WorldWideScience

Sample records for dc-dc power supply

  1. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  2. DC/DC converters for integration of double-layer condensers in onboard power supply; DC/DC-Wandler zur Einbindung von Doppelschichtkondensatoren in das Fahrzeugenergiebordnetz

    Energy Technology Data Exchange (ETDEWEB)

    Polenov, Dieter

    2010-01-15

    The paper discusses DC/DC converters for integration of double layer condensers into the onboard power system. First, requirements on DC/DC converters are listed and compared on the basis of three exemplary applications. A DC/DC converter concept is developed for decoupling transient high-power loads like electric steering systems. Three different topologies are compared using a specially developed method in order to find the best solution for the given application. In order to establish adequate criteria for selecting the switching frequency and inductivities of storage throttles, the influence of the trottle power change on the switching characteristics of the MOSFETs and on certain ranges of EMP interference emissions is investigated. As methods of optimising the operation of the synchronous rectifiers, parallel connection of Schottky diodes and synchronous rectifiers as well as the variation of the shut-off dead times of synchronous rectifiers were investigated. Further, a concept for converter control was developed in consideration of the intended application and topology. Finally, selected aspects for implementation of the DC/DC converter concept are presented as well as the results of experimental investigations.

  3. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  4. A study of DC-DC converters with MCT's for arcjet power supplies

    Science.gov (United States)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  5. Universal and inductorless DC/DC converter for multi-output power supplies in sensor and actuator networks

    Science.gov (United States)

    Saponara, Sergio; Ciarpi, Gabriele

    2017-05-01

    This work proposes a universal and inductorless DC/DC converter that can be used for a wide input range, from few V to 60 V, to regulate output voltages from 5 V down to 1 V in Sensor and Actuator Network nodes. The proposed converter has been developed within the Athenis3D European project. It is composed by a cascade of multiple switching capacitor stages, with a proper skip-mode control to implement both step-down and step-up converting ratios, thus regulating all input sources to a voltage of about 6 V. These switching stages are further cascaded with linear regulators, which can provide stable output voltages down to 1 V. The multi-output regulator has been realized as a single-chip in a low-cost 0.35 μm CMOS technology. It is available as a naked die or in a ceramic package. The only needed external components are surface mount capacitors, which can be integrated on top of the naked chip die, creating a 3D structure, using trench capacitors embedded in a passive interposing layer. This way the size of the power management unit is further minimized. An advantage of the proposed converter is that it isn't optimized for a particular input voltage, therefore it can be used with no constant input power, like power harvesting systems (e.g. solar cells, wind and water turbines) and very disturbed power supplies.

  6. A resonant dc-dc power converter assembly

    OpenAIRE

    Madsen, Mickey Pierre

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...

  7. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  8. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...

  9. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  10. Deadbeat control of power leveling unit with bidirectional buck/boost DC/DC converter

    OpenAIRE

    Hamasaki, Shin-ichi; Mukai, Ryosuke; Yano, Yoshihiro; Tsuji, Mineo

    2014-01-01

    As a distributed generation system increases, a stable power supply becomes difficult. Thus control of power leveling (PL) unit is required to maintain the balance of power flow for irregular power generation. The unit is required to respond to change of voltage and bidirectional power flow. So the bidirectional buck/boost DC/DC converter is applied for the control of PL unit in this research. The PL unit with Electric double-layer capacitor (EDLC) is able to absorb change of power, and it is...

  11. A DC-DC Conversion Powering Scheme for the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Sammet, Jan Domenik; Wlochal, Michael

    2012-01-01

    The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking betwe...

  12. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  13. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  14. Modular Power System Configured with Standard Product Hybrid DC-DC Converters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...

  15. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Max Rauch; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  16. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2015-01-01

    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  17. High power density dc/dc converter: Selection of converter topology

    Science.gov (United States)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  18. DC-DC power converter research for Orbiter/Station power exchange

    Science.gov (United States)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  19. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  20. High-power three-port three-phase bidirectional DC-DC converter

    NARCIS (Netherlands)

    Tao, H.; Duarte, J.L.; Hendrix, M.A.M.

    2007-01-01

    This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy

  1. Selection of DC/DC converter for offshore wind farms with MVDC power collection

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2017-01-01

    Four DC/DC converters are analyzed and compared with respects to availability, efficiency, ratings, repair costs and power density. Intended application is offshore wind farms with MVDC power collection. The selected topology is a new series resonant converter, which offers 99% efficiency across...

  2. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    Science.gov (United States)

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  3. Modelling, simulation and construction of a dc/dc boost power converter: a school experimental system

    International Nuclear Information System (INIS)

    Silva-Ortigoza, R; Marciano-Melchor, M; Silva-Ortigoza, G; Hernández-Guzmán, V M; Saldaña-González, G; Marcelino-Aranda, M

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories. (paper)

  4. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    OpenAIRE

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede; Wheeler, Patrick; Siano, Pierluigi; Hammami, Manel

    2017-01-01

    Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned defic...

  5. A review on DC/DC converter architectures for power fuel cell applications

    International Nuclear Information System (INIS)

    Kolli, Abdelfatah; Gaillard, Arnaud; De Bernardinis, Alexandre; Bethoux, Olivier; Hissel, Daniel; Khatir, Zoubir

    2015-01-01

    Highlights: • Different DC/DC power converter topologies for Fuel Cell systems are presented. • Advantages and drawbacks of the DC/DC power converter topologies are detailed. • Wide-BandGap semiconductors are attractive candidates for design of converters. • Wide-BandGap semiconductors improve efficiency and thermal limits of converters. • Different semiconductor technologies are assessed. - Abstract: Fuel cell-based power sources are attractive devices. Through multi-stack architecture, they offer flexibility, reliability, and efficiency. Keys to accessing the market are simplifying its architecture and each components. These include, among others, the power converter enabling the output voltage regulation. This article focuses on this specific component. The present paper gives a comprehensive overview of the power converter interfaces potentially favorable for the automotive, railways, aircrafts and small stationary domains. First, with respect to the strategic development of a modular design, it defines the specifications of a basic interface. Second, it inventories the best architecture opportunities with respect to these requirements. Based on this study, it fully designs a basic module and points out the outstanding contribution of the new developed silicon carbide switch technology. In conclusion, this review article exhibits the importance of choosing the right power converter architecture and the related technology. In this context it is highlighted that the output power interface can be efficient, compact and modular. In addition, its features enable a thermal compatibility with many ways of integrating this component in the global fuel cell based power source.

  6. First Implementation of a Two-Stage DC-DC Conversion Powering Scheme for the CMS Phase-2 Outer Tracker

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Pauls, Alexander Josef; Preuten, Marius; Rauch, Max Philip; Wangelik, Frederik; Wlochal, Michael

    2017-01-01

    The 2S silicon strip modules for the CMS Phase-2 tracker upgrade will require two operating voltages. These will be provided via a two-step DC-DC conversion powering scheme, in which one DC-DC converter delivers 2.5\\,V while the second DC-DC converter receives 2.5\\,V at its input and converts it to 1.2\\,V. The DC-DC converters will be mounted on a flex PCB, the service hybrid, together with an opto-electrical converter module (VTRx+) and a serializer (LP-GBT). The service hybrid will be mounted directly on the 2S module. A prototype service hybrid has been developed and its performance has been evaluated, including radiative and conductive noise emissions, and efficiency. In addition system tests with a prototype module have been performed. In this report the service hybrid will be described and the test results will be summarized.

  7. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    Science.gov (United States)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  8. Light weight, high power, high voltage dc/dc converter technologies

    Science.gov (United States)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  9. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  10. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of these authors, DC/DC converters have now moved into their sixth generation. This book offers a concise, practical presentation of DC/DC converters, summarizing the spectrum of conversion tecnologies and presentingmany new ideas and more than 100 new topologies. Nowhere else in the literature are DC/DC converters so logically sorted and systematically introduced, and nowhere else can readers find detailed information on prototype topologies that represent a major contribution to modern power engineering. More than 320 figures, 60 tables, and 500 formulae facilitate understand and provide precise data.

  11. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  12. Solar fed DC-DC single ended primary inductance converter for low power applications

    Science.gov (United States)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  13. Application of digital control techniques for satellite medium power DC-DC converters

    Science.gov (United States)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  14. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  15. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  16. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    Science.gov (United States)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  17. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

    Directory of Open Access Journals (Sweden)

    Jaime Wladimir Zapata

    2018-02-01

    Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.

  18. Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai; Soukhoterin, Evgeniy; Mosekilde, Erik

    2007-01-01

    This paper discusses the mechanisms of torus formation and torus destruction in a dc/dc converter with relay control and hysteresis. We establish a chart of the dynamical modes in the input voltage versus load resistance parameter plane. This chart displays several different torus bifurcations...

  19. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  20. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  1. Distributed maximum power point tracking in photovoltaic applications: active bypass DC/DC converter

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2012-01-01

    Full Text Available Se propone una estructura de desvío activo para maximizar la producción de potencia en sistemas fotovoltaicos bajo condiciones irregulares de operación, comparando su eficiencia con soluciones individuales y distribuidas basadas en convertidores DC/DC convencionales. Los análisis y simulaciones realistas demuestran las ventajas del nuevo convertidor de desvío activo sobre soluciones basadas en convertidores Boost, Buck y Buck-Boost.

  2. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  3. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    International Nuclear Information System (INIS)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, S.; Wlochal, M.

    2016-01-01

    The CMS collaboration has adopted a DC-DC conversion powering scheme for the Phase-1 Upgrade of its pixel detector. DC-DC buck converters with a conversion ratio of around 3 are installed on the support structures, outside of the sensitive tracking region, requiring a re-design of the low and high voltage distribution to the pixel modules. After several years of R and D, the project has entered the production phase. A total of 1800 DC-DC converters are being produced, and rigorous quality assurance and control is being employed during the production process. The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed

  4. A Comprehensive Analysis and Hardware Implementation of Control Strategies for High Output Voltage DC-DC Boost Power Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2017-01-01

    Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.

  5. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    Science.gov (United States)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  6. Full range ZVS DC-DC converter

    International Nuclear Information System (INIS)

    Upadhyay, Rinki; Badapanda, M.K.; Hannurkar, P.R.

    2011-01-01

    A 500 V, 24 Amp DC-DC converter with digital signal processor (DSP) based control and protection has been designed, fabricated and tested. Its power circuit consists of IGBT based single phase inverter bridge, ferrite transformer and diode rectifier. All IGBTs in the inverter bridge are operated in zero voltage switching (ZVS) mode to minimize switching losses thereby increasing the efficiency of the converter significantly. The efficiency of this converter is measured to be greater than 97% at full load. In a conventional full bridge inverter, typically ZVS is achieved under full load condition while at light load ZVS is lost. An auxiliary LC circuit has been intentionally incorporated in this converter to achieve ZVS even at light loaded conditions. Detailed simulation of the converter circuit is carried out and crucial waveforms have been presented in this paper. Microchip make dsPIC30F2020 DSP is employed to provide phase shifted PWMs to IGBTs in the inverter bridge. All the crucial parameters are also monitored by this DSP and in case of any unfavorable conditions, the converter is tripped off. Suitable experiments were carried out in this DC-DC converter under different loaded conditions and a close match between the simulated and experimental results were obtained. Such DC-DC converters can be connected in series or parallel for the development of solid state modular power supplies for various applications. (author)

  7. Milliwatt dc/dc Inverter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  8. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  9. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  10. Chaos control in solar fed DC-DC boost converter by optimal parameters using nelder-mead algorithm powered enhanced BFOA

    Science.gov (United States)

    Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.

    2017-11-01

    The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.

  11. Design and Implementation of Battery Charger with Power Factor Correction Using Sepic Converter and Full-bridge DC-DC Converter

    OpenAIRE

    Efendi, Moh. Zaenal; Windarko, Novie Ayub; Amir, Moh. Faisal

    2013-01-01

    This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulato...

  12. Development of a green mode DC/DC converter available to portable nuclear instrument

    International Nuclear Information System (INIS)

    Gao Feiyan; Wu Longxiong; Tan Wei; Tang Yaogeng

    2010-01-01

    A green mode DC/DC converter was developed which suitable to the portable nuclear instrument which is powered by battery and is sometime at stand-by mode. Some updated control approaches such as pseudo-resonant type power supply control and synchronous rectification were adopted to makethe DC/DC converter operate with low power consumption and high efficiency. The test results the battery can be prolonged with this converter. (authors)

  13. Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter

    Science.gov (United States)

    Moamaei, Parvin

    Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.

  14. TID and Displacement Damage Effects in Vertical and Lateral Power MOSFETs for Integrated DC-DC Converters

    CERN Document Server

    Faccio, F; Michelis, S; Faccio, Federico; Fuentes, C; Allongue, B; Sorge, R; Orlandi, S

    2010-01-01

    TID and displacement damage effects are studied for vertical and lateral power MOSFETs in five different technologies in view of the development of radiation-tolerant fully integrated DC-DC converters. Investigation is pushed to the very high level of radiation expected for an upgrade to the LHC experiments. TID induces threshold voltage shifts and, in n-channel transistors, source-drain leakage currents. Wide variability in the magnitude of these effects is observed. Displacement damage increases the on-resistance of both vertical and lateral high-voltage transistors. In the latter case, degradation at high particle fluence might lead to a distortion of the output characteristics curve. HBD techniques to limit or eliminate the radiation-induced leakage currents are successfully applied to these high-voltage transistors, but have to be used carefully to avoid consequences on the breakdown voltage.

  15. Analysis and design of a parallel-connected single active bridge DC-DC converter for high-power wind farm applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2013-01-01

    This paper presents a parallel-connected Single Active Bridge (SAB) dc-dc converter for high-power applications. Paralleling lower-power converters can lower the current rating of each modular converter and interleaving the outputs can significantly reduce the magnitudes of input and output curre...

  16. Chaos analysis and chaotic EMI suppression of DC-DC converters

    CERN Document Server

    Zhang, Bo

    2014-01-01

    Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co

  17. An Efficiency-Optimized Isolated Bidirectional DC-DC Converter with Extended Power Range for Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    2012-12-01

    Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.

  18. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage......DC-DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which......-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc-dc converters are presented and summarized with comparative study of different voltage-boosting techniques....

  19. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  20. Observer design for DC/DC power converters with bilinear averaged model

    NARCIS (Netherlands)

    Spinu, V.; Dam, M.C.A.; Lazar, M.

    2012-01-01

    Increased demand for high bandwidth and high efficiency made full state-feedback control solutions very attractive to power-electronics community. However, full state measurement is economically prohibitive for a large range of applications. Moreover, state measurements in switching power converters

  1. Design and Implementation of Battery Charger with Power Factor Correction using Sepic Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2013-12-01

    Full Text Available This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulator of output voltage and operates at continuous conduction mode. The experimental results show that the power factor of this converter system can be achieved up to 0.96.

  2. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  3. Family of Step-up DC/DC Converters with Fast Dynamic Response for Low Power Applications

    DEFF Research Database (Denmark)

    N. Soltani, Mohsen; Mostaan, Ali; Siwakoti, Yam Prasad

    2016-01-01

    This study presents a family of novel step-up DC/DC converters which do not have a right half plane zero in their transfer function resulting in faster dynamic behaviour of the converters under the load variation. In addition, the voltage stress on all the active switches and diodes is as low...

  4. The 25 kW resonant dc/dc power converter

    Science.gov (United States)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  5. Efficiency and hardware comparison of analog control-based and digital control-based 70 W two-stage power factor corrector and DC-DC converters

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2011-01-01

    A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling...... is described. Results show that digital control can compete with the analog one in efficiency, PFC and THD....

  6. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    Science.gov (United States)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  7. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    International Nuclear Information System (INIS)

    Memon, A.A.

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine. (author)

  8. Synchronized Pulsed dc - dc Converter as Maximum Power Position Tracker with Wide Load and Insolation Variation for Stand Alone PV System

    International Nuclear Information System (INIS)

    Hardik, P. Desai; Ranjan Maheshwari

    2011-01-01

    This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)

  9. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  10. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  11. Simulation and analysis of an isolated full-bridge DC/DC boost converter operating with a modified perturb and observe maximum power point tracking algorithm

    Directory of Open Access Journals (Sweden)

    Calebe A. Matias

    2017-07-01

    Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.

  12. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    Science.gov (United States)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  13. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  14. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2017-01-01

    voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I) and fuzzy logic closed...... are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions....

  15. Floating high step-down stacked dc-dc converter based on buck-boost cells

    NARCIS (Netherlands)

    Tibola, G.; Duarte, J.L.; Blinov, A.

    2015-01-01

    In some high power dc-dc applications, where high voltage is present, a converter with high step-down ratio is required in order to provide an isolated low power auxiliary supply. This requirement represents a challenge and many topologies are currently being researched. The analysis of a

  16. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garcés

    2016-03-01

    Full Text Available Stand-alone power systems based on renewable energy sources are used to replace generators based on fossil fuels. Those renewable power systems also require Energy Storage Devices (ESD interfaced by a charger/discharger power converter, which consist of a bidirectional DC/DC converter, and a DC bus. This paper proposes a single sliding-mode controller (SMC for the charger/discharger DC/DC converter to provide a stable DC bus voltage in any operation condition: charging or discharging the ESD, or even without any power exchange between the ESD and the DC bus. Due to the non-linear nature of the power converter, the SMC parameters are adapted on-line to ensure global stability in any operation condition. Such stability of the adaptive SMC is mathematically demonstrated using analytical expressions for the transversality, reachability and equivalent control conditions. Moreover, a design procedure for the adaptive SMC parameters is provided in order to ensure the dynamic response required for the correct operation of the load. Finally, simulations and experimental tests validate the proposed controller and design procedure.

  17. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-09-01

    Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.

  18. A novel powering scheme based on DC-DC conversion for the luminosity upgrades of the CMS tracking system at CERN

    International Nuclear Information System (INIS)

    Sammet, Jan

    2014-01-01

    The instantaneous luminosity of the LHC is expected to reach 2 x 10 34 s -1 cm -2 and 5 x 10 34 s -1 cm -2 around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10 15 n eq /cm 2 . With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test

  19. Evaluation of DC/DC switching power regulation with small-scale integrated inductors for PET/MR

    Energy Technology Data Exchange (ETDEWEB)

    Biagi, Laura [IRCCS Fondazione Stella Maris and Fondazione Imago 7, Calambrone, Pisa (Italy); Bisogni, Maria Giuseppina; Camarlinghi, Niccolo [Department of Physics, University of Pisa and INFN, Pisa (Italy); Costagli, Mauro [IRCCS Fondazione Stella Maris and Fondazione Imago 7, Calambrone, Pisa (Italy); Sportelli, Giancarlo [Department of Physics, University of Pisa and INFN, Pisa (Italy); Tosetti, Michela [IRCCS Fondazione Stella Maris and Fondazione Imago 7, Calambrone, Pisa (Italy); Del Guerra, Alberto; Belcari, Nicola [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2015-05-18

    We present a feasibility study that has been carried out to determine the best power regulation strategy for the PET front-end electronics of the trimodal PET/MRI/EEG TRIMAGE scanner. Conventional power regulation strategies cannot be applied to PET/MRI because standard switching regulators stop working in presence of a high magnetic field. At the state of the art, linear regulators are used instead. However, linear regulators are inefficient and might not allow to fulfill power and thermal constraints if the electronics becomes more power demanding, such as in the case of FPGA based front-ends. Very recently, a new generation of switching power supplies has been introduced for EMI critical applications where the discrete inductor energy buffer is not allowed. These supplies have very small footprint, need few biasing peripherals and they use on-chip integrated inductors for energy storage. These switching power regulators coupled with an adequate EMI shield could be an achievable power solution for our PET front-end electronics. Test procedures for Enpirion. EN2390QI and the Enpirion. EN6347QI switching power regulators are presented. Measurements have been performed at GE 1.5T MRI scanner with the support of IRCCS Fondazione Stella Maris. All the board have been tested in two different configurations: with and without an additional EMI shield. Performance of these two switching power regulators have been compared with a linear power regulator (Enpirion. EY1501DI). Output voltage, output current and temperature have been measured. The stability of these three main characteristic will be presented in different operation conditions and will be discussed (output voltage vs. temperature, output voltage vs. output current and output current vs. temperature).

  20. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  1. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  2. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2017-03-01

    Full Text Available In this paper, a novel isolated bidirectional DC-DC converter is proposed, which is able to accomplish high step-up/down voltage conversion. Therefore, it is suitable for hybrid electric vehicle, fuel cell vehicle, energy backup system, and grid-system applications. The proposed converter incorporates a coupled inductor to behave forward-and-flyback energy conversion for high voltage ratio and provide galvanic isolation. The energy stored in the leakage inductor of the coupled inductor can be recycled without the use of additional snubber mechanism or clamped circuit. No matter in step-up or step-down mode, all power switches can operate with soft switching. Moreover, there is a inherit feature that metal–oxide–semiconductor field-effect transistors (MOSFETs with smaller on-state resistance can be adopted because of lower voltage endurance at primary side. Operation principle, voltage ratio derivation, and inductor design are thoroughly described in this paper. In addition, a 1-kW prototype is implemented to validate the feasibility and correctness of the converter. Experimental results indicate that the peak efficiencies in step-up and step-down modes can be up to 95.4% and 93.6%, respectively.

  3. Efficient chaotic based satellite power supply subsystem

    International Nuclear Information System (INIS)

    Ramos Turci, Luiz Felipe; Macau, Elbert E.N.; Yoneyama, Takashi

    2009-01-01

    In this work, we investigate the use of the Dynamical System Theory to increase the efficiency of the satellite power supply subsystems. The core of a satellite power subsystem relies on its DC/DC converter. This is a very nonlinear system that presents a multitude of phenomena ranging from bifurcations, quasi-periodicity, chaos, coexistence of attractors, among others. The traditional power subsystem design techniques try to avoid these nonlinear phenomena so that it is possible to use linear system theory in small regions about the equilibrium points. Here, we show that more efficiency can be drawn from a power supply subsystem if the DC/DC converter operates in regions of high nonlinearity. In special, if it operates in a chaotic regime, is has an intrinsic sensitivity that can be exploited to efficiently drive the power subsystem over high ranges of power requests by using control of chaos techniques.

  4. Efficient chaotic based satellite power supply subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Turci, Luiz Felipe [Technological Institute of Aeronautics (ITA), Sao Jose dos Campos, SP (Brazil)], E-mail: felipeturci@yahoo.com.br; Macau, Elbert E.N. [National Institute of Space Research (Inpe), Sao Jose dos Campos, SP (Brazil)], E-mail: elbert@lac.inpe.br; Yoneyama, Takashi [Technological Institute of Aeronautics (ITA), Sao Jose dos Campos, SP (Brazil)], E-mail: takashi@ita.br

    2009-10-15

    In this work, we investigate the use of the Dynamical System Theory to increase the efficiency of the satellite power supply subsystems. The core of a satellite power subsystem relies on its DC/DC converter. This is a very nonlinear system that presents a multitude of phenomena ranging from bifurcations, quasi-periodicity, chaos, coexistence of attractors, among others. The traditional power subsystem design techniques try to avoid these nonlinear phenomena so that it is possible to use linear system theory in small regions about the equilibrium points. Here, we show that more efficiency can be drawn from a power supply subsystem if the DC/DC converter operates in regions of high nonlinearity. In special, if it operates in a chaotic regime, is has an intrinsic sensitivity that can be exploited to efficiently drive the power subsystem over high ranges of power requests by using control of chaos techniques.

  5. Thermal Modelling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Z.; Zhang, Z.; Pittini, R.

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area. The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modelling techniques. Therefore, thermal design through thermal modelling and simulation is becoming an integral part of the design process as less expensive compared to the experimental cut-and-try approach. Here the investigation is performed using finite element method-based modelling, and also...

  6. Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modeling techniques. Therefore, thermal design through thermal modeling and simulation is becoming an integral part of the design process as less expensive compared to the experimenta l cut - and - try approach. Here the investigation is performed using finite element method - based modeling...

  7. Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System

    DEFF Research Database (Denmark)

    Schaltz, Erik; Li, Zhihao; Onar, Omer

    2009-01-01

    Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi...

  8. IGBT Based DC/DC Converter

    Directory of Open Access Journals (Sweden)

    M. Akherraz

    1997-12-01

    Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high  frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.

  9. Decoupled Power Solution for Dual-input Isolated DC-DC Converters Using Four Quadrants Integrated Transformers (FQIT)

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2012-01-01

    ) space orthogonal flux is proposed in this paper. And thus a new geometry core and relative winding arrangements are proposed in accordance with the rthogonal flux decoupling technology. Due to the four secondary windings are arranged in a quadratic pattern at the base core plate with the two...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...... timemultiplexing scheme, which can optimize the utilization of diversified power energy sources, simplify the system structure, improve the flexibility and reduce the overall cost, so they are attractive for the hybrid renewable power system. Section IV initiates a discussion for the advantages of the FQIT...

  10. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    AUTHOR|(CDS)2069786; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schmitz, Stefan Antonius; Wlochal, Michael

    2016-01-01

    The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed.

  11. Hybrid Z-Source DC-DC Converter with ZVZCS and Power Transformer Resetting: Design, Modeling, and Fabrication

    Directory of Open Access Journals (Sweden)

    H. Torkaman

    2018-03-01

    Full Text Available This paper introduces a novel two transistors forward topology employing a z-source to achieve ZVZCS and power transformer resetting for various applications. Comparing with the forward converter, this topology has the advantage of displaying ZCS condition with an added Z-Source and no additional switches when the switches turn on, and that ZVS condition happens when the switches turn off. Duty cycle of the topology can exceed 50 percent. As a result, these converters are suitable for applications with high efficiency. In this paper, structure and properties of the topology will be discussed in details. Then the design principles will be presented. Finally, the benefits aforementioned will be approved in practice through a simple forward converter.

  12. A Unidirectional DC-DC Autotransformer for DC Grid Application

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2018-03-01

    Full Text Available Conventional unidirectional DC-DC converters for DC grid application employ DC-AC-DC two-stage conversion technology and suffer from high converter cost and power loss. To solve these issues, a unidirectional step-up DC-DC autotransformer (UUDAT and a unidirectional step-down DC-DC autotransformer (DUDAT are studied. The UUDAT and DUDAT are composed of a series connection of diode bridges and voltage source converters. Topologies of UUDAT and DUDAT are detailed. The harmonic and un-controllability issues are discussed. Control and possible application scenarios for UUDAT and DUDAT are depicted. DC fault isolation mechanism and the methods of dimensioning the voltage and power ratings of the components in UUDAT and DUDAT are studied. Extensive simulations on power system level and experiments on a UUDAT and DUDAT prototype verified their technical feasibility.

  13. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  14. TOPOLOGICAL REVIEW AND ANALYSIS OF DC-DC BOOST CONVERTERS

    Directory of Open Access Journals (Sweden)

    V. INDRA GANDHI

    2017-06-01

    Full Text Available DC voltage boost up is essential in numerous applications; especially considering Photovoltaic (PV based renewable power generation system. The conventional DC-DC boost converter is the most admired configuration for this scheme, even if the converter efficiency is restricted at duty cycle near to maximum value. In order to find solution to the problem and improve its conversion capability, many converter configurations have been implemented so far. With this circumstance, this research work proposes to give overview of a few most imperative research works related to DC-DC boost converters. Some configurations are covered and classified basically based on the application. The major benefits and disadvantages related to the available techniques are also briefly conveyed. At last, a proper evaluation is recognized among the important types of DC-DC boost converters in terms of efficiency, number of components, and stability.

  15. Characterising and modelling extended conducted electromagnetic interference in densely packed DC-DC converter

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-09-01

    Full Text Available . The military specified DC-DC converters are applicable, spanning from 100 W handheld power managers up to 2 kW DC-DC battery chargers. Circuit layout high frequency effects as well as high frequency impedances of the power components were characterised...

  16. Three-port DC-DC converter with new integrated transformer for DC Distribution Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling...

  17. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage...

  18. Sheppard-Taylor Isolated High Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri

    2017-01-01

    This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can...

  19. A Sepic Type Switched Mode Power Supply System For Battery Charging In An Electric Tricycle Auto-Rickshaw

    Directory of Open Access Journals (Sweden)

    Kureve

    2017-08-01

    Full Text Available This paper analyzes the plug-in electric tricycle Auto rickshaw battery charging system using a non-isolated DC-DC SEPIC converter which operates as a switched mode power supply SMPS. The control of dc voltage output is by varying the gating pulses duty cycle of the switch in the dc-dc converter using PID controller based PWM technique. The 60 V 30 A DC-DC SEPIC converter is designed to provide non-inverting voltage buck from the rectified AC mains for charging deep cycle battery bank in an electric auto rickshaw. The charger system is implemented using MATLABSimulink.

  20. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  1. A high voltage gain quasi Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...... by a voltage doubling output rectifier. The converter is well-suited to applications requiring a high voltage gain, especially renewable energy sources such as photovoltaic and fuel-cell power supplies. To demonstrate the converter's performance a prototype designed to output 400 V at 500 W was constructed...

