WorldWideScience

Sample records for dan-aero mw detailed

  1. The DAN-AERO MW Experiments

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bak, Christian; Schmidt Paulsen, Uwe

    a number of coordinated, innovative measurements on full scale MW size rotors as well as on airfoils for MW size turbines in wind tunnels. Shear and turbulence inflow characteristics were measured on a Siemens 3.6 MW turbine with a five hole pitot tube. Pressure and turbulent inflow characteristics were...... on the blade was further instrumented with around 50 microphones for high frequency surface pressure measurements. The surface pressure measurements have been correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high frequency (50 Hz to10 kHz) contents...

  2. The DAN-AERO MW experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H.; Bak, C.; Schmidt Paulsen, U.; Gaunaa, M. (Risoe DTU, Roskilde (Denmark)); Fuglsang, P. (LM Glasfiber, Kolding (Denmark)); Romblad, J.; Olesen, N.A. (Vestas Wind Systems, Ringkoebing (Denmark)); Enevoldsen, P.; Laursen, J. (Siemens Wind Power, Ballerup (Denmark)); Jensen, Leo (DONG Energy, Fredericia (Denmark))

    2010-09-15

    This report describes the DAN-AERO MW experiments carried out within a collaborative, three years research project between Risoe DTU and the industrial partners LM Glasfiber, Siemens Wind Power, Vestas Wind Systems A/S and the utility company DONG Energy. The main objective of the project was to establish an experimental data base which can provide new insight into a number of fundamental aerodynamic and aero-acoustic issues, important for the design and operation of MW size turbines. The most important issue is the difference between airfoil characteristics measured under 2D, steady conditions in a wind tunnel and the unsteady 3D flow conditions on a rotor. The different transition characteristics might explain some of the differences between the 2D and 3D airfoil data and the experiments have been set up to provide data on this subject. The overall experimental approach has been to carry out a number of coordinated, innovative measurements on full scale MW size rotors as well as on airfoils for MW size turbines in wind tunnels. Shear and turbulence inflow characteristics were measured on a Siemens 3.6 MW turbine with a five hole pitot tube. Pressure and turbulent inflow characteristics were measured on a 2MW NM80 turbine with an 80 m rotor. One of the LM38.8 m blades on the rotor was replaced with a new LM38.8 m blade where instruments for surface pressure measurements at four radial sections were build into the blade during the blade production process. Additionally, the outmost section on the blade was further instrumented with around 50 microphones for high frequency surface pressure measurements. The surface pressure measurements have been correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high frequency (50 Hz to10 kHz) contents of the inflow turbulence. In parallel, 2D wind tunnel measurements on common airfoils for wind turbine applications have been conducted in three different wind tunnels at Delft

  3. Detailed Load Analysis of the baseline 5MW DeepWind Concept

    DEFF Research Database (Denmark)

    Verelst, David Robert; Aagaard Madsen, Helge; Kragh, Knud Abildgaard

    This report presents an overview of the design of the DeepWind vertical axis oating wind turbine. One could present this as the "nal design", however, it is hoped that more design iterations will follow in the future, but under the umbrella of new and dierent projects. The state of the design...... that is reported here will be called version 2.2.0. The numbering system has just been introduced at the present design version, but the rst 5MW design called the "baseline design" [1] was developed in 2011 and this will therefore be called version 1.0.0. In this report, the design loads of the DeepWind 5 MW...

  4. The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations

    Science.gov (United States)

    Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; Karakonstantis, A.; Kazantzidou-Firtinidou, D.; Fountoulakis, I.; Millas, C.; Spingos, I.; Aspiotis, T.; Moumoulidou, A.; Skourtsos, E.; Antoniou, V.; Andreadakis, E.; Mavroulis, S.; Kleanthi, M.

    2018-04-01

    A major earthquake (Mwö=ö6.3) occurred on the 12th of June 2017 (12:28 GMT) offshore, south of the SE coast of Lesvos Island, at a depth of 13ökm, in an area characterized by normal faulting with an important strike-slip component in certain cases. Over 900 events of the sequence between 12 and 30 June 2017 were manually analyzed and located, employing an optimized local velocity model. Double-difference relocation revealed seven spatially separated groups of events, forming two linear branches, roughly aligned N130°E, compatible with the strike of known mapped faults along the southern coast of Lesvos Island. Spatiotemporal analysis indicated gradual migration of seismicity towards NW and SE from the margins of the main rupture, while a strong secondary sequence at a separate fault patch SE of the mainshock, oriented NW-SE, was triggered by the largest aftershock (Mwö=ö5.2) that occurred on 17 June. The focal mechanisms of the mainshock (φö=ö122°, δö=ö40° and λö=ö-83°) and of the major aftershocks were determined using regional moment tensor inversion. In most cases normal faulting was revealed with the fault plane oriented in a NW-SE direction, dipping SW, with the exception of the largest aftershock that was characterized by strike-slip faulting. Stress inversion revealed a complex stress field south of Lesvos, related both to normal, in an approximate E-W direction, and strike-slip faulting. All aftershocks outside the main rupture, where gradual seismicity migration was observed, are located within the positive lobes of static stress transfer determined by applying the Coulomb criterion for the mainshock. Stress loading on optimal faults under a strike-slip regime explains the occurrence of the largest aftershock and the seismicity that was triggered at the eastern patch of the rupture zone.

  5. Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data

    Science.gov (United States)

    Martin, Stacey; Hough, Susan E.; Hung, Charleen

    2015-01-01

    To augment limited instrumental recordings of the Mw 7.8 Gorkha, Nepal, earthquake on 25 April 2015 (Nepali calendar: 12 Baisakh 2072, Bikram Samvat), we collected 3831 detailed media and first-person accounts of macroseismic effects that include sufficiently detailed information to assign intensities. The resulting intensity map reveals the distribution of shaking within and outside of Nepal, with the key result that shaking intensities throughout the near-field region only exceeded intensity 8 on the 1998 European Macroseismic Scale (EMS-98) in rare instances. Within the Kathmandu Valley, intensities were generally 6–7 EMS. This surprising (and fortunate) result can be explained by the nature of the mainshock ground motions, which were dominated by energy at periods significantly longer than the resonant periods of vernacular structures throughout the Kathmandu Valley. Outside of the Kathmandu Valley, intensities were also generally lower than 8 EMS, but the earthquake took a heavy toll on a number of remote villages, where many especially vulnerable masonry houses collapsed catastrophically in 7–8 EMS shaking. We further reconsider intensities from the 1833 earthquake sequence and conclude that it occurred on the same fault segment as the Gorkha earthquake.

  6. 12 MW

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Mikkelsen, Torben

    '12MW: final report' is for the project with the full title ‘12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore’ that had the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby...... establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st October 2005 and ended 31st March 2009. Firstly was conducted a 6-month experiment at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer...

  7. DANAERO MW: Final Report

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Aagaard Madsen, Helge

    This report describes the results of the EUDP funded DANAERO MW II project carried out by DTU Wind Energy (formerly Risø DTU) and the industrial partners, LM Wind Power, Vestas Wind Systems A/S and Siemens Wind Power. An overview of the data available from the project as well as the results from...... analysis of the data is given with the main objective to explore in detail the influence of atmospheric and wake turbulence on MW turbine performance, loading and stability. Finally, validation and demonstration of simulation codes are carried out....

  8. Postseismic deformation associated with the 2008 Mw 7.9 Wenchuan earthquake, China: Constraining fault geometry and investigating a detailed spatial distribution of afterslip

    Science.gov (United States)

    Jiang, Zhongshan; Yuan, Linguo; Huang, Dingfa; Yang, Zhongrong; Chen, Weifeng

    2017-12-01

    We reconstruct two types of fault models associated with the 2008 Mw 7.9 Wenchuan earthquake, one is a listric fault connecting a shallowing sub-horizontal detachment below ∼20 km depth (fault model one, FM1) and the other is a group of more steeply dipping planes further extended to the Moho at ∼60 km depth (fault model two, FM2). Through comparative analysis of the coseismic inversion results, we confirm that the coseismic models are insensitive to the above two type fault geometries. We therefore turn our attention to the postseismic deformation obtained from GPS observations, which can not only impose effective constraints on the fault geometry but also, more importantly, provide valuable insights into the postseismic afterslip. Consequently, FM1 performs outstandingly in the near-, mid-, and far-field, whether considering the viscoelastic influence or not. FM2 performs more poorly, especially in the data-model consistency in the near field, which mainly results from the trade-off of the sharp contrast of the postseismic deformation on both sides of the Longmen Shan fault zone. Accordingly, we propose a listric fault connecting a shallowing sub-horizontal detachment as the optimal fault geometry for the Wenchuan earthquake. Based on the inferred optimal fault geometry, we analyse two characterized postseismic deformation phenomena that differ from the coseismic patterns: (1) the postseismic opposite deformation between the Beichuan fault (BCF) and Pengguan fault (PGF) and (2) the slightly left-lateral strike-slip motions in the southwestern Longmen Shan range. The former is attributed to the local left-lateral strike-slip and normal dip-slip components on the shallow BCF. The latter places constraints on the afterslip on the southwestern BCF and reproduces three afterslip concentration areas with slightly left-lateral strike-slip motions. The decreased Coulomb Failure Stress (CFS) change ∼0.322 KPa, derived from the afterslip with viscoelastic influence

  9. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  10. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  11. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, Amir Rasekhi [Norwegian Research Center for Offshore Wind Technology, Norwegian University of Science and Technology, Trondheim Norway; Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway; Guo, Yi [National Wind Technology Center, National Renewable Energy Laboratory, Golden Colorado USA; Gao, Zhen [Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway; Moan, Torgeir [Norwegian Research Center for Offshore Wind Technology, Norwegian University of Science and Technology, Trondheim Norway; Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  12. Author Details

    African Journals Online (AJOL)

    Rogers, MW. Vol 23, No 3 (2011) - Articles Comparison of clinic-based versus home-based balance and agility training for the symptoms of knee osteo-arthritis. Abstract PDF. ISSN: 2078-516X. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL ...

  13. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  14. Five MW Nuclear Heating Reactor

    International Nuclear Information System (INIS)

    Zhang Dafang; Dong Duo; Su Qingshan

    1997-01-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs

  15. Five MW Nuclear Heating Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dafang, Zhang; Duo, Dong; Qingshan, Su [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs.

  16. Author Details

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES. Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads.

  17. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... An algorithm to retrieve Land Surface Temperature using Landsat-8 Dataset Abstract PDF. ISSN: 2225-8531.

  18. Author Details

    African Journals Online (AJOL)

    Details PDF · Vol 22, No 2 (1999) - Articles Vegetation under different tree species in Acacia woodland in the Rift Valley of Ethiopia Details PDF · Vol 22, No 2 (1999) - Articles Preliminary evaluation of Phytomyza orobanchia (Diptera: Agromyzidae) as a controller of Orobanche spp in Ethiopia Details PDF. ISSN: 2520–7997.

  19. Development of a 5 MW reference gearbox for offshore wind turbines

    OpenAIRE

    Rasekhi Nejad, Amir; Guo, Yi; Gao, Zhen; Moan, Torgeir

    2016-01-01

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the ...

  20. Author Details

    African Journals Online (AJOL)

    Petrology of the Cenomanian Upper Member of the Mamfe Embayment, southwestern Cameroon Details · Vol 38, No 1 (2002) - Articles Sequence stratigraphy of Iso field, western onshore Niger Delta, Nigeria Details · Vol 39, No 2 (2003) - Articles Preliminary studies on the lithostratigraphy and depositional environment of ...

