist of 988 identical TeO 2 crystal bolometers (containing 206 kg of 130 Te in total) arranged into 19 towers and cooled to about 10 mK at the underground Gran Sasso National Laboratory (LNGS), Italy, which provides the low-background environment necessary for rare event searches of this kind. A predecessor experiment, Cuoricino, ran from 2003-2008 at LNGS and served as a learning ground for CUORE, which will be 20 times larger and exhibit much lower backgrounds. The CUORE detector assembly line has produced its first tower, designated CUORE-0, which is expected to come online in the former Cuoricino cryostat in October 2012 and take data for about 2 years while 19 CUORE towers are assembled. CUORE data taking is expected for 2015-2019. (author)

  8. Measurement of the radiative decay of polarized muons in the MEG experiment

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, A.M.; Bemporad, C.; Cei, F.; D' Onofrio, A.; Dussoni, S.; Galli, L.; Grassi, M.; Nicolo, D.; Sergiampietri, F.; Signorelli, G.; Tenchini, F. [INFN, Sezione di Pisa (Italy); Dipartimento di Fisica, Pisa Univ. (Italy); Bao, Y.; Hildebrandt, M.; Kettle, P.R.; Mtchedlishvili, A.; Papa, A.; Ritt, S. [Paul Scherrer Institut PSI, Villigen (Switzerland); Baracchini, E. [ICEPP, The University of Tokyo, Tokyo (Japan); INFN, Laboratori Nazionali di Frascati, Frascati, Rome (Italy); Berg, F.; Hodge, Z.; Rutar, G. [Paul Scherrer Institut PSI, Villigen (Switzerland); Swiss Federal Institute of Technology ETH, Zurich (Switzerland); Biasotti, M.; De Gerone, M.; Gatti, F.; Pizzigoni, G. [INFN, Sezione di Genova (Italy); Dipartimento di Fisica, Genoa Univ. (Italy); Boca, G.; Cattaneo, P.W.; De Bari, A.; Rossella, M. [INFN, Sezione di Pavia (Italy); Dipartimento di Fisica, Pavia Univ. (Italy); Cavoto, G.; Graziosi, A.; Piredda, G.; Ripiccini, E.; Voena, C. [INFN, Sezione di Roma (Italy); Dipartimento di Fisica, ' ' Sapienza' ' Univ. Rome (Italy); Chiarello, G.; Chiri, C.; Grancagnolo, F.; Panareo, M.; Pepino, A.; Tassielli, G.F. [INFN, Sezione di Lecce (Italy); Dipartimento di Matematica e Fisica, Salento Univ. Lecce (Italy); Fujii, Y.; Iwamoto, T.; Kaneko, D.; Mori, Toshinori; Nakaura, S.; Nishimura, M.; Ogawa, S.; Ootani, W.; Sawada, R.; Uchiyama, Y.; Yoshida, K. [ICEPP, The University of Tokyo, Tokyo (Japan); Grigoriev, D.N. [Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation); Novosibirsk State Technical University, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Haruyama, T.; Mihara, S.; Nishiguchi, H.; Yamamoto, A. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Ieki, K. [Paul Scherrer Institut PSI, Villigen (Switzerland); ICEPP, The University of Tokyo, Tokyo (Japan); Ignatov, F.; Khazin, B.I.; Popov, A.; Yudin, Yu.V. [Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Kang, Tae Im; Lim, G.M.A.; Molzon, W.; You, Z. [University of California, Irvine, CA (United States); Khomutov, N.; Korenchenko, A.; Kravchuk, N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Renga, F. [Paul Scherrer Institut PSI, Villigen (Switzerland); INFN, Sezione di Roma (Italy); Dipartimento di Fisica, ' ' Sapienza' ' Univ. Rome (Italy); Venturini, M. [INFN Sezione di Pisa (Italy); Dipartimento di Fisica, Pisa Univ. (Italy); Scuola Normale Superiore, Pisa (Italy); Collaboration: The MEG Collaboration

    2016-03-15

    We studied the radiative muon decay μ{sup +} → e{sup +}νanti νγ by using for the first time an almost fully polarized muon source. We identified a large sample (∝13,000) of these decays in a total sample of 1.8 x 10{sup 14} positive muon decays collected in the MEG experiment in the years 2009-2010 and measured the branching ratio B(μ{sup +} → eνanti νγ) = (6.03 ± 0.14(stat.) ± 0.53(sys.)) x 10{sup -8} for E{sub e} > 45 MeV and E{sub γ} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for μ{sup +} → e{sup +}γ process. (orig.)

  9. The Majorana Double Beta Decay Experiment: Present Status

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Beene, Jim; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, C. D.; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips II, D. G.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2013-06-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator

  10. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  11. Status of double beta decay experiments using isotopes other than 136Xe

    Science.gov (United States)

    Pandola, L.

    2014-09-01

    Neutrinoless double beta decay is a lepton-number violating process predicted by many extensions of the standard model. It is actively searched for in several candidate isotopes within many experimental projects. The status of the experimental initiatives which are looking for the neutrinoless double beta decay in isotopes other than 136Xe is reviewed, with special emphasis given to the projects that passed the R&D phase. The results recently released by the experiment GERDA are also summarized and discussed. The GERDA data give no positive indication of neutrinoless double beta decay of 76Ge and disfavor in a model-independent way the long-standing observation claim on the same isotope. The lower limit reported by GERDA for the half-life of neutrinoless double beta decay of 76Ge is T1/20ν > 2.1 ṡ1025 yr (90% C.L.), or T1/20ν > 3.0 ṡ1025 yr, when combined with the results of other 76Ge predecessor experiments.

  12. The Collection of Event Data and its Relevance to the Optimisation of Decay Heat Rejection Systems

    International Nuclear Information System (INIS)

    Roughley, R.; Jones, N.

    1975-01-01

    The precision with which the reliability of DHR (Decay Heat Rejection) systems for nuclear reactors can be predicted depends not only upon model representation but also on the accuracy of the data used. In the preliminary design stages when models are being used to arrive at major engineering decisions in relation to plant configuration, the best the designer can do is use the data available at the time. With the present state of the art it is acknowledged that some degree of judgement will have to be exercised particularly for plant involving sodium technology where a large amount of operational experience has not yet been generated. This paper reviews the current efforts being deployed in the acquisition of field data relevant to DHR systems so that improvements in reliability predictions may be realised

  13. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  14. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    Zhao, Hangbin; Yan, Changqi; Sun, Licheng; Zhao, Kaibin; Fa, Dan

    2015-01-01

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  15. Meeting of Specialists on the Reliability of Decay Heat Removal Systems for Fast Reactors. Summary Report

    International Nuclear Information System (INIS)

    1975-10-01

    The Specialists Meeting on Reliability of Decay Heat Removal Systems proposed for Fast Reactors was sponsored by the UKAEA Safety & Reliability Directorate and held at Harwell between 28th April and 1st May, 1975. The meeting was attended by delegates from six countries - (USA, Federal Republic of Germany, France, Japan, USSR and the UK). A list of participants is included in an Appendix to this report. The subject matter of the meeting was concerned with the degree to which the ability to maintain decay heat removal from a fast reactor after shutdown in normal and abnormal circumstances could be guaranteed by design provisions and substantiated by reliability analysis techniques, operational testing etc. Consideration of conditions prevailing after a hypothetical core melt down incident were not included in the subject matter. The deliberations of the meeting were focussed at each working session on a defined theme and its dependant topics as shown in the detailed Agenda included in this report. Although provision had been made in the Agenda for a limited amount of discussion of the decay heat rejection problems of Gas Cooled Fast Reactors, delegates had no contributions to offer on this subject. During each session a Recording Secretary prepared a summary of the main points made by national delegates and of the resulting recommendations and conclusions. These draft summaries were made available to delegates during subsequent sessions of the meeting and approved by them for inclusion in the Summary, General Conclusions and Recommendations provided under Table of Contents (item 3 and 4)

  16. Analysis of Decay Heat Removal by Natural Convection in LMR with a Combined Steam Generator

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Eoh, Jae Hyuk; Han, Ji Woong; Lee, Tae Ho

    2011-01-01

    Liquid metal reactors (LMRs) conventionally employ an intermediate heat transport system (IHTS) to protect the nuclear core during a sodium-water reaction (SWR) event. However these SWR-related components increase plant construction costs. In order to eliminate the need for an IHTS, a combined steam generator, which is an integrated heat exchanger of a steam generator and intermediate heat exchanger (IHX), was proposed by the Korea Atomic Energy Research Institute (KAERI). The objective of this work is to analyze the natural circulation heat removal capability of the rector system using a combined steam generator. As a means of decay heat removal, a normal heat transport path is composed of a primary sodium system, intermediate lead-bismuth circuit combined with SG and steam/water system. This paper presents the results of the possible temperature and natural circulation flows in all circuits during a steady state for a given reactor power level varied as a function of time

  17. Shutdown decay heat removal analysis: Plant case studies and special issues: Summary report

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Cramond, W.R.; Sanders, G.A.; Hatch, S.W.

    1989-04-01

    Shutdown Decay Heat Removal Requirements has been designated as Unresolved Safety Issue (USI) A-45. The overall objectives of the USI A-45 program were to evaluate the safety adequacy of decay heat removal (DHR) systems in existing light water reactor nuclear power plants and to assess the value and impact (benefit-cost) of alternative measures for improving the overall reliability of the DHR function. To provide the technical data required to meet these objectives a program was developed that examined the state of DHR system reliability in a sample of existing plants. This program identified potential vulnerabilities and identified and established the feasibility of potential measures to improve the reliability of the DHR function. A value/impact (V/I) analysis of the more promising of such measures was conducted and documented. This report summarizes those studies. In addition, because of the evolving nature of V/I analyses in support of regulation, a number of supporting studies related to appropriate procedures and measures for the V/I analyses were also conducted. These studies are also summarized herein. This report only summarizes findings of technical studies performed by Sandia National Laboratories as part of the program to resolve this issue. 46 refs., 7 figs., 124 tabs

  18. Interfaces of nuclear structure studies-decay vs. in-beam experiments

    International Nuclear Information System (INIS)

    Grawe, H.; Gorska, M.; Hu, Z.; Roeckl, E.; Lipoglavsek, M.; Fahlander, C.; Rykaczewski, K.

    1999-05-01

    The common interface of β-decay and particle-decay experiments and in-beam studies following fusion, relativistic fission and projectile fragmentation is defined by the search for the best way to extract nuclear structure information. For a few examples selected from the exotic regions of nuclei around 100 Sn and between 68 Ni and 78 Ni it is demonstrated, that complementary spectroscopic data extracted by various methods lead to an understanding of the shell structure at these keypoints of the nuclidic chart. (orig.)

  19. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  20. Decay heat of 235U fission products by beta- and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Dickens, J.K.; Love, T.A.; McConnell, J.W.; Peelle, R.W.

    1976-09-01

    The fast-rabbit facilities of the ORRR were used to irradiate 1- to 10-μg samples of 235 U for 1, 10, and 100 s. Released power is observed using nuclear spectroscopy to permit separate observations of emitted β and γ spectra in successive time intervals. The spectra were integrated over energy to obtain total decay heat and the β- and γ-ray results are summed together. 10 fig, 2 tables

  1. JENDL FP decay data file 2000 and the beta-decay theory

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Katakura, Jun Ichi; Tachibana, Takahiro

    2002-01-01

    JENDL FP Decay Data File 2000 has been developed as one of the special purpose files of the Japanese Evaluated Nuclear Data Library (JENDL), which constitutes a versatile nuclear data basis for science and technology. In the format of ENDF-6 this file includes the decay data for 1087 unstable fission product (FP) nuclides and 142 stable nuclides as their daughters. The primary purpose of this file is to use in the summation calculation of FP decay heat, which plays a critical role in nuclear safety analysis; the loss-of-coolant accident analysis of reactors, for example. The data for a given nuclide are its decay modes, the Q value, the branching ratios, the average energies released in the form of beta- and gamma-rays per decay, and their spectral data. The primary source of the decay data adopted here is the ENSDF (Evaluated Nuclear Structure Data File). The data in ENSDF, however, cover only the measured values. The data of the short-lived nuclides, which are essential for the decay heat calculations at short cooling times, are often fully lacking or incomplete even if they exist. This is mainly because of their short half-life nature. For such nuclides a theoretical model calculation is applied in order to fill the gaps between the true and the experimentally known decay schemes. In practice we have to predict the average decay energies and the spectral data for a lot of short-lived FPs by use of beta-decay theories. Thus the beta-decay theory plays a very important role in generating the FP decay data file

  2. FAKIR: a user-friendly standard for decay heat and activity calculation of LWR fuel

    International Nuclear Information System (INIS)

    Pretesacque, P.; Nimal, J.C.; Huynh, T.D.; Zachar, M.

    1993-01-01

    The shipping casks owned by the transporters and the unloading and storage facilities are subjected by their design safety report to decay heat and activity limits. It is the responsibility of the consignor or the consignee to check the compliance of the fuel assemblies to the shipped or stored with regard to these limiting safety parameters. Considering the diversity of the parties involved in the transport and storage cycle, a standardization has become necessary. This has been achieved by the FAKIR code. The FAKIR development started in 1984 in collaboration between COGEMA, CEA-SERMA and NTL. Its main specifications were to be a user-friendly code, to use the contractual data given in the COGEMA transport and reprocessing sheet 1 as input, and to over-estimate decay heat and activity. Originally based on computerizable standards such as ANSI or USNRC, the FAKIR equations and data libraries are now based on the fully qualified PEPIN/APOLLO calculation codes. FAKIR is applicable to all patterns of irradiation histories, with burn up from 1000 MWd/TeU to 70.000 MWd/TeU and cooling times from 1 second to 100 years. (J.P.N.)

  3. Combining and comparing neutrinoless double beta decay experiments using different nuclei

    Science.gov (United States)

    Bergström, Johannes

    2013-02-01

    We perform a global fit of the most relevant neutrinoless double beta decay experiments within the standard model with massive Majorana neutrinos. Using Bayesian inference makes it possible to take into account the theoretical uncertainties on the nuclear matrix elements in a fully consistent way. First, we analyze the data used to claim the observation of neutrinoless double beta decay in 76Ge, and find strong evidence (according to Jeffrey's scale) for a peak in the spectrum and moderate evidence for that the peak is actually close to the energy expected for the neutrinoless decay. We also find a significantly larger statistical error than the original analysis, which we include in the comparison with other data. Then, we statistically test the consistency between this claim with that of recent measurements using 136Xe. We find that the two data sets are about 40 to 80 times more probable under the assumption that they are inconsistent, depending on the nuclear matrix element uncertainties and the prior on the smallest neutrino mass. Hence, there is moderate to strong evidence of incompatibility, and for equal prior probabilities the posterior probability of compatibility is between 1.3% and 2.5%. If one, despite such evidence for incompatibility, combines the two data sets, we find that the total evidence of neutrinoless double beta decay is negligible. If one ignores the claim, there is weak evidence against the existence of the decay. We also perform approximate frequentist tests of compatibility for fixed ratios of the nuclear matrix elements, as well as of the no signal hypothesis. Generalization to other sets of experiments as well as other mechanisms mediating the decay is possible.

  4. PANDA passive decay heat removal transient test results

    International Nuclear Information System (INIS)

    Bandurski, Th.; Dreier, J.; Huggenberger, M.

    1997-01-01

    PANDA is a large scale facility for investigating the long-term decay heat removal from the containment of a next generation of 'passive' Advanced Light Water Reactors (ALWR). PANDA was used to examine the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). The first PANDA test series had the dual objectives of demonstrating the performance of the SBWR PCCS and extending the data base available for containment analysis code qualification. The test objectives also include the study of the effects of mixing and stratification of steam and noncondensible gases in the drywell (DW) and in the suppression chamber or wetwell (WW). Ten tests were conducted in the course of the PANDA SBWR Program. The tests demonstrated a favorable and robust overall PCCS performance under different conditions. The present paper focuses on the main phenomena observed during the tests with respect to PCCS operation and DW gas mixing. (author)

  5. Passive Decay Heat Removal System Options for S-CO2 Cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Moon, Jangsik; Jeong, Yong Hoon; Lee, Jeong Ik

    2014-01-01

    To achieve modularization of whole reactor system, Micro Modular Reactor (MMR) which has been being developed in KAIST took S-CO 2 Brayton power cycle. The S-CO 2 power cycle is suitable for SMR due to high cycle efficiency, simple layout, small turbine and small heat exchanger. These characteristics of S-CO 2 power cycle enable modular reactor system and make reduced system size. The reduced size and modular system motived MMR to have mobility by large trailer. Due to minimized on-site construction by modular system, MMR can be deployed in any electricity demand, even in isolated area. To achieve the objective, fully passive safety systems of MMR were designed to have high reliability when any offsite power is unavailable. In this research, the basic concept about MMR and Passive Decay Heat Removal (PDHR) system options for MMR are presented. LOCA, LOFA, LOHS and SBO are considered as DBAs of MMR. To cope with the DBAs, passive decay heat removal system is designed. Water cooled PDHR system shows simple layout, but has CCF with reactor systems and cannot cover all DBAs. On the other hand, air cooled PDHR system with two-phase closed thermosyphon shows high reliability due to minimized CCF and is able to cope with all DBAs. Therefore, the PDHR system of MMR will follows the air-cooled PDHR system and the air cooled system will be explored

  6. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  7. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  8. Experimental and numerical simulation of passive decay heat removal by sump cooling after cool melt down

    International Nuclear Information System (INIS)

    Knebel, J.U.; Kuhn, D.; Mueller, U.

    1997-01-01

    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase and two-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software package Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a first statement with regard to the feasibility of the sump cooling concept. 11 refs., 9 figs., 3 tabs

  9. ELECTRON ENERGY DECAY IN HELIUM AFTERGLOW PLASMAS AT CRYOGENIC TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Goldan, P. D.; Cahn, J. H.; Goldstein, L.

    1963-10-15

    Studies of decaying afterglow plasmas in helium were ined near 4 deg K by immersion in a liquid helium bath. By means of a Maser Radiometer System, the electron temperature was followed below 200 deg K. Guided microwave propagation and wave interaction techniques premit determination of election number density and collision frequencies for momentum transfer. Electron temperature decay rates of the order of 150 mu sec/p(mm Hg alpha 4.2 deg K) were found. Since thermal relaxation by elastic collisions should be some two orders of magnitude faster than this, the electrons appear to be in quasiequilibrium with a slowly decaying internal heating source. Correlation of the expected decay rates of singlet metastable helium atoms with the electron temperature decay gives good agreement with the present experiment. (auth)

  10. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  11. Lunar heat-flow experiment

    Science.gov (United States)

    Langseth, M. G.

    1977-01-01

    The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.

  12. Effect of tin oxide nano particles and heat treatment on decay resistance and physical properties of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2014-11-01

    Full Text Available This research was conducted to investigate the effect of Tin oxide nanoparticles and heat treatment on decay resistance and physical properties of beech wood. Biological and physical test samples were prepared according to EN-113 and ASTM-D4446-05 standards respectively. Samples were classified into 4 groups: control, impregnation with Tin oxide nanoparticles, heat treatment and nano-heat treatment. Impregnation with Tin oxide nano at 5000ppm concentration was carried out in the cylinder according to Bethell method. Then, samples were heated at 140, 160 and 185˚C for 2 and 4 hours. According to results, decay resistance improved with increasing time and temperature of heat treatment. Least weight loss showed 46.39% reduction in nano-heat samples treated at 180˚C for 4 hours in comparison with control at highest weight loss. Nano-heat treated samples demonstrated the maximum amount of water absorption without significant difference with control and nanoparticles treated samples. Increase in heat treatment temperature reduced water absorption so that it is revealed 47.8% reduction in heat treated samples at 180°C for 4h after 24h immersion in water. In nano-heat treated samples at 180˚C for 2h was measured least volume swelling. Volume swelling in nano-treated samples decreased 8.7 and 22.76% after 2 and 24 h immersion in comparison with the control samples respectively.

  13. Passive decay heat removal by natural air convection after severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  14. Heating tokamaks by parametric decay of intense extraordinary mode radiation

    International Nuclear Information System (INIS)

    Elder, G.B.; Perkins, F.W.

    1979-08-01

    Intense electron beam technology has developed coherent, very high power (350 megawatts) microwave sources at frequencies which are a modest fraction of the electron cyclotron frequency in tokamaks. Propagation into a plasma occurs via the extraordinary mode which is subject to parametric decay instabilities in the density range ω/sub o/ 2 2 < ω/sub o/(ω/sub o/ + Ω/sub e/). For an incident wave focused onto a hot spot by a dish antenna of radius rho, the effective threshold power P/sub o/ required to induced effective parametric heating is P/sub o/ approx. = 10 MW x/rho Ω/sub e//ω/sub o/ (T/sub e//1 keV)/sup 3/2/ where x denotes the distance to the hot spot

  15. Easy-to-use application programs for decay heat and delayed neutron calculations on personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Nagoya Univ. (Japan)

    1998-03-01

    Application programs for personal computers are developed to calculate the decay heat power and delayed neutron activity from fission products. The main programs can be used in any computers from personal computers to main frames because their sources are written in Fortran. These programs have user friendly interfaces to be used easily not only for research activities but also for educational purposes. (author)

  16. B decays to wrong sign charm mesons at the DELPHI experiment

    International Nuclear Information System (INIS)

    Schwanda, C.

    2001-05-01

    In the present work, b hadron decays to 'wrong sign charm' mesons, b → D-bar 0 X, b → D - X and b → D s - X, are studied using the data collected by the DELPHI experiment in the years 1994 and 1995, and the corresponding branching fractions are extracted. Decays b → c-bar are expected to occur through the Cabibbo favored transitions b → cW - and W - → cbar s, and hence wrong sign charm decays are in fact double charm transitions. The interest in this type of b decays is triggered by different motivations. At first, wrong sign charm decays provide evidence for an alternative mechanism leading to the production of charmed mesons in b decay ('upper vertex charm'), and, second, the double charm rate is related to n c , the mean number of charm quarks (and anti-quarks) produced per b decay, n c =1 + Br(b → c c-bar s). Predictions of the semileptonic B meson branching fraction, based on the heavy quark effective theory (HQET) and the heavy quark expansion (HQE), also fix the value of n c . By measuring the double charm rate, we can thus probe these predictions. The measurement of the inclusive wrong sign branching fractions proceeds through the following steps: At first, the charmed meson decays D 0 → K - π + , D + → K - π + π + and D s + → φ π + → K + K - π + are exclusively reconstructed in the DELPHI data. The charge of the c quark confined inside the charmed meson is determined by the charge of the kaon (D 0 , D + ) or by the charge of the pion (D s + ). The b quark charge at decay time in the charmed meson hemisphere is estimated by using identified particles. A neural network approach is adopted. By correlating both charge informations, we obtain the main discriminant variable for selecting wrong sign mesons. We measure the following branching ratios: Br(b → D-bar X)=(9.3 ± 1.7(stat) ± 1.3(syst))% and Br(b → D s - X)=(10.3 ± 1.1(stat) ± 2.9(syst))% (the first error is statistical, the second one systematic). This result is

  17. Instrumentation and Control Systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeong Yeon; Kim, Hyung Mo; Cho, Youn Gil; Kim, Jong Man; Ko, Yung Joo; Kang, Byeong Su; Jung, Min Hwan; Jeong, Ji Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A forced-draft sodium-to-air heat exchanger (FHX) is a part of decay heat removal system (DHRS) in Prototype Gen-IV Sodium-cooled fast reactor (PGSFR), which is being developed at Korea Atomic Energy Research Institute (KAERI). Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA) is a test facility for verification and validation of the design code for a forced-draft sodium-to-air heat exchanger (FHX). In this paper, we have provided design and fabrication features for the instrumentation and control systems of SELFA. In general, the instrumentation systems and control systems are coupled for measurement and control of process variables. Instrumentation systems have been designed for investigating thermal-hydraulic characteristics of FHX and control systems have been designed to control the main components (e.g. electromagnetic pumps, heaters, valves etc.) required for test in SELFA. In this paper, we have provided configurations of instrumentation and control systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA). The instrumentation and control systems of SELFA have been implemented based on the expected operation ranges and lesson learned from operational experience of 'Sodium integral effect test loop for safety simulation and assessment-1' (STELLA-1)

  18. Physics design of a 28 GHz electron heating system for the National Spherical Torus experiment upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Hosea, J. C.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Harvey, R. W. [CompX, Del Mar, California 92014 (United States); Raman, R. [University of Washington, Seattle, Washington 98195 (United States); Smirnov, A. P. [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-02-12

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTXU research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the I{sub p} decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  19. Design of a cavity heat pipe receiver experiment

    Science.gov (United States)

    Schneider, Michael G.; Brege, Mark H.; Greenlee, William J.

    1992-01-01

    A cavity heat pipe experiment has been designed to test the critical issues involved with incorporating thermal energy storage canisters into a heat pipe. The experiment is a replication of the operation of a heat receiver for a Brayton solar dynamic power cycle. The heat receiver is composed of a cylindrical receptor surface and an annular heat pipe with thermal energy storage canisters and gaseous working fluid heat exchanger tubes surrounding it. Hardware for the cavity heat pipe experiment will consist of a sector of the heat pipe, complete with gas tube and thermal energy storage canisters. Thermal cycling tests will be performed on the heat pipe sector to simulate the normal energy charge/discharge cycle of the receiver in a spacecraft application.

  20. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  1. Development of core hot spot evaluation method for decay heat removal by natural circulation under transient conditions in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki; Doda, Norihiro; Kamide, Hideki; Watanabe, Osamu; Ohkubo, Yoshiyuki

    2010-01-01

    Toward the commercialization of fast reactors, a design study of Japan Sodium-cooled Fast Reactor (JSFR) is being performed. In this design study, the adoption of decay heat removal system operated by fully natural circulation is being examined from viewpoints of economic competitiveness and passive safety. This paper describes a new evaluation method of core hot spot under transient conditions from forced to natural circulation operations that is necessary for confirming feasibility of the fully natural circulation decay heat removal system. The new method consists of three analysis steps in order to include effects of thermal hydraulic phenomena particular to the natural circulation decay heat removal, e.g., flow redistribution in fuel assemblies caused by buoyancy force, and therefore it enables more rational hot spot evaluation rather than conventional ones. This method was applied to a hot spot evaluation of loss-of-external-power event and the result was compared with those by conventional 1D and detailed 3D simulations. It was confirmed that the proposed method can estimate the hot spot with reasonable degree of conservativeness. (author)

  2. Design of DC Conduction Pump for PGSFR Active Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Hong, Jonggan; Lee, Taeho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A DC conduction pump has been designed for the ADHRS of PGSFR. A VBA code developed by ANL was utilized to design and optimize the pump. The pump geometry dependent parameters were optimized to minimize the total current while meeting the design requirements. A double-C type dipole was employed to produce the calculated magnetic strength. Numerical simulations for the magnetic field strength and its distribution around the dipole and for the turbulent flow under magnetic force will be carried out. A Direct Current (DC) conduction Electromagnetic Pump (EMP) has been designed for Active Decay Heat Removal System (ADHRS) of PGSFR. The PGSFR has active as well as passive systems for the DHRS. The passive DHRS (PDHRS) works by natural circulation head and the ADHRS is driven by an EMP for the DHRS sodium loop and a blower for the finned-tube sodium-to-air heat exchanger (FHX). An Annular Linear Induction Pump (ALIP) can be also considered for the ADHRS, but DC conduction pump has been chosen. Selection basis of DHRS EMP is addressed and EMP design for single ADHRS loop with 1MWt heat removal capacity is introduced.

  3. Reconstruction of tau lepton decays and applications in the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Peter [Rheinische Friedrich-Wilhelms-Universitaet Bonn (Germany)

    2016-07-01

    Final states with hadronically decaying tau leptons play an important part in the physics programme of the ATLAS experiment. Examples are measurements of Standard Model processes, evidence of the Higgs-boson Yukawa couplings to tau leptons, and searches for new physics phenomena, such as Supersymmetry. These analyses depended on robust tau reconstruction and excellent particle identification algorithms that provided suppression of backgrounds from jets, electrons and muons. I present a new ''particle flow'' method of reconstructing the individual charged and neutral hadrons in tau decays with the ATLAS detector which leads to a significant improvement in the tau energy and directional resolution. It further gives access to the individual charged and neutral hadron four-momenta and offers a high purity decay mode selection. These features will play a particularly important role in analyses that exploit tau spin information, such as a measurement of the CP mixture of the Higgs boson in H → ττ decays.

  4. Hadronic and rare B decays with the BaBar and Belle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Prudent, Xavier [Technische Univ. Dresden, Dresden (Germany)

    2012-05-07

    We review recent experimental results on Bd and Bs mesons decays by the BaBar and Belle experiments. These include measurements of the color-suppressed decays B¯0 → D(*)0h0,h0 = π0,η,η',ω, observation of the baryonic decay B¯0 → Λc+Λ¯K, measurements of the charmless decays B → ηh,h = π,K, B → Kπ, and observation of CP eigenstates in the Bs decays: Bs0 → J/ψf0(980), Bs0 → J/ψf0(1370) and Bs0 → J/ψη. As a result, the theoretical implications of these results will be considered.ided

  5. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    OpenAIRE

    Stankunas Gediminas; Tidikas Andrius

    2017-01-01

    This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-c...

  6. Experimental observation of microwave absorption and electron heating due to the two plasmon decay instability and resonance absorption

    International Nuclear Information System (INIS)

    Rasmussen, D.A.

    1981-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in two experimental devices. In the first device an investigation was made of microwave absorption and electron heating due to the parametric decay of microwaves into electron plasma waves (Two Plasmon Decay instability, TPDI), modeling a process which can occur near the quarter critical surface in laser driven pellets. P-polarized microwave (f = 1.2 GHz, P 0 less than or equal to 12 kW) are applied to an essentially collisionless, inhomogeneous plasma, in an oversized waveguide, in the U.C. Davis Prometheus III device. The initial density scale length near the quarter critical surface is quite long (L/lambda/sub De/ approx. = 3000 or k 0 L approx. = 15). The observed threshold power for the TPDI is quite low (P/sub T/approx. = 0.1 kW or v/sub os//v/sub e/ approx. = 0.1). Near the threshold the decay waves only occur near the quarter critical surface. As the incident power is increased above threshold, the decay waves spread to lower densities, and for P 0 greater than or equal to lkW, (v/sub os//v/sub e/ greater than or equal to 0.3) suprathermal electron heating is strong for high powers (T/sub H/ less than or equal to 12 T/sub e/ for P 0 less than or equal to 8 kW or v/sub os//v/sub e/ less than or equal to 0.9)

  7. Research Proposal for an Experiment to Search for the Decay {\\mu} -> eee

    CERN Document Server

    Blondel, A.; Pohl, M.; Bachmann, S.; Berger, N.; Kiehn, M.; Schoning, A.; Wiedner, D.; Windelband, B.; Eckert, P.; Schultz-Coulon, H.-C.; Shen, W.; Fischer, P.; Peric, I.; Hildebrandt, M.; Kettle, P.-R.; Papa, A.; Ritt, S.; Stoykov, A.; Dissertori, G.; Grab, C.; Wallny, R.; Gredig, R.; Robmann, P.; Straumann, U.