  2. A ZVS PWM control strategy with balanced capacitor current for half-bridge three-level DC/DC converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    The capacitor current would be imbalanced under the conventional control strategy in the half-bridge three-level (HBTL) DC/DC converter due to the effect of the output inductance of the power supply and the input line inductance, which would affect the converter's reliability. This paper proposes...... a pulse-wide modulation (PWM) strategy composed of two operation modes for the HBTL DC/DC converter, which can realize the zero-voltage switching (ZVS) for the efficiency improvement. In addition, a capacitor current balancing control is proposed by alternating the two operation modes of the proposed ZVS...... PWM strategy, which can eliminate the current imbalance among the two input capacitors. Therefore, the proposed control strategy can improve the converter's performance and reliability in: 1) reducing the switching losses and noises of the power switches; 2) balancing the thermal stresses...

  3. Sliding-mode control of single input multiple output DC-DC converter

    Science.gov (United States)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  4. Novel composite resonance DC-DC converter with voltage doubler rectifier

    OpenAIRE

    Kato, Hisatsugu; Matsuo, Hirohumi; Eguchi, Masaki; Sakamoto, Yukitaka; Nakaishi, Masaki

    2009-01-01

    This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.

  5. DIAGNOSTIC/PROGNOSTIC EXPERIMENTS FOR CAPACITOR DEGRADATION AND HEALTH MONITORING IN DC-DC CONVERTERS

    Data.gov (United States)

    National Aeronautics and Space Administration — Studying and analyzing the ageing mechanisms of electronic components avionics in systems such as the GPS and INAV are of critical importance. In DC-DC power...

  6. Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding

    OpenAIRE

    Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso

    2016-01-01

    This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.

  7. Multi Bus DC-DC Converter in Electric Hybrid Vehicles

    Science.gov (United States)

    Krithika, V.; Subramaniam, C.; Sridharan, R.; Geetha, A.

    2018-04-01

    This paper is cotncerned with the design, simulation and fabrication of the prototype of a Multi bus DC- DC converter operating from 42V DC and delivering 14V DC and 260V DC. As a result, three DC buses are interconnected through a single power electronic circuitry. Such a requirement is energized in the development of a hybrid electric automobile which uses the technology of fuel cell. This is implemented by using a Bidirectional DC-DC converter configuration which is ideally suitable for multiple outputs with mutual electrical isolation. For the sake of reduced size and cost of step-up transformer, selection of a high frequency switching cycle at 10 KHz was done.

  8. Design and Analysis of Two-Phase Boost DC-DC Converter

    OpenAIRE

    Taufik Taufik; Tadeus Gunawan; Dale Dolan; Makbul Anwari

    2010-01-01

    Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results fr...

  9. DC electric springs with DC/DC converters

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2016-01-01

    The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...... and/or constant discharging for batteries is adopted and four operating modes are analyzed as charging-positive, charging-negative, discharging-positive and discharging-negative modes. An additional mechanism for fast charging or fast discharging is also designed to secure normal operation...... of batteries. With the proposed DCES, the power fluctuations due to intermittent RESs can be passed to non-critical loads (NCLs) and batteries while power on critical loads (CLs) is kept stable. This is possibly the first attempt to design a DCES with only DC/DC converters. The performances of the proposed...

  10. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  11. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  12. Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems

    Directory of Open Access Journals (Sweden)

    Diego R. Espinoza Trejo

    2018-03-01

    Full Text Available This paper proposes a fault identification system for short and open-circuit switch faults (SOCSF for a dc/dc converter acting as a Maximum Power Point Tracker (MPPT in Photovoltaic (PV systems. A closed-loop operation is assumed for the boost dc/dc converter. A linearizing control plus a Proportional-Derivative (PD controller is suggested for PV voltage regulation at the maximum power point (MPP. In this study, the SOCSF are modeled by using an additive fault representation and the fault identification (FI system is synthesized departing from a Luenberger observer. Hence, an FI signal is obtained, which is insensitive to irradiance and load current changes, but affected by the SOCSF. For FI purposes, only the sensors used in the control system are needed. Finally, an experimental evaluation is presented by using a solar array simulator dc power supply and a boost dc/dc converter of 175 W in order to validate the ideas this study exposes.

  13. DESIGN OPTIMIZATION OF RESONANT DC-DC CONVERTERS

    OpenAIRE

    Belqasem Aljafari

    2016-01-01

    Resonant DC/DC converters are the class of converters, which have L-C resonant tank serving as a major part of the power conversion process. The fundamental concept of the resonant converter is that the circulating energy in an L-C resonant circuit is manageable by changing the operating frequency, and therefore the converter can condition the input power to the desired output voltage. The development in power conversion technology is steady demand for high power efficiency and high power den...

  14. Control of the DC-DC Converter used into Energy Generation System

    International Nuclear Information System (INIS)

    Bizon, Nicu; Oproescu, Mihai

    2006-01-01

    This paper presents an investigation of the DC-DC Converter controller used into Energy Generation System. The full bridge is used into an Energy Generation System (EGS) as second power interface between the energy source and the high DC bus. The simulation results show that the DC-DC Converter behavior can be improved using a well designed PI control surface. The used Simulink models for the EGS blocks and some design considerations are presented, too. (authors)

  15. Superconducting energy stabilizer with charging and discharging DC-DC converters

    International Nuclear Information System (INIS)

    Kim, S.H.; Kostecki, E.L.; DeWinkel, C.C.

    1992-01-01

    This patent describes a superconducting energy stabilizer having multiple load connections and employing DC-DC conversion for storing energy in a superconducting inductive energy storage device having a first end and a second end, and for releasing the stored energy from the superconducting inductive energy storage device to a load or loads or to a utility or an industrial electrical distribution system, the superconducting energy stabilizer having multiple load connections and employing DC-DC conversion. It comprises: energy storage cell means for supplying energy to the load, discharging DC-DC converter means for releasing energy from the superconducting inductive energy storage device to the energy storage cell means, the discharging DC-DC converter means having input terminals, output terminals, and a discharging control line means for carrying signals controlling the operation of the discharging DC-DC converter means, one of the input terminals of the discharging DC-DC converter means coupled to the first end of the superconducting energy storage device

  16. High-voltage power supply - 2.500 V - 4mA

    International Nuclear Information System (INIS)

    Souza, H.H. de.

    1977-01-01

    A high-voltage power supply, in a NIM two-width module, was developed to be used in nuclear measurements systems. The design utilizes the principle of DC-DC conversion. A general description of the instrument and of its circuity is presented, as well as a report of the results obtained from the tests performed to establish its characteristics [pt

  17. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  18. Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Super-Capacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius

    2012-01-01

    Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency...

  19. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    Science.gov (United States)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  20. Exploration of Charge Recycling DC-DC Conversion Using a Switched Capacitor Regulator

    Directory of Open Access Journals (Sweden)

    Mircea R. Stan

    2013-07-01

    Full Text Available The increasing popularity of DVFS (dynamic voltage frequency scaling schemes for portable low power applications demands highly efficient on-chip DC-DC converters. The primary aim of this work is to enable increased efficiency of on-chip DC-DC conversion for near-threshold operation of multicore chips. The idea is to supply nominal (high off-chip voltage to the cores which are then “voltage-stacked” to generate the near-threshold (low voltages based on Kirchhoff’s voltage law through charge recycling. However, the effectiveness of this implicit down-conversion is affected by the current imbalance among the cores. The paper presents a design methodology and optimization strategy for highly efficient charge recycling on-chip regulation using a push-pull switched capacitor (SC circuit. A dual-boundary hysteretic feedback control circuit has been designed for stacked loads. A stacked-voltage domain with its self-regulation capability combined with a SC converter has shown average efficiency of 78%–93% for 2:1 down-conversion with ILoad (max of 200 mA and workload imbalance varying from 0–100%.

  1. Ultra-Fast Tracking Power Supply with 4th order Output Filter and Fixed-Frequency Hysteretic Control

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    A practical solution is presented for the design of a non-isolated DC/DC power converter with very low output ripple voltage and very fast output voltage step response. The converter is intended for use as an envelope tracking power supply for an RFPA (Radio Frequency Power Amplifier) in a Tetra2...

  2. Radiated electromagnetic emissions of DC-DC converters

    International Nuclear Information System (INIS)

    Feld, L; Jussen, R; Karpinski, W; Klein, K; Sammet, J; Wlochal, M

    2010-01-01

    For the CMS tracker at SLHC a new powering scheme is considered to be mandatory to allow the detector to provide at least the same performance as today at the LHC. The baseline solution of CMS foresees the use of DC-DC converters to provide larger currents with smaller losses. An important component of most converters are inductors which, however, tend to radiate the switching noise generated by the converter. The emissions of different inductors have been measured and simulated, the coil design has been optimized and noise susceptibility measurements, with present CMS hardware, have been performed. This article summarizes the results.

  3. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  4. Grid Connected Power Supplies for Particle Accelerator Magnets

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup

    Power supplies play a large role in particle accelerators, for creating, accelerating, steering and shaping the beam. This thesis covers the power supplies for steering and shaping the beam, namely the magnet power supplies. These power supplies have a special set of requirements regarding output...... on this topology is constructed using a single power module on the grid side of the transformer, consisting of a boost rectifier and a dual half-bridge isolated DC/DC converter. It is shown that it is possible to create a power supply using a single module and that this approach can lead to improved layout...... and smaller converter size. A high efficiency converter based on Silicon Carbide switching devices is also presented exhibiting above 96 % efficiency for the entire power range. Finally reliability issues are considered as the reliability of a particle accelerator supply is of utmost importance. Particle...

  5. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga...... for many decades. However, the rate of improvement slowed as the silicon power materials asymptotically approached its theoretical bounds. Compared to Si, wideband gap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) are promising semiconductors for power devices due to their superior...... in this thesis. Efficiency measurements from the hardware prototype of both the topologies are also presented in this thesis. Finally, the bidirectional operation of an optimized isolated dc-dc converter is presented. The optimized converter has achieved an ultra-high efficiency of 98.8% in both directions...

  6. Modeling and analysis of fractional order DC-DC converter.

    Science.gov (United States)

    Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmad Taher

    2017-07-11

    Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Modeling, Analysis and Control of Different DC-DC Converter Topologies for Photo Voltaic Emulator

    Directory of Open Access Journals (Sweden)

    Mohammad Tauquir Iqbal

    2016-05-01

    Full Text Available This paper presents the modeling, analysis and control of different DC-DC converter topologies to emulate the photovoltaic (PV system. A PV emulator is basically a DC-DC converter having same electrical characteristics that of solar PV panel.  The emulator helps to achieve real characteristics of PV system in a better way in an environment where using actual PV systems can produce inconsistent results due to variation in weather conditions. The paper describes different types of DC-DC converters like buck, Resonant and Quasi Resonant Converter. The complete system is modelled in MATLAB® Simulink SimPowerSystem software package. The Simulation results obtained from the MATLAB® Simulink SimPowerSystem software package for different topologies under steady and dynamic conditions are analyzed and presented. An evaluation table is also presented at the end of the paper, presenting the effectiveness of each topology.

  8. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...

  9. A Novel PPFHB Bidirectional DC-DC Converter for Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase-shift modula......This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase...

  10. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  11. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-04-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  12. Investigation of DC-DC Boost Converter for Reliability of Operational Planning

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Ashouri, Mani; Silva, Filipe Miguel Faria da

    2018-01-01

    of the interests related to reliability is the power semiconductor switches, which are the most vulnerable elements. The failure of one-power switches can reduce the system reliability. Interleaved technique for DC-DC converters is a redundant strategy to improve the reliability, but at the cost of increasing...

  13. Effect of CMOS Technology Scaling on Fully-Integrated Power Supply Efficiency

    OpenAIRE

    Pillonnet , Gaël; Jeanniot , Nicolas

    2016-01-01

    International audience; Integrating a power supply in the same die as the powered circuits is an appropriate solution for granular, fine and fast power management. To allow same-die co-integration, fully integrated DC-DC converters designed in the latest CMOS technologies have been greatly studied by academics and industrialists in the last decade. However, there is little study concerning the effects of the CMOS scaling on these particular circuits. To show the trends, this paper compares th...

  14. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    Science.gov (United States)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  15. Family of multiport bidirectional DC-DC converters

    NARCIS (Netherlands)

    Tao, H.; Kotsopoulos, A.; Duarte, J.L.; Hendrix, M.A.M.

    2006-01-01

    Multiport DC-DC converters are of potential interest in applications such as generation systems utilising multiple sustainable energy sources. A family of multiport bidirectional DC-DC converters derived from a general topology is presented. The topology shows a combination of DC-link and magnetic

  16. Reliability study of high gain DC-DC converters based on RRPP I-IIA ...

    Indian Academy of Sciences (India)

    J DIVYA NAVAMANI

    2018-05-10

    May 10, 2018 ... Energy Storage Modules (ESM), Propulsion Motor Mod- ules (PMM) and ... All Electric Ship (AES) is the best way to power all the loads in the ship ... also used to derive quadratic step down DC-DC converters. [6]. The attractive ...... Exhibition on Ecological Vehicles and Renewable Energies,. TamilNadu ...

  17. Y-Source Boost DC/DC Converter for Distributed Generation

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently...

  18. Magnetically coupled high-gain Y-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...

  19. Comparative evaluation of bidirectional dual active bridge DC-DC converter variants

    NARCIS (Netherlands)

    Sfakianakis, G.; Everts, J.; Huisman, H.; Lomonova, E.A.

    2016-01-01

    For the realization of DC-DC converters in automotive industry, the Dual Active Bridge (DAB) converter seems to be a promising choice because of its soft-switching and high-power-density capability. Contrary to the traditional 3 level - 3 level (3-3L) DAB, a 3 level - 5 level (3-5L) DAB can operate

  20. Area-Efficiency Trade-Offs in Integrated Switched-Capacitor DC-DC Converters

    DEFF Research Database (Denmark)

    Spliid, Frederik Monrad; Larsen, Dennis Øland; Knott, Arnold

    2016-01-01

    This paper analyzes the relationship between efficiency and chip area in a fully integrated switched capacitor voltage divider dc-dc converter implemented in 180nm-technology and a 1/2 topology. A numerical algorithm for choosing the optimal sizes of individual components, in terms of power loss...

  1. Using PBL to Improve Educational Outcomes and Student Satisfaction in the Teaching of DC/DC and DC/AC Converters

    Science.gov (United States)

    Martinez-Rodrigo, Fernando; Herrero-De Lucas, Luis Carlos; de Pablo, Santiago; Rey-Boue, Alexis B.

    2017-01-01

    This paper examines the question of how to use project-based learning to increase student performance and satisfaction in a power electronics course addressing the topics of dc/dc and dc/ac converters, the assembly of a dc/dc converter, and the use of a commercial speed drive. A detailed presentation of the methodology is shown, and the results…

  2. Simulating and Testing a DC-DC Half-Bridge SLR Converter

    Science.gov (United States)

    2013-06-01

    future pulse power demands with ship power, a large bank of capacitors or similar rapid discharge source is required. If capacitors are charged...Single Pulsed Avalanche Energy (j) I" Avalanche Current (i) E,, Repetilive Avalanche Energy (i) dv/dt Peak Diode Recovery dv/dt ® Po Total Power...SLR), battery charging, DC-DC, pulse power, power electronics, SLR converter 15. NUMBER OF PAGES 119 16. PRICE CODE 17. SECURITY CLASSIFICATION

  3. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  4. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  5. A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    M. Sarvi

    2013-01-01

    Full Text Available DC/DC converters are widely used in many industrial and electrical systems. As DC/DC converters are nonlinear and time-variant systems, the application of linear control techniques for the control of these converters is not suitable. In this paper, a new sliding mode controller is proposed as the indirect control method and compared to a simple direct control method in order to control a buck converter in photovoltaic applications. The solar arrays are dependent power sources with nonlinear voltage-current characteristics under different environmental conditions (insolation and temperature. From this point of view, the DC/DC converter is particularly suitable for the application of the sliding mode control in photovoltaic application, because of its controllable states. Simulations are performed in Matlab/Simulink software. The simulation results are presented for a step change in reference voltage and input voltage as well as step load variations. The simulations results of proposed method are compared with the conventional PID controller. The results show the good performance of the proposed sliding mode controller. The proposed method can be used for the other DC/DC converter.

  6. Battery charging characteristics in small scaled photovoltaic system using resonant DC-DC converter with electric isolation

    International Nuclear Information System (INIS)

    Isoda, H.; Kimura, G.; Shioya, M.

    1990-01-01

    The solar energy has been drawing attention of the whole world as a clean and infinite energy, since the globe resource, the globe ecology and so on came into question. The wide applications of the solar energy are being expected in a range from electric power plants to household systems. But the output power induced in the photovoltaic modules is influenced by an intensity of the solar radiation, a temperature of the solar cells and so on, so the various useful forms of the solar energy are being proposed for a purpose of stable power supply. a system described in this paper is a small scaled photovoltaic system with storage batteries. This paper describes the theoretical analyses of the photovoltaic system using a resonant DC-DC converter in order to clarify a desirable circuit condition, besides the experimental results of the battery charging characteristics are presented

  7. Implementing low power consumption in standby mode in the case of power supplies with power factor correction

    OpenAIRE

    Martín, Kevin; F., Pablo; G., Diego; Sebastián, Javier; Álvarez, Santiago

    2017-01-01

    This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines ...

  8. Artificial neural network control of sab dc/dc converter

    International Nuclear Information System (INIS)

    Mahar, M.A.; Abro, M.R.; Larik, A.S.

    2009-01-01

    The latest development of power semiconductor devices enable the modern power electronic converters to withstand high voltage and high power applications. Power electronic converters are mostly periodic variable structure systems due to their switched operations. The main drawback of these converters is the generation of oscillations which are developed during the operation of the converters under nonlinear situations. To handle these nonlinearities, various researchers have proposed different control techniques. Power electronic designers are devoting in the further development of converter topologies and their control techniques. SAB (Single Active Bridge) DC/DC converter is a new topology recently introduced by Demetriades. This topology is used in high voltage and high power applications. Because of its smart features, SAB converter has recently drawn attention of many researchers. However, during the operation of SAB converter severe oscillations are generated. In this research work, a novel NNC (Neural Network Controller) model is developed for SAB converter to minimize oscillations generated during its operation. NNC is believed to be an advanced nonlinear and robust controller which has the ability to map the nonlinear behaviour in a negligible response time. The performance of SAB converter with NNC is tested under dynamic region by considering the reference voltage variation and duty ratio variation. The SAB converter is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)

  9. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  10. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...... the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes...

  11. AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2014-06-01

    Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.

  12. LPV model for PV cell and fractional control of DC/DC converter for photovoltaic systems

    OpenAIRE

    Martínez González, Rubén; Bolea Monte, Yolanda; Grau Saldes, Antoni; Martínez García, Herminio

    2011-01-01

    This paper deals with the fractional modelling of a DC-DC converter, suitable in solar-powered electrical generation systems, and the design of a fractional controller for the aforementioned switching converter. A new model for PV cells is proposed in order to obtain a linear equation for V-I characteristic via scheduling dependence of temperature and irradiance. Due to the fractional nature of the ultracapacitors this kind of controller gives a suitable and good performance. Peer Reviewed

  13. LPV model for PV cells and fractional control of DC/DC converter for photovoltaic systems

    OpenAIRE

    Martínez González, Rubén; Bolea Monte, Yolanda; Grau Saldes, Antoni; Martínez García, Herminio

    2011-01-01

    This paper deals with the fractional modelling of a DC-DC converter, suitable in solar-powered electrical generation systems, and the design of a fractional controller for the aforementioned switching converter. A new model for PV cells is proposed in order to obtain a linear equation for VI characteristic via scheduling dependence of temperature and irradiance. Due to the fractional nature of the ultracapacitors this kind of controller gives a suitable and good performance. Peer Rev...

  14. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    OpenAIRE

    Liwen Pan; Chengning Zhang

    2016-01-01

    This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs). The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for m...

  15. PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC

    Directory of Open Access Journals (Sweden)

    Bambang Prio Hartono

    2012-09-01

    Full Text Available Abstract: Using system fuzzy logic as control  technology have been used on low load dc-dc converter with combined parallel compiled  dc-dc converter can  obtain big load.   With existence of differrence of component parameter and each parallel compiled converter can obtained different current  and voltage output.  Function of controller  for to do adjustment, so that current which is applied  to  load by each converter  can be obtained  difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is  combined with using  FLC so that  obtain  better performance.  To get better performance have been made plant model and simulation with CDE method.  The more systematic  system and design is needed to overcome bigger load  on dc-dc converter, so that parallel  compiled current master slave control system on dc-dc converter with using fuzzy logic  controller is used. Result of  research showed that error or difference of  current  which is applied to load can handled by fuzzy logic  controller.  Technic of current and voltage controller co to do adjustment current and voltage distribution  equally to load.  Distribution of iL1,iL2 and  output voltage Vo on dc-dc  converter with load 2,25 until  7,875 and voltage  100  until 120 volt,  load current beetwen  12 until 48, % relatif  error  Vo  0,4% until  0,9%.

  16. Multi-level cascaded DC/DC converters for PV applications

    Directory of Open Access Journals (Sweden)

    Ahmed A.A. Hafez

    2015-12-01

    Full Text Available A robust multi-level cascaded DC/DC system for Photovoltaic (PV application is advised in this article. There are three PV generators, each is coupled to a half-bridge buck cell. Each PV-generator–buck-converter channel is controlled such that maximum power is captured independently under different irradiation and temperature levels. The system operation under normal and abnormal conditions was comprehensively investigated. Internal Model Control (IMC technique was adopted for tuning the controllers. An elaborate switching modulation strategy was used to reduce the current ripple and inductor size, while maintaining high efficiency. Annotative, simple and robust remedial strategies were proposed to mitigate different anticipated faults. Comprehensive simulation results in Matlab environment were illustrated for corroborating the performance of the advised cascaded DC/DC system under normal/abnormal conditions. The proposed system enjoys the merits of independency, reduced volumetric dimensions and improved efficiency. Furthermore, the system is inherently fault-tolerant.

  17. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  18. A suitable model plant for control of the set fuel cell-DC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)

    2008-04-15

    In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)

  19. The Chaotic-Based Control of Three-Port Isolated Bidirectional DC/DC Converters for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-01-01

    Full Text Available Three-port isolated (TPI bidirectional DC/DC converters have three energy ports and offer advantages of large voltage gain, galvanic isolation ability and high power density. For this reason this kind of converters are suitable to connect different energy sources and loads in electric and hybrid vehicles. The purpose of this paper is to propose chaotic modulation and the related control scheme for TPI bidirectional DC/DC converters, in such a way that the switching harmonic peaks can be suppressed in spectrum and the conducted electromagnetic interference (EMI is reduced. Two chaotic modulation strategies, namely the continuously chaotic modulation and the discretely chaotic modulation are presented. These two chaotic modulation strategies are applied for TPI bidirectional DC/DC converters with shifted-phase angle based control and phase-shifted PWM control. Both simulation and experiments are given to verify the validity of the proposed chaotic modulation-based control schemes.

  20. Design and implementation of current fed DC-DC converter for PHEV application using renewable source

    Science.gov (United States)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    As the fossil fuels are depleting day by day, the use of renewable energy sources came into existence and they evolved a lot lately. To increase efficiency and productivity in the hybrid vehicles, the existence less efficient petroleum and diesel IC engines need to be replaced with the new and efficient converters with renewable energy sources. This has to be done in such a way that impacts three factors mainly: cost, efficiency and reliability. The PHEVs that have been launched and the upcoming PHEVs using converters with voltage range around 380V to 400V generated with power ranges between 2.4KW to 2.8KW. The basic motto of this paper is to design a prolific converter while considering the factor such as cost and size. In this paper, a two stage DC-DC converter is proposed and the proposed DC-DC converter is utilized to endeavour voltage from 24V (photovoltaic source) to a yield voltage of 400V and to meet the power demand of 250W, since only one panel is being used for this proposed paper. This paper discuss in detail about why and how the current fed DC-DC converter is utilized along with a voltage doubler, thus reducing transformer turns and thereby reducing overall size of the product. Simulation and hardware results have been presented along with calculations for duty cycle required for firing sequence for different values of transformer turns.

  1. Novel Step-Up DC/DC Converter with No Right Half Plane Zero and Reduced Switched Voltage Stress Characteristics

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Soltani, Mohsen

    2014-01-01

    and the voltage transfer gain is obtained. It is also demonstrated that the voltage stress on all semiconductor devices is restricted to input voltage which allows the utilization of a power switch with lower drain source resistance. In order to further increase the voltage gain another switched capacitor voltage......Novel step-up DC/DC converter is introduced in this paper. This converter is realized with adding the switched capacitor voltage multiplier cell to the three switch step-down DC/DC converter that has been proposed in the literature. The proposed converter is analyzed in the steady state...

  2. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  3. A Current-Fed Isolated Bidirectional DC-DC Converter

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng

    2017-01-01

    This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...

  4. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    Science.gov (United States)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  5. ITAR Free Commercial-of-the-Shelf DC/DC Converter

    Science.gov (United States)

    Denzinger, Wolfgang; Hintze, Thomas

    2014-08-01

    A commercial-of-the-shelf (COTS) DC/DC converter for digital space equipment has been developed by ASP under ESA contract with special emphasis on low cost, no use of ITAR listed EEE parts like Mosfets, minimum number of rad-hard digital IC's and a design tolerance against single event effects by appropriate filtering. However, the intention to qualify this discrete converter design for a low cost FM series production was difficult due to the high up-sceening cost of EEE-parts with one lot guarantee and minimum-by. To overcome this problem, in a next step a redesign of the DC/DC converter was performed with all semiconductors like bipolar transistors, rectifiers and zener diodes packaged into hybrids. With this approach it was possible to buy a high number of less expensive wafers or dies from one lot, to perform a lot acceptance test and to integrate the dies into hybrid packages with further up- screening for FM use. The semiconductors have been packaged into three signal hybrids with 44 pins and one power hybrid with 24 pins for the dissipating transistors and rectifiers. The design of the hybrids is such, that all integrated semiconductors can be tested individually. The qualification of four EQM DC/DC converters with different combinations of output voltages has been successfully performed and two FM's have been manufactured and tested.

  6. Quick discharge circuit for pacer nuclear power supply

    International Nuclear Information System (INIS)

    Chen, C.Y.

    1975-01-01

    A quick discharge circuit for a pacer's nuclear power supply is described. A pacer capable of implantation within the body of a patient and capable of being powered by at least one nuclear battery is disclosed. Voltage from a single nuclear battery is increased by a factor of about 25 to 30 in order to provide a voltage level adequate to power pacer circuitry. A restartable DC--DC converter is used for this purpose. But if the converter malfunctions the load voltage must be reduced below a certain level for the converter to be automatically restarted. The present invention relates to means for reducing the time from converter malfunction to resumption of converter operation in order to reduce the corresponding inoperative pacer time period. (U.S.)

  7. Laser power supply

    International Nuclear Information System (INIS)

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  8. Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2014-01-01

    This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applicatio...

  9. A new soft-switched high step-up DC-DC converter with dual coupled inductors

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Shen, Yanfeng; Yari, Keyvan

    2017-01-01

    This paper introduces a new efficient high step-up dc-dc converter with a shared input path and dual series coupled inductors at the output. This converter is suitable for high power applications due to its shared input current that puts low current stresses on the low voltage side switches...

  10. A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy...

  11. FPGA implementation of optimal and approximate model predictive control for a buck-boost DC-DC converter

    NARCIS (Netherlands)

    Spinu, V.; Oliveri, A.; Lazar, M.; Storace, M.

    2012-01-01

    This paper proposes a method for FPGA implementation of explicit, piecewise af¿ne (PWA) model predictive control (MPC) laws for non-inverting buck-boost DC-DC converters. A novel approach to obtain a PWA model of the power converter is proposed and two explicit MPC laws are derived, i.e., one based

  12. Construction and qualification of the Power Supply system of the AMS-02 Tracker detector

    International Nuclear Information System (INIS)

    Menichelli, M.; Accardo, L.; Ambrosi, G.; Battiston, R.; Bizzarri, M.; Blasko, S.; Cosson, D.; Fiori, E.M.; Maris, O.; Papi, A.; Scolieri, G.

    2007-01-01

    The AMS-02 Tracker power supply system, described in this paper, has been designed optimizing noise performances, modularity and efficiency. The power is distributed starting from a 28V line coming from the power distribution system is converted into the needed voltages by means of DC-DC converters, and for bias supply and front-end voltages is post-regulated by means of linear regulators. Components Off The Shelf (COTS) have been extensively used in the construction of this power supply, however various radiation test campaigns have been performed in order to verify the reliability of these components. The power supply architecture developed for the tracker detector has been used as a guideline for the development of the power supplies for the other detectors in the experiment

  13. Trim coil power supplies

    International Nuclear Information System (INIS)

    Haisler, R.; Peeler, H.; Zajicek, W.

