WorldWideScience

Sample records for dc squid readout

  1. Design of a hysteretic SQUID as the readout for a dc SQUID

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper present a design for an optimal hysteretic SQUID readout circuit for a DC SQUID, thus eliminating the need for bulky output transformers or resonance matching circuits. The hysteretic readout system, which is based in part on standard sampling theory, is compared to another similar system and shown to be superior in terms of slew rate and immunity of electromagnetic interference. The circuit will be useful in optimizing the performance of biomagnetic systems

  2. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Science.gov (United States)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  3. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    International Nuclear Information System (INIS)

    Bechstein, S; Petsche, F; Scheiner, M; Drung, D; Thiel, F; Schnabel, A; Schurig, Th

    2006-01-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-T c dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented

  4. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Bechstein, S [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Petsche, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Scheiner, M [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Drung, D [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Thiel, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schnabel, A [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schurig, Th [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/{radical}Hz was specially designed for a 304-channel low-T{sub c} dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  5. SQUIDs for the readout of metallic magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2015-07-01

    Superconducting quantum interference devices (SQUIDs) are the devices of choice to read out metallic magnetic calorimeters (MMCs). Here, the temperature change of the detector upon the absorption of an energetic particle is measured as a magnetization change of a paramagnetic temperature sensor that is situated in a weak magnetic field. Driven by the need for devices that allow for the readout of large-scale detector arrays with hundreds or even thousands of individual detectors as well as of single channel detectors with sub-eV energy resolution, we have recently started the development of low-T{sub c} current-sensing SQUIDs. In particular, we are developing cryogenic frequency-domain multiplexers based on non-hysteretic rf-SQUIDs for detector array readout as well as dc-SQUIDs for single channel detector readout. We discuss our SQUID designs and the performance of prototype SQUIDs. We particularly focus on the frequency and temperature dependence of the SQUID noise as well as the reliability of our SQUID fabrication process for Nb/Al-AlO{sub x}/Nb Josephson junctions. Additionally, we demonstrate experimentally that state-of-the-art MMCs can successfully be read out with our current devices. Finally, we discuss different strategies to improve the SQUID and detector performance aiming to reach sub-eV energy resolution for individual detectors as well as for detector arrays.

  6. Compact integrated dc SQUID gradiometer

    Science.gov (United States)

    de Waal, V. J.; Klapwijk, T. M.

    1982-10-01

    An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17×12 mm and a sensitivity of 3.5×10-12 T m-1 Hz-1/2.

  7. Compact integrated dc SQUID gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Klapwijk, T.M.

    1982-10-01

    An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17 x 12 mm and a sensitivity of 3.5 x 10/sup -12/ T m/sup -1/ Hz/sup -1/2/.

  8. Double-barrier junction based dc SQUID

    NARCIS (Netherlands)

    Bartolomé, M.E.; Brinkman, Alexander; Flokstra, Jakob; Golubov, Alexandre Avraamovitch; Rogalla, Horst

    2000-01-01

    dc SQUIDs based on double-barrier Nb/Al/AlOx/Al/AlOx/Al/Nb junctions (DBSQs) have been fabricated and tested for the first time. The current–voltage curves have been measured at temperatures down to 1.4 K. The critical current, Ic, dependence on the temperature T is partially described by the

  9. Well coupled, low noise, dc SQUIDS

    International Nuclear Information System (INIS)

    Muhlfelder, B.; Beall, J.A.; Cromar, M.W.; Johnson, W.W.; Ono, R.H.

    1985-01-01

    The authors have designed, fabricated, and tested a Double Transformer (DT) coupled dc SQUID (Superconducting Quantum Interference Device) with low noise, an input inductance of 1μH and a smooth input-output characteristic. A transmission line model is presented to explain a resonance in the input-output characteristic of early versions of this device. Guided by the results of numerical simulations a new version of this device has been built and tested. Experimental results are presented that show that the resonance can be moved to a higher voltage by reducing the area of the SQUID loop. The voltage-external flux characteristic of some of these new devices agrees to within 10% with computer simulations. The minimum detectable energy per unit bandwidth (MDE) referred to the SQUID loop, is 10h, where h is Planck's constant. Computer simulations indicate an MDE of 6h

  10. Macroscopic quantum tunneling in a dc SQUID

    International Nuclear Information System (INIS)

    Chen, Y.C.

    1986-01-01

    The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID whose dynamics can be described by a two-dimensional mechanical system with a dissipative environment. Based on the phenomenological model proposed by Caldeira and Leggett, the dissipative environment is represented by a set of harmonic oscillators coupling to the system. After integrating out the environmental degrees of freedom, an effective Euclidean action is found for the two-dimensional system. The action is used to provide the quantum tunneling rate formalism for the dc SQUID. Under certain conditions, the tunneling rate reduces to that of a single current-biased Josephson junction with an adjustable effective critical current

  11. Radiation detection from phase-locked serial dc SQUID arrays

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Mygind, Jesper; Pedersen, Niels Falsig

    1993-01-01

    We report on synchronous operation of series arrays of inductively coupled superconducting quantum interference devices (SQUIDs). Each array consisted of N=3 or 11 dc SQUIDs with common inductances providing a strong interaction between neighboring cells. Externally shunted (betac[approximately-e......We report on synchronous operation of series arrays of inductively coupled superconducting quantum interference devices (SQUIDs). Each array consisted of N=3 or 11 dc SQUIDs with common inductances providing a strong interaction between neighboring cells. Externally shunted (betac...

  12. Directly coupled YBCO dc SQUID magnetometers

    International Nuclear Information System (INIS)

    Petersen, P.R.E.; Shen, Y.Q.; Holst, T.; Larsen, B.H.; Sager, M.P.; Bindslev Hansen, J.

    1999-01-01

    YBa 2 Cu 3 O 7- x magnetometers have been made on 10mmx10mm MgO substrates by directly coupling the magnetometer pick-up loop to a dc SQUID with narrow strip lines. The dc SQUIDs were made with YBa 2 Cu 3 O 7-x step-edge Josephson junctions. The layout of the magnetometer pick-up loop was chosen as a compromise between maximizing the loop effective area and minimizing the loop inductance. The SQUID was designed to have L S ∼100 pH in order to obtain β L =2I 0 L S /Φ 0 approx.= 1 with the single-junction critical current I 0 ∼10 μA. We have made magnetometers with white noise levels down to 55 fT Hz -1/2 and a 1/f knee at 1 Hz (ac biased). Noise measurements were made on a field-cooled magnetometer. The noise measured at 1 Hz when cooled in 'zero field' was 175 fT Hz -1/2 . When cooled in magnetic fields of B = 50 μT and B = 100 μT we measured the noise at 1 Hz to be 430 fT Hz -1 2 and 1.3 pT Hz -1/2 , respectively. (author)

  13. Fundamental characteristics of the QFP measured by the dc SQUID

    International Nuclear Information System (INIS)

    Shimizu, N.; Harada, Y.; Miyamoto, N.; Hosoya, M.; Goto, E.

    1989-01-01

    This paper describes the fundamental characteristics of the Quantum Flux Parametron (QFP) measured by a new method in which the output signals of the QFP are detected with a dc SQUID. The dc SQUID linearly and continuously converts the output current of the QFP to voltage, allowing the output signal of the QFP to be measured as the voltage of the dc SQUID. Thus, the fundamental characteristics of the QFP have been experimentally confirmed in detail

  14. Computer model for noise in the dc Squid

    International Nuclear Information System (INIS)

    Tesche, C.D.; Clarke, J.

    1976-08-01

    A computer model for the dc SQUID is described which predicts signal and noise as a function of various SQUID parameters. Differential equations for the voltage across the SQUID including the Johnson noise in the shunted junctions are integrated stepwise in time

  15. Hot electron effect in the dc SQUID

    International Nuclear Information System (INIS)

    Wellstood, F.C.; Clarke, J.; Urbina, C.

    1989-01-01

    The authors have investigated the temperature dependence of the noise in thin-film dc Superconducting Quantum Interference Devices (SQUIDs) down to 20 mK. The white noise measured in the early versions of our SQUIDs did not decrease as the bath temperature was lowered below 150 mK. They have attributed this saturation to a hot electron effect in the thin-film AuCu resistors shunting the Josephson junctions. A theoretical investigation showed that the temperature of the electrons in the shunts should be given by T/sub e/ = (P/ΣΩ)/sup 1/5/, where P is the power dissipated in the shunts, Ω is the shunt volume, and Σ is a proportionality constant. Experimentally, the authors found Σ=(2.4+-0.6)X10/sup 9/WK/sup -5/m/sup -3/. They have redesigned the shunts, adding large thin-film cooling fins, to increase their volume substantially. This technique has reduced T/sub e/ to about 50 mK, with a corresponding improvement in the sensitivity of the SQUIDs

  16. Low noise niobium dc SQUID with a planar input coil

    Science.gov (United States)

    de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.

    1983-02-01

    A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.

  17. Low noise niobium dc SQUID with a planar input coil

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; van den Hamer, P.; Klapwijk, T.M.

    1983-02-15

    A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4 x 10/sup -32/ J/Hz. A 20-turn 1.2-..mu..H input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1 x 10/sup -30/ J/Hz.

  18. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    International Nuclear Information System (INIS)

    Heaney, M.B.

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al 2 O 3 /Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10 17 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO 3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  19. Inductance-dependent characteristics of HTS dc-SQUID amplifiers

    International Nuclear Information System (INIS)

    Mitchell, E.E.; Tilbrook, D.L.; Foley, C.P.; MacFarlane, J.

    2002-01-01

    Full text: We have experimentally determined the transfer function V Φ and noise S Φ of several high temperature superconducting (HTS) dc SQUIDs of increasing loop size, while they were operated (without input flux transformer) in a small-signal-amplifier (open-loop) mode. A primary aim of our investigation was to provide reliable inductance data to aid our design of subsequent magnetometer devices. Flux was induced by means of current injection via a well-defined stripline directly into the SQUID loop. The loop size was systematically incremented in a range of otherwise similar SQUIDs. For each SQUID, the ratio between the induced flux and the injection current (which we define as the coupling inductance of the device, L c ) was measured as a function of the injection path length and the SQUID loop dimensions. Both L c and the derived SQUID self-inductance, L sq , were then compared with theoretical values, and contributions due to kinetic inductance and junction inductance were estimated. Correlations between the inductance data and our measured values of transfer function V Φ and noise S Φ were compared with previous results. Guidelines for optimisation of gradiometer SQUIDs were established, and in particular, the importance of achieving a large value transfer function together with a relatively small inductance was demonstrated. The strong influence of an enhanced transfer function was further emphasised when an order-of-magnitude reduction in noise was achieved by subjecting one of our SQUIDs to an in-house 'ion-beam trimming' process

  20. Dc-SQUID sensor system for multichannel neuromagnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Houwman, E.P.; Veldhuis, D.; Flokstra, ter Brake, H.J.M.; Jaszczuk, W.; Rogalla, H. (Univ. of Twente, Faculty of Applied Physics, P.O. Box 217, 7500 AE Enschede (NL)); Martinez, A. (Universidad de Zaragoza, E.T.S.I.I. Maria Zambrano 50, 50015 Zaragoza (ES))

    1991-03-01

    This paper reports on various DC-SQUID sensor configurations developed for use in the authors' 19-channel neuromagetometer. Apart from the standard type, resistively and indictively shunted SQUIDs were made, allowing for a large screening factor {beta} ({gt}1). In this way signal coupling from the pick-up coil to the SQUID is facilitated and capactive coupling between the input coil and the SQUID washer can be decreased. The number of turns of the input coil is decreased further by allowing for an inductance mismatch in the input circuit. Although theoretically both measures give rise to an increased field noise of the sensor, they may lead to a reduction of the excess noise and the noise balance may become positive.

  1. High-performance DC SQUIDs with submicrometer niobium Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Klapwijk, T.M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.

  2. High-performance dc SQUIDs with submicrometer niobium Josephson junctions

    Science.gov (United States)

    de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.

  3. Flicker (1/f) noise in tunnel junction DC SQUIDS

    International Nuclear Information System (INIS)

    Koch, R.H.; Clarke, J.; Goubau, W.M.; Martinis, J.M.; Pegrum, C.M.; Van Harlingen, D.J.

    1983-01-01

    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 10 4 μm 2 , but significantly overestimates the noise for junctions with areas of about 6 μm 2 . DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10 -10 /f)phi 2 0 Hz -1 . It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies

  4. Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs

    International Nuclear Information System (INIS)

    Frack, E.K.; Drake, R.E.; Patt, R.; Radparvar, M.

    1991-01-01

    This paper reports on the fabrication of hybrid low T c /high T c dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO 2 insulation layer over YBCO, and 3. selective patterning of niobium and SiO 2 relative to YBCO. All these process steps are pertinent to the eventual use of YBCO thin films in electronic devices

  5. Measurements of the dynamic input impedance of a dc SQUID

    International Nuclear Information System (INIS)

    Hilbert, C.; Clarke, J.

    1985-01-01

    The impedance of a circuit coupled magnetically via a mutual inductance M/sub i/ to a dc SQUID of geometric inductance L is modified by the dynamic input impedance of the SQUID, which can be characterized by the flux-to-current transfer function J/sub Phi/approx. =partialJ/partialPhi; J is the current circulating in the SQUID loop and ∫ is the flux applied to the loop. At the same time, the SQUID is modified by the presence of the input circuit in the lumped circuit approximation, one expects its inductance to be reduced to L'(1-α/sub e/ 2 )L, where α/sub e/ is an effective coupling coefficient. Calculations of J/sub Phi/ using an analog simulator are described and presented in the form of a dynamic inductance L and a dynamic resistance R versus bias current I and Phi. Experimental measurements of L and R were made on a planar, thin-film SQUID tightly coupled to a spiral input coil that was connected in series with a capacitor C/sub i/ to form a resonant circuit. Thus, J/sub Phi/ was determined from the change in the resonant frequency and quality factor of this circuit as a function of I and Phi. At low bias currents (low Josephson frequencies) the measured values of L were in reasonable agreement with values simulated for the reduced SQUID, while at higher bias currents (higher Josephson frequencies) the measured values were in better agreement with values simulated for the unscreened SQUID. Similar conclusions were reached in the comparison of the experimental and simulated values of the flux-to-voltage transfer function V/sub Phi/

  6. Simulation and optimization of a dc SQUID with finite capacitance

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise an the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT = 1.2 and 5 nHK. Within a range of ..beta.. and ..beta../sub c/ between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 nHK.

  7. Simulation and optimization of a dc SQUID with finite capacitance

    Science.gov (United States)

    de Waal, V. J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 mH K.

  8. Low-frequency nuclear quadrupole resonance with a dc SQUID

    International Nuclear Information System (INIS)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs

  9. Thermal activation and macroscopic quantum tunneling in a DC SQUID

    International Nuclear Information System (INIS)

    Sharifi, F.; Gavilano, J.L.; VanHarlingen, D.J.

    1989-01-01

    The authors report measurements of the transition rate from metastable minima in the two-dimensional 1 of a dc SQUID as a function of applied flux temperature. The authors observe a crossover from energy-activated escape to macroscopic quantum tunneling at a critical temperature. The macroscopic quantum tunneling rate is substantially reduced by damping, and also broadens the crossover region. Most interestingly, the authors observe thermal rates that are suppressed from those predicted by the two-dimensional thermal activation model. The authors discuss possible explanations for this based on the interaction of the macroscopic degree of freedom in the device and energy level effects

  10. Coherent arrays of planar dc-SQUIDS based on thin-film Josephson microbridges

    International Nuclear Information System (INIS)

    Hansen, J.B.

    1982-01-01

    Phase-locking and voltage-locking in systems consisting of two planar dc-SQUIDs located close together in the same superconducting film have been investigated. The locking strength was found to be strongly dependent on the fluxoid state of both SQUIDs. A simple model for the inductive coupling between two such dc-SQUIDs is presented and the prediction of the model is compared with the experimental results. (Auth.)

  11. SQUID readout multiplexers for transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: atl@physics.berkeley.edu

    2006-04-15

    Two classes of SQUID multiplexer are being developed for large arrays of cryogenic sensors, distinguished by their operation in either the time domain or frequency domain. Several systems optimized for use with Transition-Edge Sensors (TES) are reaching a high level of maturity, and will be deployed on funded astrophysics experiments in the next several years. A useful technical figure of merit is the product of the number of detectors multplexed multipled by the bandwidth of the detectors, which can be termed the 'total signal bandwidth' of a multiplexer system. This figure of merit is comparable within a factor of two for the mature systems. Several new concepts for increasing the total bandwidth are being developed in the broad class of frequency domain multiplexers. Another notable area of progress is in the level of integration of muliplexer and detector array. The time domain system for SCUBA-II is a sophisticated bump-bonded sandwich structure, and the Jena/MPI group is integrating detectors and a time domain multiplexer on one substrate. Finally, the Kinetic Inductance Detectors (KID)/HEMT (non-SQUID) detector/multiplexer system, will be discussed briefly.

  12. Design consideration for dc SQUIDs fabricated in deep sub-micron technology

    International Nuclear Information System (INIS)

    Ketchen, M.B.

    1991-01-01

    Design rules for scaling dc SQUID junctions to optimize SQUID performance have been well known for over a decade, and verified down to the sub-micron regime. Practical SQUIDs having well coupled input coils of usable inductance have generally been fabricated at the 2-5 μm level of lithography. Other technologies, silicon in particular, are now routinely practiced at the 0.5 μm level of lithography with impressive demonstrations at the 0.1-0.25 μm level not uncommon. In this paper the implications of applying such fabrication capability to advance dc SQUID technology are explored. In particular the issues of scaling practical dc SQUIDs down to the 0.1-0.25 μm regime are examined, using as a prototype design the basic washer SQUID with a spiral input coil

  13. Multichannel DC SQUID sensor array for biomagnetic applications

    International Nuclear Information System (INIS)

    Hoenig, H.E.; Daalmans, G.M.; Bar, L.; Bommel, F.; Paulus, A.; Uhl, D.; Weisse, H.J.; Schneider, S.; Seifert, H.; Reichenberger, H.; Abraham-Fuchs, K.

    1991-01-01

    This paper reports on a biomagnetic multichannel system for medical diagnosis of brain and heart KRENIKON has been developed. 37 axial 2st order gradiometers - manufactured as flexible superconducting printed circuits - are arranged in a circular flat array of 19 cm diameter. Additionally, 3 orthogonal magnetometers are provided. The DC SQUIDs are fabricated in all-Nb technology, ten on a chip. The sensor system is operated in a shielded room with two layers of soft magnetic material and one layer of Al. The every day noise level is 10 fT/Hz 1/2 at frequencies above 10 Hz. Within 2 years of operation in a normal urban surrounding, useful clinical applications have been demonstrated (e.g. for epilepsy and heart arrhythmias)

  14. SiGe Integrated Circuit Developments for SQUID/TES Readout

    Science.gov (United States)

    Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.

    2018-03-01

    SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.

  15. dc readout experiment at the Caltech 40m prototype interferometer

    International Nuclear Information System (INIS)

    Ward, R L; Adhikari, R; Abbott, B; Abbott, R; Bork, R; Fricke, T; Heefner, J; Ivanov, A; Miyakawa, O; Smith, M; Taylor, R; Vass, S; Waldman, S; Weinstein, A; Barron, D; Frolov, V; McKenzie, K; Slagmolen, B

    2008-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

  16. Temperature-dependent performance of all-NbN DC-SQUID magnetometers

    Science.gov (United States)

    Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen

    2017-05-01

    Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.

  17. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    Science.gov (United States)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  18. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  19. Noise characteristics of a dc SQUID with a resistively shunted inductance

    International Nuclear Information System (INIS)

    Enpuku, K.; Muta, T.; Yoshida, K.; Irie, F.

    1985-01-01

    Noise characteristics of a dc SQUID with an inductance shunted by a damping resistance are studied numerically. It is shown that the damping resistance improves considerably the resolution of the SQUID in the case of large β, where β = 2LI 0 /Phi 0 , I 0 is a critical current, L is a loop inductance and Phi 0 is the flux quantum. The energy resolutions for β = 4 and β = 10 are only about 2 and 4 times larger than that for β = 1, respectively. Furthermore, the ranges of both the bias current and the external flux, where good resolution is obtained, become very wide compared with the conventional SQUID. Therefore, the SQUID with the damping resistance can be used for large β (or L) without the significant degradation of the resolution, and will much improve the coupling properties between the SQUID and the input circuitry. The numerical simulation results are also compared with analytical ones, and a reasonable agreement is obtained

  20. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  1. Temperature dependence of the effective sensing area of high-Tc dc SQUIDs

    International Nuclear Information System (INIS)

    Brake, H.J.M. ter; Aarnink, W.A.M.; Bosch, P.J. van den; Hilgenkamp, J.W.M.; Flokstra, J.; Rogalla, H.

    1997-01-01

    The effective sensing area of a high-T c dc SQUID depends on temperature. As a consequence, fluctuations in the operating temperature result in apparent magnetic field noise if the SQUID is placed in a background magnetic field. An analysis of this effect for two SQUID types, the square-washer 'Ketchen' type and the inductively shunted type, is performed. For magnetocardiography, the temperature fluctuations (peak to peak) of the latter SQUID type should be below w 0.3 mK at 77 K, and below 2 mK at 55 K, with an earth's field suppression of 40 dB. For the square-washer SQUID the requirements are about 8 times less stringent. (author)

  2. High-T /SUB c/ Superconducting integrated circuit: a dc SQUID with input coil

    International Nuclear Information System (INIS)

    Di Iorio, M.S.; Beasley, M.R.

    1985-01-01

    We have fabricated a high transition temperature superconducting integrated circuit consisting of a dc SQUID and an input coupling coil. The purpose is to ascertain the generic problems associated with constructing a high-T /SUB c/ circuit as well as to fabricate a high performance dc SQUID. The superconductor used for both the SQUID and the input coil is Nb 3 Sn which must be deposited at 800 0 C. Importantly, the insulator separating SQUID and input coil maintains its integrity at this elevated temperature. A hole in the insulator permits contact to the innermost winding of the coil. This contact has been achieved without significant degradation of the superconductivity. Consequently, the device operates over a wide temperature range, from below 4.2 K to near T /SUB c/

  3. High-Tc dc-SQUID gradiometers in flip-chip configuration

    International Nuclear Information System (INIS)

    Peiselt, K; Schmidl, F; Linzen, S; Anton, A S; Huebner, U; Seidel, P

    2003-01-01

    We describe a new design of a gradiometric flip-chip antenna, which is inductively coupled to a dc-SQUID gradiometer. Both components are patterned out of thin films of the high-T c superconductor YBa 2 Cu 3 O 7-x (YBCO). For the flip-chip antenna, a 40 mm x 10 mm SrTiO 3 single crystalline substrate is used, while the gradiometer sensors are prepared on 10 mm x 10 mm SrTiO 3 bicrystal substrates. Special attention is paid to the inductive coupling between the flip-chip antenna and the read-out gradiometer antenna. We investigate different designs of coupling loops in order to optimize the coupling inductance between both components of the sensor. With optimized coupling the sensor achieves a field-gradient resolution of 12 fT cm -1 Hz -1/2 in the white noise region and of 310 fT cm -1 Hz -1/2 at 1 Hz in the unshielded laboratory environment

  4. High-Tc dc-SQUID gradiometers in flip-chip configuration

    Science.gov (United States)

    Peiselt, K.; Schmidl, F.; Linzen, S.; Anton, A. S.; Hübner, U.; Seidel, P.

    2003-12-01

    We describe a new design of a gradiometric flip-chip antenna, which is inductively coupled to a dc-SQUID gradiometer. Both components are patterned out of thin films of the high-Tc superconductor YBa2Cu3O7-x (YBCO). For the flip-chip antenna, a 40 mm × 10 mm SrTiO3 single crystalline substrate is used, while the gradiometer sensors are prepared on 10 mm × 10 mm SrTiO3 bicrystal substrates. Special attention is paid to the inductive coupling between the flip-chip antenna and the read-out gradiometer antenna. We investigate different designs of coupling loops in order to optimize the coupling inductance between both components of the sensor. With optimized coupling the sensor achieves a field-gradient resolution of 12 fT cm-1 Hz-1/2 in the white noise region and of 310 fT cm-1 Hz-1/2 at 1 Hz in the unshielded laboratory environment.

  5. Direct readout flux locked loop circuit with automatic tuning of bias current and bias flux for high-Tc SQUID

    International Nuclear Information System (INIS)

    Hirano, T.; Nagaishi, T.; Itozaki, H.

    1999-01-01

    Measurement of high-frequency magnetic signals has been required from some SQUID applications. We fabricated a high-T c SQUID magnetic sensor system that can treat high-frequency signals. This system is composed of a SQUID, a preamplifier circuit, a flux locked loop (FLL) circuit with I/O and a personal computer and a PC card. We used the FLL circuit with no modulation to treat the high-frequency signal and to simplify the circuit. This system can treat a signal from dc to 1 MHz. All the sequence from tuning the SQUID to data acquisition can be done by a personal computer. This system successfully realized easy operation of SQUID measurement. (author)

  6. Influence of inductance induced noise in an YBa2Cu3O7 dc-SQUID at high operation temperatures

    DEFF Research Database (Denmark)

    Nilsson, P. Å.; Claeson, T.; Hansen, J. B.

    1994-01-01

    The voltage modulation depth of a high T(c) dc-SQUID was measured at temperatures close to T(c) and compared to a model by Enpuku et al. where the flux noise from the SQUID inductance is taken into account. The device was an YBa2Cu3O7 dc-SQUID made on a bicrystal substrate of SrTiO3. The design w...

  7. Second order gradiometer and dc SQUID integrated on a planar substrate

    Science.gov (United States)

    van Nieuwenhuyzen, G. J.; de Waal, V. J.

    1985-02-01

    An integrated system of a thin-film niobium dc superconducting quantum interference device (SQUID) and a second order gradiometer on a planar substrate is described. The system consists of a dc SQUID with eight loops in parallel, each sensitive to the second derivative ∂2Bz/∂x2 of the magnetic field. The calculated SQUID inductance is 1.3 nH. With an overall size of 16×16.5 mm2 a sensitivity of 1.5×10-9 Tm-2 Hz-1/2 is obtained. The measured transfer function for uniform fields perpendicular to the plane of the gradiometer is 2.1×10-7 T Φ-10.

  8. Second order gradiometer and dc SQUID integrated on a planar substrate

    Energy Technology Data Exchange (ETDEWEB)

    van Nieuwenhuyzen, G.J.; de Waal, V.J.

    1985-02-15

    An integrated system of a thin-film niobium dc superconducting quantum interference device (SQUID) and a second order gradiometer on a planar substrate is described. The system consists of a dc SQUID with eight loops in parallel, each sensitive to the second derivative partial/sup 2/B/sub z//partialx/sup 2/ of the magnetic field. The calculated SQUID inductance is 1.3 nH. With an overall size of 16 x 16.5 mm/sup 2/ a sensitivity of 1.5 x 10/sup -9/ Tm/sup -2/ Hz/sup -1//sup ///sup 2/ is obtained. The measured transfer function for uniform fields perpendicular to the plane of the gradiometer is 2.1 x 10/sup -7/ T Phi/sup -1//sub 0/.

  9. Thermodynamics of a closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    van den Bosch, P.J.; van den Bosch, P.J.; ter Brake, Hermanus J.M.; van den Eijkel, G.C.; Boelens, J.P.; Holland, Herman J.; Verberne, J.F.C.; Rogalla, Horst

    1994-01-01

    A multichannel high-Tc dc-SQUID based heart-magnetometer is currently under development in our laboratory. The system is cooled by a cooler that, due to its magnetic interference, has to be separated from the SQUID unit. In the present prototype system a closed-cycle gas flow was chosen as the

  10. Dynamic Characteristics of S-band DC SQUID Amplifier

    DEFF Research Database (Denmark)

    Prokopenko, G. V.; Shitov, S. V.; Koshelets, I. L. L. V. P.

    2003-01-01

    A low-noise rf amplifier based on a de SQUID (SQA) has been tested in the frequency range 3.0-4.6 GHz in the open-loop configuration. The following parameters have been measured for the single-stage balanced type SQA at 4.0 GHz: gain (12 +/- 1) dB, 3 dB bandwidth of 500 MHz and noise temperature (1.......0 +/- 0.25) K. For the nonbalanced type SQA at 4.0 GHz gain was (15 +/-1) dB, 3 dB bandwidth 200 MHz and noise temperature (0.5 +/- 0.25) K. The improved performance is obtained due to the increased characteristic voltage (approximate to 420 muV) of the small-area (down to 0.7-0.9 mum(2)) high-quality Nb......-AlOx-Nb SIS junctions. The saturation power (normalized to 1 GHz) referred to the input at 1 dB gain compression is estimated as approximate to55 K*GHz at a bias voltage of 60 muV. The reasons for saturation of the SQA are discussed....

  11. Frequency-domain multiplex with eight-input SQUID and readout electronics over 1MHz

    International Nuclear Information System (INIS)

    Masui, K.; Takei, Y.; Ikeda, H.; Kimura, S.; Mitsuda, K.; Yamasaki, N.Y.

    2006-01-01

    In a magnetic summation method, TES and SQUID driving circuits are isolated and thus small crosstalk and stray impedance are expected. Since a FLL circuit with a large bandwidth and a small noise level is required for a SQUID, we designed and produced an electronics to meet our design of multiplexing with an 8-input SQUID. The FLL circuit achieved an open loop-gain bandwidth product of 8MHz with 1m wire length, which is enough for a TES to be operated with a bias current of 70μA, and a noise level of 30pA/Hz

  12. DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Miyazaki, Shingo; Kasuya, Syohei; Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi

    2014-01-01

    Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.

  13. Magnetic moment oscillation in ammonium perchlorate in a DC SQUID-based magnetic resonance experiment

    International Nuclear Information System (INIS)

    Montero, V.; Cernicchiaro, G.

    2008-01-01

    In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model

  14. dc SQUID electronics based on adaptive noise cancellation and a high open-loop gain controller

    International Nuclear Information System (INIS)

    Seppae, H.

    1992-01-01

    A low-noise SQUID readout electronics with a high slew rate and an automatic gain control feature has been developed. Flux noise levels of 5x10 -7 Φ 0 /√Hz at 1 kHz and 2x10 -6 Φ 0 /√Hz at 1 Hz have been measured with this readout scheme. The system tolerates sinusoidal disturbances having amplitudes up to 140 Φ 0 at 1 kHz without loosing lock. The electronics utilizes a cooled GaAs FET to control the cancellation of the voltage noise of the room temperature amplifier, a PI 3/2 controller to provide a high open-loop gain at low frequencies, and a square-wave flux and offset voltage modulation to enable automatic control of the noise reduction. The cutoff frequency of the flux-locked-loop is 300 kHz and the feedback gain is more than 130 dB at 10 Hz. (orig.)

  15. Mapping of Ambient Magnetic Fields within Liquid Helium Dewar for Testing of a DC SQUID Magnetometer

    International Nuclear Information System (INIS)

    Newhouse, Randal

    2003-01-01

    In an effort to explore the cavity lights phenomenon, Experimental Facilities Department at SLAC is testing a DC SQUID magnetometer. Due to the nature of the SQUID magnetometer and the intended tests, the earth's magnetic field must be negated. It is proposed to reduce ambient fields using bucking coils. First, however, an accurate map of the magnetic field inside the liquid helium Dewar where the experiment is going to take place needed to be made. This map was made using a three-axis fluxgate magnetometer mounted on a 3D positioning device made for this purpose. A ten inch tall volume within the Dewar was measured at data points approximately an inch from each other in all three axes. A LabVEIW program took readings from the magnetometer at 2 ms intervals for 1000 readings in such a way as to eliminate any ambient 60 Hz signals that may be present in the data. This data was stored in spreadsheet format and was analyzed to determine how the magnetic field within the Dewar was changing as a function of position

  16. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    Science.gov (United States)

    Wang, Ning; Jin, Yirong; Li, Shao; Ren, Yufeng; Tian, Ye; Chen, Yingfei; Li, Jie; Chen, Genghua; Zheng, Dongning

    2012-12-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-Tc dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  17. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    International Nuclear Information System (INIS)

    Wang Ning; Jin Yirong; Li Shao; Ren Yufeng; Tian Ye; Chen Yingfei; Li Jie; Chen Genghua; Zheng Dongning

    2012-01-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-T c dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1 H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  18. Nuclear magnetic resonance with dc SQUID [Super-conducting QUantum Interference Device] preamplifiers

    International Nuclear Information System (INIS)

    Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.

    1988-08-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by 35 Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10 16 nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35 Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119 Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10 18 nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195 Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs

  19. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    International Nuclear Information System (INIS)

    Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho

    2014-01-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs

  20. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    Science.gov (United States)

    Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim

    2014-05-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.

  1. Dynamics of d-wave YBa{sub 2}Cu{sub 3}O{sub 7-x} dc SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Bauch, T [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Cedergren, K [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Johansson, J [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Rotoli, G [Dipartimento di Ingeneria Meccanica, Energetica e Gestionale, Universita of L' Aquila, Localita Moneluco, L' Aquila (Italy); Tafuri, F [Dipartimento Ingeneria dell' Informatione, INFM, Seconda Universita di Napoli, Aversa (Italy); Lombardi, F [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-41296 Goeteborg (Sweden)

    2007-02-15

    The predominant d-wave pairing symmetry in high temperature superconductors leads to an unconventional current-phase relation in Josephson junctions. This circumstance may induce new effects in the dynamics of dc SQUIDs. In this contribution we report on the measurements of the dependence of the SQUID Josephson current on the external magnetic field taken at very low temperatures, down to 20 mK. Different grain boundaries have been fabricated by using the biepitaxial and the bicrystal technique. Some of the effects which are induced by a nonsinusoidal current-phase relation can be clearly identified in the dynamics of the SQUIDs. The experimental data are also compared with theoretical simulations taking into account the inductance of the loop. The data show that, in specific conditions, a non-negligible inductance of the loop can induce effects similar to an unconventional current-phase relation, with a pronounced second harmonic sin(2{psi}) term. This fact has to be taken into account when designing d-wave SQUIDs for quantum circuitry.