  1. Author Details

    African Journals Online (AJOL)

    An Overview of Africa's Marine Resources: Their Utilization and Sustainable Management Details · Vol 12, No 3 (2000) - Articles EDITORIAL Ganoderma Lucidum - Paramount among Medicinal Mushrooms. Details · Vol 15, No 3 (2003) - Articles Editorial: Africa's Mushrooms: A neglected bioresource whose time has come

  2. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Abstract PDF · Vol 3, No 6 (2011) - Articles Mixed convection flow and heat transfer in a vertical wavy channel containing porous and fluid layer with traveling thermal waves. Abstract PDF · Vol 3, No 8 ...

  3. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Singh, J. Vol 3, No 2 (2011) - Articles Plane waves in a rotating generalized thermo-elastic solid with voids. Abstract PDF. ISSN: 2141-2839. AJOL African Journals Online. HOW TO USE AJOL.

  4. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 12 (2008) - Articles On the wave equations of shallow water with rough bottom topography. Abstract · Vol 14 (2009) - Articles Energy generation in a plant due to variable sunlight intensity

  5. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Iliopsoas haematoma in a rugby player. Abstract PDF · Vol 29, No 1 (2017) - Articles The use of negative pressure wave treatment in athlete recovery. Abstract PDF. ISSN: 2078-516X. AJOL African ...

  6. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Ismail, A. Vol 9, No 3S (2017): Special Issue - Articles Investigate of wave absorption performance for oil palm frond and empty fruit bunch at 5.8 GHz. Abstract PDF · Vol 9, No 3S (2017): Special Issue ...

  7. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Isa, M.F.M.. Vol 9, No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF · Vol 9, No 3S (2017): Special Issue - ...

  8. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Simulation on ...

  9. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Duwa, S S. Vol 8 (2004) - Articles Lower hybrid waves instability in a velocity–sheared inhomogenous charged dust beam. Abstract · Vol 9 (2005) - Articles The slide away theory of lower hybrid bursts

  10. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 45 (2016) - Articles From vectors to waves and streams: An alternative approach to semantic maps1. Abstract PDF · Vol 48 (2017) - Articles Introduction: 'n Klein ietsie for Johan Oosthuizen

  11. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... to blast loadings. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF. ISSN: 1112-9867.

  12. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... The use of negative pressure wave treatment in athlete recovery. Abstract PDF · Vol 29, No 1 (2017) - Articles The prevalence, risk factors predicting injury and the severity of injuries sustained during ...

  13. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 29, No 1 (2017) - Articles The use of negative pressure wave treatment in athlete recovery. Abstract PDF · Vol 29, No 1 (2017) - Articles The prevalence, risk factors predicting injury and the ...

  14. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register ... (2013) - Articles Technical Note: Development of a Photobioreactor for Microalgae Culture ... Design, Construction and Evaluation of Motorized Okra Slicer Abstract PDF ...

  15. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to ... No 1 (2014) - Articles Knowledge and Attitudes towards Basic Cardiopulmonary Resuscitation (CPR) among Community Nurses in Remo Area of Ogun State, Nigeria

  16. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get ... Optical bus of centralized relay protection and automation system of medium voltage switchgear for data collection and transmission. Abstract PDF. ISSN: 1112- ...

  17. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or ... The prevention of mother-to-child HIV transmission programme and infant feeding practices ... Evaluation of a diagnostic algorithm for smear-negative pulmonary tuberculosis in ...

  18. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details ... Design and Implementation of an M/M/1 Queuing Model Algorithm and its Applicability in ... Vehicle Identification Technology to Intercept Small Arms and Ammunition on Nigeria Roads

  19. Conceptual designs for 100-MW space radiators

    International Nuclear Information System (INIS)

    Prenger, F.C.; Sullivan, J.A.

    1982-01-01

    A description and comparison of heat rejection systems for multimegawatt space-based power supplies is given. Current concepts are described, and through a common performance parameter, these are compared with three advanced radiator concepts. The comparison is based on a power system that rejects 100 MW of heat while generating 10 MW of electrical power

  20. Author Details

    African Journals Online (AJOL)

    Njubi, Francis. Vol 15, No 1 (2001): Media Freedom and Human Rights - Articles New Media, Old Struggles: Pan Africanism, Anti-racism and Information Technology Details. ISSN: 0256-004. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  1. Author Details

    African Journals Online (AJOL)

    Radwan M.D, Mona Ahmed. Vol 12, No 1 (2000) - Articles RELAPSING REMITTING MULTIPLE SCLEROSIS: CT AND MRI IMAGING VS CLINICAL FINDINGIN THE DIAGNOSIS AND DETERMINATION OF DISEASE ACTIVITY. Details. ISSN: 1110-5607. AJOL African Journals Online. HOW TO USE AJOL... for Researchers ...

  2. Author Details

    African Journals Online (AJOL)

    Comarof, Jean. Vol 1999, No 3-4 (1999) - Articles Alien-Nation: Zombies, Immigrants and Millennial Capitalism Details. ISSN: 0850-8712. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact ...

  3. Author Details

    African Journals Online (AJOL)

    NENTY, N. JOHNSON. Vol 7, No 3 (2001) - Articles Common errors and perfomance of students in junior secondary mathematics certificate examinations in Cross River State, Nigeria Details PDF. ISSN: 1118-0579. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  4. Author Details

    African Journals Online (AJOL)

    A Preliminary Investigation of Relative Frequency of Undiagnosed and Previously Diagnosed Hypertension Before First Stroke in a Lagos Hospital Abstract · Vol 9, No 4 (1999) - Articles Localised tetanus in Lagos, Nigeria Details · Vol 9, No 4 (1999) - Articles Stroke with localised infarction of Wernicke's Area misdiagnosed ...

  5. Author Details

    African Journals Online (AJOL)

    SAMA, G. Vol 2 (2002): Supplement - Articles A Longitudinal Study of the Role of T Cell subset, Th1/Th2 cytokines and antiplasmodial antibodies in uncomplicated Malaria in a Village Population Chronically Exposed to Plasmodium falciparum Malaria. Details PDF · AJOL African Journals Online. HOW TO USE AJOL.

  6. Author Details

    African Journals Online (AJOL)

    QUAKYI, A.I.. Vol 2 (2002): Supplement - Articles A Longitudinal Study of the Role of T Cell subset, Th1/Th2 cytokines and antiplasmodial antibodies in uncomplicated Malaria in a Village Population Chronically Exposed to Plasmodium falciparum Malaria. Details PDF · AJOL African Journals Online. HOW TO USE AJOL.

  7. Author Details

    African Journals Online (AJOL)

    KOUONTCHOU, Samuel. Vol 2 (2002): Supplement - Articles Prevalence of Multiple Concomitant Intestinal Parasitic Infections in Simbok a Malaria Endemic Village in Cameroon. Details PDF · Vol 2 (2002): Supplement - Articles A Longitudinal Study of the Role of T Cell subset, Th1/Th2 cytokines and antiplasmodial ...

  8. Author Details

    African Journals Online (AJOL)

    ALAKE, J. Vol 2 (2002): Supplement - Articles A Longitudinal Study of the Role of T Cell subset, Th1/Th2 cytokines and antiplasmodial antibodies in uncomplicated Malaria in a Village Population Chronically Exposed to Plasmodium falciparum Malaria. Details PDF · AJOL African Journals Online. HOW TO USE AJOL.

  9. Author Details

    African Journals Online (AJOL)

    Rakotonirina, Alice. Vol 2, No 2 (2002) - Articles Effect of the decoction of rhizomes of Cyperus articulatus on bicuculline-, N-methyl-D-aspartate- and strychnine-induced behavioural excitation and convulsions in mice. Details PDF · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  10. Author Details

    African Journals Online (AJOL)

    Love, Alison. Vol 29, No 2 (2002) - Articles Policy-makers, the Press and Politics: Reporting a Public Policy Document Details. ISSN: 0379-0622. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use ...

  11. Author Details

    African Journals Online (AJOL)

    Focho, DA. Vol 2, No 1 (2002) - Articles Observations on the Meiotic Process in the African Pest Grasshopper Taphronota thaelephora Stal. (Orthoptera : Pyrgomorphidae) Details PDF · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  12. Author Details

    African Journals Online (AJOL)

    Idowu, OO. Vol 8, No 1 (2003) - Articles Evaluation of Different Substrates and Combinations on the Growth of Pleurotus pulmonarius (Fries) Quelet (Sajor-caju) Details. ISSN: 1118-2733. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  13. Author Details

    African Journals Online (AJOL)

    Ligthelm, A.A.. Vol 5, No 2 (2001) - Articles Community attitudes towards Casinos and the estimated magnitude of problem gambling The Mpumalanga case. Details PDF. ISSN: 1027-4332. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  14. Author Details

    African Journals Online (AJOL)

    Kioni, P N. Vol 9, No 1 (2007) - Articles Detailed structure of pipe flow with water hammer oscillations. Abstract. ISSN: 1561-7645. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL ...

  15. Author Details

    African Journals Online (AJOL)

    Development of a trap to contaminate variegated grasshoppers (Zonocerus variegatus L.) (Orthoptera: Pyrgomorphidae) with Metarrhyzium flavo-viride Gams & Rozsypal in the field. Details · Vol 40, No 1 (2007) - Articles Yam pests in the Ashanti and Brong Ahafo regions of Ghana: A study of farmers\\' indigenous technical ...

  16. Author Details

    African Journals Online (AJOL)

    Brown, Duncan. Vol 16, No 2 (2002): Continental Africans & the Question of Identity - Articles Environment and Identity: Douglas Livingstone's A Littoral Zone Details. ISSN: 0256-004. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  17. Author Details

    African Journals Online (AJOL)

    Aderinokun, GA. Vol 9, No 1 (1999) - Articles Relative Influence Of Sociodemographic Variables On Oral Health And Habits Of Some Nigerian School Children Abstract · Vol 9, No 4 (1999) - Articles Oral health services in Nigeria Details. ISSN: 0189-2657. AJOL African Journals Online. HOW TO USE AJOL.

  18. Author Details

    African Journals Online (AJOL)

    EKPA, O. D.. Vol 7, No 2 (2001) - Articles Variental differences AND polymorphism in palm oil: a case study of palm oils blended with coconut oil. Details PDF. ISSN: 1118-0579. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners ...

  19. Author Details

    African Journals Online (AJOL)

    SONUGA, F A. Vol 6, No 1 (2000) - Articles Geophysical investigation of Karkarku earthdam embankment. Details. ISSN: 1118-0579. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL ...

  20. Author Details

    African Journals Online (AJOL)

    Geotechnical properties of lateritic soil developed over quartz schist in Ishara area, south western Nigeria Details · Vol 44, No 1 (2008) - Articles Comparative study of the influence of cement and lime stabilization on geotechnical properties of lateritic soil derived from pegmatite in Ago-Iwoye area, southwestern Nigeria

  1. Author Details

    African Journals Online (AJOL)

    McCarthy, Greg. Vol 15, No 1 (2001): Media Freedom and Human Rights - Articles Caught between Empires: Ambivalence in Australian Films Details. ISSN: 0256-004. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and ...

  2. Author Details

    African Journals Online (AJOL)

    Legwaila, GM. Vol 12 (2003) - Articles Review of sweet sorghum: a potential cash and forage crop in Botswana Details. ISSN: 1021-0873. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact ...

  3. Author Details

    African Journals Online (AJOL)

    Admasu, Assefa. Vol 22, No 2 (1999) - Articles Preliminary evaluation of Phytomyza orobanchia (Diptera: Agromyzidae) as a controller of Orobanche spp in Ethiopia Details PDF. ISSN: 2520–7997. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL ...

  4. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Okeke, EO. Vol 10 (2006) - Articles Analysis of Stokes waves theory as a diffusion problem. Abstract · Vol 11 (2007) - Articles On the impact of wave-current on Stokes waves. Abstract. ISSN: 1116-4336. AJOL African ...

  5. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Obtaining the green's function for electromagnetic waves propagating in layered in-homogeneous thin film media of spherical particles on a substrate. Abstract · Vol 20, No 2 (2008) - Articles solution growth and ...