    1985-01-01

    The 18 trim coil power supplies have been constructed and are now in place in the K500 pit and pit mezzanine. Final wiring of the primary power and control power is proceeding along with installation of cooling water supplies. The supplies are expected to be ready for final testing into resistive loads at the beginning of June, 1985

  14. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...... with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented showing good correlation with simulations. The prototypes have efficiencies up to 84 % and power...

  15. D. C. power supply

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, N. Watanabe, Y.; Kitani, M

    1978-04-01

    DC power supplies are for ordinary and emergency use as power sources for various structures such as office buildings, department stores, hotels, and for facilities such as roads, tunnels, dams, power stations, etc. There is strong demand for these dc power supplies to be safe, automated, and maintenance free, and to have high reliability. A dc power supply which meets these demands is described; electric circuit construction is emphasized. (10 figures, 4 tables)

  16. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley

    2017-09-01

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.

  17. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-05-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  18. A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; N. Soltani, Mohsen; Blaabjerg, Frede

    2017-01-01

    This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar...... voltage gain expression, the proposed topology uses less components to achieve same or even higher voltage gain. This helps to design a very compact and light weight converter with higher power density at lower cost. Due to brevity, the principle of operation, theoretical analysis and comparison supported...

  19. Four Quadrants Integrated Transformers for Dual-input Isolated DC-DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...

  20. Scalable single point power extraction for compact mobile and stand-alone solar harvesting power sources based on fully printed organic photovoltaic modules and efficient high voltage DC/DC conversion

    DEFF Research Database (Denmark)

    Garcia Valverde, Rafael; Villarejo, José A.; Hösel, Markus

    2015-01-01

    (AM1.5G, 1000 W m−2). As a demonstration we present a scalable fully integrated and compact power unit for mobile applications comprising solar energy harvesting OPV modules, power conversion and storage. Applications possible include electrical charging of mobile devices, illumination using LED lamps...

  1. Optimal Operation of Photovoltaic System with a DC-DC Boost Converter FED SAF Using ICosφ Algorithm

    Directory of Open Access Journals (Sweden)

    G.Vijayakumar

    2014-07-01

    Full Text Available This paper presents an optimal utilization of Photovoltaic (PV solar system based Shunt Active Filter (PV-SAF for harmonic mitigation, real and reactive power compensation at the point of common coupling (PCC throughout the day. This PV system operated SAF reduces the energy consumption by disconnecting the utility grid from the load through semiconductor switches, when the PV system generates excessive or equal real power to the required load demand. However, the reduction of energy consumption is always desirable for the reduction of panel tariff and global warming gasses. The PV module is connected to the DC side of SAF through the DC-DC converter with fuzzy based Perturb & Observe (P&O Maximum Power Point Tracking (MPPT algorithm to eliminate the drawback of the conventional PV system by tracking maximum power point of the PV array is presented. The reference currents extract by the Fuzzy logic controller based ICosΦ control strategy. This proposed PV-SAF, if connected at the terminals of a small industry or a home or a small enlightening institution can avoid interruptible power supply, use of individual stabilizer and potential panel tariff over a 12 hour period. A MATLAB simulink is presented to validate the advantage of the proposed system.

  2. DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram

    2011-07-01

    Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.

  3. Troubleshooting of Modulator DC power supply at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Seong; Kim, Han Sung; Kwon, Hyeok Jung; Kim, Seong Gu; Kim, Dae Il; Lee, Seok Geun; Kim, Jae Ha; Seol, Kyeong Tae; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The process of solving problems to operate the 2nd converter modulator will be introduced. Also, the PSpice simulation result about the 12-pulse rectifier will be compared with the measurement result. KOMAC (KOrea Multi-purpose Accelerator Complex) has four HVCMs (High Voltage Converter Modulator) which are the power source of nine klystrons. Four HVCMs are already operated since 2013 for operating the 100 MeV linear proton accelerator at KOMAC. This HVCM system includes the 12-pulse rectifier (ac-dc), capacitors bank (dc-link, Pos, Neg) and converter modulator (dc-dc). Especially, the 12-pulse rectifier system receives the power from the utility and converts 3,300 ac voltage to 2,200 dc voltage for supplying the dc power to the capacitors bank. This rectifier system used twelve thyristors for the rectification and applied RC snubber networks to protect the semiconductor switches (thyristors). Since the 2nd modulator dc power supply has troubled, the troubleshooting process conducted by the staves of KOMAC. It takes 3 months to solve the problems because it is not easy to find the faulty wiring. Nevertheless, our staves found the faulty point with a hope to operate the modulator system and the PSpice simulation helps to solve the problems. Using PSpice which is tool for simulating the circuit, the dc power supply abnormal phenomenon was simulated exactly. After corrected the faulty wiring, the modulator dc power supply operated.

  4. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  5. Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converter with Balanced Switch Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power...... switches’ currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM...... strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented...

  6. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    Science.gov (United States)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost

  7. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  8. Loss Modelling and Experimental Verification of A 98.8% Efficiency Bidirectional Isolated DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Ramachandran Rakesh

    2017-01-01

    In this paper, design and implementation of an ultra-high efficiency isolated bi-directional dc-dc converter utilizing GaN devices is presented. Loss modelling of the GaN converter is also included in this paper. The converter has achieved a maximum measured efficiency of 98.8% in both directions of power flow, using the same power components. Hardware prototype of the converter along with the measured efficiency curve is also presented in this paper.

  9. AC power supply systems

    International Nuclear Information System (INIS)

    Law, H.

    1987-01-01

    An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)

  10. Tuning magnet power supply

    International Nuclear Information System (INIS)

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs

  11. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ju; Sprau, Gary

    2017-06-25

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% of the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.

  12. Conducted noise from 48 volt DC-DC converters used in telecommunications systems and its mitigation for EMC

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, C. [Lucent Technologies, Inc., Naperville, IL (United States)

    2000-07-01

    Telecommunications switching equipment has been moving toward a distributed DC power concept where 48 volts (or other telephone office voltage) is routed directly onto circuit boards via backplanes. This higher DC voltage is then converted on the circuit board to 5 volts, 3 volts or other logic voltage. One problem with this approach is the generation of a considerable amount of conducted noise current on 48 volt supply leads. Unless some mitigation is used, this noise current, when added to such currents from other boards in the system, can cause failure of electromagnetic compatibility (EMC) tests required by international standards such as EN 300-386-2 [1], or EN 55022 [2], and hence, hurt the ability of the equipment to be marketed. This paper describes in detail the type and frequency range of noise generated by typical 48 volt DC-DC converters as measured in EMC tests on power feeder leads. It provides an analysis of the nature of this noise, a comparison with the requirements of the international standards, and a set of mitigation techniques that not only remove the noise, but satisfy various lightning and grounding requirements, including those of the USA and Europe. (orig.)

  13. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  14. On-grid and Off-grid Operation of Multi-Input Single-Output DC/DC Converter based Fuel Cell Generation System

    Directory of Open Access Journals (Sweden)

    Noroozian

    2009-06-01

    Full Text Available This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.

  15. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push...... and designed. A 1kW prototype controlled by TMS320F2808 DSP is built in the lab. Simulation and experimental results confirm the feasibility of the proposed two stage dc-dc converter system.......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...

  16. Design and Implementation of Anti-windup PI Control on DC-DC Bidirectional Converter for Hybrid Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Muh. Zakiyullah Romdlony

    2012-07-01

    Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.

  17. SSP Technology Investigation of a High-Voltage DC-DC Converter

    Science.gov (United States)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  18. Power electronics for local fuel cell/-battery plants; Leistungselektronik fuer dezentrale Brennstoffzellen/-Batterieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Krykunov, Oleksandr

    2009-10-13

    With their high efficiency and modular structure, fuel cells are an attractive option for decentral power supply. An important component of decentral power supply systems is the power-electronic control element for supply of electric power from the fuel cell to the three-phase electricity grid. Control elements can be constructed of a unidirectional DC/DC converter with a current inverter connnected in series. The investigation focused on the development of the DC/DC converter with minimum constructional and control requirements and optimum adaption of the DC/DC converter to the characteristics of the fuel cell. (orig.) [German] Die Brennstoffzelle stellt mit ihrem hohen Wirkungsgrad und ihrem modularen Aufbau eine attraktive Option fuer die Verwendung in einem dezentralen Energieversorgungssystem dar. Eine wichtige Komponente des dezentralen Energieversorgungssystems sind die leistungselektronischen Stellglieder fuer die Einspeisung der elektrischen Energie aus der Brennstoffzelle in das dreiphasige Netz. Die leistungselektronischen Stellglieder koennen aus einem undirektionalen DC/DC-Wandler und einem nachgeschalteten Wechselrichter realisiert werden. Die Entwicklung des DC/DC-Wandlers mit einem moeglichst geringeren Bauelemente- und Steuerungsaufwand fuer diese leistungselektronischen Stellglieder und die Anpassung des DC/DC-Wandlers an die Eigenschaften der Brennstoffzelle war das Ziel dieser Arbeit. (orig.)

  19. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  20. Intelligent power supply controller

    International Nuclear Information System (INIS)

    Rumrill, R.S.; Reinagel, D.J.

    1991-01-01

    The authors have developed a new power supply controller which would combine 20-bit precision, simple interfacing, and versatile software control. It performs many tasks internal to the power supply and also communicates with an external host computer. Parameters can be entered and/or read over a serial link using one of the 82 command words. In addition, an optional remote control panel can be located up to thousands of feet away. This new controller will reduce the software development time normally spent by the user, while increasing the reliability of the system. The cost is less than buying the equivalent separate CAMAC system. Nonvolatile memory remembers all configuration data; one generic controller can thus be programmed to use anywhere from the smallest power supply to the largest. The controllers will be used at the Clinton P. Anderson Meson Facility at Los Alamos

  1. Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter

    Science.gov (United States)

    Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel

    2010-01-01

    This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.

  2. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    transformer in the IFBTL dc/dc converter. A modulation strategy, including two operation modes, is proposed for the IFBTL dc/dc converter. Then, a voltage balancing control strategy is proposed for the IFBTL dc/dc converter. Furthermore, the control of the wind turbine based on the IFBTL dc/dc converter......This paper presents an improved full-bridge three-level (IFBTL) dc/dc converter for a wind turbine in a dc grid by inserting a passive filter into the dc/dc converter to improve the performance of the converter. The passive filter can effectively reduce the voltage stress of the medium frequency...

  3. Integrated module inverter using a zeta DC-DC converter with feedforward MPPT (Maximum Power Point Tracking) control; Inversor modulo integrado utilizando um conversor CC-CC zeta com controle MPPT feedforward

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Henrique Fioravanti Miguel

    2009-08-15

    This work presents the study and development of a processing power system that could be used in the connection of renewable energy sources to commercial power grid. The system consists of a ZETA converter associated with a bridge inverter operating at low frequency. The Zeta converter, operating in discontinuous conduction mode (DCM), plays the main role in this arrangement, producing a rectified sinusoidal current waveform synchronized with the electric grid. The function of the full-bridge inverter, connected in cascade with the Zeta converter, is to reverse every 180 deg the current generated by the Zeta converter. Initially it presents the analysis of the Zeta converter operating in DCM, as well as a design criterion. Following by the control strategy and the experimental results for the proposed system are presented and discussed. (author)

  4. Power supply and ethics

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The 'Power Supply and Ethics' workshop was designed on the basis of a recommendation by the Nuclear Technology Committee (FA-KT) of VDI-GET. The topic is part of a series of events and publications by VDI in an area where engineering and the humanities converge. The Workshop comprised presentations and thorough discussions of seven papers on 'Power Supply and Ethics', reflecting a variety of contents and points of view of the different disciplines participating. The Workshop offered another opportunity to take the initiative and influence the public, especially politics. Other activities are planned which also the participants increasingly consider an obligation to the public. (orig.) [de

  5. Integrated power electronic converters and digital control

    CERN Document Server

    Emadi, Ali; Nie, Zhong

    2009-01-01

    Non-isolated DC-DC ConvertersBuck ConverterBoost ConverterBuck-Boost ConverterIsolated DC-DC ConvertersFlyback ConverterForward ConverterPush-Pull ConverterFull-Bridge ConverterHalf-Bridge ConverterPower Factor CorrectionConcept of PFCGeneral Classification of PFC CircuitsHigh Switching Frequency Topologies for PFCApplication of PFC in Advanced Motor DrivesIntegrated Switched-Mode Power ConvertersSwitched-Mode Power SuppliesThe Concept of Integrated ConverterDefinition of Integrated Switched-Mode Power Supplies (ISMPS)Boost-Type Integrated TopologiesGeneral Structure of Boost-Type Integrated T

  6. APS power supply controls

    International Nuclear Information System (INIS)

    Saunders, C.W.; Despe, O.D.

    1994-01-01

    The purpose of this document is to provide comprehensive coverage of the APS power supply control design. This includes application software, embedded controller software, networks, and hardware. The basic components will be introduced first, followed by the requirements driving the overall design. Subsequent sections will address each component of the design one by one. Latter sections will address specific applications

  7. A Decentralized Current-Sharing Controller Endows Fast Transient Response to Parallel DC-DC Converters

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Han, Renke

    2018-01-01

    This paper proposes a decentralized current-sharing control strategy to endow fast transient response to paralleled DC-DC converters systems, such as DC microgrids or distributed power systems. The proposed controller consist of two main control loops: an external voltage droop control for current......-sharing proposes and an internal current loop. The external droop control loop is designed as a voltage loop with embedded virtual impedance, which avoids the use of a slow voltage loop and a separate extra virtual impedance loop that may limit the system bandwidth. The internal current loop, thanks...... and the proposed embedded-virtual-impedance based I-V droop. In order to compare the dynamic response performances between two droop controllers, their state-space models have been developed and analyzed in this paper. The results show that the dynamic response of the I-V droop control is faster than...

  8. Simulation analysis of cascade controller for DC-DC bank converter

    International Nuclear Information System (INIS)

    Mahar, M.A.; Abro, M.R.; Larik, A.S.

    2009-01-01

    Power electronic converters are periodic variable structure systems due to their switched operation. During the last few decades several new dc-dc converter topologies have emerged. Buck converter being simple in topology, has recently drawn attraction of many researchers. Basically, a buck converter is highly underdamped system. In order to overcome the developed oscillations in output of this converter, various control techniques have been proposed. However, these techniques are fraught with many drawbacks. This paper focus on a cascade controller based buck topology. Steady state analysis is given in this paper which shows output voltage and inductor current in detail. Dynamic analysis for line and load variation is also presented. The buck topology is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)

  9. Conventional control and fuzzy control of a dc-dc converter for machine drive

    Energy Technology Data Exchange (ETDEWEB)

    Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)

    1997-12-31

    Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.

  10. Y-source impedance-network-based isolated boost DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Town, Graham; Loh, Poh Chiang

    2014-01-01

    A dc-dc converter with very high voltage gain is proposed in this paper for any medium-power application requiring a high voltage boost with galvanic isolation. The proposed converter topology can be realized using only two switches. With this topology a very high voltage boost can be achieved even...... with a relatively low duty cycle of the switches, and the gain obtainable is presently not matched by any existing impedance network based converter operated at the same duty ratio. The proposed converter has a Y-source impedance network to boost the voltage at the intermediate dc-link side and a push......-pull transformer for square-wave AC inversion and isolation. The voltage-doubler rectifier provides a constant dc voltage at the output stage. A theoretical analysis of the converter is presented, supported by simulation and experimental results. A 250 W down-scaled prototype was implemented in the laboratory...

  11. A VHF Class E DC-DC Converter with Self-Oscillating Gate Driver

    DEFF Research Database (Denmark)

    Andersen, Toke Meyer; Christensen, Søren K.; Knott, Arnold

    2011-01-01

    , is inherently resonant, and switching losses are greatly reduced by ensuring Zero Voltage Switching (ZVS) of the power semiconductor devices. A design method to ensure ZVS operation when combining the inverter, rectifier, and gate driver is provided. Several parasitic effects and their influence on converter......This paper describes the analysis and design of a DC-DC converter topology which is operational at frequencies in the Very High Frequency (VHF) band ranging from 30 MHz − 300 MHz. The presented topology, which consists of a class E inverter, class E rectifier, and self-oscillating gate driver...... operation are discussed, and measurement results of a 100 MHz prototype converter are presented and evaluated. The designed prototype converter verifies the described topology....

  12. Interleaved Boost-Half-Bridge Dual–Input DC-DC Converter with a PWM plus Phase-Shift Control for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    This paper presents an isolated dual-input DC-DC converter with a PWM plus phase-shift control for fuel cell hybrid energy systems. The power switches are controlled by phase shifted PWM signals with a variable duty cycle, and thus the two input voltages as well as the output voltage can...

  13. Standby-Loss Elimination in Server Power Supply

    Directory of Open Access Journals (Sweden)

    Jong-Woo Kim

    2017-07-01

    Full Text Available In a server power system, a standby converter is required in order to provide the standby output, monitor the system’s status, and communicate with the server power system. Since these functions are always required, losses from the standby converter are produced even though the system operates in normal mode. For these reasons, the losses deteriorate the total efficiency of the system. In this paper, a new structure is proposed to eliminate the losses from the standby converter of a server power supply. The key feature of the proposed structure is that the main direct current (DC/DC converter substitutes all of the output power of the standby converter, and the standby converter is turned off in normal mode. With the proposed structure, the losses from the standby converter can be eliminated in normal mode, and this leads to a higher efficiency in overall load conditions. Although the structure has been proposed in the previous work, very important issues such as a steady state analysis, the transient responses, and how to control the standby converter are not discussed. This paper presents these issues further. The feasibility of the proposed structure has been verified with 400 V link voltage, 12 V/62.5 A main output, and a 12 V/2.1 A standby output server power system.

  14. Discontinuous Mode Power Supply

    Science.gov (United States)

    Lagadinos, John; Poulos, Ethel

    2012-01-01

    A document discusses the changes made to a standard push-pull inverter circuit to avoid saturation effects in the main inverter power supply. Typically, in a standard push-pull arrangement, the unsymmetrical primary excitation causes variations in the volt second integral of each half of the excitation cycle that could lead to the establishment of DC flux density in the magnetic core, which could eventually cause saturation of the main inverter transformer. The relocation of the filter reactor normally placed across the output of the power supply solves this problem. The filter reactor was placed in series with the primary circuit of the main inverter transformer, and is presented as impedance against the sudden changes on the input current. The reactor averaged the input current in the primary circuit, avoiding saturation of the main inverter transformer. Since the implementation of the described change, the above problem has not reoccurred, and failures in the main power transistors have been avoided.

  15. Design of arc power supply for neutral beam injection system based on super capacitor energy storage

    International Nuclear Information System (INIS)

    Yang Puqiong; Xuan Weimin; Cao Jianyong; Li Qing; Liu Xiaolong

    2015-01-01

    The arc power supply is one of the most important equipment for neutral beam injection system. The stability of arc discharge and the quality of ion beam extraction were determined by its performance. For improving stability of the arc discharge, reducing the power network capacity and decreasing impulse on power network, the topology of the arc power supply applied the structure of DC/DC converter based on technology of super capacitor energy storage and switching power supply. Several IGBT power modules are operated in parallel, and it can improve the arc power supply's operating frequency and dynamic response. A filter circuit and a current fast transferring circuit were designed based on a detailed analysis on working process of the arc power sup- ply. According to the requirements and parameters of the arc power supply, and the current response of RL first order circuit, the minimum filter inductances were accurately calculated. Finally, using the model and Matlab, the performance of the arc power supply was simulated and verified, and it meets the design requirement. (authors)

  16. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    International Nuclear Information System (INIS)

    Fernandez, Luis M.; Garcia, Pablo; Garcia, Carlos Andres; Jurado, Francisco

    2011-01-01

    Research highlights: → Hybrid electric power system for a real surface tramway. → Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. → New control strategy for the energy management of the tramway. → Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  17. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  18. Switched mode power supplies

    International Nuclear Information System (INIS)

    Verity, P.R.

    1984-01-01

    The power supply comprises an oscillator arranged to drive the primary winding of a transformer. A nuclear impulse detector is arranged to discontinue drive to the primary winding in response to detection of a nuclear impulse. The detector comprises a monostable circuit which has its state changed for a predetermined time by photocurrents induced in response to gamma radiation. In this changed state the detector disables the oscillator. (author)

  19. The Topologies Research of a Soft Switching Bidirectional DC/DC Converter

    DEFF Research Database (Denmark)

    Zhang, Qi; Zhang, Yongping; Sun, Xiangdong

    2017-01-01

    A soft-switching solution implemented to the traditional bidirectional DC/DC converter is developed. The soft-switching cell, which composed of three auxiliary switches, one resonant capacitor and one resonant inductor, is equipped in the traditional bidirectional DC/DC converter to realize circuit...... circle. And the proposed topology of bidirectional soft-switching dc-dc converter(TASBC) performs ideal soft switching at boost operations. The characteristics of the proposed converter has been verified by MATLAB simulations and experimental results....

  20. Design And Simulation Of A PV System With Battery Storage Using Bidirectional DC-DC Converter Using Matlab Simulink

    Directory of Open Access Journals (Sweden)

    Mirza Mursalin Iqbal

    2017-07-01

    Full Text Available PV Photovoltaic systems are one of the most renowned renewable green and clean sources of energy where power is generated from sunlight converting into electricity by the use of PV solar cells. Unlike fossil fuels solar energy has great environmental advantages as they have no harmful emissions during power generation. In this paper a PV system with battery storage using bidirectional DC-DC converter has been designed and simulated on MATLAB Simulink. The simulation outcomes verify the PV systems performance under standard testing conditions.

  1. Boost Half-Bridge DC-DC Converter with Reconfigurable Rectifier for Ultra-Wide Input Voltage Range Applications

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2018-01-01

    This paper introduces a novel galvanically isolated boost half-bridge dc-dc converter intended for modern power electronic applications where ultra-wide input voltage regulation range is needed. A reconfigurable output rectifier stage performs a transition between the voltage doubler and the full......-bridge diode rectifiers and, by this means, extends the regulation range significantly. The converter features a low number of components and resonant soft switching of semiconductors, which result in high power conversion efficiency over a wide input voltage and load range. The paper presents the operating...

  2. Synthesis and design of a fully integrated multi-topology switched capacitor DC-DC converter with gearbox control

    DEFF Research Database (Denmark)

    Davidsen, Jeppe Gaardsted; Yosef-Hay, Yoni; Larsen, Dennis Øland

    2017-01-01

    This paper discusses a methodology of minimizing the amount of switches in a multi-topology fully integrated switched capacitor dc-dc converter powered by a super capacitor for energy harvesting purposes. The design of a simple controlling circuit for the multi-topology power stage using a gearbox...... approach is presented with all the required circuits. The converter is able to generate a output voltage of 1.2 V from a 470 mF capacitor charged to 3 V down to 1.4 V. The output voltage is regulated with a ripple voltage below 7 mV. The controlling circuit including buffers with ideal comparators has...

  3. Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...

  4. Digitally intensive DC-DC converter for extreme space environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Micro –Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  5. Digitally intensive DC-DC converter for extreme space environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Micro-Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  6. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems

    Science.gov (United States)

    Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.

    A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.

  7. Quasi-Z-Source Half-Bridge DC-DC Converter for Photovoltaic Applications

    OpenAIRE

    Vinnikov, D; Chub, A; Husev, O; Zaķis, J

    2015-01-01

    This paper presents a novel quasi-Z-source halfbridge galvanically isolated DC-DC converter intended for the photovoltaic applications. The topology could be envisioned as an alternative to the boost half-bridge DC-DC converter but the benefit of its symmetric structure reduces the threat of transformer saturation due to the dc flux. The proposed converter features the continuous input current and could be used either with one or two input voltage sources.

  8. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....

  9. Analysis and Controller Design of a Universal Bidirectional DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Kou-Bin Liu

    2016-06-01

    Full Text Available In this paper, first the operating principles of a non-isolated universal bidirectional DC-DC converter are studied and analyzed. The presented power converter is capable of operating in all power transferring directions in buck/boost modes. Zero voltage switching can be achieved for all the power switches through proper modulation strategy design, therefore, the presented converter can achieve high efficiency. To further improve the efficiency, the relationship between the phase-shift angle and the overall system efficiency is analyzed in detail, an adaptive phase-shift (APS control method which determines the phase-shift value between gating signals according to the load level is then proposed. As the modulation strategy is a software-based solution, there is no requirement for additional circuits, therefore, it can be implemented easily and instability and noise susceptibility problems can be reduced. To validate the correctness and the effectiveness of the proposed method, a 300 W prototyping circuit is implemented and tested. A low cost dsPIC33FJ16GS502 digital signal controller is adopted in this paper to realize the power flow control, DC-bus voltage regulation and APS control. According to the experimental results, a 12.2% efficiency improvement at light load and 4.0% efficiency improvement at half load can be achieved.

  10. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2016-06-01

    Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.

  11. Fast response double series resonant high-voltage DC-DC converter

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2012-01-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  12. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  13. Energy discharge heater power supply

    International Nuclear Information System (INIS)

    Jaskierny, W.

    1992-11-01

    The heater power supply is intended to supply capacitively stored,energy to embedded heater strips in cryo magnets. The amount of energy can be controlled by setting different charge different capacitor values. Two chassis' can be operated in series or interlocks are provided. The charge voltage, number of capacitors pulse can be monitored. There and dual channel has two discharge supplies in one chassis. This report reviews the characteristics of this power supply further

  14. Characterization of a fully resonant, 1-MHz, 25-watt, DC/DC converter fabricated in a rad-hard BiCMOS/high-voltage process

    International Nuclear Information System (INIS)

    Titus, J.L.; Gehlhausen, M.A.; Desko, J.C. Jr.; Nguyen, T.T.; Roberts, D.J.; Shibib, M.A.; Hollenbach, K.E.

    1995-01-01

    This paper presents the characterization of a DC/DC converter prototype when its power integrated circuit (PIC) chip is exposed to total dose, dose rate, neutron, and heavy ion environments. This fully resonant, 1-MHZ, 25-Watt, DC/DC converter is composed of a brassboard, populated with input/output filters, isolation transformers, output rectifier, capacitors, resistors, and PIC chip, integrating the primary-side control circuitry, secondary-side control circuitry, power switch, gate-drive circuitry, and voltage references. The brassboard is built using commercial off-the-shelf components; and the PIC chip is fabricated using AT and T's rad-hard, bipolar complementary metal-oxide semiconductor (BiCMOS)/high-voltage process. The intent of this paper is to demonstrate that the PIC chip is fabricated with a radiation-hardened process and to demonstrate that various analog, digital, and power functions can be effectively integrated

  15. A Study of Two Multi-Element Resonant DC-DC Topologies with Loss Distribution Analyses

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2017-09-01

    Full Text Available In this paper, two multi-element resonant DC-DC converters are analyzed in detail. Since their resonant tanks have multiple resonant components, the converters display different resonant characteristics within different operating frequency ranges. Through appropriate design, both of the two proposed converters successfully lower the conversion losses and, meanwhile, broaden the voltage gain ranges as well: one converter is able to take full usage of the third order harmonic to deliver the active power, and thus the effective utilization rate of the resonant current is elevated; while the another minimizes the entire switching losses for power switching devices by restricting the input impedance angle of the resonant tank. Besides, the loss distribution is analyzed for the purpose of guiding the component design. In the end, two 500 W prototypes are fabricated to test the theoretical analyses. The results demonstrate that the two proposed converters can achieve wide voltage gain with the small frequency deviation, which noticeably contributes to highly efficient conversion. Their peak efficiencies are measured as 95.4% and 95.3%, respectively.

  16. 600W uninterruptible power supply

    Energy Technology Data Exchange (ETDEWEB)

    Frizell, C

    1988-01-01

    Although the mains power supply in western Europe is normally reliable, power failures, transients and noise can cause loss or corruption of data held on personal computers. The design of an uninterruptible power supply system (UPS) based on well proven technology, is described.

  17. Magnet power supply for ISABELLE

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Frankel, R.F.; Thomas, M.G.

    1979-01-01

    The power supply system which will energize the superconducting magnets in the ISABELLE machine consists of some 520 computer-programmable power supplies with outputs ranging from 50 A to 4500 A. Most of the power supplies will be used for the correction of field harmonics, orbit correction and adjustment of the machine working line. During acceleration, currents in various magnet correction coils will be controlled in real time to track the main field; all power supplies must be highly stable during the stacking and storage of the beam (in some cases current regulation must be in the order of 0.001%). PS reference programs will be stored in microprocessor based function generators embedded in each power supply. Due to the large amount of stored energy in the system, the magnets must be protected during quenches. Details of the power supply and of the magnet quench protection system are described

  18. Nuclear fusion power supply device

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  19. Study on the Control Algorithm of Two-Stage DC-DC Converter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Changhao Piao

    2014-01-01

    Full Text Available The fast response, high efficiency, and good reliability are very important characteristics to electric vehicles (EVs dc/dc converters. Two-stage dc-dc converter is a kind of dc-dc topologies that can offer those characteristics to EVs. Presently, nonlinear control is an active area of research in the field of the control algorithm of dc-dc converters. However, very few papers research on two-stage converter for EVs. In this paper, a fixed switching frequency sliding mode (FSFSM controller and double-integral sliding mode (DISM controller for two-stage dc-dc converter are proposed. And a conventional linear control (lag is chosen as the comparison. The performances of the proposed FSFSM controller are compared with those obtained by the lag controller. In consequence, the satisfactory simulation and experiment results show that the FSFSM controller is capable of offering good large-signal operations with fast dynamical responses to the converter. At last, some other simulation results are presented to prove that the DISM controller is a promising method for the converter to eliminate the steady-state error.