    2013-01-01

    We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by exploiting modern silicon pixel detectors providing high spatial resolution and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.

  8. The search for 0νββ decay with the GERDA experiment: Status and prospects

    Science.gov (United States)

    Majorovits, B.

    2015-08-01

    The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T1/2 0 v>2.1 ṡ1025 . A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.

  9. JNDC FP decay data file

    International Nuclear Information System (INIS)

    Yamamoto, Tohru; Akiyama, Masatsugu

    1981-02-01

    The decay data file for fission product nuclides (FP DECAY DATA FILE) has been prepared for summation calculation of the decay heat of fission products. The average energies released in β- and γ-transitions have been calculated with computer code PROFP. The calculated results and necessary information have been arranged in tabular form together with the estimated results for 470 nuclides of which decay data are not available experimentally. (author)

  10. Conversion-electron experiment to characterize the decay of the 237Np shape isomer

    International Nuclear Information System (INIS)

    Henry, E.A.; Becker, J.A.; Bauer, R.W.; Gardner, D.G.; Decman, D.J.; Meyer, R.A.; Roy, N.; Sale, K.E.

    1987-01-01

    Conversion electrons from the decay of low-lying levels of 237 Np have been measured to detect the population of these levels by gamma-ray decay of the 237 Np shape isomer. Analysis of the 208-keV transition L conversion-electron peak gives an upper limit of about 17 μb for the population of the 3/2 - 267-keV level in 237 Np from the shape isomer decay. Model calculations are compared with the measured limit. Improvements are suggested for this experiment. 9 refs., 4 figs

  11. Uncertainty of decay heat calculations originating from errors in the nuclear data and the yields of individual fission products

    International Nuclear Information System (INIS)

    Rudstam, G.

    1979-01-01

    The calculation of the abundance pattern of the fission products with due account taken of feeding from the fission of 235 U, 238 U, and 239 Pu, from the decay of parent nuclei, from neutron capture, and from delayed-neutron emission is described. By means of the abundances and the average beta and gamma energies the decay heat in nuclear fuel is evaluated along with its error derived from the uncertainties of fission yields and nuclear properties of the inddividual fission products. (author)

  12. Time reversal in polarized neutron decay: the emiT experiment

    CERN Document Server

    Jones, G L; Anaya, J M; Bowles, T J; Chupp, T E; Coulter, K P; Dewey, M S; Freedman, S J; Fujikawa, B K; García, A; Greene, G L; Hwang, S R; Lising, L J; Mumm, H P; Nico, J S; Robertson, R G H; Steiger, T D; Teasdale, W A; Thompson, A K; Wasserman, E G; Wietfeldt, F E; Wilkerson, J F

    2000-01-01

    The standard electro-weak model predicts negligible violation of time-reversal invariance in light quark processes. We report on an experimental test of time-reversal invariance in the beta decay of polarized neutrons as a search for physics beyond the standard model. The emiT collaboration has measured the time-reversal-violating triple-correlation in neutron beta decay between the neutron spin, electron momentum, and neutrino momentum often referred to as the D coefficient. The first run of the experiment produced 14 million events which are currently being analyzed. However, a second run with improved detectors should provide greater statistical precision and reduced systematic uncertainties.

  13. Search for heavy neutrino decays in the BEBC beam dump experiment

    Science.gov (United States)

    Cooper-Sarkar, A. M.; Haywood, S. J.; Parker, M. A.; Sarkar, S.; Barnham, K. W. J.; Bostock, P.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits | Uøi| 2, | Ue i| 2 < 10 -6-10 -7 are obtained for neutrino mass eigenstates vi of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on | Uøi| 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate v3 in particular, we obtain the limits | Uø3 | 2 < 10 -7-10 -8, | Ue3 | 2 < 10 -9-10 -10 for the mass range 150-190 MeV, assuming the v3 to be produced directly in charmed F meson decays.

  14. Introduction to charm decay analysis in fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bediaga, Ignacio; Goebel, Carla

    1996-01-01

    We present an introduction to data analysis in Experimental High Energy Physics, and some concepts and useful tools are discussed. To illustrate, we use the data of E-791, a fixed target experiment recently realized at Fermilab. In particular, we analyse decay modes of D{sup +} meson with three charged particles in the final state. (author). 8 refs., 22 figs., 1 tab.

  15. Introduction to charm decay analysis in fixed target experiments

    International Nuclear Information System (INIS)

    Bediaga, Ignacio; Goebel, Carla.

    1996-01-01

    We present an introduction to data analysis in Experimental High Energy Physics, and some concepts and useful tools are discussed. To illustrate, we use the data of E-791, a fixed target experiment recently realized at Fermilab. In particular, we analyse decay modes of D + meson with three charged particles in the final state. (author). 8 refs., 22 figs., 1 tab

  16. Gerda: A new 76Ge Double Beta Decay Experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Simgen, Hardy

    2005-01-01

    In the new 76 Ge double beta decay experiment Gerda [I. Abt et al., arXiv hep-ex/0404039; Gerda proposal, to be submitted to the Gran Sasso scientific committee] bare diodes of enriched 76 Ge will be operated in highly pure liquid nitrogen or argon. The goal is to reduce the background around Q ββ =2039 keV below 10 -3 counts/(kg-bar keV-bar y). With presently available diodes from the Igex and HdMs experiments the current evidence for neutrinoless double beta decay [H.-V. Klapdor-Kleingrothaus, et al., Mod. Phys. Lett. A16 (2001) 2409ff] can unambigously be checked within one year of measurement

  17. TRIAM-1 turbulent heating experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1983-02-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by wave-particle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated.

  18. TRIAM-1 turbulent heating experiment

    International Nuclear Information System (INIS)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro

    1983-01-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by waveparticle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated. (Kako, I.)

  19. Activation, decay heat, and waste classification studies of the European DEMO concept

    Science.gov (United States)

    Gilbert, M. R.; Eade, T.; Bachmann, C.; Fischer, U.; Taylor, N. P.

    2017-04-01

    Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calculations provide information about the neutron shielding requirements, maintenance schedules, and waste disposal prospects; thereby guiding future development. Extensive neutron-transport and inventory calculations have been performed for a reference DEMO reactor model with four different tritium-breeding blanket concepts. The results have been used to chart the post-operation variation in activity and decay heat from different vessel components, demonstrating that the shielding performance of the different blanket concepts—for a given blanket thickness—varies significantly. Detailed analyses of the simulated nuclide inventories for the vacuum vessel (VV) and divertor highlight the most dominant radionuclides, potentially suggesting how changes in material composition could help to reduce activity. Minor impurities in the raw composition of W used in divertor tiles, for example, are shown to produce undesirable long-lived radionuclides. Finally, waste classifications, based on UK regulations, and a recycling potential limit, have been applied to estimate the time-evolution in waste masses for both the entire vessel (including blanket modules, VV, divertor, and some ex-vessel components) and individual components, and also to suggest when a particular component might be suitable for recycling. The results indicate that the large mass of the VV will not be classifiable as low level waste on the 100 year timescale, but the majority of the divertor will be, and that both components will be potentially recyclable within that time.

  20. Experience and Prospects of Nuclear Heat Application

    International Nuclear Information System (INIS)

    Woite, G.; Konishi, T.; Kupitz, J.

    1998-01-01

    Relevant technical characteristics of nuclear reactors and heat application facilities for district heating, process heat and seawater desalination are presented and discussed. The necessity of matching the characteristics of reactors and heat applications has consequences for their technical and economic viability. The world-wide operating experience with nuclear district heating, process heating, process heat and seawater desalination is summarised and the prospects for these nuclear heat applications are discussed. (author)

  1. Experimental and numerical simulation of passive decay heat removal by sump cooling after core melt down

    International Nuclear Information System (INIS)

    Knebel, J.U.; Mueller, U.

    1997-01-01

    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The results are applied to the SUCO program that experimentally and numerically investigates the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. (author)

  2. Experimental and numerical simulation of passive decay heat removal by sump cooling after core melt down

    Energy Technology Data Exchange (ETDEWEB)

    Knebel, J.U.; Mueller, U. [Forschungszentrum Karlsruhe - Technik und Umwelt Inst. fuer Angewandte Thermo- und Fluiddynamik (IATF), Karlsruhe (Germany)

    1997-12-31

    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The results are applied to the SUCO program that experimentally and numerically investigates the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and the Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. (author)

  3. Charm and beauty decays in the ALEPH experiment

    International Nuclear Information System (INIS)

    Boucrot, J.

    1992-05-01

    Results of the ALEPH experiment at LEP are presented on charm and beauty decays, from data taken in 1990 and 1991. Several exclusive channels of charm and beauty mesons are seen. Evidence is given for the production of beauty baryons from correlations between a high Pt lepton and a Λ 0 or a Λ c baryon. Finally, first evidence is given for the production of the strange B meson, from Ds-lepton correlations. (author) 7 refs., 7 figs

  4. Charm and beauty decays in the ALEPH experiment

    International Nuclear Information System (INIS)

    Boucrot, J.

    1992-01-01

    Results of the ALEPH experiment at LEP are presented on charm and beauty decays, from data taken in 1990 and 1991. Several exclusive channels of charm and beauty mesons are seen. Evidence is given for the production of beauty baryons from correlations between a high Pt lepton and a Λ 0 or a Λ c baryon. Finally, first evidence is given for the production of the strange B meson, from Ds-lepton correlations. (author) 7 refs.; 7 figs

  5. Evaluation of the decay heat removal capability using the concept of a thermosyphon in the liquid metal reactor

    International Nuclear Information System (INIS)

    Kim, Y. S.; Sim, Y. S.; Kim, W. K.

    2000-01-01

    A study related to understand the characteristics of the heat pipe and thermosyphon was performed to evaluate their applicabilities to the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The possible heat transfer rate by the heat pipe and thermosyphon was reviewed to compare the required capability in the PSDRS. A quantitative comparison was done between the current PSDRS and the modified PSDRS with the thermosyphon. The result showed the dominant heat transfer rate in the air channel, e.g. radiation or convection, is different from each other. The total heat transfer rate is not sensitive to the operating temperature of the thermosyphon. The heat removal by the air in the modified case is relatively reduced and the resultant outlet temperature appears less than above 10 .deg. C. A reversal heat transfer between the air and the thermosyphon may exist near the exit of the active heat transfer region. The total heat transfer rate by the modified case showed about 20∼40% increase relative to the reference one

  6. The SNO+ experiment for neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Lozza, Valentina; Krosigk, Belina von; Soerensen, Arnd; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Dresden (Germany)

    2015-07-01

    SNO+ is a large liquid scintillator based experiment that re-uses the Sudbury Neutrino Observatory detector. The detector, located 2 km underground in a mine near Sudbury, Canada, consists of a 12 m diameter acrylic vessel which will be filled with 780 tonnes of liquid scintillator. The main physics goal of SNO+ is to search for the neutrinoless double-beta (0n2b) decay of {sup 130}Te. During the double-beta phase, the liquid scintillator will be initially loaded with 0.3% natural tellurium (nearly 800 kg of {sup 130}Te). During this demonstration phase we anticipate that we will achieve a sensitivity in the region just above the inverted neutrino mass hierarchy. Recently the possibility to deploy up to 10 times more natural tellurium is being developed, by which SNO+ could explore, in the near future, deep into the parameter space for the inverted hierarchy. Designed as a general purpose neutrino experiment, SNO+ can additionally measure the reactor neutrino oscillations, geo-neutrinos in a geologically-interesting location, watch supernova neutrinos and measure low energy solar neutrinos. A first commissioning phase with the detector filled with water has started in autumn 2014, while full running with water will take place in 2015. Transition to the scintillator phase will start towards the end of 2015. The 0n2b decay phase is foreseen for the 2016.

  7. Selected Measurements of Rare Decays at the LHCb Experiment

    CERN Document Server

    Pikies, Malgorzata

    2016-01-01

    Experimental results of rare decays B$^0$$\\to K*^0\\mu\\mu$, B$^0 \\to K*^0$ee, $\\Lambda_b\\to\\Lambda\\mu\\mu$ and B$^0_s$ governed by Flavour Changing Neutral Current transitions are discussed in this paper. The angular distributions and differential branching fractions measurements were performed using data corresponding to an integrated luminosity of 3:0 fb$^{-1}$ collected at the LHCb experiment.

  8. Measurement of CP Violation Parameters in B Quark Decays to Charm Anticharm Down Quarks, Exclusive Decays at the BABAR Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Justin E.

    2003-04-03

    The BABAR experiment at SLAC provides an opportunity for measurement of CP violation in B decays. A measurement of time-dependent CP violating asymmetries using exclusive B meson decays where the b quark decays to c{bar c}d (including B{sup 0} {yields} D*{sup +}D*{sup -} and B{sup 0} {yields} D*{sup {+-}}D{sup {-+}} decays) is presented here. This is the first measurement of CP violation in a mode sensitive to the Unitarity Triangle parameter sin2{beta} outside of decays containing charmonium. It provides a comparison to measurements of sin2{beta} using b {yields} c{bar c}s, and permits an observation into potential new physics sources of CP violation, such as supersymmetry, via differences between these measurements and those of B{sup 0} {yields} J/{psi} K{sub S}{sup 0} as statistics of reconstructed neutral B decays to D{sup (*)+} D{sup (*)-} increase. The measured value of the time-dependent CP violating asymmetries are: S = 0.38 {+-} 0.88(stat) {+-} 0.12(syst) and C = -0.30 {+-} 0.50(stat) {+-} 0.13(syst) for B{sup 0} {yields} D*{sup -} D{sup +}; S = -0.43 {+-} 1.41(stat) {+-} 0.23(syst) and C = 0.53 {+-} 0.74(stat) {+-} 0.15(syst) for B{sup 0} {yields} D*{sup +} D{sup -}; and S = -0.05 {+-} 0.45(stat) {+-} 0.05(syst) and C = 0.12 {+-} 0.30(stat) {+-} 0.05(syst) for B{sup 0} {yields} D*{sup -} D{sup +}; where S corresponds to CP violation in the interference of mixing and decay and C corresponds to CP violation in decay.

  9. Radioactivity and decay heat generation in precambrian magmatic rocks (with the South Pamirs as an example)

    International Nuclear Information System (INIS)

    Batyrmurzaev, A.S.; Alibekov, G.I.; Bekieva, A.A.

    2003-01-01

    The evaluation of the heat generation share in the results of the long-living radioactive elements (RAE) decay in the Earth surface layers is accomplished on the basis of the data on the uranium and thorium concentration in the precambrian magmatic rocks of the South Pamirs. It was supposed by the calculations, that the value of the heat flux, generated by the rocks, is determined mainly by the RAE content in the Earth upper layer crust itself of 10-15 km. It is shown that the radioheat generation share is within the range of 5-10% from the measured values of the geothermal flows [ru

  10. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors. Proceedings of a specialists meeting held in Juelich, Germany, 6-8 July 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-15

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA`s International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs.

  11. The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.; Aguayo Navarrete, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2012-12-01

    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana Experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to validate whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.

  12. The Milano-Gran Sasso double beta decay experiment: toward a 20-crystal array

    International Nuclear Information System (INIS)

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-01-01

    TeO 2 thermal detectors are being used by the Milano group to search for neutrinoless double beta decay of 130 Te. An upper limit for neutrinoless decay half life of 2.1 x 10 22 yr at 90% CL obtained with a 334 g TeO 2 detector has been previously reported. To improve the sensitivity of the experiment an array of twenty 340 g TeO 2 crystals will be realised in the next future. As a first step toward the realisation of that experiment a 4 crystal detector has been tested in the Gran Sasso refrigerator. Detector performances, data acquisition and analysis are discussed. (orig.)

  13. Experimental evaluation of sodium to air heat exchanger performance

    International Nuclear Information System (INIS)

    Vinod, V.; Pathak, S.P.; Paunikar, V.D.; Suresh Kumar, V.A.; Noushad, I.B.; Rajan, K.K.

    2013-01-01

    Highlights: ► Sodium to air heat exchangers are used to remove the decay heat produced in fast breeder reactor after shutdown. ► Finned tube sodium to air heat exchanger with sodium on tube side was tested for its heat transfer performance. ► A one dimensional computer code was validated by the experimental data obtained. ► Non uniform sodium and air flow distribution was present in the heat exchanger. - Abstract: Sodium to air heat exchangers (AHXs) is used in Prototype Fast Breeder Reactor (PFBR) circuits to reject the decay heat produced by the radioactive decay of the fission products after reactor shutdown, to the atmospheric air. The heat removal through sodium to air heat exchanger maintains the temperature of reactor components in the pool within safe limits in case of non availability of normal heat transport path. The performance of sodium to air heat exchanger is very critical to ensure high reliability of the decay heat removal systems in sodium cooled fast breeder reactors. Hence experimental evaluation of the adequacy of the heat transfer capability gives confidence to the designers. A finned tube cross flow sodium to air heat exchanger of 2 MW heat transfer capacity with sodium on tube side and air on shell side was tested in the Steam Generator Test Facility at Indira Gandhi Center for Atomic Research, India. Heat transfer experiments were carried out with forced circulation of sodium and air, which confirmed the adequacy of heat removal capacity of the heat exchanger. The testing showed that 2.34 MW of heat power is transferred from sodium to air at nominal flow and temperature conditions. A one dimensional computer code developed for design and analysis of the sodium to air heat exchanger was validated by the experimental data obtained. An equivalent Nusselt number, Nu eq is derived by approximating that the resistance of heat transfer from sodium to air is contributed only by the film resistance of air. The variation of Nu eq with respect

  14. Neutron-induced Backgrounds in 134Xe for Large-Scale Neutrinoless Double-Beta Decay Experiments

    Science.gov (United States)

    Moriguchi, Nina; Kidd, Mary; Tornow, Werner

    2016-09-01

    136Xe is used in large neutrinoless double-beta (0 νββ) decay experiments, such as KamLAND- Zen and EXO 200. Though highly purified, 136Xe still contains a significant amount of 134Xe. Recently, a new nuclear energy level was found in 134Xe. If 134Xe decays from this proposed excited state, it will emit a 2485.7 keV gamma ray. Because this energy lies near the region of interest of 136Xe νββ decay experiments (Q value 2457.8 keV), it could make a significant contribution to the background. A purified gaseous sample of 134Xe will be irradiated with neutrons of an incident energy of 4.0 MeV at Triangle Universities Nuclear Laboratory and monitored with high-purity germanium detectors. The spectra obtained from these detectors will be analyzed for the presence of the 2581 keV gamma ray. We will report on the status of this experiment. Future plans include expanding this measurement to higher initial neutron energies. Tennesse Tech University CISE Grant program.

  15. Additional heating experiments of FRC plasmas

    International Nuclear Information System (INIS)

    Okada, S.; Asai, T.; Kodera, F.; Kitano, K.; Suzuki, T.; Yamanaka, K.; Kanki, T.; Inomoto, M.; Yoshimura, S.; Okubo, M.; Sugimoto, S.; Ohi, S.; Goto, S.

    2001-01-01

    Additional heating experiments of neutral beam (NB) injection and application of low frequency wave on a plasma with extremely high averaged beta value of about 90% - a field reversed configuration (FRC) plasma - are carried out on the FRC Injection experiment (FIX) apparatus. These experiments are made possible by translating the FRC plasma produced in a formation region of a theta pinch to a confinement region in order to secure better accessibility to heating facilities and to control plasma density. By appropriate choice of injection geometry and the mirror ratio of the confinement region, the NB with the energy of 14keV and the current of 23A is enabled to be injected into the FRC in the solenoidal confining field of only 0.04-0.05T. Confinement is improved by this experiment. Ion heating is observed by the application of low frequency (80kHz ; about 1/4 of the ion gyro frequency) compressional wave. A shear wave, probably mode converted from the compressional wave, is detected to propagate axially. (author)

  16. Scintillating bolometers: A promising tool for rare decays search

    Energy Technology Data Exchange (ETDEWEB)

    Pattavina, L., E-mail: luca.pattavina@mib.infn.it

    2013-12-21

    The idea of using a scintillating bolometer was first suggested for solar neutrino experiments in 1989. After many years of developments, now we are able to exploit this experimental technique, based on the calorimetric approach with cryogenic particle detectors, to investigate rare events such as Neutrinoless Double Beta Decay and interaction of Dark Matter candidates. The possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the weak expected signal is very appealing. The goal to distinguish the different types of interactions in the detector can be achieved by means of scintillating bolometer. The simultaneous read-out of the heat and scintillation signals made with two independent bolometers enable this precious feature leading to possible background free experiment. In the frame of the LUCIFER project we report on how exploiting this technique to investigate Double Beta Decay for different isotope candidates. Moreover we demonstrate how scintillating bolometers are suited for investigating other rare events such as α decays of long living isotopes of lead and bismuth.

  17. Recent results on weak decays of charmed mesons from the Mark III experiment

    International Nuclear Information System (INIS)

    Browder, T.E.

    1989-01-01

    Recent results from the Mark III experiment on weak decays of charmed mesons are presented. Measurements of the resonant substructure of D 0 → K - π + π - π + decays, the first model independent result on D s → φπ + , as well as limits on D s → ηπ + and D s → η'π + are described. The implications of these new results are also discussed. 37 refs., 7 figs., 4 tabs

  18. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Kamyshkov, Y.A. [ed.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  19. Preliminary results from initial in-pile debris bed experiments

    International Nuclear Information System (INIS)

    Rivard, J.B.

    1977-01-01

    An accident in a liquid metal fast breeder reactor (LMFBR) in which molten core material is suddenly quenched with subcooled liquid sodium could result in extensive fragmentation and dispersal of fuel as subcritical beds of frozen particulate debris within the reactor vessel. Since this debris will continue to generate power due to decay of retained fission products, containment of the debris is threatened if the generated heat is not removed. Therefore, the initial safety question is the capacity which debris beds may have for transfer of the decay heat to overlying liquid sodium by natural processes--i.e., without the aid of forced circulation of the coolant. Up to the present time, all experiments on debris bed behavior either have used substitute materials (e.g., sand and water) or have employed actual materials, but atypical heating methods. Increased confidence in the applicability of debris bed simulations is afforded if the heat is generated within the fuel component of the appropriate fast reactor materials. The initial series of in-pile tests reported on herein constitutes the first experiments in which the internal heating mode has been produced in particulate oxide fuel immersed in liquid sodium. Fission heating of the fully-enriched UO 2 in the experiment while it is contained within Sandia Laboratories Annular Core Pulse Reactor (ACPR), operating in its steady-state mode, approximates the decay heating of debris. Preliminary results are discussed

  20. Modelling of decay heat removal using large water pools

    International Nuclear Information System (INIS)

    Munther, R.; Raussi, P.; Kalli, H.

    1992-01-01

    The main task for investigating of passive safety systems typical for ALWRs (Advanced Light Water Reactors) has been reviewing decay heat removal systems. The reference system for calculations has been represented in Hitachi's SBWR-concept. The calculations for energy transfer to the suppression pool were made using two different fluid mechanics codes, namely FIDAP and PHOENICS. FIDAP is based on finite element methodology and PHOENICS uses finite differences. The reason choosing these codes has been to compare their modelling and calculating abilities. The thermal stratification behaviour and the natural circulation was modelled with several turbulent flow models. Also, energy transport to the suppression pool was calculated for laminar flow conditions. These calculations required a large amount of computer resources and so the CRAY-supercomputer of the state computing centre was used. The results of the calculations indicated that the capabilities of these codes for modelling the turbulent flow regime are limited. Output from these codes should be considered carefully, and whenever possible, experimentally determined parameters should be used as input to enhance the code reliability. (orig.). (31 refs., 21 figs., 3 tabs.)

  1. PyFDAP: automated analysis of fluorescence decay after photoconversion (FDAP) experiments.

    Science.gov (United States)

    Bläßle, Alexander; Müller, Patrick

    2015-03-15

    We developed the graphical user interface PyFDAP for the fitting of linear and non-linear decay functions to data from fluorescence decay after photoconversion (FDAP) experiments. PyFDAP structures and analyses large FDAP datasets and features multiple fitting and plotting options. PyFDAP was written in Python and runs on Ubuntu Linux, Mac OS X and Microsoft Windows operating systems. The software, a user guide and a test FDAP dataset are freely available for download from http://people.tuebingen.mpg.de/mueller-lab. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Search for heavy neutrino decays in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Cooper-Sarkar, A.M.; Haywood, S.J.; Parker, M.A.; Sarkar, S.; Klein, H.; Morrison, D.R.O.; Wachsmuth, H.; Barnham, K.W.J.; Mobayyen, M.M.; Talebzadeh, M.; Bostock, P.; Krstic, J.; Graessler, H.

    1985-01-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits vertical strokeUsub(μi)vertical stroke 2 , vertical strokeUsub(ei)vertical stroke 2 -6 -10 -7 are obtained for neutrino mass eigenstates νsub(i) of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on vertical strokeUsub(νi)vertical stroke 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate ν 3 in particular, we obtain the limits vertical strokeUsub(μ3)vertical stroke 2 -7 -10 -8 . vertical strokeUsub(e3)vertical stroke 2 -9 -10 -10 for the mass range 150-190 MeV, assuming the ν 3 to be produced directly in charmed F meson decays. (orig.)

  3. Heat transfer in underground heating experiments in granite, Stipa, Sweden

    International Nuclear Information System (INIS)

    Chan, T.; Javandel, I.; Witherspoon, P.A.

    1980-04-01

    Electrical heater experiments have been conducted underground in granite at Stripa, Sweden, to investigate the effects of heating associated with nuclear waste storage. Temperature data from these experiments are compared with closed-form and finite-element solutions. Good agreement is found between measured temperatures and both types of models, but especially for a nonlinear finite-element heat conduction model incorporating convective boundary conditions, measured nonuniform initial rock temperature distribution, and temperature-dependent thermal conductivity. In situ thermal properties, determined by least-squares regression, are very close to laboratory values. A limited amount of sensitivity analysis is undertaken

  4. Investigation of characteristics of passive heat removal system based on the assembled heat transfer tube

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang Cheng; Yan, Changqi; Meng, Zhao Ming; Chen, Kailun; Song, Shao Chuang; Yang, Zong Hao; Yu, Jie [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2016-12-15

    To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450 .deg. C to 700 .deg. C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  5. Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

    Directory of Open Access Journals (Sweden)

    Xiangcheng Wu

    2016-12-01

    Full Text Available To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from 450°C to 700°C and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

  6. Fusion decay power: Validation of FISPACT and FENDL/A-2.0

    International Nuclear Information System (INIS)

    Sublet, J.C.; Forrest, R.A.

    1999-01-01

    Integral experiments are a rich source of information with which a wide range of validation and comparison exercises can be made in the activation data field. Materials samples have been irradiated in a wide range of simulated D-T neutron fields at three European laboratories and at JAERI FNS. The later experiment is unique because decay heat rather than activity was measured. Some results from that experiment are reported here with some details of data corrections that have been made for EAF-99. (author)

  7. Planning for the next generation of proton-decay experiments in the United States

    International Nuclear Information System (INIS)

    Ayres, D.S.

    1982-01-01

    There are now three well-developed proposals for new proton decay detectors to be built in the United States. These are the 1000 to 5000-ton Soudan 2 tracking calorimeter, the 1400-ton Homestake II liquid scintillator Tracking Spectrometer, and the 2500-ton University of Pennsylvania liquid-scintillator - proportional-drift-cell calorimeter. These proposals were reviewed by the Department of Energy Technical Assessment Panel on Proton Decay in February 1982. I shall describe the Soudan and Pennsylvania proposals, present the latest results from the 31-ton Soudan 1 experiment, and discuss the recommendations of the DOE Panel. Following these recommendations, a one-week workshop, to be held at Argonne in June, will focus on the optimization of techniques for future experiments

  8. Dynamic simulation of the air-cooled decay heat removal system of the German KNK-II experimental breeder reactor

    International Nuclear Information System (INIS)

    Schubert, B.K.

    1984-07-01

    A Dump Heat Exchanger and associated feedback control system models for decay heat removal in the German KNK-II experimental fast breeder reactor are presented. The purpose of the controller is to minimize temperature variations in the circuits and, hence, to prevent thermal shocks in the structures. The basic models for the DHX include the sodium-air thermodynamics and hydraulics, as well as a control system. Valve control models for the primary and intermediate sodium flow regulation during post shutdown conditions are also presented. These models have been interfaced with the SSC-L code. Typical results of sample transients are discussed

  9. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, L.J., E-mail: broussardlj@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zeck, B.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Baeßler, S. [University of Virginia, Charlottesville, VA 22904 (United States); Birge, N. [University of Tennessee, Knoxville, TN 37996 (United States); Blatnik, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cleveland State University, Cleveland, OH 44115 (United States); Bowman, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brandt, A.E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Brown, M. [University of Kentucky, Lexington, KY 40506 (United States); Burkhart, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B. [Indiana University, Bloomington, IN 47405 (United States); Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 (United States); Fomin, N. [University of Tennessee, Knoxville, TN 37996 (United States); Frlez, E.; Fry, J. [University of Virginia, Charlottesville, VA 22904 (United States); and others

    2017-03-21

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  10. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  11. Cornish heat transfer experiment - final report

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.

    1985-01-01

    The transfer of heat released in an in-site heating experiment simulating high level radioactive waste packages in granite in Cornwall has been found to be mainly by conduction but some appreciable convection does occur. Interim analysis of the data suggests that the latter may account for about 20% of the total. (author)

  12. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...... experiments. The observations can be linked to parametric decay of the gyrotron radiation at the second harmonic upper hybrid resonance layer....