  6. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text ... Abstract · Vol 17 (2010) - Articles Investigating The Travelling Wave Solution For an SIR Endemic Disease Model With No Disease Related Death (When The Spatial Spread Of The Susceptible Is Not Negligible). Abstract.

  7. Author Details

    African Journals Online (AJOL)

    Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... Vol 8 (2004) - Articles Further on stokes expansions for the finite amplitude water waves. Abstract · Vol 11 (2007) - Articles On the effects of wave steepness on higher order Stokes waves. Abstract. ISSN: 1116-4336.

  8. Author Details

    African Journals Online (AJOL)

    Akum, ZE. Vol 1, No 3 (2001) - Articles Basic home range characteristics for the conservation of the African grey parrot in the Korup national park, Cameroon Details PDF · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms ...

  9. Author Details

    African Journals Online (AJOL)

    Bobcokono, Irene Yatabene. Vol 1, No 1 (2001) - Articles Utilisation du papier filtre dans la gestion de programme de lute contre le SIDA au Cameroun Details PDF · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and ...

  10. Author Details

    African Journals Online (AJOL)

    Lema, VM. Vol 80, No 9 (2003): - Articles Fournier's gangrene complicating vasectomy. Details PDF · Vol 86, No 6 (2009) - Articles Therapeutic misconception and clinical trials in sub-saharan Africa: A review. Abstract PDF · Vol 86, No 11 (2009) - Articles HIV/AIDS and pregnancy-related deaths in Blantyre, Malawi

  11. Author Details

    African Journals Online (AJOL)

    Green, J.M.. Vol 10, No 1 (2001) - Articles Information from Radio Telemetry on movements and exploitation of naturalized Rainbow trout, Oncorhynchus mykiss (Walbaum), in Kenya cold water streams. Details. ISSN: 0002-0036. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  12. Author Details

    African Journals Online (AJOL)

    Erasmus, GJ. Vol 1, No 1 (2001) - Articles Genetic parameter estimates for growth traits in purebred Gudali and two-breed synthetic Wakwa beef cattle in a tropical environment. Details PDF · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  13. Author Details

    African Journals Online (AJOL)

    Odigie, IP. Vol 10, No 4 (2000) - Articles High dose vitamin E administration attenuates hypertensin in 2-Kidney 1 Clip Goldblatt hypertensive rats. Details. ISSN: 0189-2657. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms ...

  14. Author Details

    African Journals Online (AJOL)

    Motabagani, MA. Vol 80, No 9 (2003): - Articles Anomalies of the renal, phrenic and suprarenal arteries: Case Report Details PDF · Vol 81, No 3 (2004): - Articles Morphological study of the uncommon rectus sterni muscle in German cadavers. Abstract PDF. ISSN: 0012-835X. AJOL African Journals Online. HOW TO USE ...

  15. Author Details

    African Journals Online (AJOL)

    Ibeabuchi, NM. Vol 10, No 3 (2000) - Articles Comparison of the effects of Methylsalicylate Cream with cryotherapy on delayed onset muscle soreness. Details · Vol 22, No 2 (2012) - Articles X-ray Pelvimetry And Labour Outcome In Term Pregnancy In A Rural Nigerian Population Abstract. ISSN: 0189-2657. AJOL African ...

  16. Author Details

    African Journals Online (AJOL)

    Warnorff, DK. Vol 13, No 4 (2001) - Articles Development of a scoring system for the diagnosis of tuberculous lymphadenitis. Details PDF. ISSN: 1995-7262. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions ...

  17. Design and operating experiences with 50MW steam generator

    International Nuclear Information System (INIS)

    Kawara, M.; Yamaki, H.; Kanamori, A.; Tanaka, K.; Takahashi, T.

    1975-01-01

    The main purpose of the 50 MW steam generator is to have experiences of manufacturing and operation with large scale steam generator including necessary research and development works which can be reflected on the design and fabrication of 'Monju' (Japan 300 MWe prototype LMFBR). The detailed design of the 50 MW steam, generator was begun on March, 1972 and succeeded in the demonstration of 72 hours continuous operation with full power on June, 1974. It has been successfully operated since then, the performances of which have been evaluated through various kinds of tests. In this paper, the following items are mainly discussed system design, thermal and hydraulic design, structure and fabrication and some experiences on testing operation including cleaning and sodium flushing of equipment, sodium level control system, the behavior of hydrogen detection system and general outlook of the performance. (author)

  18. Design and operating experiences with 50MW steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Kawara, M; Yamaki, H; Kanamori, A; Tanaka, K; Takahashi, T

    1975-07-01

    The main purpose of the 50 MW steam generator is to have experiences of manufacturing and operation with large scale steam generator including necessary research and development works which can be reflected on the design and fabrication of 'Monju' (Japan 300 MWe prototype LMFBR). The detailed design of the 50 MW steam, generator was begun on March, 1972 and succeeded in the demonstration of 72 hours continuous operation with full power on June, 1974. It has been successfully operated since then, the performances of which have been evaluated through various kinds of tests. In this paper, the following items are mainly discussed system design, thermal and hydraulic design, structure and fabrication and some experiences on testing operation including cleaning and sodium flushing of equipment, sodium level control system, the behavior of hydrogen detection system and general outlook of the performance. (author)

  19. Brief introduction to 60 MW CARR

    Energy Technology Data Exchange (ETDEWEB)

    Tonghua, Yang; Chuntang, Ye [China Inst. of Atomic Energy, Beijing BJ (China)

    1998-10-01

    CARR, a 60 MW reactor will be constructed at China Institute of Atomic Energy (CIAE). The reactor type, its safety features, core lay-out, fuel assemblies, main parameters designed, main applications of are briefly described. (author)

  20. 30 400 MW worldwide in early 2003

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Accounting for more than 74% of wind power output in the world, Europe is now more than ever the spearhead of the wind energy industry. First estimates for 2002 show a 6 000 MW progression that now places total world output around 30 400 MW, that is enough to electrify 17 million households. Nevertheless, although it's still growing at a remarkable speed, the rate of development for wind energy has slowed down for the first time in years. (authors)

  1. Academic detailing.

    Science.gov (United States)

    Shankar, P R; Jha, N; Piryani, R M; Bajracharya, O; Shrestha, R; Thapa, H S

    2010-01-01

    There are a number of sources available to prescribers to stay up to date about medicines. Prescribers in rural areas in developing countries however, may not able to access some of them. Interventions to improve prescribing can be educational, managerial, and regulatory or use a mix of strategies. Detailing by the pharmaceutical industry is widespread. Academic detailing (AD) has been classically seen as a form of continuing medical education in which a trained health professional such as a physician or pharmacist visits physicians in their offices to provide evidence-based information. Face-to-face sessions, preferably on an individual basis, clear educational and behavioural objectives, establishing credibility with respect to objectivity, stimulating physician interaction, use of concise graphic educational materials, highlighting key messages, and when possible, providing positive reinforcement of improved practices in follow-up visits can increase success of AD initiatives. AD is common in developed countries and certain examples have been cited in this review. In developing countries the authors have come across reports of AD in Pakistan, Sudan, Argentina and Uruguay, Bihar state in India, Zambia, Cuba, Indonesia and Mexico. AD had a consistent, small but potentially significant impact on prescribing practices. AD has much less resources at its command compared to the efforts by the industry. Steps have to be taken to formally start AD in Nepal and there may be specific hindering factors similar to those in other developing nations.

  2. 12MW Horns Rev experiment[Wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Pena, A; Mikkelsen, T.; Courtney, M.; Antoniou, I.; Gryning, S.-E.; Hansen, P. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark); Soerensen, P.B. [DONG Energy (Denmark)

    2007-10-15

    The 12MW project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting and operating the instruments on the transformer platform at Horns Rev were overcome by a close collaboration between DONG energy and Risoe National Laboratory DTU. The site is presented. In particular, three tall offshore meteorological masts, up to 70 m tall, provided a useful source of meteorological data for comparison to the remotely sensed wind and turbulence observations. The comparison showed high correlation. The LIDAR and SODAR wind and turbulence observations were collected far beyond the height of the masts (up to 160 m above sea level) and the extended profiles were compared to the logarithmic wind profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported. (au)

  3. Modeling and Simulation of a 12 MW Wind Farm

    Directory of Open Access Journals (Sweden)

    GROZA, V.

    2010-05-01

    Full Text Available The installation of wind turbines in power systems has developed rapidly through the last 20 years. In this paper a complete simulation model of a 6 x 2 MW wind turbines is presented using data from a wind farm installed in Denmark. A model of the wind turbine with cage-rotor induction generator is presented in details. A set of simulations are performed and they show that it is possible to simulate a complete wind farm from wind to the grid. The simulation tool can also be used to simulate bigger wind farms connected to the grid.

  4. Reliability-based inspection planning of 20MW offshore wind turbine jacket

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2018-01-01

    This paper presents the application of a risk and reliability based inspection planning framework (RBI) for the InnWind 20MW reference wind turbine jacket sub-structure. A detailed fracture mechanics based fatigue crack growth model is developed and used as basis to derive optimal inspection plans...

  5. Design Optimization of a 5 MW Floating Offshore Vertical-axis Wind Turbine

    NARCIS (Netherlands)

    Paulsen, Uwe Schmidt; Madsen, Helge Aagård; Hattel, Jesper Henri; Baran, Ismet; Nielsen, Per Hørlyck

    2013-01-01

    This paper outlines results of a proposed layout of a light 2-bladed rotor, with a driving torque constraint matching the generator design, and shows details of the pultruded blade – and rotor geometry. In comparison with the 1st baseline design of a 5 MW VAWT concept this present development

  6. Operating experiences with 1 MW steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Sano, A; Kanamori, A; Tsuchiya, T

    1975-07-01

    1 MW steam generator, which was planned as the first stage of steam generator development in Power Reactor and Nuclear Fuel Corp. (PNC) in Japan, is a single-unit, once-through, integrated shell and tube type with multi-helical coil tubes. It was completed in Oarai Engineering Center of PNC in March of 1971, and the various performance tests were carried out up to April, 1972. After the dismantle of the steam generator for structural inspection and material test, it was restored with some improvements. In this second 1 MW steam generator, small leak occurred twice during normal operation. After repairing the failure, the same kind of performance tests as the first steam generator were conducted in order to verify the thermal insulation effect of argon gas in downcomer zone from March to June, 1974. In this paper the above operating experiences were presented including the outline of some performance test results. (author)

  7. 1-MW klystron for fusion plasma heating

    International Nuclear Information System (INIS)

    Okamoto, Tadashi; Miyake, Setsuo; Ohno, Hiroaki

    1985-01-01

    A plasma test apparatus to bring about the critical plasma conditions for nuclear fusion is now under construction in Japan Atomic Energy Research Institute. Among various means of plasma heating, the most promising is the lower hybrid resonance heating (LHRF) in the 2-GHz region. Although it has so far requied 7 to 8 MW of microwave power for the plasma test apparatus, the new klystron, E3778, now constructed by Toshiba has the world's highest output power of 1 MW in the 2-GHz region. In addition to the excellent high-power operation for 10 seconds, the wide operating frequency range of 1.7 to 2.26 GHz by dint of sophisticated high-speed tuning mechanism, and the high durability to reflected power of up to 2.0 of VSWR are the high-lighted features of this klystron, which have never been achieved by conventional klystrons. (author)

  8. The Winfrith 9MW heat transfer rig

    International Nuclear Information System (INIS)

    Obertelli, J.D.