  2. Equilibrium vortex motion in two- and three-dimensional superconductors studied with a dc SQUID

    International Nuclear Information System (INIS)

    Shaw, T.J.; Lawrence Berkeley National Lab., CA

    1997-10-01

    The equilibrium motion of vortices in two- and three-dimensional superconductors has been studied with a dc Superconducting QUantum Interference Device (SQUID). This technique has the advantage of probing the system in a non-invasive manner as well as providing dynamic information over many decades in frequency. Through measurements of the spectral density of magnetic flux noise, S Φ (ω), as a function of temperature and applied magnetic field, the effects of proton and heavy ion irradiation on flux noise in crystals of YBa 2 Cu 3 O 7-δ have been measured and compared with the effects on the critical current, J c . Both proton and heavy ion irradiation proved effective at reducing S Φ (ω), with proton irradiation having a larger effect. Measurement of S Φ (ω) due to the equilibrium Kosterlitz-Thouless-Berezinskii transition in two-dimensional Josephson Junction Arrays (JJAs) was studied as a function of temperature for three different arrays and using three different sensors. S Φ is shown to obey dynamic scaling over as many as five decades in frequency, and estimates are made for the dynamic critical exponent z. An analytic theory for the high- and low-frequency behavior of S Φ (ω) is presented and compared to the measured data, with the result that the low-frequency behavior is well described by the theory but the high-frequency behavior is not. Other theories and numerical simulations are described and compared with the data, but none are completely satisfactory. Lastly, suggestions for necessary further theoretical work and possible future experimental work are suggested

  3. Imaging, manipulation and flux noise of single Abrikosov vortices in YBa2Cu3O7-δ dc SQUIDs

    International Nuclear Information System (INIS)

    Bailer, Matthias

    2013-01-01

    The thesis deals with the imaging and investigation of single Abrikosov vortices in grain boundary dc SQUIDs1 from the high-temperature superconductor YBa 2 Cu 3 O 7-δ . The low temperature scanning electron microscopy (LTSEM) was used for the measurements, which makes a local, spatially resolved investigation of the electrical properties of materials at low temperatures possible. The advantage over other flux quantum imaging methods is the facility to determine the low-frequency flux noise in the SQUID in the process. Special SQUID designs were created, which allow a reproducible cooling of single flux quanta. Electrical transport and noise measurements were carried out to precharacterise the SQUIDs. Within the scope of the thesis it was the first time that antivortices were imaged with the LTSEM. The possibilities of a manipulation of flux quanta (with the electron beam) were investigated and illustrated. By the averaged measurement of the waveform of a single vortex, linescans with unprecedented resolution could be obtained. This allowed the outstanding comparison of the measured, virtual vortex displacement with various theoretically determined waveforms. The experiments to flux noise provided new insights into the noise behaviour of single flux quanta, which exhibit the typical single fluctuators random telegraph signal, and enabled the analysis of the associated hopping processes. Thus concrete values of the spectral noise power density S r ∼ 196 nm 2 /root(Hz) - 0,28 μm 2 /root(Hz) radially to the SQUID hole could be determined by different, pinned vortices. An influence of the hopping behaviour and therefore of the flux noise succeeded by varying an applied magnetic field. Through tilting the potential course of a vortex, the course of the pinning potential by different hopping processes could be reconstructed using stochastic analysis of the time trace data. With the thesis could be shown convincingly that the vortex imaging method of the LTSEM in

  4. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    Science.gov (United States)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  5. Low noise SQUIDs

    Science.gov (United States)

    de Waal, V. J.

    1983-02-01

    The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer.

  6. Low noise SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, V.J.

    1983-01-01

    The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer. 129 references.

  7. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope

    DEFF Research Database (Denmark)

    Snigirev, O.V.; Andreev, K.E.; Tishin, A.M.

    1997-01-01

    We have applied a scanning HTS (high-temperature superconductor) de SQUID (superconducting quantum interference device) -based magnetic microscope to study the magnetic properties of Au/Ni/Si(100) films in the thickness range from 8 to 200 Angstrom at T = 77 K. A one-domain structure with in...

  8. Closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1994-01-01

    A closed-cycle gas flow system for cooling a high-crit. temp. d.c.-superconducting quantum interference device (SQUID) magnetometer by means of a cryocooler has been designed, constructed and tested. The magnetometer is aimed to measure heart signals with a sensitivity of 0.1 pT/Hz1/2. The required

  9. A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guofeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yi, E-mail: y.zhang@fz-juelich.de [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Zhang Shulin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Krause, Hans-Joachim [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); and others

    2012-10-15

    The performance of the direct readout schemes for dc SQUID, Additional Positive Feedback (APF), noise cancellation (NC) and SQUID bootstrap circuit (SBC), have been studied in conjunction with planar SQUID magnetometers. In this paper, we examine the NC technique applied to a niobium SQUID gradiometer module with an Nb wire-wound antenna connecting to a dual-loop SQUID chip with an integrated voltage feedback circuit for suppression of the preamplifier noise contribution. The sensitivity of the SQUID gradiometer module is measured to be about 1 fT/(cm {radical}Hz) in the white noise range in a magnetically shielded room. Using such gradiometer, both MCG and MEG signals are recorded.

  10. Review of SQUID Sensors for Measuring Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, J. M.; Yu, K. K.; Kim, K.; Kwon, H. [Brain and Cognition Measurement Lab, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2011-08-15

    Measurement of magnetic signals generated from electric activity of myocardium provides useful information for the functional diagnosis of heart diseases. Key technical component of the magnetocardiography (MCG) technology is SQUID. To measure MCG signals with high signal-to-noise ratio, sensitive SQUID magnetic field sensors are needed. Present magnetic field sensors based on Nb SQUIDs have field sensitivity good enough to measure most of MCG signals. However, for accurate measurement of fine signal pattern or detection of local atrial fibrillation signals, we may need higher field sensitivity. In addition to field sensitivity, economic aspect of the SQUID system is also important. To simplify the SQUID readout electronics, the output voltage or flux-to-voltage transfer of SQUID should be large enough so that direct measurement of SQUID output can be done using room-temperature preamplifiers. Double relaxation oscillation SQUID (DROS), having about 10 times larger flux-to-voltage transfers than those of DC-SQUIDs, was shown to be a good choice to make the electronics compact. For effective cancellation of external noise inside a thin economic shielded room, first-order axial gradiometer with high balance, simple structure and long-baseline is needed. We developed a technology to make the axial gradiometer compact using direct bonding of superconductive wires between pickup coil and input coil. Conventional insert has mechanical support to hold the gradiometer array, and the dewar neck has equal diameter with the dewar bottom. Boiling of the liquid He can generate mechanical vibrations in the gradiometer array due to mechanical connection structure. Elimination of the mechanical support, and direct mounting of the gradiometer array into the dewar bottom can reduce the dewar neck diameter, resulting in the reduction of liquid He consumption.

  11. High critical current density YBCO films and fabrication of dc-SQUIDs

    CERN Document Server

    Kuriki, S; Kawaguchi, Y; Matsuda, M; Otowa, T

    2002-01-01

    In order to improve the sensitivity of SQUID magnetometers made of high-T sub c films, we have studied the conditions of pulsed-laser deposition of YBCO films. Among the different deposition parameters examined, extensive degassing of the vacuum chamber before and precise control of the substrate temperature during the film deposition were found effective for obtaining high critical temperature T sub c and high critical current density J sub c. It was also found that the residual-resistance ratio has a clear correlation with J sub c , indicating that it can be a good, and easy to measure, index of the film quality. Films having T sub c approx 89-90 K and J sub c >= 5x10 sup 6 A cm sup - sup 2 at 77 K were used to fabricate SQUIDs without a pickup loop. Grain-boundary junctions formed on bicrystal substrates with a 30 deg. misorientation angle exhibited I sub c R sub n values of more than 100 mu V at 77 K. The well-known scaling behaviour of the relation I sub c R sub n propor to (J sup G sup B sub c) sup 1 su...

  12. Low noise SQUIDS

    International Nuclear Information System (INIS)

    Waal, V.J. de.

    1983-01-01

    The design, fabrication and limitations of very sensitive SQUID magnetometers are described. The SQUID magnetometer is based on the Josephson effect. A very low-noise niobium SQUID is described. It is fabricated with ultra-small niobium junctions with an overlapping area smaller than 1 μm 2 . The photolithographic technique developed for its fabrication, is described. Also an integrated system with a SQUID and a first-order gradiometer on a single substrate is presented. Calculations of the resolution of a dc SQUID containing ideal Josephson junctions according to the RSJ model are presented including a parasitic capacitance. The usefulness of the fabricated SQUIDS as well as some remarks on their performance is considered. (Auth.)

  13. Nb nanoSQUIDs for detection of small spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Woelbing, R.; Nagel, J.; Kemmler, M.; Kleiner, R.; Koelle, D. [Physikalisches Institut, Universitaet Tuebingen (Germany); Kieler, O.; Weimann, T.; Kohlmann, J.; Zorin, A. [Fachbereich 2.4 ' ' Quantenelektronik' ' , PTB Braunschweig (Germany); Buchter, A.; Xue, F.; Poggio, M. [Department of Physics, University of Basel (Switzerland); Rueffer, D.; Russo-Averchi, E.; Fontcuberta i Morral, A. [Laboratoire des Materiaux Semiconducteurs, EPF Lausanne (Switzerland); Huber, R.; Berberich, P. [Physik-Department E10, Technische Universitaet Muenchen (Germany); Grundler, D. [Laboratoire des Materiaux Semiconducteurs, EPF Lausanne (Switzerland); Physik-Department E10, Technische Universitaet Muenchen (Germany)

    2013-07-01

    We report on the realization of highly sensitive dc nanoSQUIDs for the investigation of small spin systems in moderate magnetic fields. The Nb SQUIDs are based on normal metal Josephson junctions made of HfTi and patterned by e-beam lithography. We demonstrate stable operation up to B = ± 50 mT without degradation of rms flux noise (S{sub Φ}{sup 1/2} ≤ 280 nΦ{sub 0}/√(Hz)). We also present a multifunctional system combining a Nb nanoSQUID and a low-temperature magnetic force microscope (LTMFM) with a Ni nanotube as a scanning tip. This system allows for magnetization measurements of the Ni tube by using both, LTMFM and SQUID readout. Furthermore, the measurement of magnetic flux Φ vs. position of the particle provides an experimental determination of the coupling factor φ{sub μ} = Φ/μ between SQUID and Ni tube with magnetic moment μ. The results confirm our predictions from numerical simulations, taking into account the SQUID geometry.

  14. Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)

    Science.gov (United States)

    Racah, Daniel

    1991-03-01

    Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.

  15. Sensitive YBCO nanoSQUIDs for the investigation of small spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Benedikt; Schwarz, Tobias; Woelbing, Roman; Martinez-Perez, Maria Jose; Kleiner, Reinhold; Koelle, Dieter [Tuebingen Univ. (Germany). Physikalisches Inst. and Center for Collective Quantum Phenomena in LISA+; Reiche, Christopher F.; Muehl, Thomas; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany)

    2015-07-01

    We report on advances in the realization of dc YBCO nanoSQUIDs for continuous measurement of magnetic nanoparticle magnetization loops in strong magnetic fields up to the Tesla range, applied in the plane of the SQUID loop at temperatures of 4 K and below. Our grain boundary junction based YBCO SQUIDs are patterned by focused ion beam milling and feature a constriction next to the SQUID loop, allowing for on-chip SQUID modulation and bias reversal readout schemes. Using numerical simulations based on London theory, the spin sensitivity S{sub μ}{sup 1/2} = S{sub Φ}{sup 1/2} / φ{sub μ} was improved by optimizing both the flux noise S{sub Φ}{sup 1/2} and the coupling factor φ{sub μ} = Φ / μ (Φ is the magnetic flux coupled into the SQUID loop by a particle with magnetic moment μ). For optimized experimental devices, flux noise levels down to 50 nΦ{sub 0} / Hz{sup 1/2} in the white noise limit have been achieved, corresponding to a calculated spin sensitivity of only a few μ{sub B} / Hz{sup 1/2}. Further, the magnetization reversal of a Fe filled carbon nanotube attached to a YBCO nanoSQUID was traced out.

  16. The use of (double) relaxation oscillation SQUIDs as a sensor

    NARCIS (Netherlands)

    van Duuren, M.J.; Brons, G.C.S.; Kattouw, H.; Flokstra, Jakob; Rogalla, Horst

    1997-01-01

    Relaxation Oscillation SQUIDs (ROSs) and Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are induced in hysteretic dc SQUIDs by an external L-R shunt. The relaxation frequency of a ROS varies with the applied flux Φ, whereas the output of a DROS is a dc

  17. Properties of high temperature SQUIDS

    International Nuclear Information System (INIS)

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  18. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  19. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  20. YBCO SQUIDs with unconventional current phase relation

    International Nuclear Information System (INIS)

    Bauch, T.; Johansson, J.; Cedergren, K.; Lindstroem, T.; Lombardi, F.

    2007-01-01

    We have studied the dynamics of YBa 2 Cu 3 O 7-δ (YBCO) dc sperconducting quantum interference devices (SQUIDs) characterized by an unconventional Josephson current phase relation (CPR). We have focused on SQUID configurations with Josephson junctions where the lobe of the order parameter in one electrode is facing a node in the other electrode. This order parameter arrangement should enhance the appearance of a sin(2φ) term in the CPR. The response of the critical current of the dc SQUID, under the effect of an external magnetic field, has been measured in temperature, down to 20 mK. Our experimental data have been compared with numerical simulations of the SQUIDs dynamics by considering a CPR of a single junction of the form I(φ) = I I sin(φ) - I II sin(2φ) where I I and I II are, respectively, the first and second harmonic component. In our devices the values of the sin(2φ) term are such that the fundamental state of the SQUID is naturally double degenerate. This is of great relevance for applications of d-wave SQUIDs in quantum information processing

  1. Parameter tolerance of the SQUID bootstrap circuit

    International Nuclear Information System (INIS)

    Zhang Guofeng; Dong Hui; Xie Xiaoming; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhäusser, Andreas

    2012-01-01

    We recently demonstrated and analysed the voltage-biased SQUID bootstrap circuit (SBC) conceived to suppress the preamplifier noise contribution in the absence of flux modulation readout. Our scheme contains both the additional voltage and current feedbacks. In this study, we analysed the tolerance of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. Analytical results were confirmed by experiments. A one-time adjustable current feedback can be used to extend the tolerance to spreads such as those caused by the integrated circuit fabrication process. This should help to improve the fabrication yield of SBC devices integrated on one chip—as required for multi-channel SQUID systems.

  2. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  3. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    International Nuclear Information System (INIS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-01-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10 4  ≤ Q ≤ 2 × 10 4 and the square root of spectral density of current noise referred to the SQUID input √S I  = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S 21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P MR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S I is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P MR ) or the quantization noise due to the resolution of 300-K electronics (for large values of P MR ). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit

  4. Radiofrequency amplifier based on a DC superconducting quantum interference device

    International Nuclear Information System (INIS)

    Martinis, J.M.; Hilbert, C.; Clarke, J.

    1986-01-01

    A method is described of amplifying a radiofrequency signal consisting of: disposing a single symmetrically biased dc SQUID and an input coil within a superconducting shield, the dc SQUID having a superconducting ring interrupted by two shunted Josephson junctions, and the input coil being inductively coupled solely to the ring of the single SQUID, establishing a constant magnetic flux threading the SQUID ring, applying the radiofrequency signal to the input coil from outside of the superconducting shield, obtaining an amplified radiofrequency signal solely from across the ring of the single SQUID, transmitting the amplified radiofrequency signal from across the SQUID ring to the outside of the superconducting shield

  5. Two-stage SQUID systems and transducers development for MiniGRAIL

    International Nuclear Information System (INIS)

    Gottardi, L; Podt, M; Bassan, M; Flokstra, J; Karbalai-Sadegh, A; Minenkov, Y; Reinke, W; Shumack, A; Srinivas, S; Waard, A de; Frossati, G

    2004-01-01

    We present measurements on a two-stage SQUID system based on a dc-SQUID as a sensor and a DROS as an amplifier. We measured the intrinsic noise of the dc-SQUID at 4.2 K. A new dc-SQUID has been fabricated. It was specially designed to be used with MiniGRAIL transducers. Cooling fins have been added in order to improve the cooling of the SQUID and the design is optimized to achieve the quantum limit of the sensor SQUID at temperatures above 100 mK. In this paper we also report the effect of the deposition of a Nb film on the quality factor of a small mass Al5056 resonator. Finally, the results of Q-factor measurements on a capacitive transducer for the current MiniGRAIL run are presented

  6. SQUID developments for the gravitational wave antenna MiniGRAIL

    NARCIS (Netherlands)

    Pleikies, J.; Usenko, O.; Kuit, K.H.; Flokstra, Jakob; de Waard, A.; de Waard, A.; Frossati, G.

    2007-01-01

    We designed two different sensor SQUIDs for the readout of the resonant mass gravitational wave detector MiniGRAIL. Both designs have integrated input inductors in the order of 1.5 muH and are planned for operation in the mK temperature range. Cooling fins were added to the shunt resistors. The

  7. SQUIDs in biomagnetism: a roadmap towards improved healthcare

    Science.gov (United States)

    Körber, Rainer; Storm, Jan-Hendrik; Seton, Hugh; Mäkelä, Jyrki P.; Paetau, Ritva; Parkkonen, Lauri; Pfeiffer, Christoph; Riaz, Bushra; Schneiderman, Justin F.; Dong, Hui; Hwang, Seong-min; You, Lixing; Inglis, Ben; Clarke, John; Espy, Michelle A.; Ilmoniemi, Risto J.; Magnelind, Per E.; Matlashov, Andrei N.; Nieminen, Jaakko O.; Volegov, Petr L.; Zevenhoven, Koos C. J.; Höfner, Nora; Burghoff, Martin; Enpuku, Keiji; Yang, S. Y.; Chieh, Jen-Jei; Knuutila, Jukka; Laine, Petteri; Nenonen, Jukka

    2016-11-01

    separated by a tunnel barrier or other weak link. A tiny electric current is able to flow between the superconductors as a supercurrent, without developing a voltage across them. At currents above the ‘critical current’ (maximum supercurrent), however, a voltage is developed. In 1964, Jaklevic et al (1964 Phys. Rev. Lett. 12 159-60) observed quantum interference between two Josephson junctions connected in series on a superconducting loop, giving birth to the dc SQUID. The essential property of the SQUID is that a steady increase in the magnetic flux threading the loop causes the critical current to oscillate with a period of one flux quantum. In today’s SQUIDs, using conventional semiconductor readout electronics, one can typically detect a change in Φ corresponding to 10-6 Φ0 in one second. Although early practical SQUIDs were usually made from bulk superconductors, for example, niobium or Pb-Sn solder blobs, today’s devices are invariably made from thin superconducting films patterned with photolithography or even electron lithography. An extensive description of SQUIDs and their applications can be found in the SQUID Handbooks (Clarke and Braginski 2004 Fundamentals and Technology of SQUIDs and SQUID Systems vol I (Weinheim, Germany: Wiley-VCH), Clarke and Braginski 2006 Applications of SQUIDs and SQUID Systems vol II (Weinheim, Germany: Wiley-VCH)). The roadmap begins (chapter 1) with a brief review of the state-of-the-art of SQUID-based magnetometers and gradiometers for biomagnetic measurements. The magnetic field noise referred to the pick-up loop is typically a few fT Hz-1/2, often limited by noise in the metallized thermal insulation of the dewar rather than by intrinsic SQUID noise. The authors describe a pathway to achieve an intrinsic magnetic field noise as low as 0.1 fT Hz-1/2, approximately the Nyquist noise of the human body. They also descibe a technology to defeat dewar noise. Chapter 2 reviews the neuroscientific and clinical use of

  8. SQUID in NDT

    International Nuclear Information System (INIS)

    Rashdi Shah Ahmad

    2001-01-01

    Superconducting Quantum Interference Device (SQUID) is the most sensitive magnetic flux sensor. It has been used to map the magnetic field on the scalp of human being generated by the brain activity. Currently, a number of groups have tried using SQUID for some special NDT application. This paper reviews some of these work. (Author)

  9. High Tc Josephson Junctions, SQUIDs and magnetometers

    International Nuclear Information System (INIS)

    Clarke, J.

    1991-01-01

    There has recently been considerable progress in the state-of-the-art of high-T c magnetometers based on dc SQUIDs (Superconducting Quantum Interference Devices). This progress is due partly to the development of more manufacturable Josephson junctions, making SQUIDs easier to fabricate, and partly to the development of multiturn flux transformers that convert the high sensitivity of SQUIDs to magnetic flux to a correspondingly high sensitivity to magnetic field. Needless to say, today's high-T c SQUIDs are still considerably less sensitive than their low-T c counterparts, particularly at low frequencies (f) where their level of 1/f noise remains high. Nonetheless, the performance of the high-T c devices has now reached the point where they are adequate for a number of the less demanding applications; furthermore, as we shall see, at least modest improvements in performance are expected in the near future. In this article, the author outlines these various developments. This is far from a comprehensive review of the field, however, and, apart from Sec. 2, he describes largely his own work. He begins in Sec. 2 with an overview of the various types of Josephson junctions that have been investigated, and in Sec. 3, he describes some of the SQUIDs that have been tested, and assess their performance. Section 4 discuss the development of the multilayer structures essential for an interconnect technology, and, in particular, for crossovers and vias. Section 5 shows how this technology enables one to fabricate multiturn flux transformers which, in turn, can be coupled to SQUIDs to make magnetometers. The performance and possible future improvements in these magnetometers are assessed, and some applications mentioned

  10. The SQUID Handbook

    CERN Document Server

    Braginski, Alex I

    2006-01-01

    This two-volume handbook offers a comprehensive and well coordinated presentation of SQUIDs (Superconducting Quantum Interference Devices), including device fundamentals, design, technology, system construction and multiple applications. It is intended to bridge the gap between fundamentals and applications, and will be a valuable textbook reference for graduate students and for professionals engaged in SQUID research and engineering. It will also be of use to specialists in multiple fields of practical SQUID applications, from human brain research and heart diagnostics to airplane and nuclear

  11. Market Squid Ecology Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains ecological information collected on the major adult spawning and juvenile habitats of market squid off California and the US Pacific Northwest....

  12. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  13. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  14. Squid based beam current meter

    International Nuclear Information System (INIS)

    Kuchnir, M.

    1983-01-01

    A SQUID based beam current meter has the capability of measuring the current of a beam with as little as 30 x 155 antiprotons (with a signal to noise ratio of 2). If low noise dc current is used to cancel most of the beam or an up-down counter is used to count auto-resets this sensitivity will be available at any time in the acumulation process. This current meter will therefore be a unique diagnostic tool for optimizing the performance of several Tev I components. Besides requiring liquid helium it seems that its only drawback is not to follow with the above sensitivity a sudden beam change larger than 16 μA, something that could be done using a second one in a less sensitive configuration

  15. High speed non-latching squid binary ripple counter

    International Nuclear Information System (INIS)

    Silver, A.H.; Phillips, R.R.; Sandell, R.D.

    1985-01-01

    High speed, single flux quantum (SFQ) binary scalers are important components in superconducting analog-to-digital converters (ADC). This paper reviews the concept for a SQUID ADC and the design of an SFQ binary ripple counter, and reports the simulation of key components, and fabrication and performance of non-latching SQUID scalers and SFQ binary ripple counters. The SQUIDs were fabricated with Nb/Nb 2 O 5 /PbIn junctions and interconnected by monolithic superconducting transmission lines and isolation resistors. Each SQUID functioned as a bistable flip-flop with the input connected to the center of the device and the output across one junction. All junctions were critically damped to optimize the pulse response. Operation was verified by observing the dc I-V curves of successive SQUIDs driven by a cw pulse train generated on the same chip. Each SQUID exhibited constant-voltage current steps at 1/2 the voltage of the preceding device as expected from the Josephson voltage-to-frequency relation. Steps were observed only for the same voltage polarity of successive devices and for proper phase bias of the SQUID. Binary frequency division was recorded up to 40GHz for devices designed to operate to 28GHz

  16. SQUID application research in Japan

    International Nuclear Information System (INIS)

    Itozaki, Hideo

    2003-01-01

    Japanese research activities using SQUIDs are reviewed in this paper. Low-T c SQUIDs are applied to multi-channel systems for magnetoencephalogram (MEG) and magnetocardiogram (MCG). High-T c SQUIDs are applied to MCG, nondestructive evaluation (NDE), SQUID microscopy, biological testing using fine magnetic markers, geological surveying, food inspection, large-scale integration (LSI) defect analysis and SQUID-NQR (nuclear quadrupole resonance). These applications of SQUIDs are being researched and developed actively and some of them are expected to be in the commercial market in the near future

  17. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei Nikolaevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Semenov, Vasili Kirilovich [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Anderson, Bill [Senior Scientific, LLC, Albuquerque, NM (United States)

    2016-06-08

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper we present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.

  18. The Stationary SQUID

    Science.gov (United States)

    Berger, Jorge

    2018-06-01

    In the customary mode of operation of a SQUID, the electromagnetic field in the SQUID is an oscillatory function of time. In this situation, electromagnetic radiation is emitted and couples to the sample. This is a back action that can alter the state that we intend to measure. A circuit that could perform as a stationary SQUID consists of a loop of superconducting material that encloses the magnetic flux, connected to a superconducting and to a normal electrode. This circuit does not contain Josephson junctions, or any other miniature feature. We study the evolution of the order parameter and of the electrochemical potential in this circuit; they converge to a stationary regime, and the voltage between the electrodes depends on the enclosed flux. We obtain expressions for the power dissipation and for the heat transported by the electric current; the validity of these expressions does not rely on a particular evolution model for the order parameter. We evaluate the influence of fluctuations. For a SQUID perimeter of the order of 1μ m and temperature 0.9T_c, we obtain a flux resolution of the order of 10^{-5}Φ _0/Hz^{1/2}; the resolution is expected to improve as the temperature is lowered.

  19. High transition-temperature SQUID magnetometers and practical applications

    International Nuclear Information System (INIS)

    Dantsker, E.; Lawrence Berkeley National Lab., CA

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO 3 -YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz -1/2 at 1 Hz and 8.5 fT Hz -1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz -1/2 at 1 Hz and 18 fT Hz -1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room

  20. High transition-temperature SQUID magnetometers and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dantsker, Eugene [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa2Cu3O7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO3-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz-1/2 at 1 Hz and 8.5 fT Hz-1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz-1/2 at 1 Hz and 18 fT Hz-1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.

  1. Characteristics of an HTS-SQUID gradiometer with ramp-edge Josephson junctions and its application on robot-based 3D-mobile compact SQUID NDE system

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y., E-mail: hatukade@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Hayashi, K.; Shinyama, Y.; Kobayashi, Y. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Adachi, S.; Tanabe, K. [International Superconductivity Technology Center/Superconductivity Research Laboratory, 10-13, Shinonome 1-chome, Koto-ku, Tokyo 135-0062 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2011-11-15

    We investigated behavior of HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in ac and dc magnetic fields. In the both fields, the gradiometers show higher durability against entry of flux vortices than SQUIDs with bicrystal JJs. A robot-based SQUID NDE system utilizing the gradiometer was developed in an unshielded environment. Detectability of the system to detect non-through cracks in double-layer structures was demonstrated. A new excitation coil was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer. In this paper, we investigated detailed behavior of novel HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in both an ac magnetic field and a dc magnetic field. In the both fields, the novel gradiometers shows the superior performance to the conventional YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) HTS-dc-SQUID gradiometer and a bare HTS-dc-SQUID ring with bicrystal JJs concerning durability against entry and hopping of flux vortices, probably due to their differential pickup coils without a grain boundary and multilayer structure of the ramp-edge JJs. A robot-based compact HTS-SQUID NDE system utilizing the novel gradiometer was reviewed, and detectability of the system to detect non-through cracks in a carbon fiber reinforced plastic (CFRP)/Al double-layer structure was demonstrated. A new excitation coil in which the supplied currents flowed in the orthogonal directions was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer.

  2. rf SQUID system as tunable flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)]. E-mail: b.ruggiero@cib.na.cnr.it; Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Vettoliere, A. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Rombetto, S. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, R. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Silvestrini, P. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)

    2006-08-21

    We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.

  3. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  4. Cryostats for SQUID magnetometers

    International Nuclear Information System (INIS)

    Testard, O.A.; Locatelli, M.

    1982-05-01

    A non metallic and non magnetic cryostat, with a very low thermal budget and a container type autonomy was developed, to condition S.Q.U.I.D. magnetometers which maximum sensitivity reaches 10 -14 Tesla Hertzsup(-1/2). This instrumentation puts in hand new concepts of composite materials, thermal shock and vibration resistant, multilayer thermal radiative insulation also to the prouve of vibrations with thermal equivalent emissivity lower than 10 -3

  5. Robotic 3D SQUID imaging system for practical nondestructive evaluation applications

    International Nuclear Information System (INIS)

    Isawa, K.; Nakayama, S.; Ikeda, M.; Takagi, S.; Tosaka, S.; Kasai, N.

    2005-01-01

    A robotic three-dimensional (3D) scanning superconducting quantum interference device (SQUID) imaging system was developed for practical nondestructive evaluation (NDE) applications. The major feature of this SQUID-NDE system is that the SQUID sensor itself scans in 3D by traveling over the surface of an object during testing without the need for magnetic shielding. This imaging system consists of (i) DC-SQUID gradiometer for effective movement of the sensor, (ii) SQUID sensor manipulator utilizing an articulated-type robot used in industry, (iii) laser charge-coupled-device (CCD) displacement sensor to measure the 3D coordinates of points on the surface of the object, and (iv) computer-aided numerical interpolation scheme for 3D surface reconstruction of the object. The applicability of this system for NDE was demonstrated by successfully detecting artificial damage of cylindrical-shaped steel tubes

  6. High-Tc SQUIDs: Noise and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hsiao-Mei [Univ. of Houston, TX (United States)

    2001-08-01

    A major challenge in the design and operation of high transition temperature (Tc ) Superconducting Quantum Interference Devices (SQUIDs) is their potential to exhibit substantially higher levels of noise at low frequency f when exposed to earth’s magnetic field. To investigate this problem, we studied the noise of high-Tc SQUIDs, directly coupled magnetometers and multilayer magnetometers in both static and changing magnetic fields. The directly coupled magnetometer consists of a dc SQUID connected to a large area pickup loop in parallel. The multilayer magnetometer involves a multiturn flux transformer inductively coupled to a dc SQUID on a separate substrate. All the devices are made of thin films of the high-Tc superconductor YBa2Cu3O7-δ, patterned into 4 μm linewidths. After cooling in a magnetic field, the devices showed no increase in 1/f noise for fields up to threshold values well above the earth’s magnetic field. The devices were also cooled in a magnetic field that was subsequently turned off. The 1/f noise of bare SQUIDs was unchanged for fields up to 12 μT. The addition of the flux transformer containing flux dams increased the sensitivity to magnetic field by a factor of 43 while reducing the threshold field only moderately, to 5 μT. This result implies that the multilayer magnetometer can be rotated in the earth’s magnetic field through an angle of up to 26o without increasing the low frequency noise. The results of these studies were incorporated into a 5-channel high-Tc magnetocardiography system involving two first-derivative SQUID gradiometers and three reference SQUIDs. Each planar gradiometer consists of a directly coupled SQUID magnetometer inductively coupled to the smaller coil of an asymmetric, two-loop flux transformer. The reference SQUIDs are patterned into 4 μm lines. The outputs of the five channels were subtracted in software to form a second-derivative gradiometer. Its

  7. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    Science.gov (United States)

    Chesca, Boris; John, Daniel; Mellor, Christopher J.

    2015-10-01

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise SΦ1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa2Cu3O7. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for SΦ1/2 between (0.25 and 0.44) μΦ0/Hz1/2 for temperatures in the range (77-83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10-17) mV and (0.3-2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

  8. A three-axis SQUID-based absolute vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. [Department of Quantum Detection, Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Zakosarenko, V.; Meyer, M. [Supracon AG, An der Lehmgrube 11, Jena 07751 (Germany)

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  9. SQUID technology for geophysical exploration

    International Nuclear Information System (INIS)

    Meyer, Hans-Georg; Stolz, R.; Chwala, A.; Schulz, M.

    2005-01-01

    We report on successful tests of planar LTS SQUID gradiometers on airborne platforms such as helicopter and aircraft. The system works stable and allows profile work without any constraints. In mobile applications the gradient resolution at low frequencies is dominated by motion noise, since the parasitic areas of the SQUID gradiometer lead to strong disturbances if the gradiometer is tilted in the homogenous Earth's magnetic field. The balance can be improved further by software using data of a SQUID magnetometer triple. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Science.gov (United States)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  11. Review of Magneto cardiography Technology based on SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kwon, H.; Kim, J. M.; Kim, K.; Yu, K. K.; Park, Y. K. [Brain and Cognition Measurement Lab, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-04-15

    Electric activity of cardiac muscles generates magnetic fields. Magnetocardiography (or MCG) technology, measuring these magnetic signals, can provide useful information for the diagnosis of heart diseases. It is already about 40 years ago that the first measurement of MCG signals was done by D. Cohen using SQUID (superconducting quantum interference device) sensor inside a magnetically shielded room. In the early period of MCG history, bulky point-contact RF-SQUID was used as the magnetic sensor. Thanks to the development of Nb-based Josephson junction technology in mid 1980s and new design of tightly-coupled DC-SQUID, low-noise SQUID sensors could be developed in late 1980s. In around 1990, several groups developed multi-channel MCG systems and started clinical study. However, it is quite recent years that the true usefulness of MCG was verified in clinical practice, for example, in the diagnosis of coronary artery disease. For the practical MCG system, technical elements of MCG system should be optimized in terms of performance, fabrication cost and operation cost. In this review, development history, technical issue, and future development direction of MCG technology are described.