  20. Power electronics applied to industrial systems and transports

    CERN Document Server

    Patin, Nicolas

    2015-01-01

    This book provides a comprehensive overview of power electronic converters (DC / DC, DC / AC, AC / DC and AC / AC) conventionally used in industrial and transportation applications, specifically for the supply of electric machines with variable speed drop off window. From the perspective of design and sizing, this book presents the different functions encountered in a modular way for power electronics.Power Converters and Their Control details less traditional topics such as matrix converters and multilevel converters. This book also features a case study design of an industrial controller, wh

  1. Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters

    Science.gov (United States)

    Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui

    2018-05-01

    To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.

  2. Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade

    CERN Document Server

    Dhawan, S; Chen, H; Khanna, R; Kierstead, J; Lanni, F; Lynn, D; Musso, C; Rescia, S; Smith, H; Tipton, P; M. Weber, M

    2009-01-01

    There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 μm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiatio...

  3. Study of a piezoelectric transformer-based DC/DC converter with a cooling system and current-doubler rectifier

    International Nuclear Information System (INIS)

    Su, Yu-Hao; Liu, Yuan-Ping; Wu, Wen-Jong; Lee, Chih-Kung; Vasic, Dejan; Costa, Francois

    2013-01-01

    The objective of this study was to increase the output current and power in a piezoelectric transformer (PT)-based DC/DC converter by using a cooling system. It is known that the output current of a PT is limited by temperature build-up because of losses, especially when driving at high vibration velocity. Although connecting different inductive circuits at the PT secondary terminal can increase the output current, the root cause of the temperature build-up problem has not yet been solved. This paper presents a study of a PT with cooling system in a DC/DC converter with a commonly used full-bridge rectifier and current-doubler rectifier. The advantages and disadvantages of the proposed technique were investigated. A theoretical–phenomenological model was developed to explain the relationship between the losses and the temperature rise. It will be shown that the vibration velocity as well as heat generation increases the losses. In our design, the maximum output current capacity can increase by 100% when the temperature of operation of the PT is kept below 55 ° C. The study comprises a theoretical part and experimental proof-of-concept demonstration of the proposed design method. (paper)

  4. Practical switching power supply design

    CERN Document Server

    Brown, Martin C

    1990-01-01

    Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta

  5. Nuclear reactor power supply

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector is interposed between the protection system and the control system. This selector prevents a parameter signal of a set of signals, which differs from the other parameters signals of the set by more than twice the allowable variation of the sensors which produce the set, from passing to the control system. The selectors include a pair of signal selection units, one unit sending selected process signals to primary control channels and the other sending selected process signals to back-up control channels. Test signals are periodically impressed by a test unit on a selected pair of a selected unit and control channels. When test signals are so impressed the selected control channel is disabled from transmitting control signals to the reactor and/or its associated components. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test

  6. Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI

    International Nuclear Information System (INIS)

    Li Hong; Zhang Bo; Li Zhong; Halang, Wolfgang A.; Chen Guanrong

    2009-01-01

    In this paper, periodic and chaotic behaviors of DC-DC converters under certain parametric conditions are simulated, experimentally verified, and analyzed. Motivated by the work of J.H.B. Deane and D.C. Hamill in 1996, where chaotic phenomena are useful in suppressing electromagnetic interference (EMI) by adjusting the parameters of the DC-DC converter and making it operate in chaos, a chaos-based pulse width modulation (CPWM) is proposed to distribute the harmonics of the DC-DC converters continuously and evenly over a wide frequency range, thereby reducing the EMI. The output waves and spectral properties of the EMI are simulated and analyzed as the carrier frequency or amplitude changes with regard to different chaotic maps. Simulation and experimental results are given to illustrate the effectiveness of the proposed CPWM, which provides a good example of applying chaos theory in engineering practice.

  7. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    Science.gov (United States)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  8. A cell-level power management IC in BCD-SOI for partial power processing in Concentrating-PV systems

    NARCIS (Netherlands)

    Zaman, M.S.; Wen, Y.; Fernandes, R.; Buter, B.; Doorn, T.S.; Dijkstra, M.; Bergveld, H.J.; Trescases, O.

    2014-01-01

    This work presents a power management IC used to mitigate the effects of mismatch in Concentrating-Photovoltaic (CPV) systems. The IC contains a bi-directional dc-dc converter, an auxiliary boost converter to generate the internal 10 V power supply, as well as protection and monitoring circuits. The

  9. Considerations of Physical Design and Implementation for 5 MHz-100 W LLC Resonant DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Akinori Hariya

    2016-01-01

    Full Text Available Recently, high power-density, high power-efficiency, and wide regulation range isolated DC-DC converters have been required. This paper presents considerations of physical design and implementation for wide regulation range MHz-level LLC resonant DC-DC converters. The circuit parameters are designed with 3–5 MHz-level switching frequency. Also, the physical parameters and the size of the planar transformer are optimized by using derived equations and finite element method (FEM with Maxwell 3D. Some experiments are done with prototype LLC resonant DC-DC converter using gallium nitride high electron mobility transistors (GaN-HEMTs; the input voltage is 42–53 V, the reference output voltage is 12 V, the load current is 8 A, the maximum switching frequency is about 5 MHz, the total volume of the circuit is 4.1 cm3, and the power density of the prototype converter is 24.4 W/cc.

  10. A Component-Reduced Zero-Voltage Switching Three-Level DC-DC Converter

    DEFF Research Database (Denmark)

    Qin, Zian; Pang, Ying; Wang, Huai

    2016-01-01

    The basic Zero-Voltage Switching (ZVS) three-level DC-DC converter has one clamping capacitor to realize the ZVS of the switches, and two clamping diodes to clamp the voltage of the clamping capacitor. In order to reduce the reverse recovery loss of the diode as well as its cost, this paper...... proposes to remove one of the clamping diodes in basic ZVS three-level DC-DC converter. With less components, the proposed converter can still have a stable clamping capacitor voltage, which is clamped at half of the dc link voltage. Moreover, the ZVS performance will be influenced by removing the clamping...

  11. Analysis of high voltage step-up nonisolated DC-DC boost converters

    Science.gov (United States)

    Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo

    2016-05-01

    A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.

  12. Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller

    Directory of Open Access Journals (Sweden)

    Sreenivasappa Veeranna Bhupasandra

    2010-01-01

    Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.

  13. Improved Control Strategy for T-type Isolated DC/DC Converters

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Wang, Yanbo

    2017-01-01

    T-type isolated DC/DC converters have recently attracted attention due to their numerous advantages, including few components, low cost, and symmetrical operation of transformers. This study proposes an improved control strategy for increasing the efficiency of T-type isolated DC/DC converters....... Under the proposed strategy, the primary circulating current flows through the auxiliary switches (metal–oxide–semiconductor field-effect transistors) instead of their body diodes in free-wheeling periods. Such feature can reduce conduction losses, thereby improving the efficiency of T-type isolated DC...

  14. Digital peak current mode control with adaptive slope compensation for DC-DC converters

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2017-01-01

    performance and stability of current mode control. The presented method adapt to DC-DC converter operating conditions by estimating the rising and falling inductor current slopes, to apply a current slope compensation value to obtain a constant quality factor. The experimental results verifies the theoretical......This paper presents an adaptive slope compensation method for peak current mode control of digital controlled DC-DC converters, which controls the quality factor of the complex conjugated poles at half the switching frequency. Using quality factor control enables optimization of the dynamic...

  15. A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Deng, Fujin

    2015-01-01

    A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalize...... battery modules with different voltages. Simulation results has shown the feasibility of the proposed converter.......A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalized...

  16. A Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Al-Durra, Ahmed

    2018-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant dc-dc converters, and meanwhile achieves high efficiency...... losses. The operation principles and characteristics of the proposed converter are firstly analyzed in this paper. Then the analytical solutions for the voltage gain, soft-switching, and rms currents are derived, which facilitates the parameters design and optimization. Finally, the proposed topology...... and analysis are verified with experimental results obtained from a 1-kW converter prototype....

  17. A Zero-Voltage Switching Control Strategy for Dual Half-Bridge Cascaded Three-Level DC/DC Converter with Balanced Capacitor Voltages

    DEFF Research Database (Denmark)

    Liu, Dong; Wang, Yanbo; Chen, Zhe

    2017-01-01

    The input capacitor's voltages are unbalanced under the conventional control strategy in a dual half-bridge cascaded three-level (TL) DC/DC converter, which would affect the high voltage stresses on the capacitors. This paper proposes a pulse-wide modulation (PWM) strategy with two working modes...... for the dual half-bridge cascaded TL DC/DC converter, which can realize the zero-voltage switching (ZVS). More significantly, a capacitor voltage balance control is proposed by alternating the two working modes of the proposed ZVS PWM strategy, which can eliminate the voltage unbalance on the four input...... capacitors. Therefore, the proposed control strategy can improve the converter's performances in: 1) reducing the switching losses and noises of the power switches; and 2) reducing the voltage stresses on the input capacitors. Finally, the simulation results are conducted to verify the proposed control...

  18. Power supply and environment protection

    International Nuclear Information System (INIS)

    Tettinger, P.J.; Filipek, J.; Jendroska, J.

    1992-01-01

    The 16 lectures by German and Polish scientists have all been entered into the data base. They deal among other things with the common market for power and the constraints placed on it by EC law; local power supply in the Federal German Republic; intercommunal cooperation for satisfying local power demand; public participation in power law; ways of accelerating procedures etc. (HSCH) [de

  19. A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range

    Directory of Open Access Journals (Sweden)

    Wenzheng Xu

    2017-10-01

    Full Text Available Phase-shifted converters are practically important to provide high conversion efficiencies through soft-switching techniques. However, the limitation on a resonant inductor current in the converters often leads to a non-fulfillment of the requirement of minimum load current. This paper presents a new power electronics control technique to enable the dual features of bi-directional power flow and an extended load range for soft-switching in phase-shift-controlled DC-DC converters. The proposed technique utilizes two identical full bridge converters and inverters in conjunction with a new control logic for gate-driving signals to facilitate both Zero Current Switching (ZCS and Zero Voltage Switching (ZVS in a single phase-shift-controlled DC-DC converter. The additional ZCS is designed for light load conditions at which the minimum load current cannot be attained. The bi-directional phase-shift-controlled DC-DC converter can implement the function of synchronous rectification. Its fast dynamic response allows for quick energy recovery during the regenerative braking of traction systems in electrified trains.

  20. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  1. Dual-Input Isolated Full-Bridge Boost DC-DC Converter Based on the Distributed Transformers

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a new two-input isolated boost dc-dc converter based on a distributed multi-transformer structure which is suitable for hybrid renewable energy systems is investigated and designed. With a novel transformer winding-connecting strategy, the two input ports can be decoupled completely...... and the single-input mode, respectively. The main advantage of the proposed topology is that the four transformers and the secondary rectifiers are fully utilized whether the converter is connected with two input power sources or only one input. Although the four transformers are employed, the nominal powers...... of each transformer and rectifier are both reduced by four times. Furthermore, some special issues on converter design, such as increasing number of the input ports, the magnetic integration and the ground loop decoupling are discussed. A 2 kW prototype was built and tested. Experiments on the converter...

  2. Modeling and Control of DC/DC Boost Converter using K-Factor Control for MPPT of Solar PV System

    DEFF Research Database (Denmark)

    Vangari, Adithya; Haribabu, Divyanagalakshmi; Sakamuri, Jayachandra N.

    2015-01-01

    This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach...... is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar...... PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP...

  3. Ultrahigh-density trench cpacitors in silicon and their application to integrated DC-DC conversion

    NARCIS (Netherlands)

    Roozeboom, F.; Bergveld, H.J.; Nowak, K.; Le Cornec, F.; Guiraud, L.; Bunel, C.; Iochem, S.; Ferreira, J.; Ledain, S.; Pieraerts, E.; Pommier, M.

    2009-01-01

    This paper addresses silicon-based integration of passive components applied to 3D integration with dies of other technologies within one package. Particularly, the development of high-density trench capacitors has enabled the realization of small-formfactor DC-DC converters. As illustration, an

  4. Switched capacitor DC-DC converter with switch conductance modulation and Pesudo-fixed frequency control

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger

    A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31...

  5. Spectral shaping of a randomized PWM DC-DC converter using maximum entropy probability distributions

    CSIR Research Space (South Africa)

    Dove, Albert

    2017-01-01

    Full Text Available maintaining constraints in a DC-DC converter is investigated. A probability distribution whose aim is to ensure maximal harmonic spreading and yet mainaint constraints is presented. The PDFs are determined from a direct application of the method of Maximum...

  6. Common mode noise in three-level DC-DC converters

    CSIR Research Space (South Africa)

    Grobler, Inus

    2009-09-01

    Full Text Available that three-level buck DC-DC converters in general generate much lower common mode currents than conventional two-level buck converters. Further, reductions in common mode currents are achieved by using the improved three-level topologies that have been...

  7. Experimental study of dynamic behaviors and routes to chaos in DC-DC boost converters

    International Nuclear Information System (INIS)

    Cafagna, D.; Grassi, G.

    2005-01-01

    This paper illustrates an experimental study of a current-programmed DC-DC boost converter, with the aim of investigating possible pathways through which the converter may enter chaos. In particular, based on experimental measurements, it is shown that variations of input voltage and reference current can generate periodic, subharmonic, quasi-periodic and chaotic behaviors

  8. Magnetically integrated high step-up resonant DC-DC converter for distributed photovoltaic systems

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2017-01-01

    In this paper magnetically integrated resonant single-switch quasi-Z-source DC-DC converter is evaluated as a candidate topology for the low-cost photovoltaic microconverter. The derivation of the topology and its basic operation principle are explained. Generalized design guidelines...

  9. A DC-DC Converter with Wide Input Voltage Range for Fuel Cell and Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper proposes a novel phase-shift plus duty cycle controlled hybrid bi-directional DC-DC converter based on fuel cells and supercapacitors. The described converter employs two high frequency transformers to couple the half-bridge and full-bridge circuits together in the primary side...

  10. A Novel Single Switch Transformerless Quadratic DC/DC Buck-Boost Converter

    DEFF Research Database (Denmark)

    Mostaan, Ali; A. Gorji, Saman; N. Soltani, Mohsen

    2017-01-01

    A novel quadratic buck-boost DC/DC converter is presented in this study. The proposed converter utilizes only one active switch and can step-up/down the input voltage, while the existing single switch quadratic buck/boost converters can only work in step-up or step-down mode. First, the proposed ...

  11. Single Event Burnout in DC-DC Converters for the LHC Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Claudio H. Rivetta et al.

    2001-09-24

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  12. Studi Komparasi Fungsi Keanggotaan Fuzzy sebagai Kontroler Bidirectional DC-DC Converter pada Sistem Penyimpan Energi

    Directory of Open Access Journals (Sweden)

    Eka Prasetyono

    2015-09-01

    Full Text Available Bidirectional DC-DC converter is needed in the energy storage system. The converter topology used in this paper was a non-isolated bidirectional DC-DC buck-boost converter. This converter worked in two ways, which the charging mode stored energy into battery when load current was less than nominal main DC current (set point and discharging mode transferred energy from battery to the load when its current exceeded set point value. Both of these modes worked automatically according to the load current. The charging and discharging currents were controlled by fuzzy logic controller which was implemented on microcontroller ARM Cortex-M4F STM32F407VG. This paper compares two types of fuzzy membership function (triangular and sigmoid in controlling bidirectional DC-DC converter. The results showed that fuzzy logic controller with triangle membership function and sigmoid as control bidirectional DC-DC converter had no significant different response, both had an average error for charging and discharging process under 4% with ripple current on the main DC bus around 0.5%. The computing time of program for fuzzy logic controller with triangular membership functions had 19.01% faster than sigmoid, and fuzzy logic computation time on a microcontroller with hardware floating point was 60% faster than software floating point.

  13. Design and Implementation of Digital Current Mode Controller for DC-DC Converters

    DEFF Research Database (Denmark)

    Taeed, Fazel

    to be regulated by a closed-loop controller. The Peak Current Mode Control (PCMC) is one of the most promising control methods for dc-dc converters. It has been known for high bandwidth (speed), and inherent current protection. Increasing the controller bandwidth decreases the output filter size and cost. Analog...

  14. Radioisotope Power Supply, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Between 1998 and 2003, Hi-Z Technology developed and built a 40 mW radioisotope power supply (RPS) that used a 1 watt radioisotope heater unit (RHU) as the energy...

  15. Laser power supply

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Hartshorn, D.W.

    1975-01-01

    A method of energizing a laser source stimulating flash lamp directly from an ac power line is presented. Uncontrolled diodes couple the anode and cathode of the flash lamp directly to the ac line. The lamp is triggered by a separate triggering circuit which produces its trigger pulse at a predetermined phase of the ac power source. The use of high current carrying controlled rectifiers and large energy storage devices is thereby eliminated. (U.S.)

  16. Multiple low frequency dual reference PWM control of a grid connected photovoltaic three phase NPC inverter with DC/DC boost converter

    Directory of Open Access Journals (Sweden)

    Mechouma Rabiaa

    2014-01-01

    Full Text Available In recent years, power demand of industrial applications has increased significantly reaching some megawatts. The use of multilevel converters for applications of medium and high powers is proposed as a solution to drawback semiconductor technology. A multilevel converter not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy sources such as photovoltaic can be easily interfaced to a multilevel converter system for a high power application. This paper presents the simulation study in Matlab/Simulink of a grid connected photovoltaic three phase Neutral Point Clamped (NPC inverter with DC/DC boost converter for constant and variable solar radiation.

  17. Power supplies in Europe

    International Nuclear Information System (INIS)

    Bose, H. von

    1992-01-01

    The contribution takes a look at the current situation of the internal energy market, for which the EC-Commission demands more competition due to the differing price policies of the individual EC-countries and their effects on industrial policy, in addition due to the free merchandise traffic which is necessary for electricity as well and due to international investments. A first step toward perfecting the internal market for electricity consists in the two directives which the Council of Ministers passed regarding the transit of electricity and the transparency of prices, the first phase of which has been initiated. During the second phase there are plans for permitting liberalization for a limited number of new competitors while orienting oneself to the existing structures. This phase consists in carrying out the following three main tasks: First of all the rights for the production of energy and the construction of power lines should be extended. Second of all, in vertically consolidated enterprises, the concept of decartelization, i.e. the separation of management and accounting must be introduced in the production area and in the transference and distribution sectors. The third tasks consists in giving third parties access to the power-distribution network to a limited degree. The main points of criticism on the part of the power suppliers are the following: - Long-term investments can no longer be made to a sufficient extent. - The individual consumer is placed at a disadvantage due to the competitive system. - The third-party-access system entails an unnecessary amount of bureaucratization. In closing, the contribution takes a brief look at energy taxes and CO 2 stabilization as well as negotiations on the energy charter. (orig./HSCH) [de

  18. Hybrid power source

    Science.gov (United States)

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  19. Differential Mode EMI Filter Design for Isolated DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Makda, Ishtiyaq Ahmed; Nymand, Morten

    2014-01-01

    A Differential Mode EMI filter for a low input voltage high-current isolated dc-dc boost converter is designed and presented in this paper. The primary side Differential Mode noise voltage is low due to the high transformer turn ratio, however, the input current is very high and since the EMI limit...... also does not change for such converters, it requires greatly optimized design approach for the filter including the correct sizing of the filter components. A complete analytical filter design process is carried out such a way that the Differential Mode noise voltage source in the converter...... is identified first. The DM noise model is then established and based on the harmonic analysis of the noise source voltage waveform, the complete Differential Mode EMI filter, including the filter resonance damping branch, is designed for a 3kW isolated dc-dc boost converter. The noise model and its theoretical...

  20. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  1. Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Achim Kienle

    2009-03-01

    Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.

  2. Research of digital controlled DC/DC converter based on STC12C5410AD

    Science.gov (United States)

    Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong

    2010-02-01

    In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.

  3. Precharge strategies for isolated modular DC-DC converters under two different start-up conditions

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Li, Binbin

    2017-01-01

    The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value of capaci......The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value...... of capacitance in the IMDCC, proper precharge strategies before the start-up are significant for the safety and reliability of the whole system. This paper presents two closed-loop precharge control strategies to fully charge the sub-module (SM) capacitors of the IMDCC, considering two different start...

  4. Improvement of burst-mode control of piezoelectric transformer based DC/DC converter

    International Nuclear Information System (INIS)

    Vasic, Dejan; Liu, Yuan-Ping; Costa, François; Schwander, Denis; Wu, Wen-Jong

    2013-01-01

    Burst-mode operation is adopted sometimes in piezoelectric transformer based converters for two major purposes: (1) to achieve voltage regulation in DC/DC converters and (2) to achieve dimming control in backlight inverters. Burst-mode control enables the converter to operate at a constant switching frequency as well as to maintain good efficiency at light load conditions. However, in practice, the piezoelectric transformer cannot instantly stop vibrating in the burst-mode due to its high quality factor. The delay in the output voltage change resulting from this behavior influences the accuracy of the regulation. This paper proposes a control strategy to make the piezoelectric transformer stop more quickly so as to enhance the accuracy of burst-mode control. The proposed method only modifies the control signal of the burst-mode driving circuit. The proposed control strategy is verified by experiments in a step-down 9 W DC/DC converter. (paper)

  5. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  6. Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...... effectively eliminate high voltage leaps caused by the dead time effect. In addition, a capacitor voltage control strategy is proposed for the 5L-ANPC dc/dc converter to ensure the balanced flying capacitor voltage and desired five-level voltage waveforms. Finally, simulation and experimental studies...

  7. Analytical Comparison of Dual-Input Isolated dc-dc Converter with an ac or dc Inductor for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mira Albert, Maria del Carmen; Andersen, Michael A. E.

    2017-01-01

    This paper presents two configurations of dualinput (DI) or three-port (TPC) isolated dc-dc converters for hybrid renewable energy systems such as photovoltaics and batteries. These two converters are derived by integrating an interleaved boost converter and a single-active bridge converter...... and control perspective, distinct in operation principles, voltage/power transfer functions, loss distributions, soft-switching constraints, and power efficiency under the same operating conditions. Moreover, the inductor design differs greatly between these two cases. In this paper, a comprehensive...

  8. Characterization of diode valve in medium voltage dc/dc converter for wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne

    2016-01-01

    This paper proposes a methodology for characterization of medium voltage (MV), medium frequency (MF) rectifier diode valve. The intended application is for 10MW dc/dc converters used in DC offshore wind turbines. Sensitivity to semiconductor component parameter variation, snubber component tolera...... tolerance, influence of temperature and stray capacitance are analyzed. It is concluded that the largest impact on sensitivity is given by reverse recovery charge variation and differences of temperature between adjacent devices....

  9. Soft switching bidirectional DC-DC converter for ultracapacitor-batteries interface

    International Nuclear Information System (INIS)

    Adib, Ehsan; Farzanehfard, Hosein

    2009-01-01

    In this paper a new soft switching bidirectional DC-DC converter is introduced which can be applied as the interface circuit between ultracapacitors and batteries or fuel cells. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. Due to achieved soft switching condition, the energy conversion through the proposed converter is highly efficient. The proposed converter is analyzed and a prototype converter is implemented. The presented experimental results confirm the theoretical analysis.

  10. Soft switching bidirectional DC-DC converter for ultracapacitor-batteries interface

    Energy Technology Data Exchange (ETDEWEB)

    Adib, Ehsan; Farzanehfard, Hosein [Dept. of Electrical and Computer Engineering, Isfahan Univ. of Technology (Iran)

    2009-12-15

    In this paper a new soft switching bidirectional DC-DC converter is introduced which can be applied as the interface circuit between ultracapacitors and batteries or fuel cells. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. Due to achieved soft switching condition, the energy conversion through the proposed converter is highly efficient. The proposed converter is analyzed and a prototype converter is implemented. The presented experimental results confirm the theoretical analysis. (author)

  11. Comparative efficiency evaluation of buck and hybrid buck DC-DC converters for automotive applications

    DEFF Research Database (Denmark)

    Pelan, Ovidiu; Cornea, Octavian; Muntean, Nicolae

    2014-01-01

    This paper presents and discusses design considerations and efficiency investigation of a conventional step-down and a hybrid switched-capacitor DC-DC converter. Three MOSFETs with low on-resistance have been tested for each converter in order to find the most adequate switch for this application....... The experimental results and comparative efficiency graphs were obtained with a 1kW laboratory prototype dedicated for a 42/14V dual voltage automotive system....

  12. Informational model verification of ZVS Buck quasi-resonant DC-DC converter

    Science.gov (United States)

    Vakovsky, Dimiter; Hinov, Nikolay

    2016-12-01

    The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object.

  13. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  14. All Digital Switch-Mode DC/DC Converters with BIST Functionality for Harsh Space Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Micro Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  15. Conducted EMI Prediction and Mitigation Strategy Based on Transfer Function for a High-Low Voltage DC-DC Converter in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2018-04-01

    Full Text Available The high dv/dt and di/dt outputs from power devices in a high-low voltage DC-DC converter on electric vehicles (EVs can always introduce the unwanted conducted electromagnetic interference (EMI emissions. A conducted EMI prediction and mitigation strategy that is based on transfer function for the high-low voltage DC-DC converter in EVs are proposed. A complete test for the DC-DC converter is conducted to obtain the conducted EMI from DC power cables in the frequency band of 150 kHz-108 MHz. The equivalent circuit with high-frequency parasitic parameters of the DC-DC converter is built`1 based on the measurement results to acquire the characteristics of the conducted EMI of the DC power cables. The common mode (CM and differential mode (DM propagation coupling paths are determined, and the corresponding transfer functions of the DM interference and CM interference are established. The simulation results of the conducted EMI can be obtained by software Matlab and Computer Simulation Technology (CST. By analyzing the transfer functions and the simulation results, the dominated interference is the CM interference, which is the main factor of the conducted EMI. A mitigation strategy for the design of the CM interference filter based on the dominated CM interference is proposed. Finally, the mitigation strategy of the conducted EMI is verified by performing the conducted voltage experiment. From the experiment results, the conducted voltage of the DC power cables is decreased, respectively, by 58 dBμV, 55 dBμV, 65 dBμV, 53 dBμV, and 54 dBμV at frequency 200 kHz, 400 kHz, 600 kHz, 1.4 MHz, and 50 MHz. The conduced voltage in the frequency band of 150 kHz–108 MHz can be mitigated by adding the CM interference filters, and the values are lower than the limit level-3 of CISPR25 standard (GB/T 18655-2010.

  16. Principles and theory of resonance power supplies

    International Nuclear Information System (INIS)

    Sreenivas, A.; Karady, G.G.

    1991-01-01

    The resonance power supply is widely used and proved to be an efficient method to supply accelerator magnets. The literature describes several power supply circuits but no comprehensive theory of operation is presented. This paper presents a mathematical method which describes the operation of the resonance power supply and it can be used for accurate design of components

  17. TFTR CAMAC power supplies reliability

    International Nuclear Information System (INIS)

    Camp, R.A.; Bergin, W.

    1989-01-01

    Since the expected life of the Tokamak Fusion Test Reactor (TFTR) has been extended into the early 1990's, the issues of equipment wear-out, when to refurbish/replace, and the costs associated with these decisions, must be faced. The management of the maintenance of the TFTR Central Instrumentation, Control and Data Acquisition System (CICADA) power supplies within the CAMAC network is a case study of a set of systems to monitor repairable systems reliability, costs, and results of action. The CAMAC network is composed of approximately 500 racks, each with its own power supply. By using a simple reliability estimator on a coarse time interval, in conjunction with determining the root cause of individual failures, a cost effective repair and maintenance program has been realized. This paper describes the estimator, some of the specific causes for recurring failures and their correction, and the subsequent effects on the reliability estimator. By extension of this program the authors can assess the continued viability of CAMAC power supplies into the future, predicting wear-out and developing cost effective refurbishment/replacement policies. 4 refs., 3 figs., 1 tab

  18. Power supply and pulsing strategies for the future linear colliders

    International Nuclear Information System (INIS)

    Brogna, A S; Weber, M; Göttlicher, P

    2012-01-01

    The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.

  19. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    International Nuclear Information System (INIS)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.

    2010-01-01

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.