    1976-01-01

    The Winfrith 9MW Rig is used for studying heat transfer and flow resistance in a variety of test sections at system pressures up to 68 bar. The basic rig and its instrumentation are discussed together with the characteristics of the test section design. The rig has been used in studies involving the full scale simulation of Steam Generating Heavy Water (SGHW) fuel assemblies and the paper discusses the measurements made in this type of study. (author)

  9. 60-MW test using the 30-MW klystrons for the KEKB project

    Science.gov (United States)

    Fukuda, S.; Michizono, S.; Nakao, K.; Saito, Y.; Anami, S.

    1995-07-01

    The B-Factory is a future plan, requiring an energy upgrade of the KEK linac from 2.5 GeV to 8.0 GeV (KEKB Project). This paper describes the recent development of an S-band high-power pulse klystron to be used as the PF-linac rf-source of the B-Factory. This tube is a modified version of the existing 30-MW tube, which produces 51 MW at a 310 kV beam voltage by optimizing the focusing magnetic field. In order to increase the reliability, the cathode diameter, the gun housing, and the insulation ceramic-seal were enlarged. This tube was redesigned so as to have the same characteristics as the test results of 30-MW tubes at a higher applied voltage without changing the rf interaction region. Four prototype tubes have been manufactured; final test results showed that these new tubes produce an output power of more than 50 MW at 310 kV with an efficiency of 46%. Recently this tube has produced more than 60 MW at a 350 kV beam voltage for a demonstration test. A comparison between the FCI-code prediction and the test results is also given in this paper.

  10. Main: Clone Detail [KOME

    Lifescience Database Archive (English)

    Full Text Available Clone Detail Mapping Pseudomolecule data detail Detail information Mapping to the T...IGR japonica Pseudomolecules kome_mapping_pseudomolecule_data_detail.zip kome_mapping_pseudomolecule_data_detail ...

  11. 12MW: final report; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.; Pena, A.; Mikkelsen, T.; Gryning, S.-E.; Courtney, M.; Soerensen, Paul B. (DONG energy)

    2009-06-15

    '12MW: final report' is for the project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' that had the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st October 2005 and ended 31st March 2009. Firstly was conducted a 6-month experiment at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer platform. The observed data were successfully compared to offshore mast data and the wind profile was extended 100 m above previous levels observed in this offshore environment. The wind and turbulence was observed up to 160m above mean sea level. A new normalization was introduced to group the wind profiles into stability groups with variable roughness. Secondly two experiments were conducted at Hoevsoere at the North Sea coast in Jutland. Again the wind profile was extended far beyond previous observed levels, up to 300 m above ground. The analysis showed that the profiles extended far beyond the surface layer and therefore surface layer scale alone could not described the profiles well. In addition the boundary layer height has to be used for the scaling. The boundary layer height was observed by an aerosol lidar at Hoevsoere. The results are published widely, please see the list of publications. (au)

  12. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  13. Multilevel converters for 10 MW Wind Turbines

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2011-01-01

    Several promising multi-level converter configurations for 10 MW Wind Turbines both with direct drive and one-stage gear box drive using Permanent Magnet Synchronous Generator (PMSG) are proposed, designed and compared. Reliability is a crucial indicator for large scale wind power converters...... that the three-level and five-level H-bridge converter topologies both have potential to achieve improved thermal performances compared to the three-level Neutral-Point-Clamped converter topology in the wind power application....

  14. 34 GHz, 45 MW pulsed magnicon

    International Nuclear Information System (INIS)

    Nezhevenko, Oleg A.; LaPointe, Michael A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Serdobintsev, Gennady V.; Kuznetsov, Gennady I.; Persov, Boris Z.; Fix, Alexander

    2002-01-01

    A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. The tube is designed to provide a peak output power of ∼45 MW in a 1 microsecond pulse, with a gain of 55 dB, using a 500 kV, 220 A, 1 mm-diameter electron beam. The status of the tube itself as well as the near-term experimental program is presented

  15. A five MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Zhang Dafang; Don Duo; Su Quingshan

    1997-01-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy and Technology (INET) and has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection, and environmental impacts and so on, were also obtained at the same time. All of these demonstrate that the design of NHR-5 is successful. (author)

  16. PLC control of 50 MW klystron modulators

    International Nuclear Information System (INIS)

    Shang Lei; Liu Gongfa; Chen Liping; Lu Yeming; Hong Jun; Zhang Yi; Zhao Feng

    2004-01-01

    Upgrade project of the 50 MW klystron modulators of Hefei Light Source (HLS) was firstly introduced. PLC control system of modulators was employed to replace the old control and monitor system, which was based on relay logic circuit and manual operation method. the PLC system becomes a sub system of the new EPICS control system of HLS. Constant-current, switch-mode and high voltage power supplies were adopted to replace the old 50 Hz power supplies. The technology of modulators was improved and operation was more reliable. The design method, hardware and software of PLC control of modulators were described and the performance was presented. (authors)

  17. GE will finance 614-MW cogeneration plant

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  18. Aeroelastic Optimization of MW Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Zahle, Frederik

    This report contains the results from the Energy Development and Demonstration Project “Aeroelastic Optimization of MW wind turbine” (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beamelement forHAWC2 2. Closed-loop eigenvalue analysis...... of controlled wind turbines 3. Resonant wave excitation of lateral tower bending modes 4. Development of next generation aerodynamic design tools 5. Advanced design and verification of airfoils The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given...

  19. Operating experience with 600 MW steam turbosets

    International Nuclear Information System (INIS)

    Tinapp, J.

    1978-01-01

    The turbosets of the 600 MW line are machines with 4 casing, with a single-flow high-pressure turbine, a double-flow MD part, and two double-flow low-pressure turbines. The common design of all BBC turbosets of this size is explained, with a few remarks on the typical constructional features of BBC technology. The plant has a mean availability of 96% and a mean forced shutdown rate of 1.2%. A table gives a survey of the start-up procedure and the operating results so far. (GL) [de

  20. Extrapolation of the Dutch 1 MW tunable free electron maser to a 5 MW ECRH source

    International Nuclear Information System (INIS)

    Caplan, M.; Nelson, S.; Kamin, G.; Antonsen, T. Levush, B.; Urbanus, W.; Tulupov, A.

    1995-01-01

    A Free Electron Maser (FEM) is now under construction at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz with wall plug efficiencies of 50% (Verhoeven, et al EC-9 Conference). An extrapolated version of this device is proposed which by scaling up the beam current, would produce microwave power levels of up to 5 MW CW in order to reduce the cost per watt and increase the power per module, thus providing the fusion community with a practical ECRH source

  1. Design of a 2.5MW(e) biomass gasification power generation module

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, R.

    2000-07-01

    The purpose of this contract was to produce a detailed process and mechanical design of a gasification and gas clean up system for a 2.5MW(e) power generation module based on the generation of electrical power from a wood chip feed stock. The design is to enable the detailed economic evaluation of the process and to verify the technical performance data provided by the pilot plant programme. Detailed process and equipment design also assists in the speed at which the technology can be implemented into a demonstration project. (author)

  2. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    Science.gov (United States)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  3. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  4. 5 MW pulsed spallation neutron source, Preconceptual design study

    International Nuclear Information System (INIS)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in ∼ 1 μsec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs

  5. TG 220 MW hydraulic control system diagnostics

    International Nuclear Information System (INIS)

    Svabcik, A.

    1996-01-01

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  6. TG 220 MW hydraulic control system diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Svabcik, A [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer`s factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs.

  7. Maintenance of French 900 MW PWR plants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This paper presents the doctrine and the aims of maintenance of EDF in the next few years. With an average age of 3.5 years, France's 900 MW PWRs, which now total 31, have overcome their growing pains. During the next few years EDF is aiming for a sharp increase in the availability factor of these plants which make up most of its nuclear thermal capacity, a reduction in the number of emergency outages, as great a cut back as possible in the period of programmed outages and the bringing down of the doses received by staff to the lowest possible level. Eventually the idea is to extend the operating life of plants as much as possible, perhaps to 40 or 50 years [fr

  8. Aeroelastic optimization of MW wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Zahle, F.

    2011-12-15

    This report contains the results from the Energy Development and Demonstration Project ''Aeroelastic Optimization of MW wind turbine'' (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beam element for HAWC2. 2. Closed-loop eigenvalue analysis of controlled wind turbines. 3. Resonant wave excitation of lateral tower bending modes. 4. Development of next generation aerodynamic design tools. 5. Advanced design and verification of airfoils. The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given in Section 2. Thereafter, the results from each Work Package are described in eight subsequent chapters. (Author)

  9. Cost comparison of 4x500 MW coal-fuelled and 4x850 MW CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Costa, M.

    1981-01-01

    The lifetime costs for a 4x850 MW CANDU generating station are compared to those for 4x500 MW bituminous coal-fuelled generating stations. Two types of coal-fuelled stations are considered; one burning U.S. coal which includes flue gas desulfurization and one burning Western Canadian coal. Current estimates for the capital costs, operation and maintenance costs, fuel costs, decommissioning costs and irradiated fuel management costs are shown. The results show: (1) The accumulated discounted costs of nuclear generation, although initially higher, are lower than coal-fuelled generation after two or three years. (2) Fuel costs provide the major contribution to the total lifetime costs for coal-fuelled stations whereas capital costs are the major item for the nuclear station. (3) The break even lifetime capacity factor between nuclear and U.S. coal-fuelled generation is projected to be 5%; that for nuclear and Canadian coal-fuelled generation is projected to be 9%. (4) Large variations in the costs are required before the cost advantage of nuclear generation is lost. (5) Comparison with previous results shows that the nuclear alternative has a greater cost advantage in the current assessment. (6) The total unit energy cost remains approximately constant throughout the station life for nuclear generation while that for coal-fuelled generation increases significantly due to escalating fuel costs. The 1978 and 1979 actual total unit energy cost to the consumer for several Ontario Hydro stations are detailed, and projected total unit energy costs for several Ontario Hydro stations are shown in terms of escalated dollars and in 1980 constant dollars

  10. Control design and performance analysis of a 6 MW wind turbine-generator

    Science.gov (United States)

    Murdoch, A.; Winkelman, J. R.; Javid, S. H.; Barton, R. S.

    1983-01-01

    This paper discusses an approach to the modeling and performance for the preliminary design phase of a large (6.2 MW) horizontal axis wind turbine generator (WTG). Two control philosophies are presented, both of which are based on linearized models of the WT mechanical and electrical systems. The control designs are compared by showing the performance through detailed non-linear time simulation. The disturbances considered are wind gusts, and electrical faults near the WT terminals.

  11. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  12. Leakage experiences with 1 MW steam generator

    International Nuclear Information System (INIS)

    Kanamori, A.; Kawara, M.; Sano, A.

    1975-01-01

    An 1 MW steam generator was tested from October, 1971 and completed with the first series of experiments by May, 1972 after 3600 hours of operation. During these tests, unextraordinary heat absorption was experienced in the downcomer region, which led to shortage of heat transfer area to attain the rated steam temperature and to one of the reasons of flow instabilities. The steam generator was disassembled to get test pieces for structure as well as material examinations and then it was reassembled to proceed the second series of tests. Before it was done, a modification was provided to insulate the downcomer region by putting a gas space around the downcomer tube. The gas space was provided by a dual tube and spacers were welded on the inner tube and an end plate was welded on upper parts between the two to seal the gap by means of fillet welding. After the modified steam generator was put into operation, water happened to leak into a sodium side two times through these additional welding spots for the gas insulation. This paper presents operating conditions and behaviors of monitors at the time of the leakages, identifications of leaked spots, an evaluation of causes and a treatment or a precaution for them

  13. Pre-feasibility study of 80mw onshore wind farm

    International Nuclear Information System (INIS)

    Almas, M.S.