  13. Moments in inclusive semileptonic B meson decays at the Belle experiment

    Science.gov (United States)

    Schwanda, Christoph

    2015-04-01

    Since my return to Austria in the year 2003, I have measured observables in inclusive B meson decays at the Belle experiment and worked together with theorists on the interpretation of these measurements in terms of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|. And in fact, only this memorial book project made me fully aware of Kolya Uraltsev's ground breaking theoretical contributions to this field. He was not a theorist who talked a lot to an experimentalist like me, and maybe this is not a bad thing for good science. I certainly remember his enthusiasm from conferences, e.g., when I was powerless to keep his presentation to the scheduled time as a session chair at the CKM2005 workshop in San Diego. Still I feel there is some amount of irony in the fact, that I know so little about a person whose work has been so decisive for my career in high energy physics. To commemorate Kolya Uraltsev's pioneering work on inclusive semileptonic B meson decays B → Xcℓν and on the Heavy Quark Expansion (HQE), which has already been paid tribute to in other articles in this volume, I will review the measurement of the electron energy and the hadronic mass moments in B → Xcℓν decays performed at the Belle experiment. These measurements allow to both test his theoretical calculations and to extract |Vcb| and non-perturbative quantities, such as the b-quark mass, from his formulae.

  14. CP-violation in B-decays and B-decay properties at ATLAS experiment

    CERN Document Server

    Smizanska, Maria; The ATLAS collaboration

    2015-01-01

    ATLAS has a wide programme to study the production cross section and decay properties of particles with beauty, as well as charmonium and bottomonium states. The main part of the talk will discuss the ATLAS full Run-1 analysis of mixing and CP violation in the decay of Bs meson to J/psi Phi, observed in the final state mu+mu-K+K-. The different amplitudes contributing to the process are studied through the time dependence of the angular distribution, and the average lifetime and lifetime difference between the two eigenstate BH and BL, and of the CP violating phase phi_s are extracted. The presentation will also cover selected latest ATLAS studies in the field of B-hadron decay properties.

  15. Study of charmonium decays of B mesons in the Babar experiment

    International Nuclear Information System (INIS)

    Grenier, Philippe

    2006-04-01

    This document is organized into 4 parts. The first part is dedicated to the Babar experiment that is installed on the e + e - collider at Stanford linear accelerator center. The formalism of the standard model and the CP violation in the B meson system are first introduced, then the Babar experiment is described and its main results are recalled: sin(2β) 0.722 ± 0.040 ± 0.023; α = (103 + 11 - 9) degrees; γ = (52 + 23 - 18) degrees. The author highlights 2 issues in which he was involved: the detector background noise induced by the machine and the beam injection system. The second part deals with DIRC (detector of internally reflected Cherenkov light) that is used for particle identification. The phenomenology of hadron decay of B mesons is described in the third part, the hypothesis of the factorization approximation is challenged. The last part is dedicated to experimental results concerning the measurement of branching ratios, the search for suppressed modes and the determination of decay amplitudes

  16. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  17. Global, decaying solutions of a focusing energy-critical heat equation in R4

    Science.gov (United States)

    Gustafson, Stephen; Roxanas, Dimitrios

    2018-05-01

    We study solutions of the focusing energy-critical nonlinear heat equation ut = Δu - | u|2 u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the "concentration-compactness plus rigidity" strategy of Kenig-Merle [33,34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza-Seregin-Sverak [17,18] in an argument similar to that of Kenig-Koch [32] for the Navier-Stokes equations.

  18. Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Piepke, A.

    2005-01-01

    The experimental observation of neutrino oscillations and thus neutrino mass and mixing gives a first hint at new particle physics. The absolute values of the neutrino mass and the properties of neutrinos under CP-conjugation remain unknown. The experimental investigation of the nuclear double beta decay is one of the key techniques for solving these open problems

  19. An overview of current experiments in search of proton decay

    International Nuclear Information System (INIS)

    Goldhaber, M.; Sulak, L.R.

    1981-01-01

    Detectors being used in current experiments dedicated to the search for proton decay, fall into two classes, totally active water Cherenkov detectors with light collected by phototubes, and sampling calorimeters with particle ionization tracked by gas tube arrays. An example of each type is considered in detail, the features of other detectors in the two classes are pointed out and compared with those of the same type. (U.K.)

  20. Present and Future Kaon Physics (Kaon Decays: Status and Prospects of Experiments)

    International Nuclear Information System (INIS)

    Bryman, Doug

    2005-01-01

    Study of the ultra-rare K → πν(bar ν) decays is highly motivated by their unique theoretical access to short distance physics allowing deep probing of physics beyond the Standard Model including possible new sources of CP violation and flavor symmetry breaking. It also appears that through the development of targeted experimental techniques, both the charged and neutral processes, K + → π + ν(bar ν) and K L 0 → π 0 ν(bar ν), are accessible to detailed measurement. Three events consistent with K + → π + ν(bar ν) decay have been observed by BNL E787/E949 and further measurements of this reaction are being planned. The new KOPIO experiment at BNL is aiming to study the special CP-violating decay K L 0 → π 0 ν(bar ν) with a precision of 10%. The motivations, experimental methods, prospects, and possible impact of KOPIO and other future measurements will be discussed.

  1. ICRF heating experiments on JIPP T-II

    International Nuclear Information System (INIS)

    Ichimura, M.; Fujita, J.; Hirokura, S.

    1983-10-01

    Data of JIPP T-II ICRF heating experiments are presented. The experiment covers three typical cases: the low concentration hydrogen minority case, the high concentration hydrogen minority case, and the 3 He minority case. The best heating efficiency is obtained for the 3 Heminority case. It is shown through power balance analysis that the two H-minority cases are different in the wave energy deposition profile. The difference is explained by the presence of local cavity mode for the high concentration minority case. The ion temperature stops rising at the power density level of 0.65 W/cm 3 . An analytic solution of the Fokker-Planck equation is derived to interpret the deterioration of heating efficiency. (author)

  2. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  3. Fuel cycle related parametric study considering long lived actinide production, decay heat and fuel cycle performances

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Lenain, R.; Lecomte, M.

    2001-01-01

    One of the very attractive HTGR reactor characteristics is its highly versatile and flexible core that can fulfil a wide range of diverse fuel cycles. Based on a GTMHR-600 MWth reactor, analyses of several fuel cycles were carried out without taking into account common fuel particle performance limits (burnup, fast fluence, temperature). These values are, however, indicated in each case. Fuel derived from uranium, thorium and a wide variety of plutonium grades has been considered. Long-lived actinide production and total residual decay heat were evaluated for the various types of fuel. The results presented in this papers provide a comparison of the potential and limits of each fuel cycle and allow to define specific cycles offering lowest actinide production and residual heat associated with a long life cycle. (author)

  4. Lower hybrid heating experiment in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Uchara, K.; Nagashima, T.

    1982-01-01

    Lower hybrid heating experiments in JFT-2 are reviewed. Good maintenance and controlling of the coupling structure are very important in the injection of RF power before heating experiments. Accessibility of waves and the existence of the mode conversion region are necessary for ion heating in the main plasma. Parametric instabilities which may bring undesirable power deposition are suppressed by enough electron heating in the boundary region. Optimizing the Nsub(z) spectrum and the improvement of the plasma confinement may lead the electron heating in the high density region. Current generation by use of quasi-linear Landau damping is confirmed and is suggested to bring the improvement of plasma confinement. High power and long pulse klystrons may be expected to open a frontier toward a stational reactor plasma in tokamaks. (author)

  5. Fundamental experiment of potassium heat exchanger using principle of heat pipe

    International Nuclear Information System (INIS)

    Sumida, Isao; Kotani, Koichi

    1976-01-01

    In order to provide compact and reliable sodium equipments including a steam generator, performance tests are conducted with a potassium heat exchanger, which is featured by the separate construction of primary and secondary coolant systems. A small amount of potassium plays a role as an intermediate media of heat transportation between these two coolant systems. Heat is transferred by evaporation and condensation of potassium on the surface of the primary and the secondary coolant pipings, respectively. The tests are performed in the temperature range of 200 -- 300 0 C and the maximum heat transfer reaches 1.3kW (heat transfer rate at the primary heating source: 8.6W/cm 2 at 300 0 C). The experimental results are analyzed by using Langmuir's and Schrage's equation and close agreement between experiment and theory is obtained. (auth.)

  6. Optimized collection, storage and measurement of radon and radon decay products - school experiments

    International Nuclear Information System (INIS)

    Philipsborn, H. von; Geipel, R.; Just, G.

    1998-01-01

    Schools are expected more than ever to teach in physics and chemistry an understanding of radioactivity in its many aspects. Simple experiments on the occurrence, the measurement and the properties of radionuclides are necessary for true understanding. Such experiments are now possible with novel methods of collection and storage of ubiquitous radon and radon decay products from air, water and solids. (orig.) [de

  7. Monte Carlo Simulation for the Majorana Neutrinoless Double-beta Decay Experiment

    International Nuclear Information System (INIS)

    Henning, Reyco; Majorana Collaboration

    2005-01-01

    The Majorana experiment is a proposed HPGe detector array that will primarily search for neutrinoless double-beta decay and dark matter. It will rely on pulse-shape discrimination and crystal segmentation to suppress backgrounds following careful materials selection. A critical aspect of the design phase of Majorana is a reliable simulation of the detector response, pulse formation, and its radioactive backgrounds. We are developing an adaptable and complete simulation based on GEANT 4 to address these requirements and the requirements of a modern, large collaboration experiment. The salient aspects of the simulation are presented. The Majorana experiment is presented in a parallel poster by Kareem Kazkaz

  8. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    Science.gov (United States)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  9. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  10. LHCb: Search for the rare decays $B^0_{(s)} \\to \\mu^+\\mu^-$ with the LHCb Experiment

    CERN Multimedia

    Adrover Pacheco, C

    2011-01-01

    A review of the search for the very rare decays $B^{0}_{s} \\rightarrow \\mu^+ \\mu^-$ and $B^{0} \\rightarrow \\mu^+ \\mu^-$ with the LHCb experiment is presented. These decays are suppressed within the Standard Model as they can only occur via helicity suppressed loop diagrams. However, their amplitudes can be significantly different in many New Physics scenarios, especially in those with an extended Higgs sector. Therefore, these decays are a sensitive probe of physics beyond the Standard Model. The study is performed using $\\sim 37$ $pb^{-1}$ of pp collisions at $\\sqrt{s}$ = 7 TeV collected by the experiment at the Large Hadron Collider at CERN. For these dimuon decays the LHCb has reached sensitivities similar to the best existing limits. The resulting upper limits are $\\mathcal{B}(B^{0}_{s} \\rightarrow \\mu^+ \\mu^-)<$ 56 $\\times$ $10^{-9}$ and $\\mathcal{B}(B^{0} \\rightarrow \\mu^+ \\mu^-)<$ 15 $\\times$ $10^{-9}$ at $95\\%$ confidence level. With the number of pp colisions expected in 2011 the LHCb will ...

  11. Measurement of the Convective Heat-Transfer Coefficient

    Science.gov (United States)

    Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…

  12. Radionuclide mass inventory, activity, decay heat, and dose rate parametric data for TRIGA spent nuclear fuels

    International Nuclear Information System (INIS)

    Sterbentz, J.W.

    1997-03-01

    Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups

  13. Prompt neutron decay constant estimation of RSG-GAS at high power noise experiment

    International Nuclear Information System (INIS)

    Jujuratisbela, U.; Kristedjo; Tukiran; Pinem, S.; Iman, J.; Puryono; Sanjaya, A.; Suwarno

    1998-01-01

    The determination of prompt neutron decay constant (α) of RGS-GAS by using low power noise experiment method at the equilibrium core indicated that the result is not good. The bad result was due to the small ratio of the noise signal to background which was caused by low detector efficiency or contaminated core after long time operation. To solve the problem is tried by using noise experiment technique at high power. The voltage output of neutron detectors at power of 5, 12, and 23 MW were connected to preamplifier and filter then to the Dynamic Signal Analyzer Version-2 and then the power spectral density of each channel of JKT04 and JKT03, the cut off frequency of each channel can be determined by using linear regression technique such that the prompt neutron decay constant can be estimated

  14. Double beta decay: Comparison of theory to experiment

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1992-01-01

    I review ββ decay in the standard model and as a test of Majorana neutrino masses and right-handed couplings. A summary is given of some of the nuclear physics issues involved in evaluating 2 ν and 0ν matrix elements. Dirac and pseudoDirac limits are discussed to illustrate how quantities constrained on 0ν ββ decay depend on the parameters of the mass matrix. Implications of 0ν ββ decay for models with 17 keV neutrinos, for models with massive Majorana neutrinos, and for Majorons are discussed. It is argued that a recent remeasurement of the total ββ decay rate of 126 Te is important in constraining (nonstandard) Majoron models

  15. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  16. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Porkolab, M.

    1985-10-01

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  17. Fabrication experiments for large helix heat exchangers

    International Nuclear Information System (INIS)

    Burgsmueller, P.

    1978-01-01

    The helical tube has gained increasing attention as a heat transfer element for various kinds of heat exchangers over the last decade. Regardless of reactor type and heat transport medium, nuclear steam generators of the helix type are now in operation, installlation, fabrication or in the project phase. As a rule, projects are based on the extrapolation of existing technologies. In the particlular case of steam generators for HTGR power stations, however, existing experience is with steam generators of up to about 2 m diameter whereas several projects involve units more than twice as large. For this reason it was felt that a fabrication experiment was necessary in order to verify the feasibility of modern steam generator designs. A test rig was erected in the SULZER steam generator shops at Mantes, France, and skilled personnel and conventional production tools were employed in conducting experiments relating to the coiling, handling and threading of large helices. (Auth.)

  18. Study of the doubly-charmed decays of B mesons with the experiment BABAR in SLAC

    International Nuclear Information System (INIS)

    Robbe, P.

    2002-04-01

    The BABAR experiment at SLAC (Stanford linear acceleration center) has been studying since 1999 B meson decays from e + e - collisions at the γ(4S) resonance. The first goal of the collaboration was to measure the sin (2β) CP-violation parameter within the standard model. This measurement requires to know with precision the absolute length scale of the detector. A method to test this scale was developed using nuclear interactions in the beam-pipe material. The longitudinal length scale was then determined at the 1 % level precision. The systematic error associated with length measurement in the detector concerning B meson lifetime and B meson oscillation frequency is then negligible with respect to the other errors. The K meson content of B decays is a key ingredient of the sin (2β) measurement and is used to tag the flavour of the other B in events containing a B decaying to a CP eigenstate. The K charge is correlated to the B flavour. Wrong sign kaons, which can dilute B tagging, can come from wrong sign D decays (B→ DX). Doubly charmed decays (B→ D (*) D-bar (*) K are one possibility to produce wrong sign D decays. The twenty-two decay modes are reconstructed exclusively. The total branching fraction is measured with enough precision to establish that B→ D (*) D-bar (*) K decays are not the only source of wrong sign D mesons in B decays. (author)

  19. Rare psi decays

    International Nuclear Information System (INIS)

    Partridge, R.

    1986-01-01

    Slightly more than ten years have passed since the psi was discovered, yet the study of psi decays continues to be an active and fruitful area of research. One reason for such longevity is that each successive experiment has increased their sensitivity over previous experiments either by improving detection efficiency or by increasing statistics. This has allowed the observation and, in some cases, detailed studies of rare psi decays. Branching ratios of ≅10-/sup 4/ are now routinely studied, while certain decay channels are beginning to show interesting effects at the 10-/sup 5/ level. Future experiments at the Beijing Electron Positron Collider (BEPC) have the potential for increasing sensitivities by one or two orders of magnitude, thus enabling many interesting studies impossible with current data samples. The author first examines the extent to which psi decays can be used to study electroweak phenomena. The remainder of this work is devoted to the more traditional task of using the psi to study quarks, gluons, and the properties of the strong interaction. Of particular interest is the study of radioactive psi decays, where a number of new particles have been discovered. Recent results regarding two of these particles, the θ(1700) and iota(1450), are discussed, as well as a study of the quark content of the eta and eta' using decays of the psi to vector-pseudoscalar final states

  20. Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6

    International Nuclear Information System (INIS)

    Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe

    2001-01-01

    The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step

  1. (Beta)-decay experiments and the unitarity of the CKM matrix

    International Nuclear Information System (INIS)

    Garrett, P E

    2005-01-01

    The goal of this project was to perform very precise measurements of super-allowed Fermi β decay in order to investigate a possible non-unitarity in the CKM matrix of the Standard Model of particle physics. Current data from 9 precisely measured β decays indicated that the sum-of-squares of the first row of the CKM matrix differs from 1.0 at the 2.2σ (or 98% confidence) level. If true, it would be the first firm indication of physics beyond the Standard Model--the model that has been the backbone of the worldwide physics community for more than 30 years. The physics goal of the project was to test and constrain the calculated correction factors that must be applied to the experimental data by performing measurements at the TRIUMF radioactive ion beam facility ISAC. Accurate and precise (precision goal >99.9%) half lives and decay branching ratios were measured for nuclei where different sets of calculated corrections give divergent results thereby allowing us to determine which theory, if any, gives the correct result. The LLNL contribution was to design and build the data acquisition system that will enable the experiments, and to provide theoretical calculations necessary for the interpretation of the results. The first planned measurement was 34 Ar, to be followed by 62 Ga and 74 Rb. However, there were major problems in creating a suitable, intense beam of radioactive 34 Ar. The collaboration decided to proceed with measurements on 62 Ga and 18 Ne. These experiments were performed in a series of measurements in the summer and fall of 2004. The LLNL team also is leading the effort to perform measurements on 66 As and 70 Br that are expected during 2006-2008. While the definitive experiments to meet the goals of the LDRD were not conducted during the funding period, the involvement in the radioactive program at TRIUMF has lead to a number of new initiatives, and has attracted new staff to LLNL. This LDRD has laid the foundation for involvement in one of the

  2. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  3. Analysis of non simultaneous common mode failures. Application to the reliability assessment of the decay heat removal of the RNR 1500 project

    International Nuclear Information System (INIS)

    Natta, M.; Bloch, M.

    1991-01-01

    The experience with the LMFBR PHENIX has shown many cases of failures on identical and redundant components, which were close in time but not simultaneous and due to the same causes such as a design error, an unappropriate material, corrosion, ... Since the decay heat removal (DHR) must be assured for a long period after shutdown of the reactor, the overall reliability of the DHR system depends much on this type of successive failures by common mode causes, for which the usual β factor methods are not appropriate since they imply that the several failures are simultaneous. In this communication, two methods will be presented. The first one was used to assess the reliability of the DHR system of the RNR 1500 project. In this method, one modelize the occurrence of successive failures on n identical files by a sudden jump of the failure rate from the value λ attributed to the first failure to the value λ' attributed to the (n-1) still available files. This method leads to a quite natural quantification of the interest of diversity for highly redundant systems. For the RNR 1500 project where, in case of the loss of normal DHR path through the steam generators, the decay heat is removed by four separated sodium loops of 26 MW unit capacity in forced convection, the probabilistic assessment shows that it is necessary to diversify the sodium-sodium heat exchanger in order to fullfil the upper limit of 10 -7 /year for the probability of failure of DHR. A separate assessment for the main sequence leading to DHR loss was performed using a different method in which the successive failures are interpreted as a premature end of life, the lifetimes being directly used as random variables. This Monte-Carlo type method, which can be applied to any type of lifetime distribution, leads to results consistent to those obtained with the first one

  4. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.

    2012-01-01

    Strong scattering of high-power millimeter waves at 140 GHz has been shown to take place in heating and current-drive experiments at TEXTOR when a tearing mode is present in the plasma. The scattering signal is at present supposed to be generated by the parametric decay instability. Here we descr...

  5. Results on neutrinoless double beta decay of 76Ge from the GERDA experiment

    Science.gov (United States)

    Palioselitis, Dimitrios

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for neutrinoless double beta (0νββ) decay of 76Ge, a lepton number violating nuclear process predicted by extensions of the Standard Model. GERDA is an array of bare germanium diodes immersed in liquid argon located at the Gran Sasso National Laboratory (LNGS) in Italy. The results of the GERDA Phase I data taking with a total exposure of 21.6 kg yr and a background index of 0.01 cts/(keV kg yr) are presented in this paper. No signal was observed and a lower limit of T1/20ν > 2.1×1025 yr (90% C.L.) was derived for the half-life of the 0νββ decay of 76Ge. Phase II of the experiment aims to reduce the background around the region of interest by a factor of ten.

  6. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment.

    Science.gov (United States)

    Cornelissen, Johannes H C; Sass-Klaassen, Ute; Poorter, Lourens; van Geffen, Koert; van Logtestijn, Richard S P; van Hal, Jurgen; Goudzwaard, Leo; Sterck, Frank J; Klaassen, René K W M; Freschet, Grégoire T; van der Wal, Annemieke; Eshuis, Henk; Zuo, Juan; de Boer, Wietse; Lamers, Teun; Weemstra, Monique; Cretin, Vincent; Martin, Rozan; Ouden, Jan den; Berg, Matty P; Aerts, Rien; Mohren, Godefridus M J; Hefting, Mariet M

    2012-01-01

    Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term 'common-garden' experiment to disentangle the effects of species' wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.

  7. CT-TRX1, a triggered-reconnection compact toroid experiment

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1980-05-01

    A new compact toroid experiment, CT-TRX1, based on the field reversed theta pinch is under construction. The unique feature of this experiment is the incorporation of several quasi-steady and pulsed magnets to carefully control the reconnection process. The motivation for this emphasis is to duplicate and extend the results reported by Kurtmullaev, et al., where delayed reconnection produced efficient axial shock heating and resulted in large diameter compact toroids which exhibited complete MHD stability for the 100 μsec decay time of their pulsed magnets. CT-TRX1 incorporates moderate E/sub theta/ radial shock heating, along with the triggered reconnection capability, to investigate the full range of conditions between the USSR experiments and the radial shock heated experiments at LASL, where m = 2 rotational instabilities occur. An additional feature of CT-TRX1 is the incorporation of a compound magnet which will provide long magnetic field decay times. The requirements for both high field quasi-steady outer magnets, and several high voltage, individually triggered pulsed inner magnets, present unique engineering design problems which are discussed

  8. Observation of W{yields} {tau}{nu}{sub {tau}} decays with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nunes Hanninger, Guilherme

    2011-04-15

    Physics studies of processes with {tau} leptons in the final state, while challenging at hadron colliders, are of great importance at the LHC. The {tau} leptons provide important signatures in searches for the Higgs boson as well as for new physics in a wide range of theoretical models. Decays of Standard Model particles to {tau} leptons, in particular Z {yields} {tau}{tau} and W {yields} {tau}{nu}{sub {tau}}, are important background processes in those searches and their cross sections need to be measured first. This thesis reports the first observation of W {yields} {tau}{nu}{sub {tau}} decays and of hadronically decaying {tau} leptons with the ATLAS experiment at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 546 nb{sup -1}, which was recorded at a proton-proton centre-of-mass energy of 7TeV. A total of 78 data events are selected, with an estimated background of 11.1 {+-} 2.3{sub (stat.)} {+-} 3.2{sub (syst.)} events from QCD processes, and of 11.8 {+-} 0.4{sub (stat.)} {+-} 3.7{sub (syst.)} events from other W and Z decays. The observed excess of data events over the total background is compatible with the SM expectation for W {yields} {tau}{nu}{sub {tau}} decays, both in the number of events and in the shapes of distributions of characteristic variables. (orig.)

  9. Status of the Frejus experiment on the neutrinoless double beta decay of the 76Ge

    International Nuclear Information System (INIS)

    Morales, A.; Nunez-Lagos, R.; Morales, J.; Puimedon, J.; Villar, J.A.; Dassie, D.; Hubbert, Ph.; Leccia, F.; Mennrath, P.; Villard, M.

    1987-01-01

    A brief account of the design, experimental set up and status of the Frejus experiments on the neutrinoless double beta decay of 76 Ge is presented. The theoretical implications and expectatives of this experimental research are analized. A comparison with other dedicated experiments is also reported. (author)

  10. Background constrains of the SuperNEMO experiment for neutrinoless double beta-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, Pavel P.

    2017-02-11

    The SuperNEMO experiment is a new generation of experiments dedicated to the search for neutrinoless double beta-decay, which if observed, would confirm the existence of physics beyond the Standard Model. It is based on the tracking and calorimetry techniques, which allow the reconstruction of the final state topology, including timing and kinematics of the double beta-decay transition events, offering a powerful tool for background rejection. While the basic detection strategy of the SuperNEMO detector remains the same as of the NEMO-3 detector, a number of improvements were accomplished for each of detector main components. Upgrades of the detector technologies and development of low-level counting techniques ensure radiopurity control of construction parts of the SuperNEMO detector. A reference material made of glass pellets has been developed to assure quality management and quality control of radiopurity measurements. The first module of the SuperNEMO detector (Demonstrator) is currently under construction in the Modane underground laboratory. No background event is expected in the neutrinoless double beta-decay region in 2.5 years of its operation using 7 kg of {sup 82}Se. The half-life sensitivity of the Demonstrator is expected to be >6.5·10{sup 24} y, corresponding to an effective Majorana neutrino mass sensitivity of |0.2−0.4| eV (90% C.L.). The full SuperNEMO experiment comprising of 20 modules with 100 kg of {sup 82}Se source should reach an effective Majorana neutrino mass sensitivity of |0.04−0.1| eV, and a half-life limit 1·10{sup 26} y. - Highlights: • SuperNEMO detector for 2β0ν-decay of {sup 82}Se should reach half-life limit of 10{sup 26} y. • Radiopurity of the SuperNEMO internal detector parts was checked down to 0.1 mBq/kg. • Reference material of glass pellets was developed for underground γ-spectrometry.

  11. Decay heat measurement of U-235

    International Nuclear Information System (INIS)

    Baumung, K.

    1976-01-01

    The calorimeter and the transport mechanism for the fuel samples was designed and is under construction now. Calculations of the heat-source distributions for different 235U-contents led to an optimal enrichment of the UO 2 -samples which minimizes the effects of the bad heat conductivity of the oxide on temperature measurement. Monte-Carlo-calculations of the γ-leakage-spectra yielded data which allow, from the γ-energy-flow measurements, to calculate the total γ-energy loss as well as the portions of the β- and γ-heating. (orig.) [de

  12. ICRF heating and current drive experiments on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Hosea, J.C.; Phillips, C.K.

    1996-01-01

    Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in Enhanced Reverse Shear (ERS) plasmas has been found to delay the back transition out of the ERS state. D-T mode conversion of the fast magnetosonic wave to an Ion Berstein Wave (IBW) for off-axis heating and current drive has been successfully demonstrated for the first time. Parasitic Li 7 cyclotron damping limited the fraction of the power going to the electrons to less than 30%. Similar parasitic damping by Be 9 could be problematic in ITER. Doppler shifted fundamental resonance heating of beam ions and alpha particles has also been observed

  13. Estimation of delayed neutron emission probability by using the gross theory of nuclear β-decay

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1999-01-01

    The delayed neutron emission probabilities (P n -values) of fission products are necessary in the study of reactor physics; e.g. in the calculation of total delayed neutron yields and in the summation calculation of decay heat. In this report, the P n -values estimated by the gross theory for some fission products are compared with experiment, and it is found that, on the average, the semi-gross theory somewhat underestimates the experimental P n -values. A modification of the β-decay strength function is briefly discussed to get more reasonable P n -values. (author)

  14. Comparison of decay and yield data between JNDC2 and ENDF/B-VI

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Sagosaka, M.; Miyazono, T. [Nagoya Univ. (Japan)

    1997-03-01

    This work is intended to be our first step to solve disagreements of the decay heat powers between measurements and summation calculations. We examine differences between nuclear data libraries to complement our uncertainty evaluation of the decay heat summation calculations only with ENDF/B-VI. The comparison is made mainly between JNDC2 and ENDF/B-VI while JEF2.2 decay data is also discussed. In this study, we propose and use a simple method which is an analogue of the overlap integral of two wave functions in quantum mechanics. As the first step, we compare the whole input nuclear data for the summation calculations as a whole. We find a slight difference of the fission yields especially for high-energy neutron induced fissions between JNDC2 and ENDF/B-VI. As for the decay energies, JNDC2, ENDF/B-VI are quite similar while JEF2.2 is found significantly different from these two libraries. We find substantial differences in the decay constant values among the three libraries. As the second step, we calculate the decay heat powers with FPGS90 using JNDC2 and ENDF/B-VI. The total decay heat powers with the two libraries differ by more than 10% at short cooling times while they agree well on the average at cooling times longer that 100 (s). We also point out nuclides whose contributions are significantly different between the two libraries even though the total decay heats agree well. These nuclides may cause some problems in predicting aggregate spectra of {beta} and {gamma} rays as well as delayed neutrons, and are to be reviewed in the future revision of decay and yield data. (author)

  15. Production of high energy η' in B meson decays from BaBar experiment

    International Nuclear Information System (INIS)

    Hicheur, A.

    2003-04-01

    The work presented in this thesis relies on the analysis of data collected between october 1999 and July 2002 by the BaBar experiment at the PEP-II collider located at SLAC (Stanford, California). Electron-positron collisions at a center of mass energy equal to the Υ(4S) resonance mass are used for the production of B meson pairs. In July 2001, the BaBar collaboration published the first measurement of CP violation in the neutral B mesons system. Since then, the precision of the measurement has been continually being improved with the increasing data sample. Two devices are dedicated to the reconstruction of charged particles: the Silicon Vertex Tracker and the Drift Chamber. The Silicon Vertex Tracker is crucial for the reconstruction of the B meson decay vertex. Its motion with regard to the Drift Chamber needs a rolling calibration of the corresponding alignment parameters roughly every two hours. The relation between the Drift Chamber geometry and the alignment has been studied. Beside CP violation, Heavy Flavour Physics is an other important issue of BaBar research program. Rare decays are of particular interest as they are sensible to a new physics beyond the Standard Model. The production of high energy η' in B decays has been studied through the two main contributions, B→ η' X s coming from the rare decay b → sg*, and B-bar 0 → η'D 0 coming from the internal tree color suppressed decay b → cud. The improvement of the measurement of the process B → η'X-s and the first. observation of the decay B-bar 0 → η'D 0 have led to the conclusion that the η' production is dominated by the decay b → sg* and enables to constrain its quark content. (author)

  16. Rare B decays at LHCb

    CERN Document Server

    Puig Navarro, Albert

    2017-01-01

    Rare decays are flavour changing neutral current processes that allow sensitive searches for phenomena beyond the Standard Model (SM). In the SM, rare decays are loop-suppressed and new particles in SM extensions can give significant contributions. The very rare decay $B^0_s\\to\\mu^+\\mu^-$ in addition helicity suppressed and constitutes a powerful probe for new (pseudo) scalar particles. Of particular interest are furthermore tests of lepton universality in rare $b\\to s\\ell^+\\ell^-$ decays. The LHCb experiment is designed for the study of b-hadron decays and ideally suited for the analysis of rare decays due to its high trigger efficiency, as well as excellent tracking and particle identification performance. Recent results from the LHCb experiment in the area of rare decays are presented, including tests of lepton universality and searches for lepton flavour violation.