  20. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  1. A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2017-07-01

    Full Text Available In this paper, an isolated multi-resonant three-port bidirectional direct current-direct current (DC-DC converter is proposed, which is composed of three full bridges, two inductor-capacitor-inductor-capacitor (LCLC multi-resonant tanks and a three-winding transformer. The phase shift control method is employed to manage the power transmission among three ports. Relying on the appropriate parameter selection, both of the fundamental and the third order power can be delivered through the multi-element LCLC resonant tanks, and consequently, it contributes to restrained circulating energy and the desirable promoted efficiency. Besides, by adjusting the driving frequency under different load conditions, zero-voltage-switching (ZVS characteristics of all the switches of three ports are guaranteed. Therefore, lower switching loss and higher efficiency are achieved in full load range. In order to verify the feasibility of the proposed topology, a 1.5 kW prototype is established, of which the maximum efficiencies under forward and reverse operating conditions are 96.7% and 96.9% respectively. In addition, both of the bidirectional efficiencies maintain higher than 95.5% when the power level is above 0.5 kW.

  2. Assessment of an Average Controller for a DC/DC Converter via Either a PWM or a Sigma-Delta-Modulator

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available Sliding mode control is a discontinuous control technique that is, by its nature, appropriate for controlling variable structure systems, such as the switch regulated systems employed in power electronics. However, when designing control laws based on the average models of these systems a modulator is necessary for their experimental implementation. Among the most widely used modulators in power electronics are the pulse width modulation (PWM and, more recently, the sigma-delta-modulator (Σ-Δ-modulator. Based on the importance of achieving an appropriate implementation of average control laws and the relevance of the trajectory tracking task in DC/DC power converters, for the first time, this research presents the assessment of the experimental results obtained when one of these controllers is implemented through either a PWM or a Σ-Δ-modulator to perform such a task. A comparative assessment based on the integral square error (ISE index shows that, at frequencies with similar efficiency, the Σ-Δ-modulator provides a better tracking performance for the DC/DC Buck converter. In this paper, an average control based on differential flatness was used to perform the experiments. It is worth mentioning that a different trajectory tracking controller could have been selected for this research.

  3. Ultra-Step-Up DC-DC Converter with Integrated Autotransformer and Coupled Inductor

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang

    2016-01-01

    This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage transfer ratio and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core to achieve a high step-up voltage gain without extreme...... duty cycle. Further, an integrated passive regenerative circuit recycles the leakage energy of the coupled magnetics and transfer the leakage energy to the load, which helps to avoid high voltage spikes across the switch. This feature along with low stress on the switching device enables the designer...

  4. Modified High Voltage Conversion Inverting Cuk DC-DC Converter for Renewable Energy Application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick

    2017-01-01

    controlled device DC-DC topology. The voltage conversion ratio of proposed converter has increased by ten times of the conventional Cuk converterat a duty ratio of 90%. The detailed analysis of the voltage conversion ratio and losses occur due to internal resistance of components is done in the paper......The proposed exertion represents the modified high voltage conversion Cuk converter for renewable energy application. The proposed Cuk converter is a combination of the conventional boost converter and Cuk converter. The arrangement of the proposed converter make, such as, it becomes the single...

  5. Design and Testing of Boost Type DC/DC Converter for DC Motor Control Applications

    OpenAIRE

    Samman, Faizal Arya; Akil, Yusri Syam; Noor, Nirwan A.

    2017-01-01

    in The Proceeding of The 2nd International Symposium on Smart Material and Mechatronics 2015 This paper presents the design and testing of a boost type DC/DC converter circuit, which can be used for DC motor control applications. The Boost converter is designed using DC chopper and DC chopper cascade configurations. The experimental setup was made by connecting the boost converter circuit with four types of DC motor, i.e. self-excited DC motor shunt, series, compound and separately exci...

  6. GaN-based High Efficiency Bidirectional DC-DC Converter with 10 MHz Switching Frequency

    DEFF Research Database (Denmark)

    Kruse, Kristian; Zhang, Zhe; Elbo, Mads

    2017-01-01

    -isolated bidirectional DC-DC converter equipped with Gallium Nitride (GaN) semiconductor transistors is presented. The converter’s operation principles, zero-voltage switching (ZVS) constraints and dead-time effects are studied. Moreover, the optimization and tradeoffs on the adopted high-frequency inductor...... are achieved. Moreover, the measured losses can match the theoretically calculated counterparts well, therefore the design and analysis are verified. However, from the experimental test carried out, it can also be seen, that making a compact converter, even for a GaN-based one, operate at 10 MHz and 100 W...

  7. Comparison of two different high performance mixed signal controllers for DC/DC converters

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2006-01-01

    This paper describes how mixed signal controllers combining a cheap microcontroller with a simple analogue circuit can offer high performance digital control for DC/DC converters. Mixed signal controllers have the same versatility and performance as DSP based controllers. It is important to have...... an engineer experienced in microcontroller programming write the software algorithms to achieve optimal performance. Two mixed signal controller designs based on the same 8-bit microcontroller are compared both theoretically and experimentally. A 16-bit PID compensator with a sampling frequency of 200 k......Hz implemented in the 16 MIPS, 8-bit ATTiny26 microcontroller is demonstrated....

  8. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    Full Text Available Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  9. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  10. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  11. Powering the Future Data Centre

    DEFF Research Database (Denmark)

    Zhang, Zhe

    2010-01-01

    of the characteristics of these two power sources: long warm-up stage and low dynamics for fuel cell, and variable terminal voltage for supercapacitors. The motivation for this project was to find ways which can overcome those limitations to integrate fuel cells and supercapcitors to the system with high efficiency......The extended run Uninterruptible Power Supply system (UPSs) which powered by fuel cells and supercapcitors, is a promising solution for future data centre to obtain environmentfriendly energy efficient and cost effective. There are many challenges in power electronic interface circuits, because......: • Optimized design method for dual active bridge (DAB) converter and its derived circuits; • A novel hybrid dc-dc converter and its corresponding optimal design method are proposed; • An improved dual input current-fed DC-DC converter with bidirectional power conversion ability is investigated; • Extend...

  12. Reactive power supply by distributed generators

    OpenAIRE

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  13. Analysis of a Multilevel Dual Active Bridge (ML-DAB DC-DC Converter Using Symmetric Modulation

    Directory of Open Access Journals (Sweden)

    M. A. Moonem

    2015-04-01

    Full Text Available Dual active bridge (DAB converters have been popular in high voltage, low and medium power DC-DC applications, as well as an intermediate high frequency link in solid state transformers. In this paper, a multilevel DAB (ML-DAB has been proposed in which two active bridges produce two-level (2L-5L, 5L-2L and 3L-5L voltage waveforms across the high frequency transformer. The proposed ML-DAB has the advantage of being used in high step-up/down converters, which deal with higher voltages, as compared to conventional two-level DABs. A three-level neutral point diode clamped (NPC topology has been used in the high voltage bridge, which enables the semiconductor switches to be operated within a higher voltage range without the need for cascaded bridges or multiple two-level DAB converters. A symmetric modulation scheme, based on the least number of angular parameters rather than the duty-ratio, has been proposed for a different combination of bridge voltages. This ML-DAB is also suitable for maximum power point tracking (MPPT control in photovoltaic applications. Steady-state analysis of the converter with symmetric phase-shift modulation is presented and verified using simulation and hardware experiments.

  14. 49 CFR 236.516 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Power supply. 236.516 Section 236.516..., Train Control and Cab Signal Systems Standards § 236.516 Power supply. Automatic cab signal, train stop, or train control device hereafter installed shall operate from a separate or isolated power supply...

  15. 47 CFR 80.1015 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Power supply. 80.1015 Section 80.1015... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1015 Power supply. (a) There must be readily available for use under normal load conditions, a power supply sufficient...

  16. Power supply control protocol used at GANIL

    International Nuclear Information System (INIS)

    Prome, M.; Baumgarten, R.; Luong, T.T.

    1986-01-01

    This document intends to establish specifications for power supply control so that, if complied with by power supply manufacturers, power supplies from any manufacturer can be linked at once to the Ganil Control system. The only points to take care of are reduced to physical link and filling of the data base

  17. Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter

    Science.gov (United States)

    Kurokawa, Fujio; Okamatsu, Masashi

    This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4ms with the IIR filter method. In this case, the switching frequency is 100kHz and the step change of the load R is from 50 Ω to 10 Ω. Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.

  18. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  19. Meeting the power supply challenge

    International Nuclear Information System (INIS)

    Boland, B.

    2003-01-01

    A review of activities at Ontario Power Generation since deregulation was presented. Since May 1, 2002, Ontario business and residential users have been able to choose to buy electricity from local utilities at the market price or from fixed-term, fixed-price contracts with retailers. A major heat wave in the summer of 2002 forced electricity prices to rise as supply was strained by record energy demands. On November 11, 2002, Bill 210 placed the retail market on temporary hold as the price of electricity was capped at 4.3 cents per kWh for low-volume consumers. On March 21, 2003, the fixed price was extended to users up to 250,000 kWh. It is expected that energy demand in Ontario will grow 1 per cent each year for the next 10 years. Electricity supply, transmission and distribution in the Greater Toronto area must be addressed to ensure safe, reliable and affordable power. Another issue that must be addressed is that 20 per cent of Ontario's aging generating facilities will have be overhauled or replaced by 2013. Environmental issues and the pending retirement of coal as a fuel source must also be addressed. Possible solutions include returning the Pickering 'A' nuclear facility to service, additional nuclear generation, hydroelectric upgrades, and new green generation initiatives such as wind or gas-fired combined cycle generation. Maintaining the fossil option is possible by reducing emissions. 8 figs

  20. Development of power supplies at VECC

    International Nuclear Information System (INIS)

    De, T.K.

    2005-01-01

    Large scale indigenous production of power supplies started at VECC since 1970. At a later stage, compact Superconducting Cyclotron demanded highly stable (of the order of 20 ppm) magnet power supplies to accommodate a large number of highly precise distributed beam trajectory in a smaller radial distance. Intensive quality development around the power supplies became essential. In-depth understanding of the power supply components, modules, computer based simulation, design, instrumentation, wide and long experience, all put together have contributed remarkable results leading to high quality indigenous development of power supply at VECC - a brief report has been presented in this paper. (author)

  1. Power supply design for Hadron Facility

    International Nuclear Information System (INIS)

    Karady, G.; Kansog, J.; Thiessen, H.A.; Schneider, E.

    1987-01-01

    Recently, a study investigated the feasibility of building a large 60 GeV, kaon factory accelerator. This paper presents the conceptual design of the magnet power supplies and energy storage system. In this study the following three systems were investigated: (a) power supply using storage generator; (b) power supply using inductive storage device; and (c) resonant power supplies. These systems were analyzed from both technical and economical points of view. It was found that all three systems are feasible and can be built using commercially available components. From a technical point of view, the system using inductive storage is the most advantageous. The resonant power supply is the most economical solution

  2. An innovational application of digital power supply controller on SSRF dynamic power supply

    International Nuclear Information System (INIS)

    Chen Huanguang; Li Rui; Guo Chunlong; Shen Tianjian; Li Deming

    2008-01-01

    Control structure of dynamic power supply using PSI controller in SLS and Diamond is introduced. For designing dynamic power supply using PSI controller in the booster of SSRF, an innovative application of PSI digital power supply controller has been developed. In the commissioning of SSRF, the dynamic power supplies performed perfectly. (authors)

  3. Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy

    Directory of Open Access Journals (Sweden)

    Shu-huai Zhang

    2018-01-01

    Full Text Available This study presents a new bidirectional multi-resonant DC-DC converter, which is named CLTC. The converter adds an auxiliary transformer and an extra resonant capacitor based on a LLC resonant DC-DC converter, achieving zero-voltage switching (ZVS for the input inverting switches and zero-current switching (ZCS for the output rectifiers in all load range. The converter also has a wide gain range in two directions. When the load is light, a half-bridge configuration is adopted instead of a full-bridge configuration to solve the problem of voltage regulation. By this method, the voltage gain becomes monotonous and controllable. Besides, the digital synchronous rectification strategy is proposed in forward mode without adding any auxiliary circuit. The conduction time of synchronous rectifiers equals the estimation value of body diodes’ conduction time with the lightest load. Power loss analysis is also conducted in different situations. Finally, the theoretical analysis is validated by a 5 kW prototype.

  4. MPPT algorithm test on a photovoltaic emulating system constructed by a DC power supply and an indoor solar panel

    International Nuclear Information System (INIS)

    Zhou, Z.; Holland, P.M.; Igic, P.

    2014-01-01

    Highlights: • A novel PV emulator is constructed by using conventional solar panels with a DC power supply. • The proposed PV emulator is cost-effectiveness, relatively easy implementation. • The proposed PV emulator avoids the bandwidth problem associated with electronics PV emulators. • Indoor testing of MPPT algorithms and power converters avoids the dependency on solar irradiation. • The PV emulating system has been used for testing a P and O MPPT algorithm and a boost dc converter. - Abstract: In this paper a novel photovoltaic (PV) emulating scheme for testing maximum power point tracking (MPPT) algorithms and PV inverters has been proposed. It is constructed by the parallel connection of conventional solar panels with a DC power supply operating in current source mode. The advantages of the proposed scheme are cost-effectiveness, relatively easy implementation and indoor testing of MPPT algorithms and power converters avoiding weather and time of day dependency on solar irradiation levels. Furthermore, the proposed PV emulator avoids the bandwidth problem associated with the dc converter based PV emulating systems. Detailed circuit connection, parameters, electrical characteristics and mathematical model of the PV emulator are presented and discussed. Proposed PV emulating system has been used to test a boost DC/DC converter controlled by Perturb and Observe (P and O) MPPT algorithm. Test results confirmed the effectiveness of the proposed PV emulation system and all achieved results correspond well to the original designed values

  5. Novel powering schemes for pixel and tracking detectors

    CERN Document Server

    Feld, Lutz Werner

    2013-01-01

    Future pixel and tracking systems like the ones foreseen in the upgrade programs of the LHC experiments are very demanding on the power supply systems. An increased amount of power has to be supplied to the front-end electronics at a reduced voltage, through existing cable plants. Novel powering schemes are needed to avoid excessive cable losses. The two schemes under consideration, serial powering and DC-DC conversion, are reviewed. Particular emphasis is put on system integration aspects. As an example, the new CMS pixel system, which will be powered via DC-DC conversion, is presented in more detail. This allows to discuss challenges and solutions for a concrete application while the conclusions should be relevant for other applications as well.

  6. UNJUK KERJA PENGUBAH TEGANGAN DC-DC TOPOLOGI BOOST DENGAN NILAI INDUKTANSI DAN KAPASITANSI YANG DIOPTIMASI PADA KEADAAN TRANSIEN

    Directory of Open Access Journals (Sweden)

    I Wayan Arta Wijaya

    2009-05-01

    Full Text Available Pengubah daya DC-DC topologi boost dapat menghasilkan tegangan yang lebih tinggi dari tegangan input dengan riak (ripple yang kecil dan efisiensi yang cukup tinggi. Nilai dari sebuah induktansi dan kapasitansi dari pengubah daya DC-DC dengan menggunakan topologi boost dioptimalkan menggunakan analisa transien. Fungsi ini diatur berdasarkan pada analisa dari pengubah daya selama kondisi transien. Nilai induktansi dan kapasitansi yang telah dioptimalkan dengan perhitungan dibandingkan dalam simulasi pada pengubah daya DC-DC dan hasilnya akan dibuktikan dengan menggunakan hasil percobaan. Nilai optimal untuk kapasitor dan induktor pada frekuensi 666,7 Hz, siklus kerja (duty cycle 66,7 %, resistansi output 36 Ώ dan tegangan input 12 volt adalah 1038 μF dan 11,9 mH

  7. Mechanical strength integrity for crowbarred power supplies

    International Nuclear Information System (INIS)

    Broverman, A.Y.; Hill, R.E.

    1979-01-01

    Crowbarring the output of a power supply serves to electrically protect the power supply's load. At the same time, however, the supply's windings are subjected to the electromagnetic forces of a partial short circuit. Because pulsed power supplies are frequently crowbarred as a normal part of the duty cycle, it is essential that their transformer windings be designed to repetitively withstand short circuit forces. If not provided for, crowbar or short circuit forces can irreparably damage the transformer's coils. These power supplies are intended for fusion applications. 2 refs

  8. Hybrid Non-Isolated and Non Inverting Nx Interleaved DC-DC Multilevel Boost Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Kulkarni, Rishi M.; Padmanaban, Sanjeevi Kumar

    2016-01-01

    In this paper hybrid non isolated/ non inverting Nx interleaved DC-DC multilevel Boost Converter for renewable energy applications is presented. The presented hybrid topology is derived from the conventional interleaved converter and the Nx Multilevel boost converter. In renewable energy...... applications, generated energy cannot be directly used at application end. In most of the cases it needs to be stepped up with DC-DC converter at operating voltage levels as per the requirement of the application. Though conventional boost converter can theoretically be used for this purpose, but obtaining...

  9. The future of electric power supply

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In this interview with a prominent expert of the electric power industry, problems of assuring electricity supply, the economics of nuclear electricity generation, the supply structure, and cogeneration are discussed. (UA) [de

  10. Bifurcation diagram features of a dc-dc converter under current-mode control

    International Nuclear Information System (INIS)

    Ruzbehani, Mohsen; Zhou Luowei; Wang Mingyu

    2006-01-01

    A common tool for analysis of the systems dynamics when the system has chaotic behaviour is the bifurcation diagram. In this paper, the bifurcation diagram of an ideal model of a dc-dc converter under current-mode control is analysed. Algebraic relations that give the critical points locations and describe the pattern of the bifurcation diagram are derived. It is shown that these simple algebraic and geometrical relations are responsible for the complex pattern of the bifurcation diagrams in such circuits. More explanation about the previously observed properties and introduction of some new ones are exposited. In addition, a new three-dimensional bifurcation diagram that can give better imagination of the parameters role is introduced

  11. Electrothermal model of choking-coils for the analysis of dc-dc converters

    Energy Technology Data Exchange (ETDEWEB)

    Gorecki, Krzysztof, E-mail: gorecki@am.gdynia.pl [Gdynia Maritime University, Department of Marine Electronics, Morska 83, Gdynia (Poland); Detka, Kalina [Pomeranian Higher School in Gdynia, Opata Hackiego 8-10, Gdynia (Poland)

    2012-09-01

    The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc-dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained.

  12. Systematic design approach of fuzzy PID stabilizer for DC-DC converters

    International Nuclear Information System (INIS)

    Guesmi, K.; Essounbouli, N.; Hamzaoui, A.

    2008-01-01

    DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control

  13. Predictive Trailing-Edge Modulation Average Current Control in DC-DC Converters

    Directory of Open Access Journals (Sweden)

    LASCU, D.

    2013-11-01

    Full Text Available The paper investigates predictive digital average current control (PDACC in dc/dc converters using trailing-edge modulation (TEM. The study is focused on the recurrence duty cycle equation and then stability analysis is performed. It is demonstrated that average current control using trailing-edge modulation is stable on the whole range of the duty cycle and thus design problems are highly reduced. The analysis is carried out in a general manner, independent of converter topology and therefore the results can then be easily applied for a certain converter (buck, boost, buck-boost, etc.. The theoretical considerations are confirmed for a boost converter first using the MATLAB program based on state-space equations and finally with the CASPOC circuit simulation package.

  14. Systematic design approach of fuzzy PID stabilizer for DC-DC converters

    Energy Technology Data Exchange (ETDEWEB)

    Guesmi, K.; Essounbouli, N.; Hamzaoui, A. [CReSTIC, IUT de Troyes 09, rue de Quebec BP. 396, 10026 Troyes (France)

    2008-10-15

    DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control. (author)

  15. Multi-cell DC-DC converters : modelling, analysis and control

    International Nuclear Information System (INIS)

    Feki, M.; El Aroudi, A.; Robert, B.G.M.

    2011-01-01

    This paper is devoted to modeling of a two-cell DC/DC buck converter, to the analysis of its behavior and to the design of control methods that yield to improve its performances. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without control, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. The proposed controllers are able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.

  16. Simplified design of switching power supplies

    CERN Document Server

    Lenk, John

    1995-01-01

    * Describes the operation of each circuit in detail * Examines a wide selection of external components that modify the IC package characteristics * Provides hands-on, essential information for designing a switching power supply Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional. Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of swit

  17. Nuclear reactor power supply system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  18. Using super-capacitors in combination with Bi-directional DC/DC converters for active load management in residential fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Cacciato, M.; Giulii Capponi, F. [Rome Univ., ' La Sapienza' , Dept. of Electrical Engineering (Italy)

    2004-07-01

    Among innovative conversion systems for alternative energy, Fuel Cells (FCs) are ideal in applications as distributed power generation or automotive. The connection of FCs to domestic or industrial loads requires a DC/AC converter also acting as a energy buffer to match the different dynamics of FCs and loads. In the last years, a new type of electrolytic capacitors called Super- Capacitors (SCs), has been designed using double layers technology. Such components are able to store more energy than electrolytic capacitors maintaining the capability to swap it at high power levels. Firstly, different solution used to connect SCs to a FC based conversion system are considered. Then, a comparison of bi-directional DC/DC converters designed to manage SCs energy is performed. Finally, the converter design and a laboratory prototype of the adopted solution are reported. (authors)

  19. Design and implementation of a bidirectional current-controlled voltage-regulated DC-DC switched-mode converter

    CSIR Research Space (South Africa)

    Coetzer, A

    2016-01-01

    Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...

  20. Novel family of quasi-Z-source DC/DC converters derived from current-fed push-pull converters

    DEFF Research Database (Denmark)

    Chub, Andrii; Husev, Oleksandr; Vinnikov, Dmitri

    2014-01-01

    This paper is devoted to the step-up quasi-Z-source dc/dc push-pull converter family. The topologies in the family are derived from the isolated boost converter family by replacing input inductors with the quasi-Z-source network. Two new topologies are proposed, analyzed and compared. Theoretical...

  1. Influence of the snubbers and matching transformer on an optimal trajectory controlled resonant transistor DC/DC converter

    Directory of Open Access Journals (Sweden)

    Bankov Dimitrov Nikolay

    2012-01-01

    Full Text Available This work examines a series resonant DC/DC optimal trajectory controlled converter during operation above resonant frequency, taking into account the influence of the snubbers and matching transformer. We obtain expressions for the load characteristics, boundary curves between possible modes and limits of the soft commutation area. Computer simulation and experimental observation confirm the theoretical results.

  2. Switched power workshop power supply working group

    International Nuclear Information System (INIS)

    Haseroth, H.; Hopkins, D.; Ikezi, H.; Kirbie, H.; Lincke, E.; Wilson, M.

    1988-01-01

    The power supply working group was assigned the problem of pulse charging the 3-MeV gun. The gun is a radial line structure that has two charging configurations: a single ring charged to 500 kV or nine rings charged from 100 to 200 kV. In either configuration, the pulsed source must rapidly charge the structure's ring(s) before breakdown can begin. The issues encountered in charging the structure can be divided into two categories. First, the charging system must be well matched to the gun structure. Proper impedance matching will avoid reflections and limit the fault current if the ring should spark. Second, several systems can achieve the wide range of charge voltages necessary. Some are better suited to high voltages, while others are better at low voltages. The following paragraphs will address the impedance matching issues are review three choices for pulse generators. A system for each type of source is described along with a very rough cost estimate. 1 ref., 4 figs., 2 tabs

  3. Switched power workshop: Power supply working group

    International Nuclear Information System (INIS)

    Haseroth, H.; Hopkins, D.; Ikezi, H.; Kirbie, H.C.; Lincke, E.; Wilson, M.

    1989-01-01

    The power supply working group was assigned the problem of pulse charging the 3-MeV gun. The gun is a radial line structure that has two charging configurations: a single ring charged to 500 kV or nine rings charged from 100 to 200 kV. In either configuration, the pulsed source must rapidly charge the structure's ring(s) before breakdown can begin. The issues encountered in charging the structure can be divided into two categories. First, the charging system must be well matched to the gun structure. Proper impedance matching will avoid reflections and limit the fault current if the ring should spark. Second, several systems can achieve the wide range of charge voltages necessary. Some are better suited to high voltages, while others are better at low voltages. The following paragraphs will address the impedance matching issues and review three choices for pulse generators. A system for each type of source is described along with a very rough cost estimate. 1 ref., 4 figs., 2 tabs

  4. TEXT poloidal coil systems power supplies

    International Nuclear Information System (INIS)

    Hutchins, S.H.; Brower, D.F.

    1977-01-01

    TEXT is a convertional iron core tokamak which will have a toroidal field of 3.0 Tesla produced by room temperature copper coils and a maximum plasma current pulse of 400 kA induced by a 40 turn Ohmic Heating coil. The major radius is 100 cm and the minor radius of the plasma is 28 cm. The machine is intended for basic research in tokamak plasma physics and atomic physics and is designed primarily to provide a stable hot plasma, extremely good diagnostic access, and reliable operation. The discharge pulse length will be 300 msec and the repetition period 120 seconds. Power for the toroidal field coils and for the ohmic heating supply is provided by a 100 MVA energy storage alternator. The vertical field, horizontal field, fast positioning, and discharge cleaning power supply systems are powered from the Tokamak Laboratory power mains. The ohmic heating power system consists of an SCR controlled premagnetizing supply and commutation circuit, the main ohmic heating capacitor bank to provide plasma breakdown and current rise, and an SCR controlled power supply which sustains plasma current during the 300 ms pulse. The vertical field power system uses a small capacitor bank and an SCR controlled supply. The horizontal field has a reversible SCR controlled supply, and the fast positioning coils are powered by bipolar output transistor controlled supplies. This paper describes the loads, required wave forms, and the specifications for these power supply systems

  5. Upgrading the TFTR Transrex Power Supplies

    International Nuclear Information System (INIS)

    Lawson, J.E.; Marsala, R; Ramakrishnan, S.; Zhao, X.; Sichta, P.

    2009-01-01

    In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supply sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the 'Hardwired Control System' will be replaces with a Programmable Logic Controller (PLC)

  6. Controlled power supply for isotopes separator

    International Nuclear Information System (INIS)

    Lavaitte, A.; Pottier, J.

    1953-01-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [fr

  7. 46 CFR 169.688 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Power supply. 169.688 Section 169.688 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.688 Power supply. (a) The...

  8. Upgrade of the Nuclotron power supply

    International Nuclear Information System (INIS)

    Karpinskij, V.N.; Kondrat'ev, N.G.; Osipenkov, A.L.

    2010-01-01

    One of topics of the Nuclotron development is the modification of its power supply scheme and upgrade of the energy evacuation system aimed to provide long and safe operation of the Nuclotron at the dipole magnetic field up to 2 T. It is necessary for the Nuclotron operation as a part of injection chain of the heavy ion collider under design at JINR as well as for fulfillment of its current scientific program. In the report the structure and peculiarity of the existing power supply system are described. The existing system is based on separated supply of dipole magnets and quadrupole lenses. General goals of the power supply modification are described, structural and principal schemes of the power supply, control system and the schemes of the energy evacuation key are presented

  9. Modular Power Electronic Converters in the Power Range 1 to 10 kW

    DEFF Research Database (Denmark)

    Klimczak, Pawel

    Thanks to CO2 emission reduction policies and increasing prices of fossil fuels a significant growth in field of sustainable energy sources (SES) is being observed during last decade. A government support and take-off projects in Europe and US shall ensure an increasing trend in future too. Some...... of SES based plants , like hydro-, geothermal-, biofuel-plants, use synchronous generators directly connected to the grid. But some other SES technologies, like fuel cell or photovoltaic, require a power electronic converter between the energy source and the load or the grid. Work presented...... in this thesis concentrates on dc-dc non-isolated converters suitable for high voltage gain applications, like uninterruptible power supply (UPS) and some of sustainable energy sources. A special attention is on reduction of power losses and efficiency improvements in non-isolated dc-dc step-up converters...

  10. Maintenance management of emergency power supply equipment (uninterruptible power supply) in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nishida, Kyosuke; Hiyama, Hisao; Shibata, Satomi; Iwasaki, Shogo; Inami, Shinichi

    2009-01-01

    Uninterruptible power supply systems are installed in the Tokai reprocessing plant in preparation for the emergency case that the commercial power supply is stopped by an accidental or intentional interruption in the supply of electricity. The uninterruptible power supply system particularly provides a temporary power source to the important devices for the radiation control of nuclear critical monitoring in the plant. Thus, the system is potentially important and essential for nuclear plants. The paper reports the current activities such as regular inspections, replacement of parts and system update, to maintain the function of uninterruptible power supply systems. (author)

  11. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    Science.gov (United States)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  12. Large step-down DC-DC converters with reduced current stress

    International Nuclear Information System (INIS)

    Ismail, Esam H.