    2014-01-01

    This paper discusses a pre-feasibility study of 80MW onshore wind farm in the KPK (Khyber Pakhtunkhwa) province previously known as NWFP (North West Frontier) Province of Pakistan. The realistic data of wind speed is collected from Laboratory of Meteorology and Climatology (University of the Punjab) to study the feasibility of wind farm. Detailed analysis of wind turbines from four different manufacturers is carried out together with justifications of selecting a particular wind turbine. Issues related to site selection, wind farm civil foundation, recommendations for a particular choice of tower along with environmental effects are presented. Wind data analysis is carried out by using WINDROSE PRO software to determine the resultant direction of wind at the selected site for wind farm layout. The wind distribution at hub height of the wind turbine is calculated and is used to compute annual power production by the wind farm using power curves of the wind turbine. Electrical network integration issues of wind farm to the external grid are studied and the optimum point of connection is proposed. Finally, economic analysis of the whole wind farm project depending upon the LCC (Life Cycle Cost Analysis) is presented and the feasibility of the project from the investor's point of view is identified. The study concludes that the cost per kilowatt hour of electricity generated by this wind power plant will be 10.4 PKR/kWh and the payback period for the whole project is about 11.2 years. (author)

  14. Feasibility study of a 1-MW pulsed spallation source

    International Nuclear Information System (INIS)

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-01-01

    A feasibility study of a 1-MW pulsed spallation source based on a rapidly cycling proton synchrotron (RCS) has been completed. The facility consists of a 400-MeV HP - linac, a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV, and two neutron-generating target stations. The design time-averaged current of the accelerator system is 0.5 mA, or 1.04x1014 protons per pulse. The linac system consists of an H - ion source, a 2-MeV RFQ, a 70-MeV DTL and a 330-MeV CCL. Transverse phase space painting to achieve a Kapchinskij-Vladimirskij (K-V) distribution of the injected particles in the RCS is accomplished by charge exchange injection and programming of the closed orbit during injection. The synchrotron lattice uses FODO cells of ∼90 degrees phase advance. Dispersion-free straight sections are obtained by using a missing magnet scheme. Synchrotron magnets are powered by a dual-frequency resonant circuit that excites the magnets at a 20-Hz rate and de-excites them at a 60-Hz rate, resulting in an effective rate of 30 Hz, and reducing the required peak rf voltage by 1/3. A key feature, of the design of this accelerator system is that beam losses are from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented

  15. Pre-Feasibility Study of 80MW Onshore Wind Farm

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib Almas

    2014-10-01

    Full Text Available This paper discusses a pre-feasibility study of 80MW onshore wind farm in the KPK (Khyber Pakhtunkhwa province previously known as NWFP (North West Frontier Province of Pakistan. The realistic data of wind speed is collected from Laboratory of Meteorology & Climatology (University of the Punjab to study the feasibility of wind farm. Detailed analysis of wind turbines from four different manufacturers is carried out together with justifications of selecting a particular wind turbine. Issues related to site selection, wind farm civil foundation, recommendations for a particular choice of tower along with environmental effects are presented. Wind data analysis is carried out by using WINDROSE PRO software to determine the resultant direction of wind at the selected site for wind farm layout. The wind distribution at hub height of the wind turbine is calculated and is used to compute annual power production by the wind farm using power curves of the wind turbine. Electrical network integration issues of wind farm to the external grid are studied and the optimum point of connection is proposed. Finally, economic analysis of the whole wind farm project depending upon the LCC (Life Cycle Cost Analysis is presented and the feasibility of the project from the investor?s point of view is identified. The study concludes that the cost per kilowatt hour of electricity generated by this wind power plant will be 10.4 PKR/kWh and the payback period for the whole project is about 11.2 years

  16. The DIII-D 3 MW, 110 GHz ECH System

    International Nuclear Information System (INIS)

    Callis, R.W.; Lohr, J.; Ponce, D.; O'Neill, R.C.; Prater, R.; Luce, T.C.

    1999-01-01

    Three 110 GHz gyrotrons with nominal output power of 1 MW each have been installed and are operational on the DIII-D tokamak. One gyrotron is built by Gycom and has a nominal rating of 1 MW and a 2 s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled Boron Nitride window. The second and third gyrotrons were built by Communications and Power Industries (CPI). The first CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8 s at 1 MW, 2s at 0.5 MW and 10s at 0.35 MW. The second CPI gyrotron, utilizes a single disc chemical-vapor-deposition diamond window, that employs water cooling around the edge of the disc. Calculation predict that the diamond window should be capable of full 1 MW cw operation. All gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HEl 1 mode. Each waveguide system incorporates a two mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma. Central current drive experiments with the two gyrotrons with 1.5 MW of injected power drove about 0.17 MA. Results from using the three gyrotron systems will be reported as well as the plans to upgrade the system to 6 MW

  17. Processes subject to integrated pollution control. Combustion processes: reheat and heat treatment furnaces 50 MW(th) and over

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, focuses on combustion processes involved with reheat and heat treatment furnaces of 50 MW (th) and over. Techniques for controlling releases into air, water and to land are detailed as are the various pollution monitoring strategies. (UK)

  18. EURISOL-DS Multi-MW Target Neutronic Calculations for the Baseline Configuration of the Multi-MW Target

    CERN Document Server

    Herrera-Martínez, A

    2006-01-01

    This document summarises the study performed within the Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS) [1] to design the Multi-MW proton-to-neutron converter. A preliminary study [2] was carried out in order to understand the nature of the interactions taking place in the proton-to-neutron converter and their impact on the design of the facility. Namely, the target dimensions and material composition, type of incident particle, its energy and the beam profile were analysed in the aforementioned technical note, and their optimum values were suggested in the conclusions. The present work is based on the results of the previous study and uses the same methodology, namely Monte Carlo simulations with FLUKA [3]. This note describes the performance of a Hg target design and addresses more detailed issues, such as the composition of the fission target and use of a neutron reflector. It also attempts to integrate those components together and estimate the wh...

  19. HPP Boshkov Most - upgrading of the design installed capacity from 45 MW to 70 MW

    International Nuclear Information System (INIS)

    Pavleski, Vlatko; Jakimova Filipovska, Nevenka; Ivanova-Davidovicj, Jasna

    2007-01-01

    HPP Boshkov Most location will be near the town of Debar, accessible from Mavrovo-Debar road. This procject involves the tributaries that combine to make up the Mala Reka, the biggest tributary to Radika river. The watershed area is characterized as having high mountains and rich watercourses, without major settlements. The hydro system consists of: The Tresonche reservoir with 44 m high dam, with an intake to head race tunnel, also additional intakes linked by a system siphons, covered channels collect the waters from high mountains and deliver their flow to the head race tunnel. The head race tunnel ends with surge shaft and penstocks to the powerhouse. In this paper will be given differences between the Main Design prepared by HEP - Skopje in 1983, where the installed capacity is 45 MW and feasibility Study prepared by Pall C. Rizzo Ass., where installed capacity is suggested to be 70 MW, thru enlarged nominal discharge - from 14 m 3 /s to 22 m 3 /s. (Author)

  20. The new 6 MW industrial gas turbine from MAN; Die neue 6 MW Industriegasturbine von MAN

    Energy Technology Data Exchange (ETDEWEB)

    Beukenberg, M.; Wiedermann, A.; Orth, U.; Aschenbruck, E.; Reiss, F. [MAN Diesel und Turbo SE, Oberhausen (Germany)

    2010-07-01

    The development of a completely new series of gas turbines requires significant capital, resources and know-how. MAN Diesel and Turbo strategically decided to create a small gas turbine in the 6 MW-class. The construction of the Gas Turbine has been on the basis of opportunities in current and future markets and the positioning of the competition, this has determined the characteristics and technical parameters which have been optimised in the 6 MW design. The construction uses extremely high precision engineering so that the assembly of sub-components to modules is a smooth flowing process and can guarantee the high standards both quality and performance which MAN Diesel and Turbo are operating to. The individual components must be tested and thoroughly validated many months before actual assembly of the first machine. These include in particular the compressor of the gas turbine and the combustion chamber. The combustion system required special attention, since the emissions are strongly focused to satisfy stringent environmental requirements. The planned tests are a prerequisite for the construction of such a prototype and must be successfully completed before the Gas Turbine will be accepted into service. (orig.)

  1. Stein industrie moisture separator reheaters in 900 MW and 1300 MW PWR units behaviour and feedback

    International Nuclear Information System (INIS)

    Guignard, S.; Gabrel, J.; Marceau, J.; Gauchet, J.P.

    1990-01-01

    Various metallurgical investigations were carried out with a view to making technological modifications to the Stein Industrie designed moisture separator reheaters of the 900 MW CP0/CP1 and 1300 MW P4/P'4 plant series. Dismantling and assessment of four reheater bundles from the CP0/CP1 plants revealed tube leaks at the bends and in the straight part of the bundle due chiefly to erosion-corrosion. In addition, thickness losses due to the same phenomenon were observed on the inner walls of the vessels and internal hardware in contact with wet steam. The assessments and inspections carried out in the field on the MSR bundles of the CP0 and CP1 plants confirmed the presence of erosion-corrosion, virtually stabilized to date, and revealed fouling of bends by sequestration of particles in the circuit with presence of some pitting. Fatigue cracking of the last support plate of certain MSRs of the CP0 series was also revealed. Adoption of finned tubes of 18% chrome ferritic stainless steel (Z 2 CT 18) for spare bundles and new MSRs, protection of vessels by austenitic and/or martensitic stainless steel internal hardware, modification of water conditioning in the steam-water circuit, and implementation of some technological modifications should guarantee the longterm resistance of the MSRs [fr

  2. HPP Boshkov Most - upgrading the designed installed capacity from 45 MW to 70 MW

    International Nuclear Information System (INIS)

    Pavleski, Vlatko; Jakimova-Filipovska, Nevenka; Ivanova-Davidovikj, Jasna

    2004-01-01

    HPP Boskov Most location will be near the town of Debar, accessible from the Mavrovo-Debar road. This Project involves the tributaries that combine to make tip the Mala Reka, the biggest tributary to Radika river. The watershed area is characterized as having high mountains and rich watercourses, without major settlements. The hydro system consists of: The Tresonce Reservoir with 44 m high dam, with an intake to a head race tunnel, also additional intakes linked by a system of siphons, covered channels collect the waters from high mountains and deliver their flow to the head- race tunnel. The head race tunnel ends with surge shaft and pen stock to the powerhouse. In this paper will be given differences between the Main Design prepared by HEP - Skopje in 1983, where the installed capacity is 45 MW and Feasibility Study prepared by Paul C. Rizzo Ass., where installed capacity is suggested to be 70 MW through enlarged nominal discharge - from 14 m 3 /s to 22 m 3 /s. (Author)

  3. RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2017-11-01

    In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.

  4. A target-moderator-reflector concept of the JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jyunichi; Oyama, Yukio

    1998-03-01

    In Japan Atomic Energy Research Institute the construction of a 5 MW (short) pulsed spallation neutron source is under planning using a projected high power superconducting proton (or H - ) linac of 8 MW in total beam power. In the present paper we report our consideration on target-moderator-reflector concept, based on the layout of the tentative neutron instruments for the assumed neutron scattering experiments in future. The choice of cold neutron moderators for high resolution and high intensity experiments, thermal and epithermal neutron moderators for high resolution uses was discussed and a reference layout of target-moderator-reflector system was proposed for detailed neutronic calculation and optimization. The proposed system was designed like that it can provide, at least, 30 beam lines for more than 40 instruments. (author)

  5. Wooden houses in detail. Holzhaeuser im Detail

    Energy Technology Data Exchange (ETDEWEB)

    Ruske, W. (ed.)

    1986-01-01

    Under the serial title 'Planning and construction of wooden houses', WEKA will publish a number of books of which this is the first. Details of design and construction are presented, e.g.: Details of modern one-family houses; Fundamentals of design and hints for planning of wooden houses and compact wooden structures; Constructional ecology, wood protection, thermal insulation, sound insulation; Modular systems for domestic buildings; The 'bookshelf-type' house at the Berlin International Construction Exhibition (IBA); Experience with do-it-yourself systems. With 439 figs.