  17. LBL/UCSB 76Ge double beta decay experiment: first results

    International Nuclear Information System (INIS)

    Goulding, F.S.; Cork, C.P.; Landis, D.A.

    1984-10-01

    A paper given at the IEEE Nuclear Science Symposium last year presented the scientific justification for this experiment and discussed the design of the detector system. At the present time two of the dual detector systems (i.e., four out of a final total of eight detectors) are operating in the complete active/passive shield in the low background laboratory at LBL. Early results (1620 h) of an experiment using two detectors yield a limit of 4 x 10 22 years (68% confidence) for the half life of the neutrinoless double beta decay (ββ/sub o nu/) of 76 Ge. Although this experiment was carried out above ground, the result approaches those achieved by other groups in deep underground laboratories. Based on studies of the origins of background in our system, we hope to reach a limit of 3 x 10 23 years (or more) in a two month/four detector experiment to be carried out soon in an underground facility

  18. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  19. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is of real particle tracks taken from the CERN 2 m liquid hydrogen bubble chamber and shows the production and decay of a negative omega particle. A negative kaon enters the chamber which decays into many particles, including a negative omega that travels a short distance before decaying into more particles. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  20. HAGRID/ VANDLE spectroscopy of Rb decays

    Science.gov (United States)

    King, Thomas; Grzywacz, Robert; Taylor, Steven; Paulauskas, Stanley; Smith, Karl; Vandle Collaboration

    2017-09-01

    Many neutron-rich isotopes that contribute in both decay heat production and r-process nucleosynthesis have substantial beta-delayed neutron branching ratios. Beta-delayed neutron emission is a relatively complicated mechanism which can leave the daughter in an gamma-emitting excited state. A comprehensive understanding of their energy output and decay strength, S_beta, therefore requires the detection of both neutrons and gamma rays in coincidence. A series of measurements of delayed neutron precursors were performed at the On-Line Test Facility (OLTF) at the Oak Ridge National Laboratories using chemically selective ion sources and an enhanced VANDLE array. The main goal of this experiment was to revisit the decays of IAEA-marked priority precursors, including bromine, rubidium, cesium, and iodine, that are required to model the global properties in the fission of 238U.The unique data set, with neutron and gamma ray coincidences, benefited from the addition of a high-efficiency gamma-ray array, consisting of 16 LaBr3 crystals (HAGRiD), and a set of large volume NaI detectors to the VANDLE array. Characterization of and preliminary results from the new gamma-ray array for the decays of 94Rb and 97Rb will be presented. National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA0002132 and the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983.

  1. Full-scale and time-scale heating experiments at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Hood, Michael; California Univ., Berkeley

    1978-01-01

    Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground

  2. Results on Neutrinoless Double-β Decay of Ge76 from Phase I of the GERDA Experiment

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-09-01

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope Ge76. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1×10-2counts/(keVkgyr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of Ge76, T1/20ν>2.1×1025yr (90% C.L.). The combination with the results from the previous experiments with Ge76 yields T1/20ν>3.0×1025yr (90% C.L.).

  3. The LPCTrap facility for in-trap decay experiments

    International Nuclear Information System (INIS)

    Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Flechard, X.; Herbane, M.; Lienard, E.; Mauger, F.; Mery, A.; Naviliat-Cuncic, O.; Thomas, J.-C.

    2007-01-01

    The LPCTrap facility is coupled to the low-energy beam line LIRAT of the SPIRAL source at GANIL (France). The facility comprises an RFQ trap for beam preparation and a transparent Paul trap for in-trap decay studies. The system has been tested for several ion species. The Paul trap has been fully characterized for 6 Li + and 23 Na + ions. This characterization together with GEANT4 simulations of the in-trap decay setup (Paul trap and detection system) has permitted to predict the effect of the size of the ion cloud on the decay study of 6 He + .

  4. The Majorana Zero-Neutrino Double-Beta Decay Experiment White Paper

    International Nuclear Information System (INIS)

    Gaitskell, R.; Barabash, A.; Konovalov, S.; Stekhanov, V.; Umatov, V.; Brudanin, V.; Egorov, S.; Webb, J.; Miley, Harry S.; Aalseth, Craig E.; Anderson, Dale N.; Bowyer, Ted W.; Brodzinski, Ronald L.; Jordan, David B.; Kouzes, Richard T.; Smith, Eric E.; Thompson, Robert C.; Warner, Ray A.; Tornow, W.; Young, A.; Collar, J.I.; Avignone, Frank T.; Palms, John M.; Doe, P J.; Elliott, Steven R.; Kazkaz, K.; Robertson, Hamish; Wilkerson, John

    2002-01-01

    The goal of the Majorana Experiment is to determine the effective Majorana mass of the electron neutrino. Detection of the neutrino mass implied by oscillation results in within our grasp. This exciting physics goal is best pursued using double-beta decay of germanium because of the historical and emerging advances in eliminating competing signals from radioactive backgrounds. The Majorana Experiment will consist of a large mass of 76Ge in the form of high-resolution detectors deep underground, searching for a sharp peak at the BB endpoint. We present here an overview of the entire project in order to help put in perspective the scope, the level and technical risk, and the readiness of the Collaboration to begin the undertaking

  5. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.

    Science.gov (United States)

    Surducan, E; Surducan, V; Limare, A; Neamtu, C; Di Giuseppe, E

    2014-12-01

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm(3) convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  6. Software for physics of tau lepton decay in LHC experiments

    CERN Document Server

    Przedzinski, Tomasz

    2010-01-01

    Software development in high energy physics experiments offers unique experience with rapidly changing environment and variety of different standards and frameworks that software must be adapted to. As such, regular methods of software development are hard to use as they do not take into account how greatly some of these changes influence the whole structure. The following thesis summarizes development of TAUOLA C++ Interface introducing tau decays to new event record standard. Documentation of the program is already published. That is why it is not recalled here again. We focus on the development cycle and methodology used in the project, starting from the definition of the expectations through planning and designing the abstract model and concluding with the implementation. In the last part of the paper we present installation of the software within different experiments surrounding Large Hadron Collider and the problems that emerged during this process.

  7. Abnormal excess heat observed during Mizuno-type experiments

    International Nuclear Information System (INIS)

    Fauvarque, Jean-Francois; Clauzon, Pierre Paul; Lalleve, Gerard Jean-Michel

    2006-01-01

    A simple calorimeter has been designed that works at constant temperature; that of boiling water. Heat Losses can be estimated accurately with an ohmic heater. As expected, losses are independent of the electric power input to the heater and the amount of evaporated water is linearly dependant on the power input. The device has been used to determine the heating power of a plasma electrolysis (the Ohmori-Mizuno experiment). We confirm that in this experiment, the heat output from electrolysis is greater than the electrical power input. The excess energy increases as the electrolysis voltage is increased from 200 up to 350 V (400 V input). The excess energy may be as high as 120 W. (author)

  8. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    Directory of Open Access Journals (Sweden)

    Moggi N.

    2015-01-01

    Full Text Available The Cryogenic Underground Observatory for Rare Events (CUORE is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0 is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  9. Detecting the (quasi-) two-body decays of /τ leptons in short-baseline neutrino oscillation experiments

    Science.gov (United States)

    Asratyan, A.; Balatz, M.; Boehnlein, D.; Childres, S.; Davidenko, G.; Dolgolenko, A.; Dzyubenko, G.; Kaftanov, V.; Kubantsev, M.; Reay, N. W.; Musser, J.; Rosenfeld, C.; Stanton, N. R.; Thun, R.; Tzanakos, G. S.; Verebryusov, V.; Vishnyakov, V.

    1999-05-01

    Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large- Δm 2 domain of ν μ→ν τ oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of π0→ γγ decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ (quasi-) two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ.

  10. Detecting the (quasi-) two-body decays of τ leptons in short-baseline neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Asratyan, A.; Balatz, M.; Boehnlein, D.; Childres, S.; Davidenko, G.; Dolgolenko, A.; Dzyubenko, G.; Kaftanov, V.; Kubantsev, M.; Reay, N.W.; Musser, J.; Rosenfeld, C.; Stanton, N.R.; Thun, R.; Tzanakos, G.S.; Verebryusov, V.; Vishnyakov, V.

    1999-01-01

    Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large-Δm 2 domain of ν μ →ν τ oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of π 0 →γγ decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ (quasi-) two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ

  11. Technical support for a proposed decay heat guide using SAS2H/ORIGEN-S data

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.; Renier, J.P.

    1994-09-01

    Major revisions are proposed to the current US Nuclear Regulatory Commission decay heat rate guide entitled ''Regulatory Guide 3.54, Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation,'' using a new data base produced by the SAS2H analysis sequence of the SCALE-4 system. The data base for the proposed guide revision has been significantly improved by increasing the number and range of parameters that generally characterize pressurized-water-reactor (PWR) and boiling-water-reactor (BWR) spent fuel assemblies. Using generic PWR and BWR assembly models, calculations were performed with each model for six different burnups at each of three separate specific powers to produce heat rates at 20 cooling times in the range of 1 to 110 y. The proposed procedure specifies proper interpolation formulae for the tabulated heat generation rates. Adjustment formulae for the interpolated values are provided to account for differences in initial 235 U enrichment and changes in the specific power of a cycle from the average value. Finally, safety factor formulae were derived as a function of burnup, cooling time, and type of reactor. The proposed guide revision was designed to be easier to use. Also, the complete data base and guide procedure is incorporated into an interactive code called LWRARC which can be executed on a personal computer. The report shows adequate comparisons of heat rates computed by SAS2H/ORIGEN-S and measurements for 10 BWR and 10 PWR fuel assemblies. The average differences of the computed minus the measured heat rates of fuel assemblies were -07 ± 2.6% for the BWR and 1.5 ± 1.3% for the PWR. In addition, a detailed analysis of the proposed procedure indicated the method and equations to be valid

  12. Electron heating caused by parametrically driven turbulence near the critical density

    International Nuclear Information System (INIS)

    Mizuno, K.; DeGroot, J.S.; Estabrook, K.G.

    1986-01-01

    Microwave-driven experiments and particle simulation calculations are presented that model s-polarized laser light incident on a pellet. In the microwave experiments, the incident microwaves are observed to decay into ion and electron waves near the critical density if the microwave power is above a well-defined threshold. Significant absorption, thermal electron heating, and hot electron generation are observed for microwave powers above a few times threshold. Strong absorption, strong profile modification, strongly heated hot electrons with a Maxwellian distribution, a hot-electron temperature that increases slowly with power, and a hot-electron density that is almost constant, are all observed in both the microwave experiments and simulation calculations for high powers. In addition, the thermal electrons are strongly heated for high powers in the microwave experiments

  13. Total absorption gamma-ray spectroscopy (TAGS): Current status of measurement programmes for decay heat calculations and other applications. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nichols, A.L.; Nordborg, C.

    2009-02-01

    A Consultants' Meeting on 'Total Absorption Gamma-ray Spectroscopy (TAGS)' was held on 27-28 January 2009 at the IAEA Headquarters, Vienna, Austria. All presentations, discussions and recommendations of this meeting are contained within this report. The purpose of the meeting was to report and discuss progress and plans to measure total gamma-ray spectra in order to derive mean beta and gamma decay data for decay heat calculations and other applications. This form of review had been recommended by contributors to Subgroup 25 of the OECD-NEA Working Party on International Evaluation Cooperation of the Nuclear Science Committee, for implementation in 2008/09. Hence, relevant specialists were invited to discuss their recently performed and planned TAGS studies, along with experimentalists proposing to assemble and operate such dedicated facilities. Knowledge and quantification of antineutrino spectra is believed to be a significant asset in the non-invasive monitoring of reactor operations and possible application in safeguards, as well as fundamental in the study of neutrino oscillations - these data needs were also debated in terms of appropriate TAGS measurements. A re-assessment of the current request list for TAGS studies is merited and was undertaken in the context of decay heat calculations, and agreement was reached to extend these requirements to the derivation of antineutrino spectra. (author)

  14. Monopole heat

    International Nuclear Information System (INIS)

    Turner, M.S.

    1983-01-01

    Upper bounds on the flux of monopoles incident on the Earth with velocity -5 c(10 16 GeV m -1 ) and on the flux of monopoles incident on Jupiter with velocity -3 c(10 16 GeV m -1 ), are derived. Monopoles moving this slowly lose sufficient energy to be stopped, and then catalyse nucleon decay, releasing heat. The limits are obtained by requiring the rate of energy release from nucleon decay to be less than the measured amount of heat flowing out from the surface of the planet. (U.K.)

  15. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2017-01-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  16. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lapa, Celso M.F., E-mail: thiagodbtr@gmail.com, E-mail: lapa@ien.gov.br, E-mail: alvim@nuclear.ufrj.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  17. Diffusion of heat from a finite, rectangular, plane heat source

    International Nuclear Information System (INIS)

    Ferreri, J.C.; Caballero, C.H.

    1985-01-01

    Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es

  18. A CP violation and rare kaon decay experiment at Fermilab

    International Nuclear Information System (INIS)

    Yamanaka, Taku.

    1989-02-01

    The E731 collaboration at Fermilab has collected enough K → 2π events to give a statistical error of ∼0.5 /times/ 10/sup /minus/3/ on the CP violation parameter ε'/ε. Improvements have been made to reduce the systematic error. The experiment is also sensitive to many rare decays, and it set a new limit on the branching ratio of K/sub L/ → π 0 e + e/sup /minus//, < 4.2 /times/ 10/sup /minus/8/ (90% CL). 10 refs., 15 figs., 1 tab

  19. Application of the PSA method to decay heat removal systems in a large scale FBR design

    International Nuclear Information System (INIS)

    Kotake, S.; Satoh, K.; Matsumoto, H.; Sugawara, M.; Sakata, K.; Okabe, A.

    1993-01-01

    The Probabilistic Safety Assessment (PSA) method is applied to a large scale loop-type FBR in its conceptual design stage in order to establish a well-balanced safety. Both the reactor shut down and decay heat removal systems are designed to be highly reliable, e.g. 10 -7 /d. In this paper the results of several reliability analyses concerning the DHRS have been discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The reliability is evaluated small enough, since DRACSs consists of four independent loops with sufficient heat removal capacity and both forced and natural circulation capabilities are designed. It is found that the common mode failures for the active components in the DRACS dominate the reliability. The design diversity concerning these components can be effective for the improvements and the accident managements on BOP are also possible by making use of the long grace period in FBR. (author)

  20. Application of the PSA method to decay heat removal systems in a large scale FBR design

    Energy Technology Data Exchange (ETDEWEB)

    Kotake, S; Satoh, K [Japan Atomic Power Company, Otemachi, Chiyoda-ku, Tokyo (Japan); Matsumoto, H; Sugawara, M [Toshiba Corporation (Japan); Sakata, K [Mitsubishi Atomic Power Industries Inc. (Japan); Okabe, A [Hitachi Engineering Co., Ltd. (Japan)

    1993-02-01

    The Probabilistic Safety Assessment (PSA) method is applied to a large scale loop-type FBR in its conceptual design stage in order to establish a well-balanced safety. Both the reactor shut down and decay heat removal systems are designed to be highly reliable, e.g. 10{sup -7}/d. In this paper the results of several reliability analyses concerning the DHRS have been discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The reliability is evaluated small enough, since DRACSs consists of four independent loops with sufficient heat removal capacity and both forced and natural circulation capabilities are designed. It is found that the common mode failures for the active components in the DRACS dominate the reliability. The design diversity concerning these components can be effective for the improvements and the accident managements on BOP are also possible by making use of the long grace period in FBR. (author)

  1. A study on experiment and numerical simulation of heat exchanger in heating furnace

    Directory of Open Access Journals (Sweden)

    Z. C. Lv

    2018-01-01

    Full Text Available In this paper, air preheater is used the research object and its heat transfer law is studied by experiment and numerical simulation. The experimental data showed that with the increases of inlet air velocity, the comprehensive heat transfer coefficient and heat transfer efficiency increase, but the temperature efficiency decreases and the resistance loss on the air side increases. The numerical simulation results showed that the larger the diameter of the tube, the better the heat transfer effect. When horizontal spacing in the range of 290 - 305 mm and longitudinal spacing is 70 - 90 mm, the heat transfer effect is best. The optimized heat exchanger structure is that diameter is 60 mm, horizontal spacing is 300 mm, longitudinal spacing is 90 mm. As the inlet air flow rate increases, the heat transfer efficiency increases, but the temperature efficiency decreases and the resistance loss on the air side increases.

  2. Design basis neutronics calculations for NRU-LOCA experiments

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Jenquin, U.P.; McNair, G.W.; Perry, R.T.; Trapp, T.J.; Zimmerman, M.G.

    1979-08-01

    The report describes the neutronics analysis for the LOCA simulation experiments in the NRU reactor. The experimental program will provide greater understanding of nuclear fuel assembly behavior during the heatup, reflood and quench sequence of a hypothetical LOCA. The decay heat and stored heat, which are the energy source in a LOCA will be simulated by fission heat provided by the NRU reactor. The reactor, the test and test operation are described

  3. Study of heat removal by natural convection from the internal core catcher in PFBR using water model experiments

    International Nuclear Information System (INIS)

    Jasmin Sudha, A.; Punitha, G.; Das, S.K.; Lydia, G.; Murthy, S.S.; Malarvizhi, B.; Harvey, J.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: In the event of a core meltdown accident in a Fast Breeder Reactor, the molten core material settling on the bottom of the main vessel can endanger the structural integrity of the main vessel. In the design of Prototype Fast Breeder Reactor in India, the construction of which is about to commence, a core catcher is provided as the internal core retention device to collect and retain the core debris in a coolable configuration. Heat transfer by natural convection above and below the core catcher plate, in the zone beneath the core support structure is evaluated from water mockup experiments in the 1:4 geometrically scaled setup. These studies were undertaken towards comparison of experimentally measured temperatures at different locations with the numerical results. The core catcher assembly consists of a core catcher plate, a heat shield plate and a chimney. Decay heat from the core debris is simulated by electrical heating of the heat shield plate. An opening is provided in the cover plate to reproduce the situation in the actual accident where the core debris would have breached a part of the core support structure. Experiments were carried out with different heat flux levels prevailing upon the heat shield plate. Temperature monitoring was done at more than 100 locations, distributed both on the solid components and in water. The temperature data was analysed to get the temperature profile at different steady state conditions. Flow visualisation was also carried out using water soluble dye to establish the direction of the convective currents. The captured images show that water flows through the slots provided in the top portion of the chimney in the upward direction as evidenced from the diffusion of dye injected inside the chimney. Both the temperature data and flow visualisation confirm mixing of water through the opening in the core support structure which indicates that natural convection is set up in that zone

  4. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    Science.gov (United States)

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for

  5. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  6. Subseabed Disposal Program In-Situ Heat Transfer Experiment (ISHTE)

    International Nuclear Information System (INIS)

    Percival, C.M.

    1983-05-01

    A heat transfer experiment is being developed in support of the Subseabed Disposal Program. The primary objectives of this experiment are: to provide information on the in situ response of seabed sediment to localized heating; to provide an opportunity to evaluate theoretical models of the response and to observe any unanticipated phenomena which may occur; and to develop and demonstrate the technology necessary to perform waste isolation oriented experiments on the seafloor at depths up to 6000 m. As presently envisaged, the heat transfer experiment will be conducted at a location in the central North Pacific though it could be performed anywhere that the ocean bottom is of the type deemed suitable for the disposal of nuclear waste material. The experiment will be conducted of the seafloor from a recoverable space-frame platform at a depth of approximately 6000 m. A 400-W isotopic heat source will be implanted in the illite sediment and the subsequent response of the sediment to the induced thermal field evaluated. After remote initiation of the experiment, a permanent record of the data obtained will be recorded on board the platform, with selected information transmitted to a surface vessel by acoustic telemetry. The experiment will be operational for one year, after which the entire platform will be recovered. Current plans call for the deployment of the experiment in 1986. Specific activities which will be pursued during the course of the experiment include: measurement of the thermal field; determination of the effective thermal conductivity of the sediment; measurement of pore pressure; evaluation of radionuclide migration processes; pore water sampling; sediment chemistry studies; sediment shear strength measurements; and coring operations in the immediate vicinity of the experiment for postexperiment analysis

  7. Thermal decay of Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Garzon, I.L.; Avalos-Borja, M.

    1989-01-01

    The decay mechanisms of argon clusters have been studied using molecular dynamics simulations and Lennard-Jones potentials. Heating up processes were applied to Ar 13 up to temperatures in the melting region. In this range of temperatures large fluctuations in the mean kinetic energy of the system are present and a sequential evaporation is observed. The thermal decay of these aggregates occurs in a time scale of nanoseconds. (orig.)

  8. Bubble chamber: Omega production and decay

    CERN Document Server

    1973-01-01

    This image is taken from one of CERN's bubble chambers and shows the decay of a positive kaon in flight. The decay products of this kaon can be seen spiraling in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that has been heated to boiling point.

  9. Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment.

    Science.gov (United States)

    Agostini, M; Allardt, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Barnabé Heider, M; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Janicskó Csáthy, J; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Misiaszek, M; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Pandola, L; Pelczar, K; Pessina, G; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schönert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2013-09-20

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope (76)Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1 × 10(-2) counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of (76)Ge, T(1/2)(0ν) >2.1 × 10(25) yr (90% C.L.). The combination with the results from the previous experiments with (76)Ge yields T(1/2)(0ν)>3.0 × 10(25) yr (90% C.L.).

  10. Measurement of fake rates for hadronically decaying τ leptons in the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Timo; Janus, Michel; Lai, Stan [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    The τ lepton is the heaviest lepton in the standard model and an important probe of physics at high energy scales. The joint observation of the H → ττ signal in 2015 by the CMS and ATLAS experiments, for example, was the first direct observation of the Higgs boson coupling to fermions. For signatures involving hadronically decaying τ leptons, it is important to have a good understanding of the τ reconstruction and identification algorithms that are used for data analysis in the ATLAS experiment. In particular, the probability for jets originating from quarks and gluons to be misidentified as hadronically decaying τ leptons (the so-called fake rate), is important for background estimation from a variety of sources. This fake rate depends on many kinematic variables, as well as the quark-gluon composition of the process in question. This talk presents an approach using 13 TeV ATLAS data, to measure the fake rate using the tag-and-probe technique. The dependence of the fake rate on the above mentioned factors is also discussed.

  11. Droplet condensation in rapidly decaying pressure fields

    International Nuclear Information System (INIS)

    Peterson, P.F.; Bai, R.Y.; Schrock, V.E.; Hijikata, K.

    1992-01-01

    Certain promising schemes for cooling inertial confinement fusion reactors call for highly transient condensation in a rapidly decaying pressure field. After an initial period of condensation on a subcooled droplet, undesirable evaporation begins to occur. Recirculation within the droplet strongly impacts the character of this condensation-evaporation cycle, particularly when the recirculation time constant is of the order of the pressure decay time constant. Recirculation can augment the heat transfer, delay the onset of evaporation, and increase the maximum superheat inside the drop by as much as an order of magnitude. This numerical investigation identifies the most important parameters and physics characterizing transient, high heat flux droplet condensation. The results can be applied to conceptual designs of inertial confinement fusion reactors, where initial temperature differences on the order of 1,500 K decay to zero over time spans the order of tens of milliseconds

  12. Double beta decay searches with thermal detectors

    International Nuclear Information System (INIS)

    Pirro, Stefano

    2006-01-01

    Double beta decay searches have become more and more important in the last few years. The 'second generation' experiments will allow to explore the inverse hierarchy region but, due to the uncertainties in the nuclear matrix elements, none of them will be able to cover completely the allowed region. Thus the need to investigate different DBD emitters becomes more important. The bolometric technique is only one able to study different nuclei with the proper energy resolution, key point for the future experiments. The possibility to reject the natural background arising from fast neutrons and alpha particles was recently directly proved with thermal bolometers, using the double read out (heat and scintillation). This new technique offers the possibility to reach background levels two orders of magnitude smaller with respect to the ones of the next planned experiments, aiming the possibility to investigate direct hierarchy region. (author)

  13. On bulk viscosity and moduli decay

    International Nuclear Information System (INIS)

    Laine, Mikko

    2010-01-01

    This pedagogically intended lecture, one of four under the header 'Basics of thermal QCD', reviews an interesting relationship, originally pointed out by Boedeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form. (author)

  14. Study of rare and suppressed processes in B meson decays with the ATLAS experiment

    CERN Document Server

    Iengo, P; The ATLAS collaboration

    2014-01-01

    The large amount of Heavy Flavor data collected by the ATLAS experiment is potentially sensitive to New Physics, which could be evident in processes that are naturally suppressed in the Standard Model. The most recent results on the search for the rare decay Bs (B0) -> mu+mu- are presented, as well as results of the angular analysis of the semileptonic rare decay Bd → K*0 mu+mu- -> K+pi-mu+mu-, extracting the distribution parameter AFB and FL (the accuracy obtained from data collected in 2011 is comparable to the best previous measurement in the region q^2(mu+mu-) -> 16 GeV^2)

  15. Nuclear heat applications in Russia: Experience, status and prospects

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kusmartsev, E.V.

    1998-01-01

    The extensive experience gained with nuclear district heating in Russia is described. Most of the WWER reactors in Russia are cogeneration plants. Steam is extracted through LP turbine bleeders and condensed in intermediate heat exchangers to hot water which is then supplied to DH grids. Also some small dedicated nuclear heating plants are operated. (author)

  16. CP-violations in B decays

    Indian Academy of Sciences (India)

    Recent results on CP-violation measurements in decays from energy asymmetric -factory experiments are reported. Thanks to large accumulated data samples, CP-violations in decays in mixing-decay interference and direct CP-violation are now firmly established. The measurements of three angles of the unitarity ...

  17. Semi- and dileptonic top pair decays at the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mameghani, Raphael

    2008-05-15

    The Large Hadron Collider, starting in 2008, will be a 'top factory' as top-antitop (t anti t) pairs will be produced with a cross section of about 830 pb at an instantaneous luminosity of 10{sup 33}cm{sup -2}s{sup -1} during the first year. With about 30% probability top pairs decay semileptonically into a final state with four jets, lepton (electron or muon) and respective neutrino. For another 5% of the t anti t events a dileptonic decay is expected. Here the final state signature is composed of two jets, two leptons and two neutrinos. In this thesis the precision for a t anti t cross section measurement at the ATLAS experiment in the semileptonic and dileptonic channels with cut based analyses, applicable to the first data, was estimated. The analysis of the semileptonic decay focused especially on the study of background from QCD events either with leptons from semileptonic hadron decays or from hadrons falsely identified as electrons by the calorimeter. For the first 10 fb{sup -1} and assuming a fake electron probability of 10{sup -3} a precision for the cross section times the branching ratio of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}bq anti q' anti bl anti {nu}))={+-}0.5(stat){+-}30.4(syst){+-}24.0(lumi) pb has been estimated, corresponding to a relative precision of 16% for the theoretically predicted cross section times branching ratio of about 240 pb. The analysis in the dileptonic channel achieves a precision of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}b anti l{nu} anti bl anti {nu}))={+-}0.2(stat){+-}2.5(syst){+-}2.6(lumi) pb which translates into a relative error of 10% for the cross section times branching ratio of around 38 pb. The errors for both the semileptonic and the dileptonic channel are expected to improve as progress is made on the luminosity determination and the knowledge of the backgrounds from comparisons with measured data. A measurement of the cross-section ratio between the

  18. Semi- and dileptonic top pair decays at the ATLAS experiment

    International Nuclear Information System (INIS)

    Mameghani, Raphael

    2008-05-01

    The Large Hadron Collider, starting in 2008, will be a ''top factory'' as top-antitop (t anti t) pairs will be produced with a cross section of about 830 pb at an instantaneous luminosity of 10 33 cm -2 s -1 during the first year. With about 30% probability top pairs decay semileptonically into a final state with four jets, lepton (electron or muon) and respective neutrino. For another 5% of the t anti t events a dileptonic decay is expected. Here the final state signature is composed of two jets, two leptons and two neutrinos. In this thesis the precision for a t anti t cross section measurement at the ATLAS experiment in the semileptonic and dileptonic channels with cut based analyses, applicable to the first data, was estimated. The analysis of the semileptonic decay focused especially on the study of background from QCD events either with leptons from semileptonic hadron decays or from hadrons falsely identified as electrons by the calorimeter. For the first 10 fb -1 and assuming a fake electron probability of 10 -3 a precision for the cross section times the branching ratio of Δ(σ t anti t .B(t anti t→bq anti q' anti bl anti ν))=±0.5(stat)±30.4(syst)±24.0(lumi) pb has been estimated, corresponding to a relative precision of 16% for the theoretically predicted cross section times branching ratio of about 240 pb. The analysis in the dileptonic channel achieves a precision of Δ(σ t anti t .B(t anti t→b anti lν anti bl anti ν))=±0.2(stat)±2.5(syst)±2.6(lumi) pb which translates into a relative error of 10% for the cross section times branching ratio of around 38 pb. The errors for both the semileptonic and the dileptonic channel are expected to improve as progress is made on the luminosity determination and the knowledge of the backgrounds from comparisons with measured data. A measurement of the cross-section ratio between the dileptonic and semileptonic channel is sensitive to scenarios of new phenomena with competitive top quark decay modes

  19. Semi- and dileptonic top pair decays at the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mameghani, Raphael

    2008-05-15

    The Large Hadron Collider, starting in 2008, will be a 'top factory' as top-antitop (t anti t) pairs will be produced with a cross section of about 830 pb at an instantaneous luminosity of 10{sup 33}cm{sup -2}s{sup -1} during the first year. With about 30% probability top pairs decay semileptonically into a final state with four jets, lepton (electron or muon) and respective neutrino. For another 5% of the t anti t events a dileptonic decay is expected. Here the final state signature is composed of two jets, two leptons and two neutrinos. In this thesis the precision for a t anti t cross section measurement at the ATLAS experiment in the semileptonic and dileptonic channels with cut based analyses, applicable to the first data, was estimated. The analysis of the semileptonic decay focused especially on the study of background from QCD events either with leptons from semileptonic hadron decays or from hadrons falsely identified as electrons by the calorimeter. For the first 10 fb{sup -1} and assuming a fake electron probability of 10{sup -3} a precision for the cross section times the branching ratio of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}bq anti q' anti bl anti {nu}))={+-}0.5(stat){+-}30.4(syst){+-}24.0(lumi) pb has been estimated, corresponding to a relative precision of 16% for the theoretically predicted cross section times branching ratio of about 240 pb. The analysis in the dileptonic channel achieves a precision of {delta}({sigma}{sub t} {sub anti} {sub t}.B(t anti t{yields}b anti l{nu} anti bl anti {nu}))={+-}0.2(stat){+-}2.5(syst){+-}2.6(lumi) pb which translates into a relative error of 10% for the cross section times branching ratio of around 38 pb. The errors for both the semileptonic and the dileptonic channel are expected to improve as progress is made on the luminosity determination and the knowledge of the backgrounds from comparisons with measured data. A measurement of the cross-section ratio between the dileptonic and

  20. The NA62 rare Kaon decay experiment Photon Veto System

    International Nuclear Information System (INIS)

    Perfetto, F.