  12. Analysis of the ac SQUID with low inductance and low critical current

    DEFF Research Database (Denmark)

    Sørensen, O. H.

    1976-01-01

    The properties of the ac SQUID magnetometer has been analyzed. The results are valid in the low-inductance low-critical-current regime, where the Lri0 producted is belowthe value at which the relation between the enclosed and externally applied magnetic dc flux becomes reentrant. The effects...... of the screening current circulating in the SQUID ring as well as of the SQUID-ring time constant, tau-Lr/R9 are taken into account. Here LR IS THE SQUID-ring inductance, and R is the shunt resistance in the shunted junction model assumed to describe the weak link. It is shown that for finite values of omegatau...... constriuctively with the result that the optimal response occurs at a definite and finite value of omegatau. If omegatau is increased beyond this optimal value the weak link behavior is dominated by the Ohmic current channel implying that only if the shunt conductance contains a term depending...

  13. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  14. A SQUID magnetometry system for a cryogenic neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S., E-mail: s.henry@physics.ox.ac.uk; Clarke, C.; Cottle, A.; Lynch, A.; Pipe, M.

    2014-11-01

    Precision magnetometry is an essential component of any neutron electric dipole moment experiment in order to correct shifts in the neutron precession frequency due to changes in the magnetic field. We have developed a magnetometry system using 12 SQUID sensors, designed to operate in 0.5 K superfluid helium. The pick-up loops located near the neutron cell are connected to the SQUID sensors by ∼2 m twisted wire pairs. The SQUID readout cables are run via an intermediate stage at 4.2 K. The system has been installed and tested in the cryoEDM apparatus at the ILL, Grenoble, and used to characterise the magnetic environment. Further tests in a suitable low noise environment confirm it meets our requirements.

  15. Paleomagnetic Analysis Using SQUID Microscopy

    Science.gov (United States)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  16. DC electrostatic gyro suspension system for the Gravity Probe B experiment

    Science.gov (United States)

    Wu, Chang-Huei

    1994-12-01

    The Gravity Probe B experiment is a satellite-based experiment primarily designed to test two aspects of Einstein's General Theory of Relativity by observing the spin axis drift of near-perfect gyroscopes in a 650-km circular polar orbit. The goal of this experiment is to measure the drift angles to an accuracy of 0.3 milli-arcsec after one year in orbit. As a result, electrostatically suspended free-spinning gyroscopes operating at a very low temperature became the final choice for their ultra-low Newtonian torque-induced drift rate. The Conventional AC current-driven suspension system faces two fundamental difficulties for ground gyro testing. Field emission causes rotor charging and arcing with an imperfect electrode or rotor surfaces because the electric field intensity needed to support a solid rotor in the 1-g field is more than 107 V/m. The system not only becomes unstable at a high rotor charge, which can be more than 500 volts, but may also lose control in case of arcing. Both the high voltage AC suspension signal and the high frequency (1 MHz) signal for rotor position sensing interfere with the superconducting SQUID magnetometer for spin axis readout through inductive coupling. These problems were resolved by using DC voltage to generate a suspension force and a low frequency position sensor. In addition to the Input/Output linearization algorithm developed to remove the system nonlinearity for global stability and dynamic performance, we also minimized the electric field intensity to reduce rotor charging. Experimental results verified the desired global stability and satisfactory dynamic performance. The problem of rotor charging is virtually eliminated. More importantly, the DC system is compatible with the SQUID readout system in the Science Mission configuration. Consequently, experiments in low magnetic field at a sub-micro-gauss level for SQUID design verification and trapped flux distribution study were finally realizable in ground environment

  17. Tracking Electromagnetic Energy With SQUIDs

    Science.gov (United States)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  18. Step edge Josephson junctions and high temperature superconducting quantum interference device (SQUID) gradiometers

    International Nuclear Information System (INIS)

    Millar, Alasdair J.

    2002-01-01

    This thesis is concerned with the development of Superconducting Quantum Interference Device (SQUID) gradiometers based on the high temperature superconductor YBa 2 Cu 3 O 7-δ (YBCO). A step-edge Josephson junction fabrication process was developed to produce sufficiently steep (>60 deg) step-edges such that junctions exhibited RSJ-like current-voltage characteristics. The mean I C R N product of a sample of twenty step-edge junctions was 130μV. Step-edge dc SQUIDs with inductances between 67pH and 114pH were fabricated. Generally the SQUIDs had an intrinsic white flux noise in the 10-30μΦ 0 /√Hz range, with the best device, a 70pH SQUID, exhibiting a white flux noise of 5μΦ 0 /√Hz. Different first-order SQUID gradiometer designs were fabricated from single layers of YBCO. Two single-layer gradiometer (SLG) designs were fabricated on 10x10mm 2 substrates. The best balance and lowest gradient sensitivity measured for these devices were 1/300 and 308fT/cm√Hz (at 1 kHz) respectively. The larger baseline and larger flux capture area of the pick-up loops in a large area SLG design, fabricated on 30x10mm 2 substrates, resulted in significant improvements in the balance and gradient field sensitivity with 1/1000 and 50fT/cm√Hz (at 1kHz) measured respectively. To reduce the uniform field effective area of SLOs and therefore reduce the direct pick-up of environmental field noise when operated unshielded, a novel gradiometric SQUID (G-SQUID) device was developed. Fabricated from a single layer of YBCO, the G-SQUIDs with inductances of 67pH, had small uniform field effective areas of approximately 2μm 2 - more than two orders of magnitude smaller than the uniform field effective areas of conventional narrow linewidth SQUIDs of similar inductance. Two designs of G-SQUID were fabricated on 10x10mm 2 substrates. Due to their small effective areas, when cooled unshielded these devices showed no increase in their white flux noise. The best balance achieved for a G-SQUID

  19. SQUID-based measuring systems

    Indian Academy of Sciences (India)

    field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique. Keywords ... Superconducting quantum interference devices (SQUIDs) are the most sensitive detectors for measurement of ... omagnetic prospecting, detection of gravity waves etc. Judging the importance ...

  20. Squids: applications outside the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C M

    1978-07-01

    Originally thought to be rather esoteric, SQUIDS (superconducting quantum interference devices) have moved from the realms of theory to practical application since 1962. The promise for the not-too-distant future is a superconducting computer, with 10/sup 5/ logic elements in a 1cm cube.

  1. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  2. Cold SQUIDs and hot samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.C. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley national Lab., CA (United States). Materials Sciences Div.

    1997-05-01

    Low transition temperature (low-{Tc}) and high-{Tc} Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-{Tc} superconductors using two low-{Tc} SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magnetic field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-{Tc} SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity.

  3. How the SQUID was born

    International Nuclear Information System (INIS)

    Silver, Arnold H

    2006-01-01

    I was asked to speak about the discovery and invention of the SQUID at the International Superconducting Electronics Conference (ISEC) 2005 banquet. This narrative is based on my personal recollections of the sequence of events and the motivations. I have edited the text and added figures for clarity. Although it is an old story, it may contain some useful lessons

  4. Cold SQUIDs and hot samples

    International Nuclear Information System (INIS)

    Lee, T.S.C.; Lawrence Berkeley national Lab., CA

    1997-05-01

    Low transition temperature (low-T c ) and high-T c Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-T c superconductors using two low-T c SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magnetic field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-T c SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity

  5. How the SQUID was born

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Arnold H [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States)

    2006-05-15

    I was asked to speak about the discovery and invention of the SQUID at the International Superconducting Electronics Conference (ISEC) 2005 banquet. This narrative is based on my personal recollections of the sequence of events and the motivations. I have edited the text and added figures for clarity. Although it is an old story, it may contain some useful lessons.

  6. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  7. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    International Nuclear Information System (INIS)

    Chesca, Boris; John, Daniel; Mellor, Christopher J.

    2015-01-01

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S Φ 1/2 decreases as 1/N 1/2 . Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa 2 Cu 3 O 7 . Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S Φ 1/2 between (0.25 and 0.44) μΦ 0 /Hz 1/2 for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications

  8. The IBL Readout System

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2010-01-01

    The first upgrade for the ATLAS pixel detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer having new electronics assembled an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth and also compatible with the existing system to be integrated into it. The talk will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  9. The IBL Readout System

    CERN Document Server

    Dopke, J; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, having new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  10. Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital

    Science.gov (United States)

    Inaba, T.; Nakazawa, Y.; Yoshida, K.; Kato, Y.; Hattori, A.; Kimura, T.; Hoshi, T.; Ishizu, T.; Seo, Y.; Sato, A.; Sekiguchi, Y.; Nogami, A.; Watanabe, S.; Horigome, H.; Kawakami, Y.; Aonuma, K.

    2017-11-01

    A 64-channel Nb-based DC-SQUID magnetocardiography (MCG) system was installed at the University of Tsukuba Hospital (UTH) in March 2007 after obtaining Japanese pharmaceutical approval and insurance reimbursement approval. In the period between 2008 and 2016, the total number of patients was 10 085. The heart diseases diagnosed in fetuses as well as adults are mainly atrial arrhythmia, abnormal repolarization, ventricular arrhythmia, and fetal arrhythmia. In most cases of insufficient diagnostic accuracy with electrocardiography, SQUID MCG precisely revealed these heart diseases as an abnormal electrical current distribution. Based on success in routine examinations, SQUID MCG is now an indispensable clinical instrument with diagnostic software tuned up during routine use at UTH.

  11. NanoSQUIDs: Basics & recent advances

    Science.gov (United States)

    José Martínez-Pérez, Maria; Koelle, Dieter

    2017-08-01

    Superconducting Quantum Interference Devices (SQUIDs) are one of the most popular devices in superconducting electronics. They combine the Josephson effect with the quantization of magnetic flux in superconductors. This gives rise to one of the most beautiful manifestations of macroscopic quantum coherence in the solid state. In addition, SQUIDs are extremely sensitive sensors allowing us to transduce magnetic flux into measurable electric signals. As a consequence, any physical observable that can be converted into magnetic flux, e.g., current, magnetization, magnetic field or position, becomes easily accessible to SQUID sensors. In the late 1980s it became clear that downsizing the dimensions of SQUIDs to the nanometric scale would encompass an enormous increase of their sensitivity to localized tiny magnetic signals. Indeed, nanoSQUIDs opened the way to the investigation of, e.g., individual magnetic nanoparticles or surface magnetic states with unprecedented sensitivities. The purpose of this chapter is to present a detailed survey of microscopic and nanoscopic SQUID sensors. We will start by discussing the principle of operation of SQUIDs, placing the emphasis on their application as ultrasensitive detectors for small localized magnetic signals. We will continue by reviewing a number of existing devices based on different kinds of Josephson junctions and materials, focusing on their advantages and drawbacks. The last sections are left for applications of nanoSQUIDs in the fields of scanning SQUID microscopy and magnetic particle characterization, placing special stress on the investigation of individual magnetic nanoparticles.

  12. SQUIDs as detectors in a new experiment to measure the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Espy, M.A.; Cooper, M.; Lamoreaux, S.; Kraus, R.H. Jr.; Matlachov, A.; Ruminer, P.

    1998-01-01

    A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10 -28 ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large (∼100 cm 2 ) pick-up coils to measure the precision frequency of the spin-polarized 3 He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the 3 He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of ∼2x10 -16 Tm 2 (0.1 Φ 0 ) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of dΦ SQ = 2x10 -6 Φ 0 /√Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application the authors designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and they developed a two-SQUID readout system that will reduce SQUID noise in the experiment. They present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. The authors also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique

  13. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  14. Development of Nb nanoSQUIDs based on SNS junctions for operation in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Morosh, Viacheslav; Kieler, Oliver; Weimann, Thomas; Zorin, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Mueller, Benedikt; Martinez-Perez, Maria Jose; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany)

    2016-07-01

    Investigation of the magnetization reversal of single magnetic nanoparticles requires SQUIDs with high spatial resolution, high spin sensitivity (a few Bohr magneton μ{sub B}) and at the same time sufficient stability in high magnetic fields. We fabricated dc nanoSQUIDs comprising overdamped SNS sandwich-type (Nb/HfTi/Nb) Josephson junctions using optimized technology based on combination of electron beam lithography and chemical-mechanical polishing. Our nanoSQUIDs have Josephson junctions with lateral dimensions ≤ 150 nm x 150 nm, effective loop areas < 0.05 μm{sup 2} and the distance between the Josephson junctions ≤ 100 nm. The feeding strip lines of the width ≤ 200 nm have been realized. The nanoSQUIDs have shown stable operation in external magnetic fields at least up to 250 mT. Sufficiently low level of flux noise resulting in spin sensitivity of few tens μ{sub B}/Hz{sup 1/2} has been demonstrated. A further reduction of the nanoSQUID size using our technology is possible.

  15. NANO-SQUIDs based on niobium Dayem bridges for nanoscale applications

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C; Esposito, E; Nappi, C; Ruggiero, B; Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (Napoli) (Italy); Vettoliere, A; Walke, P [Also Universita degli Studi di Napoli ' Federico II' , Napoli (Italy); Silvestrini, P, E-mail: c.granata@cib.na.cnr.i [Dipartimento di Ingegneria dell' Informazione, Seconda Universita degli Studi di Napoli, Aversa(Caserta) (Italy)

    2010-06-01

    We report on the design, the fabrication and the performance of an integrated magnetic nano-sensor based on niobium dc-SQUID (Superconducting QUantum Interference Device) for nanoscale applications is presented. The nano-sensors are based on nanometric niobium constrictions (Dayem bridges) inserted in a square loop having a side length of 200 nm. Measurements of voltage-flux characteristic, flux to voltage transfer factor and noise performances are reported. In small signal mode, the sensors have shown a magnetic flux noise spectral density of 1.5 {mu}{Phi}{sub 0}/Hz{sup 1/2} corresponding to a spin sensitivity in unit of Bohr magneton of 60 spin/Hz{sup 1/2}. Supercurrent decay measurements of these devices are also reported. Such measurements provide useful information for applications which employ the SQUID as a trigger where the sensor works on the zero voltage state. The experimental data, have shown an intrinsic current fluctuation less than 0.2% of the critical current at liquid helium temperature, corresponding to an intrinsic sensor magnetic flux resolution of a few m{Phi}{sub 0}. In view of the nano-SQUID employments in the detection of small spin populations, the authors calculated the spin sensitivity and the magnetic response relative to the single spin, as a function of its position within the SQUID hole. The results show that the SQUID response depends strongly on the spin position.

  16. Characterization and demonstration results of a SQUID magnetometer system developed for geomagnetic field measurements

    Science.gov (United States)

    Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.

    2017-08-01

    We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.

  17. A new integrated microwave SQUID circuit design

    International Nuclear Information System (INIS)

    Erne, S.N.; Finnegan, T.F.

    1980-01-01

    In this paper we consider the design and operation of a planar thin-film rf-SQUID circuit which can be realized via microwave-integrated-circuit (MIC) techniques and which differs substantially from pervious microwave SQUID configurations involving either mechanical point-contact or cylindrical thin-film micro-bridge geometries. (orig.)

  18. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    Science.gov (United States)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  19. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    Science.gov (United States)

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  20. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of these authors, DC/DC converters have now moved into their sixth generation. This book offers a concise, practical presentation of DC/DC converters, summarizing the spectrum of conversion tecnologies and presentingmany new ideas and more than 100 new topologies. Nowhere else in the literature are DC/DC converters so logically sorted and systematically introduced, and nowhere else can readers find detailed information on prototype topologies that represent a major contribution to modern power engineering. More than 320 figures, 60 tables, and 500 formulae facilitate understand and provide precise data.

  1. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  2. Readout electronic for multichannel detectors

    International Nuclear Information System (INIS)

    Kulibaba, V.I.; Maslov, N.I.; Naumov, S.V.

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc

  3. New version of toroidal SQUID sensor

    International Nuclear Information System (INIS)

    Zarembinski, S.; Kachniarz, J.

    1983-01-01

    A report is given on the design and fabrication of a mechanically stable and thermal shock resistant SQUID sensor. The sensor is vacuum sealed while the access to the adjustment of its point contact is left open

  4. Integrated de SQUID magnetometer with high dV/dB

    International Nuclear Information System (INIS)

    Drung, D.; Cantor, R.; Peters, M.; Ryhanen, T.; Kochi, H.

    1991-01-01

    This paper presents a directly coupled dc SQUID magnetometer with very simple feedback electronics. The magnetometer has been integrated on a 7.2 x 7.2 mm 2 chip and fabricated using a four-level Nb/Si x N v /Nb process. Eight pick-up loops are connected in parallel to directly form the SQUID inductance of about 0.4 nH which leads to a high sensitivity B/Φ = 0.47 nT/Φ. An Additional Positive Feedback (APF) circuit on the magnetometer chip has been used to increase the gradient of the V-μ characteristic to dV/dΦ ≅ 300 μV/Φ 0 at the SQUID operating point. The resulting gradient of the transfer function of dV/dB ≅ 640 μV/nT makes it possible to directly read out the SQUID without helium temperature impedance matching circuits or flux modulation techniques

  5. Digital readouts for large microwave low-temperature detector arrays

    International Nuclear Information System (INIS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-01-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100MS/s 16-bit D/A to generate an arbitrary number of tones in 50MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (∼10GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors

  6. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Chesca, Boris, E-mail: B.Chesca@lboro.ac.uk; John, Daniel [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Mellor, Christopher J. [School of Physics and Astronomy, Nottingham University, Nottingham NG7 2RD (United Kingdom)

    2015-10-19

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S{sub Φ}{sup 1/2} decreases as 1/N{sup 1/2}. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa{sub 2}Cu{sub 3}O{sub 7}. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S{sub Φ}{sup 1/2} between (0.25 and 0.44) μΦ{sub 0}/Hz{sup 1/2} for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

  7. Frequency-domain readout multiplexing of transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lanting, T.M. [Physics Department, University of California, Berkeley, CA 94720 (United States)]. E-mail: tlanting@berkeley.edu; Arnold, K. [Physics Department, University of California, Berkeley, CA 94720 (United States); Cho, Hsiao-Mei [Physics Department, University of California, Berkeley, CA 94720 (United States); Clarke, John [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Dobbs, Matt [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Holzapfel, William [Physics Department, University of California, Berkeley, CA 94720 (United States); Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lueker, M. [Physics Department, University of California, Berkeley, CA 94720 (United States); Richards, P.L. [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Smith, A.D. [Northrop-Grumman, Redondo Beach, CA 94278 (United States); Spieler, H.G. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-04-15

    We have demonstrated frequency-domain readout multiplexing of eight channels for superconducting transition-edge sensor bolometer arrays. The multiplexed readout noise is 6.5 pA/{radical}Hz, well below the bolometer dark noise of 15-20 pA/{radical}Hz. We measure an upper limit on crosstalk of 0.004 between channels adjacent in frequency which meets our design requirement of 0.01. We have observed vibration insensitivity in our frequency-domain multiplexed transition-edge sensors, making this system very attractive for telescope and satellite observations. We also discuss extensions to our multiplexed readout. In particular, we are developing a SQUID flux-locked loop that is entirely cold and collaborating on digital multiplexer technology in order to scale up the number of multiplexed channels.

  8. Electronics for a Next-Generation SQUID-Based Time-Domain Multiplexing System

    International Nuclear Information System (INIS)

    Reintsema, C. D.; Doriese, W. R.; Hilton, G. C.; Irwin, K. D.; Krinsky, J. W.; Adams, J. S.; Baker, R.; Bandler, S. R.; Kelly, R. L.; Kilbourne, C. A.; Porter, F. S.; Figueroa-Feliciano, E.; Wikus, P.

    2009-01-01

    A decade has elapsed since the design, development and realization of a SQUID-based time-division multiplexer at NIST. During this time the system has been used extensively for low-temperature-detector-array measurements. Concurrently, there have been substantial advancements both in detector array and commercial electronic component technology. The relevance and applicability of the technology has blossomed as well, often accompanied by more demanding measurement requirements. These factors have motivated a complete redesign of the NIST room-temperature read-out electronics. The redesign has leveraged advancements in component technology to achieve new capabilities better suited to the SQUID multiplexers and detector arrays being realized today. As examples of specific performance enhancements, the overall system bandwidth has been increased by a factor of four (a row switching rate of 6.24 MHz), the compactness has been increased by over a factor of two (a higher number of detector columns and rows per circuit board), and there are two high speed outputs per column (allowing fast switching of SQUID offsets in addition to digital feedback). The system architecture, design implementations, and performance advantages of the new system will be discussed. As an application example, the science chain flight electronics for the Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket will be described as both a motivation for, and a direct implementation of the new system.

  9. Common Bias Readout for TES Array on Scanning Transmission Electron Microscope

    Science.gov (United States)

    Yamamoto, R.; Sakai, K.; Maehisa, K.; Nagayoshi, K.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Hidaka, M.; Nagasawa, S.; Maehata, K.; Hara, T.

    2016-07-01

    A transition edge sensor (TES) microcalorimeter array as an X-ray sensor for a scanning transmission electron microscope system is being developed. The technical challenge of this system is a high count rate of ˜ 5000 counts/second/array. We adopted a 64 pixel array with a parallel readout. Common SQUID bias, and common TES bias are planned to reduce the number of wires and the resources of a room temperature circuit. The reduction rate of wires is 44 % when a 64 pixel array is read out by a common bias of 8 channels. The possible degradation of the energy resolution has been investigated by simulations and experiments. The bias fluctuation effects of a series connection are less than those of a parallel connection. Simple calculations expect that the fluctuations of the common SQUID bias and common TES bias in a series connection are 10^{-7} and 10^{-3}, respectively. We constructed 8 SQUIDs which are connected to 8 TES outputs and a room temperature circuit for common bias readout and evaluated experimentally. Our simulation of crosstalk indicates that at an X-ray event rate of 500 cps/pixel, crosstalk will broaden a monochromatic line by about 0.01 %, or about 1.5 eV at 15 keV. Thus, our design goal of 10 eV energy resolution across the 0.5-15 keV band should be achievable.

  10. Squids: principles and basic applications in experimental physics

    International Nuclear Information System (INIS)

    Ocio, M.

    1990-01-01

    The basic principles and the description of the technical aspects of SQUIDs (Superconducting Quantum Interference Devices) are described. The applications of SQUIDs in experimental researches and low temperature physics experiments are given. The concepts of fluxoid quantization in a superconductor and Josephson tunnelling are reviewed. The principles, the operation, the noise and the different configurations of r.f. and direct current bias SQUIDs are summarized. The principal characteristics of several SQUIDs are reported

  11. Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz

    Science.gov (United States)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  12. The investigation of rf-squids at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, V N; Vasiliev, B V [Joint Inst. for Nuclear Research, Dubna (USSR)

    1989-12-01

    One- and two-hole YBCO ceramic rf-squids operating at liquid nitrogen temperatures have been developed. The main squid parameters: self-inductance, white noise level and magnetic flux resolution were measured. The directly measured external field sensitivity for one-hole squid was at the level of 100 fT/{radical}Hz. (orig.).

  13. Low-frequency noise in high-(Tc) superconductor Josephson junctions, SQUIDs, and magnetometers

    Science.gov (United States)

    Miklich, A. H.

    1994-05-01

    Design and performance of high-T(sub c) dc superconducting quantum interference devices (SQUID's), junctions that comprise them, and magnetometers made from them are described, with attention to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUID's; this suggests a poorly connected interface at the grain boundary junction. SQUID's from bicrystal junctions have levels of critical current noise controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5 x 10(exp -30) J Hz(exp -1) at 1 Hz is reported. Magnetometers in which a (9 mm)(exp 2) pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz(exp -1/2) down to frequencies below 1 Hz, improving to 39 fT Hz(exp -1/2) at 1 Hz with the addition of a 50mm-diameter single-turn flux transformer. Poor coupling to pickup loop makes it difficult to satisfy competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz(exp -1/2) in the white noise region is reported with a (10 mm)(exp 2) pickup loop. However, additional 1/f noise from processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz(exp -1/2). High-T(sub c) SQUID's exhibit additional 1/f noise when cooled in a nonzero static magnetic field because of additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution of 9.2 pV Hz(exp -1/2) at 10 Hz (24 pV Hz(exp -1/2) at 1 Hz) is described.

  14. Low-Frequency Noise in High-T Superconductor Josephson Junctions, Squids, and Magnetometers.

    Science.gov (United States)

    Miklich, Andrew Hostetler

    The design and performance of high-T_ {rm c} dc superconducting quantum interference devices (SQUIDs), the junctions that comprise them, and magnetometers made from them are described, with special attention paid to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUIDs. This noise suggests a poorly connected interface at the grain boundary junction. SQUIDs from bicrystal junctions, in contrast, have levels of critical current noise that are controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5times 10^{-30} J Hz^ {-1} at 1 Hz is reported. Magnetometers in which a (9 mm)^2 pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz^{-1/2} down to frequencies below 1 Hz, improving to 39 fT Hz^{-1/2} at 1 Hz with the addition of a 50 mm-diameter single-turn flux transformer. Although the performance of these devices is sufficient for single -channel biomagnetometry or geophysical studies, their relatively poor coupling to the pickup loop makes it difficult to satisfy the competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz^{-1/2} in the white noise region is reported with a (10 mm) ^2 pickup loop. However, additional 1/f noise from the processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz^ {-1/2}. High-T_{ rm c} SQUIDs are shown to exhibit additional 1/f noise when they are cooled in a nonzero static magnetic field because of the additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05 mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution

  15. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  16. Milliwatt dc/dc Inverter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  17. One Period of Exploration with the Squid.

    Science.gov (United States)

    Bradley, James V.; Ng, Andrew

    1997-01-01

    Presents a lab that can be offered after students have learned the basic anatomy and physiology of the various phyla, the primary objective of which is to explore and apply their acquired knowledge to a new situation. Involves exploring the anatomy and life-style of the squid. (JRH)

  18. Squid Dissection: From Pen to Ink.

    Science.gov (United States)

    Brown, Cindy; Kisiel, Jim

    2003-01-01

    Introduces students to dissection, which is an important part of scientific discovery. Students not only gain an understanding of the anatomy of a squid, but also develop a sense of responsibility and respect for the animal that they are using as a learning tool. (Author/SOE)

  19. Timing and Readout Contorl in the LHCb Upgraded Readout System

    CERN Document Server

    Alessio, Federico

    2016-01-01

    In 2019, the LHCb experiment at CERN will undergo a major upgrade where its detectors electronics and entire readout system will be changed to read-out events at the full LHC rate of 40 MHz. In this paper, the new timing, trigger and readout control system for such upgrade is reviewed. Particular attention is given to the distribution of the clock, timing and synchronization information across the entire readout system using generic FTTH technology like Passive Optical Networks. Moreover the system will be responsible to generically control the Front-End electronics by transmitting configuration data and receiving monitoring data, offloading the software control system from the heavy task of manipulating complex protocols of thousands of Front-End electronics devices. The way in which this was implemented is here reviewed with a description of results from first implementations of the system, including usages in test-benches, implementation of techniques for timing distribution and latency control."

  20. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  1. Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples

    Science.gov (United States)

    Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao

    2018-04-01

    Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.

  2. SQUID multiplexing using baseband feedback for space application of transition-edge sensor microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Y; Yamasaki, N Y; Hirakoso, W; Kimura, S; Mitsuda, K, E-mail: takei@astro.isas.jaxa.j [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 229-8510 (Japan)

    2009-11-15

    A microcalorimeter array based on a transition-edge sensor (TES) thermometer is a promising imaging spectrometer for use in future x-ray astronomy missions. A TES microcalorimeter achieves {approx}<5 eV energy resolution and an array of >100 pixels also provides a moderate imaging capability. For a large format array, signal multiplexing at the low temperature stage is mandatory in order to reduce heat loads from cold stage preamplifiers and through wirings. We are developing frequency division multiplexing (FDM). In FDM, each TES is ac-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one dc SQUID (superconducting quantum interference device). The maximum number of multiplexed pixels is limited by the bandwidth of a SQUID in a flux-locked loop. Assuming 1 m cable length between the room temperature and the cold stage, the bandwidth is only <1 MHz with a standard flux-locked loop, due to the delay and phase shift of wirings. We report our development of baseband feedback, a new feedback scheme that overcomes the bandwidth limitation. In baseband feedback, the signal ({approx}<10 kHz) from the TES is sent back to the SQUID after the phase of carrier frequency ({approx}1 MHz) has been adjusted. We demonstrated open-loop gain of 8 for 10 kHz signal at 5 MHz carrier frequency, which indicates the possibility of {approx}40-pixel multiplexing of the TES signal.

  3. The SPICA-SAFARI Detector System : TES Detector Arrays With Frequency-Division Multiplexed SQUID Readout

    NARCIS (Netherlands)

    Jackson, B. D.; de Korte, P. A. J.; van der Kuur, J.; Mauskopf, P. D.; Beyer, J.; Bruijn, M. P.; Cros, A.; Gao, J. -R.; Griffin, D.; den Hartog, R.; Kiviranta, M.; de Lange, G.; van Leeuwen, B. -J.; Macculi, C.; Ravera, L.; Trappe, N.; van Weers, H.; Withington, S.

    The SAFARI instrument is a far-infrared imaging Fourier transform spectrometer for JAXA's SPICA mission. Taking advantage of the low emission of SPICA's 5 K telescope, SAFARI will provide sky background-limited, Nyquist-sampled spectroscopic imaging of a 2' x 2' field-of-view over 34-210 mu m,

  4. The PAUCam readout electronics system

    Science.gov (United States)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  5. SISTEM OTENTIKASI UNTUK SQUID BERBASIS WEB

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2006-07-01

    Full Text Available Dalam sebuah jaringan komputer terdapat bermacam-macam tipe user dengan berbagi tingkatan yang berbeda yang juga dibutuhkan perlakuan yang berbeda pada tiap user yang disesuaikan dengan kebutuhan dalam menggunakan akses web, baik berupa http, ftp, gopher, dan lain-lain. Dimana masing-masing user memiliki skala prioritas dalam penggunaan bandwidth, jumlah koneksi maksimum, waktu koneksi, ukuran file maksimum, situs yang tidak boleh diakses dan lain-lain. Tujuan dari penelitian ini adalah membuat sebuah perangkat lunak yang dapat melakukan otentikasi user berdasarkan data konfigurasi yang disimpan dalam basisdata. Selain itu, perangkat lunak yang dibuat dapat memproses request dari client berdasarkan data konfigurasi dengan lebih cepat. Permasalahan yang mucul adalah bagaimana merancang dan membuat suatu perangkat lunak yang dapat melakukan otentikasi user berdasarkan data konfigurasi yang diambil dari basisdata, serta dapat memproses request dari client dengan lebih cepat berdasarkan hak akses yang dimilikinya.Dalam penelitian ini didesain dan diimplementasikan suatu sistem otentikasi user dengan mengambil data user yang tersimpan dalam basisdata MySQL. Disamping itu, dilakukan rekayasa pada beberapa rutin proses yang terdapat dalam squid proxy, supaya proses-proses dapat melakukan pengambilan data konfigurasi yang dialihkan dan disimpan dalam basisdata MySQL. Data konfigurasi ini didasarkan pada pembagian hak akses yang dimiliki oleh masing-masing grup user. Antarmuka berbasis web digunakan sebagai salah satu layanan bagi admin untuk mempermudah pengelolaan dan pengolahan data konfigurasi yang dibuat.Berdasarkan uji coba yang telah dilakukan, terbukti sistem yang dibuat dapat bekerja dengan baik dan tidak melenceng dari fungsi asli sebelum dilakukan perubahan. Bahkan pada penanganan request client yang berukuran besar, kinerja squid mengalami peningkatan dalam hal kecepatan proses yang dibutuhkan. Sebagai contoh, request client pada  file

  6. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  7. Recent advancements in the SQUID magnetospinogram system

    Science.gov (United States)

    Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen

    2017-06-01

    In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.

  8. Analysis of Squid Net Fisheries Business Production

    Directory of Open Access Journals (Sweden)

    Herna Octivia Damayanti

    2017-03-01

    Full Text Available Squid net is one of alternatives to replace trawl net in Pati regency. The purposes of the research are 1 to determine the influence factors, 2 to analyze the return to scale, 3 to analyze cost and return.The research location in Juwana Subdistrict particularly Bakaran Kulon, Dukutalit, Bajomulyo and Bendar Villages. The research conducted on October 2015 to June 2016. The number of final samples was 36, while the formulation of management strategies used 15 samples by snowball sampling. Data analysis techniques used 1 Cobb Douglas production function, 2 revenue-cost ratio analysis. The results of the research are 1 significant inputs for production factor are long trip, Solar fuel, the number of crew and lights. 2 the return to scale of squid net bussiness in Juwana subdistrict Pati regency is -0.231 means decreasing to scale. 3 the R/C ratio of scenario II more profitable for squid net crews than  scenario I.

  9. Preliminary report on the PIXE analysis of the squid statoliths

    International Nuclear Information System (INIS)

    Ikeda, Yuzuru; Arai, Nobuaki; Sakamoto, Wataru; Murayama, Tatsuro; Maeda, Kuniko; Yoshida, Koji.

    1996-01-01

    Micro trace elements in the squid statolith, a calcareous stone which acts as a balancer and hearing, was analyzed with Particle Induced X-ray Emission (PIXE) for the Japanese common squid for the first time. Calcium is the main component of the squid statoliths, which means that squid statolith is the pure calcified structure similar to the fish otolith. Beside Ca, Sr was detected with strong dosage, and some other elements as Mn, Fe, Cu, Zn and As were also detected. Possible assumption of intake of microelements to the statoliths and the suitability of PIXE for statoliths analysis are discussed. (author)

  10. Antioxidant and antimicrobial activities of squid ink powder

    OpenAIRE

    Fatimah Zaharah, M.Y.; Rabeta, M.S.

    2017-01-01

    Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assa...

  11. Allometry indicates giant eyes of giant squid are not exceptional.

    Science.gov (United States)

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  12. Detection of fine magnetic particles coated on a thread using an HTS-SQUID

    International Nuclear Information System (INIS)

    Kawagishi, K.; Itozaki, H.; Kondo, T.; Komori, K.; Koetitz, R.