  6. Construction, completion, and testing of replacement monitoring wells MW 3-2, MW 6-2, MW 7-2, and MW 11-2, Mountain Home Air Force Base, Idaho, February through April 2000

    Science.gov (United States)

    Parliman, D.J.

    2000-01-01

    In February and March 2000, the U.S. Geological Survey Western Regional Research Drilling Operation constructed replacement monitoring wells MW 3–2, MW 6–2, MW 7–2, and MW 11–2 as part of a regional ground-water monitor- ing network for the Mountain Home Air Force Base, Elmore County, Idaho. Total well depths ranged from 435.5 to 456.5 feet, and initial depth-to-water measurements ranged from about 350 to 375 feet below land surface. After completion, wells were pumped and onsite measurements were made of water temperature, specific conductance, pH, and dissolved oxygen. At each well, natural gamma, spontaneous potential, resistivity, caliper, and temperature logs were obtained from instruments placed in open boreholes. A three- dimensional borehole flow analysis was completed for MW 3–2 and MW 11–2, and a video log was obtained for MW 11–2 to annotate lithology and note wet zones in the borehole above saturated rock.

  7. Structural Optimization of an Innovative 10 MW Wind Turbine Nacelle

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand; Stehouwer, Ewoud

    2015-01-01

    For large wind turbine configurations of 10 MW and higher capacities, direct-drives present a more compact solution over conventional geared drivetrains. Further, if the generator is placed in front of the wind turbine rotor, a compact “king-pin” drive is designed, that allows the generator...... to be directly coupled to the hub. In presented study, the structural re-design of the innovative 10 MW nacelle was made using extreme loads obtained from a 10 MW reference wind turbine. On the basis of extreme loads the ultimate stresses on critical nacelle components were determined to ensure integrity...

  8. NOK's 1 MW solar chain - Standardised data for the period 1992 - 2000; 1-MW-Solarkette der NOK. Normierte Daten 1992 - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Roth, S.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of detailed measurements and analyses made for the assessment of the long-term operational behaviour of grid-connected photovoltaic (PV) systems. The data from eight different PV installations with powers ranging from 2.5 to 100 kW{sub p}, mounted on roofs, facades and even on trackers, that were collected between 1992 and 2000 are presented. All energy and performance values are standardised to the guidelines of the European Solar Test Installation (ESTI) in Ispra, Italy. The report contains all detailed data for all the PV plant monitored within the framework of the 1 MW Solar Chain project. In order to secure continuity of the monitoring during the whole lifetimes of the installations, the author suggests the launching of a follow-up measurement project.

  9. Curvas de arranque de unidades de 100 MW // Starting Graphs of generating units of 100 MW.

    Directory of Open Access Journals (Sweden)

    J. L. Rodríguez Olivera

    2000-03-01

    Full Text Available Se exponen las principales consideraciones para los arranques de las unidades de 100 MW en función del estado térmico yse establecen modelos de comportamiento de los principales parámetros a partir de cualquier estado térmico inicial. Paraello se parte de los métodos establecidos en las instrucciones de explotación vigentes y de las curvas de arranques delfabricante. Los modelos de variación de los parámetros fundamentales permiten obtener las curvas de arranque de estasunidades para cualquier estado térmico inicial, lo que reporta una disminución en los tiempos de puesta en servicio, ahorrode combustible en los arranques, el control y evaluación de los arranques y una mayor seguridad durante la explotación delas unidades. Se presenta un software para la obtención de estos gráficos y toda la información de los arranques.Palabras claves: Gráficos de arranque, unidades térmicas, turbinas de vapor.____________________________________________________________________________AbstractThe principal considerations for the starting of the 100 MW units are exposed in function of thermal state and behavior modelsare established of principal parameters from any thermal initial state are established.The work is based on the performance instructions of stablished methods and starting graphs supply by the manufacturer. Thevariation models of fundamental parameters allow us to obtain the base curves of these units for any thermal initial state. Alsoallow: a diminution in the set times of put on line, saving fuel, evaluation and control of the starting stage and a great securityduring the service of these generating units. A software that allowed to obtain all the starting information and the suitablegraphs is exposed.Key words: Starting graphs, thermal generating units, steam turbine, power plants.

  10. IHEP S-band 45 MW pulse power klystron development

    International Nuclear Information System (INIS)

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  11. Changes in 900 MW PWR alarm processing policy

    Energy Technology Data Exchange (ETDEWEB)

    Pont, M [Electricite de France, Generation and Transmission, Nuclear Power Plant Operations, Paris (France)

    1997-09-01

    Following a brief description of the current 900 MW PWR alarm processing system, this document presents the feasibility study carried out within the scope of the Instrumentation and Control Refurbishment project (R2C). (author). 4 figs, tabs.

  12. Changes in 900 MW PWR alarm processing policy

    International Nuclear Information System (INIS)

    Pont, M.

    1997-01-01

    Following a brief description of the current 900 MW PWR alarm processing system, this document presents the feasibility study carried out within the scope of the Instrumentation and Control Refurbishment project (R2C). (author). 4 figs, tabs

  13. Thermal-hydraulic design of the 200 MW NHR

    International Nuclear Information System (INIS)

    Li Jincai; Gao Zuying; Xu Baocheng; He Junxiao

    1997-01-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs

  14. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders

    2012-01-01

    design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated......This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  15. Thermal-hydraulic design of the 200 MW NHR

    Energy Technology Data Exchange (ETDEWEB)

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs.

  16. The 140 GHZ, 1 MW Gyrotron - Status and Recent Results

    Science.gov (United States)

    Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Piosczyk, B.; Schmid, M.; Thumm, M.; Braune, H.; Erckmann, V.; Laqua, H. P.; Michel, G.; Kasparek, W.; Lechte, C.; Legrand, F.; Lievin, C.; Prinz, O.

    2009-04-01

    A 10 MW ECRH system is currently under construction for the stellarator W7-X which will be built up and operated by IPP in Greifswald, Germany. The present status of the complete system is reported in [1]. The RF power will be provided by 10 gyrotrons. A European collaboration has been established to develop and build the 10 gyrotrons each with an output power of 1 MW for continuous wave (CW) operation [2]. Nine gyrotrons are being manufactured by Thales Electron Devices (TED), Vélizy, France, one gyrotron was produced by CPI, Palo Alto, CA and passed the acceptance tests at IPP. The acceptance tests of the TED gyrotrons are performed at the test stand at FZK and on site at IPP. The first series tube yielded a total output power of 0.98 MW, with an efficiency of 31 % (without a single stage depressed collector) in short pulse operation and of 0.92 MW in pulses of 1800 s (efficiency of almost 45 % at a depression voltage of 29 kV) [3], The Gaussian mode output power was 0.91 MW. The RF power, measured in a calorimetric load at the end of a 25 m long quasi-optical transmission line with seven mirrors, was 0.87 MW. In this contribution typical results of the next series gyrotrons will be reported.

  17. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    Science.gov (United States)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  18. Some results of the 50 MW straight tube steam generator test in the TNO 50 MW SCTF at Hengelo

    International Nuclear Information System (INIS)

    Ludwig, P.W.P.H.; Hus, B.M.

    1975-01-01

    A prototype 50 MW straight tube steam generator has been tested during more than 3000 hours under operating conditions. The steady state, transient and stability behaviour were tested. The most remarkable results of the experiments are given. (author)

  19. Some results of the 50 MW straight tube steam generator test in the TNO 50 MW SCTF at Hengelo

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, P W.P.H.; Hus, B M

    1975-07-01

    A prototype 50 MW straight tube steam generator has been tested during more than 3000 hours under operating conditions. The steady state, transient and stability behaviour were tested. The most remarkable results of the experiments are given. (author)

  20. Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Ziying Yu

    2018-03-01

    Full Text Available The wind turbine wakes impact the efficiency and lifespan of the wind farm. Therefore, to improve the wind plant performance, research on wind plant control is essential. The actuator line model (ALM is proposed to simulate the wind turbine efficiently. This research investigates the National Renewable Energy Laboratory 5 Million Watts (NREL 5-MW wind turbine wakes with Open Field Operation and Manipulation (OpenFOAM using ALM. Firstly, a single NREL 5-MW turbine is simulated. The comparison of the power and thrust with Fatigue, Aerodynamics, Structures, and Turbulence (FAST shows a good agreement below the rated wind speed. The information relating to wind turbine wakes is given in detail. The top working status is proved at the wind speed of 8 m/s and the downstream distance of more than 5 rotor diameters (5D. Secondly, another case with two NREL 5-MW wind turbines aligned is also carried out, in which 7D is validated as the optimum distance between the two turbines. The result also shows that the upstream wind turbine has an obvious influence on the downstream one.

  1. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  2. Modelling the economic impacts of 500 MW of wave power in Ireland

    International Nuclear Information System (INIS)

    Deane, J.P.; Dalton, G.; Ó Gallachóir, B.P.

    2012-01-01

    This paper investigates the impacts of including 500 MW of wave power into Ireland’s electricity generation portfolio in the year 2020. One year of detailed market simulations are undertaken to determine the impact on wholesale electricity prices, system operation costs and CO 2 emissions with and without this installed wave power under a number carbon prices assumptions. In both scenarios (with and without wave energy), Ireland’s installed renewable capacity is fixed such that 40% of Ireland’s electricity in 2020 is from renewable source. The likely revenue a wave energy device would earn in the market is also investigated and compared with what is required to achieve 500 MW installed capacity. It is shown that in general the inclusion of wave energy has a negligible effect on wholesale electricity prices, reduces total system cost in Ireland and can increase CO 2 emissions on the island of Ireland under certain carbon price assumptions. It is also shown the current REFIT for wave energy is adequate. - Highlights: ► We modelled the Irish Electricity Market in 2020 with and without 500 MW of wave energy. ► The inclusion of wave energy did not have a significant impact on system marginal prices. ► The inclusion of wave energy reduced total costs in the system relative to a wind only scenario. ► REFIT tariff remains an essential financial support for the nascent wave energy industry.

  3. Investigation of fuel lean reburning process in a 1.5 MW boiler

    International Nuclear Information System (INIS)

    Kim, Hak Young; Baek, Seung Wook; Kim, Se Won

    2012-01-01

    Highlights: → We examine a detailed study of fuel lean reburning process in a 1.5 MW gas-fired boiler. → Experimental and numerical researches are conducted. → We investigate change in the level of NO X and CO emission. → The recirculation flow is important in the fuel lean reburning process. -- Abstract: This paper examines a detailed study of fuel lean reburning process applied to a 1.5 MW gas-fired boiler. Experimental and numerical studies were carried out to investigate the effect of the fuel lean reburning process on the NO X reduction and CO emission. Natural gas (CH 4 ) was used as the reburn as well as the main fuel. The amount of the reburn fuel, injection location and thermal load of boiler were considered as experimental parameters. The flue gas data revealed that the fuel lean reburning process led to NO X reduction up to 43%, while CO emission was limited to less than 30 ppm for the 100% thermal load condition. The commercial computational fluid dynamics code FLUENT 6.3, which included turbulence, chemical reaction, radiation and NO modeling, was used to predict the fluid flow and heat transfer characteristics under various operational conditions in the boiler. Subsequently, predicted results were validated with available measured data such as gas temperature distributions and local mean NO X concentrations. The detailed numerical results showed that the recirculation flow developed inside the boiler was found to play an important role in improving the effectiveness of fuel lean reburning process.

  4. Optimization of deterministic based design of the PWR 1000 MW by aid of PSA

    International Nuclear Information System (INIS)

    Feigel, A.; Fabian, H.