    2009-01-01

    The NA62 experiment at CERN SPS is aimed at measuring the rare decay K + →π + νν-bar. This poses very stringent requirements on the particle identification capabilities of the apparatus in order to reject the overwhelming K + →μ + ν and K + →π + π 0 background. In particular, a π 0 rejection at level of 10 -8 is needed to complement the kinematical rejection of π + π 0 events. In order to have a full acceptance from 0 to 50 mrad, partly covered by NA48 liquid Kripton calorimeter, a set of veto anti-counters should be placed along the vacuum decay tank, to catch large angle photons with a detection efficiency better than 10 -4 in a wide energy range: from few hundreds MeV to 35 GeV. Intense R and D programs have been carried out in order to study different technological solutions: a lead-scintillating fibers calorimeter, lead-scintillator sandwich calorimeter and finally an original re-use of the existing barrel of the OPAL lead-glass electromagnetic calorimeter. We present the results on detector performances and compare the three solutions.

  1. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.; Wolf, J.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  2. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Directory of Open Access Journals (Sweden)

    M. Ali Asgarian

    2018-04-01

    Full Text Available Electron Bernstein waves (EBW consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  3. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Science.gov (United States)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  4. A standalone decay heat removal device for the Gas-cooled Fast Reactor for intermediate to atmospheric pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A., E-mail: aaron@epiney.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland); Alpy, N., E-mail: nicolas.alpy@cea.fr [CEA, DEN, Service d' Etudes des Systemes Innovants, F-13108 Saint Paul Lez Durance (France); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Chawla, R., E-mail: rakesh.chawla@psi.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer An analytical model predicting Brayton cycle off-design steady states, is developed. Black-Right-Pointing-Pointer The model is used to design an autonomous decay heat removal system for the GFR. Black-Right-Pointing-Pointer Predictions of the analytical model are verified using CATHARE. Black-Right-Pointing-Pointer CATHARE code is used to simulate a set of GFR safety depressurization transients using this device. Black-Right-Pointing-Pointer Convenient turbo-machine designs exist for the targeted autonomous decay heat removal for a wide pressure range. - Abstract: This paper reports a design study for a Brayton cycle machine, which would constitute a dedicated, standalone decay heat removal (DHR) device for the Generation IV Gas-cooled Fast Reactor (GFR). In comparison to the DHR reference strategy developed by the French Commissariat a l'Energie Atomique during the GFR pre-conceptual design phase (which was completed at the end of 2007), the salient feature of this alternative device would be to combine the energetic autonomy of the natural convection process - which is foreseen for operation at high and medium pressures - with the efficiency of the forced convection process which is foreseen for operation down to very low pressures. An analytical model, the so-called 'Brayton scoping model', is described first. This is based on simplified thermodynamic and aerodynamic equations, and was developed to highlight design choices. Two different machine designs are analyzed: a Brayton loop turbo-machine working with helium, and a second one working with nitrogen, since nitrogen is the heavy gas foreseen to be injected into the primary system to enhance the natural convection under loss-of-coolant-accident (LOCA) conditions. Simulations of the steady-state and transient behavior of the proposed device have then been carried out using the CATHARE code. These serve to confirm the insights obtained from usage of the

  5. ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory

    International Nuclear Information System (INIS)

    Vukovic, J.; Grgic, D.; Konjarek, D.

    2010-01-01

    This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).

  6. The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)

    Science.gov (United States)

    Abgrall, N.; Abramov, A.; Abrosimov, N.; Abt, I.; Agostini, M.; Agartioglu, M.; Ajjaq, A.; Alvis, S. I.; Avignone, F. T.; Bai, X.; Balata, M.; Barabanov, I.; Barabash, A. S.; Barton, P. J.; Baudis, L.; Bezrukov, L.; Bode, T.; Bolozdynya, A.; Borowicz, D.; Boston, A.; Boston, H.; Boyd, S. T. P.; Breier, R.; Brudanin, V.; Brugnera, R.; Busch, M.; Buuck, M.; Caldwell, A.; Caldwell, T. S.; Camellato, T.; Carpenter, M.; Cattadori, C.; Cederkäll, J.; Chan, Y.-D.; Chen, S.; Chernogorov, A.; Christofferson, C. D.; Chu, P.-H.; Cooper, R. J.; Cuesta, C.; Demidova, E. V.; Deng, Z.; Deniz, M.; Detwiler, J. A.; Di Marco, N.; Domula, A.; Du, Q.; Efremenko, Yu.; Egorov, V.; Elliott, S. R.; Fields, D.; Fischer, F.; Galindo-Uribarri, A.; Gangapshev, A.; Garfagnini, A.; Gilliss, T.; Giordano, M.; Giovanetti, G. K.; Gold, M.; Golubev, P.; Gooch, C.; Grabmayr, P.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Gurentsov, V.; Gurov, Y.; Gusev, K.; Hakenmüeller, J.; Harkness-Brennan, L.; Harvey, Z. R.; Haufe, C. R.; Hauertmann, L.; Heglund, D.; Hehn, L.; Heinz, A.; Hiller, R.; Hinton, J.; Hodak, R.; Hofmann, W.; Howard, S.; Howe, M. A.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Janssens, R.; Ješkovský, M.; Jochum, J.; Johansson, H. T.; Judson, D.; Junker, M.; Kaizer, J.; Kang, K.; Kazalov, V.; Kermadic, Y.; Kiessling, F.; Kirsch, A.; Kish, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Konovalov, S. I.; Kontul, I.; Kornoukhov, V. N.; Kraetzschmar, T.; Kröninger, K.; Kumar, A.; Kuzminov, V. V.; Lang, K.; Laubenstein, M.; Lazzaro, A.; Li, Y. L.; Li, Y.-Y.; Li, H. B.; Lin, S. T.; Lindner, M.; Lippi, I.; Liu, S. K.; Liu, X.; Liu, J.; Loomba, D.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Ma, H.; Majorovits, B.; Mamedov, F.; Martin, R. D.; Massarczyk, R.; Matthews, J. A. J.; McFadden, N.; Mei, D.-M.; Mei, H.; Meijer, S. J.; Mengoni, D.; Mertens, S.; Miller, W.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Myslik, J.; Nemchenok, I.; Nilsson, T.; Nolan, P.; O'Shaughnessy, C.; Othman, G.; Panas, K.; Pandola, L.; Papp, L.; Pelczar, K.; Peterson, D.; Pettus, W.; Poon, A. W. P.; Povinec, P. P.; Pullia, A.; Quintana, X. C.; Radford, D. C.; Rager, J.; Ransom, C.; Recchia, F.; Reine, A. L.; Riboldi, S.; Rielage, K.; Rozov, S.; Rouf, N. W.; Rukhadze, E.; Rumyantseva, N.; Saakyan, R.; Sala, E.; Salamida, F.; Sandukovsky, V.; Savard, G.; Schönert, S.; Schütz, A.-K.; Schulz, O.; Schuster, M.; Schwingenheuer, B.; Selivanenko, O.; Sevda, B.; Shanks, B.; Shevchik, E.; Shirchenko, M.; Simkovic, F.; Singh, L.; Singh, V.; Skorokhvatov, M.; Smolek, K.; Smolnikov, A.; Sonay, A.; Spavorova, M.; Stekl, I.; Stukov, D.; Tedeschi, D.; Thompson, J.; Van Wechel, T.; Varner, R. L.; Vasenko, A. A.; Vasilyev, S.; Veresnikova, A.; Vetter, K.; von Sturm, K.; Vorren, K.; Wagner, M.; Wang, G.-J.; Waters, D.; Wei, W.-Z.; Wester, T.; White, B. R.; Wiesinger, C.; Wilkerson, J. F.; Willers, M.; Wiseman, C.; Wojcik, M.; Wong, H. T.; Wyenberg, J.; Xu, W.; Yakushev, E.; Yang, G.; Yu, C.-H.; Yue, Q.; Yumatov, V.; Zeman, J.; Zeng, Z.; Zhitnikov, I.; Zhu, B.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2017-10-01

    The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ˜0.1 count /(FWHM.t.yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.

  7. Heat loss by helicity injection in spheromaks

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1994-01-01

    A model is presented for spheromak buildup and decay including thermal diffusivity associated with magnetic turbulence during helicity injection. It is shown that heat loss by magnetic turbulence scales more favorably than gyroBohm transport. Thus gyroBohm scaling for the proposed ignition experiment would be the conservative choice, though present experiments may be dominated by magnetic turbulence. Because of a change in boundary conditions when the gun is turned off, the model may account for the observed increase in electron temperature in CTX after turnoff

  8. Preliminary decay heat calculations for the fuel loaded irradiation loop device of the RMB multipurpose Brazilian reactor

    Energy Technology Data Exchange (ETDEWEB)

    Campolina, Daniel; Costa, Antonio Carlos L. da; Andrade, Edison P., E-mail: campolina@cdtn.br, E-mail: aclp@cdtn.br, E-mail: epa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2017-07-01

    The structuring project of the Brazilian Multipurpose Reactor (RMB) is responsible for meeting the capacity to develop and test materials and nuclear fuel for the Brazilian Nuclear Program. An irradiation test device (Loop) capable of performing fuel test for power reactor rods is being conceived for RMB reflector. In this work preliminary neutronic calculations have been carried out in order to determine parameters to the cooling system of the Loop basic design. The heat released as a result of radioactive decay of fuel samples was calculated using ORIGEN-ARP and it resulted less than 200 W after 1 hour of irradiation interruption. (author)

  9. Comparison of the effect of gamma irradiation, heat-radiation combination, and sulphur dioxide generating pads on decay and quality of grapes

    International Nuclear Information System (INIS)

    Thomas, Paul; Brij Bhushan; Joshi, M.R.

    1995-01-01

    Effect of gamma irradiation, heat-radiation combination and in-package sulphur dioxide fumigation on fungal decay, and quality of seedless grape cultivars, Thompson, Sonaka and Tas-A-Ganesh was evaluated under different storage regimes. Irradiation at 2 kGy or a combination of hot water dip (50 degC, 5 min), plus irradiation (1 kGy) showed less spoilage due to Rhizopus spp. and Botrytis spp. in grapes packaged in tissue paper lined boxes and stored at 4 deg, 15 deg and 25 degC. Storage in polyethylene lined boxes increased the fungal rot. In-package sulphur dioxide generating pad was most effective for control of decay in polyethylene lined boxes stored at 10 deg and 20 degC, but caused berry bleaching. Irradiation at 2.5 or 3.5 kGy controlled decay at 10 degC, but not so effectively at 20 degC. Organoleptic quality, berry firmness, and soluble solids were not affected by irradiation, but decreases in titratable acids and ascorbic acid were recorded. Packaging in polyethylene lined boxes retained berry turgidity, while slight shrivelling occurred in tissue paper lined boxes. The results indicate that gamma irradiation has potential as an alternative to sulphur dioxide fumigation for decay control during shipping and storage. (author). 20 refs., 4 tabs

  10. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  11. aCORN: An experiment to measure the electron-antineutrino correlation in neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wietfeldt, F.E., E-mail: few@tulane.ed [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Byrne, J. [University of Sussex (United Kingdom); Collett, B. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Jones, G.L. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Komives, A. [Physics Department, DePauw University, Greencastle, IN 46135 (United States); Laptev, A. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Noid, G.; Stephenson, E.J. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); Stern, I.; Trull, C. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Yerozolimsky, B.G. [Physics Department, Harvard University, Cambridge, MA 02139 (United States)

    2009-12-11

    The aCORN experiment is designed to make a precision (<1%) measurement of the electron-antineutrino angular correlation (a-coefficient) in neutron beta decay. It uses a new method proposed in 1996 by Yerozolimsky and Mostovoy. Electrons and recoil protons from neutron decay in a cold beam are detected in coincidence. The momenta of the particles are selected so that the protons form two kinematically distinct time-of-flight groups as a function of electron energy. The count rate asymmetry in these two groups is proportional to the a-coefficient. Precision spectroscopy of the protons is not required. The apparatus is currently under construction. It will be integrated and tested at the Indiana University Cyclotron Facility (IUCF) and then moved to the NIST Center for Neutron Research for the initial physics run.

  12. Looking for a hidden sector in exotic Higgs boson decays with the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    Andrea Coccaro

    2015-12-01

    Full Text Available The nature of dark matter (DM is one of the most intriguing questions in particle physics. DM can be postulated to be part of a hidden sector whose interactions with the visible matter are not completely decoupled. The discovery of a fundamental scalar particle compatible with the Higgs boson predicted by the Standard Model paves the way for looking for DM with novel methods. An overview of the searches looking for a hidden sector in exotic Higgs decays and for invisible decays of the Higgs boson within the ATLAS experiment is presented. Prospects for searches with Large Hadron Collider data at a center-of-mass energy of 13 TeV are summarized.

  13. Experiment on transient heat transfer in closed narrow channel

    International Nuclear Information System (INIS)

    Ochiai, Masaaki

    1985-01-01

    Heat transfer coefficients and transient pressures in closed narrow channels were obtained experimentally, in order to assess the gap heat transfer models in the computer code WTRLGD which were devised to analyze the internal pressure behavior of waterlogged fuel rods. Gap widths of channels are 0.1--0.5mm to simulate the gap region of waterlogged fuel rods, and test fluids are water (7--89.2 0 C) and Freon-113 (9.2 0 C). The results show that the heater temperature and the pressure measured in the experiments without the DNB occurrence are simulated fairly well by the calculational model of WTRLGD where the heat transfer in a closed narrow channel is evaluated with one-dimensional transient thermal conduction equation and Jens and Lottes' correlation for nucleate boiling. Consequently, it is also suggested that the above equations are available for evaluation of heat flux from fuel to internal water of waterlogged fuel rods. The film boiling heat transfer coefficient was in the same order of that evaluated by Bromley's correlation and the DNB heat flux was smaller than that obtained in quasi-steady experiments with ordinary systems, although the experimental data for them were not enough. (author)

  14. A detailed description of the analysis of the decay of neutral kaons to $\\pi^+ \\pi^-$ in the CPLEAR experiment

    CERN Document Server

    Apostolakis, Alcibiades J; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Sakelliou, L; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Yéche, C; Zavrtanik, D; Zimmerman, D

    2000-01-01

    A detailed description is given of the analysis of neutral kaons decaying to \\pipi , based on the complete data sample collected with the CPLEAR experiment.Using a novel approach involving initially strangeness-tagged \\kn\\ and \\knb ,the time-dependent decay rate asymmetry has been measured. This asymmetry, resulting from the interference between the \\ks\\and \\kl\\ decay amplitudes, has enabled both the magnitudeand phase of the CP-violation parameter, \\ita , to be measured, with aprecision comparable to that of the current world average values.

  15. Search for neutral Higgs bosons decaying to tau pairs at the CMS experiment

    International Nuclear Information System (INIS)

    Choudhury, S.

    2012-01-01

    The thesis describes a study of the tau-pair final state in the semi-leptonic decay mode into muon and hadrons using proton-proton collisions data at a center-of-mass energy of 7 TeV using the CMS detector at the CERN Large Hadron Collider. The performance of tau-lepton reconstruction and identification algorithm is studied using a data sample of proton-proton collisions at √ = 7 TeV, corresponding to an integrated luminosity of 36 pb -1 . The tau leptons that decay into one charged hadron with or without the association of neutral hadrons is reconstructed using Particle-Flow object reconstruction technique with a novel tau identification algorithm called the Hadron Plus Strips (HPS) algorithm in the CMS tracker and electromagnetic calorimeter. The reconstruction efficiency of the algorithm is measured using τ leptons produced in Z-boson decays. The hadronically decaying tau lepton mis-identification rate for jets produced in association with a W boson is also determined. The first measurement of inclusive Z →ττ production in pp collisions at the LHC is presented in muon + hadrons final state using a data sample of 36 pb -1 . The measured cross-section is in good agreement with the next-to-next-to-leading order (NNLO) QCD prediction. After establishing the Z boson in di-tau decay mode, an inclusive search for neutral minimal supersymmetric standard model (MSSM) Higgs bosons in pp collisions is performed at a center-of-mass energy of 7 TeV. The results are based on a data sample corresponding to an integrated luminosity of 36 pb -1 and 4.6 fb -1 recorded by the CMS experiment in the year 2010 and 2011 respectively. The search uses decays of the Higgs bosons to tau pairs. No excess is observed in the tau-pair invariant-mass spectrum. The resulting upper limits on the Higgs boson production cross-section times the branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, yield stringent bounds in the MSSM parameter space. (author) [fr

  16. Ion Bernstein wave heating experiments in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2005-01-01

    Ion Bernstein Wave (IBW) experiments have been carried out in recent years in the HT-7 superconducting Tokamak. The electron heating experiment has been concentrated on deuterium plasma with an injecting RF power up to 350 kw. The globe heating and localized heating can be seen clearly by controlling the ICRF resonance layer's position. On-axis and off-axis electron heating have been realized by properly setting the target plasma parameters. Experimental results show that the maximum increment in electron temperature has been more than 1 keV, the electron temperature profile has been modified by IBW under different plasma conditions, and both energy and particle confinement improvements have been obtained. (author)

  17. A triggerless digital data acquisition system for nuclear decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Estevez, E.; Giubrone, G.; Jordan, M. D.; Molina, F.; Rubio, B.; Valencia, E. [Instituto de Fisica Corpuscular, Centro Mixto C.S.I.C. - Univ. Valencia, Apdo. Correos 22085, 46071 Valencia (Spain)

    2013-06-10

    In nuclear decay experiments an important goal of the Data Acquisition (DAQ) system is to allow the reconstruction of time correlations between signals registered in different detectors. Classically DAQ systems are based in a trigger that starts the event acquisition, and all data related with the event of that trigger are collected as one compact structure. New technologies and electronics developments offer new possibilities to nuclear experiments with the use of sampling ADC-s. This type of ADC-s is able to provide the pulse shape, height and a time stamp of the signal. This new feature (time stamp) allows new systems to run without an event trigger. Later, the event can be reconstructed using the time stamp information. In this work we present a new DAQ developed for {beta}-delayed neutron emission experiments. Due to the long moderation time of neutrons, we opted for a self-trigger DAQ based on commercial digitizers. With this DAQ a negligible acquisition dead time was achieved while keeping a maximum of event information and flexibility in time correlations.

  18. Visible neutrino decay at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste

    2017-05-09

    If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\

  19. Scattering of lattice solitons and decay of heat-current correlation in the Fermi-Pasta-Ulam-α -β model

    Science.gov (United States)

    Jin, Tao; Yu, Jian; Zhang, Nan; Zhao, Hong

    2017-08-01

    As is well known, solitons can be excited in nonlinear lattice systems; however, whether, and if so, how, this kind of nonlinear excitation can affect the energy transport behavior is not yet fully understood. Here we study both the scattering dynamics of solitons and heat transport properties in the Fermi-Pasta-Ulam-α -β model with an asymmetric interparticle interaction. By varying the asymmetry degree of the interaction (characterized by α ), we find that (i) for each α there exists a momentum threshold for exciting solitons from which one may infer an α -dependent feature of probability of presentation of solitons at a finite-temperature equilibrium state and (ii) the scattering rate of solitons is sensitively dependent on α . Based on these findings, we conjecture that the scattering between solitons will cause the nonmonotonic α -dependent feature of heat conduction. Fortunately, such a conjecture is indeed verified by our detailed examination of the time decay behavior of the heat current correlation function, but it is only valid for an early time stage. Thus, this result may suggest that solitons can have only a relatively short survival time when exposed in a thermal environment, eventually affecting the heat transport in a short time.

  20. Rare B decays at LEP

    CERN Document Server

    Kluit, P M

    2001-01-01

    The results of the LEP experiments for rare B decays will be reviewed, covering hadronic final states, radiative and other rare decays and results for the inclusive charmless branching ratio. (8 refs).

  1. Development of a steady-state calculation model for the KALIMER PDRC(Passive Decay Heat Removal Circuit)

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Kwon, Young Min; Eoh, Jae Hyuk; Lee, Yong Bum

    2003-06-01

    A sodium circuit has usually featured for a Liquid Metal Reactor(LMR) using sodium as coolant to remove the decay heat ultimately under accidental conditions because of its high reliability. Most of the system codes used for a Light Water Reactor(LWR) analysis is capable of calculating natural circulation within such circuit, but the code currently used for the LMR analysis does not feature stand alone capability to simulate the natural circulation flow inside the circuit due to its application limitation. To this end, the present study has been carried out because the natural circulation analysis for such the circuit is realistically raised for the design with a new concept. The steady state modeling is presented in this paper, development of a transient model is also followed to close the study. The incompressibility assumption of sodium which allow the circuit to be modeled with a single flow, makes the model greatly simplified. Models such as a heat exchanger developed in the study can be effectively applied to other system analysis codes which require such component models

  2. Reliability study of a special decay heat removal system of a gas-cooled fast reactor demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano, E-mail: luciano.burgazzi@enea.it

    2014-12-15

    The European roadmap toward the development of generation IV concepts addresses the safety and reliability assessment of the special system designed for decay heat removal of a gas-cooled fast reactor demonstrator (GFRD). The envisaged system includes the combination of both active and passive means to accomplish the fundamental safety function. Failure probabilities are calculated on various system configurations, according to either pressurized or depressurized accident events under investigation, and integrated with probabilities of occurrence of corresponding hardware components and natural circulation performance assessment. The analysis suggests the improvement of measures against common cause failures (CCF), in terms of an appropriate diversification among the redundant systems, to reduce the system failure risk. Particular emphasis is placed upon passive system reliability assessment, being recognized to be still an open issue, and the approach based on the functional reliability is adopted to address the point. Results highlight natural circulation as a challenging factor for the decay heat removal safety function accomplishment by means of passive devices. With the models presented here, the simplifying assumptions and the limited scenarios considered according to the level of definition of the design, where many systems are not yet established, one can conclude that attention has to be paid to the functional aspects of the passive system, i.e. the ones not pertaining to the “hardware” of the system. In this article the results of the analysis are discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The design diversity of the components undergoing CCFs can be effective for the improvement and some accident management measures are also possible by making use of the long grace period in GFRD.

  3. Observation of the $B^0_s \\to \\eta_c \\phi$ decay with the LHCb experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00536869

    The interference between $B^0_s$ meson decay amplitudes to CP final state directly or via mixing gives rise to a measurable CP-violating phase $\\phi_s$, which is predicted to be $\\phi_s^{SM} = (-0.0370\\pm0.0006)~\\mathrm{rad}$ in the Standard Model. However, such process may receive contributions from New Physics and change the value of $\\phi_s$. At present, the most precise measurement of $\\phi_s$ is given by the LHCb experiment and the world average is $\\phi_s^{\\rm{exp}} = (-0.021\\pm 0.032)~\\mathrm{rad}$, with uncertainty still dominated by the statistics. In this context, a study of $B^0_s \\to \\eta_c \\phi$ decays is performed using $pp$ collision data corresponding to an integrated luminosity of~3.0\\,fb$^{-1}$, collected with the LHCb detector during the Run~1 of the LHC. The observation of the decay $B^0_s \\to \\eta_c \\phi$ is reported, where the $\\eta_c$ meson is reconstructed in the $p\\bar{p}$, $K^+K^-\\pi^+\\pi^-$, $\\pi^+\\pi^-\\pi^+\\pi^-$ and $K^+K^-K^+K^-$ decay modes and the $\\phi(1020)$ in t...

  4. Beta and gamma decay heat measurements between 0.1s--50,000s for neutron fission of 235U, 238U and 239Pu. Final report, June 1, 1992--December 31, 1996

    International Nuclear Information System (INIS)

    Schier, W.A.; Couchell, G.P.

    1996-01-01

    This is a final reporting on the composition of separate beta and gamma decay heat measurements following neutron fission of 235 U and 238 U and 239 Pu and on cumulative and independent yield measurements of fission products of 235 U and 238 U. What made these studies unique was the very short time of 0.1 s after fission that could be achieved by incorporating the helium jet and tape transport system as the technique for transporting fission fragments from the neutron environment of the fission chamber to the low-background environment of the counting area. This capability allowed for the first time decay heat measurements to extend nearly two decades lower on the logarithmic delay time scale, a region where no comprehensive aggregate decay heat measurements had extended to. This short delay time capability also allowed the measurement of individual fission products with half lives as short as 0.2s. The purpose of such studies was to provide tests both at the aggregate level and at the individual nuclide level of the nation's evaluated nuclear data file associated with fission, ENDF/B-VI. The results of these tests are in general quite encouraging indicating this data base generally predicts correctly the aggregate beta and aggregate gamma decay heat as a function of delay time for 235 U, 238 U and 239 Pu. Agreement with the measured individual nuclide cumulative and independent yields for fission products of 235 U and 238 U was also quite good although the present measurements suggest needed improvements in several individual cases

  5. Plasma heating by relativistic electron beams: correlations between experiment and theory

    International Nuclear Information System (INIS)

    Thode, L.E.; Godfrey, B.B.

    1975-01-01

    The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory

  6. A detailed description of the analysis of the decay of neutral kaons to π+π- in the CPLEAR experiment

    International Nuclear Information System (INIS)

    Apostolakis, A.; Aslanides, E.

    2000-01-01

    A detailed description is given of the analysis of neutral kaons decaying to π + π - , based on the complete set of data collected with the CPLEAR experiment. Using a novel approach involving initially strangeness-tagged K 0 and anti K 0 , the time-dependent decay-rate asymmetry has been measured. This asymmetry, resulting from the interference between the K S and K L decay amplitudes, has enabled both the magnitude and phase of the CP-violation parameter, η +- , to be measured, with a precision comparable to that of the current world-average values. (orig.)

  7. 3D CFD simulations to study the effect of inclination of condenser tube on natural convection and thermal stratification in a passive decay heat removal system

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, Nitin [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2016-08-15

    Highlights: • Investigation of three-dimensional natural convection and thermal stratification inside large water pool. • Effect of inclination (α) of condenser tube on fluid flow and heat transfer. • The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. • Laminar-turbulent natural convection and heat transfer in the presence of longitudinal vortices. - Abstract: Many advanced nuclear reactors adopt methodologies of passive safety systems based on natural forces such as gravity. In one of such system, the decay heat generated from a reactor is removed by isolation condenser (ICs) submerged in a large water pool called the Gravity Driven Water Pool (GDWP). The objective of the present study was to design an IC for the passive decay heat removal system (PDHRS) for advanced nuclear reactor. First, the effect of inclination of IC tube on three dimensional temperature and flow fields was investigated inside a pilot scale (10 L) GDWP. Further, the knowledge of these fields has been used for the quantification of heat transfer and thermal stratification phenomenon. In a next step, the knowledge gained from the pilot scale GDWP has been extended to design an IC for real size GDWP (∼10,000 m{sup 3}). Single phase CFD simulation using open source CFD code [OpenFOAM-2.2] was performed for different tube inclination angles (α) (w.r.t. to vertical direction) in the range 0° ⩽ α ⩽ 90°. The results indicate that the heat transfer coefficient increases with increase in tube inclination angle. The heat transfer was found to be maximum for α = 90° and minimum for α = 15°. This behavior is due to the interaction between the primary flow (due to pressure gradient) and secondary flow (due to buoyancy force). The primary flow enhanced the fluid sliding motion at the tube top whereas the secondary flow resulted in enhancement in fluid motion along the circumference of tube. As the angle of inclination (α) of the tube was increased, the

  8. Search for Tau Neutrinos in the τ → e Decay Channel in the OPERA Experiment

    OpenAIRE

    Hosseini, Behzad

    2015-01-01

    The OPERA (Oscillation Project with Emulsion tRacking Apparatus) experiment is a long baseline neutrino oscillation experiment that was designed to perform a conclusive test of the νμ → ντ oscillations hypothesis. The main aim of this experiment is a direct observation of τ leptons in ντ charged-current interactions. A good electromagnetic shower reconstruction is important for the τ detection in the τ → e decay channel. So far, 4 ντ candidates have been observed in the OPERA detector wi...

  9. Online Selection of J/ψ → μ+μ− Decays in the CBM Experiment

    Directory of Open Access Journals (Sweden)

    Ablyazimov T.O.

    2016-01-01

    Full Text Available The Compressed Baryonic Matter (CBM experimental setup is currently being constructed at the Facility for Antiproton and Ion Research (FAIR acceleration complex at GSI (Darmstadt, Germany by an international collaboration that includes a team from JINR. One of the main goals of this experiment is to study the charmonium production in high-energy nuclear collisions. The experiment will operate at extreme interaction rates of up to 10 MHz. The expected dataflow rate will be of the order of 1 TB/s, making it impossible to store all the raw data from detectors in long-term buffers. It will demand the selection of J/ψ → μ+μ− decays in real-time. This paper presents criteria for the fast and effective selection of signal events by using exclusively data on charged muon hits collected in the Muon Chamber (MUCH coordinate stations and describes the software implementing these criteria. The possibility of this software to solve the problem of the online selection J/ψ → μ+μ− decays is proven.