    2004-01-01

    Polymer-coated magnetic particles, which contain superparamagnetic ferrite nanoparticles, were attached to a nylon thread of 0.35 mm in diameter and were detected by an HTS-SQUID. The length of the sample attached into the thread was within 3 mm and its interval was 30 mm. The particles were magnetized by a coil applied dc field or by a magnet of 1.4 T. The thread ran 2 mm under the SQUID with 20-100 mm/s of the rate. Signals of magnetic beads were detected and the peak-to-peak amplitude of the signals was directly proportional to the applied field and the weight of the magnetic particles. Obtained peak-to-peak amplitude for 20 ng of magnetite particles was 350 pT at 0.25 mT of applied dc field with noise of 18 pT, and estimated detection limit was 10 ng. S/N ratio was improved by the remanence measurement using the magnet and 5.8 ng of detection limit was obtained. This measurement has been proved to be promising for the continuous analysis of ultra dilute DNA solution

  13. A Unidirectional DC-DC Autotransformer for DC Grid Application

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2018-03-01

    Full Text Available Conventional unidirectional DC-DC converters for DC grid application employ DC-AC-DC two-stage conversion technology and suffer from high converter cost and power loss. To solve these issues, a unidirectional step-up DC-DC autotransformer (UUDAT and a unidirectional step-down DC-DC autotransformer (DUDAT are studied. The UUDAT and DUDAT are composed of a series connection of diode bridges and voltage source converters. Topologies of UUDAT and DUDAT are detailed. The harmonic and un-controllability issues are discussed. Control and possible application scenarios for UUDAT and DUDAT are depicted. DC fault isolation mechanism and the methods of dimensioning the voltage and power ratings of the components in UUDAT and DUDAT are studied. Extensive simulations on power system level and experiments on a UUDAT and DUDAT prototype verified their technical feasibility.

  14. Universal mechanisms of decoherence of qubit states in a SQUID

    Science.gov (United States)

    Kuklov, A. B.; Chudnovsky, E. M.

    2003-03-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations of the superconducting current in a SQUID [1]. The very fact that the current flows with respect to the ion lattice is shown to result in a decoherence via emission of the transverse sound at the oscillation frequency. For SQUIDs larger than the wavelength of the phonons, this effect can significantly limit the quality factor. The decohering effects of the external mechanical and magnetic noise are shown to be proportional to the total magnetic moment of the SQUID, making small SQUIDs less susceptible to the noise than large SQUIDs. Decoherence due to the emission of photons into the open space and in the presence of the metal shielding has been studied as well. Suggestions of experimental setups with low decoherence have been made. [1] E. M. Chudnovsky and A. B. Kuklov, arXiv:cond-mat/0211246.

  15. Drag force and jet propulsion investigation of a swimming squid

    Directory of Open Access Journals (Sweden)

    Tabatabaei Mahdi

    2015-01-01

    Full Text Available In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid’s different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin. The drag coefficient (referenced to total wetted surface area of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid’s mantle cavity.

  16. Current-phase relations and noise in rf biased SQUIDS

    International Nuclear Information System (INIS)

    Jackel, L.D.; Clark, T.D.; Buhrman, R.A.

    1975-01-01

    An investigation was made of the effect of the weak link current-phase relation on noise in rf biased SQUIDs. Non-sinusoidal current-phase relations were observed in various weak links, and these non-sinusoidal relations were correlated with significantly increased intrinsic noise in the SQUID ring. The current-phase relation was also found to affect the amplitude of the rf SQUID ring dissipation. The result of an rf SQUID system noise analysis shows that, due to increased intrinsic noise and reduced ring dissipation, the minimum attainable noise for a SQUID ring having a very non-sinusoidal current-phase relation is considerably greater than for a ring with a sinusoidal relation

  17. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    Science.gov (United States)

    Prele, D.

    2015-08-01

    As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.

  18. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    International Nuclear Information System (INIS)

    Prele, D.

    2015-01-01

    As we have seen for digital camera market and a sensor resolution increasing to 'megapixels', all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, 'simple' and 'efficient' techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described

  19. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage...

  20. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  1. Antioxidant and antimicrobial activities of squid ink powder

    Directory of Open Access Journals (Sweden)

    Fatimah Zaharah, M.Y.

    2017-10-01

    Full Text Available Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assays named 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and Ferric Reducing Antioxidant Power (FRAP assay, and antimicrobial analysis were done on the powdered squid ink. The proximate results of squid ink powder were 4.43 ± 0.29% moisture, 62.46 ± 0.62% protein, 3.96 ± 0.08% fat, and 9.29 ± 0.05% ash. Results of DPPH assay showed that water extraction of squid ink powder has the highest 94.87 ± 4.87%, followed by ethanol 67.57 ± 7.55%, and hexane extract 2.10 ± 1.18%. FRAP assay result presented the same trend with water extraction had the highest value of 929.67 ± 2.31 μmol Fe (II / g of sample extract, followed by ethanol extract 201.00 ± 26.29 μmol Fe (II per gram sample and hexane 79.67 ± 12.66 μmol Fe (II / g of sample extract. Both water and ethanol extract showed antimicrobial properties with inhibition range of 7 to 15 mm, respectively. Fresh squid ink had 1.254 × 103 colony forming unit per gram of sample of microbial content. Squid ink powder had protein as major compound and microbial content was below from standard value of fisheries products as stated in Food Act 1983 and Regulation 1985.

  2. A SQUID Bootstrap Circuit with a Large Parameter Tolerance

    International Nuclear Information System (INIS)

    Zhang Guo-Feng; Kong Xiang-Yan; Xie Xiao-Ming; Zhang Yi; Krause Hans-Joachim; Offenhäusser Andreas

    2013-01-01

    The voltage biased (SQUID) bootstrap circuit (SBC) was recently introduced as an effective means to reduce the preamplifier noise contribution. We analyze the tolerances of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. It is found that the tolerance to spread mainly caused by the integrated circuit fabrication process could be extended by a one-time adjustable current feedback. A helium-cooled niobium SQUID with a loop inductance of 350 pH is employed to experimentally verify the analysis. From this work, design criteria for fully integrated SBC devices with a high yield can be derived

  3. SQUIDs in thermal detectors of weakly interacting particles

    International Nuclear Information System (INIS)

    Trofimov, V.N.

    1991-01-01

    The application of four different types of SQUID-assisted thermometers for cryogenic thermal detectors of weakly interacting particles is analyzed with two of them for the first time. The classic resistive thermometer is considered as well for the comparison. Original results of testing the detector with working temperature of 1K and thermocouple thermometer with SQUID are given. The conclusion is made that temperature resolution of 10 -10 kHz -1/2 or energy sensitivity of 1-10 eV per 1 kg of detector mass can be achieved when using the SQUID-assisted thermometers. 12 refs.; 7 figs.; 1 tab

  4. DC Home Appliances for DC Distribution System

    Directory of Open Access Journals (Sweden)

    MUHAMMAD KAMRAN

    2017-10-01

    Full Text Available This paper strengthens the idea of DC distribution system for DC microgrid consisting of a building of 50 apartments. Since the war of currents AC system has been dominant because of the paucity of research in the protection of the DC system. Now with the advance research in power electronics material and components, generation of electricity is inherently DC as by solar PV, fuel cell and thermoelectric generator that eliminates the rectification process. Transformers are replaced by the power electronics buck-boost converters. DC circuit breakers have solved the protection problems for both DC transmission and distribution system. In this paper 308V DC microgrid is proposed and home appliances (DC internal are modified to operate on 48V DC from DC distribution line. Instead of using universal and induction motors in rotary appliances, BLDC (Brushless DC motors are proposed that are highly efficient with minimum electro-mechanical and no commutation losses. Proposed DC system reduces the power conversion stages, hence diminishes the associated power losses and standby losses that boost the overall system efficiency. So in view of all this a conventional AC system can be replaced by a DC system that has many advantages by cost as well as by performance

  5. Can understanding squid life-history strategies and recruitment ...

    African Journals Online (AJOL)

    Can understanding squid life-history strategies and recruitment improve management? ... range of potentially limiting conditions in different years, they store genetic diversity and stabilize recruitment in time. ... AJOL African Journals Online.

  6. Negative inductance SQUID qubit operating in a quantum regime

    Science.gov (United States)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  7. Reactive probing of macroscopically quantum mechanical SQUID rings

    International Nuclear Information System (INIS)

    Prance, R.J.; Clark, T.D.; Whiteman, R.; Diggins, J.; Ralph, J.F.; Prance, H.; Spiller, T.P.; Widom, A.; Srivastava, Y.

    1994-01-01

    In this paper we demonstrate that the energy level structure of ultra small capacitance SQUID rings can be probed adiabatically at radio frequency using both dynamical and quasistatic reactive techniques. ((orig.))

  8. Gear Selectivity of a Longfin Squid Bottom Trawl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Loligo pealeii (longfin inshore squid) co-occurs with Atlantic butterfish (Peprilus triacanthus) throughout the year and discarding in the L. pealeii bottom trawl...

  9. Forecasting chokka squid Loligo vulgaris reynaudii catches and ...

    African Journals Online (AJOL)

    spamer

    2017-11-11

    Nov 11, 2017 ... on ambient water temperature (Augustyn et al. 1992,. A. Oosthuisen, University of ..... from tagged squid and the supply of continuous environ- mental data. ... should a leak develop, and to provide insulation for the electronics.

  10. Symposium on applications of superconducting quantum interference devices (SQUIDS)

    International Nuclear Information System (INIS)

    1978-01-01

    The abstracts are given of thirteen papers presented at a ''SQUID Symposium'' organized by the Division of Materials Sciences of the U.S. Department of Energy and held March 23--25, 1978, at the University of Virginia. Since SQUID systems have already been utilized in feasibility demonstration in geothermal reservoir exploration, it was recognized that these devices also hold great potential for many other important scientific measurements. Many of these are energy-related, and others include forefront investigations in a diverse group of scientific areas, from biomedical to earthquake monitoring. Research in SQUIDs has advanced so rapidly in recent years that it was felt that a symposium to review the current status and future prospects of the devices would be timely. The abstracts given present an overview of work in this area and hopefully provide an opportunity to increase awareness among basic and applied scientists of the inherent implications of the extreme measurement sensitivity in advanced SQUID systems

  11. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage......DC-DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which......-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc-dc converters are presented and summarized with comparative study of different voltage-boosting techniques....

  12. Nondestructive evaluation of metallic structures using a SQUID magnetometer

    International Nuclear Information System (INIS)

    Weinstock, H.; Nisenoff, M.

    1985-01-01

    We present one of the first reports of the use of SQUID instrumentation for nondestructive evaluation of electrically conducting and ferromagnetic specimens. We report preliminary experiments on the use of SQUIDs for the detection of defects (such as cracks, holes, weld seams, variations in wall thickness, effects of corrosion, etc.) in the walls of a hollow pipe, and for monitoring the magnetic state of a ferromagnetic sample under stress-strain loading conditions. (orig./BUD)

  13. Characterization of thermal aging of duplex stainless steel by SQUID

    International Nuclear Information System (INIS)

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-01-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging

  14. DC electric springs with DC/DC converters

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2016-01-01

    The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...... and/or constant discharging for batteries is adopted and four operating modes are analyzed as charging-positive, charging-negative, discharging-positive and discharging-negative modes. An additional mechanism for fast charging or fast discharging is also designed to secure normal operation...... of batteries. With the proposed DCES, the power fluctuations due to intermittent RESs can be passed to non-critical loads (NCLs) and batteries while power on critical loads (CLs) is kept stable. This is possibly the first attempt to design a DCES with only DC/DC converters. The performances of the proposed...

  15. BATS, the readout control of UA1

    Energy Technology Data Exchange (ETDEWEB)

    Botlo, M.; Dorenbosch, J.; Jimack, M.; Szoncso, F.; Taurok, A.; Walzel, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1991-04-15

    A steadily rising luminosity and different readout architectures for the various detector systems of UA1 required a new data flow control to minimize the dead time. BATS, a finite state machine conceived around two microprocessors in a single VME crate, improved flexibility and reliability. Compatibility with BATS streamlined all readout branches. BATS also proved to be a valuable asset in spotting readout problems and previously undetected data flow bottlenecks. (orig.).

  16. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  17. Effect of low-frequency ambient magnetic fields on the control unit and RF head of a commercial SQUID magnetometer

    Science.gov (United States)

    Marcus, C. M.

    1984-01-01

    The control unit and RF head of the SHE model 330XRFSQUID system are shown to be sensitive to ambient ac magnetic fields below 1 HZ, which cause the appearance of false signals corresponding to a magnetometer signal of 0.000001 phi(0) per gauss of field applied. The control unit shows a sensitivity that is linear with frequency, suggesting that the signal is generated by Faraday induction. In contrast, the RF head response is independent of frequency and shows a strong second-harmonic coversion. This response may be due to the magnetic field sensitivity of the ferrite core inductor in the tuned amplifier of the RF head. These signals induced by ambient fields are a potential source of error in Stanford's Relativity Gyroscope experiment, which uses SQUID's on board a rolling satellite as part of the gyroscope readout system. The extent of the magnetic field sensitivity in these components necessitates the use of additional magnetic shielding aboard the satellite.

  18. The low fault HTSL-SQUID cooling system. Final report; Stoerarmes HTSL-SQUID-Kuehlsystem. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Binneberg, A.; Spoerl, G.; Buschmann, H.

    1997-03-01

    In the context of the research project, work was done for HTSL-SQUID on (1) the development of a thermo-siphon cooler (low fault and continuously working) and (2) the development of a latent storage cooler (low fault and discontinuously working). Two development versions of the latent storage cooler were followed up, the development of a spherical latent storage cooler and the development of an annular vessel latent storage cooler. A further precondition for the construction of the cooler was the use of split Stirling refrigerators as units producing the cold. The experimental sample was built up with refrigerators which could produce a nominal cooling output of 1.2 W at 80 K. Two samples of the thermo-siphon cooler were built, tested and improved. The second sample was developed further as a demonstration model, introduced at meetings and prepared for testing the cooling of HTSL-SQUIDs. The thermo-siphon cooler can be designed for cooling output up to about 2 W at 80 K and can be used controlled for a temperature range of 90 K to 66 K. (orig./MM) [Deutsch] Im Rahmen des Forschungsvorhabens wurde fuer HTSL-SQUID`s an der (1) Entwicklung eines Thermosiphon-Kuehlers (stoerarm und kontinuierlich arbeitend) und (2) Entwicklung eines Latentspeicher-Kuehlers (stoerfrei und diskontinuierlich arbeitend) gearbeitet. Bei dem Latentspeicher-Kuehler wurden zwei Entwicklungsversionen verfolgt, und zwar Entwicklung eines Kugel-Latentspeicher-Kuehlers und Entwicklung eines Ringgefaess-Latentspeicher-Kuehlers. Eine weitere Praemisse zum Aufbau der Kuehler war der Einsatz von Split-Stirling-Kaeltemaschinen als kaelteerzeugende Baugruppe. Die Versuchsmuster wurden mit Kaeltemaschinen aufgebaut, die eine Nennkuehlleistung von 1,2 W bei 80 K erzeugen konnten. Der Thermosiphon-Kuehler wurde in zwei Musterexemplaren aufgebaut, erprobt und verbessert. Das Zweitmuster wurde als Demonstrator weiterentwickelt, zu Fachtagungen vorgestellt und zur Testung der Kuehlung von HTSL-SQUIDs

  19. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  20. SQUID use for Geophysics: finding billions of dollars

    Science.gov (United States)

    Foley, Catherine

    2014-03-01

    Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.

  1. Hybrid amplifier for calorimetry with photodiode readout

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, V V

    1994-12-31

    A hybrid surface mounted amplifier for the photodiode readout of the EM calorimeter has been developed. The main technical characteristics of the design are presented. The design able to math readout constraints for a high luminosity collider experiment is discussed. 10 refs., 2 tabs., 8 figs.

  2. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    ... a calorimeter system of a relatively simple construction and moderate costs, however with excellent properties, built upon experience gained with the extensively beam-tested DREAM (Dual REAdout. Module) prototype. The main idea of multiple readout calorimetry is to indepen- dently measure for each hadronic shower ...

  3. Development of telescope readout system based on FELIX for testbeam experiments

    CERN Document Server

    Wu, Weihao; Chen, Hucheng; Chen, Kai; Lacobucci, Giuseppe; Lanni, Francessco; Liu, Hongbin; Barrero Pinto, Mateus Vicente; Xu, Lailin

    2017-01-01

    The High Voltage CMOS (HV-CMOS) sensors are extensively investigated by the ATLAS collaboration in the High-Luminosity LHC (HL-LHC) upgrade of the Inner Tracker (ITk) detector. A testbeam telescope, based on the ATLAS IBL (Insertable B-Layer) silicon pixel modules, has been built to characterize the HV-CMOS sensor prototypes. The Front-End LInk eXchange (FELIX) system is a new approach to function as the gateway between front-ends and the commodity switched network in the different detectors of the ATLAS upgrade. A FELIX based readout system has been developed for the readout of the testbeam telescope, which includes a Telescope Readout FMC Card as interface between the IBL DC (double-chip) modules and a Xilinx ZC706 evaluation board. The test results show that the FELIX based telescope readout system is capable of sensor calibration and readout of a high-density pixel detector in test beam experiments in an effective way.

  4. Common Readout System in ALICE

    CERN Document Server

    Jubin, Mitra

    2016-01-01

    The ALICE experiment at the CERN Large Hadron Collider is going for a major physics upgrade in 2018. This upgrade is necessary for getting high statistics and high precision measurement for probing into rare physics channels needed to understand the dynamics of the condensed phase of QCD. The high interaction rate and the large event size in the upgraded detectors will result in an experimental data flow traffic of about 1 TB/s from the detectors to the on-line computing system. A dedicated Common Readout Unit (CRU) is proposed for data concentration, multiplexing, and trigger distribution. CRU, as common interface unit, handles timing, data and control signals between on-detector systems and online-offline computing system. An overview of the CRU architecture is presented in this manuscript.

  5. Drift chamber data readout system

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Lokhonyai, L.

    1980-01-01

    An electronic system for processing drift chamber signals is described. The system consists of 4-channel fast amplifier-discriminators of low threshold, 16-channel time-expanders transforming 0.5 μs time intervals to 10 μs and a 9-bit time-to-digital converter (TDC) recording up to 16 expanded time intervals. If the average track multiplicity is small, TDC is capable to process signals from 4 time-expanders (i.e., 64 drift gaps). In order to record multiple tracks per drift gap discriminator outputs can be connected to a number of time-expander channels. The fast clear input enables the system to be cleared within 0.5 μs. Efficient readout from TDC is facilated by reading only those channels which contain non-zero data (9 bits - drift time; 6 bits - wire number)

  6. Common Readout System in ALICE

    CERN Document Server

    Jubin, Mitra

    2017-01-01

    The ALICE experiment at the CERN Large Hadron Collider is going for a major physics upgrade in 2018. This upgrade is necessary for getting high statistics and high precision measurement for probing into rare physics channels needed to understand the dynamics of the condensed phase of QCD. The high interaction rate and the large event size in the upgraded detectors will result in an experimental data flow traffic of about 1 TB/s from the detectors to the on-line computing system. A dedicated Common Readout Unit (CRU) is proposed for data concentration, multiplexing, and trigger distribution. CRU, as common interface unit, handles timing, data and control signals between on-detector systems and online-offline computing system. An overview of the CRU architecture is presented in this manuscript.

  7. Digital readout alpha survey instrument

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1976-01-01

    A prototype solid-state digital readout alpha particle survey instrument has been designed and constructed. The meter incorporates a Ludlum alpha scintillator as a detector, digital logic circuits for control and timing, and a Digilin counting module with reflective liquid crystal display. The device is used to monitor alpha radiation from a surface. Sample counts are totalized over 10-second intervals and displayed digitally in counts per minute up to 19,999. Tests over source samples with counts to 15,600 cpm have shown the device to be rapid, versatile and accurate. The instrument can be fabricated in one man-week and requires about $835 in material costs. A complete set of drawings is included

  8. IGBT Based DC/DC Converter

    Directory of Open Access Journals (Sweden)

    M. Akherraz

    1997-12-01

    Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high  frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.

  9. SQUID-Detected MRI in the Limit of Zero Static Field

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Nathan Dean [Univ. of California, Berkeley, CA (United States)

    2009-12-14

    This thesis describes an implementation of the so-called"zero-field MRI" (ZFMRI) pulse sequence, which allows for imaging in an arbitrarily low B0 field. The ZFMRI sequence created an effective unidirectional gradient field by using a train of pi pulses to average out the concomitant gradient components during encoding. The signals were acquired using a low-transition temperature dc Superconducting QUantum Interference Device (low-Tc dc SQUID) coupled to a first-order axial gradiometer. The experiments were carried out in a liquid helium dewar which was magnetically shielded with a single-layer mu-metal can around the outside and a superconducting Pb can contained within the helium space. We increased the filling factor of the custom-made, double-walled Pyrex insert by placing the liquid alcohol sample, at a temperature of approximately -50 degrees C, at the center of one loop of the superconducting gradiometer, which was immersed in the helium bath.

  10. A resonant dc-dc power converter assembly

    OpenAIRE

    Madsen, Mickey Pierre

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...

  11. Dipole location using SQUID based measurements: Application to magnetocardiography

    Science.gov (United States)

    Mariyappa, N.; Parasakthi, C.; Sengottuvel, S.; Gireesan, K.; Patel, Rajesh; Janawadkar, M. P.; Sundar, C. S.; Radhakrishnan, T. S.

    2012-07-01

    We report a method of inferring the dipole location using iterative nonlinear least square optimization based on Levenberg-Marquardt algorithm, wherein, we use different sets of pseudo-random numbers as initial parameter values. The method has been applied to (i) the simulated data representing the calculated magnetic field distribution produced by a point dipole placed at a known position, (ii) the experimental data from SQUID based measurements of the magnetic field distribution produced by a source coil carrying current, and (iii) the actual experimentally measured magnetocardiograms of human subjects using a SQUID based system.

  12. Application of squids in the Iwate create project

    International Nuclear Information System (INIS)

    Yoshizawa, M.; He, D.F.; Nakai, K.; Kobayashi, K.; Nakamura, Y.; Yaegashi, M.; Ito, M.; Yashiro, H.; Daibo, M.; Simizu, T.; Uchikawa, Y.; Noto, K.

    2005-01-01

    We have developed a 64-channel magnetocardiograph (MCG) system for the diagnosis of heart disease. The MCG is characterized by its display of a unique three-dimensional image of bio-currents flowing inside the human body. The outline of the heart can be displayed without use of MRI. A mobile SQUID-based non-distractive evaluation apparatus was realized by the active shielding technique. The system can offer information from beneath the surface of the specimen by using a saw-wave excitation method. This mobile technology enables us to inspect ferromagnetic materials, whose high magnetic field rules out the use of a conventional SQUID apparatus near them

  13. Scanning high-Tc SQUID imaging system for magnetocardiography

    International Nuclear Information System (INIS)

    Yang, H-C; Wu, T-Y; Horng, H-E; Wu, C-C; Yang, S Y; Liao, S-H; Wu, C-H; Jeng, J T; Chen, J C; Chen, Kuen-Lin; Chen, M J

    2006-01-01

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-T c (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and μ-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns

  14. Characterization of a dc SQUID based accelerometer circuit for a superconducting gravity gradiometer

    International Nuclear Information System (INIS)

    Scharnweber, R.; Lumley, J.M.

    1999-01-01

    A demonstrator set-up to test superconducting components has been designed and fabricated in order to characterize their functionality for use in a superconducting gravity gradiometer. The displacement of a freely oscillating levitated niobium proof mass in this acceleration transducer is measured inductively and read out by a direct current superconducting quantum interference device. It has been confirmed experimentally that the oscillation frequency depends on the current of the levitation magnet that is operated in persistent-current mode. The results allow us to establish testing and operational procedures that can be used in a more complex multichannel system to confirm functionality and to adjust the levitated proof mass. (author)

  15. Characterization of a dc SQUID based accelerometer circuit for a superconducting gravity gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Scharnweber, R.; Lumley, J.M. [Oxford Instruments, Scientific Research Division, Research Instruments (Cambridge), Newton House, Cambridge Business Park, Cowley Road, Cambridge CB4 4WZ (United Kingdom)

    1999-11-01

    A demonstrator set-up to test superconducting components has been designed and fabricated in order to characterize their functionality for use in a superconducting gravity gradiometer. The displacement of a freely oscillating levitated niobium proof mass in this acceleration transducer is measured inductively and read out by a direct current superconducting quantum interference device. It has been confirmed experimentally that the oscillation frequency depends on the current of the levitation magnet that is operated in persistent-current mode. The results allow us to establish testing and operational procedures that can be used in a more complex multichannel system to confirm functionality and to adjust the levitated proof mass. (author)

  16. The energy level splitting for Unharmonic dc SQUID to be used as phase Q-bit

    DEFF Research Database (Denmark)

    Klenov, Nicolai V.; Kornev, Victor K.; Pedersen, Niels Falsig

    2006-01-01

    splitting. Threshold condition for the double-well form origin has been determined taking into account the impact of both harmonics. The splitting gap of the ground energy level has been calculated as a function of the harmonic amplitudes for different ratio s of characteristic Josephson energy E......-C to the Coulomb energy E-Q0. It has been shown that the gap value comes to about 7E(Q0) with increase of the ratio s. No external field needed, no bias current required and no circular currents are major advantages of such a qubit. (c) 2006 Elsevier B.V. All rights reserved....

  17. Calibration of ALIBAVA readout system

    Energy Technology Data Exchange (ETDEWEB)

    Trofymov, Artur [DESY, Hamburg (Germany); Collaboration: ATLAS experiment-Collaboration

    2015-07-01

    The High Luminosity Large Hadron Collider (LH-LHC) is the upgrade of the LHC that foreseen to increase the instantaneous luminosity by a factor ten with a total integrated luminosity of 3000 fb{sup -1}. The ATLAS experiment will need to build a new tracker to operate in the new severe LH-LHC conditions (increasing detector granularity to cope with much higher channel occupancy, designing radiation-hard sensors and electronics to cope with radiation damage). Charge collection efficiency (CCE) of silicon strip sensors for the new ATLAS tracker can be done with ALIBAVA analog readout system (analog system gives more information about signal from all strips than digital). In this work the preliminary results of ALIBAVA calibration using two different methods (with ''source data'' and ''calibration data'') are presented. Calibration constant obtained by these methods is necessary for knowing collected charge on the silicon strip sensors and for having the ability to compare it with measurements done at the test beam.

  18. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    of longitudinal fibers, scintillator and quartz respectively, and therefore capable of deter- ... The main idea of multiple readout calorimetry is to indepen- ... in a campaign of R&D and tests (with sources, cosmic rays and beams) through-.

  19. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.

    Science.gov (United States)

    Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J

    2012-01-11

    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society

  20. Can understanding squid life-history strategies and recruitment ...

    African Journals Online (AJOL)

    Current views of the links between life-history strategies and recruitment processes in fish are contrasted with the pattern emerging for squid. A general perspective is that the roles of space and time are reversed in the two groups, suggesting that management strategies also should differ. The space/time reversal appears to ...

  1. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  2. The magnapinnidae, a newly discovered family of oceanic Squid ...

    African Journals Online (AJOL)

    A peculiar squid paralarva from Hawaiian waters was described by Young (1991, Bull. mar. Sci. 49(1–2): 162–185), but it could not be assigned to any known family. Two larger juvenile specimens have now been obtained, one collected near the surface in the eastern Pacific Ocean and the other rehydrated from a dried ...

  3. A mass stranding of the squid martialia hyadesi Rochebrune and ...

    African Journals Online (AJOL)

    1997-02-11

    Feb 11, 1997 ... All animals were immature, with females in lower stages of maturity than males. No predatory marine mammals were seen in the area during or after the stranding event. An interpretation of the stranding is presented with reference to historical reports of squid strandings worldwide. Evidence suggests some ...

  4. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  5. A contribution to the biology of the ommastrephid squid Martialia ...

    African Journals Online (AJOL)

    Updated knowledge on the distribution and biology of the ommastrephid squid Martialia hyadesi in the South-West Atlantic Ocean is presented. Although the species has an Antarctic circumpolar distribution, its most frequent area of appearance is in the South-West Atlantic, where commercial catches have been made.

  6. Reducing systematic errors in measurements made by a SQUID magnetometer

    International Nuclear Information System (INIS)

    Kiss, L.F.; Kaptás, D.; Balogh, J.

    2014-01-01

    A simple method is described which reduces those systematic errors of a superconducting quantum interference device (SQUID) magnetometer that arise from possible radial displacements of the sample in the second-order gradiometer superconducting pickup coil. By rotating the sample rod (and hence the sample) around its axis into a position where the best fit is obtained to the output voltage of the SQUID as the sample is moved through the pickup coil, the accuracy of measuring magnetic moments can be increased significantly. In the cases of an examined Co 1.9 Fe 1.1 Si Heusler alloy, pure iron and nickel samples, the accuracy could be increased over the value given in the specification of the device. The suggested method is only meaningful if the measurement uncertainty is dominated by systematic errors – radial displacement in particular – and not by instrumental or environmental noise. - Highlights: • A simple method is described which reduces systematic errors of a SQUID. • The errors arise from a radial displacement of the sample in the gradiometer coil. • The procedure is to rotate the sample rod (with the sample) around its axis. • The best fit to the SQUID voltage has to be attained moving the sample through the coil. • The accuracy of measuring magnetic moment can be increased significantly

  7. A method of background noise cancellation for SQUID applications

    International Nuclear Information System (INIS)

    He, D F; Yoshizawa, M

    2003-01-01

    When superconducting quantum inference devices (SQUIDs) operate in low-cost shielding or unshielded environments, the environmental background noise should be reduced to increase the signal-to-noise ratio. In this paper we present a background noise cancellation method based on a spectral subtraction algorithm. We first measure the background noise and estimate the noise spectrum using fast Fourier transform (FFT), then we subtract the spectrum of background noise from that of the observed noisy signal and the signal can be reconstructed by inverse FFT of the subtracted spectrum. With this method, the background noise, especially stationary inferences, can be suppressed well and the signal-to-noise ratio can be increased. Using high-T C radio-frequency SQUID gradiometer and magnetometer, we have measured the magnetic field produced by a watch, which was placed 35 cm under a SQUID. After noise cancellation, the signal-to-noise ratio could be greatly increased. We also used this method to eliminate the vibration noise of a cryocooler SQUID

  8. The biomass and ecology of chokka squid Loligo vulgaris reynaudii ...

    African Journals Online (AJOL)

    Migration, stock size and ecology of chokka squid Loligo vulgaris reynaudii off the West Coast of South Africa were studied and their relationship to other regions compared by analysis of distributional, biomass, and size composition, and biological data collected from biannual research cruises from 1983-1987. Biomass ...

  9. spawning grounds for chokka squid Loligo vulgaris reynaudii, using

    African Journals Online (AJOL)

    denise

    Swimming movements in relation to egg beds have been studied using acoustic micro-electronic transmitters implanted in squid and tracked via 3-D radio-linked acoustic positioning telemetry (O'Dor et al. 1996, 1998, Sauer et al. 1997). Most of these methods are either impractical or would be severely limited on the deeper ...

  10. Study of the spatial resolution for binary readout detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-07-11

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  11. Readout ASIC for ILC-FPCCD vertex detector

    International Nuclear Information System (INIS)

    Takubo, Yosuke; Miyamoto, Akiya; Ikeda, Hirokazu; Yamamoto, Hitoshi; Itagaki, Kennosuke; Nagamine, Tadashi; Sugimoto, Yasuhiro

    2010-01-01

    The concept of FPCCD (Fine Pixel CCD) whose pixel size is 5x5μm 2 has been proposed as vertex detector at ILC. Since FPCCD has 128 x20,000 pixels in one readout channel, its readout poses a considerable challenge. We have developed a prototype of readout ASIC to readout the large number of pixels during the inter-train gap of the ILC beam. In this paper, we report the design and performance of the readout ASIC.

  12. Development of a SQUID-based 3He Co-magnetometer Readout for a Neutron Electric Dipole Moment Experiment

    OpenAIRE

    Kim, Young Jin; Clayton, Steven M.

    2012-01-01

    A discovery of a permanent electric dipole moment (EDM) of the neutron would provide one of the most important low energy tests of the discrete symmetries beyond the Standard Model of particle physics. A new search of neutron EDM, to be conducted at the spallation neutron source (SNS) at ORNL, is designed to improve the present experimental limit of ~10^-26 e-cm by two orders of magnitude. The experiment is based on the magnetic-resonance technique in which polarized neutrons precess at the L...

  13. Full range ZVS DC-DC converter

    International Nuclear Information System (INIS)

    Upadhyay, Rinki; Badapanda, M.K.; Hannurkar, P.R.

    2011-01-01

    A 500 V, 24 Amp DC-DC converter with digital signal processor (DSP) based control and protection has been designed, fabricated and tested. Its power circuit consists of IGBT based single phase inverter bridge, ferrite transformer and diode rectifier. All IGBTs in the inverter bridge are operated in zero voltage switching (ZVS) mode to minimize switching losses thereby increasing the efficiency of the converter significantly. The efficiency of this converter is measured to be greater than 97% at full load. In a conventional full bridge inverter, typically ZVS is achieved under full load condition while at light load ZVS is lost. An auxiliary LC circuit has been intentionally incorporated in this converter to achieve ZVS even at light loaded conditions. Detailed simulation of the converter circuit is carried out and crucial waveforms have been presented in this paper. Microchip make dsPIC30F2020 DSP is employed to provide phase shifted PWMs to IGBTs in the inverter bridge. All the crucial parameters are also monitored by this DSP and in case of any unfavorable conditions, the converter is tripped off. Suitable experiments were carried out in this DC-DC converter under different loaded conditions and a close match between the simulated and experimental results were obtained. Such DC-DC converters can be connected in series or parallel for the development of solid state modular power supplies for various applications. (author)

  14. A readout system for position sensitive measurements of X-ray using silicon strip detectors

    CERN Document Server

    Dabrowski, W; Grybos, P; Idzik, M; Kudlaty, J

    2000-01-01

    In this paper we describe the development of a readout system for X-ray measurements using silicon strip detectors. The limitation concerning the inherent spatial resolution of silicon strip detectors has been evaluated by Monte Carlo simulation and the results are discussed. The developed readout system is based on the binary readout architecture and consists of two ASICs: RX32 front-end chip comprising 32 channels of preamplifiers, shapers and discriminators, and COUNT32 counter chip comprising 32 20-bit asynchronous counters and the readout logic. This work focuses on the design and performance of the front-end chip. The RX32 chip has been optimised for a low detector capacitance, in the range of 1-3 pF, and high counting rate applications. It can be used with DC coupled detectors allowing the leakage current up to a few nA per strip. For the prototype chip manufactured in a CMOS process all basic parameters have been evaluated by electronic measurements. The noise below 140 el rms has been achieved for a ...