    1987-01-01

    PSA was used to optimize the determinstic based design of the PWR 1000 MW. For this three reference accidents which are known to be the covering ones from previous valuations were investigated in detail. On basis of these accidents the integral core damage frequency has been estimated to be about 2 E-5/a. This result reflects a sufficient safety level and thus the quality of the requirement which has to be used for the design. Nevertheless the influence of some plant modifications was estimated in addition. It shows that especially the consideration of a modul with a diverse power generator results in a more balanced design on an increased safety level. (orig.)

  5. Data acquisition system for the 3 MW TRIGA reactor at AERE Savar

    International Nuclear Information System (INIS)

    Abudl Ahad, A.O.M.

    1998-01-01

    A 3 MW TRIGA Mark II research reactor control console has been studied in detail and the channels have been selected for monitoring, display and record using the microcomputer. Information from these channels are fed to the computer through hardware like buffer, AD converter, multiplexer, etc. for continues display and permanent records using video monitor, printer and diskettes. Besides, the information from the console, other information like operating time, power, total burnup of fuel, operating persons, etc. are also available, with very little modifications in both hardware and software, the data logging system is now running successfully. (author)

  6. Latest Results in SLAC 75-MW PPM Klystrons

    International Nuclear Information System (INIS)

    Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.

    2006-01-01

    75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed

  7. A 2 MW, CW, 170 GHz gyrotron for ITER

    International Nuclear Information System (INIS)

    Piosczyk, B.; Arnold, A.; Alberti, S.

    2003-01-01

    A 140 GHz gyrotron for CW operation is under development for the stellarator W7-X. With a prototype tube a microwave output power of about 0.9 MW has been obtained in pulses up to 180 s, limited by the capability of the high voltage power supply. The development work on coaxial cavity gyrotrons has demonstrated the feasibility of manufacturing of a 2 MW, CW 170 GHz tube that could be used for ITER. The problems specific to the coaxial arrangement have been investigated and all relevant information needed for an industrial realization of a coaxial gyrotron have been obtained in short pulse experiments (up to 17 ms). The suitability of critical components for a 2 MW, CW coaxial gyrotron has been studied and a first integrated design has been done. (author)

  8. The 1.5 MW wind turbine of tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    De Wolff, T.J.; Sondergaard, H. [Nordtank Energy Group, Richmond, VA (United States)

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  9. Detailed Soils 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  10. Effective hydrogenation and surface damage induced by MW-ECR plasma of fine-grained polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Madi, D. [Institut d' Electronique du Solide et des Systemes (InESS)-CNRS/UdS, Strasbourg (France); Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Faculte des Sciences de l' Ingenieur, Jijel (Algeria); Prathap, P.; Focsa, A.; Slaoui, A. [Institut d' Electronique du Solide et des Systemes (InESS)-CNRS/UdS, Strasbourg (France); Birouk, B. [Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Faculte des Sciences de l' Ingenieur, Jijel (Algeria)

    2010-06-15

    This work reports the investigations on the effects of the hydrogenation process of thin film polycrystalline n{sup +}pp{sup +} mesa silicon cells using MW-ECR plasma in a conventional PECVD system. Different operating parameters such as MW-ECR power, annealing temperature and the doping level of the emitter region were varied. The n{sup +}-type emitter regions were obtained by phosphorus diffusion in a conventional furnace using an oxide doping source containing phosphorus (P507 or P509 solutions, from Filmtronics Inc.). The MW hydrogenation was carried out at a sample temperature of 400 C for 60 min. Both types of emitters formed from P507 and P509 showed V{sub oc} of 155 mV and 206 mV, which increased linearly to 305 mV and 331 mV, respectively, after hydrogenation when the MW power varied from 200 to 650 W. However, the sheet resistances of the n{sup +} emitter region showed a slight increase depending upon hydrogenation power because of its etching. In a further study, hydrogenated samples were annealed in neutral or forming gas (FG) and we observed interesting results on V{sub oc} in the presence of FG. The FG annealing temperature study revealed a strong dependence of V{sub oc} on MW power, which affected the etching level of emitter and emitter dopant concentration, which controls the diffusion of hydrogen ions during post-hydrogenation step. The results were explained in detail by combining the effects of MW power and dopant level of the emitter. (orig.)

  11. Aero-Elastic Optimization of a 10 MW Wind Turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Tibaldi, Carlo; Verelst, David Robert

    2015-01-01

    This article describes a multi-disciplinary optimization and analysis tool for wind turbines that is based on the open-source framework OpenMDAO. Interfaces to several simulation codes have been implemented which allows for a wide variety of problem formulations and combinations of models....... In this article concurrent aeroelastic optimization of a 10 MW wind turbine rotor is carried out with respect to material distribution distribution and planform. The optimizations achieve up to 13% mass reduction while maintaining the same power production compared to the baseline DTU 10MW RWT....

  12. Improving 200 MW NDHR reactor protection system with GAL devices

    International Nuclear Information System (INIS)

    Shi Mingde; Li Duo; Xie Zhengguo

    1999-01-01

    The emergence of General Array Logic (GAL), a fairly new type of logic devices with the characteristics of user-definable logic functions, have led to a revolutionary change in the design of logical circuits. The improvements of the reactor protection system for the 200 MW nuclear district heating reactor (NDHR) using GAL are covered

  13. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  14. Lightweight MgB2 superconducting 10 MW wind generator

    International Nuclear Information System (INIS)

    Marino, I; Pujana, A; Sarmiento, G; Sanz, S; Merino, J M; Tropeano, M; Sun, J; Canosa, T

    2016-01-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB 2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator’s main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator. (paper)

  15. Design of the 1-Mw, 200-Ghz, Fom Fusion Fem

    NARCIS (Netherlands)

    Urbanus, W. H.; Best, R. W. B.; Bongers, W. A.; Vaningen, A. M.; Manintveld, P.; Sterk, A. B.; Verhoeven, A. G. A.; van der Wiel, M. J.; Caplan, M.; Bratman, V. L.; Denisov, G. G.; Varfolomeev, A. A.; Khlebnikov, A. S.

    1993-01-01

    The FOM Institute for Plasma Physics has obtained funding for the development of a 1 MW, long pulse, 140-250 GHz free-electron maser. The engineering design is presently being performed in an international collaboration. In this paper the main components of the free-electron maser, the electron beam

  16. Analysis of a 115MW, 3 shaft, helium Brayton cycle

    International Nuclear Information System (INIS)

    Pradeepkumar, K.N.

    2002-01-01

    This research theme is originated from a development project that is going on in South Africa, for the design and construction of a closed cycle gas turbine plant using gas-cooled reactor as the heat source to generate 115 MW of electricity. South African Power utility company, Eskorn, promotes this developmental work through its subsidiary called PBMR (Pebble Bed Modular Reactor). Some of the attractive features of this plant are the inherent and passive safety features, modular geometry, small evacuation area, small infrastructure requirements for the installation and running of the plant, small construction time, quick starting and stopping and also low operational cost. This exercise is looking at the operational aspects of a closed cycle gas turbine, the finding of which will have a direct input towards the successful development and commissioning of the plant. A thorough understanding of the fluid dynamics in this three-shaft system and its transient performance analysis were the two main objectives of this research work. A computer programme called GTSI, developed by a previous Cranfield University research student, has been used in this as a base programme for the performance analysis. Some modifications were done on this programme to improve its control abilities. The areas covered in the performance analysis are Start-up, Shutdown and Load ramping. A detailed literature survey has been conducted to learn from the helium Turbo machinery experiences, though it is very limited. A critical analysis on the design philosophy of the PBMR is also carried out as part of this research work. The performance analysis has shown the advantage, disadvantage and impact of various power modulation methods suggested for the PBMR. It has tracked the effect of the operations of the various valves included in the PBMR design. The start-up using a hot gas injection has been analysed in detail and a successful start region has been mapped. A start-up procedure is also written

  17. Kinetic energy budget details

    Indian Academy of Sciences (India)

    Abstract. This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence ...

  18. Three Latin Phonological Details

    DEFF Research Database (Denmark)

    Olsen, Birgit Anette

    2006-01-01

    The present paper deals with three minor details of Latin phonology: 1) the development of the initial sequence *u¿l¿-, where it is suggested that an apparent vacillation between ul- and vol-/vul- represents sandhi variants going back to the proto-language, 2) the adjectives ama¯rus ‘bitter' and ...

  19. A 10-GeV, 5-MW proton source for a pulsed spallation source

    International Nuclear Information System (INIS)

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-01-01

    A feasibility study for a pulsed spallation source based on a 5-MW, 10-GeV rapid proton synchrotron (RCS) is in progress. The integrated concept and performance parameters of the facility are discussed. The 10-GeV synchrotron uses as its injector the 2-GeV accelerator system of a 1-MW source described elsewhere. The 1-MW source accelerator system consists of a 400-MeV H - linac with 2.5 MeV energy spread in the 75% chopped (25% removed) beam and a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV. The time averaged current of the accelerator system is 0.5 mA, equivalent to 1.04 x 10 14 protons per pulse. The 10-GeV RCS accepts the 2 GeV beam and accelerates it to 10 GeV. Beam transfer from the 2-GeV synchrotron to the 10-GeV machine u highly efficient bunch-to-bucket injection, so that the transfer can be made without beam loss. The synchrotron lattice uses FODO cells of 90 degrees phase advance. Dispersion-free straight sections are obtained using a missing magnet scheme. The synchrotron magnets are powered by dual-frequency resonant circuits. The magnets are excited at a 20-Hz rate and de-excited at 60-Hz. resulting in an effective 30-Hz rate. A key feature of the design of this accelerator system is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented

  20. Architecture of central control system for the 10 MW ECRH-plant at W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Braune, H. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: harald.braune@ipp.mpg.de; Brand, P. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Erckmann, V.; Jonitz, L. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Leonhardt, W.; Mellein, D. [Forschungszentrum Karlsruhe, Association EURATOM-FZK, IHM, FZK, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Michel, G. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Mueller, G. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Purps, F. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Schlueter, K.-H. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Winkler, M. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)

    2007-10-15

    Electron Cyclotron Resonance Heating (ECRH) is the main heating method for the Wendelstein 7-X stellarator (W7-X) which is presently under construction at IPP Greifswald. The mission of W7-X is to demonstrate the inherent steady state capability of stellarators at reactor relevant plasma parameters. A modular 10 MW ECRH-plant at 140 GHz with 1 MW CW-capability power for each module is also under construction to support the scientific objectives. The commissioning of the ECRH-plant is well under way; three gyrotrons are operational. The strict modular design allows to operate each gyrotron separately and independent from all others. The ECRH-plant consists of many devices such as gyrotrons and high voltage power supplies, superconductive magnets, collector sweep coils, gyrotron cooling systems with many water circuits and last but not least the quasi-optical transmission line for microwaves with remote controlled mirrors and further water cooled circuits. All these devices are essential for a CW operation. A steady state ECRH has specific requirements on the stellarator machine itself, on the microwave sources, transmission elements and in particular on the central control system. The quasi steady state operation (up to 30 min) asks for real time microwave power adjustment during the different segments of one stellarator discharge. Therefore, the ECRH-plant must operate with a maximum reliability and availability. A capable central control system is an important condition to achieve this goal. The central control system for the 10 MW ECRH-plant at W7-X comprises three main parts. In detail these are the voltage and current regulation of each gyrotron, the interlock system to prevent the gyrotrons from damages and the remote control system based on a hierarchy set of PLCs and computers. The architecture of this central control system is presented.

  1. Xenon-induced axial power oscillations in the 400 MW PBMR

    International Nuclear Information System (INIS)

    Strydom, Gerhard

    2008-01-01

    The redistribution of the spatial xenon concentration in the 400 MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400 MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%-50%-100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400 MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations

  2. TRIGA 14 MW Research Reactor Status and Utilization

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.