  10. An experiment for the precision measurement of the radiative decay mode of the neutron

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.L., E-mail: cooperrl@umich.ed [University of Michigan, Ann Arbor, MI 48109 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H. [University of Maryland, College Park, MD 20742 (United States); Byrne, J. [University of Sussex, BN1 9QH (United Kingdom); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Coakley, K.J. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Dewey, M.S.; Fisher, B.M.; Fu, C.; Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); McGonagle, M. [University of Maryland, College Park, MD 20742 (United States); Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States)

    2009-12-11

    The familiar neutron decay into a proton, electron, and antineutrino can be accompanied by photons with sufficient energy to be detected. We recently reported the first observation of the radiative beta decay branch for the free neutron with photons of energy 15-340 keV. We performed the experiment in the bore of a superconducting magnet where electron, proton, and photon signals were measured. A bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode served as the photon detector that operated in the cryogenic, high magnetic field environment. The branching ratio for this energy region was measured and is consistent with the theoretical calculation. An experiment is under way to measure the branching ratio with an improved precision of 1% relative standard uncertainty and to measure the photon energy spectrum. In this paper, the apparatus modifications to reduce the systematic uncertainties will be described. Central to these improvements is the development of a 12-element detector based on the original photon detector design that will improve the statistical sensitivity. During data acquisition, a detailed calibration program will be performed to improve the systematic uncertainties. The development of these modifications is currently under way, and the second run of the experiment commenced in July 2008.

  11. Update and evaluation of decay data for spent nuclear fuel analyses

    Science.gov (United States)

    Simeonov, Teodosi; Wemple, Charles

    2017-09-01

    Studsvik's approach to spent nuclear fuel analyses combines isotopic concentrations and multi-group cross-sections, calculated by the CASMO5 or HELIOS2 lattice transport codes, with core irradiation history data from the SIMULATE5 reactor core simulator and tabulated isotopic decay data. These data sources are used and processed by the code SNF to predict spent nuclear fuel characteristics. Recent advances in the generation procedure for the SNF decay data are presented. The SNF decay data includes basic data, such as decay constants, atomic masses and nuclide transmutation chains; radiation emission spectra for photons from radioactive decay, alpha-n reactions, bremsstrahlung, and spontaneous fission, electrons and alpha particles from radioactive decay, and neutrons from radioactive decay, spontaneous fission, and alpha-n reactions; decay heat production; and electro-atomic interaction data for bremsstrahlung production. These data are compiled from fundamental (ENDF, ENSDF, TENDL) and processed (ESTAR) sources for nearly 3700 nuclides. A rigorous evaluation procedure of internal consistency checks and comparisons to measurements and benchmarks, and code-to-code verifications is performed at the individual isotope level and using integral characteristics on a fuel assembly level (e.g., decay heat, radioactivity, neutron and gamma sources). Significant challenges are presented by the scope and complexity of the data processing, a dearth of relevant detailed measurements, and reliance on theoretical models for some data.

  12. Update and evaluation of decay data for spent nuclear fuel analyses

    Directory of Open Access Journals (Sweden)

    Simeonov Teodosi

    2017-01-01

    Full Text Available Studsvik’s approach to spent nuclear fuel analyses combines isotopic concentrations and multi-group cross-sections, calculated by the CASMO5 or HELIOS2 lattice transport codes, with core irradiation history data from the SIMULATE5 reactor core simulator and tabulated isotopic decay data. These data sources are used and processed by the code SNF to predict spent nuclear fuel characteristics. Recent advances in the generation procedure for the SNF decay data are presented. The SNF decay data includes basic data, such as decay constants, atomic masses and nuclide transmutation chains; radiation emission spectra for photons from radioactive decay, alpha-n reactions, bremsstrahlung, and spontaneous fission, electrons and alpha particles from radioactive decay, and neutrons from radioactive decay, spontaneous fission, and alpha-n reactions; decay heat production; and electro-atomic interaction data for bremsstrahlung production. These data are compiled from fundamental (ENDF, ENSDF, TENDL and processed (ESTAR sources for nearly 3700 nuclides. A rigorous evaluation procedure of internal consistency checks and comparisons to measurements and benchmarks, and code-to-code verifications is performed at the individual isotope level and using integral characteristics on a fuel assembly level (e.g., decay heat, radioactivity, neutron and gamma sources. Significant challenges are presented by the scope and complexity of the data processing, a dearth of relevant detailed measurements, and reliance on theoretical models for some data.

  13. RARE KAON DECAYS

    International Nuclear Information System (INIS)

    LITTENBERG, L.

    2005-01-01

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type

  14. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Surducan, E.; Surducan, V.; Neamtu, C., E-mail: camelia.neamtu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat St., 400293, Cluj‑Napoca (Romania); Limare, A.; Di Giuseppe, E. [Institut de Physique du Globe de Paris (IPGP), Univ. Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75005, Paris (France)

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  15. High temperature heat pipe experiments in low earth orbit

    International Nuclear Information System (INIS)

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-01-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented

  16. Construction and performance of a plastic scintillating fiber target for a rare kaon decay experiment

    International Nuclear Information System (INIS)

    Frank, J.S.; Strand, R.C.

    1988-01-01

    A K + stopping target consisting of 2269 plastic fibers, 2 mm diameter and 3.12 m long has been installed in an experiment searching for the rare decay K + to πν/bar nu/ at Brookhaven National Laboratory. The fibers are bundled onto 379 photomultiplier tube and base assemblies with single photoelectron resolution. After routing to the counting room, the signals are amplified and then distributed to TDC's and high-pass filter circuits that provide signals to ADC's and to fan-ins that provide a target energy-sum pulse used in the fast triggering logic. A minimum ionizing particle 3 m from the photomultiplier yields 1 photoelectron/mm path. The target provides transverse spatial resolution of 4 mm (FWHM) for the vertex of the K + decay and 2 ns timing resolution (FWHM) on the difference between the K + stop and the subsequent decay. Details of the target construction and operating performance are provided. 4 refs., 7 figs

  17. Ion heating in minority ICRH experiments on JET

    International Nuclear Information System (INIS)

    Start, D.F.H.; Bhatnagar, V.; Bures, M.

    1991-06-01

    Bulk ion heating by high power H-minority ICRH has been demonstrated in JET during both pellet enhanced performance H-mode experiments (PEP + H - mode) and in density limit studies. In the PEP + H - mode plasmas the electron and ion temperatures both reached 10 keV at an electron density of 7 x 10 19 /m 3 . According to Fokker-Planck calculations the power from the minority was transfered almost equally to the electrons and majority ions as a result of both the high electron density, n e , and the high minority density, n h , (n h /n e ≅ 0.15). For the first time with ICRH on JET a central ion temperature greater than the central electron temperature was achieved. In the density limit experiments which involved strong gas puffing into limiter discharges, there was strong evidence of a transfer from electron heating to ion heating as the electron density was ramped up to 8 x 10 19 /m 3 . (Author)

  18. Is Radioactive Decay Really Exponential?

    OpenAIRE

    Aston, Philip J.

    2012-01-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12,550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3,000 years are in error, which is generally attributed to past variation in ...

  19. Conservation experiments applying radiation-curable impregnating agents to intact and artifically decayed wood samples

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.

    1983-02-01

    Conservation experiments have been performed applying 10 selected impregnating agents to intact and chemically as well as biologically decayed wood samples. The quality of the radiation-curable impregnating agents could be valued by determination of the monomer uptake, the alteration of dimensions and volume and the deformation of the samples. The results are to be discussed. (Author) [de

  20. Direct CP violation results in $K^{\\pm} \\rightarrow 3\\pi^{\\pm}$ decays from NA48/2 experiment at CERN

    CERN Document Server

    Biino, Cristina

    2006-01-01

    After firmly establishing direct CP Violation in two pions decays of neutral kaons, the NA48 experiment, during the 2003 run at CERN-SPS, has collected more than 1.6 billion of charged kaon decays into three charged pions, using a unique double beam technique which allows a high level of control on systematic effects. The measurement of the direct CP violation Dalitz plot linear slope asymmetry parameter A$_{g}$ is reported. This result corresponds to more than an order of magnitude improvement in precision with respect to previous experiments and is limited by the statistics of the data sample.

  1. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  2. A brief description of ENDF/B-IV format data for inventory and decay heating calculations

    International Nuclear Information System (INIS)

    Tobias, A.

    1976-07-01

    In recent years there has been considerable effort directed towards establishing an international standard format for computerised nuclear data files. At the recent conference on Fission Product Nuclear Data (Bologna, 1973) it was agreed that the ENDF/B format, with certain modifications, be adopted as the standard format for the exchange of such data. A brief description of the basic ENDF/B-IV format of nuclear data files for inventory and decay heat calculations is presented. Although data exchange and inter-comparison will be simple for all files using this format, the data is not generally in a form which can be used directly by inventory codes. One solution to this problem may be for each code to possess a 'translating' routine for rearranging the data into its own format. (author)

  3. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    International Nuclear Information System (INIS)

    Fairbank, William

    2016-01-01

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long-sought-after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope "1"3"6Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world's best sensitivity of 1.9x10"2"5 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba"+ ions in gaseous xenon. Through

  4. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, William [Colorado State Univ., Fort Collins, CO (United States)

    2016-06-08

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long-sought-after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope 136Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world’s best sensitivity of 1.9x1025 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba

  5. Experiments and procedures for bottom-heating heat-transfer experiments through UO2 debris beds in sodium

    International Nuclear Information System (INIS)

    Sowa, E.S.; Pedersen, D.R.; Pavlik, J.; Purviance, R.

    1982-01-01

    Real materials experiments in heat transfer through beds of UO 2 in sodium have been performed at Argonne National Laboratory over a period of years. The most recent method utilizes the resistive heating in a sheet tungsten filament located at the base of the debris container. A schematic diagram of the apparatus is shown. The tungsten is clamped between two water cooled copper electrodes. The filament is a sheet of tungsten 0.15 mm thick, 5 cm wide and 18 cm long. Two 6.5 mm thick sheets of boron nitride sandwich the filament. The upper face of the upper boron nitride sheet is in intimate contact with the bottom of the debris container. Temperatures are measured at various levels in the bed as well as in the boron nitride plate. In addition, the sodium pool temperature is measured by the thermocouple. The heat transferral through the bed is measured by the temperature difference and mass flowrate in a NaK condenser located above the debris bed. The NaK inlet and outlet temperatures are recorded individually, as well as, differentially

  6. Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Bang, In Cheol

    2017-01-01

    Highlights: • Thermal performances and operation limits of hybrid heat pipe were experimentally studied. • Models for predicting the operation limit of the hybrid heat pipe was developed. • Non-condensable gas affected heat transfer characteristics of the hybrid heat pipe. - Abstract: In this paper, a hybrid heat pipe is proposed for use in advanced nuclear power plants as a passive heat transfer device. The hybrid heat pipe combines the functions of a heat pipe and a control rod to simultaneously remove the decay heat generated from the core and shutdown the reactor under accident conditions. Thus, the hybrid heat pipe contains a neutron absorber in the evaporator section, which corresponds to the core of the reactor pressure vessel. The presence of the neutron absorber material leads to differences in the heated diameter and hydraulic diameter of the heat pipe. The cross-sectional areas of the vapor paths through the evaporator, adiabatic, and condenser sections are also different. The hybrid heat pipe must operate in a high-temperature, high-pressure environment to remove the decay heat. In other words, the operating pressure must be higher than those of the commercially available thermosyphons. Hence, the thermal performances, including operation limit of the hybrid heat pipe, were experimentally studied in the operating pressure range of 0.2–20 bar. The operating pressure of the hybrid heat pipe was controlled by charging the non-condensable gas which is unused method to achieve the high saturation pressure in conventional thermosyphons. The effect of operating pressure on evaporation heat transfer was negligible, while condensation heat transfer was affected by the amount of non-condensable gas in the test section. The operation limit of the hybrid heat pipe increased with the operating pressure. Maximum heat removal capacity of the hybrid heat pipe was up to 6 kW which is meaningful value as a passive decay heat removal device in the nuclear power

  7. Effective Majorana neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Lucia [Instituto de Fisica, Facultad de Ingenieria,Universidad de la Republica, Montevideo (Uruguay); Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Departamento de Fisica, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) CONICET, UNMDP, Mar del Plata (Argentina)

    2016-08-15

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width. (orig.)

  8. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.; Lazarus, E.A.

    1994-02-01

    This paper describes recent DIII-D high power heating and current drive experiments. Describes are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal beta

  9. The design of a heat transfer liquid metal MHD experiment for ALEX [Argonne Liquid-Metal Experiment

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Lavine, A.S.

    1988-01-01

    An experiment to study heat transfer in liquid metal MHD flow, under conditions relevant to coolant channels for tokamak first wall and high heat flux devices, is described. The experimental configuration is a rectangular duct in a transverse magnetic field, heated on one wall parallel to the field. The specific objective of the experiment is to resolve important issues related to the presence and heat transfer characteristics of wall jets and flow instabilities in MHD flows in rectangular duct with electrically conducting walls. Available analytical tools for MHD thermal hydraulics have been used in the design of the test article and its instrumentation. Proposed tests will cover a wide range of Peclet and Hartmann numbers and interaction parameters. 14 refs., 3 figs., 1 tab

  10. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Lazarus, E.A.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal β. ((orig.))

  11. Recent DIII-D high power heating and current drive experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C. [General Atomics, San Diego, CA (United States); Jackson, G.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [Oak Ridge National Lab., TN (United States); Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Politzer, P.A. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); DIII-D Team

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal {beta}. ((orig.)).

  12. Development of nuclear decay data library JDDL, and nuclear generation and decay calculation code COMRAD

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Ihara, Hitoshi; Katakura, Jun-ichi; Hara, Toshiharu.

    1986-08-01

    For safety evaluation of nuclear fuel facilities, a nuclear decay data library named JDDL and a computer code COMRAD have been developed to calculate isotopic composition of each nuclide, radiation source intensity, energy spectrum of γ-ray and neutron, and decay heat of spent fuel. JDDL has been produced mainly from the evaluated nuclear data file ENSDF to use new nuclear data. To supplement the data file for short life nuclides, the JNDC data set were also used which had been evaluated by Japan Nuclear Data Committee. Using these data, calculations became possible from short period to long period after irradiation. (author)

  13. An Experiment to Observe Directly Beauty Particles Selected by Muonic Decay in Emulsion & to Estimate their Lifetimes

    CERN Multimedia

    2002-01-01

    A hybrid experiment to observe directly particles with open beauty and estimate their lifetimes is proposed. The experiment will take place in a @p|- beam at 360 GeV/c. Events of the type @p|-N @A B$\\bar{B}$X will be produced in a thick emulsion, allowing for a lifetime range of 10|-|1|5~-~10|-|1|2~s. The decay vertices of B and $\\bar{B}$ and of the subsequent charm decays will be identified in emulsion. \\\\ \\\\ The precise location of the production vertex will be measured by high precision (50@mm~pitch) silicon microstrip detectors. A set of planes of such detectors will be placed in front of the target to measure the incoming beam particle, and another set of planes, together with 16~planes of MWPC's will be plac target to measure the secondaries. \\\\ \\\\ The semi-leptonic decays of B's and C's are used to create a selective trigger. The data taking will be triggered by l@m with an angle to the beam @a~$>$~30~mrad, or by~@$>$~2@m. Transverse momentum cuts will be applied off-line.\\\\ \\\\ The muons are identified...

  14. Search for the decay {phi}{yields}K{sup 0}K-bar {sup 0}{gamma} with the KLOE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, F. [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' , Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); Antonelli, A.; Antonelli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Archilli, F. [Dipartimento di Fisica dell' Universita ' Tor Vergata' , Roma (Italy); INFN Sezione Roma Tor Vergata, Roma (Italy); Beltrame, P. [Institut fuer Kernphysik, Johannes Gutenberg, Universitaet Mainz (Germany); Bencivenni, G.; Bertolucci, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Bini, C. [Dipartimento di Fisica dell' Universita Sapienza di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Bloise, C. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Bocchetta, S. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione Roma Tre, Roma (Italy); Bossi, F. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Branchini, P. [INFN Sezione Roma Tre, Roma (Italy); Capon, G.; Capussela, T. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ceradini, F. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione Roma Tre, Roma (Italy); Ciambrone, P.; De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Santis, A. [Dipartimento di Fisica dell' Universita Sapienza di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); De Simone, P. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Zorzi, G. [Dipartimento di Fisica dell' Universita Sapienza di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy)] (and others)

    2009-08-10

    We have searched for the decay {phi}{yields}K{sup 0}K-bar {sup 0}{gamma}, by detecting K{sub S} pairs plus a photon and with the K{sub S}-mesons decaying to {pi}{sup +}{pi}{sup -}, in a sample of about 1.5x10{sup 9}{phi}-decays collected by the KLOE experiment at DA{phi}NE. The reaction proceeds through the intermediate states f{sub 0}(980){gamma}, a{sub 0}(980){gamma}. We find five events with 3.2 events expected from background processes. We obtain the upper limit: BR({phi}{yields}K{sup 0}K-bar {sup 0}{gamma})<1.9x10{sup -8} at 90% CL.

  15. Study of parametric instabilities during the Alcator C lower hybrid wave heating experiments

    International Nuclear Information System (INIS)

    Takase, Y.

    1983-10-01

    Parametric excitation of ion-cyclotron quasi-modes (ω/sub R/ approx. = nω/sub ci/) and ion-sound quasi-modes (ω/sub R/ approx. = k/sub parallel to/v/sub ti/) during lower hybrid wave heating of tokamak plasmas have been studied in detail. Such instabilities may significantly modify the incident wavenumber spectrum near the plasma edge. Convective losses for these instabilities are high if well-defined resonance cones exist, but they are significantly reduced if the resonance cones spread and fill the plasma volume (or some region of it). These instabilities preferentially excite lower hybrid waves with larger values of n/sub parallel to/ than themselves possess, and the new waves tend to be absorbed near the outer layers of the plasma. Parametric instabilities during lower hybrid heating of Alcator C plasmas have been investigated using rf probes (to study tilde phi and tilde n/sub i/) and CO 2 scattering technique (to study tilde n/sub e/). At lower densities (anti n/sub e/ less than or equal to 0.5 x 10 14 cm -3 ) where waves observed in the plasma interior using CO 2 scattering appear to be localized, parametric decay is very weak. Both ion-sound and ion-cyclotron parametric decay processes have been observed at higher densities (anti n greater than or equal to 1.5 x 10 14 cm -3 ) where waves appear to be unlocalized. Finally, at still higher densities (anti n /sub e/ greater than or equal to 2 x 10 4 cm -3 ) pump depletion has been observed. Above these densities heating and current drive efficiencies are expected to degrade significantly

  16. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  17. On active shieldings in (ββ)0ν 76Ge decay experiments

    International Nuclear Information System (INIS)

    Garcia, E.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Ortiz de Solorzano, A.; Puimedon, J.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Villar, J.A.

    1992-01-01

    The sensitivity of an ultra low background Ge detector for the (ββ) 0ν decay of 76 Ge is estimated in two different experimental set-ups. The main difference between them is the inclusion or not of an active NaI shielding. We find that sensitivity of the Ge detector is not improved by this active shielding either for the O + -->O + or the O + -->2 + (ββ) 0ν transitions. Our results provide a valuable information for future 76 Ge enriched experiments. (orig.)

  18. Rare beauty and charm decays

    International Nuclear Information System (INIS)

    Blake, T.

    2016-01-01

    Rare beauty and charm decays can provide powerful probes of physics beyond the Standard Model. These proceedings summarise the latest measurements of rare beauty and charm decays from the LHCb experiment at the end of Run 1 of the LHC. Whilst the majority of the measurements are consistent with SM predictions, small differences are seen in the rate and angular distribution of b → sℓ"+ℓ"− decay processes.

  19. Searching for the Higgs boson in the $b\\bar{b}$ decay channel with the ATLAS experiment

    CERN Document Server

    Ochoa, Inês

    The discovery of the Higgs boson by the ATLAS and CMS experiments is one of the main results of Run 1 of the Large Hadron Collider. However, clear evidence for the Higgs boson decay to a pair of $b$-quarks has not been observed and is crucial to establish the nature of the new found particle. The work presented in this thesis focuses on the search for the Higgs boson in the \\VHbb channel, where it is produced in association with a leptonically decaying vector boson ($W$, $Z$), and decays to a pair of $b$-quarks. Prior to the start of LHC operations, the challenges posed by a $pp$ collider to a \\Hbb search motivated the development of jet substructure techniques. The boosted regime plays a vital role in the sensitivity of a \\VHbb search and the topologies where the decay products merge can be recovered by implementing a substructure-based selection. The sensitivity of such an approach in a \\VHbb search is studied using ATLAS $pp$ collision data, at a centre-of-mass energy of \\sS. It was found that the sensiti...

  20. Heat transfer performance test of PDHRS heat exchangers of PGSFR using STELLA-1 facility

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jonggan, E-mail: hong@kaeri.re.kr; Yeom, Sujin; Eoh, Jae-Hyuk; Lee, Tae-Ho; Jeong, Ji-Young

    2017-03-15

    Highlights: • Heat transfer performance test of heat exchangers of PGSFR PDHRS is conducted using STELLA-1 facility. • Steady-state test results of DHX and AHX show good agreement with theoretical results of design codes. • Design codes for DHX and AHX are validated by STELLA-1 experimental results. • Heat transport capability of DHX and AHX is turned out to be satisfactory for reliable plant operation. - Abstract: The STELLA-1 facility was designed and constructed to carry out separate effect tests of the decay heat exchanger (DHX) and natural draft sodium-to-air heat exchanger (AHX), which are key components of the safety-grade decay heat removal system in PGSFR. The DHX is a sodium-to-sodium heat exchanger with a straight tube arrangement, and the AHX is a sodium-to-air heat exchanger with a helically coiled tube arrangement. The model heat exchangers in STELLA-1 have been designed to meet their own similitude conditions from the prototype ones, of which scale ratios were set to be unity in height (or length) and 1/2.5 in heat transfer rate. Consequently, the overall heat transfer coefficients and log-mean temperature differences of the prototypes have been preserved as well. The steady-state test results for each model heat exchanger obtained from STELLA-1 showed good agreement with the theoretical results of the computer design codes for thermal-sizing and a performance analysis of the DHX and AHX. In the DHX result comparison, the discrepancies in the heat transfer rate ranged from −4.4% to 2.0%, and in the AHX result comparison, they ranged from −11.1% to 12.6%. Therefore, the first step in thermal design codes validation for sodium heat exchangers, e.g., DHX and AHX, has been successfully completed with the experimental database obtained from STELLA-1. In addition, the heat transfer performance of the DHX and AHX was found to be satisfactory enough to secure a reliable decay heat removal performance.

  1. Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and exponentially decaying sources

    International Nuclear Information System (INIS)

    Guerrero, Mariana; Carlone, Marco

    2010-01-01

    Purpose: In recent years, several models were proposed that modify the standard linear-quadratic (LQ) model to make the predicted survival curve linear at high doses. Most of these models are purely phenomenological and can only be applied in the particular case of acute doses per fraction. The authors consider a mechanistic formulation of a linear-quadratic-linear (LQL) model in the case of split-dose experiments and exponentially decaying sources. This model provides a comprehensive description of radiation response for arbitrary dose rate and fractionation with only one additional parameter. Methods: The authors use a compartmental formulation of the LQL model from the literature. They analytically solve the model's differential equations for the case of a split-dose experiment and for an exponentially decaying source. They compare the solutions of the survival fraction with the standard LQ equations and with the lethal-potentially lethal (LPL) model. Results: In the case of the split-dose experiment, the LQL model predicts a recovery ratio as a function of dose per fraction that deviates from the square law of the standard LQ. The survival fraction as a function of time between fractions follows a similar exponential law as the LQ but adds a multiplicative factor to the LQ parameter β. The LQL solution for the split-dose experiment is very close to the LPL prediction. For the decaying source, the differences between the LQL and the LQ solutions are negligible when the half-life of the source is much larger than the characteristic repair time, which is the clinically relevant case. Conclusions: The compartmental formulation of the LQL model can be used for arbitrary dose rates and provides a comprehensive description of dose response. When the survival fraction for acute doses is linear for high dose, a deviation of the square law formula of the recovery ratio for split doses is also predicted.

  2. Exploring the neutrinoless double beta decay in the inverted neutrino hierarchy with bolometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Artusa, D.R. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Avignone, F.T.; Chott, N.; Creswick, R.J.; Farach, H.A.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Azzolini, O.; Camacho, A.; De Biasi, A.; Keppel, G.; Palmieri, V.; Pira, C.; Rampazzo, V. [INFN-Laboratori Nazionali di Legnaro, Legnaro, Padua (Italy); Balata, M.; Bucci, C.; Canonica, L.; Casali, N.; Di Vacri, M.L.; Goett, J.; Gorla, P.; Nisi, S.; Orlandi, D.; Pattavina, L.; Pirro, S.; Zarra, C. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Banks, T.I. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M.; Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cardani, L.; Cosmelli, C.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Bersani, A. [INFN-Sezione di Genova, Genoa (Italy); Biassoni, M.; Brofferio, C.; Capelli, S.; Carrettoni, M.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maiano, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Sala, E.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Cai, X.Z.; Cao, X.G.; Fang, D.Q.; Li, Y.L.; Ma, Y.G.; Tian, W.D.; Wang, H.W. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Carbone, L.; Cremonesi, O.; Datskov, V.; Pessina, G.; Previtali, E.; Rusconi, C. [INFN-Sezione di Milano Bicocca, Milan (Italy); Dafinei, I.; Morganti, S.; Orio, F.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Dally, A.; Ejzak, L.; Wielgus, L. [University of Wisconsin, Department of Physics, Madison, WI (United States); Di Domizio, S.; Fernandes, G.; Pallavicini, M. [INFN-Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Franceschi, M.A.; Ligi, C.; Napolitano, T. [INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy); Freedman, S.J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Fujikawa, B.K.; Han, K.; Mei, Y.; Smith, A.R. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Giuliani, A.; Tenconi, M. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay (France); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Heeger, K.M.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Hennings-Yeomans, R.; O' Donnell, T. [University of California, Department of Physics, Berkeley, CA (United States); Huang, H.Z.; Liu, X.; Trentalange, S.; Winslow, L.A.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Kazkaz, K.; Pedretti, M.; Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kolomensky, Yu.G. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Nones, C. [CEA/Saclay, Service de Physique des Particules, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Ouellet, J.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Taffarello, L. [INFN-Sezione di Padova, Padua (Italy); Ventura, G. [Universita di Firenze, Dipartimento di Fisica, Florence (Italy); INFN-Sezione di Firenze, Florence (Italy); Wise, T. [University of Wisconsin, Department of Physics, Madison, WI (United States); Yale University, Department of Physics, New Haven, CT (United States); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (United Kingdom); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica, Bologna (Italy)

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (vertical stroke m{sub ee} vertical stroke) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R and D program addressing them. (orig.)

  3. Mixed convection heat transfer experiments using analogy concept

    International Nuclear Information System (INIS)

    Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea

    2009-01-01

    A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number

  4. Decay property of Timoshenko system in thermoelasticity

    KAUST Repository

    Said-Houari, Belkacem

    2011-12-30

    We investigate the decay property of a Timoshenko system of thermoelasticity in the whole space for both Fourier and Cattaneo laws of heat conduction. We point out that although the paradox of infinite propagation speed inherent in the Fourier law is removed by changing to the Cattaneo law, the latter always leads to a solution with the decay property of the regularity-loss type. The main tool used to prove our results is the energy method in the Fourier space together with some integral estimates. We derive L 2 decay estimates of solutions and observe that for the Fourier law the decay structure of solutions is of the regularity-loss type if the wave speeds of the first and the second equations in the system are different. For the Cattaneo law, decay property of the regularity-loss type occurs no matter what the wave speeds are. In addition, by restricting the initial data to U 0∈H s(R)∩L 1,γ(R) with a suitably large s and γ ∈ [0,1], we can derive faster decay estimates with the decay rate improvement by a factor of t -γ/2. © 2011 John Wiley & Sons, Ltd.

  5. Search for charmless decays of B hadrons in hadronic and radiative (b --> s gamma) decay modes using the DELPHI detector

    CERN Document Server

    Liko, Dietrich

    1995-01-01

    Charmless decays of B hadrons have been of considerable interest during the last years. Decays in hadronic modes proceed either trough tree level b � u transitions or loop diagrams involving so-called "hadronic" penguins. Tree level dominated decays confirm the non zero value of JVubl in the CKM mixing matrix while those induced by penguin processes provide tests of the loop structure of the Standard Model. Decays in the radiative modes b -+ s-y are forbidden at tree level and proceed only trough loop diagrams. Possible contributions to the decay rate due to new physics provide a test of the Standard Model. During the last years various measurements of decay rates have been performed at colliders at the bb-threshold. Experiments at the LEP collider have already collected sufficient data to study these decays in a different experimental environment. Results of searches at the DELPHI experiment are presented.