  15. Development of a highly sensitive current and position monitor with HTS squids and an HTS magnetic shield

    International Nuclear Information System (INIS)

    Watanabe, T.; Ikeda, T.; Kase, M.; Yano, Y.; Watanabe, S.; Sasaki, Y.; Kawaguchi, T.

    2005-01-01

    A highly sensitive current and position monitor with HTS (High-Temperature Superconducting) SQUIDs (Superconducting QUantum Interference Device) and an HTS magnetic shield for the measurement of the intensity of faint beams, such as a radioisotope beam, has been developed for the RIKEN RI beam factory project. The HTS magnetic shield and the HTS current sensor including the HTS SQUID are cooled by a low-vibration pulse-tube refrigerator. Both the HTS magnetic shield and the HTS current sensor were fabricated by dip-coating a thin Bi 2 -Sr 2 -Ca 2 -Cu 3 -O x (Bi-2223) layer on 99.9% MgO ceramic substrates. The HTS technology enables us to develop a system equipped with a downsized and highly sensitive current monitor. Recently, a prototype system was completed and installed in the beam transport line of the RIKEN Ring Cyclotron to measure the DC-current of high-energy heavy-ion beams. As a result, we succeeded in measuring the intensity of the 600 nA 40 Ar 17+ beam (95 MeV/u). We describe the present status of the monitor system and the results of the beam measurements. (author)

  16. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  17. Characterisation of micro and nano SQUIDs at variable temperature and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, Claudia; Storm, Jan-Hendrik; Bechstein, Sylke; Schurig, Thomas [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany)

    2015-07-01

    SQUIDs are highly suited to investigate the magnetic properties of samples with small dimensions, such as nanoparticles, or to read out nanoelectromechanical systems (NEMS). Due to the small sample size, SQUIDs with dimensions in the μm or nm regime are desirable. These micro or nano SQUIDs should have a low noise and no hysteresis in the current-voltage-characteristic, even when operated in high magnetic fields of up to several 100 mT. To investigate such SQUID, we developed measurement setups which can simulate the measurement conditions of the intended SQUID application. The design and performance of two measurement setups will be shown and compared. One setup uses a dipstick that is immersed in liquid helium and can be evacuated to provide SQUID temperatures between 4.5 K and 10 K. The other one uses an evaporation cryostat so that the temperature can be varied from 2 K to 60 K. Both setups are equipped with coils to enable SQUID operation in variable magnetic field. To minimize noise, the output of the SQUID under test is preamplified by a SQUID series array which is operated at 4.2 K. First results of the characterisation of micro and nano SQUIDs will be presented.

  18. LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2013-01-01

    The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.

  19. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    Science.gov (United States)

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  20. High voltage dc cables

    Energy Technology Data Exchange (ETDEWEB)

    Bjustrom, B

    1965-12-01

    How stress distribution in dc cables varies with temperature and stress level, influence of polarity reversals and space charges, and different types of overvoltage to which dc cable may be subjected are discussed. Design problems, especially as related to corrosion protection and to mechanical stress caused by wire armoring during manufacturing and laying, accessories and work done on test methods, and the possibility of designing 400 to 600 kV dc cables for transmitting 2000 to 4000 MW are described.

  1. Reproducible fabrication and characterization of YBa2Cu3O7 Josephson junctions and SQUIDs on SrTiO3 bi-crystal substrates

    International Nuclear Information System (INIS)

    Kromann, R.; Vase, P.; Shen, Y.Q.; Freltoft, T.

    1993-01-01

    The fabrication of Josephson junctions and SQUIDs using ceramic high T c superconductors continues to be a subject of great interest and activity. In the case of the YBCO family of superconductors, most of the research effort has been concentrated on the grain boundary junctions. This type of junction can be fabricated in a controlled way by a variety of approaches, such as the bi-crystal technique, the bi-epitaxial technique or the step-edge technique. From a fabrication point of view, the bi-crystal technique is by far the simplest of the three. The availability of (100) SrTiO 3 bi-crystals on a commercial basis has lead to the possibility of making Josephson junctions by a simple process involving only one deposition and one patterning step. Reproducibility of the junction parameters between junctions on the same chip is a key point for electronic applications of Josephson junctions requiring a large amount of Josephson junctions working at the same time, as for example in the voltage standard. Another key point is the uniformity of the barrier, i.e. the extent to which the junction behaves as an ideal SIS junction. In this work junction uniformity has been studied by Frauenhofer diffraction patterns. The Josephson junctions have also been used in the fabrication of dc SQUIDs. In this work we have tried to optimize the magnitude of the voltage modulation from the SQUID by varying the design parameters. The SQUIDs have been characterized in terms of I c , R n , voltage modulation and noise properties. (orig.)

  2. Imaging achievements with the Vernier readout

    CERN Document Server

    Lapington, J S; Worth, L B C; Tandy, J A

    2002-01-01

    We describe the Vernier anode, a high resolution and charge division image readout for microchannel plate detectors. It comprises a planar structure of insulated electrodes deposited on an insulating substrate. The charge cloud from an event is divided amongst all nine electrodes and the charge ratio uniquely determines the two-dimensional position coordinate of the charge centroid. We discuss the design of the anode pattern and describe the advantages offered by this readout. The cyclic variation of the electrode structure allows the image resolution to exceed the charge measurement resolution and enables the entire active area of the readout to be utilized. In addition, fixed pattern noise is greatly reduced. We present results demonstrating the position resolution and image linearity. A position resolution of 10 mu m FWHM is demonstrated and the overall imaging performance is shown to be limited by the microchannel plate pore spacing. We present measurements of the image distortions and describe techniques...

  3. The NA60 experiment readout architecture

    CERN Document Server

    Floris, M; Usai, G L; David, A; Rosinsky, P; Ohnishi, H

    2004-01-01

    The NA60 experiment was designed to identify signatures of a new state of matter, the Quark Gluon Plasma, in heavy-ion collisions at the CERN Super Proton Synchroton. The apparatus is composed of four main detectors: a muon spectrometer (MS), a zero degree calorimeter (ZDC), a silicon vertex telescope (VT), and a silicon microstrip beam tracker (BT). The readout of the whole experiment is based on a PCI architecture. The basic unit is a general purpose PCI card, interfaced to the different subdetectors via custom mezzanine cards. This allowed us to successfully implement several completely different readout protocols (from the VME like protocol of the MS to the custom protocol of the pixel telescope). The system was fully tested with proton and ion beams, and several million events were collected in 2002 and 2003. This paper presents the readout architecture of NA60, with particular emphasis on the PCI layer common to all the subdetectors. (16 refs).

  4. D-Zero muon readout electronics design

    International Nuclear Information System (INIS)

    Baldin, B.; Hansen, S.; Los, S.; Matveev, M.; Vaniev, V.

    1996-11-01

    The readout electronics designed for the D null Muon Upgrade are described. These electronics serve three detector subsystems and one trigger system. The front-ends and readout hardware are synchronized by means of timing signals broadcast from the D null Trigger Framework. The front-end electronics have continuously running digitizers and two levels of buffering resulting in nearly deadtimeless operation. The raw data is corrected and formatted by 16- bit fixed point DSP processors. These processors also perform control of the data buffering. The data transfer from the front-end electronics located on the detector platform is performed by serial links running at 160 Mbit/s. The design and test results of the subsystem readout electronics and system interface are discussed

  5. The CRESST-III iStick veto. Stable operation of multiple transition edge sensors in one readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Johannes [Max-Planck-Institut f. Physik (Werner-Heisenberg-Institut) (Germany); Ludwig-Maximilians-Universitaet Muenchen (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    To enable complete rejection of holder-related events in the upcoming CRESST-III dark matter search experiment, the scintillating target crystals are held by calcium tungstate sticks (iSticks) instrumented with tungsten transition edge sensors (TESs). Since the iStick signals are used exclusively for vetoing, it is sufficient to register if an event happened in any stick, without knowing which one. This allows the operation of all iSticks in a single readout circuit, requiring just one SQUID magnetometer. The talk describes the effect of bias current heating and corresponding hysteresis phenomena known in single-TES circuits, and the resulting conditions for stability in multiple-TES circuits. The fundamentally different behaviour of parallel and series circuits and resulting design choices are explored.

  6. Robot-arm-based mobile HTS SQUID system for NDE of structures

    Energy Technology Data Exchange (ETDEWEB)

    Yotsugi, K; Hatsukade, Y; Tanaka, S [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp

    2008-02-01

    A robot-arm-based mobile HTS SQUID system was developed for NDE of fixed targets. To realize the system, active magnetic shielding technique using fluxgate as reference sensor for ambient field was applied to a cryocooler-based HTS SQUID gradiometer that was mounted on commercial robot-arm. In this technique, ambient field noise and pulse noise of 550 nT from robot were measured by the fluxgate near the SQUID, and then the fluxgate output was negatively fed back to generate compensation field around the SQUID and fluxgate. The noise from robot was reduced by a factor of about 20 and the shielding technique enabled the HTS SQUID to move in unshielded environment by the robot-arm without flux-trapping or unlocking at 10 mm/s. System noise measurement and inspection of hidden cracks in multi-layer composite-metal structure were demonstrated using the mobile SQUID-NDE system.

  7. Family of multiport bidirectional DC-DC converters

    NARCIS (Netherlands)

    Tao, H.; Kotsopoulos, A.; Duarte, J.L.; Hendrix, M.A.M.

    2006-01-01

    Multiport DC-DC converters are of potential interest in applications such as generation systems utilising multiple sustainable energy sources. A family of multiport bidirectional DC-DC converters derived from a general topology is presented. The topology shows a combination of DC-link and magnetic

  8. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  9. The squid-Vibrio symbioses: from demes to genes.

    Science.gov (United States)

    Kimbell, Jennifer R; McFall-Ngai, Margaret J

    2003-04-01

    The monospecific light organ association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri has been used as a model for the study of the most common type of coevolved animal-bacterial interaction; i.e., the association of Gram-negative bacteria with the extracellular apical surfaces of polarized epithelia. Analysis of the squid-vibrio symbiosis has ranged from characterizations of the harvesting mechanisms by which the host ensures colonization by the appropriate symbiont to identification of bacteria-induced changes in host gene expression that accompany the establishment and maintenance of the relationship. Studies of this model have been enhanced by extensive collaboration with microbiologists, who are able to manipulate the genetics of the bacterial symbiont. The results of our studies have indicated that initiation and persistence of the association requires a complex, reciprocal molecular dialogue between these two phylogenetically distant partners.

  10. On-site detection of packaged squid freshness

    Science.gov (United States)

    Ahmad, Noor Azizah; Heng, Lee Yook; Salam, Faridah; Hanifah, Sharina Abu

    2018-04-01

    The development of indicator label for detection of total volatile basic nitrogen (TVB-N) is described. Dye extract from edible plants containing anthocyanins was immobilized onto iota-carrageenan as polymer matrix. TVB-N detection worked based on pH increase as the basic deterioration volatile amines generated in the package headspace. Results showed that the indicator label has changed color from blue to green after 12 hours of storage at ambient conditions. The TVB-N value was 38.9648 mg /100 g which is exceeded of acceptability level for seafood products. The pH value of squid flesh has also increased during storage. The colour values of L * and a * negative increases while b* negative decrease with increasing storage time. The indicator label is potentially used as freshness indicator for squid at ambient conditions.

  11. Magnetic evaluation of a solar panel using HTS-SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Kiwa, Toshihiko, E-mail: kiwa@okayama-u.ac.jp; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-11-15

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized.

  12. Magnetic evaluation of a solar panel using HTS-SQUID

    International Nuclear Information System (INIS)

    Kiwa, Toshihiko; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-01-01

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized

  13. Size increment of jumbo flying squid Dosidicus gigas mature females in Peruvian waters, 1989-2004

    Science.gov (United States)

    Argüelles, Juan; Tafur, Ricardo; Taipe, Anatolio; Villegas, Piero; Keyl, Friedeman; Dominguez, Noel; Salazar, Martín

    2008-10-01

    Changes in population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters were studied based on size-at-maturity from 1989 to 2004. From 1989 to 1999, mature squid belonging to the medium-sized group prevailed, but from 2001 on, mature squids were larger. This change is not related to the changes in sea surface temperature and we hypothesized that it was caused by the population increase of mesopelagic fishes as prey.

  14. Absolute calibration and beam background of the Squid Polarimeter

    International Nuclear Information System (INIS)

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-01-01

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment

  15. Symplectin evolved from multiple duplications in bioluminescent squid

    DEFF Research Database (Denmark)

    Francis, Warren R.; Christianson, Lynne M.; Haddock, Steven H.D.

    2017-01-01

    The squid Sthenoteuthis oualaniensis, formerly Symplectoteuthis oualaniensis, generates light using the luciferin coelenterazine and a unique enzyme, symplectin. Genetic information is limited for bioluminescent cephalopod species, so many proteins, including symplectin, occur in public databases...... functioning is conserved across essentially all members of the protein family, even those unlikely to be used for bioluminescence. Conversely, active site residues involved in pantetheinase catalysis are also conserved across essentially all of these proteins, suggesting that symplectin may have multiple...

  16. Antibacterial Activity of Melanin from Cuttlefish and Squid Ink

    OpenAIRE

    Yuspihana Fitrial; Iin Khusnul Khotimah

    2017-01-01

    Marine environment comprises of many organism which are known to posses bioactive compound as a common means of self-defense or for the protection of eggs and embryos. Class Cephalopods (such as squidand cuttlefish) are notable for their defences, such as jetting escape movements, changes in colouration, toxic venom and inking.This study aims to compare the antibacterial activity of melanin from cuttlefish ink (Sepia sp.) with squid ink (Loligo sp.) against E. coli. Extraction and purificatio...

  17. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, D.M.; Morris, J.W. Jr.; Shaw, T.J.; Lee, Seungkyun; Clarke, John

    2002-01-01

    A 'Holy Grail' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  18. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, David; Morris Jr., J.W.; Shaw, T.J.; McDermott R.; Clarke, John

    2001-01-01

    A ''Holy Grail'' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  19. Development of a Timepix3 readout system based on the Merlin readout system

    International Nuclear Information System (INIS)

    Crevatin, G.; Carrato, S.; Horswell, I.; Omar, D.; Tartoni, N.; Cautero, G.

    2015-01-01

    Timepix3 chip is a new ASIC specifically designed to readout hybrid pixel detectors. The main purpose of Timepix3 is to measure the time of arrival of events. This characteristic can be exploited very effectively to develop detectors for time resolved experiments at synchrotron radiation facilities. In order to investigate how the ASIC can be applied to synchrotron experiments the Merlin readout system, developed at Diamond for the Medipix3 ASIC, has been adapted to readout the Timepix3 ASIC. The first tests of the ASIC with pulse injection and with alpha particles show that its behaviour is consistent with its nominal characteristics

  20. SQUID sensor application for small metallic particle detection

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-01-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods

  1. Transfer of 60Co from midwater squid to sperm whales

    International Nuclear Information System (INIS)

    Umezu, Takeshi; Minamisako, Yoko; Ebihara, Hiroshi; Watanabe, Hiroshi.

    1984-01-01

    Sperm whales are notable squid-eaters. They feed mainly on medium to large-sized cephalopods at midwater levels and defecate near the surface. This suggests the existence of an upward transport of 60 Co by sperm whales from the mesopelagic zone (150-1,200m). To elucidate this squid-whale route for this artificial radionuclide, 60 Co content was determined in squid and in predator whales captured by commercial whaling. In the Cephalopoda livers 60 Co levels of 30-500 mBq kg -1 wet were found and in the viscera of Odontoceti (toothed whales) 15-40 mBq kg -1 wet. About 0.3% of 60 Co ingested was estimated to be retained in a 23-year-old male sperm whale. In the livers of Bryde's whales, 60 Co levels of 40-80 mBq kg -1 wet were detected, but not in euphausiids and sardines, their possible prey. The level of Co in sperm whales was nearly the same as in Bryde's whales. Specific radioactivity 60 Co/ 59 Co in mBq μg -1 was several times higher in sperm whale (1.1-1.6) than in cephalopods (0.19-0.77). Eating prey with a high content of 60 Co in the 1960's may have contributed to the present body burden in sperm whales with a long-life span. However, the origin of 60 Co in Bryde's whales is unknown. (author)

  2. Thermoelectric SQUID method for the detection of segregations

    Science.gov (United States)

    Hinken, Johann H.; Tavrin, Yury

    2000-05-01

    Aero engine turbine discs are most critical parts. Material inhomogeneities can cause disc fractures during the flight with fatal air disasters. Nondestructive testing (NDT) of the discs in various machining steps is necessary and performed as well as possible. Conventional NDT methods, however, like eddy current testing and ultrasonic testing have unacceptable limits. For example, subsurface segregations often cannot be detected directly but only indirectly in such cases when cracks already have developed from them. This may be too late. A new NDT method, which we call the Thermoelectric SQUID Method, has been developed. It allows for the detection of metallic inclusions within non-ferromagnetic metallic base material. This paper describes the results of a feasibility study on aero engine turbine discs made from Inconel® 718. These contained segregations that had been detected before by anodic etching. With the Thermoelectric SQUID Method, these segregations were detected again, and further segregations below the surfaces have been found, which had not been detected before. For this new NDT method the disc material is quasi-transparent. The Thermoelectric SQUID Method is also useful to detect distributed and localized inhomogeneities in pure metals like niobium sheets for particle accelerators.

  3. SQUID-based noise thermometer for sub-Millikelvin refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Marco; Beyer, Joern; Klemm, Monique [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Alivaliollahi, Sassan; Barthelmess, Henry [Magnicon GmbH, Barkhausenweg 11, 22339 Hamburg (Germany)

    2015-07-01

    The magnetic field fluctuation thermometer (MFFT) is a high-accuracy SQUID-based noise thermometer suitable for sub-Kelvin thermometry. A highly sensitive low-Tc SQUID magnetometer detects inductively the magnetic field fluctuation above a metal surface. The fluctuations are generated by the thermal activated noise currents inside the metal body that is thermally anchored to the temperature stage to be measured. The spectral shape is independent of temperature as the electrical conductivity is constant and the geometry is fixed. The magnetic noise power spectral amplitudes at any frequencies are directly proportional to temperature. Hence, only one reference measurement at a known temperature is required for calibration. A complete MFFT thermometer system for the temperature range of ca. 4 K down to <10 mK is commercially available. We have now developed an integrated MFFT with an extended range of operation down to <1 mK. For this purpose the sensitivity of the SQUID sensor has been increased, the metal body geometry modified and the magnetic shielding of the MFFT module improved. These modifications make it possible to obtain a thermometer noise temperature of <10 μK. We discuss the rationale for our MFFT configuration and present numerical simulations and experimental results.

  4. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  5. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    Science.gov (United States)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  6. A 64ch readout module for PPD/MPPC/SiPM using EASIROC ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu, E-mail: isamu.nakamura@kek.jp [KEK, 1-1 Oho Tsukuba 305-0801 (Japan); Ishijima, N.; Hanagaki, K. [Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Yoshimura, K. [Okayama University, 1-1 Tsushimanaka, Kita-ku, Okayama 700-8530 (Japan); Nakai, Y. [Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ueno, K. [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)

    2015-07-01

    A readout module for PPD/MPPC/GAPD/SiPM is developed using EASIROC ASIC. The module can handle 64 PPDs and has on-board bias power supply, ADC for energy measurement, 1 ns TDC on FPGA as well as 64ch Logic output for external trigger. Controls and data transfer are through SiTCP technology implemented in FPGA. The module has NIM format for convenience, but can be operated without crate with 5 V AC/DC converter. Basic performance of production module was tested and the results are presented in the poster.

  7. Optical readout of coupling between a nanomembrane and an LC circuit at room temperature

    DEFF Research Database (Denmark)

    Bagci, T.; Simonsen, A.; Zeuthen, E.

    2013-01-01

    to optical excitations in a high finesse cavity.In this work, we have experimentally realized both optical and electrical detection of coupling in a roomtemperature electromechanical system composed of an LC circuit and a 100-nm thick SiN nanomembrane coated by 50 nm Aluminum. We follow an approach similar....... A DC bias voltage applied to the capacitor amplifies the coupling. We confirm two-way coupling by observing broadening in the membrane vibrations via optical readout (Doppler vibrometry, Fig. 1b) and an MIT (Mechanically Induced Transparency) dip in the electrical probe (Fig. 1c). The two different...

  8. Multilevel DC link inverter

    Science.gov (United States)

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  9. Comparison between two possible CMS Barrel Muon Readout Architectures

    International Nuclear Information System (INIS)

    Aguayo, P.; Barcala, J.M.; Molinero, A.; Pablos, J.L.; Willmott, C.; Alberdi, J.; Marin, J.; Navarrete, J.; Romero, L.

    1997-01-01

    A comparison between two possible readout arquitectures for the CMS muon barrel readout electronics is presented, including various aspects like costs, reliability, installation, staging and maintenance. A review of the present baseline architecture is given in the appendix. (Author)

  10. Latest generation of ASICs for photodetector readout

    International Nuclear Information System (INIS)

    Seguin-Moreau, N.

    2013-01-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips

  11. Authenticated communication from quantum readout of PUFs

    NARCIS (Netherlands)

    Skoric, Boris; Pinkse, Pepijn Willemszoon Harry; Mosk, Allard

    2016-01-01

    Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this

  12. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of ...

  13. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.; ALICE Collaboration

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  14. Readout of the upgraded ALICE-ITS

    International Nuclear Information System (INIS)

    Szczepankiewicz, A.

    2016-01-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  15. Readout of the upgraded ALICE-ITS

    Energy Technology Data Exchange (ETDEWEB)

    Szczepankiewicz, A., E-mail: Adam.Szczepankiewicz@cern.ch [CERN, Geneva (Switzerland); Institute of Computer Science, Warsaw University of Technology, Warsaw (Poland)

    2016-07-11

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  16. Latest generation of ASICs for photodetector readout

    Science.gov (United States)

    Seguin-Moreau, N.

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.

  17. Latest generation of ASICs for photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Seguin-Moreau, N., E-mail: seguin@lal.in2p3.fr [Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud, Bâtiment 200, 91898 Orsay Cedex (France)

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips.

  18. Rutherford X-ray spectrometer readout

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-07-01

    Rutherford electronic X-ray spectrometer readout is based on the combination of two established techniques (a) the detection and location of soft X-rays by means of multichannel electron multiplier arrays (MCP's), and (b) the electronic readout of charge distributions (generally in multi-wire proportional counters) by means of the delay line techniques. In order for the latter device to function well a charge signal of approximately 10 6 electrons must be available to the delay line wand. This is achieved in the present device by means of two cascaded MCP's which can produce electron gains up to approximately 10 8 , and so operate the delay line from the single electron pulses generated at the front face of an MCP by a soft X-ray. The delay line readout technique was chosen because of its simplicity (both in terms of the necessary hardware and the associated electronics), robustness, and ease of implementation. In order to achieve the target spatial resolution of 50 μm (fwhm) or 20 μm (standard deviation) it was necessary to adapt the charge collection system so that the readout takes place from a length of delay line 200 mm long. The general layout of the system and the functions of the electronic circuits are described. Performance testing, setting up procedures and trouble shooting of the system are discussed. (U.K.)

  19. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed. Author Affiliations. Wojciech Wierba1 on behalf of the FCAL Collaboration. The Henryk Niewodniczański ...

  20. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  1. Resistive Plate Chambers for hadron calorimetry: Tests with analog readout

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Gary [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Repond, Jose [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: repond@hep.anl.gov; Underwood, David [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Xia, Lei [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-07-21

    Resistive Plate Chambers (RPCs) are being developed for use in a hadron calorimeter with very fine segmentation of the readout. The design of the chambers and various tests with cosmic rays are described. This paper reports on the measurements with multi-bit (or analog) readout of either a single larger or multiple smaller readout pads.

  2. Bidirectional dc-to-dc Power Converter

    Science.gov (United States)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  3. Design and Performance of the CMS Pixel Detector Readout Chip

    CERN Document Server

    Kästli, H C; Erdmann, W; Hörmann, C; Horisberger, R P; Kotlinski, D; Meier, B; Hoermann, Ch.

    2006-01-01

    The readout chip for the CMS pixel detector has to deal with an enormous data rate. On-chip zero suppression is inevitable and hit data must be buffered locally during the latency of the first level trigger. Dead-time must be kept at a minimum. It is dominated by contributions coming from the readout. To keep it low an analog readout scheme has been adopted where pixel addresses are analog coded. We present the architecture of the final CMS pixel detector readout chip with special emphasis on the analog readout chain. Measurements of its performance are discussed.

  4. A DC Transformer

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project was to demonstrate a true direct current (DC) transformer, a new electro-mechanical component with potentially high power applications; in...

  5. 76 FR 68642 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Science.gov (United States)

    2011-11-07

    ... update to essential fish habitat designations for all life stages of mackerel, longfin squid, Illex squid... issued a mackerel permit may not fish for, possess, or land more than 20,000 lb (9.08 mt) of mackerel per trip, and that, during any closure that occurs after June 1, vessels may not fish for, possess, or land...

  6. Three new DC-to-DC Single-Switch Converters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2017-06-01

    Full Text Available This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations and experimental results (including transformer coupling support and extol the dc-to-dc converter concepts and analysis presented.

  7. Correlation between fluxgate and SQUID magnetometer data sets for geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Matladi Thabang

    2014-01-01

    Full Text Available There has always been a need to monitor the near Earth's magnetic field, as this monitoring provides understanding and possible predictions of Space Weather events such as geomagnetic storms. Conventional magnetometers such as fluxgates have been used for decades for Space Weather research. The use of highly sensitive magnetometers such as Superconducting QUantum Interference Devices (SQUIDs, promise to give more insight into Space Weather. SQUIDs are relatively recent types of magnetometers that exploit the superconductive effects of flux quantization and Josephson tunneling to measure magnetic flux. SQUIDs have a very broad bandwidth compared to most conventional magnetometers and can measure magnetic flux as low as a few femtotesla. Since SQUIDs have never been used in Space Weather research, unshielded, it is necessary to investigate if they can be reliable Space Weather instruments. The validation is performed by comparing the frequency content of the SQUID and fluxgate magnetometers, as reported by Phiri.

  8. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  9. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Hervas, L.

    1991-01-01

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  10. LSST camera readout chip ASPIC: test tools

    International Nuclear Information System (INIS)

    Antilogus, P; Bailly, Ph; Juramy, C; Lebbolo, H; Martin, D; Jeglot, J; Moniez, M; Tocut, V; Wicek, F

    2012-01-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  11. Dual-readout calorimetry with scintillating crystals

    International Nuclear Information System (INIS)

    Pinci, D

    2009-01-01

    The dual-readout approach, which allows an event-by-event measurement of the electromagnetic shower fraction, was originally demonstrated with the DREAM sampling calorimeter. This approach can be extended to homogeneous detectors like crystals if Cherenkov and scintillation light can be separated. In this paper we present several methods we developed for distinguishing the two components in PWO and BGO based calorimeters and the results obtained.

  12. Analog readout for optical reservoir computers

    OpenAIRE

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Schrauwen, Benjamin; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed a...

  13. LSST camera readout chip ASPIC: test tools

    Science.gov (United States)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  14. Performance of MSGC with analog pipeline readout

    International Nuclear Information System (INIS)

    Gomez, F.; Adeva, B.; Gracia, G.; Lopez, M.A.; Nunez, T.; Pazos, A.; Plo, M.; Rodriguez, A.; Santamarina, C.; Vazquez, P.

    1997-01-01

    We analyse some of the performance characteristics of a chromium MSGC operated with Ar-DME 50%-50% in a test beam at CERN. Excellent signal-to-noise ratio and efficiency has been achieved with this gas mixture using cathode analog pipeline readout. We also determine optimal parameters for the sampling algorithm in order to work in a random trigger experiment (fixed target). (orig.)

  15. Signal processing for distributed readout using TESs

    International Nuclear Information System (INIS)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.

    2006-01-01

    We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods

  16. Issues relating to airborne applications of HTS SQUIDs

    CERN Document Server

    Foley, C P; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; MacFarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods.

  17. Quantum versus thermally excited fluxoid transitions in a SQUID ring

    International Nuclear Information System (INIS)

    Kurkijaervi, J.

    1980-01-01

    The possibility of quantum tunneling as a mechanism for fluxoid transitions in a SQUID ring is carefully considered neglecting, however, dissipation arising from the quasiparticle current. The tunneling rates are compared with the thermally excited transition rates. The type of experiment Jackel et al. carried out in order to observe the thermal process is analyzed for observing the quantum tunneling. We find the expected result that the temperature at which the quantum process should begin to dominate depends essentially on ω 0 = 1/√LC of the ring. If an underdamped junction with C -13 F can be made the quantum tunneling temperature range should be easy to attain. (orig.)

  18. 3D Inversion of SQUID Magnetic Tensor Data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...

  19. Issues relating to airborne applications of HTS SQUIDs

    International Nuclear Information System (INIS)

    Foley, C P; Leslie, K E; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; Macfarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods

  20. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  1. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  2. Three-port DC-DC converter with new integrated transformer for DC Distribution Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling...

  3. Antibacterial Activity of Melanin from Cuttlefish and Squid Ink

    Directory of Open Access Journals (Sweden)

    Yuspihana Fitrial

    2017-08-01

    Full Text Available Marine environment comprises of many organism which are known to posses bioactive compound as a common means of self-defense or for the protection of eggs and embryos. Class Cephalopods (such as squidand cuttlefish are notable for their defences, such as jetting escape movements, changes in colouration, toxic venom and inking.This study aims to compare the antibacterial activity of melanin from cuttlefish ink (Sepia sp. with squid ink (Loligo sp. against E. coli. Extraction and purification studies were carried out on Sepia and Loligo melanin using a hydrochloric acid 0,5M treatment under mechanical.The melanins were obtained and further evaluated their activity by direct contact methods between melanin and E. coli in nutrient broth.Total microbes was counted by total plate count.Both inks also was tested their activity against E. coli. The results showed that melanin from cuttlefish and squid inks had inhibitory activity at concentrations of 10 mg / ml and 20 mg / mL, respectively reaching 99.99% against E. coli.The inks of both Cephalopods at the same concentration as melanin, did not show any inhibitory activity against E. coli.  The melanin of Sepia sp. have a higher antibacterial activity than the melanin of Loligo sp.

  4. Reduction of environmental MHz noise for SQUID application

    Energy Technology Data Exchange (ETDEWEB)

    Araya, T. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: araya@sup.ee.es.osaka-u.ac.jp; Kitamura, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Kamishiro, M. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sakuta, K. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Itozaki, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: itozaki@ee.es.osaka-u.ac.jp

    2006-10-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise.

  5. Reduction of environmental MHz noise for SQUID application

    International Nuclear Information System (INIS)

    Araya, T.; Kitamura, Y.; Kamishiro, M.; Sakuta, K.; Itozaki, H.

    2006-01-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise

  6. Impact of SQUIDs on functional imaging in neuroscience

    International Nuclear Information System (INIS)

    Penna, Stefania Della; Pizzella, Vittorio; Romani, Gian Luca

    2014-01-01

    This paper provides an overview on the basic principles and applications of magnetoencephalography (MEG), a technique that requires the use of many SQUIDs and thus represents one of the most important applications of superconducting electronics. Since the development of the first SQUID magnetometers, it was clear that these devices could be used to measure the ultra-low magnetic signals associated with the bioelectric activity of the neurons of the human brain. Forty years on from the first measurement of magnetic alpha rhythm by David Cohen, MEG has become a fundamental tool for the investigation of brain functions. The simple localization of cerebral sources activated by sensory stimulation performed in the early years has been successively expanded to the identification of the sequence of neuronal pool activations, thus decrypting information of the hierarchy underlying cerebral processing. This goal has been achieved thanks to the development of complex instrumentation, namely whole head MEG systems, allowing simultaneous measurement of magnetic fields all over the scalp with an exquisite time resolution. The latest trends in MEG, such as the study of brain networks, i.e. how the brain organizes itself in a coherent and stable way, are discussed. These sound applications together with the latest technological developments aimed at implementing systems able to record MEG signals and magnetic resonance imaging (MRI) of the head with the same set-up pave the way to high performance systems for brain functional investigation in the healthy and the sick population. (paper)

  7. 75 FR 23571 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Science.gov (United States)

    2010-05-04

    ... Airworthiness Directives; McDonnell Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10... amends Sec. 39.13 by adding the following new AD: 2010-09-12 McDonnell Douglas Corporation: Amendment 39... to McDonnell Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A...

  8. Design and Testing of Boost Type DC/DC Converter for DC Motor Control Applications

    OpenAIRE

    Samman, Faizal Arya; Akil, Yusri Syam; Noor, Nirwan A.

    2017-01-01

    in The Proceeding of The 2nd International Symposium on Smart Material and Mechatronics 2015 This paper presents the design and testing of a boost type DC/DC converter circuit, which can be used for DC motor control applications. The Boost converter is designed using DC chopper and DC chopper cascade configurations. The experimental setup was made by connecting the boost converter circuit with four types of DC motor, i.e. self-excited DC motor shunt, series, compound and separately exci...