    2009-01-01

    In this paper, several DC-DC converters with large voltage step-down ratios are introduced. A simple modification in the output section of the conventional buck and quadratic converters can effectively extend the duty-cycle range. Only two additional components (an inductor and diode) are necessary for extending the duty-cycle range. The topologies presented in this paper show an improvement in the duty-cycle (about 40%) over the conventional buck and quadratic converters. Consequently, they are well suited for extreme step-down voltage conversion ratio applications. With extended duty-cycle, the current stress on all components is reduced, leading to a significant improvement of the system losses. The principle of operation, theoretical analysis, and comparison of circuit performances with other step-down converters is discussed regarding voltage and current stress. Experimental results of one prototype rated 40-W and operating at 100 kHz are provided in this paper to verify the performance of this new family of converters. The efficiency of the proposed converters is higher than the quadratic converters

  13. Electric power supply in China. Pt. 1

    International Nuclear Information System (INIS)

    Chen Heng

    1987-01-01

    Professor Chen, visiting professor at the RWTH Aachen, gave several lectures dealing with his country, the electric power supply in China and with special research activities of Chinese scientists. This article is based on two of his lectures, and will be published in two parts, the first of which provides a brief description of China, an overview on electric power supply, and a brief description of the large power plants and large electrical subsystems. The second part will deal with operation planning, extension planning as well as with research and development in the field of electric energy supply. (orig.) [de

  14. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  15. Power supply strategy in Lithuania

    International Nuclear Information System (INIS)

    Galinis, A.

    2000-01-01

    Nuclear power plant produces about 80% of electricity in Lithuania. However, national energy strategy as a result of comprehensive assessment of technical, economic and political factors foresees closure of its first unit by 2005. Future fate of the second unit will be defined later in 2004 . Electricity demand requirements will be covered by other modernised power plants burning fossil fuel. This may create some environmental problems, especially if unit 2 would be closed. Earlier closure of the nuclear power plant is a great economical burden not only for the power sector but also to the whole national economy. This requires substantial technical and financial support from EU and other developed countries. (author)

  16. PEP magnet power supply systems

    International Nuclear Information System (INIS)

    Jackson, L.T.

    1977-01-01

    The dc electrical requirements of the PEP magnets fall mainly into two categories: (1) high power and current of single polarity and (2) low-power bi-polar. The first category will be thyristor-chopper controlled off common 600 V dc busses. The second group will utilize continuously controlled push-pull transistor actuators

  17. Accelerator magnet power supply using storage generator

    International Nuclear Information System (INIS)

    Karady, G.; Thiessen, H.A.

    1987-01-01

    Recently, a study investigated the feasibility of a large, 60 GeV accelerator. This paper presents the conceptual design of the magnet power supply (PS() and energy storage system. The main ring magnets are supplied by six, high-voltage and two, low-voltage power supplies. These power supplies drive a trapezoidal shaped current wave through the magnets. The peak current is 10 kA and the repetition frequency is 3.3 Hz. During the acceleration period the current is increased from 1040 A to 10,000 A within 50 msec which requires a loop voltage of 120 kV and a peak power of 1250 MW. During the reset period, the PS operates as an inverter with a peak power of -1250 MW. The large energy fluctuation necessitates the use of a storage generator. Because of the relatively high operation frequency, this generator operates in a transient mode which significantly increases the rotor current and losses. The storage generator is directly driven by a variable speed drive, which draws a practically constant power of 17 MW from the ac supply network and eliminates the pulse loading. For the reduction of dc ripple, the power supplies operate in a 24 pulse mode

  18. 24 CFR 3280.803 - Power supply.

    Science.gov (United States)

    2010-04-01

    ...-Wiring Devices-Dimensional Specifications). (g) The overall length of a power-supply cord, measured from... supply shall be by means of: (1) One mast weatherhead installation installed in accordance with Article... underside of the manufactured home. The manufacturer shall provide in his written installation instructions...

  19. Nuclear power: energy security and supply assurances

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2008-01-01

    Expectations are high for nuclear power. This paper first summarizes recent global and regional projections for the medium-term, including the 2007 updates of IAEA projections plus International Energy Agency and World Energy Technology Outlook projections to 2030 and 2050. One driving force for nuclear power is concern about energy supply security. Two potential obstacles are concerns about increased nuclear weapon proliferation risks, and concerns by some countries about potential politically motivated nuclear fuel supply interruptions. Concerning supply security, the paper reviews different definitions, strategies and costs. Supply security is not free; nor does nuclear power categorically increase energy supply security in all situations. Concerning proliferation and nuclear fuel cut-off risks, the IAEA and others are exploring possible 'assurance of supply' mechanisms with 2 motivations. First, the possibility of a political fuel supply interruption is a non-market disincentive discouraging investment in nuclear power. Fuel supply assurance mechanisms could reduce this disincentive. Second, the risk of interruption creates an incentive for a country to insure against that risk by developing a national enrichment capability. Assurance mechanisms could reduce this incentive, thereby reducing the possible spread of new national enrichment capabilities and any associated weapon proliferation risks. (orig.)

  20. Performance analysis of pulse analog control schemes for LLC resonant DC/DC converters suitable in portable applications

    Directory of Open Access Journals (Sweden)

    P. Kowstubha

    2016-12-01

    Full Text Available Performance Analysis of Pulse Analog Control Schemes, predominantly Pulse-Width Modulation (PWM and Pulse-Position Modulation (PPM for LLC resonant DC/DC converter suitable in portable applications is addressed in this paper. The analysis is done for closed loop performance, frequency domain performance, primary and secondary side conduction losses and soft commutation using PSIM 6.0 software and observed that PPM scheme provides better performance at high input voltage with a good selectivity of frequency over a wide range of line and load variations. The performance of LLC resonant DC/DC converter is demonstrated using PPM scheme for a design specifications of 12 V, 5 A output.

  1. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    Directory of Open Access Journals (Sweden)

    Haojie Wang

    2016-07-01

    Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.

  2. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Yan, Wenli

    2016-01-01

    It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed...... for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load...... changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control....

  3. High performance magnet power supply optimization

    International Nuclear Information System (INIS)

    Jackson, L.T.

    1975-01-01

    Three types of magnet power supply systems for the joint LBL-SLAC proposed accelerator PEP are discussed. The systems considered include a firing circuit and six-pulse controlled rectifier, transistor systems, and a chopper system. (U.S.)

  4. Control units for APS power supplies

    International Nuclear Information System (INIS)

    Despe, O.D.; Saunders, C.; McGhee, D.G.

    1993-01-01

    The Advanced Photon Source (APS) accelerator facility is made up of five major subsystems in addition to the linac: the positron accumulator ring (PAR), low energy transport (LET), booster synchrotron (SYNCH), high energy transport (HET), the storage ring (SR). Each subsystem has multiple magnet power supply combinations, some requiring multiple of operation. These magnet and power supply combinations computer controlled and monitored. The power supply control unit (PSCU) is the first layer of hardware and software above the power supply itself and is described in this paper. The description includes the basic philosophy for each of operation and how it influences the topology and of implementing control. The design of the analog reference blocks (ARBs) influenced the design of other custom functions well as the feedback controls for vibration and other dynamic corrections. The command set supported by the PSCU is discussed

  5. JT-60SA power supply system

    International Nuclear Information System (INIS)

    Coletti, A.; Baulaigue, O.; Cara, P.; Coletti, R.; Ferro, A.; Gaio, E.; Matsukawa, M.; Novello, L.; Santinelli, M.; Shimada, K.; Starace, F.; Terakado, T.; Yamauchi, K.

    2011-01-01

    The paper describes the main features of the Superconducting Magnets Power Supply to generate the toroidal and poloidal magnetic fields in JT-60SA tokamak, with special regard to coil current regulation mode and magnets protection.

  6. ENERGY STAR Certified Uninterruptible Power Supplies

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Uninterruptible Power Supplies that are...

  7. Correction magnet power supplies for APS machine

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1991-01-01

    The Advanced Photon Source machine requires a number of correction magnets; five kinds for the storage ring, two for the injector synchrotron, and two for the positron accumulator ring. Three types of bipolar power supply will be used for all the correction magnets. This paper describes the design aspects and considerations for correction magnet power supplies for the APS machine. 3 refs., 3 figs., 1 tab

  8. Design of the control system of the bidirectional DC/DC converter for the storage and regeneration

    OpenAIRE

    Yonghong Deng; Yanxiang Ge; Huifa Qian

    2017-01-01

    In view of the phenomena of energy waste, environmental pollution and increase of operating cost caused by the braking of the rail transport vehicle, the storage and regeneration of bidirectional DC/DC converter control system is designed, It takes TMS320F28035 DSP as the core control circuit, and adopts voltage and current double closed loop PI control. The system realizes the storage and regeneration of energy during operation. The experiment shows that the system has high reliability and a...

  9. Innovative use of power integrated modules for DC power supplies

    DEFF Research Database (Denmark)

    Ørndrup Nielsen, Rasmus; Elkiær, Alexander; Munk-Nielsen, Stig

    2013-01-01

    In this article several innovative ways of utilizing Power Integrated Modules (PIM) as switching device in a DC power supply are presented. PIM have advantages in compactness of design, cost and fast prototype due to easier PCB layout. A PIM converter topology is chosen and designed resulting...... in an experimental setup. Results from the setup are presented showing the feasibility of using a PIM module as almost all power semiconductors in a DC power supply....

  10. The situation of European power supply

    International Nuclear Information System (INIS)

    Zimmer, H.J.

    2008-01-01

    The requirement for energy worldwide is going to rise dramatically in the next few years and decades. Despite all developments of renewable energy sources, and despite the expansion of nuclear power in some industrialized countries and emerging countries, coal will turn out to be the key source of energy in the 21st century. Europe as a whole has a lot to offer which strengthens its position with respect to present and future requirements to be met in the construction of new power plants as well as in electricity and power supplies. As regards nuclear power in Germany, if it is to be given another chance, we must seek a dialog, pointing out that - nuclear power offers advantages in ensuring energy supply in Germany, given the development in the world energy markets; - nuclear power makes an important contribution to climate protection; - Germany's energy supply must be adapted to the global situation; - nuclear power offers opportunities in education, training, research and development; - nuclear power is contributing massively to our economic prosperity. The future viability of European power supply will not depend on the debate about nuclear power in Germany. The debate will be decided chiefly by the world market and on a European level. (orig.)

  11. Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.

  12. A Markovian Approach Applied to Reliability Modeling of Bidirectional DC-DC Converters Used in PHEVs and Smart Grids

    Directory of Open Access Journals (Sweden)

    M. Khalilzadeh

    2016-12-01

    Full Text Available In this paper, a stochastic approach is proposed for reliability assessment of bidirectional DC-DC converters, including the fault-tolerant ones. This type of converters can be used in a smart DC grid, feeding DC loads such as home appliances and plug-in hybrid electric vehicles (PHEVs. The reliability of bidirectional DC-DC converters is of such an importance, due to the key role of the expected increasingly utilization of DC grids in modern Smart Grid. Markov processes are suggested for reliability modeling and consequently calculating the expected effective lifetime of bidirectional converters. A three-leg bidirectional interleaved converter using data of Toyota Prius 2012 hybrid electric vehicle is used as a case study. Besides, the influence of environment and ambient temperature on converter lifetime is studied. The impact of modeling the reliability of the converter and adding reliability constraints on the technical design procedure of the converter is also investigated. In order to investigate the effect of leg increase on the lifetime of the converter, single leg to five-leg interleave DC-DC converters are studied considering economical aspect and the results are extrapolated for six and seven-leg converters. The proposed method could be generalized so that the number of legs and input and output capacitors could be an arbitrary number.

  13. High power fast ramping power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  14. New intelligent magnet power supplies for LAMPF

    International Nuclear Information System (INIS)

    Cohen, S.; Sturrock, J.

    1991-01-01

    New magnet power supplies are scheduled to be installed in the proton linac at the Clinton P. Anderson Meson Physics Facility (LAMPF). The control and interface design of these power supplies represents a departure from all others onsite. A high-level ASCII control protocol has been designed. The supplies have sophisticated microprocessor control onboard and communicate with the accelerator control system via RS-422 (serial communications). The low-level software used by the accelerator control system is currently being rewritten to accommodate these new devices. They will communicate with the control system through a terminal server port connected to the site-wide ethernet backbone. This means that each supply will, for all intents and purposes, be a network object. Details of the design strategies for the analog and digital control for these supplies as well as the control protocol interface will be presented. 5 refs., 5 figs., 1 tab

  15. SNS EXTRACTION KICKER POWER SUPPLY PROTOTYPE TEST

    International Nuclear Information System (INIS)

    MI, J.L.; SANDBERG, J.; SANDERS, R.; SOUKAS, A.; ZHANG, W.

    2000-01-01

    The SNS (Spallation Neutron Source) accumulator ring Extraction System consists of a Fast kicker and a Lambertson Septum magnet. The proposed design will use 14 kicker magnets powered by an Extraction Kicker Power Supply System. They will eject the high power beam from the SNS accumulator ring into RTBT (Ring to Target Beam Tunnel) through a Lambertson Septum magnet. This paper describes some test results of the SNS Extraction Kicker power supply prototype. The high repetition rate of 60 pulse per second operation is the challenging part of the design. In the prototype testing, a 3 kA damp current of 700ns pulse-width, 200 nS rise time and 60 Hz repetition rate at 32 kV PFN operation voltage has been demonstrated. An Extraction kicker power supply system design diagram is depicted

  16. Positron Accumulator Ring (PAR) power supply

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    The Positron Accumulator Ring (PAR) consists of 8 dipole magnets connected in series. These magnets are energized via one 12-pulse dc power supply. The power supply consists of four phase controlled half-wave wye group converters. Each of the two half-wave converters are connected through an interphase transformer to obtain a full-wave converter with 120 degrees conduction. The input voltage for these two half-wave converters are 180 degrees apart. The two full-wave converters are connected in parallel through a third interphase transformer. This type of connection of the converters not only provides the required output current, it also improves the input power factor of the power supply. The output of the wye group converters is filtered through a passive L-R-C filter to reduce the ripple content of the output current. At low current values of the power supply the current ripple is high, thus a large filter is needed, which adds to the cost of the power supply, however at high output current levels, the current ripple is less severe. The large size of the filter can be reduced by adding an anti-parallel rectifier diode(D1) to the output of the power supply. A freewheeling diode(D2) is connected before the choke to circulate the current once the power supply is turned off. In order to measure the current in the magnet a high precision, low drift, zero flux current transductor is used. This transductor senses the magnet current which provides a feedback signal to control the gating of the converter's thyristors. A true 14 bit Digital to Analog Converter (DAC) is programmed by the control computer for the required current value, providing a reference for the current regulator. Fast correction of the line transients is provided by a relatively fast voltage loop controlled by a high gain slow response current loop

  17. ISABELLE magnet power supply system performance analysis

    International Nuclear Information System (INIS)

    Edwards, R.J.

    1981-01-01

    The power supply system that will energize the superconducting magnets in the ISABELLE 400 x 400 GeV accelerator must supply various voltages and currents. The voltages for the correction winding range from ten to one hundred twenty-five volts unipolar and bipolar with current rating of 50 to 300 amperes. The main field winding requires voltages from 90V (at flattop) to 600V during maximum ramp rate or acceleration cycle. The power supplies are programmable over their full range of output current with a reproducibility error varying from +- 10 ppM to +- 400 ppM of full scale. Included within the reproducibility error are the long and short term stability requirements of the power supplies. The purpose of this paper is to define some of the design goals and outline the approach taken in reaching these goals

  18. General conditions for electric power supply

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    If it is uncertain whether future power bills will be paid fully, it is admissible to take an action claiming a declaration which states that the electricity rate payment boycotter has no right to non-payment nor a right to withhold payment towards the electricity supply utility, and that the electricity supply utility has the right to stop energy supply because of reduced electricity rate payments effected and/or announced, and to denounce the contract without observing any term of notice. If the electricity buyer reduces a power bill to be paid without any legal grounds, the electricity supply utility has the right to stop power supplies and to denounce the power supply contract without observing any term of notice. The freedom of thought and the freedom of opinion must not be expressed by reducing power bills to be paid. Basic rights discontinue to be effective as soon as a contract or law is broken. A weighing of protected interests is not effected if the exercise of a basic law is unlawful. (orig./HP) [de

  19. 1000-kVA arc power supply

    International Nuclear Information System (INIS)

    Wright, R.E.; Barber, G.C.; Ponte, N.S.

    1979-01-01

    Because of ever-increasing power demands for the development of the Oak Ridge duoPIGatron ion source, a continuous-duty arc power supply was constructed for the Medium Energy Test Facility (METF) to furnish power for the plasma generator of experimental ion sources. The power supply utilizes 12-pulse rectification with half-wave switching in a delta and wye full-wave bridge that may be connected in series or parallel. It will deliver 340 V dc, 2500 A to an ion source when series connected and 170 V dc, 5000 A when paralleled connected. Silicon-controlled rectifiers (SCR) in each rectifier bridge can be switched for pulses as short as 10 ms through continuous duty. The filter section that reduces the ripple in the output consists of an inductor-to-capacitor (L-C) filter to smooth the 720-Hz pulses. The power transformer serves as an isolation transformer allowing the secondary to be elevated to the accelerating potential of the ion source. The dc output level is controlled with a 1000-kVA auto transformer connected to the primary of the power transformer. All elevated voltages and currents are monitored at ground potential with an optical telemetry system. This paper describes the power supply in detail, including block diagrams, component specifications, and waveforms when supplying power to an ion source

  20. DAΦNE magnet power supply system

    International Nuclear Information System (INIS)

    Ricci, R.; Sanelli, C.; Stecchi, A.

    1998-01-01

    The e + -e - , 1020 MeV at center of mass, Particle Accelerator Complex DAΦNE, consists of a linear accelerator (Linac), a damping ring (D.A.), nearly 180 m of transfer lines (T.L.) and two storage rings (S.R.), that intersect each other in two points (I.P.), for Φ particle production. The D.A., T.L. and S.R. magnets are powered by means of 462 power supplies, rating from 100 W to 1 MW. The very different output currents, from 10 A to 2300 A, and output voltages, from 8 V to 1300 V, imposed many different technical solution realized by the world industry. This paper describes the Power Supply System giving also a description of the different typologies, their characteristics and control systems. The paper reports also the power supply performances and gives information on their installation and first year operation period

  1. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  2. Analysis of a high power, resonant DC-DC converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper is introducing a new method of operation for a series resonant converter, with intended application in megawatt high-voltage DC wind turbines. Compared to a frequency controlled series resonant converter operated in sub resonant mode, the method (entitled pulse removal technique) allows...

  3. Optimal Design and Tradeoffs Analysis for Planar Transformer in High Power DC-DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    with optimal behaviors is proposed, which constructs the top layer paralleling with the bottom layer and then in series with the other turns of the primary so that a lower magneto motive force (MMF) ratio m can be obtained as well as minimized AC resistance, leakage inductance and even stray capacitance. A 1...

  4. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  5. High-voltage boost quasi-Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    converter uses less switches, a smaller common duty cycle and less turns for the transformer when compared with existing topologies. Its size and weight are therefore smaller, whereas its efficiency is higher. It is therefore well-suited for applications, where a wide range of voltage gain is required like...... renewable energy systems, DC power supplies found in telecom, aerospace and electric vehicles. To demonstrate the performance of the proposed converter, a 400 V, 500 W prototype has been implemented in the laboratory. Efficiency of the prototype measured is found to vary from 89.0 to 97.4% when its input...

  6. Electric power. The boom of continuous supply

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The increasing needs in electric supply that exist in computer industry and Internet or more classical industry and tertiary sector have boosted the non-interruptible power supply market and decentralized generation groups. One can imagine the development of mini networks exploited by new types operators, progressive renunciation of the diesel engine for the profit of gas turbine and soon fuel cell and new opportunities for the cogeneration. (N.C.)

  7. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  8. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  9. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  10. Power supply trip control for nuclear reactor

    International Nuclear Information System (INIS)

    Hager, R.E.; Gutman, Jerzy.

    1987-01-01

    A control system for a trip coil in a switchgear mechanism controls the supply of electrical power to a process control device and ensures de-energization of the trip coil shortly after the trip coil is energized. The trip coil is energized not by an independent dc source as in prior art, but from rectified power from a step down transformer supplied from the switchgear output side. The transformer feeds a rectifier which is connected to the trip coil via a trip activation device. The output of the rectifier can be monitored using an optical converter to determine the ability of the control system to activate the trip coil and the condition of the power supplied to the process control device. The control device may be a rod positioner in a pressurised water nuclear reactor. (author)

  11. Tests on conducted electrical noise on a storage ring dc-dc converter cabinet

    International Nuclear Information System (INIS)

    Carwardine, J.J.

    1994-01-01

    Electrical noise is produced by switching transients in the power supply converters which excite resonances formed by stray capacitance and cable inductance. This noise is present not only on the load cables, but also on ground cables of the magnet and of the converter cabinet. Since there will eventually be a large number of cabinets running at one time, tests were carried out to characterize the noise and to investigate possible techniques for reducing the levels. The tests were carried out on the test girder and converter cabinet set up in 412 area. There were four magnets installed on the girder -- two 0.5m quadrupoles, a 0.8m quadrupole, and a sextupole. These tests were carried out on one of the 0.5m quadrupoles. It should be noted that with this setup, the raw dc power was supplied at around 70V. In the final configuration, a 0.5m quad will be fed from a 40V raw supply. Consequently, the switching transients observed during the tests are likely to be higher than will occur in reality. Noise currents contain two main components: a low frequency component at around 50kHz, and a higher frequency component at around lMHz. It is the latter component which is of primary concern. Currents measured on the dc load cables typically were around one ampere, while currents into the building ground system were only a few tens of milliamps. Several methods were used to try reducing the noise currents, but only the addition of a series impedance was successful -- other methods either had no effect or increased the ground currents

  12. Synchrotron power supply of TARN II

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1991-07-01

    The construction and performance of synchrotron power supply of TARN II are described. The 1.1 GeV synchrotron-cooler TARN II has been constructed at Institute for Nuclear Study, University of Tokyo. Constructed power supply for the dipole magnets is 600 V, 2500 A operated in the mode of trapezoid wave form with the repetition cycle of 0.1 Hz. The stability of magnetic field within 10 -3 and tracking error of 10 -4 have been attained with the aid of computer control system. First trial of synchrotron acceleration of He 2+ beam has been done up to 600 MeV in April, 1991. (author)

  13. Modular AC Nano-Grid with Four-Quadrant Micro-Inverters and High-Efficiency DC-DC Conversion

    Science.gov (United States)

    Poshtkouhi, Shahab

    A significant portion of the population in developing countries live in remote communities, where the power infrastructure and the required capital investment to set up local grids do not exist. This is due to the fuel shipment and utilization costs required for fossil fuel based generators, which are traditionally used in these local grids, as well as high upfront costs associated with the centralized Energy Storage Systems (ESS). This dissertation targets modular AC nano-grids for these remote communities developed at minimal capital cost, where the generators are replaced with multiple inverters, connected to either Photovoltaic (PV) or battery modules, which can be gradually added to the nano-grid. A distributed droop-based control architecture is presented for the PV and battery Micro-Inverters (MIV) in order to achieve frequency and voltage stability, as well as active and reactive power sharing. The nano-grid voltage is regulated collectively in either one of four operational regions. Effective load sharing and transient handling are demonstrated experimentally by forming a nano-grid which consists of two custom 500 W MIVs. The MIVs forming the nano-grid have to meet certain requirements. A two-stage MIV architecture and control scheme with four-quadrant power-flow between the nano-grid, the PV/battery and optional short-term storage is presented. The short-term storage is realized using high energy-density Lithium-Ion Capacitor (LIC) technology. A real-time power smoothing algorithm utilizing LIC modules is developed and tested, while the performance of the 100 W MIV is experimentally verified under closed-loop dynamic conditions. Two main limitations of the DAB topology, as the core of the MIV architecture's dc-dc stage, are addressed: 1) This topology demonstrates poor efficiency and limited regulation accuracy at low power. These are improved by introducing a modified topology to operate the DAB in Flyback mode, achieving up to an 8% increase in

  14. Improving Power Quality in AC Supply Grids

    Directory of Open Access Journals (Sweden)

    Piotr Fabijański

    2015-12-01

    Full Text Available This paper describes a digital and actual model of the UPQC (Unified Power Quality Conditioner integrated system for power quality improvement. The UPQC’s design and its connection to an AC supply grid, 1-phase and 3-phase alike, provide effective compensation of unwanted interferences in the waveforms of load supply voltages and non-linear load currents. This article presents an overview of topologies and control strategies. The study of the UPQC confirmed its positive impact on the power quality. The electricity parameters were significantly improved. Total harmonic distortion in supply voltage THDu decreased six-fold to 1.89%, and total harmonic distortion in load current THDi decreased more than ten-fold to 2.38% for a non-linear load (uncontrolled bridge rectifier with load L. Additionally, symmetrisation of supply voltages and reactive power compensation Q of linear load was obtained. The UPQC integrated system for power quality improvement can be used wherever high-quality and PN-EN 50160 standard – compliant electricity is required.

  15. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    Science.gov (United States)

    Lim, Sungkeun

    Gordon Moore famously predicted the exponential increase in transistor integration and computing power that has been witnessed in recent decades [1]. In the near future, it is expected that more than one billion transistors will be integrated per chip, and advanced microprocessors will require clock speeds in excess of several GHz. The increasing number of transistors and high clock speeds will necessitate the consumption of more power. By 2014, it is expected that the maximum power consumption of the microprocessor will reach approximately 150W, and the maximum load current will be around 150A. Today's trend in power and thermal management is to reduce supply voltage as low as possible to reduce delivered power. It is anticipated that the Intel cores will operate on 0.8V of supply voltage by 2014 [2]. A significant challenge in Voltage Regulator Module (VRM) development for next generation microprocessors is to regulate the supply voltage within a certain tolerance band during high slew rate load transitions, since the required supply voltage tolerance band will be much narrower than the current requirement. If VR output impedance is maintained at a constant value from DC to high frequency, large output voltage spikes can be avoided during load cur- rent transients. Based on this, the Adaptive Voltage Position (AVP) concept was developed to achieve constant VR output impedance to improve transient response performance [3]. However, the VR output impedance can not be made constant over the entire frequency range with AVP design, because the AVP design makes the VR output impedance constant only at low frequencies. To make the output impedance constant at high frequencies, many bulk capacitors and ceramic capacitors are required. The tight supply voltage tolerance for the next generation of microprocessors during high slew rate load transitions requires fast transient response power supplies. A VRM can not follow the high slew rate load current transients, because

  16. Reliability of dc power supplies in nuclear power plant application

    International Nuclear Information System (INIS)

    Eisenhut, D.G.

    1978-01-01

    In June 1977 the reliability of dc power supplies at nuclear power facilities was questioned. It was postulated that a sudden gross failure of the redundant dc power supplies might occur during normal plant operation, and that this could lead to insufficient shutdown cooling of the reactor core. It was further suggested that this potential for insufficient cooling is great enough to warrant consideration of prompt remedies. The work described herein was part of the NRC staff's efforts aimed towards putting the performance of dc power supplies in proper perspective and was mainly directed towards the particular concern raised at that time. While the staff did not attempt to perform a systematic study of overall dc power supply reliability including all possible failure modes for such supplies, the work summarized herein describes how a probabilistic approach was used to supplement our more usual deterministic approach to reactor safety. Our evaluation concluded that the likelihood of dc power supply failures leading to insufficient shutdown cooling of the reactor core is sufficiently small as to not require any immediate action

  17. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  18. France liberalizes its power supply market

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The French market of power supply to companies is now free. This means that Electricite de France (EdF), the first world electric utility now has competitors in its domestic market. This is an important challenge for EdF because 3 millions of clients (70% of the French power consumption) are now concerned by the opening of the power market. According to A. Merlin, head of the energy transportation network (RTE), the opening of the market does not increase the risk of black-out, it just makes the operation of power networks more complex. The implementation of a single power transportation company (RTE) simplifies the mastery of networks safety but the development of investments is necessary to ensure the maintenance of 400 kV power lines. A comparison of the situation of power market liberalization is made for 6 countries (Germany, UK, Spain, US, Netherlands and Italy). Short paper. (J.S.)

  19. Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    This paper presents a new zero-voltage-switching (ZVS) isolated dc-dc converter which combines a boost halfbridge (BHB) cell and a full-bridge (FB) cell, so that two different type of power sources, i.e. both current-fed and voltage-fed, can be coupled effectively by the proposed converter...... for various applications, such as fuel cell and super-capacitor hybrid energy system. By fully using two high frequency transformers and a shared leg of switches, number of the power devices and associated gate driver circuits can be reduced. With phase-shift control, the converter can achieve ZVS turn......-on of active switches and zero-current switching (ZCS) turn-off of diodes. In this paper, derivation, analysis and design of the proposed converter are presented. Finally, a 25~50 V input, 300~400 V output prototype with a 600 W nominal power rating is built up and tested to demonstrate the effectiveness...

  20. Pulsed power supply for Nova Upgrade

    International Nuclear Information System (INIS)

    Bacon, J.L.; Kajs, J.P.; Walls, A.; Weldon, W.F.; Zowarka, R.C.