  6. Progress of High Heat Flux Component Manufacture and Heat Load Experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Lian, Y.; Xu, Z.; Chen, J.; Chen, L.; Wang, Q.; Duan, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengu (China); Luo, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yan, Q. [University of Science and Technology Beijing, Beijing (China)

    2012-09-15

    Full text: High heat flux components for first wall and divertor are the key subassembly of the present fusion experiment apparatus and fusion reactors in the future. It is requested the metallurgical bonding among the plasma facing materials (PFMs), heat sink and support materials. As to PFMs, ITER grade vacuum hot pressed beryllium CN-G01 was developed in China and has been accepted as the reference material of ITER first wall. Additionally pure tungsten and tungsten alloys, as well as chemical vapor deposition (CVD) W coating are being developed for the aims of ITER divertor application and the demand of domestic fusion devices, and significant progress has been achieved. For plasma facing components (PFCs), high heat flux components used for divertor chamber are being studied according to the development program of the fusion experiment reactor of China. Two reference joining techniques of W/Cu mockups for ITER divertor chamber are being developed, one is mono-block structure by pure copper casting of tungsten surface following by hot iso-static press (HIP), and another is flat structure by brazing. The critical acceptance criteria of high heat flux components are their high heat load performance. A 60 kW Electron-beam Material testing Scenario (EMS-60) has been constructed at Southwestern Institute of Physics (SWIP),which adopts an electron beam welding gun with maximum energy of 150 keV and 150 x 150 mm{sup 2} scanning area by maximum frame rate of 30 kHz. Furthermore, an Engineering Mockup testing Scenario (EMS-400) facility with 400 kW electron-beam melting gun is under construction and will be available by the end of this year. After that, China will have the comprehensive capability of high heat load evaluation from PFMs and small-scale mockups to engineering full scale PFCs. A brazed W/CuCrZr mockup with 25 x 25 x 40 mm{sup 3} in dimension was tested at EMS-60. The heating and cooling time are 10 seconds and 15 seconds, respectively. The experiment

  7. Column: Factors Affecting Data Decay

    Directory of Open Access Journals (Sweden)

    Kevin Fairbanks

    2012-06-01

    Full Text Available In nuclear physics, the phrase decay rate is used to denote the rate that atoms and other particles spontaneously decompose. Uranium-235 famously decays into a variety of daughter isotopes including Thorium and Neptunium, which themselves decay to others. Decay rates are widely observed and wildly different depending on many factors, both internal and external. U-235 has a half-life of 703,800,000 years, for example, while free neutrons have a half-life of 611 seconds and neutrons in an atomic nucleus are stable.We posit that data in computer systems also experiences some kind of statistical decay process and thus also has a discernible decay rate. Like atomic decay, data decay fluctuates wildly. But unlike atomic decay, data decay rates are the result of so many different interplaying processes that we currently do not understand them well enough to come up with quantifiable numbers. Nevertheless, we believe that it is useful to discuss some of the factors that impact the data decay rate, for these factors frequently determine whether useful data about a subject can be recovered by forensic investigation.(see PDF for full column

  8. Identification of hadronically decaying tau leptons with the ATLAS experiment

    CERN Document Server

    Duschinger, D; The ATLAS collaboration

    2014-01-01

    The offline identification algorithm employed for hadronic decays of tau leptons for the data collected in 2012 with the ATLAS detector at the LHC operating at a center-of-mass energy of 8 TeV is described. It consists of two Boosted Decision Trees including both tracking and calorimetric information to discriminate hadronically decaying tau leptons from hadronic jets and electrons. The performance of this algorithms is measured in most cases with Z decays to tau leptons. The offline tau identification efficiency is measured with a precision of (2-3)% for hadronically decaying tau leptons with one associated track, and of (4-5)% for the case of three associated tracks, inclusive in $\\eta$; and for a visible transverse momentum greater than 20 GeV. Stability of the performance and through the data taking period is observed with respect to the number of concurrent proton-proton interactions.

  9. First Experience from the World Largest fully commercial Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Furbo, Simon

    1997-01-01

    The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m.......The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m....

  10. Data preprocessor and compactor for the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Dawson, J.W.; May, E.N.; Solomey, N.

    1984-01-01

    This paper describes a prototype preprocessor data-compaction system for the Soudan 2 proton decay search experiment. The Soudan 2 experiment will have more than three million potential data words per event to examine, while less than one percent of these data words will have valid data for typical events. In an effort to reduce the amount of data to be stored and analyzed, a data preprocessor was developed which scans the data words. If a data word is valid (ADC count above a preset threshold), that data word is passed to the host computer for experiment monitoring and storage on magnetic tape. To obtain fast data compression, a hardware comparator is used. The hardware comparator places valid data into a FIFO (first in first out stack) where the host computer can acquire the data through CAMAC. The comparator and FIFO are controlled by a microprocessor (8086 CPU), and the microprocessor is programmed for decision-making and communication between the compactor, CAMAC, the host computer and a local terminal

  11. Data preprocessor and compactor for the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Dawson, J.W.; May, E.N.; Solomey, N.

    1985-01-01

    This paper describes a prototype preprocessor data-compaction system for the Soudan 2 proton decay search experiment. The Soudan 2 experiment will have more than three million potential data words per event to examine, while less than one percent of these data words will have valid data for typical events. In an effort to reduce the amount of data to be stored and analyzed, a data preprocessor was developed which scans the data words. If a data word is valid (ADC count above a preset threshold), that data word is passed to the host computer for experiment monitoring and storage on magnetic tape. To obtain fast data compression, a hardware comparator is used. The hardware comparator places valid data into a FIFO (first in first out stack) where the host computer can acquire the data through CAMAC. The comparator and FIFO are controlled by a microprocessor (8086 CPU), and the microprocessor is programmed for decisionmaking and communication between the compactor, CAMAC, the host computer and a local terminal

  12. Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments

    Science.gov (United States)

    Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.

    2017-12-01

    Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.

  13. A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kogler, Laura K. [Univ. of California, Berkeley, CA (United States)

    2011-11-30

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2vββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of 10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2vββ rate. The enriched crystals contained a total of 350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2vββ half-life was measured to be T2v1/2 = [9.81± 0.96(stat)± 0.49(syst)] x1020 y.

  14. Experimental validation of the decay power calculation code and nuclear databases - FISPACT-97 and EAF-97 and FENDL/A-2.0

    International Nuclear Information System (INIS)

    Sublet, J.

    1998-01-01

    The calculation of activation inventories is a key input to virtually all aspects of the safety and environmental assessment of fusion power devices, such as ITER. For the licensing of such devices, regulatory authorities will require proof that the calculations of activation, and calculations to which activation quantities are inputs, are either correct or conservative. An important aspect of activation is decay heat power. In fusion power plants, decay power arises after shutdown from the energy released in the decay of the products of neutron activation, mainly from gamma and beta rays. Computation of the decay power is performed by sophisticated computer codes which solve the large number of coupled differential equations which govern the generation and decay chains for the many nuclides involved. They rely on a large volume of nuclear data, both neutron activation cross-sections and radioactive decay data. Validation of decay power code predictions by means of direct comparison with integral data measurements of sample structural materials under fusion-typical neutron spectra generates confidence in the decay power values calculated. It also permits an assessment of the adequacy of the methods and nuclear data and indicates any inaccuracy or omission that may have led to erroneous results. No experimental data on decay power existed for fusion reactor structural materials and irradiation conditions before a series of experiments were performed using the Fusion Neutron Source FNS facility at the Japan Atomic Energy Research Institute JAERI. Fusion relevant material samples were irradiated in a simulated D-T neutron field for times up to 7 hours and the decay power so generated measured for cooling times up to three months. Using the highly sensitive Whole Energy Absorption Spectrometer (WEAS) method, both β and γ rays decay energies were measured at selected cooling times as early as one minute after the irradiation ended. Coupled to the experiments, and at

  15. Analysis of $B^{0}_{d} \\to K^{*0}\\mu^{+}\\mu^{-}$ Decay with the ATLAS Experiment

    CERN Document Server

    Usanova, Anna

    ATLAS is a general-purpose experiment at the Large Hadron Collider. Beside other goals, it also aims at the study of B -hadrons. B -physics offers a large number of channels that can provide information about some fundamental properties of our universe. Among them, the B 0 d ! K 0 + - decay is sensitive to the potential presence of particles that are not predicted by the Standard Model. Such ”new physics” effects can be observed indirectly by studying angular distributions of the B 0 d ! K 0 + - decay products. This thesis describes the analysis of 4.9 fb - 1 of data produced in the proton-proton collisions at the centre-of-mass energy p s = 7 TeV at the LHC in the year 2011 and recorded by the ATLAS detector. The main steps of analysis are described, such as the selection of the signal events, the data fit procedure and the estimation of uncertainties. The obtained results are compared with other experiments and with the Standard Model prediction.

  16. Measurement of the decay asymmetries of the radiative hyperon decays Ξ0→Λγ and Ξ0→Σ0γ with the NA48/1 experiment

    International Nuclear Information System (INIS)

    Behler, Matthias

    2007-01-01

    The radiative decay of a hyperon into a light hyperon and a photon allows to study the structure of the electroweak interaction of hadrons. For this purpose, the decay asymmetry is an appropriate observable. It describes the distribution of the daughter hyperon with respect to the polarization vector P of the mother hyperon by (dN)/(d cos(Θ))∝1+αvertical stroke vectorP vertical stroke cos(Θ), where Θ is the angle between vectorP and the momentum of the daughter hyperon. The radiative decay Ξ 0 →Λ γ is of particular interest since all calculations at quark level predict a positive decay asymmetry whereas two existing measurements result in a negative value of α Ξ 0 →Λ γ = -0.73±0.17. The goal of the analysis presented here was to verify these results and to improve the accuracy of the decay asymmetry measurement. In addition, the decay asymmetry of the similar decay Ξ 0 →Σ 0 γ was measured, and the well-known decay Ξ 0 →Λπ 0 was used to test the analysis strategy. During the data taking period in 2002, the NA48/1 experiment at CERN was searching for rare K S and hyperon decays. The collected data represents the world's largest sample of Ξ 0 decays. From this sample, about 52,000 Ξ 0 →Λ γ decays, 15,000 Ξ 0 →Σ 0 γ decays and 4 mill. Ξ 0 →Λπ 0 decays with small background were extracted as well as the corresponding anti Ξ decays. The available anti Ξ samples amount about one tenth of the Ξ 0 samples. The measurement of the decay asymmetries was based on the comparison between data and a detailed Monte Carlo simulation, giving the following results: α Ξ 0 →Λ γ = -0.701 ± 0.019 stat ± 0.064 sys , α Ξ 0 →Σ 0 γ = -0.683±0.032 stat ±0.077 sys , α Ξ 0 →Λπ 0 =-0.439±0.002 stat ±0.056 sys , α anti Ξ 0 →anti Λ γ = 0.772±0.064 stat ±0.066 sys , α anti Ξ 0 →anti Σ 0 γ = 0.811±0.103 stat ±0.135 sys , α anti Ξ 0 →anti Λπ 0 =0.451± 0.005 stat ±0.057 sys . The uncertainty on the Ξ 0

  17. B decays to open charm

    CERN Document Server

    AUTHOR|(CDS)2073670

    2016-01-01

    Studies of $B$ meson decays to states involving open charm mesons in data recorded by the LHCb experiment have resulted in first observations of several new decay modes, including $B_s^{0} \\rightarrow D_s^{*\\mp} K^{\\pm}$, $B_s^{0} \\rightarrow \\overline{D}^{0} K_S^{0}$ and $B^{+} \\rightarrow D^{+} K^{+} \\pi^{-}$ decays. An upper limit has been placed on the branching fraction of $B_s^{0} \\rightarrow \\overline{D}^{0} f_0(980)$ decays. Measurements of other branching fractions, such as those of $B_s^{0} \\rightarrow D_s^{(*)+} D_s^{(*)-}$ decays, are the most precise to date. Additionally, amplitude analyses of $B^{0} \\rightarrow \\overline{D}^{0} \\pi^{+} \\pi^{-}$ and $B^{0} \\rightarrow \\overline{D}^{0} K^{+} \\pi^{-}$ decays have been performed, alongside the first $CP$ violation analysis using the Dalitz plot of $B^{0} \\rightarrow D K^{+} \\pi^{-}$ decays.

  18. Blowdown heat transfer experiment, (1)

    International Nuclear Information System (INIS)

    Soda, Kunihisa; Yamamoto, Nobuo; Osaki, Hideki; Shiba, Masayoshi

    1976-09-01

    Blowdown heat transfer experiment has been carried out with a transparent test section to observe phenomena in coolant behavior during blowdown process. Experimental parameters are discharge position, initial system pressure, initial coolant temperature, power supply to heater rods and number of heater rods. At initial pressure 7-12 ata and initial power 6-50 kw per one heater rod, the flow condition in the test section is a major factor in determining time of DNB occurrence and physical process to DNB during blowdown. (auth.)

  19. Study on the impact of transition from 3-batch to 4-batch loading at Loviisa NPP on the long-term decay heat and activity inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Tuukka [Fortum Power and Heat Ltd., Fortum (Finland)

    2017-09-15

    The fuel economy of Loviisa NPP was improved by implementing a transition from 3-batch to 4-batch loading scheme between 2009 and 2013. Equilibrium cycle length as well as all process parameters were retained unchanged while the increase of fuel enrichment enabled to reduce the annual reload batch size from 102 to 84 assemblies. The fuel cycle transition obviously had an effect on the long-term decay heat and activity inventory. However, due to simultaneous change in several quantities the net effect over the relevant cooling time region is not self-evident. In this study the effect is analyzed properly, i. e. applying consistent calculation models and detailed description of assembly-wise irradiation histories. The study concludes that for the cooling time, foreseen typical prior to encapsulation of assemblies, the decay heat of discharge batch increases 2 - 3%. It is also concluded that, in order to maintain 100% filling degree of final disposal canisters, the cooling time prior to encapsulation needs to be prolonged by 10 - 15 years.

  20. Numerical scalings of the decay lengths in the scrape-off layer

    DEFF Research Database (Denmark)

    Militello, F.; Naulin, V; Nielsen, Anders Henry

    2013-01-01

    Numerical simulations of L-mode turbulence in the scrape-off layer (SOL) are used to construct power scaling laws for the characteristic decay lengths of the temperature, density and heat flux at the outer mid-plane. Most of the results obtained are in qualitative agreement with the experimental...... observations despite the known limitation of the model. Quantitative agreement is also obtained for some exponents. In particular, an almost linear inverse dependence of the heat flux decay length with the plasma current is recovered. The relative simplicity of the theoretical model used allows one to gain...

  1. Analysis of removal of residual decay heat from interim storage facilities by means of the CFD program FLUENT

    International Nuclear Information System (INIS)

    Stratmann, W.; Hages, P.

    2004-01-01

    Within the scope of nuclear licensing procedures of on-site interim storage facilities for dual purpose casks it is necessary, among other things, to provide proof of sufficient removal of the residual decay heat emitted by the casks. The results of the analyses performed for this purpose define e.g. the boundary conditions for further thermal analyses regarding the permissible cask component temperatures or the maximum permissible temperatures of the fuel cladding tubes of the fuel elements stored in the casks. Up to now, for the centralized interim storage facilities in Germany such analyses were performed on the basis of experimental investigations using scaled-down storage geometries. In the engineering phase of the Lingen on-site interim storage facility, proof was furnished for the first time using the CFD (computational fluid dynamics) program FLUENT. The program FLUENT is an internationally recognized and comprehensively verified program for the calculation of flow and heat transport processes. Starting from a brief discussion of modeling and the different boundary conditions of the computation, this contribution presents various results regarding the temperatures of air, cask surfaces and storage facility components, the mass flows through the storage facility and the heat transfer at the cask surface. The interface point to the cask-specific analyses is defined to be the cask surface

  2. Recent {sup 3}He radio frequency heating experiments on JET

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, D. [Association Euratom-Belgian State, LPP-ERM/KMS, TEC, Brussels (Belgium); Imbeaux, F.; Joffrin, E. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France)] [and others

    2003-07-01

    Various ITER relevant experiments using {sup 3}He in a majority D plasma were performed in the recent JET campaigns. Two types can be distinguished: dedicated studies of the various RF heating scenarios which rely on the presence of {sup 3}He, and physics studies using RF heating as a working tool to provide a tunable heat source. As the success of a number of these experiments depended on the capability to keep the {sup 3}He concentration fixed, real time control of the {sup 3}He concentration was developed and used. This paper presents a brief overview of the results obtained, zooms in on some of the more interesting recent findings and discusses some of the theoretical background. (authors)

  3. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    April 2014 physics pp. 705–715. Decay of heavy and superheavy nuclei ... study on the feasibility of observing α decay chains from the isotopes of the ... studies on 284−286115 and 288−292117 will be a guide to future experiments. .... ratio of the α decay from the ground state of the parent nucleus to the level i of the.

  4. Facilities for studying the double beta decay processes

    International Nuclear Information System (INIS)

    Zdesenko, Yu.G.

    1980-01-01

    Modern state, tendencies and perspectiVes of the development of experimental installations to study double β-decay are treated. The main peculiarities of direct recognition and full experiments on the study of double β-decay are considered. A simple ratio is obtained from statistical considerations which connects the life time limits of the nuclei with the facility parameters to conduct direct recognition experiments. Possibilities of different detectors are evaluated on the basis of the ratio. Requirements for the modern technique for complete investigation of double β-decay are formulated and two designs of facilities meeting the requirements are considered. It is shown that the facility with proportional chambers is more perspective. On the basis of the analysis of the facility development to study double β-decay, conclusion is made that the final and unambiguous proof of the existence of double β-decay process can be obtained only directly in the experiments with immediate recording of the decay acts. Possibilities of the existing and developed facilities to conduct recognition (direct) experiments are such, that with their help life time limits as to neutronless double β-decay at the level of 10 21 -10 22 years can be established. Counters on the basis of the condensed noble gases, semiconductor detectors made of TeCd, scintillators of big volume are the most perspective detectors. To conduct complete experiments it is necessary to develop a facility with sensitivity sufficient for the detection of two-neutrino double β-activeness when Tsub(1/2)=10sup(21) years [ru

  5. submitter Direct measurement of the top quark decay width in the muon + jets channel using the CMS experiment at the LHC

    CERN Document Server

    Moreels, Lieselotte; D'Hondt, Jorgen

    This thesis investigates the decay properties of the top quark. In the SM the top quark decays almost exclusively into a W boson and a b quark. The probability for this process to happen is reflected in the top quark decay width, which is predicted to have a value around 1.33 GeV. If the top quark is able to decay into other particles as well, as is possible in several extensions of the SM, the top quark decay width will be larger than the SM prediction. This is investigated by performing a direct measurement of the top quark decay width using proton collisions produced by the Large Hadron Collider at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS experiment in 2016 and correspond to an integrated luminosity of 35.9 fb−1 . At first, a concise overview of the standard model is presented in Chapter 1. The production and decay of the top quark is described in more detail and the current status of the top quark mass and decay width measurements is given. Top quarks are typically studied by...

  6. The effects of moderately high temperature on zeaxanthin accumulation and decay.

    Science.gov (United States)

    Zhang, Ru; Kramer, David M; Cruz, Jeffrey A; Struck, Kimberly R; Sharkey, Thomas D

    2011-09-01

    Moderately high temperature reduces photosynthetic capacities of leaves with large effects on thylakoid reactions of photosynthesis, including xanthophyll conversion in the lipid phase of the thylakoid membrane. In previous studies, we have found that leaf temperature of 40°C increased zeaxanthin accumulation in dark-adapted, intact tobacco leaves following a brief illumination, but did not change the amount of zeaxanthin in light-adatped leaves. To investigate heat effects on zeaxanthin accumulation and decay, zeaxanthin level was monitored optically in dark-adapted, intact tobacco and Arabidopsis thaliana leaves at either 23 or 40°C under 45-min illumination. Heated leaves had more zeaxanthin following 3-min light but had less or comparable amounts of zeaxanthin by the end of 45 min of illumination. Zeaxanthin accumulated faster at light initiation and decayed faster upon darkening in leaves at 40°C than leaves at 23°C, indicating that heat increased the activities of both violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE). In addition, our optical measurement demonstrated in vivo that weak light enhances zeaxanthin decay relative to darkness in intact leaves of tobacco and Arabidopsis, confirming previous observations in isolated spinach chloroplasts. However, the maximum rate of decay is similar for weak light and darkness, and we used the maximum rate of decay following darkness as a measure of the rate of ZE during steady-state light. A simulation indicated that high temperature should cause a large shift in the pH dependence of the amount of zeaxanthin in leaves because of differential effects on VDE and ZE. This allows for the reduction in ΔpH caused by heat to be offset by increased VDE activity relative to ZE.

  7. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  8. Analytical studies on the impact of using repeated-rib roughness in LMR [Liquid Metal Reactor] decay heat removal systems

    International Nuclear Information System (INIS)

    Obot, N.T.; Tessier, J.H.; Pedersen, D.R.

    1988-01-01

    A numerical study was carried out to determine the effects of roughness on the thermal performance of Liquid Metal Reactor (LMR) decay heat removal systems for a range of possible design configurations and operating conditions. The ranges covered for relative rib height (e/D/sub h/), relative pitch (p/e) and flow attack angle were 0.026--0.103, 5--20 and 0--90 degrees, successively. The heat flux was varied between 1.1 and 21.5 kW/m 2 (0.1 and 2.0 kW/ft 2 ). Calculations were made for three cases: smooth duct with no ribs, ribs on both the guard vessel and collector wall, and ribs on the collector wall only. The results indicate that significant benefits, amounting to nearly two-fold reductions in guard vessel and collector wall temperatures, can be realized by placing repeated ribs on both the guard vessel and the collector wall. The magnitudes of the reduction in the reactor vessel temperature are considerably smaller. In general, the level of improvement, be it with respect to temperature or heat flux, is only mildly affected by changes in rib height or pitch but exhibits greater sensitivity to the assumed value for the system form loss. When the ribs are placed only on the collector wall, the heat removal capability is substantially reduced

  9. Monopole abundance in the Solar System and the intrinsic heat in the Jovian planets

    International Nuclear Information System (INIS)

    Arafune, J.; Fukugita, M.; Yanagita, S.

    1985-01-01

    The intrinsic-heat generation has long been known in the Jovian planets. The current view ascribes its origin to the gradual release of primordial heat produced at the birth of these planets. This scenario, however, fails to explain coherently the magnitude of the excess heat in each planet, other than Jupiter, and must invoke some additional sources. We point out the possibility that this heat, or at least a part of it, could be attributed to proton decay which is catalyzed by grand-unified magnetic monopoles (Rubakov effect) captured in the planets. The monopole flux required for this is of order approx.1 x 10 -23 cm -2 sr -1 sec -1 , which is smaller than the limit on the cosmic monopole flux so far obtained. We also show that if the monopole flux is of this order the monopole captured in the Sun gives rise to the neutrino flux ( approx. =35 MeV) which should be detectable in the underground experiment searching for nucleon decays currently in progress

  10. Weak decays and double beta decay. Annual progress report, January 1, 1982-December 31, 1982

    International Nuclear Information System (INIS)

    Nicholson, H.W.

    1982-08-01

    Work has continued in collaboration with experimenters from Yale, Brookhaven and Pittsburgh (Brookhaven experiment 702) to measure asymmetries in the decays of polarized Σ + 's into protons and neutral pions and of polarized Σ - 's into neutrons and negative pions. A short experiment was carried out in the Brookhaven AGS A2 test beam to measure the efficiency of a cylindrical shower counter essential for measuring the asymmetry parameter in the rare decay of polarized Σ + 's into protons and gammas. An electronic controller to stabilize the magnetic field of the superconducting, polarized target magnet was also designed and built at Mount Holyoke, and it functioned extremely well during a six week May to June run. Also, the design of an experiment to search for double beta decay in Molybdenum 100 is briefly described. A group consisting of five experimenters from LBL and two from Mount Holyoke hope to make a formal proposal in September to the LBL administration to begin work on this experiment late this year and during the next calendar year

  11. European Experiments on 2-D Molten Core Concrete Interaction: Hecla and Vulcano

    International Nuclear Information System (INIS)

    Journeau, Ch.; Bonnet, J. M.; Boccaccio, E.; Piluso, P.; Monerris, J.; Breton, M.; Fritz, G.; Sevon, Tuomo; Pankakoski Pekka, H.; Holmstrom, St.; Virta, Jouko

    2010-01-01

    This paper presents results from two ongoing European experimental programs on molten core concrete interactions: HECLA at VTT and VULCANO at the Commissariat a l'Energie Atomique. In the HECLA experiments, metallic melt is poured into a cylindrical concrete crucible. The focus is on the initial, pouring phase of the interaction. Therefore, decay heat simulation is not required. The HECLA-2 experiment involved 50 kg of stainless steel at 1700 C and siliceous concrete. The final ablation depths were 25-30 mm in the basemat and similar to 15 mm in the side wall. The VULCANO VB experiments have been devoted to the study of the interaction of 28 to 45 kg of oxidic corium with silica-rich or limestone-rich concretes. These tests focus on long-term ablation and require the use of induction heating to simulate the decay heat fluxes. Anisotropic ablation between the horizontal and vertical direction has been observed with silica-rich concrete, confirming the CCI tests. A new series of experiments VULCANO VBS has been launched in which there are both oxide and metallic phases in the melt. In these tests, magnetic screening is used so that the induction power is provided almost only to the upper oxidic layer after stratification. (authors)

  12. European Experiments on 2-D Molten Core Concrete Interaction: Hecla and Vulcano

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Bonnet, J. M.; Boccaccio, E.; Piluso, P.; Monerris, J.; Breton, M.; Fritz, G. [CEA Cadarache, Dept Technol Nucl, Serv Technol Reacteurs Ind, Lab Essais Maitrise Accid Graves, F-13108 St Paul Les Durance (France); Sevon, Tuomo; Pankakoski Pekka, H.; Holmstrom, St.; Virta, Jouko [VTT Tech Res Ctr Finland, FI-02044 Espoo (Finland)

    2010-07-01

    This paper presents results from two ongoing European experimental programs on molten core concrete interactions: HECLA at VTT and VULCANO at the Commissariat a l'Energie Atomique. In the HECLA experiments, metallic melt is poured into a cylindrical concrete crucible. The focus is on the initial, pouring phase of the interaction. Therefore, decay heat simulation is not required. The HECLA-2 experiment involved 50 kg of stainless steel at 1700 C and siliceous concrete. The final ablation depths were 25-30 mm in the basemat and similar to 15 mm in the side wall. The VULCANO VB experiments have been devoted to the study of the interaction of 28 to 45 kg of oxidic corium with silica-rich or limestone-rich concretes. These tests focus on long-term ablation and require the use of induction heating to simulate the decay heat fluxes. Anisotropic ablation between the horizontal and vertical direction has been observed with silica-rich concrete, confirming the CCI tests. A new series of experiments VULCANO VBS has been launched in which there are both oxide and metallic phases in the melt. In these tests, magnetic screening is used so that the induction power is provided almost only to the upper oxidic layer after stratification. (authors)

  13. Household preferences of hybrid home heating systems – A choice experiment application

    International Nuclear Information System (INIS)

    Ruokamo, Enni

    2016-01-01

    The residential heating sector presents considerable energy savings potential, as numerous heating solutions for reducing electricity consumption and utilizing renewable energy sources are available in the market. The aim of this paper is to examine determinants of household heating system choices and to use this information for policy planning purposes. This paper investigates residential homeowner attitudes regarding innovative hybrid home heating systems (HHHS) with choice experiment. Heating system scenarios are designed to represent the most relevant primary and supplementary heating alternatives currently available in Finland. The choice sets include six main heating alternatives (district heat, solid wood, wood pellet, electric storage heating, ground heat pump and exhaust air heat pump) that are described by five attributes (supplementary heating systems, investment costs, operating costs, comfort of use and environmental friendliness). The results imply that HHHSs generally appear to be accepted among households; however, several factors affect perceptions of these technologies. The results reveal differing household attitudes toward the main heating alternatives and show that such views are affected by socio-demographic characteristics (age, living environment, education, etc.). The results suggest that households view supplementary heating systems (especially solar-based) favorably. The other attributes studied also play a significant role in decision making. - Highlights: •Study of hybrid heating where supplementary and main heating systems are combined. •Choice experiment is applied to study the determinants of hybrid heating adoption. •Hybrid heating appears to be generally accepted among households. •Households exhibit differing attitudes toward hybrid heating. •Policy makers should not underestimate the potential of hybrid heating.

  14. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Vignati, M. [Sapienza Universita di Roma and INFN Sezione di Roma, Roma, I-00185 (Italy)

    2012-08-15

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0{nu}DBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental {gamma}'s and {alpha}'s, in view of a zero background experiment. We present the LUCIFER R and D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between {beta} and {alpha} particles. The {gamma} background is reduced by choosing 0{nu}DBD candidate isotopes with transition energy above the environmental {gamma}'s spectrum. The prospect of this R and D are discussed.

  15. Beta decay of highly charged ions

    International Nuclear Information System (INIS)

    Litvinov, Yuri A; Bosch, Fritz

    2011-01-01

    Beta decay of highly charged ions has attracted much attention in recent years. An obvious motivation for this research is that stellar nucleosynthesis proceeds at high temperatures where the involved atoms are highly ionized. Another important reason is addressing decays of well-defined quantum-mechanical systems, such as one-electron ions where all interactions with other electrons are excluded. The largest modifications of nuclear half-lives with respect to neutral atoms have been observed in beta decay of highly charged ions. These studies can be performed solely at ion storage rings and ion traps, because there high atomic charge states can be preserved for extended periods of time (up to several hours). Currently, all experimental results available in this field originate from experiments at the heavy-ion complex GSI in Darmstadt. There, the fragment separator facility FRS allows the production and separation of exotic, highly charged nuclides, which can then be stored and investigated in the storage ring facility ESR. In this review, we present and discuss in particular two-body beta decays, namely bound-state beta decay and orbital electron capture. Although we focus on experiments conducted at GSI, we will also attempt to provide general requirements common to any other experiment in this context. Finally, we address challenging but not yet performed experiments and we give prospects for the new radioactive beam facilities, such as FAIR in Darmstadt, IMP in Lanzhou and RIKEN in Wako.

  16. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    Directory of Open Access Journals (Sweden)

    N. Abgrall

    2014-01-01

    Full Text Available The Majorana Demonstrator will search for the neutrinoless double-beta (ββ0ν decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The Demonstrator is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design.

  17. Progress on Electron Cyclotron Heating Experiments in LHD

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Nagasaki, K.; Notake, T.; Inagaki, S.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Takita, Y.; Ohkubo, K.; Saito, K.; Seki, T.; Kumazawa, R.; Watari, T.; Mutoh, T.

    2005-01-01

    Electron cyclotron resonance heating (ECH) is a powerful heating method because of its well-controlled local heating and high deposition power density. Together with the development of high power long pulse gyrotrons, ECH becomes one of the major heating scenarios to control electron temperature and current profiles for the improved plasma confinement and suppression of some magneto-hydro-dainamic (MHD) instabilities in both tokamaks and stellarators [1]. In the Large Helical Device (LHD), ECH has been worked as a method of plasma initiation and electron heating. The ECH system has been improved with respect to each experimental campaign. In the recent campaign, nine gyrotrons were operated reliably and steadily. As a diagnostic objective, a modulated ECH (MECH) was injected together with main ECH power. A Fourier analysis of the induced heat wave gave useful information of not only the heat transport in the plasmas but also precise power deposition layer [2]. Several kinds of ECH experiment were performed by using this flexible ECH system. In LHD, electron ITB formation have been observed by using strongly focused ECH in the plasma core [3].Two different kinds of improved confinement were realized depending on the direction of tangentially injected NBI. NBI beam driven currents modify the profiles of the rotational transform 2 ro and the existence low order rational surfaces, 2 = 0.5 in special, affects the difference of appearance of the improved confinement states. The MECH method was used to investigate the internal structure of the thermal diffusion in such plasmas [4]. Another important role of the MECH is the precise determination of the ECH power deposition. Shift of the deposition location by changing an injection polarization in the electron Bernstein wave (EBW) heating was clearly demonstrated by the MECH method. Electron cyclotron current drive (ECCD) experiments were proceeded by using a flexible antenna system, which had wide scanning range in both

  18. Seasonal distributions of diabatic heating during the First GARP Global Experiment

    OpenAIRE

    Ying Wei, Ming; Johnson, Donald R.; Townsend, Ronald D.