  9. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    transformer in the IFBTL dc/dc converter. A modulation strategy, including two operation modes, is proposed for the IFBTL dc/dc converter. Then, a voltage balancing control strategy is proposed for the IFBTL dc/dc converter. Furthermore, the control of the wind turbine based on the IFBTL dc/dc converter......This paper presents an improved full-bridge three-level (IFBTL) dc/dc converter for a wind turbine in a dc grid by inserting a passive filter into the dc/dc converter to improve the performance of the converter. The passive filter can effectively reduce the voltage stress of the medium frequency...

  10. Overview of Multi-DC-Bus Solutions for DC Microgrids

    DEFF Research Database (Denmark)

    Ricchiuto, D.; Mastromauro, R.A.; Liserre, Marco

    2013-01-01

    DC Microgrids have recently received a lot of attention in the last years due to high penetration of renewable energy sources as well as distributed energy storage systems. In the future DC microgrids could be preferable respect to AC microgrids in terms of redundancy since multi-DC-Bus solutions...... could provide a continuative power supply to the loads. An overview of Multi-DC-Bus solutions is presented in this paper. The performances are compared on the basis of possible DC microgrid configurations, redundancy, different DC voltage levels....

  11. Development of an image processing system in splendid squid quality classification

    Science.gov (United States)

    Masunee, Niyada; Chaiprapat, Supapan; Waiyagan, Kriangkrai

    2013-07-01

    Agricultural products typically exhibit high variance in quality characteristics. To assure customer satisfaction and control manufacturing productivity, quality classification is necessary to screen off defective items and to grade the products. This article presents an application of image processing techniques on squid grading and defect discrimination. A preliminary study indicated that surface color was an efficient determinant to justify quality of splendid squids. In this study, a computer vision system (CVS) was developed to examine the characteristics of splendid squids. Using image processing techniques, squids could be classified into three different quality grades as in accordance with an industry standard. The developed system first sifted through squid images to reject ones with black marks. Qualified squids were graded on a proportion of white, pink, and red regions appearing on their bodies by using fuzzy logic. The system was evaluated on 100 images of squids at different quality levels. It was found that accuracy obtained by the proposed technique was 95% compared with sensory evaluation of an expert.

  12. The readout system of the new H1 silicon detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Henschel, H.; Haynes, W.J.; Noyes, G.W.; Joensson, L.; Gabathuler, K.; Horisberger, R.; Wagener, M.; Eichler, R.; Erdmann, W.; Niggli, H.; Pitzl, D.

    1995-03-01

    The H1 detector at HERA at DESY undergoes presently a major upgrade. In this context silicon strip detectors have been installed at beginning of 1995. The high bunch crossing frequency of HERA (10.4 MHz) demands a novel readout architecture which includes pipelining, signal processing and data reduction at a very early stage. The front end readout is hierarchically organized. The detector elements are read out by the APC chip which contains an analog pipeline and performs first background subtraction. Up to five readout chips are controlled by a Decoder Chip. The readout processor module (OnSiRoC) operates the detectors, controls the Decoder Chips and performs a first level data reduction. The paper describes the readout architecture of the H1 Silicon Detectors and performance data of the complete readout chain. (orig.)

  13. AVME readout module for multichannel ASIC characterization

    International Nuclear Information System (INIS)

    Borkar, S.P.; Lalwani, S.K.; Ghodgaonkar, M.D.; Kataria, S.K.; Reynaud, Serge; )

    2004-01-01

    Electronics Division, BARC has been working on the development of multi-channel ASIC, called SPAIR (Silicon-strip Pulse Amplifier Integrated Readout). It contains 8 channels of preamplifier, shaper and track-and-hold circuitry. Electronics Division has also actively participated in development of test setup for the front-end ASIC, called PACE, for the preshower detector of the Compact Muon Solenoid (CMS) Experiment at CERN, Geneva. PACE is a 32 channel ASIC for silicon strip detector, containing preamplifier, shaper, calibration circuitry, switched capacitor array, readout amplifier per channel and an analog multiplexer. A VME Readout Module, (VRM) is developed which can be utilized in data acquisition from ASICs like PACE and SPAIR. The VRM can also be used as the Detector Dependent Unit for digitally processing the data received from the front-end electronics on the 16-bit LVDS port. The processed, data can be read by the VME system. Thus the VRM is very useful in building an ASIC characterization system and/or the automated ASIC production testing system. It can be used also to build the applications using such ASICs. To cater to various requirements arising in future, variety of VME modules are to be developed like ADCs, DACs and D 1/0. VME interface remains a common part to all these modules. The different functional blocks of these modules can be designed and fabricated on small piggyback boards (called Test Boards) and mounted on the VRM, which provides the common VME interface. The design details and uses of VRM are presented here. (author)

  14. Study on two-dimensional induced signal readout of MRPC

    International Nuclear Information System (INIS)

    Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin

    2012-01-01

    A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.

  15. Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)

    Science.gov (United States)

    Weinstock, H.

    1993-04-01

    In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.

  16. Radio frequency interference noise reduction using a field programmable gate array for SQUID applications

    International Nuclear Information System (INIS)

    Sakuta, K; Narita, Y; Itozaki, H

    2007-01-01

    It is important to remove large environmental noise in superconducting quantum interference device (SQUID) measurement without magnetic shielding. Active noise control (ANC) is one of the effective methods to reduce environmental noise. Recently, SQUIDs have been used in various applications at high frequencies, such as nuclear quadrupole resonance (NQR). The NQR frequency from explosives is in the range 0.5-5 MHz. In this case, an NQR sensor is exposed to AM radio frequency interference (RFI). The feasibility of the ANC system for RFI that used digital signal processing was studied. Our investigation showed that this digital ANC system can be applied to SQUID measurements for RFI suppression

  17. Mismatch between the eye and the optic lobe in the giant squid.

    Science.gov (United States)

    Liu, Yung-Chieh; Liu, Tsung-Han; Yu, Chun-Chieh; Su, Chia-Hao; Chiao, Chuan-Chin

    2017-07-01

    Giant squids ( Architeuthis ) are a legendary species among the cephalopods. They live in the deep sea and are well known for their enormous body and giant eyes. It has been suggested that their giant eyes are not adapted for the detection of either mates or prey at distance, but rather are best suited for monitoring very large predators, such as sperm whales, at distances exceeding 120 m and at a depth below 600 m (Nilsson et al. 2012 Curr. Biol. 22 , 683-688. (doi:10.1016/j.cub.2012.02.031)). However, it is not clear how the brain of giant squids processes visual information. In this study, the optic lobe of a giant squid ( Architeuthis dux , male, mantle length 89 cm), which was caught by local fishermen off the northeastern coast of Taiwan, was scanned using high-resolution magnetic resonance imaging in order to examine its internal structure. It was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid ( Sepioteuthis lessoniana ) and the cuttlefish ( Sepia pharaonis ). Furthermore, the cell density in the cortex of the optic lobe is significantly higher in the giant squid than in oval squids and cuttlefish, with the relative thickness of the cortex being much larger in Architeuthis optic lobe than in cuttlefish. This indicates that the relative size of the medulla of the optic lobe in the giant squid is disproportionally smaller compared with these two cephalopod species. This morphological study of the giant squid brain, though limited only to the optic lobe, provides the first evidence to support that the optic lobe cortex, the visual information processing area in cephalopods, is well developed in the giant squid. In comparison, the optic lobe medulla, the visuomotor integration centre in cephalopods, is much less developed in the giant squid than other species. This finding suggests that, despite the giant eye and a full-fledged cortex within the optic lobe, the brain of giant

  18. jSquid: a Java applet for graphical on-line network exploration.

    Science.gov (United States)

    Klammer, Martin; Roopra, Sanjit; Sonnhammer, Erik L L

    2008-06-15

    jSquid is a graph visualization tool for exploring graphs from protein-protein interaction or functional coupling networks. The tool was designed for the FunCoup web site, but can be used for any similar network exploring purpose. The program offers various visualization and graph manipulation techniques to increase the utility for the user. jSquid is available for direct usage and download at http://jSquid.sbc.su.se including source code under the GPLv3 license, and input examples. It requires Java version 5 or higher to run properly. erik.sonnhammer@sbc.su.se Supplementary data are available at Bioinformatics online.

  19. Silicon microstrip detectors with SVX chip readout

    International Nuclear Information System (INIS)

    Brueckner, W.; Dropmann, F.; Godbersen, M.; Konorov, I.; Koenigsmann, K.; Masciocchi, S.; Newsom, C.; Paul, S.; Povh, B.; Russ, J.S.; Timm, S.; Vorwalter, K.; Werding, R.

    1995-01-01

    A new silicon strip detector has been designed for the fixed target experiment WA89 at CERN. The system of about 30 000 channels is equipped with SVX chips and read out via a double buffer into a FASTBUS memory. The detector provides a fast readout by offering zero-suppressed data extraction on the chip. The silicon counters are the largest detectors built on a monocrystal so far in order to achieve good transversal acceptance. Construction and performance during the 1993 data taking run are discussed. ((orig.))

  20. Test vehicles for CMS HGCAL readout ASIC

    CERN Document Server

    Thienpont, Damien

    2017-01-01

    This paper presents first measurement results of two test vehicles ASIC embedding some building blocks for the future CMS High Granularity CALorimeter (HGCAL) read-out ASIC. They were fabricated in CMOS 130 nm, in order to first design the Analog and Mixed-Signal blocks before going to a complete and complex chip. Such a circuit needs to achieve low noise high dynamic range charge measurement and 20 ps resolution timing capability. The results show good analog performance but with higher noise levels compared to simulations. We present the results of the preamplifiers, shapers and ADCs.

  1. A fast readout system for scintillation detectors

    International Nuclear Information System (INIS)

    Steijger, J.; Kok, E.; Kwakkel, E.; Visschers, J.L.; Zwart, A.N.M.

    1991-01-01

    A system of fast readout electronics for segmented scintillation detectors has been constructed and is now operational. Instead of delaying the analog signals in long coaxial cables, they are digitized immediately and stored in dual-port memories, while the trigger decision is being made. A VMEbus system collects the data from these memories on the data acquisition modules within one crate. Several VME crates are connected via a transputer network to transport the data to an event builder. A separate transputer network is used to perform the VME cycles, needed for the computer-controlled tuning of the experiment. (orig.)

  2. 100 Gbps PCI-Express readout for the LHCb upgrade

    International Nuclear Information System (INIS)

    Durante, P.; Neufeld, N.; Schwemmer, R.; Balbi, G.; Marconi, U.

    2015-01-01

    We present a new data acquisition system under development for the next upgrade of the LHCb experiment at CERN. We focus in particular on the design of a new generation of readout boards, the PCIe40, and on the viability of PCI-Express as an interconnect technology for high speed readout. We show throughput measurements across the PCI-Express bus, on Altera Stratix 5 devices, using a DMA mechanism and different synchronization schemes between the FPGA and the readout unit. Finally we discuss hardware and software design considerations necessary to achieve a data throughput of 100 Gbps in the final readout board

  3. LHCb: A new Readout Control system for the LHCb Upgrade

    CERN Multimedia

    Alessio, F

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and the first hardware implementation of a new Readout Control system for the LHCb upgrade. The system is based on FPGAs and bi-directional links for the control of the entire readout architecture. First results on the validation of the system are also given.

  4. Multi Bus DC-DC Converter in Electric Hybrid Vehicles

    Science.gov (United States)

    Krithika, V.; Subramaniam, C.; Sridharan, R.; Geetha, A.

    2018-04-01

    This paper is cotncerned with the design, simulation and fabrication of the prototype of a Multi bus DC- DC converter operating from 42V DC and delivering 14V DC and 260V DC. As a result, three DC buses are interconnected through a single power electronic circuitry. Such a requirement is energized in the development of a hybrid electric automobile which uses the technology of fuel cell. This is implemented by using a Bidirectional DC-DC converter configuration which is ideally suitable for multiple outputs with mutual electrical isolation. For the sake of reduced size and cost of step-up transformer, selection of a high frequency switching cycle at 10 KHz was done.

  5. Magnetic imaging of unconventional superconductors by scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Hykel, D.

    2011-01-01

    We present the development of a scanning SQUID/AFM microscope and measurements performed on different samples. The microscope can take topographic and magnetic images simultaneously. The magnetic resolution is of the order of 10 -4 Φ 0 √Hz and the spatial resolution of the SQUIDs used in this thesis goes up to 600 nm. The scanning range is 70 μm * 85 μm. The temperature range accessible is between 200 mK and 10 K at the time of writing. Measurements on a thin rhenium film (80 nm) give an estimate of the minimal pinning force of a vortex of about 3.9 * 10 -16 N. Furthermore, the penetration depth λ on this sample was determined as a function of temperature. For T → 0, λ →79 nm. We have for the first time shown local measurements of the domain structure of the superconducting ferromagnet UCoGe and determined the average domain size in the virgin state (10 μm). By magnetic imaging we were capable of determining the magnetic field difference above opposite domains along the c-axis to be 45 G and 16 G along the b-axis. Due to these magnetic field measurements we were able to give an upper limit for the domain wall width (∼ 1μm) and domain reconstruction depth (100 nm). This is supported by simple calculations leading to a domain wall width of several angstroms. Thus UCoGe can be considered an ideal Ising ferromagnet. Different possible domain structures for an Ising ferromagnet have been discussed. The complicated domain structure found in the zero field cooled virgin state corresponds to up domains embedded in larger down domains and vice versa. We have shown evidence for coexistence of superconductivity and ferromagnetism. The weak Meissner effect can be explained by a spontaneous vortex state, put forward by other groups. Numerical simulations suggest that the strong magnetic background signal and the limited spatial and magnetic resolution of the used SQUID made it difficult to resolve the expected spontaneous vortex state. The relaxation of the

  6. dc Arc Fault Effect on Hybrid ac/dc Microgrid

    Science.gov (United States)

    Fatima, Zahra

    The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.

  7. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  8. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  9. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  10. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    Mersi, S; Bainbridge, R; Cripps, N; Fulcher, J; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Mirabito, L; Cole, J; Giassi, A; Gross, L; Hahn, K; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m 2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  11. Evolution of the dual-readout calorimeter

    International Nuclear Information System (INIS)

    Penzo, Aldo

    2007-01-01

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of fluctuations in this fraction on the overall energy resolution. In this respect, 4th is orthogonal to the other three concepts, which rely on particle flow analysis (PFA). The DREAM test-beam results hold promises for excellent performances, coupled with relatively simple construction and moderate costs, making such a solution an interesting alternative to the PFA paradigm. The next foreseen steps are to extend the dual-readout principle to homogeneous calorimeters (with the potential of achieving even better performances) and to tackle another source of, fluctuation in hadronic showers, originating from binding energy losses in nuclear break-up (measuring neutrons of few MeV energy). (author)

  12. MKID digital readout tuning with deep learning

    Science.gov (United States)

    Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.

    2018-04-01

    Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.

  13. Control software for the CBM readout chain

    Energy Technology Data Exchange (ETDEWEB)

    Loizeau, Pierre-Alain [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment, which will be built at FAIR, will use free-streaming readout electronics to acquire high-statistics data-sets of physics probes in fixed target heavy-ion collisions. Since no simple signatures suitable for a hardware trigger are available for most of them, reconstruction and selection of the interesting collisions will be done in software, in a computer farm called First Level Event Selector (FLES). The raw data coming from the detectors is pre-processed, pre-calibrated and aggregated in a FPGA based layer called Data Preprocessing Boards (DPB). IPbus will be used to communicate with the DPBs and through them with the elements of the readout chain closer to detectors. A slow control environment based on this software is developed by CBM to configure in an efficient way the DPBs as well as the Front-End Electronics and monitor their performances. This contribution presents the layout planned for the slow control software, its first implementation and corresponding test results.

  14. MWPC with highly segmented cathode pad readout

    International Nuclear Information System (INIS)

    Debbe, R.; Fischer, J.; Lissauer, D.

    1989-01-01

    Experiments being conducted with high energy heavy ion beams at Brookhaven National Laboratory and at CERN have shown the importance of developing position sensitive detectors capable of handling events with high multiplicity in environments of high track density as will also be the case in future high luminosity colliders like SSC and RHIC. In addition, these detectors are required to have a dynamic range wide enough to detect minimum ionizing particles and heavy ions like oxygen or silicon. We present here a description of work being done on a prototype of such a detector at BNL. Results from a similar counter are also presented in this Conference. The ''pad chamber'' is a detector with a cathode area subdivided into a very large number of pixel-like elements such that a charged particle traversing the detector at normal incidence leaves an induced charge on a few localized pads. The pads are interconnected by a resistive strip, and readout amplifiers are connected to the resistive strip at appropriate, carefully determined spacings. The pattern of tracks in a multi-hit event is easily recognized, and a centroid-finding readout system allows position determination to a small fraction of the basic cell size. 5 refs., 9 figs

  15. Detection of Rapid Atrial Arrhythmias in SQUID Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Woong; Kwon, Hyuk Chan; Kim, Ki Dam; Lee, Yong Ho; Kim, Jin Mok; Kim, In Seon; Lim, Hyun Kyoon; Park, Yong Ki [Biomagnetism Research, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Doo Sang [Seoul Veterans Hospital, Seoul (Korea, Republic of); Lim, Seung Pyung [Chungnam National University Hospital, Daejeon (Korea, Republic of)

    2005-10-15

    We propose a method to measure atrial arrhythmias (AA) such as atrial fibrillation (Afb) and atrial flutter (Afl) with a SQUID magnetocardiograph (MCG) system. To detect AA is one of challenging topics in MCG. As the AA generally have irregular rhythm and atrio-ventricular conduction, the MCG signal cannot be improved by QRS averaging; therefore a SQUID MCG system having a high SNR is required to measure informative atrial excitation with a single scan. In the case of Afb, diminished f waves are much smaller than normal P waves because the sources are usually located on the posterior wall of the heart. In this study, we utilize an MCG system measuring tangential field components, which is known to be more sensitive to a deeper current source. The average noise spectral density of the whole system in a magnetic shielded room was 10 fT/Hz(a) 1 Hz and 5 fT/Hz(a) 100 Hz. We measured the MCG signals of patients with chronic Afb and Afl. Before the AA measurement, the comparison between the measurements in supine and prone positions for P waves has been conducted and the experiment gave a result that the supine position is more suitable to measure the atrial excitation. Therefore, the AA was measured in subject's supine position. Clinical potential of AA measurement in MCG is to find an aspect of a reentry circuit and to localize the abnormal stimulation noninvasively. To give useful information about the abnormal excitation, we have developed a method, separative synthetic aperture magnetometry (sSAM). The basic idea of sSAM is to visualize current source distribution corresponding to the atrial excitation, which are separated from the ventricular excitation and the Gaussian sensor noises. By using sSAM, we localized the source of an Afl successfully.

  16. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    Energy Technology Data Exchange (ETDEWEB)

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14

    amplitude in MRI using laser polarized noble gases such as {sup 3}He or {sup 129}Xe (10-12). Hyperpolarized gases were used successfully to image the human lung in fields on the order of several mT (13-15). To overcome the sensitivity loss of Faraday detection at low frequencies, ultrasensitive magnetometers based on the Superconducting QUantum Interference Device (SQUID) (16) are used to detect NMR and MRI signals (17-24). Recently, SQUID-based MRI systems capable of acquiring in vivo images have appeared. For example, in the 10-mT system of Seton et al. (18) signals are coupled to a SQUID via a superconducting tuned circuit, while Clarke and coworkers (22, 25, 26) developed a system at 132 {micro}T with an untuned input circuit coupled to a SQUID. In a quite different approach, atomic magnetometers have been used recently to detect the magnetization (27) and NMR signal (28) of hyperpolarized gases. This technique could potentially be used for low-field MRI in the future. The goal of this review is to summarize the current state-of-the-art of MRI in microtesla fields detected with SQUIDs. The principles of SQUIDs and NMR are briefly reviewed. We show that very narrow NMR linewidths can be achieved in low magnetic fields that are quite inhomogeneous, with illustrative examples from spectroscopy. After describing our ultralow-field MRI system, we present a variety of images. We demonstrate that in microtesla fields the longitudinal relaxation T{sub 1} is much more material dependent than is the case in high fields; this results in a substantial improvement in 'T{sub 1}-weighted contrast imaging'. After outlining the first attempts to combine microtesla NMR with magnetoencephalography (MEG) (29), we conclude with a discussion of future directions.

  17. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  18. Technology for SQUID systems for the application in magnetically disturbed environment. Final report

    International Nuclear Information System (INIS)

    Schultze, V.; Fritzsch, L.; Thrum, F.; Stolz, R.; Chwala, A.

    1996-06-01

    International available SQUID systems, as used for example in biomagnetic research, obtain high sensitivities for magnetic fields or magnetic fieldgradients. However, these systems were optimised for operation in magnetically shielded rooms. Goal of this project was to develop SQUIDs suppressing the external noise and therefore are able to operate without external shielding in normal environments. As a consequence, the required Nb/AlO x /Nb technology has also been developed. The resulting planar SQUID gradiometers as produced at the IPHT, reached a suppression of homogeneous fields up to 5 x 10 4 for a magnetic field sensitivity c , project. SQUID gradiometers, produced using YBCO technology, were successfully operated in non shielded eddy current NDE measurements in the lab. (orig.) [de

  19. Growth of juvenile shrimp Metapenaeus monoceros fed with squid and mussel

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.; Nair, S.R.S.; Krishnakumari, L.

    Small juveniles of both sexes and females of large juveniles of Metapenaeus monoceros attained faster growth with squid diet. Males of large juveniles registered better growth with mussel diet. No significant difference was observed in moult weights...

  20. Performance of a novel SQUID-based superconducting imaging-surface magnetoencephalography system

    Science.gov (United States)

    Kraus, R. H.; Volegov, P.; Maharajh, K.; Espy, M. A.; Matlashov, A. N.; Flynn, E. R.

    2002-03-01

    Performance for a recently completed whole-head magnetoencephalography system using a superconducting imaging surface (SIS) surrounding an array of 150 SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. Conceptually, the SIS images nearby sources onto the SQUIDs while shielding sensors from distant “noise” sources. A finite element method (FEM) description using the as-built geometry was developed to describe the SIS effect on source fields by imposing B⊥( surface)=0 . Sensors consist of 8×8 mm 2 SQUID magnetometers with 0.84 nT/ Φ0 sensitivity and positions and orientations was found. Good agreement was found between modeled and measured shielding of the SQUIDs from sources external to the array showing significant frequency-independent shielding. Phantom localization precision was better than 0.5 mm at all locations with a mean of better than 0.3 mm.

  1. Development of a Flow-Through SQUID System for Non-Destructive Evaluation of MRI Wire

    National Research Council Canada - National Science Library

    Wellstood, Frederick C

    2007-01-01

    ...) superconducting quantum interference device (SQUID) system. The ability to detect small defects in km-long sections of NbTi magnet wire could improve the production yield of high-field magnets for power and medical applications...

  2. 76 FR 66260 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Science.gov (United States)

    2011-10-26

    ...) of scup, 184,280 lb (83,588 kg) of black sea bass, and 200,000 lb (90,718 kg) of bluefish. Project... summer flounder, scup, black sea bass, longfin squid, butterfish, and Atlantic bluefish, and assessment...

  3. The bases for the development of high-temperature integrated SQUID-systems

    International Nuclear Information System (INIS)

    Polushkin, V.N.

    1992-01-01

    The current state of high-T c superconducting thin-film Josephson junctions and SQUIDs developing is reviewed. The prospects of application of new devices in supersensitive measurement apparatus are analyzed. It is shown that high T c SQUIDs are able seriously to influence further development of information and measurement engineering as on their base the series of microelectronic elements and devices of new generation can be built. 55 refs.; 7 figs.; 2 tabs

  4. The bases for the development of high-temperature integrated squid-systems

    International Nuclear Information System (INIS)

    Polushkin, V.N.

    1992-01-01

    The current state of high-Tc superconducting thinfilm Josepson junctions and SQUIDs developing is reviewed. The prospects of application of new devices in supersensitive measurement apparatus are analyzed. It is shown that high T c SQUIDs are able seriously to influence further development of information and measurement engineering as on their base the series of microelectronic elements and devices of new generation can be built. 84 refs.; 16 figs.; 3 tabs

  5. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    Directory of Open Access Journals (Sweden)

    M. Elsobky

    2017-09-01

    Full Text Available Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI substrate to form a Hybrid System-in-Foil (HySiF, which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC. The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC, a differential difference amplifier (DDA, and a 10-bit successive approximation register (SAR ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  6. Thyristors for dc transmission

    Energy Technology Data Exchange (ETDEWEB)

    1966-05-06

    As a first stage towards determining the feasibility of applying thyristors to hvdc converter terminals, the Westinghouse Electric Corporation has built a converter laboratory capable of testing thyristors under conditions similar to those which would have to be met in a 200 kV dc system. The equipment has been designed to test a 5 kV 600 A group of thyrisotrs, elevated 200 kV above earth. This rating has been chosen so that there would be a sufficient number of thyristors in series to enable the gating and voltage division characteristics to be investigated and at the same time the group could be operated at a potential equivalent to a complete 200 kV dc bridge.

  7. TOPOLOGICAL REVIEW AND ANALYSIS OF DC-DC BOOST CONVERTERS

    Directory of Open Access Journals (Sweden)

    V. INDRA GANDHI

    2017-06-01

    Full Text Available DC voltage boost up is essential in numerous applications; especially considering Photovoltaic (PV based renewable power generation system. The conventional DC-DC boost converter is the most admired configuration for this scheme, even if the converter efficiency is restricted at duty cycle near to maximum value. In order to find solution to the problem and improve its conversion capability, many converter configurations have been implemented so far. With this circumstance, this research work proposes to give overview of a few most imperative research works related to DC-DC boost converters. Some configurations are covered and classified basically based on the application. The major benefits and disadvantages related to the available techniques are also briefly conveyed. At last, a proper evaluation is recognized among the important types of DC-DC boost converters in terms of efficiency, number of components, and stability.

  8. Auxiliary controller for time-to-digital converter module readout

    International Nuclear Information System (INIS)

    Ermolin, Yu.V.

    1992-01-01

    The KD-225 auxiliary controller for time-to-digital converter module readout in the SUMMA crate is described. After readout and preliminary processing the data are written in the P-140 buffer memory module. The controller is used in the FODS-2 experimental setup data acquisition system. 12 refs.; 1 fig

  9. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  10. A reconfigurable image tube using an external electronic image readout

    Science.gov (United States)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  11. A Triggerless readout system for the ANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Tiemens, M.

    2015-01-01

    One of the physics goals of the future ANDA experiment at FAIR is to research newly discovered exotic states. Because the detector response created by these particles is very similar to the background channels, a new type of data readout had to be developed, called "triggerless" readout. In this

  12. A Fastbus-based silicon strip readout system

    International Nuclear Information System (INIS)

    Neoustroev, P.; Stepanov, V.; Svoiski, M.; Uvarov, L.; Matthew, P.; Russ, J.; Cooper, P.

    1995-01-01

    The readout system we describe here is built specifically to work with the LBL-designed SVX chip. It is typical of systems using a master sequencer module to direct the trigger and readout cycles of the sparse data source and to push data into a digitization and storage module. (orig.)

  13. Identification of four squid species by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  15. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    OpenAIRE

    Liwen Pan; Chengning Zhang

    2016-01-01

    This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs). The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for m...

  16. Performance study of large area encoding readout MRPC

    Science.gov (United States)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  17. MAROC, a generic photomultiplier readout chip

    International Nuclear Information System (INIS)

    Blin, S; Barrillon, P; La Taille, C de

    2010-01-01

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( ∼ 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: ∼ 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  18. MAROC, a generic photomultiplier readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Blin, S; Barrillon, P; La Taille, C de, E-mail: blin@lal.in2p3.f [CNRS/IN2p3/LAL-OMEGA, Universite Paris Sud, Bat.200, 91898 Orsay (France)

    2010-12-15

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( {approx} 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: {approx} 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  19. MAROC, a generic photomultiplier readout chip

    Science.gov (United States)

    Blin, S.; Barrillon, P.; de La Taille, C.

    2010-12-01

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( ~ 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: ~ 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  20. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    Science.gov (United States)

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  1. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-01-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  2. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    Science.gov (United States)

    Bürger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-02-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 × 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout.

  3. Online readout and control unit for high-speed / high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1996-09-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  4. A multi-channel integrated circuit for the readout of a microstrip gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, F.; Enz, C. (Smart Silicon Systems S.A., Lausanne (Switzerland)); Bellazzini, R. (Dipt. di Fisica, Pisa (Italy) INFN, Pisa (Italy))

    1992-03-15

    The design and test of an 8 channel integrated circuit for the readout of the microstrip gas chamber and other multielectrode detectors are described. The circuit is composed of 8 identical channels, each providing the amplification and the shaping of the signal delivered by the detector. The peaking time of the shaper is 25 ns and the overall amplifier gain is 8 mV/1000 e{sup -}. In addition to the analog output, each channel provides a TTL compatible digital output. The equivalent input noise is less than 700 e{sup -} rms and the total dc power consumption is about 5 mW/channel. To avoid a baseline shift due to the tail of the current issued from the detector, an adjustable pole-zero cancellation circuit has been included. (orig.).

  5. Diode readout electronics for beam intensity and position monitors for FELs

    International Nuclear Information System (INIS)

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  6. Near DC force measurement using PVDF sensors

    Science.gov (United States)

    Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.

    2018-03-01

    There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.

  7. Experiments with BECs in a Painted Potential: Atom SQUID, Matter Wave Bessel Beams, and Matter Wave Circuits

    Science.gov (United States)

    Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin

    2014-05-01

    The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.

  8. On-chamber readout system for the ATLAS MDT Muon Spectrometer

    CERN Document Server

    Chapman, J; Ball, R; Brandenburg, G; Hazen, E; Oliver, J; Posch, C

    2004-01-01

    The ATLAS MDT Muon Spectrometer is a system of approximately 380,000 pressurized cylindrical drift tubes of 3 cm diameter and up to 6 meters in length. These Monitored Drift Tubes (MDTs) are precision- glued to form super-layers, which in turn are assembled into precision chambers of up to 432 tubes each. Each chamber is equipped with a set of mezzanine cards containing analog and digital readout circuitry sufficient to read out 24 MDTs per card. Up to 18 of these cards are connected to an on-chamber DAQ element referred to as a Chamber Service Module, or CSM. The CSM multiplexes data from the mezzanine cards and outputs this data on an optical fiber which is received by the off-chamber DAQ system. Thus, the chamber forms a highly self-contained unit with DC power in and a single optical fiber out. The Monitored Drift Tubes, due to their length, require a terminating resistor at their far end to prevent reflections. The readout system has been designed so that thermal noise from this resistor remains the domi...

  9. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  10. Optical parameters of the tunable Bragg reflectors in squid.

    Science.gov (United States)

    Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2013-08-06

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte

  11. DC Cable for Railway

    Science.gov (United States)

    Tomita, Masaru

    The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.

  12. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  13. PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC

    Directory of Open Access Journals (Sweden)

    Bambang Prio Hartono

    2012-09-01

    Full Text Available Abstract: Using system fuzzy logic as control  technology have been used on low load dc-dc converter with combined parallel compiled  dc-dc converter can  obtain big load.   With existence of differrence of component parameter and each parallel compiled converter can obtained different current  and voltage output.  Function of controller  for to do adjustment, so that current which is applied  to  load by each converter  can be obtained  difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is  combined with using  FLC so that  obtain  better performance.  To get better performance have been made plant model and simulation with CDE method.  The more systematic  system and design is needed to overcome bigger load  on dc-dc converter, so that parallel  compiled current master slave control system on dc-dc converter with using fuzzy logic  controller is used. Result of  research showed that error or difference of  current  which is applied to load can handled by fuzzy logic  controller.  Technic of current and voltage controller co to do adjustment current and voltage distribution  equally to load.  Distribution of iL1,iL2 and  output voltage Vo on dc-dc  converter with load 2,25 until  7,875 and voltage  100  until 120 volt,  load current beetwen  12 until 48, % relatif  error  Vo  0,4% until  0,9%.

  14. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...

  15. FASTBUS readout system for the CDF DAQ upgrade

    International Nuclear Information System (INIS)

    Andresen, J.; Areti, H.; Black, D.

    1993-11-01

    The Data Acquisition System (DAQ) at the Collider Detector at Fermilab is currently being upgraded to handle a minimum of 100 events/sec for an aggregate bandwidth that is at least 25 Mbytes/sec. The DAQ System is based on a commercial switching network that has interfaces to VME bus. The modules that readout the front end crates (FASTBUS and RABBIT) have to deliver the data to the VME bus based host adapters of the switch. This paper describes a readout system that has the required bandwidth while keeping the experiment dead time due to the readout to a minimum

  16. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  17. 100 Gbps PCI-Express Readout for the LHCb Upgrade

    CERN Document Server

    Durante, Paolo; Schwemmer, Rainer; Marconi, Umberto; Balbi, Gabriele; Lax, Ignazio

    2015-01-01

    We present a new data acquisition system under development for the next upgrade of the LHCb experiment at CERN. We focus in particular on the design of a new common readout board, the PCIe40, and on the viability of PCI-Express as an interconnect technology for high speed readout. We describe a new high-performance DMA controller for data acquisition, implemented on an FPGA, coupled with a custom software module for the Linux kernel. Lastly, we describe how these components can be leveraged to achieve a throughput of 100 Gbit/s per readout board.

  18. DC Distribution Systems and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez

    2017-01-01

    summarized. Due to its attractive characteristics in terms of compliance with modern generation, storage and electronic load technologies, high reliability and current carrying capacity, as well as simple control, DC systems are already an indispensable part of power systems. Moreover, the existing......A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been...... challenges such as protection issues will be effectively resolved in the near future due to fast progress of semiconductor technology which is a key enabler cheap and reliable future DC solid-state protection systems. Therefore, it is the view of the author that more and more DC systems will appear...

  19. Linearity of high-Tc dc superconducting quantum interference device operated in a flux-locked loop

    International Nuclear Information System (INIS)

    Nichols, D.G.; Dantsker, E.; Kleiner, R.; Mueck, M.; Clarke, J.