    1992-01-01

    This report describes work carried out at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). A baseline design of the Nova Upgrade has been completed by Lawrence Livermore National Laboratory. The Nova Upgrade is an 18 beamline Nd: glass laser design utilizing fully relayed 4x4 30 cm aperture segmented optical components. The laser thus consists of 288 independent beamlets nominally producing 1.5 to 2.0 MJ of 0.35 μm light in a 3 to 5 ns pulse. The laser design is extremely flexible and will allow a wide range of pulses to irradiate ICF targets. This facility will demonstrate ignition/gain and the scientific feasibility of ICF for energy and defense applications. The pulsed power requirements for the Nova Upgrade are given. CEM-UT was contracted to study and develop a design for a homopolar generator/inductor (HPG/inductor) opening switch system which would satisfy the pulsed power supply requirements of the Nova Upgrade. The Nd:glass laser amplifiers used in the Nova Upgrade will be powered by light from xenon flashlamps. The pulsed power supply for the Nova Upgrade powers the xenon flashlamps. This design and study was for a power supply to drive flashlamps

  1. Modular Power Supply for Micro Resistance Welding

    Directory of Open Access Journals (Sweden)

    Bondarenko Oleksandr

    2017-07-01

    Full Text Available The study is devoted to the important issue of enhancing the circuitry and characteristics of power supplies for micro resistance welding machines. The aim of the research is to provide high quality input current and to increase the energy efficiency of the output pulse generator by means of improving the circuit topologies of the power supply main blocks. In study, the principle of constructing the power supply for micro resistance welding, which provides high values of output welding current and high accuracy of welding pulse formation, makes it possible to reduce energy losses, and provides high quality of consumed input current, is represented. The multiphase topology of the charger with power factor correction based on SEPIC converters is suggested as the most efficient for charging the supercapacitor storage module. The multicell topology of the supercapacitor energy storage with voltage equalizing is presented. The parameters of the converter cells are evaluated. The calculations of energy efficiency of the power supply’s input and output converters based on suggested topologies are carried out and verified in MATLAB Simulink. The power factor value greater than 99 % is derived.

  2. Dual voltage power supply with 48 volt

    Energy Technology Data Exchange (ETDEWEB)

    Froeschl, Joachim; Proebstle, Hartmut; Sirch, Ottmar [BMW Group, Muenchen (Germany)

    2012-11-01

    Automotive electrics/electronics have just reached a period of tremendous change. High voltage systems for Hybrid, Plug-In Hybrid or Battery Electric Vehicles with high power electric motors, high energy accumulators and electric climate compressors will be introduced in order to achieve the challenging targets for CO{sub 2} emissions and energy efficiency and to anticipate the mobility of the future. Additionally, innovations and the continuous increase of functionality for comfort, safety, driver assistance and infotainment systems require more and more electrical power of the vehicle power supply at all. On the one hand side electrified vehicles will certainly achieve a significant market share, on the other hand side they will increase the pressure to conventional vehicles with combustion engines for fuel consumption and CO{sub 2} emissions. These vehicles will be enabled to keep their competitiveness by new functions and the optimization of their electric systems. A dual voltage power supply with 48 Volt and 12 Volt will be one of the key technologies to realize these requirements. The power capability of the existing 12 Volt power supply has reached its limits. Further potentials can only be admitted by the introduction of 48 Volt. For this reason the car manufacturers Audi, BMW, Daimler, Porsche and Volkswagen started very early on this item and developed a common specification of the new voltage range. Now, it is necessary to identify the probable systems at this voltage range and to start the developments. (orig.)

  3. Protection of the MFTF accel power supplies

    International Nuclear Information System (INIS)

    Wilson, J.H.; Wood, J.C.

    1979-01-01

    The MFTF experiment's Sustaining Neutral Beam Power Supply System (SNBPSS) includes twenty-four 95 kV, 80 A accel dc power supplies (ADCPS). Each power supply includes a relatively high-impedance (20 percent) rectifier transformer and a step voltage regulator with a 50-100 percent voltage range. With this combination, the fault current for some postulated faults may be lower than the supply's full load current at maximum voltage. A design has been developed which uses protective relays and current-limiting fuses coordinated to detect phase and ground faults, DC faults, incorrect voltage conditions, rectifier faults, power factor correction capacitor faults, and overloads. This unusual solution ensures fast tripping on potentially destructive high-current faults and long-time delays at lower currents to allow 30 second pulse operation. The ADCPS meets the LLL specification that all major assemblies be self-protecting, that is, able to sustain external faults without damage to minimize damage due to internal faults

  4. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available (SOPAC Miscellaneous Report 406, 2005). The battery bank is cycled frequently, shortening its lifetime. If the inverter fails there is complete loss of power to the load, unless the load can be supplied directly from the diesel generator for emergency purposes....5 Sizing the inverter ............................................................................................... 67 5.6 Sizing the charge Controller ............................................................................... 68 5.7 Sizing...

  5. Power supply in future: ecological aspects

    International Nuclear Information System (INIS)

    Hustedt, M.

    2000-01-01

    The most important prerequisites for an ecological supply of energy in the future is the opting out of nuclear energy and the completion of the second and third phase of the socio-ecological tax reform. As a part of our energy will continue to be generated on the basis of fossil fuels in the foreseeable future, it is essential that a radical change takes place in the efficiency of fossil energy engineering. In addition to this, any possible energy-saving potential must be exploited; this includes the new energy-saving law, promoting the modernisation of old buildings and modern energy management (heat insulation, heating engineering, warm water heating etc.). For an ecological power supply the share of renewable energies must be increased to form a major pillar of our power supply. The '100,000-roof' programme of the German federal government and the development programme for near-market renewable energy sources form part of this approach. Energy research should shift its orientation and accelerate the conversion of our power supply: priority should be given to developing energy-saving technologies and renewable energy. Supporting municipalities and public utilities is especially important. This means revising the basic conditions of energy laws so that they assist public utilities to face competition as power utilities. (orig.) [de

  6. Digital Simulation of Closed Loop Zvs-Zcs Bidirectional Dc-Dc Converter for Fuel Cell and Battery Application

    Directory of Open Access Journals (Sweden)

    V. V. Subrahmanya Kumar Bhajana

    2010-08-01

    Full Text Available A closed loop ZVS-ZCS bidirectional dc-dc converter is modeled and appropriate digital simulations are provided. With the ZVS-ZCS concept, the MATLAB simulation results of application to a fuel cell and battery application have been obtained whenever the input voltage exceeds the given 24V, at that time the load voltage will change from 180V to 230V. But due to this usage the load is disturbed and there is instability in the model. Using closed loop the output voltage is stabilized.

  7. Design of the control system of the bidirectional DC/DC converter for the storage and regeneration

    Directory of Open Access Journals (Sweden)

    Yonghong Deng

    2017-01-01

    Full Text Available In view of the phenomena of energy waste, environmental pollution and increase of operating cost caused by the braking of the rail transport vehicle, the storage and regeneration of bidirectional DC/DC converter control system is designed, It takes TMS320F28035 DSP as the core control circuit, and adopts voltage and current double closed loop PI control. The system realizes the storage and regeneration of energy during operation. The experiment shows that the system has high reliability and anti-interference ability, so it can be popularized and applied.

  8. Single Switch Nonisolated Ultra-Step-Up DC-DC Converter with an Integrated Coupled Inductor for High Boost Applications

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede

    2017-01-01

    This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage gain and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core in order to achieve a very high voltage gain without using extreme...... duty cycle. Furthermore, a passive lossless clamp circuit recycles the leakage energy of the coupled magnetics and alleviates the voltage spikes across the main switch. This feature along with low stress on the switching device enables the designer to use a low voltage and low RDS-on MOSFET, which...

  9. Power enhancement of piezoelectric transformers for power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Steenstrup, Anders Resen; Zhang, Zhe

    2016-01-01

    This paper studies power enhancement of piezoelectric transformers to be used in inductorless, half-bridge, piezoelecteric-based switch mode power supplies for driving a piezo actuator motor system in a high strength magnetic environment for magnetic resonance imaging and computed tomography...... applications. A new multi element-piezo transformer solution is proposed along with a dual mode piezo transformer, providing power scaling and potentially improving the internal heat-up of a high power piezo transformer system....

  10. Design and implementation of adaptive slope compensation in current mode DC-DC converter

    International Nuclear Information System (INIS)

    Guo Zhongjie; Wu Longsheng; Liu Youbao

    2010-01-01

    To improve the compensation for the inherent instability in a current mode converter, the adaptive slope compensation, giving attention to the problems of the traditional compensation on compensation accuracy, loading capability and turning jitter, is presented. Based on the analysis of current loop, by detecting the input and output voltage, converting the adaptive slope compensation current, the compensation of the current loop is optimized successfully. It can not only improve the compensation accuracy but also eliminate the over compensation, the turning jitter and the poor loading capability in the reported slope compensation. A power supply chip with adaptive slope compensation has been fabricated in a 0.35 μm CMOS process. The measurement results show that the chip starts up and operates steadily with the constant current limit under conditions of 5 V input voltage, from 10% to 100% duty cycle. (semiconductor integrated circuits)

  11. Resonance power supplies for large accelerator

    International Nuclear Information System (INIS)

    Karady, G.; Schneider, E.J.

    1993-01-01

    The resonance power supply has been proposed as an efficient power supply for a future 6 GB, keon producing accelerator. This report presents a detailed analysis of the circuit operation. Based on these analyses each component is designed, one line diagram is developed, component requirements are determined and a detailed cost estimate is prepared. The major components of the system are: the magnet power supply, high voltage by-pass thyristor switch, with l0kA repetitive interruption capability, capacitor banks, capacitor bank thyristor switch, and an energy make up device. The most important components are the bypass thyristor switch and the energy injection device. The bypass thyristor switch is designed to turn on and interrupt to 10 kA dc current with a recovery voltage of 20kV and repetition frequency of 3 Hz. The switch consists of a large array of series and parallel connected thyristors and gate turn off (GTO) devices. The make up energy device is designed to replace the circuit energy losses. A capacitor bank is charged with constant current and discharged during the acceleration period. One of the advantages of the developed circuit is that it can be supplied directly from the local power network. In order to prove the validity of the assumptions, a scaled down model circuit was thoroughly tested. These tests proved that the engineering design of critical components is correct and this resonant power supply can be properly controlled by an inventer/rectifier connected in series with the magnet and by the make up energy device. This finding reduces the system cost

  12. PSC/PSI power supply control prototype based on RTEMS

    International Nuclear Information System (INIS)

    Shi Haoli; Wang Chunhong; Tang Jingyu

    2010-01-01

    A PSC/PSI power supply control prototype was developed by using an open-source real-time operating system RTEMS and PSC/PSI power supply controller developed by BNL. The structure of the prototype, development procedures as well as testing result with a power supply of a corrector magnet were described. It can switch on/off the power supply, ramp up/down the current, and monitor the real-time states of the power supply. (authors)

  13. Magnet power supply as a network object

    International Nuclear Information System (INIS)

    Cohen, S.; Stuewe, R.

    1991-01-01

    Magnet power supplies with embedded microprocessor controls are being installed in the beam-lines of the linear accelerator and proton storage ring at LAMPF. Using an RS422 link they communicate with the accelerator control system through a terminal server connected to the site-wide DECnet backbone. Each supply is, for all intents and purposes, a network object. The controller has a command set of over seventy-five three-character ASCII control and read-back instructions. Strategies for choosing the appropriate control protocol and the process of integrating these devices into a large accelerator control system will be presented. 7 refs., 2 figs., 1 tab

  14. Power supply of ETL-TPE 2

    International Nuclear Information System (INIS)

    Takeda, Syohei; Sato, Yasuhiro; Kiyama, Satoru; Ikeda, Nagayasu

    1986-01-01

    The ETL-TPE2 experiment is planned to investigate a behavior of high beta plasma with high temperature. A system design of power supply to generate and to confine the plasma is described. Essential features of the design are the following; 1) To obtain a dense plasma with high temperature, two capacitor banks with opposite polarities of 80 kV charging voltage are provided in tandem feed for the toroidal fast field. 2) A high current pulse with long duration is supplied by a power crowbar system and realizes the investigation of the plasma confinement for a longer pulsed magnetic field. A power supply system of the power crowbar is connected with a main circuit in series through a current transformer. The circuit system is operated at high efficiency and high reliability. 3) In the vertical and compensating field circuits, each rise time and peak value of currents can be controlled over a wide range of pre-set programmings corresponding to an experimental condition. 4) A small resistance is connected with a crowbar circuit in a compression pre-heat field circuit. The circuit can be crowbarred at an arbitrary phase. This operation and the effect of additional resistance are favourable to maintain an effective plasma heating and to improve the plasma confinement. (author)

  15. Supply disruption cost for power network planning

    International Nuclear Information System (INIS)

    Kjoelle, G.H.

    1992-09-01

    A description is given of the method of approach to calculate the total annual socio-economic cost of power supply disruption and non-supplied energy, included the utilities' cost for planning. The total socio-economic supply disruption cost is the sum of the customers' disruption cost and the utilities' cost for failure and disruption. The mean weighted disruption cost for Norway for one hour disruption is NOK 19 per kWh. The customers' annual disruption cost is calculated with basis in the specific disruption cost referred to heavy load (January) and dimensioning maximum loads. The loads are reduced by factors taking into account the time variations of the failure frequency, duration, the loads and the disruption cost. 6 refs

  16. International experiences with power supply crises

    International Nuclear Information System (INIS)

    2002-01-01

    Many so-called deregulated power markets experience a hardened energy and power balance and some have had supply crises. This report discusses the crises, their impacts and their causes as well as the measures taken by the authorities to solve the crises. It also considers the similarities or dissimilarities with respect to the situation in Norway the winter 2002/2003. Like Norway, many of the countries have a considerable share of hydroelectric power. It is found, however, that the dependence on water of its own is not the reason for the crises, but that the inflow conditions give the market greater challenges. Furthermore, the Norwegian market has greater flexibility in the consumption, greater import capacity, better price security possibilities and less problems with market power than most of the countries here considered. Various factors influence a country's power consumption and production capacity. Economic growth and the availability of inexpensive power contribute to accelerate the consumption, while predictable external conditions and sufficient expected investment earnings are necessary to achieve an increase of the capacity - both through new investments and attendance to existing capacity. In a smooth power market there must be a certain correspondence between consumption and installed capacity, and the capacity must be such that it can cover the continuous demand for power and at the same time be flexible enough to deliver power at peak loads. This is also true of the transmission capacity. In addition, some extra capacity must be available for unexpected events. The basic problem is, in any power market, that the consumption may rise fast, while the investments in new capacity typically occurs in leaps, with long and costly construction phases. Many countries have lately experienced a hardening of the balance between consumption and capacity and so have been vulnerable to unexpected increases in consumption or resource failure. This was also the

  17. Exporting Australia's remote area power supply industry

    International Nuclear Information System (INIS)

    Presnell, K.

    2001-01-01

    The Australian renewable energy industry has two faces: Remote Area Power Supply systems (RAPS), where the trade-off is between the traditional diesel generator and diesel hybrid or the stand alone renewable energy system. The competency of the Australian RAPS industry is recognised internationally. Grid connected renewable energy technologies, where industry activity is expanding rapidly, but where Australian competencies carry relatively little weight internationally (other than for research and development of related components such as big performance, crystalline silicon photovoltaic cells). Individual industry development strategies are required in each instance. The focus of this paper is on strategies that enhance the export potential of the Australian RAPS industry. Involvement of the electricity supply utilities is promoted as a means of quickly instituting a substantial industry presence. The term RAPS can be confusing. It is used to describe any supply system serving a remote user, be they a single property owner with a simple, stand alone DC photovoltaic supply, or several communities with complex, inter-connected, diesel/hybrid power stations, sometimes termed a 'remote-grid'. Utility interest tends to emerge as market fragmentation decreases, system complexity increases and economies of scale become evident. A review of the domestic situation is a necessary adjunct to development of export strategies for Australian RAPS products. The two are inexorably linked, as is reflected in the format of this paper. (author)

  18. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  19. Design of neutral beam injection power supplies for ITER

    International Nuclear Information System (INIS)

    Watanabe, Kazuhiro; Okumura, Yoshikazu; Ono, Youichi; Tanaka, Masanobu

    2000-03-01

    Design study on a power supply system for the ITER neutral beam injector(NBI) has been performed. Circuits of converter/inverter system and other components of the acceleration power supply whose capacity is 1 MV, 45 A have been designed in detail. Performance of the negative ion production power supplies such as an arc and an extraction power supplies was investigated using the EMTDC code. It was confirmed that ripples of 0.34%p-p for the extraction power supply and 1.7%p-p for the arc power supply are small enough. It was also confirmed that an energy input to a negative ion generator from the arc power supply at an arcing can be suppressed smaller than 8 J. The extraction power supply was designed to suppress the energy input lower than 13 J at the breakdown in the extractor. These performances satisfy the required specification of the power supply system. (author)

  20. Process computers automate CERN power supply installations

    CERN Document Server

    Ullrich, H

    1974-01-01

    Computerized automation systems are being used at CERN, Geneva, to improve the capacity, operational reliability and flexibility of the power supply installations for main ring magnets in the experimental zones of particle accelerators. A detailed account of the technological problem involved is followed in the article by a description of the system configuration, the program system and field experience already gathered in similar schemes. (1 refs).

  1. Process computers automate CERN power supply installations

    International Nuclear Information System (INIS)

    Ullrich, H.; Martin, A.

    1974-01-01

    Higher standards of performance and reliability in the power plants of large particle accelerators necessitate increasing use of automation. The CERN (European Nuclear Research Centre) in Geneva started to employ process computers for plant automation at an early stage in its history. The great complexity and extent of the plants for high-energy physics first led to the setting-up of decentralized automatic systems which are now being increasingly combined into one interconnected automation system. One of these automatic systems controls and monitors the extensive power supply installations for the main ring magnets in the experimental zones. (orig.) [de

  2. Risk allocation in independent power supply contracts

    International Nuclear Information System (INIS)

    Willrich, M.; Campbell, W.L.

    1992-01-01

    Congress has made significant progress in recent months toward amending the Public Utility Holding Company Act of 1935 (PUHCA). The purposes of such amendment are to broaden power supply options for electric utilities and expand competition in whole-sale power generation markets. PUHCA reform is an integral part of President Bush's National Energy Strategy and has been included in legislation pending in both Houses of Congress. Congress will, hopefully, approve energy legislation that includes PUHCA reform before it adjourns this year. PUHCA reform has, however, stimulated heated debate within the power industry itself as well as among various consumer interest groups. One important issue in the public debate concerns risk allocation. If PUHCA is reformed, will risk be allocated efficiently and equitably between independent power producers and electric utility buyers? This article addresses that important question

  3. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  4. High-Efficiency High Step-Up DC-DC Converter with Dual Coupled Inductors for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Shen, Yanfeng; Siwakoti, Yam Prasad

    2018-01-01

    with a common ground connection of the input and output make the proposed topology a proper candidate for a transformer-less grid connected photovoltaic systems. The operating performance, analysis and mathematical derivations of the proposed dc-dc converter have been demonstrated in the paper. Moreover......This paper introduces a non-isolated high step-up dc-dc converter with dual coupled inductors suitable for distributed generation applications. By implementing an input parallel connection, the proposed dc-dc structure inherits shared input current with low ripple, which also requires small...... capacitive filter at its input. Moreover, this topology can reach high voltage gain by using dual coupled inductors in series connection at the output stage. The proposed converter uses active clamp circuits with a shared clamp capacitor for the main switches. In addition to the active clamp circuit...

  5. 46 CFR 113.10-9 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power supply. 113.10-9 Section 113.10-9 Shipping COAST... SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-9 Power supply. (a) General... battery, the charger must be supplied from the final emergency power source. Upon loss of power to the...

  6. Effect of energy saving lights on power supply

    NARCIS (Netherlands)

    Timens, R.B.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2012-01-01

    Weak power supply networks are very sensitive to non-linear low power loads. Electronics in low power loads are non-linear, very basic, and consisting of a rectifier bridge and bulk capacitor, consuming current only in the peak of the supplied voltage. Due to the relative high power supply network

  7. Diseño estático de un convertidor DC/DC reductor-elevador bidireccional

    Directory of Open Access Journals (Sweden)

    Marcela González Valencia

    2010-06-01

    Full Text Available This paper shows a buck-boost converter static design with 3 switches and cascade connection. The main application of the converter is the battery management on uninterruptible power supplies, cotrolling energy flow and regulating the DC supply voltage for the different battery operation modes as source and sink.

  8. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  9. Correction magnet power supplies for APS machine

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1991-04-01

    A number of correction magnets are required for the advanced photon source (APS) machine to correct the beam. There are five kinds of correction magnets for the storage ring, two for the injector synchrotron, and two for the positron accumulator ring (PAR). Table I shoes a summary of the correction magnet power supplies for the APS machine. For the storage ring, the displacement of the quadrupole magnets due to the low frequency vibration below 25 Hz has the most significant effect on the stability of the positron closed orbit. The primary external source of the low frequency vibration is the ground motion of approximately 20 μm amplitude, with frequency components concentrated below 10 Hz. These low frequency vibrations can be corrected by using the correction magnets, whose field strengths are controlled individually through the feedback loop comprising the beam position monitoring system. The correction field require could be either positive or negative. Thus for all the correction magnets, bipolar power supplies (BPSs) are required to produce both polarities of correction fields. Three different types of BPS are used for all the correction magnets. Type I BPSs cover all the correction magnets for the storage ring, except for the trim dipoles. The maximum output current of the Type I BPS is 140 Adc. A Type II BPS powers a trim dipole, and its maximum output current is 60 Adc. The injector synchrotron and PAR correction magnets are powered form Type III BPSs, whose maximum output current is 25 Adc

  10. Ultracapacitor-Based Uninterrupted Power Supply System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less

  11. SNS AC Power Distribution and Reliability of AC Power Supply

    CERN Document Server

    Holik, Paul S

    2005-01-01

    The SNS Project has 45MW of installed power. A design description under the Construction Design and Maintenance (CDM) with regard to regulations (OSHA, NFPA, NEC), reliability issues and maintenance of the AC power distribution system are herewith presented. The SNS Project has 45MW of installed power. The Accelerator Systems are Front End (FE)and LINAC KLYSTRON Building (LK), Central Helium Liquefier (CHL), High Energy Beam Transport (HEBT), Accumulator Ring and Ring to Target Beam Transport (RTBT) Support Buildings have 30MW installed power. FELK has 16MW installed, majority of which is klystron and magnet power supply system. CHL, supporting the super conducting portion of the accelerator has 7MW installed power and the RING Systems (HEBT, RING and RTBT) have also 7MW installed power.*

  12. Nuclear power as a regional energy supply

    International Nuclear Information System (INIS)

    MacLoon, Frank.

    1983-02-01

    The author describes the Point Lepreau nuclear power plant and its impact on the electric power grid and the economy of the small province of New Brunswick. The 600 MW CANDU reactor is considered suitable for small operations and has an excellent world record. Although nuclear energy has high capital costs, its fuel costs are low, thus rendering it comparatively inflation free. Its fuel costs of 3 to 4 mills are contrasted with 40 mills for oil-fuelled units. The cost advantage of uranium over coal and oil permits New Brunswick to put aside funds for waste management and decommissioning. Regulatory streamlining is needed to reduce both expense and time of construction. The CANDU system is ideally suited to providing base load, with coal as an intermediate load supply and hydro for peaking. There is room for tidal power as a future part of the mix

  13. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  14. Wireless remote feeding for power supply of autarkic micro systems; Drahtlose Fernspeisung zur Energieversorgung autarker Mikrosysteme

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, Tolgay

    2011-07-01

    Wireless power supply via a magnetic or electromagnetic field represents the most common energy supply of a battery-free micro system. The electronics of the micro system requires a minimum voltage for proper operation. Therefore it appears that the maximum working range is the distance at which this minimum voltage of the field no longer be taken. In typical applications, it is roughly the diameter of the antenna or coil of the reader. The voltage at the feeding point of the antenna is determined with the same irradiated field by the impedance of the antenna. If the range of the remote power is to be maximized, then this impedance has to be maximized. By achieving a very high impedance, even the use of an already existing source of radiation (radio, television or cell phone) could be used for powering a batteryless microsystem. The necessary conditions and limitations are indicated in this work theoretically as well as practically. Since the transformation of the voltage is proportional to the loaded quality factor and conventional air coils have a maximum quality factor of 150, they are unsuitable for efficient remote supply at low input powers. To solve this problem, a new method is developed to transformate the impedance using a quartz resonator with high quality factor. The resonators (quarts / SAW) are used as inductances with high quality to maximise the impedance and therefore the transformation of the voltage. Therefore the system can very efficiently adapt the antenna impedance to the high impedance input of the rectifier circuit. Experiments have shown that a rectified output voltage of more than 1 volt can be achieved from an antenna voltage of 7 mV at an input power of 1 muW (-30 dBm). The analytic and numerical description of the whole circuit delivers determining knowledge about the choice of the system components (resonator and diode). From the won knowledge of the overall system draughts are derived for special applications and their borders are

  15. Analysis and Design of Bi-Directional DC-DC Converter in the Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes. The deli......Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes...

  16. Simple power supply for power load controlled isoelectric focusing

    Czech Academy of Sciences Publication Activity Database

    Duša, Filip; Šlais, Karel

    2014-01-01

    Roč. 35, č. 8 (2014), s. 1114-1117 ISSN 0173-0835 R&D Projects: GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : isoelectric focusing * power supply * voltage multiplier Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.028, year: 2014 http://hdl.handle.net/11104/0231022

  17. POPS: the 60MW power converter for the PS accelerator: Control strategy and performances

    CERN Document Server

    Boattini, Fulvio; Skawinski, Gregory

    2015-01-01

    The main power supply of Proton-Synchrotron (PS) accelerator is one of the biggest at CERN. The old rotating machine system has been replaced with a new NPC based DC/DC power supply named POPS (Power system for PS main magnets) with capacitor banks as energy storage mean. POPS is in operation since February 2011. The operation of the PS accelerator requires a specific design of the control system with very high performance requirements in term of accuracy and precision. This paper describes the main lines of the control strategies analyzing the problems encountered and the solutions adopted. The performances of the converter are presented throughout the paper.

  18. Climate adaptation in power supply - status; Klimatilpasning i kraftforsyningen - statusrapport

    Energy Technology Data Exchange (ETDEWEB)

    Steen, Roger

    2009-12-15

    A survey of the now-status in the power supply when it comes to understanding possible climatic effects of power supply, the need for climate adaptation and motivation to adapt to climate change. (AG)

  19. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  20. Desain dan Implementasi Konverter DC-DC Rasio Tinggi Berbasis Pensaklaran Kapasitor dan Induktor Terkopel untuk Aplikasi pada Photovoltaic

    Directory of Open Access Journals (Sweden)

    Gusti Rinaldi Zulkarnain

    2017-01-01

    Full Text Available Seiring dengan berkembangnya pembangkit listrik yang menggunakan photovoltaic sebagai salah satu energi terbarukan, maka berdampak kepada perkembangan teknologi konverter. Tegangan output dari photovoltaic masih perlu ditingkatkan agar mampu dihubungkan pada sistem grid. Salah satu pengembangan topologi konverter boost untuk aplikasi keluaran photovoltaic yaitu konverter DC-DC rasio tinggi berbasis pensaklaran kapasitor dan induktor terkopel. Konverter ini merupakan pengembangan dari konverter gabungan boost-flyback yang ditambahkan rangkaian pensaklaran kapasitor. Kelebihan dari konverter ini adalah memiliki rasio konversi dan efisiensi yang tinggi. Konverter ini mampu menjaga tegangan output konstan ketika tegangan inputnya berubah-ubah. Konverter ini sangan cocok diaplikasikan pada sumber energi alternatif yang menghasilkan tegangan DC rendah seperti photovoltaic.

  1. Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 2: Control-Oriented Models

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garces

    2013-10-01

    Full Text Available A previous article has presented the members of the asymmetrical interleaved dc/dc switching converters family as very appropriate candidates to interface between photovoltaic or fuel cell generators and their loads because of their reduced ripple and increased current processing capabilities. After a review of the main modeling methods suitable for high-order converters operating, as the asymmetrical interleaved converters (AIC ones, in discontinuous current conduction mode a full-order averaged model has been adapted and improved to describe the dynamic behavior of AIC. The excellent agreement between the mathematical model predictions, the switched simulations and the experimental results has allowed for satisfactory design of a linear-quadratic regulator (LQR in a fuel-cell application example, which demonstrates the usefulness of the improved control-oriented modeling approach when the switching converters operate in discontinuous conduction mode.