    2011-01-01

    The seasonal and annual global distributions of diabatic heating during the First GARP Global Experiment (FGGE) are estimated using the isentropic mass continuity equation. The data used are from the FGGE Level IIIa analyses generated by the United States National Meteorological Center. Spatially and temporally coherent diabatic heating distributions are obtained from the isentropic planetary scale mass circulation that is forced by large-scale heat sources and sinks. The diabatic heating in...

  19. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  20. Decay property of Timoshenko system in thermoelasticity

    KAUST Repository

    Said-Houari, Belkacem; Kasimov, Aslan R.

    2011-01-01

    We investigate the decay property of a Timoshenko system of thermoelasticity in the whole space for both Fourier and Cattaneo laws of heat conduction. We point out that although the paradox of infinite propagation speed inherent in the Fourier law

  1. Estimation of heat transfer and heat source in a molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.I.; Suh, K.Y.; Kang, C.S. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of)

    2001-07-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  2. Estimation of heat transfer and heat source in a molten pool

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2001-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  3. Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment.

    Science.gov (United States)

    Aaboud, M; Aad, G; Abbott, B; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Afik, Y; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Åkesson, T P A; Akilli, E; Akimov, A V; Alberghi, G L; Albert, J; Albicocco, P; Alconada Verzini, M J; Alderweireldt, S; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allaire, C; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M I; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Ambroz, L; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amoroso, S; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, A V; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Araujo Pereira, R; Arce, A T H; Ardell, R E; Arduh, F A; Arguin, J-F; Argyropoulos, S; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkin, R J; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Avramidou, R; Axen, B; Ayoub, M K; Azuelos, G; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Bagnaia, P; Bahmani, M; Bahrasemani, H; Baines, J T; Bajic, M; Baker, O K; Bakker, P J; Bakshi Gupta, D; Baldin, E M; Balek, P; Balli, F; Balunas, W K; Banas, E; Bandyopadhyay, A; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barkeloo, J T; Barklow, T; Barlow, N; Barnea, R; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bauer, K T; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Beck, H C; Becker, K; Becker, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beermann, T A; Begalli, M; Begel, M; Behera, A; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Benoit, M; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Bergsten, L J; Beringer, J; Berlendis, S; Bernard, N R; Bernardi, G; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertram, I A; Bertsche, C; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Bethani, A; Bethke, S; Betti, A; Bevan, A J; Beyer, J; Bianchi, R M; Biebel, O; Biedermann, D; Bielski, R; Bierwagen, K; Biesuz, N V; Biglietti, M; Billoud, T R V; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bittrich, C; Bjergaard, D M; Black, J E; Black, K M; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blumenschein, U; Blunier, Dr; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boerner, D; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bolz, A E; Bomben, M; Bona, M; Bonilla, J S; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozson, A J; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Braren, F; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Briglin, D L; Bristow, T M; Britton, D; Britzger, D; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruni, A; Bruni, G; Bruni, L S; Bruno, S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burch, T J; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Büscher, D; Büscher, V; Buschmann, E; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabras, G; Cabrera Urbán, S; Caforio, D; Cai, H; Cairo, V M M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Calvetti, M; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Cano Bret, M; Cantero, J; Cao, T; Cao, Y; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrá, S; Carrillo-Montoya, G D; Casadei, D; Casado, M P; Casha, A F; Casolino, M; Casper, D W; Castelijn, R; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Celebi, E; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, W S; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Che, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, C; Chen, H; Chen, J; Chen, J; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Cheu, E; Cheung, K; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chiu, I; Chiu, Y H; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, Y S; Christodoulou, V; Chu, M C; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Cinca, D; Cindro, V; Cioară, I A; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Clark, A; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Constantinescu, S; Conti, G; Conventi, F; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Corradi, M; Corrigan, E E; Corriveau, F; Cortes-Gonzalez, A; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Creager, R A; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cukierman, A R; Cummings, J; Curatolo, M; Cúth, J; Czekierda, S; Czodrowski, P; D'amen, G; D'Auria, S; D'eramo, L; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dahbi, S; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daneri, M F; Dang, N P; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dartsi, O; Dattagupta, A; Daubney, T; Davey, W; David, C; Davidek, T; Davis, D R; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vasconcelos Corga, K; De Vivie De Regie, J B; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delporte, C; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Devesa, M R; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Bello, F A; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Dickinson, J; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobre, M; Dodsworth, D; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dreyer, E; Dris, M; Du, Y; Duarte-Campderros, J; Dubinin, F; Dubreuil, A; Duchovni, E; Duckeck, G; Ducourthial, A; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dulsen, C; Dumancic, M; Dumitriu, A E; Duncan, A K; Dunford, M; Duperrin, A; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Duvnjak, D; Dyndal, M; Dziedzic, B S; Eckardt, C; Ecker, K M; Edgar, R C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; El Kosseifi, R; Ellajosyula, V; Ellert, M; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Ennis, J S; Epland, M B; Erdmann, J; Ereditato, A; Errede, S; Escalier, M; Escobar, C; Esposito, B; Estrada Pastor, O; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Fabiani, V; Facini, G; Fakhrutdinov, R M; Falciano, S; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feickert, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, M; Fenton, M J; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, R R M; Flick, T; Flierl, B M; Flores, L M; Flores Castillo, L R; Fomin, N; Forcolin, G T; Formica, A; Förster, F A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Freund, B; Freund, W S; Froidevaux, D; Frost, J A; Fukunaga, C; Fusayasu, T; Fuster, J; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gadow, P; Gagliardi, G; Gagnon, L G; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gamboa Goni, R; Gan, K K; Ganguly, S; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; García Pascual, J A; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gasnikova, K; Gaudiello, A; Gaudio, G; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geisen, J; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Geßner, G; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giangiacomi, N; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillberg, D; Gilles, G; Gingrich, D M; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugliarelli, G; Giugni, D; Giuli, F; Giulini, M; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gkountoumis, P; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Gonella, G; Gonella, L; Gongadze, A; Gonnella, F; Gonski, J L; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Gottardo, C A; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Goy, C; Gozani, E; Grabowska-Bold, I; Gradin, P O J; Graham, E C; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, C; Gray, H M; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Grummer, A; Guan, L; Guan, W; Guenther, J; Guerguichon, A; Guescini, F; Guest, D; Gueta, O; Gugel, R; Gui, B; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gurbuz, S; Gustavino, G; Gutelman, B J; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Guzik, M P; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Han, K; Han, L; Han, S; Hanagaki, K; Hance, M; Handl, D M; Haney, B; Hankache, R; Hanke, P; Hansen, E; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harrison, P F; Hartmann, N M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havener, L B; Havranek, M; Hawkes, C M; Hawkings, R J; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Heck, T; Hedberg, V; Heelan, L; Heer, S; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Held, A; Hellesund, S; Hellman, S; Helsens, C; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herr, H; Herten, G; Hertenberger, R; Hervas, L; Herwig, T C; Hesketh, G G; Hessey, N P; Hetherly, J W; Higashino, S; Higón-Rodriguez, E; Hildebrand, K; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hils, M; Hinchliffe, I; Hirose, M; Hirschbuehl, D; Hiti, B; Hladik, O; Hlaluku, D R; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Hohov, D; Holmes, T R; Holzbock, M; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Horyn, L A; Hostachy, J-Y; Hostiuc, A; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hrdinka, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Huhtinen, M; Hunter, R F H; Huo, P; Hupe, A M; Huseynov, N; Huston, J; Huth, J; Hyneman, R; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idrissi, Z; Iengo, P; Igonkina, O; Iguchi, R; Iizawa, T; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Iltzsche, F; Introzzi, G; Iodice, M; Iordanidou, K; Ippolito, V; Isacson, M F; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jacka, P; Jackson, P; Jacobs, R M; Jain, V; Jakel, G; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jelinskas, A; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, R W L; Jones, S D; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Junggeburth, J J; Juste Rozas, A; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanjir, L; Kano, Y; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kay, E F; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kellermann, E; Kempster, J J; Kendrick, J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khodinov, A; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kiehn, M; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; Kirchmeier, D; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitali, V; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klingl, T; Klioutchnikova, T; Klitzner, F F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolb, M; Koletsou, I; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Konya, B; Kopeliansky, R; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kourlitis, E; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Krauss, D; Kremer, J A; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kubota, T; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kulinich, Y P; Kuna, M; Kunigo, T; Kupco, A; Kupfer, T; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; La Ruffa, F; Lacasta, C; Lacava, F; Lacey, J; Lack, D P J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Langenberg, R J; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapertosa, A; Laplace, S; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Lau, T S; Laudrain, A; Law, A T; Laycock, P; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, G R; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, M; Legger, F; Leggett, C; Lehmann Miotto, G; Leight, W A; Leisos, A; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Lerner, G; Leroy, C; Les, R; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Li, B; Li, C-Q; Li, H; Li, L; Li, Q; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lie, K; Limosani, A; Lin, C Y; Lin, K; Lin, S C; Lin, T H; Linck, R A; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Little, J D; Liu, B; Liu, H; Liu, H; Liu, J K K; Liu, J B; Liu, K; Liu, M; Liu, P; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo, C Y; Lo Sterzo, F; Lobodzinska, E M; Loch, P; Loebinger, F K; Loesle, A; Loew, K M; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lu, Y J; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Luise, I; Lukas, W; Luminari, L; Lund-Jensen, B; Lutz, M S; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyu, F; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Mader, W F; Madsen, A; Madysa, N; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A S; Magerl, V; Maidantchik, C; Maier, T; Maio, A; Majersky, O; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mankinen, K H; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Marceca, G; March, L; Marchese, L; Marchiori, G; Marcisovsky, M; Marin Tobon, C A; Marjanovic, M; Marley, D E; Marroquim, F; Marshall, Z; Martensson, M U F; Marti-Garcia, S; Martin, C B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Mason, L H; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McKay, M A; McMahon, S J; McNamara, P C; McNicol, C J; McPherson, R A; Meadows, Z A; Meehan, S; Megy, T J; Mehlhase, S; Mehta, A; Meideck, T; Meier, K; Meirose, B; Melini, D; Mellado Garcia, B R; Mellenthin, J D; Melo, M; Meloni, F; Melzer, A; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Merlassino, C; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Millar, D A; Miller, D W; Milov, A; Milstead, D A; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mirto, A; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mkrtchyan, T; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mueller, F; Mueller, J; Mueller, R S P; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murin, P; Murray, W J; Murrone, A; Muškinja, M; Mwewa, C; Myagkov, A G; Myers, J; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, M E; Nemecek, S; Nemethy, P; Nessi, M; Neubauer, M S; Neumann, M; Newman, P R; Ng, T Y; Ng, Y S; Nguyen, H D N; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforou, N; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nishu, N; Nisius, R; Nitsche, I; Nitta, T; Nobe, T; Noguchi, Y; Nomachi, M; Nomidis, I; Nomura, M A; Nooney, T; Nordberg, M; Norjoharuddeen, N; Novak, T; Novgorodova, O; Novotny, R; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'Connor, K; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Oliver, J L; Olsson, M J R; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oppen, H; Oreglia, M J; Oren, Y; Orestano, D; Orgill, E C; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parida, B; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasner, J M; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pasuwan, P; Pataraia, S; Pater, J R; Pauly, T; Pearson, B; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Peri, F; Perini, L; Pernegger, H; Perrella, S; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Pham, T; Phillips, F H; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pinamonti, M; Pinfold, J L; Pitt, M; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Podberezko, P; Poettgen, R; Poggi, R; Poggioli, L; Pogrebnyak, I; Pohl, D; Pokharel, I; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Ponomarenko, D; Pontecorvo, L; Popeneciu, G A; Portillo Quintero, D M; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potti, H; Poulsen, T; Poveda, J; Pozo Astigarraga, M E; Pralavorio, P; Prell, S; Price, D; Primavera, M; Prince, S; Proklova, N; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puri, A; Puzo, P; Qian, J; Qin, Y; Quadt, A; Queitsch-Maitland, M; Qureshi, A; Radeka, V; Radhakrishnan, S K; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rashid, T; Raspopov, S; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravinovich, I; Rawling, J H; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rettie, S; Reynolds, E; Rezanova, O L; Reznicek, P; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ripellino, G; Ristić, B; Ritsch, E; Riu, I; Rivera Vergara, J C; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocco, E; Roda, C; Rodina, Y; Rodriguez Bosca, S; Rodriguez Perez, A; Rodriguez Rodriguez, D; Rodríguez Vera, A M; Roe, S; Rogan, C S; Røhne, O; Röhrig, R; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossi, E; Rossi, L P; Rossini, L; Rosten, J H N; Rosten, R; Rotaru, M; Rothberg, J; Rousseau, D; Roy, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Rüttinger, E M; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, M; Saito, T; Sakamoto, H; Salamanna, G; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sampsonidou, D; Sánchez, J; Sanchez Pineda, A; Sandaker, H; Sander, C O; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sano, Y; Sansoni, A; Santoni, C; Santos, H; Santoyo Castillo, I; Sapronov, A; Saraiva, J G; Sasaki, O; Sato, K; Sauvan, E; Savard, P; Savic, N; Sawada, R; Sawyer, C; Sawyer, L; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaeffer, J; Schaepe, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Schegelsky, V A; Scheirich, D; Schenck, F; Schernau, M; Schiavi, C; Schier, S; Schildgen, L K; Schillaci, Z M; Schillo, C; Schioppa, E J; Schioppa, M; Schleicher, K E; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schnoor, U; Schoeffel, L; Schoening, A; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schuh, N; Schulte, A; Schultz-Coulon, H-C; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Sciandra, A; Sciolla, G; Scornajenghi, M; Scuri, F; Scutti, F; Scyboz, L M; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Senkin, S; Serfon, C; Serin, L; Serkin, L; Sessa, M; Severini, H; Šfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shahinian, J D; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Sharma, A S; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Shen, Y; Sherafati, N; Sherman, A D; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shipsey, I P J; Shirabe, S; Shiyakova, M; Shlomi, J; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silva, M; Silverstein, S B; Simic, L; Simion, S; Simioni, E; Simmons, B; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smiesko, J; Smirnov, N; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffa, A M; Soffer, A; Søgaard, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, W; Sopczak, A; Sopkova, F; Sosa, D; Sotiropoulou, C L; Sottocornola, S; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanitzki, M M; Stapf, B S; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Stegler, M; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, T J; Stewart, G A; Stockton, M C; Stoicea, G; Stolte, P; Stonjek, S; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultan, Dms; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sydorenko, A; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Tahirovic, E; Taiblum, N; Takai, H; Takashima, R; Takasugi, E H; Takeda, K; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarek Abouelfadl Mohamed, A T; Tarem, S; Tarna, G; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, A J; Taylor, G N; Taylor, P T E; Taylor, W; Teixeira-Dias, P; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Thais, S J; Theveneaux-Pelzer, T; Thiele, F; Thomas, J P; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tian, Y; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorova-Nova, S; Todt, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Treado, C J; Trefzger, T; Tresoldi, F; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsang, K W; Tseng, J C-L; Tsiareshka, P V; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Uno, K; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Vadla, K O H; Vaidya, A; Valderanis, C; Valdes Santurio, E; Valente, M; Valentinetti, S; Valero, A; Valéry, L; Vallier, A; Valls Ferrer, J A; Van Den Wollenberg, W; van der Graaf, H; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vari, R; Varnes, E W; Varni, C; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Furelos, D; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, A T; Vermeulen, J C; Vetterli, M C; Viaux Maira, N; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vogel, M; Vokac, P; Volpi, G; von Buddenbrock, S E; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wagner-Kuhr, J; Wahlberg, H; Wahrmund, S; Wakamiya, K; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, A M; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, Q; Wang, R-J; Wang, R; Wang, S M; Wang, T; Wang, W; Wang, W; Wang, Z; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, A F; Webb, S; Weber, M S; Weber, S M; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weirich, M; Weiser, C; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Weston, T D; Whalen, K; Whallon, N L; Wharton, A M; White, A S; White, A; White, M J; White, R; Whiteson, D; Whitmore, B W; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winkels, E; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, A; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Wong, V W S; Woods, N L; Worm, S D; Wosiek, B K; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xia, L; Xu, D; Xu, H; Xu, L; Xu, T; Xu, W; Yabsley, B; Yacoob, S; Yajima, K; Yallup, D P; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamanaka, T; Yamane, F; Yamatani, M; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, S; Yang, Y; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yigitbasi, E; Yildirim, E; Yorita, K; Yoshihara, K; Young, C; Young, C J S; Yu, J; Yu, J; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zambito, S; Zanzi, D; Zeitnitz, C; Zemaityte, G; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, P; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhou, B; Zhou, C; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zhulanov, V; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zorbas, T G; Zou, R; Zur Nedden, M; Zwalinski, L

    2018-05-25

    A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode ZH→ℓ^{+}ℓ^{-}cc[over ¯] is studied. A data set with an integrated luminosity of 36.1  fb^{-1} of pp collisions at sqrt[s]=13TeV recorded by the ATLAS experiment at the LHC is used. The H→cc[over ¯] signature is identified using charm-tagging algorithms. The observed (expected) upper limit on σ(pp→ZH)×B(H→cc[over ¯]) is 2.7 (3.9_{-1.1}^{+2.1}) pb at the 95% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.

  4. Particle and photon detection for a neutron radiative decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: thomas.gentile@nist.gov; Dewey, M.S.; Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Cooper, R.L. [University of Michigan, Ann Arbor, MI 48109 (United States)], E-mail: cooperrl@umich.edu; Fisher, B.M.; Kremsky, I.; Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States); Kiriluk, K.G.; Beise, E.J. [University of Maryland, College Park, MD 20742 (United States)

    2007-08-21

    We present the particle and photon detection methods employed in a program to observe neutron radiative beta-decay. The experiment is located at the NG-6 beam line at the National Institute of Standards and Technology Center for Neutron Research. Electrons and protons are guided by a 4.6 T magnetic field and detected by a silicon surface barrier detector. Photons with energies between 15 and 750 keV are registered by a detector consisting of a bismuth germanate scintillator coupled to a large area avalanche photodiode. The photon detector operates at a temperature near 80 K in the bore of a superconducting magnet. We discuss CsI as an alternative scintillator, and avalanche photodiodes for direct detection of photons in the 0.1-10 keV range.

  5. Imitation experiment for water-treatment by heat of solar collector and hot pump

    International Nuclear Information System (INIS)

    Liao Yuanzong; Liu Shuqing; Pang Heding; Zhao Zhongxin; Zhang Biguang; Wang Xiping; Huo Guangqing

    1997-01-01

    The author presents an imitation experiment in which solar collector and hot pump are jointed for supplying heat to evaporate cleaned water and diffuse it into air. The effects of the temperature and the quantity of supplying air, and circumstance conditions on evaporation quantity are studied. The ratio of evaporating quantity to consuming energy, the efficiency of evaporation, average efficiency of solar collector and supplying heat coefficient of heat pump are measured. The experiment shows that this supplying heat model is practicable, economic and efficient for treating cleaned water

  6. Ultimate limits to proton decay searches

    International Nuclear Information System (INIS)

    Learned, J.G.

    1981-01-01

    Proton decay searches become increasingly difficult above lifetimes of 10 33 years. It is concluded that in the foreseeable future no experiment will surpass approx. 10 34 years. If proton decay is not observed by the current round of experiments, then the approach suggested herein, of a deep ocean experiment, will permit achieving a lifetime limit near 10 34 years. Utilizing a relatively dense DUMAND-like deep ocean detector of (100 m) 3 size appears to be the only economically feasible approach for detectors containing greater than or equal to 10 35 nucleons

  7. Search for the neutrinoless ββ decay in 76Ge with the GERDA experiment

    International Nuclear Information System (INIS)

    Cattadori, C.; Knapp, M.; Kröninger, K.; Liu, X.; Pandola, L.; Pullia, A.; Tomei, C.; Ur, C.; Zocca, F.

    2011-01-01

    The GERmanium Detector Array, GERDA, [Gerda Collaboration, Abt I et al., Proposal, a (http://www.mpi-hd.mpg.de/ge76/home.html)] is designed to search for neutrinoless double beta (0νββ)-decay of 76 Ge. The importance of such a search is emphasized by the evidence of a non-zero neutrino mass from flavour oscillation experiments and by the recent claim [Klapdor-Kleingrothaus H V et al., Phys. Lett. B 586, 198 (2004)] based on data of the Heidelberg-Moscow experiment. GERDA will be installed in the Hall A of the Gran Sasso underground Laboratory (LNGS), Italy. The construction of GERDA will start in 2006.

  8. Study of natural convection heat transfer characteristics. (1) Influence of ventilation duct height

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo; Iwaki, Chikako; Ikeda, Tatsumi; Morooka, Shinichi; Ikeda, Hiroshi; Nakada, Kotaro; Masaki, Yoshikazu

    2008-01-01

    Natural cooling system has been investigated in waste storage. It is important to evaluate the flow by natural draft enough to removal the decay heat from the waste. In this study, we carried out the fundamental experiment of ventilation duct height effect for natural convection on vertical cylindrical heater in atmospheric air. The scale of test facility is about 4m height with single heater. The heating value is varied in the range of 33-110W, where Rayleigh number is over 10 10 . Natural convection flow rate were calculated by measured velocity with thermo anemometer in the inlet duct. The temperature of the cylindrical heater wall and fluid were measured with thermocouples. It was found that the heat transfer coefficient difference between long duct and short duct is small in this experiment. (author)

  9. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    Science.gov (United States)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  10. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  11. Amplitude Analysis of the Decay $D^+ \\to K_s \\pi^- \\pi^+ \\pi^+$ in the {FOCUS} Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Otalora Goicochea, Juan Martin [Rio de Janeiro, Pont. U. Catol.

    2007-07-01

    This thesis is devoted to the study of the decay D+ → KS π−π+π+ with data collected from the FOCUS experiment, at Fermilab. The fi state composed of 4 pseudo-scalars can be produced through a number of resonant sub-structures. The purpose of this analysis is to fi the contributing intermediate states by measuring their relative strenghts and phases. For that, the Amplitude Analysis formalism is used, with the so-called Isobar Model. The decay dynamics is described through a function which has the features of the contributing channels (functional forms of the resonances, angular distribution, etc) and which domain is a phase space determined by 5 invariants (due to the kinematical constraints of a 4-body spinless decay). The data sample is thus fi to this function. Our results show a dominant contribution of the axial-vector meson a1(1260) (52%), followed by the K1(1400) axial-vector (34%). Moreover, the model presents a contribution from the σ meson (about 8% as a1(σπ)KS and σKS π) and a significant contribution from the scalar κ−. The κ state has been reported in its neutral mode in other charm decays but not is its charged mode. We fi no significant contribution from the direct 4-body decay (non-resonant). This work adds to the effort in the understanding of the strong-interaction dynamics at low energies, which in recent years have been receiving an important contribution from charm meson physics.

  12. Laser heated solenoid proof-of-concept experiment (PCX) facility

    International Nuclear Information System (INIS)

    DeHart, T.E.; Zumdieck, J.F.; Hoffman, A.L.; Lowenthal, D.D.; Crawford, E.A.; Parry, B.

    1977-01-01

    The total facility, including laser, magnet, focusing optics, instrumentation and control, its design problems, and its current performance are discussed. Preliminary results from plasma heating experiments are discussed

  13. Current european experiments on 2d molten core concrete interaction: HECLA and VULCANO

    International Nuclear Information System (INIS)

    Journeau, C.; Bonnet, J. M.; Boccaccio, E.; Piluso, P.; Sevon, T.; Pankakoski, P. H.; Holmstroem, S.; Virta, J.

    2008-01-01

    This paper presents results from two ongoing European experimental programs on molten core concrete interactions: HECLA at VTT and VULCANO at CEA. In the HECLA experiments, metallic melt is poured into a cylindrical concrete crucible. The focus is on the initial, pouring phase of the interaction. Therefore, decay heat simulation is not required. The HECLA-2 experiment involved 50 kg of stainless steel at 1700 deg. C and siliceous concrete. The final ablation depths were 25-30 mm in the basemat and about 15 mm in the sidewall. The VULCANO VB experiments have been devoted to the study of the interaction of 28 to 45 kg of oxidic corium with silica-rich or limestone-rich concretes. These tests are focusing on long-term ablation and require the use of induction heating to simulate the decay heat fluxes. Anisotropic ablation between the horizontal and vertical direction has been observed with silica-rich concrete, confirming the CCI tests. A new series of experiments VULCANO VBS has been launched in which there are both oxide and metallic phases in the melt. In these tests, magnetic screening is used so that the induction power is provided almost only to the upper oxidic layer after stratification. (authors)

  14. Progress report on recent rare muon decay experiments at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Hogan, G.E.; Bolton, R.D.; Bowman, J.D.

    1984-01-01

    A search has been performed for the decays μ → eee, μ → eγ, and μ → eγγ with a sensitivity in the branching ratios at the level of 10 -10 . The experiment used a separated, 26 MeV/c μ + beam with an average intensity of 300kHz. A total of 2.2 x 10 11 muon decays were examined for the present result. The detector for the experiment is the Crystal Box, which consists of a cylindrical drift chamber surrounded by 396 NaI(T1) crystals. A layer of scintillation counters in front of the crystals provided timing for electrons and veto for photons. The energy resolution for electrons and photons is approx. 6% (FWHM). The position resolution of the drift chamber is 350 μm leading to a vertex cut with a rejection of 10 3 for μ → eee. The timing resolution is approx. 300 ps the scintillators and approx. 1 ns from the crystals. No candidate for μ → eee has been found, yielding an upper limit for the branching ratio of B/sub μ3e/ -10 (90% C.L.). 21 references

  15. The Gotthard experiment on 136Xe ββ decay

    International Nuclear Information System (INIS)

    Boehm, F.; Busto, J.; Farine, J.; Gabathuler, K.; Gervasio, G.; Henrikson, H.; Joergens, V.; Lou, K.; Luescher, R.; Paic, A.

    1995-01-01

    The Gotthard experiment measuring the double beta decay of 136 Xe is now running with an improved version of the TPC. The whole charge readout system has been redesigned in order to reduce the radioactive background. Signal-to-noise ratio is further enhanced by the tracking capability that allows to select events with two electron tracks emerging from the same point, and reject with high efficiency those background components such as internal β and α radioactivity, Compton electrons, and cosmic rays. After the first 2200 hours of data taking, a reduction of the count rate has been observed. The most recent 90% C.L. half life limits for the different ββ modes are: 4 x 10 23 yr, corresponding to a Majorana mass of 1.9-2.5 eV, for the neutrinoless channel; 1.1 x 10 22 yr for the majoron, and 4.6 x 10 20 yr for the 2ν channel. (K.A.)

  16. High frequency ion Bernstein wave heating experiment on JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Seki, T.; Kumazawa, R.; Watari, T.

    1992-08-01

    An experiment in a new regime of ion Bernstein wave (IBW) heating has been carried out using 130 MHz high power transmitters in the JIPP T-IIU tokamak. The heating regime utilized the IBW branch between the 3rd and 4th harmonics of the hydrogen ion cyclotron frequencies. This harmonic number is the highest among those used in the IBW experiments ever conducted. The net radio-frequency (RF) power injected into the plasma is around 400 kW, limited by the transmitter output power. Core heating of ions and electrons was confirmed in the experiment and density profile peaking was found to feature the IBW heating (IBWH). The peaking of the density profile was also found when IBW was applied to the neutral beam injection heated discharges. An analysis by use of a transport code with these experimental data indicates that the particle confinement should be improved in the plasma core region on the application of IBWH. It is also found that the ion energy distribution function observed during IBWH has less high energy tail than those in conventional ion cyclotron range of frequency heating regimes. The observed IBWH-produced ion energy distribution function is in a reasonable agreement with the calculation based on the quasi-linear RF diffusion / Fokker-Planck model. (author)

  17. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  18. Search for the dark photon in $\\pi^0$ decays by the NA48/2 experiment at CERN

    CERN Document Server

    Goudzovski, Evgueni

    2015-06-02

    A sample of $4.687\\times 10^6$ fully reconstructed $K^\\pm\\to\\pi^\\pm\\pi^0_D$, $\\pi^0_D\\to\\gamma e^+e^-$ decay candidates in the kinematic range $m_{ee}>10~{\\rm MeV}/c^2$ with a negligible background contamination collected by the NA48/2 experiment at CERN in 2003-04 is analysed to search for the dark photon ($A'$) via the decay chain $K^\\pm\\to\\pi^\\pm\\pi^0$, $\\pi^0\\to\\gamma A'$, $A'\\to e^+e^-$. No signal is observed, and preliminary exclusion limits on space of dark photon mass $m_A'$ and mixing parameter $\\varepsilon^2$ are reported.

  19. Ion temperature measurements of turbulently heated tokamak plasma by Doppler-broadening of visible lines in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-01-01

    In the turbulent heating experiment of the high-field tokamak TRIAM-1, the bulk ion heating shown by the neutral energy analyzer measurement is confirmed by the Doppler broadening measurement of visible lines. The increasing rate and decay time of the Doppler ion temperature are almost the same as those derived from the neutral energy analyzer measurement. From both methods of ion temperature measurements, it is shown that the ion temperature has a parabolic profile within 50 ..mu..s after the application of the heating pulse.

  20. Search for jet-jet resonances in association with a leptonic W decay at the ATLAS experiment

    CERN Document Server

    Nuti, Francesco

    2012-01-01

    The analysis presented in this thesis addresses the study of two processes that share the same signature: the diboson $WW/WZ$ semileptonic decay and a jet-jet resonance with an invariant mass equal to $145~GeV/c^{2}$ produced in association with a $W$. In both cases the leptonic decay of the W is identified as an energetic electron or muon along with missing transverse energy forming a transverse mass~($M_{T}$) consistent with that one produced by the $W$ boson. The hadronically decaying $W/Z$ or the resonance at $145~GeV/c^{2}$ are searched in the jet-jet invariant mass distribution after a selection based on the event kinematics. The resonance at $145~GeV/c^{2}$ has been observed in April 2011 by the CDF detector at the Tevatron collider with a significance of $4.1$ standard deviations and is not predicted by Standard Model. Therefore it is important to determine the presence of this signal in other experiments and this thesis investigates the possibility to reveal the same resonance in data collected by ...