    1996-01-01

    Measurements have been made of the linearity of a high transition temperature dc superconducting quantum interference device (SQUID) operated at 77 K with 130 kHz flux modulation in a flux-locked loop. The degree of nonlinearity was determined from harmonic generation. A sinusoidal magnetic flux with harmonic content less than -130 dB was applied to the SQUID, which was cooled in a magnetic field below 10 -7 T, and the harmonics at the output of the flux-locked loop were measured with a spectrum analyzer. For input signals at frequencies up to 248 Hz and amplitudes up to 20Φ 0 rms (Φ 0 is the flux quantum), the second, third, and fourth harmonics were each at least 115 dB below the fundamental. At higher frequencies the harmonic content began to increase because of the reduction in the open-loop gain of the flux-locked loop. The magnitude of the harmonics was not measurably changed when the SQUID was cooled in a field of 100 μT. The amplitudes of the even harmonics depended critically on the amplitude of the 130 kHz flux modulation, and became zero when its peak-to-peak value was precisely Φ 0 /2. copyright 1996 American Institute of Physics

  20. Development of improved superconductive axial gradiometers for biomagnetic SQUID applications

    Science.gov (United States)

    Budnyk, M. M.; Minov, Yu. D.; Lyakhno, V. Yu.; Desnenko, V. A.; Linnik, A. S.; Shopen, O. B.

    2018-03-01

    SQUID magnetometers for biomagnetic measurements are equipped with superconductive gradiometers which are required to provide a high signal-to-noise ratio at low frequencies, sufficient mechanical strength and sustained performance under repeated thermal cycles, as well as a low level of intrinsic magnetic noise. This paper describes the design of a gradiometer made with a carbon-fiber reinforced composite material for magnetic cardiography measurements. The thermal coefficient of linear expansion (TCLE) of the carbon fiber composite can be precisely adjusted to match that of the superconducting detector coil wire. This is achieved thanks to the difference in the TCLE of carbon fibers in the longitudinal and transverse directions and is realized by varying the laying directions of the fiber in the composite. The data of magnetic susceptibility measurements on carbon fiber composite are reported, showing the magnetic susceptibility about six times smaller than that of graphite. The presented gradiometer design provides a high degree of balancing and is patented along side other specific techniques.

  1. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  2. Development of Contaminant Detection System using HTS SQUIDs

    International Nuclear Information System (INIS)

    Ohtani, T.; Tanaka, S.; Narita, Y.; Ariyoshi, S.; Suzuki, S.

    2015-01-01

    In terms of food safety, mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products

  3. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  4. Sperm from sneaker male squids exhibit chemotactic swarming to CO₂.

    Science.gov (United States)

    Hirohashi, Noritaka; Alvarez, Luis; Shiba, Kogiku; Fujiwara, Eiji; Iwata, Yoko; Mohri, Tatsuma; Inaba, Kazuo; Chiba, Kazuyoshi; Ochi, Hiroe; Supuran, Claudiu T; Kotzur, Nico; Kakiuchi, Yasutaka; Kaupp, U Benjamin; Baba, Shoji A

    2013-05-06

    Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the female's body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. EFFECT OF DETERGENT ON ELECTRICAL PROPERTIES OF SQUID AXON MEMBRANE.

    Science.gov (United States)

    KISHIMOTO, U; ADELMAN, W J

    1964-05-01

    The effects of detergents on squid giant axon action and resting potentials as well as membrane conductances in the voltage clamp have been studied. Anionic detergents (sodium lauryl sulfate, 0.1 to 1.0 mM; dimethyl benzene sulfonate, 1 to 20 mM, pH 7.6) cause a temporary increase and a later decrease of action potential height and the value of the resting potential. Cationic detergent (cetyl trimethyl ammonium chloride, 6 x 10(-5)M or more, pH 7.6) generally brings about immediate and irreversible decreases in the action and resting potentials. Non-ionic detergent (tween 80, 0.1 M, pH 7.6) causes a slight reversible reduction of action potential height without affecting the value of the resting potential. Both anionic and cationic detergents generally decrease the sodium and potassium conductances irreversibly. The effect of non-ionic detergent is to decrease the sodium conductance reversibly, leaving the potassium conductance almost unchanged.

  6. SQUID biosusceptometry in the measurement of hepatic iron

    International Nuclear Information System (INIS)

    Sheth, Sujit

    2003-01-01

    Individuals with primary or secondary abnormalities of iron metabolism, such as hereditary hemochromatosis and transfusional iron loading, may develop potentially lethal systemic iron overload. Over time, this excess iron is progressively deposited in the liver, heart, pancreas, and other organs, resulting in cirrhosis, heart disease, diabetes and other disorders. Unless treated, death usually results from cardiac failure. The amount of iron in the liver is the best indicator of the amount of iron in the whole body. At present, the only sure way to measure the amount of iron in the liver is to remove a sample of the liver by biopsy. Iron stored in the liver can be magnetized to a small degree when placed in a magnetic field. The amount of magnetization is measured by our instrument, called a superconducting quantum interference device (SQUID) susceptometer. In patients with iron overload, our previous studies have shown that magnetic measurements of liver iron in patients with iron overload are quantitatively equivalent to biochemical determinations on tissue obtained by biopsy. The safety, ease, rapidity, and comfort of magnetic measurements make frequent, serial studies technically feasible and practically acceptable to patients. (orig.)

  7. Identifying Pelagic Habitat Hotspots of Neon Flying Squid in the Temperate Waters of the Central North Pacific.

    Science.gov (United States)

    Alabia, Irene D; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki

    2015-01-01

    We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.

  8. Opportunistic acoustic recordings of (potential) orangeback flying squid Sthenoteuthis pteropus in the Central Eastern Atlantic

    Science.gov (United States)

    Peña, Marian; Villanueva, Roger; Escánez, Alejandro; Ariza, Alejandro

    2018-03-01

    Squids are fast swimmers that are difficult to catch by nets and to record with echosounders in the open ocean. A rare detection of orangeback flying squid Sthenoteuthis pteropus in the Central Eastern Atlantic Ocean off the coast of Senegal was accomplished during the MAFIA oceanographic survey carried out between Brazil and the Canary Islands in April 2015. Although net sampling did not yield any subadult or adult individuals, dozens were visually detected from the vessel jumping out of the water at night and displaying their characteristic dorsal photophore patch. A few squids were caught with fishing lines and identified at the species level. The acoustic echograms revealed distinctive previously unobserved acoustic echotraces that seemed to be caused by those squids, which were the only new species detected at that station (over a bottom depth ranging from 4010 to 5215 m, between 10° 45‧ N 22° 41‧ W and 10° 53‧ N 22° 40‧ W). The acoustic response and swimming behaviour shown by those echotraces reinforced this hypothesis. The (potentially) squid recordings dove rapidly (0.19 m/s to 0.48 m/s) from around 10 m below the mesopelagic fish layer, which had migrated to the subsurface at night (35 m depth), to depths of 70-95 m, and swam upward, apparently attacking fish from below. The morning squid migration to deeper waters (250-300 m) was also recorded acoustically. Downward movements of squid swimming at speeds of 0.22 m/s were calculated from the echogram, while the mesopelagic migrating fish swam at 0.27 m/s reaching 250 m depth. Sv120 - Sv38 averaged 2.7 ± 3.2 dB for the squid echotraces while the mesopelagic layer showed values of -8.8 ± 0.9 dB. These ranges agreed with values in the literature and from theoretical models. This study provides more insight into the migrating behaviour of oceanic squids, a species group that is poorly represented in the acoustic literature due to challenges in studying them.

  9. Mobile HTS-SQUID NDE system with robot arm and active shielding using fluxgate

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K.; Tanaka, S. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2008-09-15

    A robot-arm-based mobile HTS-SQUID NDE system was developed for inspection of advanced structures such as hydrogen fuel cell tanks. In order to realize stable operation of HTS-SQUID exposed in Earth's field and robot arm's noise without flux trapping, flux jumping and unlocking during motion, a new active magnetic shielding (AMS) technique using fluxgate was introduced. The high sensitive fluxgate, which could measure magnetic field of up to several 10 {mu}T, was mounted near an HTS-SQUID gradiometer on the robot arm to measure the ambient noise and feed back its output to a compensation coil, which surrounded both SQUID and fluxgate to cancel the ambient noise around them. The AMS technique successfully enabled the HTS-SQUID gradiometer to be moved at 10 mm/s by the robot arm in unshielded environment without flux trapping, jumping and unlocking. Detection of hidden slots in multi-layer composite-metal structures imitating the fuel cell tank was demonstrated.

  10. Vestigial phragmocone in the gladius points to a deepwater origin of squid (Mollusca: Cephalopoda)

    Science.gov (United States)

    Arkhipkin, Alexander I.; Bizikov, Vyacheslav A.; Fuchs, Dirk

    2012-03-01

    The microstructure of the gladius cone was investigated in six species of nektonic squid: shallow-water Loligo gahi (Loliginidae), pelagic eurybathic Illex argentinus, Todarodes pacificus, Dosidicus gigas (Ommastrephidae), and deepwater Onykia ingens (Onychoteuthidae) and Gonatus antarcticus (Gonatidae) using state-of-the-art microscopy. Apart from L. gahi, all other species had septa-like layers in the gladius cone, which for the first time were investigated in detail and compared with those in extinct Cretaceous belemnites Hibolithes sp. and Pachyteuthis sp., and spirulid Cyrtobelus sp. It was found that the organic layers of the gladius cone in recent squid can be homologized with the organic components of the shell in fossil phragmocone-bearing coleoids. The septa-like layers in modern gladius cones therefore represent a vestigial phragmocone composed of organic septal rudiments of the ancestral phragmocone that has lost the siphuncle and gas-filled chambers. The well-developed rostrum in onychoteuthids and small rostrum of the gladius in ommastrephids and gonatids can be seen as homologous with the belemnoid rostrum, which may indicate a close phylogenetic relationship between belemnites and at least some squid. Possible evolutionary pathways of the reduction of the functional phragmocone in squid ancestors are discussed. Several features such as the loss of shell calcification, deep water speciation, and the structure of the equilibrium organ point to a deep-water origin of squids.

  11. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  12. RF SQUID in the nonhysteretic regime with k2Ql>1

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Tsoi, G.M.; Shnyrkov, V.I.; Kartsovnik, V.V.

    1982-01-01

    Experimental measurements of current-voltage, current-phase, amplitude-frequency, phase-frequency, and signal characteristics of an rf SQUID operating at a frequency of 30 MHz in the nonhysteretic regime (1 = 2πL 0 I 0 /phi/sub o/ 2 Ql>1. Here I 0 is the critical current of the weak link, L 0 is the SQUID ring inductance, k is the coefficient of coupling of the SQUID ring to a resonant tank circuit of quality Q, and phi 0 is the magnetic flux quantum. A numerical analysis of the above characteristics for all relevant parameter values close to those occurring under experimental conditions was performed for qualitative comparison with theory. The main difference from the traditional nonhysteretic regime of SQUID operation (k 2 Q1 12 V/Wb for the single-valued region of the signal characteristics. The results suggest that considerable improvement of rf SQUID resolution is possible in the regime k 2 Ql>1

  13. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    International Nuclear Information System (INIS)

    Yagi, Toshifumi; Ohashi, Masaharu; Sakuta, Ken

    2016-01-01

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  14. Non-destructive inspection using HTS-SQUID on aluminum liner covered by CFRP

    International Nuclear Information System (INIS)

    Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.

    2007-01-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels

  15. Non-destructive inspection using HTS-SQUID on aluminum liner covered by CFRP

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Sakaguchi, Y. [SAMTECH Corporation, 1000-18 Enmyo-cho, Kashiwara City, Osaka 582-0027 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2007-10-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.

  16. Fast timing readout for silicon strip detectors

    International Nuclear Information System (INIS)

    Jhingan, A.; Saneesh, N.; Kumar, M.

    2016-01-01

    The development and performance of a 16 channel hybrid fast timing amplifier (FTA), for extracting timing information from silicon strip detectors (SSD), is described. The FTA will be used in a time of flight (TOF) measurement, in which one SSD is used to obtain the ion velocity (A) as well as the energy information of a scattered particle. The TOF information with a thin transmission SSD, acting as ΔE detector (Z) in a detector telescope, will provide a unique detection system for the identification of reaction products in the slowed down beam campaign of low energy branch (LEB) at NUSTAR-FAIR. Such a system will also provide large solid angle coverage with ~ 100% detection efficiency, and adequate segmentation for angular information. A good timing resolution (≤ 100 ps) enables to have shorter flight paths, thus a closely packed 4π array should be feasible. Preamplifiers for energy readout in SSD are easily available. A major constraint with SSDs is the missing high density multichannel preamplifiers which can provide both fast timing as well as energy. Provision of both timing and energy processing, generally makes circuit bulky, with higher power consumption, which may not be suitable in SSD arrays. In case of DSSSD, the problem was overcome by using timing from one side and energy from the other side. A custom designed 16 channel FTA has been developed for DSSSD design W from Micron Semiconductors, UK

  17. Readout of the atomtronic quantum interference device

    Science.gov (United States)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  18. The Belle II SVD data readout system

    Energy Technology Data Exchange (ETDEWEB)

    Thalmeier, R., E-mail: Richard.Thalmeier@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technolog y Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 12116 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); and others

    2017-02-11

    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing.

  19. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  20. Nonlinear parity readout with a microwave photodetector

    Science.gov (United States)

    Schöndorf, M.; Wilhelm, F. K.

    2018-04-01

    Robust high-fidelity parity measurement is an important operation in many applications of quantum computing. In this work we show how in a circuit QED architecture, one can measure parity in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive transformation. We show that appropriate tuning of experimental parameters leads to very high contrast in the cavity and therefore to a high-efficiency parity readout with a microwave photon counter or another amplitude detector. These tuning conditions are based on nonlinearity and are hence more robust than previously described linear tuning schemes. In the first part of the paper we show in detail how to achieve this for two-qubit parity measurements and extend this to N qubits in the second part of the paper. We also study the quantum nondemolition character of the protocol.

  1. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  2. SCM Handbooks for dc-to-dc Converters

    Science.gov (United States)

    Lee, F.; Mohmoud, M.; Yu, Y.

    1984-01-01

    Two documents aid in design of control modules for dc-to-dc converters. Features of SCM include: Adaptive stability, power component stress limiting, implementation of various control laws, unified design approach. Analysis and quidelines contained in handbooks enable engineer to design SCM circuit and confidently predict resulting overall performance.

  3. Sheppard-Taylor Isolated High Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri

    2017-01-01

    This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can...

  4. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    Science.gov (United States)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  5. A Current-Fed Isolated Bidirectional DC-DC Converter

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng

    2017-01-01

    This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...

  6. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...

  7. A radiation-tolerant electronic readout system for portal imaging

    Science.gov (United States)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  8. Readout ASIC of pair-monitor for international linear collider

    International Nuclear Information System (INIS)

    Sato, Yutaro; Ikeda, Hirokazu; Ito, Kazutoshi; Miyamoto, Akiya; Nagamine, Tadashi; Sasaki, Rei; Takubo, Yosuke; Tauchi, Toshiaki; Yamamoto, Hitoshi

    2010-01-01

    The pair-monitor is a beam profile monitor at the interaction point of the international linear collider. A prototype of the readout ASIC for the pair-monitor has been designed and tested. Since the pair-monitor uses the hit distribution of electrons and positrons generated by the beam-crossing to measure the beam profile, the readout ASIC is designed to count the number of hits. In a prototype ASIC, 36 readout cells were implemented by TSMC 0.25-μm CMOS process. Each readout cell is equipped with an amplifier, comparator, 8-bit counter and 16 count-registers. By the operation test, all the ASIC component were confirmed to work correctly. As the next step, we develop the prototype ASIC with the silicon on insulator technology. It is produced with OKI 0.2-μm FD-SOI CMOS process.

  9. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  10. An intelligent readout controller for Fastbus, the Fermilab FSCC

    International Nuclear Information System (INIS)

    Bowden, M.; Kwarciany, R.; Urish, J.

    1990-01-01

    This paper reports on the Fermilab FASTBUS Smart Crate Controller which is intended as a fast, versatile, and cost effective solution for the readout of FASTBUS crates. The on-board 68020 provides intelligence and a programmable microsequencer controls the main readout path. The FSCC supports communication via serial RS 232, Ethernet, and FASTBUS. The main readout path may be programmed for a variety of protocols. Currently, RS 422, VDAS, ECL line, and fiber-optic interfaces are being developed. Hardware interfacing is via the FASTBUS auxiliary connector using a personality card. Provision is made for some on-board formatting and processing of data. The 68020 may sample the data, also headers and word counts may be inserted into the data stream. Data is buffered by FIFOs to allow asynchronous readout

  11. Readout and triggering of the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1984-01-01

    The readout and triggering electronics for the Soudan 2 proton decay detector is presented. Pratically all the electronics is implemented in CMOS. The triggering scheme is highly flexible and software controllable

  12. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.; Omran, Hesham; Naous, Rawan; Salem, Ahmed Sultan; Fahmy, H. A. H.; Lu, W. D.; Salama, Khaled N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  13. Readout scheme for the Baby-MIND detector

    CERN Document Server

    Noah, Etam; Cadoux, F; Favre, Y; Martinez, B; Nicola, L; Parsa, S; Rayner, M; Antonova, M; Fedotov, S; Izmaylov, A; Kleymenova, A; Khabibullin, M; Khotyantsev, A; Kudenko, Y; Likhacheva, V; Mefodiev, A; Mineev, O; Ovsiannikova, T; Shaykhiev, A; Suvorov, S; Yershov, N; Tsenov, R

    2016-01-01

    A readout scheme has been designed for the plastic scintillator bars of the Baby-MIND detector modules. This spectrometer will measure momentum and identify the charge of 1 GeV/c muons with magnetized iron plates interleaved with detector modules. One challenge the detector aims to address is that of keeping high charge identification efficiencies for momenta below 1 GeV/c where multiple scattering in the iron plates degrades momentum resolution. A front-end board has been developed, with 3 CITIROC readout chips per board and up to 96 channels. Hamamatsu MPPCs type S12571-025C photosensors were chosen for readout of wavelength shifting fibers embedded in plastic scintillators. Procurement of the MPPCs has been carried out to instrument 3000 channels in total. Design choices and first results of this readout scheme are presented.

  14. FAIR: A new fast trigger and readout bus system

    International Nuclear Information System (INIS)

    Ordine, A.; Boiano, A.; Zaghi, A.

    1998-01-01

    FAIR (FAst Intercrate Readout) is a synchronous ECL bus system dedicated to readout. It is based on a new trigger and readout hardware level protocol and on a new control system that learns how to setup and control modules. The hardware protocol along with the data structure allow both readout and event building at the same time at the rate of 22 ns/longword (1.44 Gbit/s) without the need of CPUs. It performs trigger management and full pipelining by using a multilevel FIFO structure. FAIR provides for a multi-crate front-end environment and uses an embedded serial network to accomplish front-end control and setup. The data transfer measured performances and the control system are presented in some detail

  15. A four gain readout integrated circuit: FRIC 96 1

    International Nuclear Information System (INIS)

    Bussat, J.M.; Bohner, G.; Lecoq, J.; Colas, J.; Rossetto, O.; Dzahini, D.; Pouxe, J.

    1996-01-01

    The main difficulty for the readout electronics of the ATLAS LARG calorimeter is to handle the 16 bit dynamic range without spoiling the signal to noise ratio. A possible way to split the input. (authors)

  16. Study for the LHCb upgrade read-out board

    CERN Document Server

    Cachemiche, J P; Hachon, F; Le Gac, R; Marin, F; 10.1088/1748-0221/5/12/C12036

    2010-01-01

    The LHCb experiment envisages to upgrade its readout electronics in order to increase the readout rate from 1 MHz to 40 MHz. This electronics upgrade is very challenging, since readout boards will have to handle a higher number of serial links with an increased bandwidth. In addition, the new communication protocol (GBT) developed by the CERN micro-electronics group mixes data acquisition, slow control and clock distribution on the same link. To explore the feasibility of such a readout system, elementary building blocks have been studied. Their goals are multiple: understand signal integrity when using highly integrated high speed serial links running at 8 - 10 Gbits/s; test the implementation of the GBT protocol within FPGAs; understand advantages and limitations of commercial standard with a predefined interconnection topology; validate ideas on how to control easily such a system. We designed two boards compliant with the xTCA standard which meets an increasing interest in the physics community. The first...

  17. A DC Transformer

    Science.gov (United States)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  18. A compact readout system for multi-pixel hybrid photodiodes

    International Nuclear Information System (INIS)

    Datema, C.P.; Meng, L.J.; Ramsden, D.

    1999-01-01

    Although the first Multi-pixel Hybrid Photodiode (M-HPD) was developed in the early 1990s by Delft Electronic Products, the main obstacle to its application has been the lack of availability of a compact read-out system. A fast, parallel readout system has been constructed for use with the earlier 25-pixel tube with High-energy Physics applications in mind. The excellent properties of the recently developed multi-pixel hybrid photodiodes (M-HPD) will be easier to exploit following the development of the new hybrid read-out circuits described in this paper. This system will enable all of the required read-out functions to be accommodate on a single board into which the M-HPD is plugged. The design and performance of a versatile system is described in which a trigger-signal, derived from the common-side of the silicon anode in the M-HPD, is used to trigger the readout of the 60-anode pixels in the M-HPD. The multi-channel amplifier section is based on the use of a new, commercial VLSI chip, whilst the read-out sequencer uses a chip of its own design. The common anode signal is processed by a fast amplifier and discriminator to provide a trigger signal when a single event is detected. In the prototype version, the serial analogue output data-stream is processed using a PC-mounted, high speed ADC. Results obtained using the new read-out system in a compact gamma-camera and with a small muon tracking-chamber demonstrate the low-noise performance of the system. The application of this read-out system in other position-sensitive or multi-anode photomultiplier tube applications are also described

  19. The Philosophy and Feasibility of Dual Readout Calorimetry

    International Nuclear Information System (INIS)

    Hauptman, John

    2006-01-01

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification

  20. Strip detectors read-out system user's guide

    International Nuclear Information System (INIS)

    Claus, G.; Dulinski, W.; Lounis, A.

    1996-01-01

    The Strip Detector Read-out System consists of two VME modules: SDR-Flash and SDR-seq completed by a fast logic SDR-Trig stand alone card. The system is a self-consistent, cost effective and easy use solution for the read-out of analog multiplexed signals coming from some of the front-end electronics chips (Viking/VA chips family, Premus 128 etc...) currently used together with solid (silicon) or gas microstrip detectors. (author)

  1. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  2. The performance of the DC motor by the PID controlling PWM DC-DC boost converter

    OpenAIRE

    Can, Erol; Sayan, Hasan Hüseyin

    2017-01-01

    This paper presents the PID controlling direct current (DC) to the direct current boost converter feds DC motor which has a 3.68 kW and 240 V of DC voltage input on its characteristics. What is first formed is the boost converter mathematical model at the design stage. Secondly, a mathematical model of the DC motor is created so that the boost converter with the machine can be established and modeled at the Matlab Simulink. The PID controller is considered for arranging a pulse width modulati...

  3. 76 FR 3044 - Fisheries of the Exclusive Economic Zone Off Alaska; Sculpins, Sharks, Squid, and Octopus in the...

    Science.gov (United States)

    2011-01-19

    ..., Squid, and Octopus in the Gulf of Alaska AGENCY: National Marine Fisheries Service (NMFS), National... prohibiting directed fishing for sculpins, sharks, squid, and octopus in the Gulf of Alaska (GOA). This action..., and octopus in the GOA. DATES: Effective 1200 hrs, Alaska local time (A.l.t.), January 13, 2011...

  4. The male reproductive strategy of a deep-sea squid : sperm allocation, continuous production, and long-term storage of spermatophores in Histioteuthis miranda

    NARCIS (Netherlands)

    Hoving, Hendrik Jan T.; Lipinski, Marek R.; Dam, Lammertjan

    2010-01-01

    Squid are semelparous organisms. Much of what we know about squid reproduction relates to females, because few studies have addressed males and, although males are similarly challenged by semelparity, it remains virtually unknown what tactics squid have evolved to allocate sperm to spermatophores.

  5. A voltage biased superconducting quantum interference device bootstrap circuit

    International Nuclear Information System (INIS)

    Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael

    2010-01-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  6. Squid measurement of the Verwey transition on epitaxial (1 0 0) magnetite thin films

    International Nuclear Information System (INIS)

    Dediu, V.; Arisi, E.; Bergenti, I.; Riminucci, A.; Solzi, M.; Pernechele, C.; Natali, M.

    2007-01-01

    We report results on epitaxial magnetite (Fe 3 O 4 ) thin films grown by electron beam ablation on (1 0 0) MgAl 2 O 4 substrates. At 120 K magnetite undergoes a structural and electronic transition, the so-called Verwey transition, at which magnetic and conducting properties of the material change. We observed the Verwey transition on epitaxial films with a thickness of 50 nm by comparing zero-field cooling (ZFC) and field cooling (FC) curves measured with a superconducting quantum interference device (SQUID) magnetometer. Observation of the Verwey transition by SQUID measurements in the films is sign of their high crystalline quality. Room temperature ferromagnetism has also been found by magneto-optical Kerr rotation (MOKE) and confirmed by SQUID measurements, with a hysteresis loop showing a coercive field of hundreds of Oe

  7. Nuclear squid: Diabolic pair transfer in rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, R S; Ring, P; Canto, L F

    1987-02-19

    A new unexpected behavior of pair transfer matrix elements in superfluid rotating nuclei is predicted. With increasing angular velocity they drop to zero, change their sign and in some cases even oscillate between positive and negative values. This effect is related to diabolical points in rotating quasiparticle spectra and is closely analogous to the DC-Josephson effect in superconductors in the presence of a magnetic field.

  8. 75 FR 61989 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Science.gov (United States)

    2010-10-07

    ... Airworthiness Directives; McDonnell Douglas Corporation Model DC- 8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and... to all of the McDonnell Douglas Corporation airplanes identified above. The existing AD currently... the following new airworthiness directive (AD): 2010-21-03 McDonnell Douglas Corporation: Amendment 39...

  9. Effect of thermal processing and canning on cadmium and lead levels in California market squid: the role of metallothioneins.

    Science.gov (United States)

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2013-01-01

    The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.

  10. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  11. Trophic relationships between the jumbo squid (Dosidicus gigas and the lightfish (Vinciguerria lucetia in the Humboldt Current System off Peru

    Directory of Open Access Journals (Sweden)

    Rigoberto Rosas-Luis

    2011-04-01

    Full Text Available Acoustic surveys for assessing the biomass and distribution of the jumbo squid (Dosidicus gigas and the lightfish (Vinciguerria lucetia were carried out in the Humboldt Current System of Peru in 2007 and 2008. At the same time, 937 jumbo squid were caught and their stomach contents analyzed. The diet of the jumbo squid was dominated by mesopelagic fish. The first component of their fish diet was V. lucetia and the second component was the myctophid fish Diogenichthys laternatus. Acoustic biomass estimates of these species show that V. lucetia is an important component in aggregative structures in the Humboldt Current System of Peru and its distribution and movements are closely related to the migratory movements of the jumbo squid. The trophic relationship observed between D. gigas and V. lucetia promotes an increase in jumbo squid biomass and, has a positive trophic effect on the ocean ecosystem.

  12. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    International Nuclear Information System (INIS)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology

  13. Axon-Schwann cell interaction in the squid nerve fibre.

    Science.gov (United States)

    Villegas, J

    1972-09-01

    The electrical properties of Schwann cells and the effects of neuronal impulses on their membrane potential have been studied in the giant nerve fibre of the squid.1. The behaviour of the Schwann cell membrane to current injection into the cell was ohmic. No impulse-like responses were observed with displacements of 35 mV in the membrane potential. The resistance of the Schwann cell membrane was found to be approximately 10(3) Omega cm(2).2. A long-lasting hyperpolarization is observed in the Schwann cells following the conduction of impulse trains by the axon. Whereas the propagation of a single impulse had little effect, prolonged stimulation of the fibre at 250 impulses/sec was followed by a hyperpolarization of the Schwann cell that gradually declined over a period of several minutes.3. The prolonged effects of nerve impulse trains on the Schwann cell were similar to those produced by depolarizing current pulses applied to the axon by the voltage-clamp technique. Thus, a series of depolarizing pulses in the axon was followed by a long-lasting hyperpolarization of the Schwann cells. In contrast, the application of a series of hyperpolarizing 100 mV pulses at a frequency of 1/sec had no apparent effects.4. Changes in the external potassium concentration did not reproduce the long-lasting effects of nerve excitation.5. The hyperpolarizing effects of impulse trains were abolished by the incubation of the nerve fibre in a sea-water solution containing trypsin.6. These findings are discussed in relation to the possible mechanisms that might be responsible for the long-lasting hyperpolarizations of the Schwann cells.

  14. Quantum decay of metastable current states in rf squids

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Khlus, V.A.; Tsoj, C.M.; Shnyrkov, V.I.

    1985-01-01

    Quantum decay of metastable current states in a rf SQUID superconducting ring of a hysteresis mode are considered. Point contacts are used as a Josephson weak link. The first derivative of rf IVC, dVsub(T)/dIsub(RF), is measured which gives the dependence of the density of decay probability on the amplitude of magnetic flux oscillations in the ring. The temperature dependence of probability distribution width between 4.2 and 0.5 K suggests that for most of high-ohmic contacts Nb-Nb, Nb-Ag-Nb the quantum mechanisms of decay become dominant beginning with the temperature of about 2 K. The experimental parameters of distribution of decay probability in the quantum limit are compared to those calculated by the theory of macroscopic quantum tunneling in the limit of high and low dissipation. The experimental values of probability density distribution width and characteristic quantum temperature are higher than the theoretical ones, the fact can be attributed to the deviation of current-phase relation of contact from a sinusoidal one. Besides, some contacts seem to correspond to the case of an intermediate value of dissipation. As the frequency of rf oscillations varies from 30 to 6 MHz, the distribution width remains unchanged in accordance with the theory of quantum tunneling decay of metastable current state in the ring in the limit of high damping. At low temperatures (T approximately 0.5 K), and rather small damping coefficient, the density of probability displays anomalous peaks when the amplitude of rf oscillations is lower considerably than the critical vaiue of magnetic flux in the ring

  15. Triple voltage dc-to-dc converter and method

    Science.gov (United States)

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  16. Detection of thermal aging degradation and plastic strain damage for duplex stainless steel using SQUID sensor

    International Nuclear Information System (INIS)

    Otaka, M.; Evanson, S.; Hesegawa, K.; Takaku, K.

    1991-01-01

    An apparatus using a SQUID sensor is developed for nondestructive inspection. The measurements are obtained with the SQUID sensor located approximately 150 mm from the specimen. The degradation of thermal aging and plastic strain for duplex stainless steel is successfully detected independently from the magnetic characterization measurements. The magnetic flux density under high polarizing field is found to be independent of thermal aging. Coercive force increases with thermal aging time. On the other hand, the magnetic flux density under high field increases with the plastic strain. Coercive force is found to be independent of the plastic strain. (author)

  17. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  18. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  19. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley

    2017-09-01

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.

  20. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-05-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  1. Linking DC together with TRSL

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Yong, X.

    2000-01-01

    in a method for real-time developments. An operational semantics with behavior is specified for TRSL. It is defined what its means for a TRSL process to satisfy a DC requirement, and a method for verifying whether the satisfaction relation holds or not is provided. Our contribution also demonstrates a general......Duration Calculus (DC) is an interval-based real-time logic, which can be used in capturing and eliciting users' real-time requirements. The Timed RAISE Specification Language (TRSL) is an extension of the RAISE Specification Language with real-time features. This paper links DC and TRSL together...

  2. DC Microgrids—Part II

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Lu, Xiaonan; Quintero, Juan Carlos Vasquez

    2016-01-01

    distribution applications such as traction, telecom, vehicular and distributed power systems can be classified under DC MG framework and ongoing development and expansion of the field is largely influenced by concepts used over there. This paper aims firstly to shed light on the practical design aspects of DC...... MG technology concerning typical power hardware topologies and their suitability for different emerging smart grid applications. Then, an overview of the state of the art in DC MG protection and grounding is provided. Owing to the fact that there is no zero current crossing, an arc that appears upon...

  3. DC-Compensated Current Transformer.

    Science.gov (United States)

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  4. Verification of the weak equivalence principle of supports and heavy masses using SQUIDs; Ueberpruefung des schwachen Aequivalenzprinzips von Traegern und schwerer Masse mittels Squids

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R. [Friedrich-Schiller-Universitaet Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [Univ. Bremen (Germany). Zentrum fuer angewandte Raumfahrttechnologie und Mikrogravitation

    2003-07-01

    The weak equivalence principle is one of the fundamental hypotheses of general relativity and one of the key elements of our physical picture of the world, but since Galileo there has been no satisfactory way of verifying it. The new SQUID technology may offer a solution. The contribution presents the experiments of Jena University. Applications are envisaged, e.g., in the STEP space mission of the NASA/ESA. [German] Das Schwache Aequivalenzprinzip ist eine der grundlegenden Hypothesen der Allgemeinen Relativitaetstheorie und damit einer der Grundpfeiler unseres physikalischen Weltbildes. Obwohl es seit den ersten Experimenten von Galileo Galilei am Schiefen Turm zu Pisa im Jahre 1638 bis heute schon zahlreiche und immer praeziser werdende Messungen zur Ueberpruefung der Aequivalenz von schwerer und traeger Masse gegeben hat, ist die strenge Gueltigkeit dieses fundamentalen Prinzips experimentell vergleichsweise unzureichend bestimmt. Neuere Methoden, wie der Einsatz SQUID-basierter Messtechnik und die Durchfuehrung von Experimenten auf Satelliten, lassen Verbesserungen schon in naher Zukunft erwarten, so dass theoretische Ueberlegungen zur Vereinigung aller uns bekannten physikalischen Wechselwirkungen, die eine Verletzung des Schwachen Aequivalenzprinzips voraussagen, experimentell eingegrenzt werden koennten. Der Beitrag gibt einen Ueberblick ueber die an der Universitaet Jena entwickelte SQUID-basierte Messtechnik zum Test des Aequivalenzprinzips und fasst die bisher bei Freifallversuchen am Fallturm Bremen erzielten experimentellen Ergebnisse zusammen. Ein Ausblick auf die geplante Raumfahrtmission STEP der NASA/ESA zum Praezisionstest des Schwachen Aequivalenzprinzips schliesst den Beitrag ab. (orig.)