  2. Sliding Mode Control of a Bidirectional Buck/Boost DC-DC Converter with Constant Switching Frequency

    Directory of Open Access Journals (Sweden)

    A. Safari

    2018-03-01

    Full Text Available In this paper, sliding mode control (SMC for a bidirectional buck/boost DC-DC converter (BDC with constant frequency in continuous conduction mode (CCM is discussed. Since the converter is a high-order converter, the reduced-order sliding manifold is exploited. Because of right-half-plan zero (RHPZ in the converter’s duty ratio to output voltage transfer function, sliding mode current controller is used. This controller benefits from various advantages such as fast dynamic response, robustness, stable and small variation of the settling time over a wide range of operation conditions. Because the converter operates in both step-down and step-up modes, two sliding manifold is derived for each mode. The existence and stability conditions are analyzed for both SMC in step-down and step-up modes. Finally, Simulation results are also provided to justify the feasibility of the controller using MATLAB/Simulink.

  3. Fault Tolerant Operation of ISOP Multicell Dc-Dc Converter Using Active Gate Controlled SiC Protection Switch

    Directory of Open Access Journals (Sweden)

    Yusuke Hayashi

    2016-01-01

    Full Text Available An active gate controlled semiconductor protection switch using SiC-MOSFET is proposed to achieve the fault tolerant operation of ISOP (Input Series and Output Parallel connected multicell dc-dc converter. The SiC-MOSFET with high temperature capability simplifies the configuration of the protection circuit, and its on-resistance control by the active gate controller realizes the smooth protection without the voltage and the current surges. The first laboratory prototype of the protection switch is fabricated by using a SiC-MOSFET with a high frequency buck chopper for the active gate controller. The effectiveness of the proposed protection switch is verified, taking the impact of the volume reduction into account.

  4. A Reconfigurable Series Resonant DC-DC Converter for Wide-Input and Wide-Output Voltages

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Qin, Zian

    2017-01-01

    This paper proposes a dual-bridge based LC series resonant dc-dc converter. The input inverter unit incorporates two bridge structures, i.e., a full-bridge inverter and a half-bridge inverter. For the output rectifier, it can be a full-bridge rectifier or an asymmetric half-bridge rectifier....... Different from the conventional resonant converter, a fixed-frequency PWM control is employed which makes the optimization of magnetic components easier. The primary-side switches can achieve ZVS and the secondary-side diodes turn off with ZCS. In addition, the root-mean-square (RMS) values...... of the transformer currents do not significantly vary with respect to the voltage variation. Therefore, this converter can maintain high efficiency over a wide voltage range. The topology and operating principle are firstly described. Then the dc voltage gain and the RMS current characteristics are detailed. Finally...

  5. Input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters with minimized capacitor ripple currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2016-01-01

    , the component current stresses in the proposed converters are reduced. More significantly, the combination of the proposed IPOP TL circuit structure and the interleaving control strategy can largely reduce the ripple currents on the two input capacitors not only by doubling the frequencies of the ripple...... currents on two input capacitors but also by counteracting part of these ripple currents according to the operation principle of the proposed converters. Therefore, the proposed IPOP TL DC/DC converters with the interleaving control strategy can improve the performances of the converters in increasing...... the lifetimes of the input capacitors and minimizing the sizes of the input capacitors. Finally, the simulation and experimental results are presented to verify the effectiveness and feasibility of the proposed converters combined with the interleaving control strategy....

  6. Dynamic Sliding Mode Evolution PWM Controller for a Novel High-Gain Interleaved DC-DC Converter in PV System

    Directory of Open Access Journals (Sweden)

    Taizhou Bei

    2014-01-01

    Full Text Available Considering the disadvantages of the traditional high-gain DC-DC converter such as big size, high voltage stress of switches, and large input current ripple, a novel high-gain interleaved boost converter with coupled-inductor and switched-capacitor was proposed correspondingly and the operation principle together with the steady-state analysis of this converter was also described. Besides, a new control approach-dynamic sliding mode evolution PWM controller (DSME PWM for the novel topological converter based on both dynamic evolution and sliding mode control was also presented. From the simulation results and experimental validation the proposed converter can fulfill high-gain boost, low ripple of both the input current and the output voltage. Furthermore, MPPT technique can be also achieved in a short time by simulation. The efficiency and stability of the converter proposed in this paper can be improved.

  7. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    Science.gov (United States)

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  8. Innovative Digitally Controlled Particle Accelerator Magnet Power Supply

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Bidoggia, Benoit; Maheshwari, Ram Krishan

    2013-01-01

    Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described.......Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described....

  9. Design of fixed frequency controlled radial-mode stacked disk-type piezoelectric transformers for DC/DC converter applications

    International Nuclear Information System (INIS)

    Liu, Yuan-Ping; Vasic, Dejan; Costa, François; Wu, Wen-Jong; Lee, Chih-Kung

    2009-01-01

    In this paper, we propose a new design procedure to determine the optimal size of a piezoelectric transformer (PT) for DC/DC converter applications. We examined several parameters, which allows us to produce a piezoelectric transformer with optimal efficiency and which has an optimal range for regulating voltage. The characteristics of a piezoelectric transformer (PT) are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converter applications, it requires the presence of a rectifier circuit block. A rectifier is usually a nonlinear device which does not act like a pure resistor. We began by modeling a full-wave rectifier directly in order to understand the design constraint variables such as the maximum mechanical current, the piezoelectric transformer configuration, and the energy balance of the PT configuration. In our final design, a stacked disk-type piezoelectric transformer with radial-mode vibration was chosen due to the large number of design parameters required. In our new design procedure, instead of just looking at the typical optimal loading condition of the PT, we used the concept of a maximum mechanical current to determine the new optimal efficiency which is suitable for voltage regulation. From our results we found that the size of the piezoelectric transformer and efficiency are trade-offs which means that they have an inverse relationship. In summary, we developed a new design procedure to determine the optimal size of a piezoelectric transformer, which we found to be small but with high efficiency so as to provide an optimal range for regulating voltage

  10. Preferred external power supplies; Fuentes electricas preferentes exteriores

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Anton, L.

    2010-07-01

    In June 2008 ANAV and ENDESA DISTRIBUCION (EDE) undertook a joint study of Asco NPP Preferred External Power Supplies (PEPSs) to check the number of lines or power supplies to the 110 kV substation at Asco that met the criteria defined in the power supply regulations applicable to Asco NPP and primarily to confirm compliance with IEEE 765-2006 standard. (Author).

  11. High performance magnet power supply optimization

    International Nuclear Information System (INIS)

    Jackson, L.T.

    1988-01-01

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems

  12. Technical report on dc power supplies in nuclear power plants

    International Nuclear Information System (INIS)

    1977-06-01

    Emergency electrical power supplies, both a.c. and d.c. for nuclear power plants are important to safety. For this reason, the electric power systems for operating nuclear plants and those plants under licensing review have been required to provide a high degree of reliability. It is this high reliability that provides confidence that sufficient safety margin exists against loss of all d.c. power for extended periods of time to allow an orderly examination of safety issues, such as this. However, because of the importance of the a.c. and d.c. power systems, the staff has been expending effort to review the reliability of these systems and shall continue to do so in the future

  13. Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management.

    Science.gov (United States)

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2015-11-19

    Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm²), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip.

  14. Design and Implementation of DC-DC Converter with Inc-Cond Algorithm

    OpenAIRE

    Mustafa Engin Basoğlu; Bekir Çakır

    2015-01-01

    The most important component affecting the efficiency of photovoltaic power systems are solar panels. In other words, efficiency of these systems are significantly affected due to the being low efficiency of solar panel. Thus, solar panels should be operated under maximum power point conditions through a power converter. In this study, design of boost converter has been carried out with maximum power point tracking (MPPT) algorithm which is incremental conductance (Inc-Co...

  15. Design of current source DC/DC converter and inverter for 2kW fuel cell application

    DEFF Research Database (Denmark)

    Andreiciks, A.; Steiks, I.; Krievs, O.

    2013-01-01

    In order to use hydrogen fuel cell in domestic applications either as main power supply or backup power source, the low DC output voltage of the fuel cell has to be matched to the voltage level and frequency of the utility grid AC voltage. The interfacing power converter systems usually consist...... system is designed for interfacing a 2kW proton exchange membrane (PEM) fuel cell....

  16. Zero-Voltage Switching PWM Strategy Based Capacitor Current-Balancing Control for Half-Bridge Three-Level DC/DC Converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The current imbalance among the two input capacitors is one of the important issues of the half-bridge threelevel (HBTL) DC/DC converter, which would affect system performance and reliability. In this paper, a zero-voltage switching (ZVS) pulse-wide modulation (PWM) strategy including two operation...

  17. Voltage regulation of the Y-source boost DC-DC converter considering effects of leakage inductances based on cascaded sliding-mode control

    DEFF Research Database (Denmark)

    Ahmadzadeh, Soheil; Markadeh, Gholamreza Arab; Blaabjerg, Frede

    2017-01-01

    In this study, a sliding mode-based controller is designed for regulating the output voltage of a high step-up DC-DC converter with three coupled inductors called Y-source impedance network. As Y-source converter can provide a very high boost at a lower shoot-through duty cycle of the switch...

  18. Input-Parallel Output-Parallel Three-Level DC/DC Converters With Interleaving Control Strategy for Minimizing and Balancing Capacitor Ripple Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Gong, Zheng

    2017-01-01

    In this paper, the input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters associated with the interleaving control strategy are proposed for minimizing and balancing the capacitor ripple currents. The proposed converters consist of two four-switch half-bridge three-level (HBTL) DC...

  19. High precision power supplies for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Olsen, R.; Langenbach, H.

    1987-04-01

    Since beam stability depends to a considerable degree on the stability of the magnet power supplies, and it is desired to push for 3 GeV operation, it was required that new power supplies be obtained for the quadrupoles and sextupoles. These power supplies were to have the lowest ripple that could be reasonably achieved, and were to have a current regulation of better than 10 PPM. In addition, since they operate over a 5 : 1 voltage range, it was considered desirable to ensure that they operated with a good power factor over the operating range. The dipole power supply was modified to use the techniques employed in the smaller supplies

  20. The AGS main magnet power supply upgrade

    International Nuclear Information System (INIS)

    Sandberg, J.N.; Casella, R.; Geller, J.; Marneris, I.; Soukas, A.; Schumburg, N.

    1995-01-01

    The AGS Main Magnet Power Supply consists of a group of thyristor controlled power converters that operate from full rectify to full invert. In order to minimize ripple during the critical periods of injection and extraction 24 pulse converters are used for these portions of the cycle. The maximum voltage available in this mode is nominally 2,000 volts. The converters that are functional during this portion of the cycle are called the flat-top bank or ''F'' bank modules. During acceleration and invert where voltages of up to 12,000 volts are needed and where the ripple requirements are less stringent, groups of twelve pulse converters are operational. These converters are called the Pulsed bank or ''P'' bank modules. The original controlled rectifier system consisted of 96 large mercury filled excitron tubes divided equally between the P bank and F bank converters. These devices were extremely durable and ran successfully for over twenty years. It was, decided to replace the excitron farm with multiple arrangements of three-phase, full-wave, bridge modules that utilize silicon controlled rectifiers (SCR's or thyristors) as the switching element. In order to match the existing transformer connections and buswork, eight identical modules were required; four for the P bank system and four for the F bank system. In order to reduce noise pickup and provide electrical isolation the high level SCR gate triggers are provided via fiberoptic cable. The status of various parameters such as water flow, auxiliary power supply performance, trigger circuitry failure, over voltage, overcurrent, and loss of phase reference are monitored via a programmable logic controller (PLCs). The PLCs use isolated input and output modules for various voltage levels from TTL to 150 Vdc to 125 Vac. These devices are extremely flexible and have allowed modifications and improvements that have enhanced the performance over any equivalent hard wired system

  1. Optimized control strategy for crowbarless solid state modular power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Badapanda, M.K.; Tripathi, A.; Hannurkar, P.R.; Pithawa, C.K.

    2009-01-01

    Solid state modular power supply with series connected IGBT based power modules have been employed as high voltage bias power supply of klystron amplifier. Auxiliary compensation of full wave inverter bridge with ZVS/ZCS operations of all IGBTs over entire operating range is incorporated. An optimized control strategy has been adopted for this power supply needing no output filter, making this scheme crowbarless and is presented in this paper. DSP based fully digital control with same duty cycle for all power modules, have been incorporated for regulating this power supply along with adequate protection features. Input to this power supply is taken directly from 11 kV line and the input system is intentionally made 24 pulsed to reduce the input harmonics, improve the input power factor significantly, there by requiring no line filters. Various steps have been taken to increase the efficiency of major subsystems, so as to improve the overall efficiency of this power supply significantly. (author)

  2. Highly-stabilized power supply for synchrotron accelerators. High speed, low ripple power supply

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kenji [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Kumada, Masayuki; Fukami, Kenji; Koseki, Shoichiro; Kubo, Hiroshi; Kanazawa, Toru

    1997-02-01

    In synchrotron accelerators, in order to utilize high energy beam effectively, those are operated by repeating acceleration and taking-out at short period. In order to accelerate by maintaining beam track stable, the tracking performance with the error less than 10{sup -3} in the follow-up of current is required for the power supply. Further, in order to maintain the intensity and uniformity of beam when it is taken out, very low ripple is required for output current. The power supply having such characteristics has been developed, and applied to the HIMAC and the SPring-8. As the examples of the application of synchrotrons, the accelerators for medical treatment and the generation of synchrotron radiation are described. As to the power supply for the deflection magnets and quadrupole magnets of synchrotron accelerators, the specifications of the main power supply, the method of reducing ripple, the method of improving tracking, and active filter control are reported. As to the test results, the measurement of current ripple and tracking error is shown. The lowering of ripple was enabled by common mode filter and the symmetrical connection of electromagnets, and high speed response was realized by the compensation for delay with active filter. (K.I.)

  3. Isolated high-efficiency DC/DC converter for photovoltaic applications

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Wijnands, C.G.E.; Duarte, J.L.

    2012-01-01

    While an increasing number of photovoltaic (PV) systems is installed, those systems typically use central inverters. In practical cases, output-power differences between PV modules will cause these central-inverter-based systems not to achieve Maximum Power Point (MPP) for each PV module.

  4. A driver IC for photovotaic module-integrated DC/Dc converters

    NARCIS (Netherlands)

    Doorn, T.S.; Bergveld, H.J.; Büthker, D.; Castello, C.; Jong, de A.; van Otten, R.; Waal, de K.; Ansem, van T.; Dijkstra, M.; Keekstra, I.; Sneep, J.

    2012-01-01

    Photovoltaic (PV) installations suffer from a disproportional decrease in output power in case irradiance differences are present in the system. The Delta converter improves the output power in such cases by routing current differences around the shaded substring or module. This paper presents a

  5. CBA main magnet power supply ripple reduction

    International Nuclear Information System (INIS)

    Bagley, G.; Edwards, R.J.

    1983-01-01

    The preliminary results of a development program to minimize beam perturbation resulting from ripple current generated by the CBA Main Magnet Power Supply are presented. The assessment of the magnitude and causes of the ripple generated led to a modification of the SCR Gate Driver and the addition of a bandpass amplifier correction loop which gave significant improvement. A description of the changes made and the results obtained are included. A second design approach was developed in which the timing of the SCR gate pulses is directly determined by a VCO. The results reported with this VCO Loop indicate superior performance particularly at frequencies below 60 Hz. A shunt transistor regulator design is proposed to minimize higher SCR switching frequency harmonics

  6. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  7. Neutron generator power supply modeling in EMMA

    International Nuclear Information System (INIS)

    Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S.; Merewether, K.O.

    1996-01-01

    Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia's ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described

  8. An Original Transformer and Switched-Capacitor (T & SC-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Boost Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2018-03-01

    Full Text Available In this article a new Transformer and Switched Capacitor-based Boost Converter (T & SC-BC is proposed for high-voltage/low-current renewable energy applications. The proposed T & SC-BC is an original extension for DC-DC boost converter which is designed by utilizing a transformer and switched capacitor (T & SC. Photovoltaic (PV energy is a fast emergent segment among the renewable energy systems. The proposed T & SC-BC combines the features of the conventional boost converter and T & SC to achieve a high voltage conversion ratio. A Maximum Power Point Tracking (MPPT controller is compulsory and necessary in a PV system to extract maximum power. Thus, a photovoltaic MPPT control mechanism also articulated for the proposed T & SC-BC. The voltage conversion ratio (Vo/Vin of proposed converter is (1 + k/(1 − D where, k is the turns ratio of the transformer and D is the duty cycle (thus, the converter provides 9.26, 13.88, 50/3 voltage conversion ratios at 78.4 duty cycle with k = 1, 2, 2.6, respectively. The conspicuous features of proposed T & SC-BC are: (i a high voltage conversion ratio (Vo/Vin; (ii continuous input current (Iin; (iii single switch topology; (iv single input source; (v low drain to source voltage (VDS rating of control switch; (vi a single inductor and a single untapped transformer are used. Moreover, the proposed T & SC-BC topology was compared with recently addressed DC-DC converters in terms of number of components, cost, voltage conversion ratio, ripples, efficiency and power range. Simulation and experimental results are provided which validate the functionality, design and concept of the proposed approach.

  9. Citizen preference assessment for power supply visions using choice experiments

    International Nuclear Information System (INIS)

    Nakatani, Jun; Tahara, Kiyotaka; Tanaka, Koji; Matsumoto, Shinya; Mizuno, Tateki

    2015-01-01

    In this paper, citizen preferences for power supply visions were assessed using choice experiments. In particular, preferences for the composition of power generation including renewable energy and nuclear power were analyzed. We also investigated how the need and consciousness for electricity saving affected the preferences for power supply visions. The results indicated that a respondent group who felt negative about resuming the operations at nuclear power plants had discriminative preferences for attributes of the power supply visions, and that the priority of carbon dioxide emissions as a criterion for evaluating the power supply visions became lower when the composition of power generation was presented. Consciousness for electricity saving, as well as preferences for nuclear power generation, differed depending on regions of residence, while their relationship was similar among respondent groups who lived in the jurisdictional areas of the electric power companies that had experienced risks of demand-supply gaps. (author)

  10. 46 CFR 113.43-5 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power supply. 113.43-5 Section 113.43-5 Shipping COAST... SYSTEMS AND EQUIPMENT Steering Failure Alarm Systems § 113.43-5 Power supply. Each steering failure alarm system must be supplied by a circuit that: (a) Is independent of other steering gear system and steering...

  11. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  12. Power supply system for KSTAR neutral beam injector

    International Nuclear Information System (INIS)

    Cho, W.; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-01-01

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  13. Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery

    Directory of Open Access Journals (Sweden)

    Mohamed Daowd

    2014-04-01

    Full Text Available Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small as possible. Without an appropriate balancing system, the individual cell voltages will differ over time and battery system capacity will decrease quickly. These issues will limit the electric range of the electric vehicle (EV and some cells will undergo higher stress, whereby the cycle life of these cells will be shorter. Quite a lot of cell balancing/equalization topologies have been previously proposed. These balancing topologies can be categorized into passive and active balancing. Active topologies are categorized according to the active element used for storing the energy such as capacitor and/or inductive component as well as controlling switches or converters. This paper proposes an intelligent battery management system (BMS including a battery pack charging and discharging control with a battery pack thermal management system. The BMS user input/output interfacing. The battery balancing system is based on battery pack modularization architecture. The proposed modularized balancing system has different equalization systems that operate inside and outside the modules. Innovative single switched capacitor (SSC control strategy is proposed to balance between the battery cells in the module (inside module balancing, IMB. Novel utilization of isolated bidirectional DC/DC converter (IBC is proposed to balance between the modules with the aid of the EV auxiliary battery (AB. Finally an experimental step-up has been implemented for the validation of the

  14. High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Petersen, Lars Press

    2017-01-01

    The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....

  15. Redundancy proves its worth in FR Germany [emergency power supplies

    International Nuclear Information System (INIS)

    Simon, M.

    1987-01-01

    An analysis of loss of power events at nuclear power stations in FR Germany has confirmed the data used in the German risk study and underlined the advantages of providing a high degree of redundancy in emergency power supplies. (author)

  16. Design and analysis of a full bridge LLC DC-DC converter for ...

    Indian Academy of Sciences (India)

    Veera Venkata Subrahmanya Kumar Bhajana

    2018-06-07

    Jun 7, 2018 ... switches to improve the overall system efficiency. This paper describes ..... Education, Youth and Sports of the Czech Republic under the Regional ... [3] Mermet-Guyennet M 2010 New power technologies for traction drives.

  17. Energy harvesting using TEG and PV cell for low power application

    Science.gov (United States)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  18. Power supply controlled for plasma torch generation

    International Nuclear Information System (INIS)

    Diaz Z, S.

    1996-01-01

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named 'Destruction of hazard wastes by thermal plasma' actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR's; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author)

  19. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  20. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...

  1. High Efficiency Non-isolated Three Port DC-DC Converter for PV-Battery Systems

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe

    2016-01-01

    This paper presents a nonisolated Three Port Converter (TPC) with a unidirectional port for photovoltaic (PV) panels and a bidirectional port for energy storage. With the proposed topology single power conversion is performed between each port, so high efficiencies are obtained. A theoretical...

  2. Control and modulation for loss minimization for dc/dc converters in wind farm

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne

    2016-01-01

    For a DC wind turbine, a single phase series-resonant converter for unidirectional power is studied. This paper aims to identify and compare impact on electrical losses and component ratings from the choice of three candidate control strategies. The evaluation is purely based on circuit simulatio...

  3. Multi-cell DC-DC converter with high step-down voltage ratio

    NARCIS (Netherlands)

    Tibola, G.; Duarte, J.L.; Blinov, A.

    2015-01-01

    The use of high voltage allows a power processing system to operate with low currents, improving efficiency. Nevertheless, final applications usually require low voltage inlet, which can be provided using modular multilevel converters submodules, for instance. However, every submodule's gate-unit

  4. Electric Power Supply Chain Management Addressing Climate Change

    DEFF Research Database (Denmark)

    Wang, Xiao-Hui; Cong, Ronggang

    2012-01-01

    Supply chain management played a critical role in the electric power industrial chain optimization. The purpose of this paper was to review a sample of the literature relating to supply chain management and its possible applications in electricity power system, especially in the context of climate...... change. The study compared the difference between electric power supply chain management and traditional supply chain management. Furthermore, some possible research topics are addressed. The aim of this paper was to promote the application of supply chain management in the China electricity sector...

  5. 46 CFR 113.25-6 - Power supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power supply. 113.25-6 Section 113.25-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT General Emergency Alarm Systems § 113.25-6 Power supply. The emergency power source...

  6. Electric power supply in an offshore oil production platform | Ibe ...

    African Journals Online (AJOL)

    powered UPS system with a rotary engine UPS which can provide long-term power supply back-up as well as the benefits of rotating machines. KEY WORDS: Offshore, Platform, Power Supply, Gas turbine, Rotary Diesel UPS. [Global Jnl ...

  7. 47 CFR 80.917 - Reserve power supply.

    Science.gov (United States)

    2010-10-01

    ... power supply must be adequately treated to prevent freezing or overheating consistent with the season... 47 Telecommunication 5 2010-10-01 2010-10-01 false Reserve power supply. 80.917 Section 80.917... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.917 Reserve power...

  8. One of the power supplies used for electrostatic separators

    CERN Multimedia

    1975-01-01

    Internal part of a power supply SAME (± 600 kV, 4 mA). These power supplies were used to power the electrodes (positive and negative), 1 to 9 m length, within a conditioned tank with Ne (30%)/He (70%) at less than a thousandth of mbar. Here, Michel Zahnd, Jean Chaminaud

  9. 47 CFR 80.965 - Reserve power supply.

    Science.gov (United States)

    2010-10-01

    ... conditions. When meeting this 2 hour requirement, such reserve power supply must be located on the bridge... radiotelephone must be a “reserve power supply” for the purposes of paragraphs (c), (d) and (e) of this section... meeting the requirements of paragraph (a) of this section as follows: (1) When the reserve power supply...

  10. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  11. Three-Port dc-dc Conversion in Light-to-Light Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen

    conversion efficiency under low irradiation conditions. This work is part of a Ph.D. research project to study the feasibility of implementing three-port converter (TPC) topologies in solar powered LED, light-to-light (LtL) systems. After the introduction in Chapter 1, an overview of the state-of-the art...... conventional light sources based on heated filaments (incandescent and halogen) and gas discharge (fluorescent, sodium, etc). The rapid development of this technology makes it possible to replace the conventional technologies towards high brightness LED lighting systems. The combination of these technologies......—solar cells, energy storage elements and LEDs—in a stand-alone solar powered LED system, can provide light where otherwise it would be cumbersome; in rural areas, where cabling can be challenging and expensive, and also in the urban environment, where the cost of digging and construction is very expensive...

  12. A simple approach for fast controller prototyping for a three phase interleaved DC-DC converter

    OpenAIRE

    Gavriluta, Catalin; Citro, Costantino; Nisak, Khairul; Beltrán San Segundo, Héctor

    2012-01-01

    Initial control prototyping in power electronics is often a matter of trial and error because of the complicated mathematics involved in modeling systems based on their internal structure. Moreover, in practice, small changes as the introduction of a measurement filter or the change of the sensing system appear all the time. If the controller design method was based on the internal structure of the system, then these small changes would mean a re-iteration through all the cumbersome equati...

  13. High Efficiency Non-isolated Three Port DC-DC Converter for PV-Battery Systems

    OpenAIRE

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe; Ouyang, Ziwei; Franke, Toke

    2016-01-01

    This paper presents a nonisolated Three Port Converter (TPC) with a unidirectional port for photovoltaic (PV) panels and a bidirectional port for energy storage. With the proposed topology single power conversion is performed between each port, so high efficiencies are obtained. A theoretical analysis is carried out to analyze all operating modes and design considerations with the main equations are given. A 4kW laboratory prototype is developed and tested under all operatingconditions. Resul...

  14. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters

    Science.gov (United States)

    2018-01-01

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455

  15. Stability analysis of a high-step-Up DC grid-connected two-stage boost DC-DC converter

    Directory of Open Access Journals (Sweden)

    El Aroudi A.

    2014-01-01

    Full Text Available High conversion ratio switching converters are used whenever there is a need to step-up dc source voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. However these criteria may not be applicable for the complete cascaded system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subharmonic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two-different stages.

  16. A ripple-mitigating pre-amplifier based on interleaved DC-DC boost converters for efficiency improvement

    Directory of Open Access Journals (Sweden)

    Eliana Arango

    2011-01-01

    Full Text Available Este artículo propone un pre-amplificador basado en convertidores DC-DC conectados en paralelo para la reducción de armónicos inyectados a fuentes de potencia. Las principales características del pre-amplificador son la reducción del rizado de corriente de entrada en convertidores de potencia, incrementado además la eficiencia del sistema de conversión. Se describe el cálculo de las condiciones óptimas de operación del pre-amplificador, así como su modelado matemático y control para operar en las condiciones seleccionadas. Así mismo, se analiza el pre-amplificador con un convertidor elevador clásico, obteniendo una reducción significativa en el rizado de corriente inyectado a la fuente, así como un incremento en la eficiencia del sistema. Finalmente, los análisis teóricos se confirman a través de simulaciones circuitales y resultados experimentales.

  17. Electric power supply for a mine: Principles and examples

    International Nuclear Information System (INIS)

    Mienville, G.; Grellety, J.

    1990-01-01

    The power supply of a water pumping system at the PEN or RAN mine is studied. A reliable pumping system was required because of the small volume of the available drainage reservoirs. Different power supply systems are considered. The 20 RV system configuration and adapted safety devices are described. The use of a generating set was required to ensure the mine operations. The power supply system in use allowed a reduction of the electricity cost [fr

  18. Analog circuit design : low voltage low power; short range wireless front-ends; power management and DC-DC

    NARCIS (Netherlands)

    Steyaert, M.; Roermund, van A.H.M.; Baschirotto, A.

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art

  19. Soft Switching Full-Bridge PWM DC/DC Converter Using Secondary Snubber

    Directory of Open Access Journals (Sweden)

    Jaroslav Dudrik

    2009-05-01

    Full Text Available A novel full-bridge PWM DC/DCconverter with controlled secondary side rectifier usingsecondary snubber is presented in this paper.Limitation of the circulating current as well as softswitching for all power switches of the inverter isachieved for full load range from no-load to shortcircuit by using controlled rectifier and snubber on thesecondary side. Phase shift PWM control strategy isused for the converter. The principle of operation isexplained and analyzed and the experimental resultson a 1kW, 50 kHz laboratory model of the converterare presented.

  20. Design of digital logic control for accelerator magnet power supply

    International Nuclear Information System (INIS)

    Long Fengli; Hu Wei; Cheng Jian

    2008-01-01

    For the accelerator magnet power supply, usually the Programmable Logic Controller (PLC) is used to server as the controller for logic protection and control. Along with the development of modern accelerator technology, it is a trend to use fully-digital control to the magnet power supply. It is possible to integrate the logic control part into the digital control component of the power supply, for example, the Field Programmable Gate Array (FPGA). The paper introduces to different methods which are designed for the logic protection and control for accelerator magnet power supplies with the FPGA as the control component. (authors)