  5. DC injection into low voltage AC networks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the results of a study investigating the impact of levels of injected DC current injections on a low voltage AC distribution network systems in order to recommend acceptable limits of DC from microgeneration. Relevant literature is reviewed, and the impact of DC levels in distribution transformers, transformer modelling, and instrumental transformers are discussed. The impact of DC in residual current devices (RCD) and in domestic electricity watt hour meters is examined along with DC enhanced corrosion, corrosion failure, and the measurement of DC current injection. Sources of DC injection outlined include DC from computer power supplies, network faults, geomagnetic phenomena, lighting circuits/dimmers, and embedded generators.

  6. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  7. FASTBUS Readout Controller card for high speed data acquisition

    International Nuclear Information System (INIS)

    Zimmermann, S.

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs

  8. Multi-Anode Photomultplier (MAPMT) readout for High Granularity Calorimeters

    CERN Document Server

    Mkrtchyan, Tigran; The ATLAS collaboration

    2017-01-01

    Hadron calorimeter high performance in jet sub-structure measurements can be achieved for objects with $p_{T}$ greater than 1 TeV if the readout geometry is finely segmented in $\\Delta\\eta \\times \\Delta\\phi$. A feasibility study to increase the readout granularity of TileCal, the central hadron calorimeter of the ATLAS detector, is presented. We show a preliminary study exploring the possibility to increase by a factor 4 the present readout granularity of the inner layer cells of TileCal (0.1->0.025 in $\\Delta\\eta$) and to split into two layers the intermediate section of TileCal. The proposed solution is designed to cope with mechanical and readout bandwidth and power constraints. Assuming that the mechanics of the Tile modules cannot be changed, Multi-Anode PMTs with same boundary geometry of the present single-anode PMTs are considered to readout WLS bers, ideally one per pixel, carrying the signals from the individual scintillating tiles of each detector cells. The discussed challenges of the design are: ...

  9. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  10. Readout for a large area neutron sensitive microchannel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiming [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Yang, Yigang, E-mail: yangyigang@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Wang, Xuewu; Li, Yuanjing [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP–WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP–WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  11. Yarr: A PCIe based readout system for semiconductor tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Heim, Timon [Bergische Universitaet Wuppertal, Wuppertal (Germany); CERN, Geneva (Switzerland); Maettig, Peter [Bergische Universitaet Wuppertal, Wuppertal (Germany); Pernegger, Heinz [CERN, Geneva (Switzerland)

    2015-07-01

    The Yarr readout system is a novel DAQ concept, using an FPGA board connected via PCIe to a computer, to read out semiconductor tracking systems. The system uses the FPGA as a reconfigurable IO interface which, in conjunction with the very high speed of the PCIe bus, enables a focus of processing the data stream coming from the pixel detector in software. Modern computer system could potentially make the need of custom signal processing hardware in readout systems obsolete and the Yarr readout system showcases this for FE-I4 chips, which are state-of-the-art readout chips used in the ATLAS Pixel Insertable B-Layer and developed for tracking in high multiplicity environments. The underlying concept of the Yarr readout system tries to move intelligence from hardware into the software without the loss of performance, which is made possible by modern multi-core processors. The FPGA board firmware acts like a buffer and does no further processing of the data stream, enabling rapid integration of new hardware due to minimal firmware minimisation.

  12. A readout buffer prototype for ATLAS high-level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2001-01-01

    Readout buffers are critical components in the dataflow chain of the ATLAS trigger/data-acquisition system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several readout buffers are grouped to form a readout buffer complex that acts as a data server for the high-level trigger selection algorithms and for the final data-collection system. This paper describes a functional prototype of a readout buffer based on a custom-made PCI mezzanine card that is designed to accept input data at up to 160 MB /s, to store up to 8 MB of data, and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel 1960 processor and complex programmable logic devices. We present the integration of several of these cards in a readout buffer complex. We measure various performance figures and discuss to which extent these can fulfil ATLAS needs. (5 refs).

  13. Novel concept of TDI readout circuit for LWIR detector

    Science.gov (United States)

    Kim, Byunghyuck; Yoon, Nanyoung; Lee, Hee Chul; Kim, Choong-Ki

    2000-07-01

    Noise property is the prime consideration in readout circuit design. The output noise caused by the photon noise, which dominates total noise in BLIP detectors, is limited by the integration time that an element looks at a specific point in the scene. Large integration time leads to a low noise performance. Time-delay integration (TDI) is used to effectively increase the integration time and reduce the photon noise. However, it increases the number of dead pixels and requires large integration capacitors and low noise output stage of the readout circuit. In this paper, to solve these problems, we propose a new concept of readout circuit, which performs background suppression, cell-to-cell background current non-uniformity compensation, and dead pixel correction using memory, ADC, DAC, and current copier cell. In simulation results, comparing with the conventional TDI readout circuit, the integration capacitor size can be reduced to 1/5 and trans-impedance gain can be increased by five times. Therefore, the new TDI readout circuit does not require large area and low noise output stage. And the error of skimming current is less than 2%, and the fixed pattern noise induced by cell-to-cell background current variation is reduced to less than 1%.

  14. Cadmium content in fresh and canned squid (Loligo opalescens) from the Pacific coastal waters of California (USA).

    Science.gov (United States)

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2009-01-01

    Cadmium (Cd) levels were determined in 70 samples of mantle tissue and 70 whole individual squid (Loligo opalescens; commercially known as California squid). Samples were collected from the coastal zones of California (USA) during the period 2007/2008. To further investigate consumer exposure to processed fishery products, cadmium concentration was also determined in 200 canned samples of squid. Cd concentrations in raw mantle were low, between 0.01 and 0.29 mg kg(-1) and below the tolerance limit of current regulations (1 mg kg(-1)). Respective concentrations in whole individuals were significantly higher, ranging from 0.51 to 1.18 mg kg(-1), attributed to the presence of the visceral portion in whole squid samples. Cd concentrations varied in relation to age and sex of squid, indicating that several physiological factors may influence accumulation. Furthermore, canning of squid substantially enhanced Cd levels. Cd concentration ranged 0.17-0.67 mg kg(-1) in canned mantle tissue and 0.86-2.07 mg kg(-1) in canned whole squid samples, due to both concentration after canning and movement of the metal between different tissues. Several biological compounds, including metallothioneins, nucleic acids and enzymes, may affect Cd concentrations in commercial fishery products.

  15. Effects of Gamma Irradiation on Shelf-Life and Sensory Scores of Squid Sundae under Accelerated Storage Conditions

    International Nuclear Information System (INIS)

    Kim, H.J.; Kim, K.B.W.R.; Kim, D.H.; Sunwoo, C.; Jung, S.A.; Jeong, D.H.; Jung, H.Y.; Ahn, D.H.; Kim, J.H.; Lee, J.W.; Do, S.R.; Byun, M.W.

    2012-01-01

    This study was conducted to examine the effects of gamma irradiation on the shelf-life and sensory scores of squid Sundae under accelerated storage conditions. Squid Sundae was stored at 37°C for 35 days following gamma irradiation at doses of 0, 10, and 20 kGy. For total viable cell counts, control and gamma-irradiated (GI) (10 kGy) squid Sundae were already spoiled in 4 days, whereas GI (20 kGy) squid Sundae showed complete suppression of bacterial growth during storage. There were no significant changes in pH values compared to the control. The VBN and TBARS (thiobarbituric acid reactive substance) values of GI (20 kGy) squid Sundae were significantly lower than those of the control. In addition, the induction period of GI (20 kGy) squid Sundae as measured by a Rancimat showed a higher level compared to that of the control. In the sensory evaluation, there were no significant changes between the control and GI samples. These results suggest that a dose of 20 kGy is the optimum and effective dose for preservation of squid Sundae. (author)

  16. Potential use of stable isotope and fatty acid analyses for traceability of geographic origins of jumbo squid (Dosidicus gigas).

    Science.gov (United States)

    Gong, Yi; Li, Yunkai; Chen, Xinjun; Chen, Ling

    2018-04-15

    Squid is an important seafood resource for Asian and European countries. With the continuous development of processed squid products, an effective traceability system has become increasingly prominent. Here, we attempt to trace the fishery products of the main target species, jumbo squid (Dosidicus gigas), by using biochemical tracers. Carbon and nitrogen isotope ratios (δ 13 C and δ 15 N values) and fatty acid profiles were identified in squid from three harvest locations in the eastern Pacific Ocean by isotope ratio mass spectrometry and gas chromatography/mass spectrometry, respectively. Comparative analysis was used to evaluate the geographic variations in tracers and to identify the suitable discriminatory variables among origins. Significant spatial variations were found in isotopic values and fatty acid profiles in squid muscle tissues, possibly because of different food availability and/or oceanographic conditions that each group experiences at a given location. The stepwise discriminant analysis indicated that δ 15 N, C16:1n7, C17:1n7, C18:2n6, C20:1 and C20:4n6 were effective variables at differentiating origin. Combined use of stable isotope ratios and fatty acid analyses could trace geographic origins of jumbo squid. This study provides an alternative approach for improving authenticity evaluation of commercial squid products. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Borehole DC-12 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-12. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  18. Borehole DC-14 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-14. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  19. Borehole DC-15 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-15. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  20. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.

    Science.gov (United States)

    Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T

    2014-03-15

    Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.

  1. Effect of electron beam on the microbiological and sensory characteristics of squid jeotkal and its ingredients

    International Nuclear Information System (INIS)

    Liu Xiande; Piao Linghua

    2012-01-01

    A seasoned squid Jeotkal, Koran traditional fermented seafood, and its ingredients for manufacturing, including red hot pepper powder and ground garlic were irradiated by 0, 0.5, 1, 2 and 5 kGy electron beam and stored at 4 ℃ for 4 weeks to determine the changes of microorganisms and sensory characteristics. The initial contamination of squid Jeotkal such as total aerobic bacteria, yeast and mold, and coliform bacterial were at the levels of 2.88, 3.04 and 4.20 logCFU/g, respectively. However, 5 kGy electron beam irradiation reduced the total aerobic bacteria about 1 logCFU/g. Yeast and mold and coliform bacterial were reduced 1 ∼ 2 logCFU/g after 2 kGy irradiation and reached to undetected level when the sample was irradiated at 5 kGy and following storage at 4 ℃ for 4 weeks. Sensory characteristics showed that 5 kGy electron beam irradiation did not adversely affect overall acceptability of squid Jeotkal and its ingredients during 4 ℃ storage. Therefore, electron beam irradiation is one of the possible methods to improve storage stability of seasoned squid Jeotkal. (authors)

  2. Highly balanced gradiometer systems based on HTS-SQUIDs for the use in magnetically unshielded environment

    NARCIS (Netherlands)

    Borgmann, H.J.R.; Rijpma, A.P.; ter Brake, Hermanus J.M.; Rogalla, Horst; David, P.

    1999-01-01

    Two different concepts for gradiometer formation were tested applying high-temperature rf SQUIDs operated at 77 K in liquid nitrogen. All gradiometer systems are fully based on magnetometers. The first concept applies a compensating magnetometer at different positions to actively cancel the magnetic

  3. The effects of jig color and lunar bright on coastal squid jigging ...

    African Journals Online (AJOL)

    Squid jigging experiments were carried out to determine whether differences occurred between different colors and lunar brightness in Middle Eastern coast of Aegean Sea. Five different colors of jigs (red, blue, green, orange and white) were used together in same angle. According to one-way analysis of variance results, ...

  4. Rotational population patterns and searches for the nuclear SQUID (Superconducting Quantum Interference Device)

    International Nuclear Information System (INIS)

    Canto, L.F.; Donangelo, R.J.; Farhan, A.R.; Guidry, M.W.; Rasmussen, J.O.; Ring, P.; Stoyer, M.A.

    1989-11-01

    This paper presents new theoretical results for rotational population patterns in the nuclear SQUID effect. (The term nuclear SQUID is in analogy to the solid-state Superconducting Quantum Interference Devices.) The SQUID effect is an interesting new twist to an old quest to understand Coriolis anti-pairing (CAP) effects in nuclear rotational bands. Two-neutron transfer reaction cross sections among high-spin states have long been touted as more specific CAP probes than other nuclear properties. Heavy projectiles like Sn or Pb generally are recommended to pump the deformed nucleus to as high spin as possible for transfer. The interference and sign reversal of 2n transfer amplitudes at high spin, as predicted in the early SQUID work imposes the difficult requirement of Coulomb pumping to near back-bending spins at closest approach. For Pb on rare earths we find a dramatic departure from sudden-approximation, so that the population depression occurs as low as final spin 10h. 14 refs., 8 figs

  5. High-Tc SQUID Application for Roll to Roll Metallic Contaminant Detector

    International Nuclear Information System (INIS)

    Tanaka, S.; Kitamura, Y.; Uchida, Y.; Hatsukade, Y.; Ohtani, T.; Suzuki, S.

    2012-01-01

    A sensitive eight-channel high-Tc Superconducting Interference Device (SQUID) detection system for magnetic contaminant in a lithium ion battery anode was developed. Finding ultra-small metallic foreign matter is an important issue for a manufacturer because metallic contaminants carry the risk of an internal short. When contamination occurs, the manufacturer of the product suffers a great loss from recalling the tainted product. Metallic particles with outer dimensions smaller than 100 microns cannot be detected using a conventional X-ray imaging system. Therefore, a highly sensitive detection system for small foreign matter is required. We have already developed a detection system based on a single-channel SQUID gradiometer and horizontal magnetization. For practical use, the detection width of the system should be increased to at least 65 mm by employing multiple sensors. In this paper, we present an 8-ch high-Tc SQUID roll-to-roll system for inspecting a lithium-ion battery anode with a width of 65 mm. A special microscopic type of a cryostat was developed upon which eight SQUID gradiometers were mounted. As a result, small iron particles of 35 microns on a real lithium-ion battery anode with a width of 70 mm were successfully detected. This system is practical for the detection of contaminants in a lithium ion battery anode sheet.

  6. Comparison live adult Artemia and squid meat on the growth of Penaeid shrimp Metapenaeus dobsoni (Miers)

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.R.S.; Achuthankutty, C.T.; Royan, J.P.

    An experiment lasting 14 weeks was conducted to compare the efficiency of live adult Artemia with fresh squid meat on growth of penaeid shrimp Metapenaeus dobsoni. The shrimps were found actively feeding on live Artemia and grew 84% more than those...

  7. A simple method for checking the balance of gradiometers used with squids

    International Nuclear Information System (INIS)

    Eghrari, I.R.; Ribeiro, P.C.

    1978-11-01

    A simple technique for detecting the degree of balance of first order gradiometers before connecting them to the SQUID is described. The effect of thermal cycling on this balance is given for different materials used in the construction of the gradiometers [pt

  8. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

    KAUST Repository

    Zakroff, Casey J.; Mooney, T. Aran; Wirth, Colin

    2017-01-01

    . pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2

  9. Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.

    Science.gov (United States)

    Zepeda, Emily A; Veline, Robert J; Crook, Robyn J

    2017-06-01

    Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.

  10. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Holland, H.J.; Brake, ter H.J.M.

    2005-01-01

    In order to achieve turnkey operation, the use is planned of cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mech. interference from the coolers, they are switched off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  11. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Venhorst, G.C.F.; Holland, Herman J.; ter Brake, Hermanus J.M.

    2005-01-01

    In order to achieve turnkey operation, we plan to use cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mechanical interference from the coolers, we intend to switch them off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  12. Analysis of metal catalyst content in magnetically filtered SWCNTs by SQUID magnetometry

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Komínková, Zuzana; Vejpravová, Jana; Kalbáč, Martin

    2015-01-01

    Roč. 50, č. 6 (2015), s. 2544-2553 ISSN 0022-2461 R&D Projects: GA ČR GAP204/10/1677 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : single-wall carbon nanotubes * nanoparticles * magnetic filtration * SQUID Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.302, year: 2015

  13. Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry

    International Nuclear Information System (INIS)

    Adolphi, Natalie L; Huber, Dale L; Monson, Todd C; Provencio, Paula P; Bryant, Howard C; Fegan, Danielle L; Tessier, Trace E; Flynn, Edward R; Lim, JitKang; Majetich, Sara A; Trujillo, Jason E; Lovato, Debbie M; Butler, Kimberly S; Larson, Richard S; Hathaway, Helen J

    2010-01-01

    Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Neel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.

  14. Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry

    Energy Technology Data Exchange (ETDEWEB)

    Adolphi, Natalie L [Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 (United States); Huber, Dale L; Monson, Todd C; Provencio, Paula P [Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185 (United States); Bryant, Howard C; Fegan, Danielle L; Tessier, Trace E; Flynn, Edward R [Senior Scientific, LLC, 11109 Country Club NE, Albuquerque, NM 87111 (United States); Lim, JitKang; Majetich, Sara A [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Trujillo, Jason E; Lovato, Debbie M; Butler, Kimberly S; Larson, Richard S [Department of Pathology, Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Hathaway, Helen J, E-mail: NAdolphi@salud.unm.ed [Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-10-07

    Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Neel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.

  15. Conversion of Squid Pens to Chitosanases and Proteases via Paenibacillus sp. TKU042

    Directory of Open Access Journals (Sweden)

    Chien Thang Doan

    2018-03-01

    Full Text Available Chitosanases and proteases have received much attention due to their wide range of applications. Four kinds of chitinous materials, squid pens, shrimp heads, demineralized shrimp shells and demineralized crab shells, were used as the sole carbon and nitrogen (C/N source to produce chitosanases, proteases and α-glucosidase inhibitors (αGI by four different strains of Paenibacillus. Chitosanase productivity was highest in the culture supernatants using squid pens as the sole C/N source. The maximum chitosanase activity of fermented squid pens (0.759 U/mL was compared to that of fermented shrimp heads (0.397 U/mL, demineralized shrimp shells (0.201 U/mL and demineralized crab shells (0.216 U/mL. A squid pen concentration of 0.5% was suitable for chitosanase, protease and αGI production via Paenibacillus sp. TKU042. Multi-purification, including ethanol precipitation and column chromatography of Macro-Prep High S as well as Macro-Prep DEAE (diethylaminoethyl, led to the isolation of Paenibacillus sp. TKU042 chitosanase and protease with molecular weights of 70 and 35 kDa, respectively. For comparison, 16 chitinolytic bacteria, including strains of Paenibacillus, were investigated for the production of chitinase, exochitinase, chitosanase, protease and αGI using two kinds of chitinous sources.

  16. Magnetic measurements of suspended functionalised ferromagnetic beads under DC applied fields

    International Nuclear Information System (INIS)

    De Los Santos V, Luis; Llandro, Justin; Lee, Dongwook; Mitrelias, Thanos; Palfreyman, Justin J.; Hayward, Thomas J.; Cooper, Jos; Bland, J.A.C.; Barnes, Crispin H.W.; Arroyo C, Juan L.; Lees, Martin

    2009-01-01

    In this work, a simple technique to obtain the hysteresis loops of magnetic beads (Spherotech Inc.) in liquid suspension is presented. The magnetic measurements were taken in a DC Magnetic Property Measurement System (MPMS-SQUID sensor). Samples were based on ferromagnetic beads (surface-functionalized NH 2 , mean diameter 4.32 μm) prepared in three conditions: dry, suspended in sucrose solution and in suspension after functionalization with fluorophore. Special small containers (1.3 cm long) made of non magnetic plastic were designed to hold the beads in liquid. The results indicate that the bead's remnant magnetization is half of the value at maximum applied field in all cases. However, due to the additional degrees of rotational freedom, beads suspended in a liquid do not present coercivity. The use of ferromagnetic beads and magnetic elements of different architectures for applications in bioassays is also discussed.

  17. CASAGEM: a readout ASIC for micro pattern gas detectors

    International Nuclear Information System (INIS)

    He Li; Deng Zhi; Liu Yinong

    2012-01-01

    A readout ASIC for micro pattern gas detectors has been designed This ASIC integrates 16 channels for anode readout and 1 channel for cathode readout which can make use of the signal of detector's cathode to generate a trigger Every channel can provide amplification and shaping of detector signals. The ASIC can also provide adjustable gain which can be adjusted from 2 mV/fC to 40 mV/fC, and adjustable shaping time which can be adjusted from 20 ns to 80 ns; so this ASIC can be applied to detectors with wide range output signal and different counting rate. The ASIC is fabricated with Chartered 0.35 μm CMOS process More circuit design Details and test results will be presented. (authors)

  18. Sub-10ps monolithic and low-power photodetector readout

    International Nuclear Information System (INIS)

    Varner, Gary S.; Ruckman, Larry L.

    2009-01-01

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device

  19. Looking at Earth from space: Direct readout from environmental satellites

    Science.gov (United States)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  20. Readout Electronics Upgrades of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Anelli, Christopher Ryan; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  1. The New Readout System of the NA62 LKr Calorimeter

    CERN Document Server

    Ceccucci, A; Farthouat, P; Lamanna, G; Rouet, J; Ryjov, V; Venditti, S

    2015-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the photon-veto system; to cope with the demanding NA62 re- quirements,itsback-endelectron icshadtobecompletelyrenewed. The new readout system is based on the Calorimeter REAdout Module (CREAM) [3], a 6U VME board whose design and pro- duction was sub-contracted to CAEN [4], with CERN NA62 group continuously supervising the de velopment and production phase. The first version of the board was delivered by the manufacturer in March 2013 and, as of June 2014, the full board production is ongoing. In addition to describing the CREAM board, all aspects of the new LKr readout system, including its integration within the NA62 TDAQ scheme, will be treated.

  2. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  3. Pad readout for gas detectors using 128-channel integrated preamplifiers

    International Nuclear Information System (INIS)

    Fischer, P.; Drees, A.; Glassel, P.

    1988-01-01

    A novel two-dimensional readout scheme for gas detectors is presented which uses small metal pads with 2.54 mm pitch as an anode. The pads are read out via 128-channel VLSI low-noise preamplifier/multiplexer chips. These chips are mounted on 2.8x2.8 cm/sup 2/ modules which are directly plugged onto the detector backplane, daisy-chained with jumpers and read out sequentially. The readout has been successfully tested with a low-pressure, two-step, TMAE-filled UV-RICH detector prototype. A single electron efficiently of >90% was observed at moderate chamber gains (<10/sup 6/). The method offers high electronic amplification, low noise, and high readout speed with a very flexible and compact design, suited for space-limited applications

  4. Sub-10ps monolithic and low-power photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Varner, Gary S.; Ruckman, Larry L.

    2009-02-20

    Recent advances in photon detectors have resulted in high-density imaging arrays that offer many performance and cost advantages. In particular, the excellent transit time spread of certain devices show promise to provide tangible benefits in applications such as Positron Emission Tomography (PET). Meanwhile, high-density, high-performance readout techniques have not kept on pace for exploiting these developments. Photodetector readout for next generation high event rate particle identification and time-resolved PET requires a highly-integrated, low-power, and cost-effective readout technique. We propose fast waveform sampling as a method that meets these criteria and demonstrate that sub-10ps resolution can be obtained for an existing device.

  5. The biology and ecology of the jumbo squid Dosidicus gigas (Cephalopoda in Chilean waters: a review

    Directory of Open Access Journals (Sweden)

    Christian M Ibáñez

    2015-07-01

    Full Text Available ABSTRACT. The jumbo squid Dosidicus gigas is the most abundant cephalopod species in the southeastern Pacific Ocean, which supports the biggest cephalopod fishery in the world. Due to its growing economic importance, the population growth and distributional expansion of this squid is being increasingly studied. Nevertheless, some basic features of the biology of D. gigas are still unknown or have been poorly investigated. In this review we summarize the known information regarding the biology and ecology of this species in the southeastern Pacific Ocean; we focus on the Chilean region in order to propose hypotheses and research lines for a better understanding the life history of this organism. Available data on the size structure, reproduction and genetics of D. gigas allows us to propose hypotheses related to the squid's life history traits. Based on the current literature and publications of colleagues, we propose two hypotheses regarding the effect of spatial variation on the life history of D. gigas. Hypothesis 1: Squids mature at large sizes and spawn in oceanic waters with warm temperatures where paralarvae and juveniles develop. Immature squids migrate near shore to feed, grow and mature, and then return to the offshore sites to spawn. Hypothesis 2: Alternatively, juvenile D. gigas in the oceanic zone do not migrate to coastal waters and mature at small sizes compared to individuals living near the coast that mature at larger size and migrate to oceanic waters to spawn. We provide background information about the feeding behavior and parasitism of this species, suggesting that D. gigas is an important trophic link in the southeastern Pacific marine ecosystem. However, more studies on the feeding habits, reproduction and parasite load are needed not only to test hypotheses proposed in this study, but also to advance the overall knowledge of this species.

  6. Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan

    International Nuclear Information System (INIS)

    Shavandi, Amin; Bekhit, Adnan A.; Bekhit, Alaa El-Din A.; Sun, Zhifa; Ali, M. Azam

    2015-01-01

    The properties of chitosan from Arrow squid (Nototodarus sloanii) pen (CHS) and commercial crab shell (CHC) were investigated using FTIR, DSC, SEM and XRD before and after irradiation at the dose of 28 kGy in the presence or absence of 5% water. Also, the viscosity, deacetylation degree, water and oil holding capacities, colour and antimicrobial activities of the chitosan samples were determined. Irradiation decreased (P < 0.05) the viscosity of CHC from 0.21 to 0.03 Pa s and of CHS from 1.71 to 0.23 Pa s. The inclusion of water had no effect on the viscosity of irradiated chitosan. Irradiation did not affect the degree of deacetylation of CHC, but increased the deacetylation degree of CHS from 72.78 to 82.29% in samples with 5% water. Water and oil holding capacities of CHS (1197.30% and 873.3%, respectively) were higher (P < 0.05) than those found in CHC (340.70% and 264.40%, respectively). The water and oil holding capacities were decreased for both types of chitosan irradiation, but were not affected by the addition of water. Squid pen chitosan was whiter in colour (White Index = 90.06%) compared to CHC (White Index = 83.70%). Generally, the CHC samples (control and irradiated) exhibited better antibacterial activity compared to CHS, but the opposite was observed with antifungal activity. - Highlights: • Chitosan prepared from Arrow squid pens (Nototodarus sloanii). • Chitosan samples were gamma irradiated at 28 kGy. • Squid pen chitosan showed high fat and water uptake capacities compared to crab shell chitosan. • Gamma irradiation enhanced the DDA of squid pen chitosan but not crab shell chitosan.

  7. Fishery biology of jumbo flying squid Dosidicus gigas off Costa Rica Dome

    Science.gov (United States)

    Chen, Xinjun; Li, Jianghua; Liu, Bilin; Li, Gang; Lu, Huajie

    2014-06-01

    The jumbo flying squid ( Dosidicus gigas) population was surveyed with the help of Chinese squid jigging vessels off the Costa Rica Dome (4°-11°N, 90°-100°W) in 2009 and 2010. The daily catch of D. gigas in the two survey cruises ranged from 0 to 5.5 t and was mostly obtained from the areas bounded by 6°-9°N and 91°-94°W and by 6°30'-7°30'N and 96°-97°W. The sea surface temperature in the areas yielding the most catch ranged from 27.5 to 29°C. The sex ratio of the total catch was 3.75:1 (female: male). The mantle length of the squid ranged from 211 to 355 mm (male) and from 204 to 429 mm (female) with an average of 297.9 and 306.7 mm, respectively. In the relationship of the mantle length (mm) and body weight (g) of the squid, there was no significant difference between sexes. The female and male were at a similar maturity, and most individuals are maturing or have matured with a few females being spent. The size (mantle length) and age at the first sexual maturity were 297 mm and 195 d in females, and less than 211 mm and 130 d in males, respectively. Most of the sampled stomachs (70.6%) had no food remains. The major preys of the squids were fish, cephalopods and crustaceans, with the most abundant Myctophum orientale and D. gigas. The preys in more than 65% of the non-empty sampled stomachs evidenced the cannibalism of D. gigas. The results improved current understanding of the fishery biology of D. gigas off the Costa Rica Dome, which may facilitate the assessment and management of relative fishery resources.

  8. Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...... effectively eliminate high voltage leaps caused by the dead time effect. In addition, a capacitor voltage control strategy is proposed for the 5L-ANPC dc/dc converter to ensure the balanced flying capacitor voltage and desired five-level voltage waveforms. Finally, simulation and experimental studies...

  9. DRM2: the readout board for the ALICE TOF upgrade

    CERN Document Server

    Falchieri, Davide

    2018-01-01

    For the upgrade of the ALICE TOF electronics, we have designed a new version of the readout board, named DRM2, a card able to read the data coming from the TDC Readout Module boards via VME. A Microsemi Igloo2 FPGA acts as the VME master and interfaces the GBTx link for transmitting data and receiving triggers and a low-jitter clock. Compared to the old board, the DRM2 is able to cope with faster trigger rates and provides a larger data bandwidth towards the DAQ. The results of the measurements on the received clock jitter and data transmission performances in a full crate are given.

  10. The Retinal Readout System: a status report A Status Report

    CERN Document Server

    Litke, A M

    1999-01-01

    The 'Retinal Readout System' is being developed to study the language the eye uses to send information about the visual world to the brain. Its architecture is based on that of silicon microstrip detectors. An array of 512 microscopic electrodes picks up the signals generated by the output neurons of live retinal tissue in response to a dynamic image focused on the input neurons. These signals are amplified, filtered and multiplexed by a set of eight custom-designed VLSI readout chips, and digitized and recorded by a data acquisition system. This report describes the goals, design, and status of the system. (author)

  11. Readout technologies for directional WIMP Dark Matter detection

    International Nuclear Information System (INIS)

    Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.

    2016-01-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  12. SVX3: A deadtimeless readout chip for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1997-12-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720,000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout allowing deadtimeless operation in the Fermilab Tevatron

  13. DNA Nanobiosensors: An Outlook on Signal Readout Strategies

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2017-01-01

    Full Text Available A suite of functionalities and structural versatility makes DNA an apt material for biosensing applications. DNA-based biosensors are cost-effective and sensitive and have the potential to be used as point-of-care diagnostic tools. Along with robustness and biocompatibility, these sensors also provide multiple readout strategies. Depending on the functionality of DNA-based biosensors, a variety of output strategies have been reported: fluorescence- and FRET-based readout, nanoparticle-based colorimetry, spectroscopy-based techniques, electrochemical signaling, gel electrophoresis, and atomic force microscopy.

  14. Updates on the most recent results in dual readout calorimetry

    International Nuclear Information System (INIS)

    Cascella, M.

    2011-01-01

    The Dual REAdout Method (DREAM) consists in comparing the scintillation and Cherenkov light generated in the shower development process. By comparing the two, the electromagnetic fraction of the hadronic shower can be measured event-by-event, to eliminate the effects of fluctuations in this fraction. In this paper the DREAM fiber calorimeter and its successor, the newDREAM prototype that is currently under construction, will be described. We will also report on the efforts to study the Cherenkov component of the output of high-Z crystals and to realize a dual-readout electromagnetic section that can achieve outstanding electromagnetic resolution whit out compromising the hadronic resolution.

  15. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  16. A time projection chamber with GEM-based readout

    Energy Technology Data Exchange (ETDEWEB)

    Attié, David [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Behnke, Ties [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); Bellerive, Alain [Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 (Canada); Bezshyyko, Oleg [Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, City of Kyiv 01601 (Ukraine); Bhattacharya, Deb Sankar [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); now at Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, Purba [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); now at National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha (India); Bhattacharya, Sudeb [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Caiazza, Stefano [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at Johannes Gutenberg Universität Mainz, Institut für Physik, 55099 Mainz (Germany); Colas, Paul [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Lentdecker, Gilles De [Inter University ULB-VUB, Av. Fr. Roosevelt 50, B1050 Bruxelles (Belgium); Dehmelt, Klaus [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Desch, Klaus [Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn (Germany); and others

    2017-06-01

    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.

  17. Vertically integrated pixel readout chip for high energy physics

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 (micro)m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 (micro)m 2 pixels, laid out in an array of 48 x 48 pixels.

  18. The readout performance evaluation of PowerPC

    International Nuclear Information System (INIS)

    Chu Yuanping; Zhang Hongyu; Zhao Jingwei; Ye Mei; Tao Ning; Zhu Kejun; Tang Suqiu; Guo Yanan

    2003-01-01

    PowerPC, as a powerful low-cost embedded computer, is one of the very important research objects in recent years in the project of BESIII data acquisition system. The researches on the embedded system and embedded computer have achieved many important results in the field of High Energy Physics especially in the data acquisition system. The one of the key points to design an acquisition system using PowerPC is to evaluate the readout ability of PowerPC correctly. The paper introduce some tests for the PowerPC readout performance. (authors)

  19. Development of a Crosstalk Suppression Algorithm for KID Readout

    Science.gov (United States)

    Lee, Kyungmin; Ishitsuka, H.; Oguri, S.; Suzuki, J.; Tajima, O.; Tomita, N.; Won, Eunil; Yoshida, M.

    2018-06-01

    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.

  20. Low cost photomultiplier high-voltage readout system

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Kunz, P.F.

    1976-10-01

    The Large Aperture Solenoid Spectrometer (LASS) at Stanford Linear Accelerator Center (SLAC) requires monitoring over 300 voltages. This data is recorded on magnetic tapes along with the event data. It must also be displayed so that operators can easily monitor and adjust the voltages. A low-cost high-voltage readout system has been implemented to offer stand-alone digital readout capability as well as fast data transfer to a host computer. The system is flexible enough to permit use of a DVM or ADC and commercially available analogue multiplexers