    2016-01-01

    Institute for Nuclear Research is the owner of the largest family TRIGA research reactor, TRIGA14 MW research reactor. TRIGA14 MW reactor was designed to be operated with HEU nuclear fuel but now the reactor core was fully converted to LEU nuclear fuel. The full conversion of the core was a necessary step to ensure the continuous operation of the reactor. The core conversion took place gradually, using fuel manufactured in different batches by two qualified suppliers based on the same well qualified technology for TRIGA fuel, including some variability which might lead to a peculiar behaviour under specific conditions of reactor utilization. After the completion of the conversion a modernization program for the reactor systems was initiated in order to achieve two main objectives: safe operation of the reactor and reactor utilization in a competitive environment to satisfy the current and future demands and requirements. The 14 MW TRIGA research reactor operated by the Institute for Nuclear Research in Pitesti, Romania, is a relatively new reactor, commissioned 37 years ago. It is expected to operate for another 15-20 years, sustaining new fuel and testing of materials for future generations of power reactors, supporting radioisotopes production through the development of more efficient new technologies, sustaining research or enhanced safety, extended burn up and verification of new developments concerning nuclear power plants life extension, to sustain neutron application in physics research, thus becoming a centre for instruction and training in the near future. A main objective of the TRIGA14MW research reactor is the testing of nuclear fuel and nuclear material. The TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir etc.) and a method for 99 Mo- 99 Tc production from fission is under development. For nuclear materials properties investigation, neutron radiography methods have been developed in the INR. The

  3. Performance of a 150-MW S-band klystron

    International Nuclear Information System (INIS)

    Sprehn, D.; Phillips, R.M.; Caryotakis, G.

    1994-09-01

    As part of an international collaboration, the Stanford Linear Accelerator Center (SLAC) klystron group has designed, fabricated, and tested a 60-Hz, 3-μs, 150-MW S-band klystron built for Deutsches Elektronen Synchrotron (DESY). A test diode with a 535-kV, 700-A electron beam was constructed to verify the gun operation. The first klystron was built and successfully met design specifications. The 375-MW electron beam represents a new record for SLAC accelerator klystrons in terms of voltage, current, energy, and ruggedness of design. The rf output power is a 150% increase over the S-band tubes currently used in the two-mile-long linear accelerator at SLAC. This paper discusses design issues and experimental results of the diode and klystron

  4. Development of L-band, 10MW multi beam klystron

    International Nuclear Information System (INIS)

    Irikura, M.; Miyake, S.; Yano, A.; Kazakov, S.; Larionov, A.; Teryaev, V.; Chin, Y.H.

    2004-01-01

    A 10-MW, L-band multi beam klystron (MBK) for TESLA linear collider and TESLA XFEL has been under development at Toshiba Electron Tubes and Devices Co., Ltd. (TETD) in collaboration with KEK. The TESLA requires pulsed klystrons capable of 10 MW output power at 1300 MHz with 1.5 ms pulse length and a repetition rate of 10 pps. The MBK with 6 low-perveance beams in parallel enables us to operate at lower cathode voltage with higher efficiency. The design work has been accomplished and the fabrication is under way. We are going to start conditioning and testing of prototype no.0 in the middle of July 2004. The design overview will be presented. (author)

  5. Operation and maintenance of 1MW PUSPATI TRIGA reactor

    International Nuclear Information System (INIS)

    Adnan Bokhari; Mohammad Suhaimi Kassim

    2006-01-01

    The Malaysian Research Reactor, Reactor TRIGA PUSPATI (RTP) has been successfully operated for 22 years for various experiments. Since its commissioning in June 1982 until December 2004, the 1MW pool-type reactor has accumulated more than 21143 hours of operation, corresponding to cumulative thermal energy release of about 14083 MW-hours. The reactor is currently in operation and normally operates on demand, which is normally up to 6 hours a day. Presently the reactor core is made up of standard TRIAGA fuel element consists of 8.5 wt%, 12 wt% and 20 wt% types; 20%-enriched and stainless steel clad. Several measures such as routine preventive maintenance and improving the reactor support systems have been taken toward achieving this long successful operation. Besides normal routine utilization like other TRIGA reactors, new strategies are implemented for effective increase in utilization. (author)

  6. 100 GHz, 1 MW, CW gyrotron study program. Final report

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues

  7. Neutronic performance of a benchmark 1-MW LPSS

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-01-01

    We used split-target/flux-trap-moderator geometry in our 1-MW LPSS computational benchmark performance calculations because the simulation models were readily available. Also, this target/moderator arrangement is a proven LANSCE design and a good neutronic performer. The model has four moderator viewed surfaces, each with a 13x13 cm field-of-view. For our scoping neutronic-performance calculations, we attempted to get as much engineering realism into the target-system mockup as possible. In our present model, we account for target/reflector dilution by cooling; the D 2 O coolant fractions are adequate for 1 MW of 800-MeV protons (1.25 mA). We have incorporated a proton beam entry window and target canisters into the model, as well as (partial) moderator and vacuum canisters. The model does not account for target and moderator cooling lines and baffles, entire moderator canisters, and structural material in the reflector

  8. 1st DeepWind 5 MW Baseline design

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Vita, Luca; Aagaard Madsen, Helge

    2012-01-01

    The first 5MW baseline design of the DeepWind concept is presented for a Darrieus type floating wind turbine system for water depths of more than 150 m. This design will be used as design reference to test the next technological improvements of sub-component level, being based as much as possible...... trajectory on the water plane. The generator is placed at the bottom of the platform and uses 5MW direct drive technology.The conceptual design is evaluated with numerical simulations in the time domain using the aero-elastic code HAWC2. In order to investigate the concept, a double-disc blade element....... A site has been chosen for the floating turbine off Norway as representative for external conditions. The structure is verified according to an ultimate strength analysis, including loads from wind, waves and currents. The stability of the platform is investigated, considering the displacements...

  9. 350 MW(t) MHTGR preassembly and modularization

    International Nuclear Information System (INIS)

    Venkatesh, M.C.; Jones, G.; Dilling, D.A.; Parker, W.J.

    1991-05-01

    The Modular High Temperature Gas Cooled Reactor (MHTGR) provides a safe and economical nuclear power option for the world's electrical generation needs by the turn of the century. The proposed MHTGR plant is composed of four 350 MW(t) prismatic core reactor modules, coupled to a 2(2 x 1) turbine generator producing a net plant electrical output of 538 MW(e). Each of the four reactor module is located in a below-ground level concrete silo, and consists of a reactor vessel and a steam generator vessel interconnected by a cross duct vessel. The modules, along with the service buildings, are contained within a Nuclear Island (NI). The turbine generators and power generation facilities are in the non-nuclear Energy Conversion Area (ECA). The MHTGR design reduces cost and improves schedule by maximizing shop fabrication, minimizing field fit up of the Reactor Internals components and modularizing the NI ampersand ECA facilities. 3 refs., 6 figs., 2 tabs

  10. CW 100MW microwave power transfer in space

    International Nuclear Information System (INIS)

    Takayama, K.; Hiramatsu, S.; Shiho, M.

    1991-01-01

    A linear multistage MFEL has been considered as a possible power source for future linear colliders; however, the single-stage experiment cannot be straightforwardly extrapolated to the multistage MFEL. Nevertheless, extensive theoretical and computational studies have demonstrated the feasibility of multistaging. Based on the authors current understanding of the MFEL, they developed the idea of a circular microwave power station (MPS) driven with a single high current beam where many FEL stages are placed along a circle and the remarkable high power of microwave (mw) is generated at each stage. The total power produced is linearly proportional to the number of FEL stages. This huge mw power can be emitted from a large parabola antenna; propagates in space and can be received by a receiver such as parabola antenna or rectenna

  11. Mw 8.5 BENGKULU EARTHQUAKES FROM CONTINUOUS GPS DATA

    Directory of Open Access Journals (Sweden)

    W. A. W. Aris

    2016-09-01

    Full Text Available The Mw 8.5 Bengkulu earthquake of 30 September 2007 and the Mw8.6 28 March 2005 are considered amongst large earthquake ever recorded in Southeast Asia. The impact into tectonic deformation was recorded by a network of Global Positioning System (GPS Continuously Operating Reference Station (CORS within southern of Sumatra and west-coast of Peninsular Malaysia. The GPS data from the GPS CORS network has been deployed to investigate the characteristic of postseismic deformation due to the earthquakes. Analytical logarithmic and exponential function was applied to investigate the deformation decay period of postseismic deformation. This investigation provides a preliminary insight into postseismic cycle along the Sumatra subduction zone in particular and on the dynamics Peninsular Malaysia in general.

  12. The jet 10-MW lower hybrid current drive system

    International Nuclear Information System (INIS)

    Gormezano, C.; Bosia, G.; Brinkschulte, H.; David, C.; Dobbing, J.A.; Kaye, A.S.; Jacquinot, J.; Lloyd, B.; Knowlton, S.; Moreau, D.

    1987-01-01

    A Lower Hybrid system to control the plasma current profile is being prepared so that a higher central electron temperature can be obtained. The proposed system is designed to launch 10 MW of power at f = 3.7 GHz through a single port in JET, producing between 1 and 2 MA of RF driven current at an average density of 5 x 10 19 m -3 . Current drive efficiency is maximized by using a low value of the parallel wave number spectrum (N// - 1.3 - 2.3). The final launcher will be made of 48 multijunctions fed by 24 klystrons with the proper phasing. Dynamic matching of the launcher will be optimized by moving the launcher in real time during the pulse. A first stage (2 MW) is presently under construction. The full system is being designed to be in operation in 1990

  13. A 1500-MW(e) HTGR nuclear generating station

    International Nuclear Information System (INIS)

    Stinson, R.C.; Hornbuckle, J.D.; Wilson, W.H.

    1976-01-01

    A conceptual design of a 1500-MW(e) HTGR nuclear generating station is described. The design concept was developed under a three-party arrangement among General Atomic Company as nuclear steam supply system (NSSS) supplier, Bechtel Power Corporation as engineer-constructors of the balance of plant (BOP), and Southern California Edison Company as a potential utility user. A typical site in the lower Mojave Desert in southeastern California was assumed for the purpose of establishing the basic site criteria. Various alternative steam cycles, prestressed concrete reactor vessel (PCRV) and component arrangements, fuel-handling concepts, and BOP layouts were developed and investigated in a programme designed to lead to an economic plant design. The paper describes the NSSS and BOP designs, the general plant arrangement and a description of the site and its unique characteristics. The elements of the design are: the use of four steam generators that are twice the capacity of GA's steam generators for its 770-MW(e) and 1100-MW(e) units; the rearrangement of steam and feedwater piping and support within the PCRV; the elimination of the PCRV star foundation to reduce the overall height of the containment building as well as of the PCRV; a revised fuel-handling concept which permits the use of a simplified, grade-level fuel storage pool; a plant arrangement that permits a substantial reduction in the penetration structure around the containment while still minimizing the lengths of cable and piping runs; and the use of two tandem-compound turbine generators. Plant design bases are discussed, and events leading to the changes in concept from the reference 8-loop PCRV 1500-MW(e) HTGR unit are described. (author)

  14. 10 MW, L-Band Klystron for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert L. [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ferguson, Patrick [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-03-07

    This program developed a 10 MW, pulsed, Annular Beam Klystron (ABK) for accelerator applications. This is an alternative RF source to multiple beam klystrons MBKs), which are more complex and considerably more expensive. The ABK uses a single, annular cathode and a single beam tunnel with fundamental mode cavities. The operating specifications (voltage, efficiency, power, bndwidth, duty, etc.) are the same as for comparable MBKs.

  15. TITAN - a 9 MW, 179 bar pressurised water rig

    International Nuclear Information System (INIS)

    Mogford, D.J.; Lee, D.H.

    1987-02-01

    The report describes the TITAN rig built at Winfrith for thermal hydraulic experiments with water at up to 179 bar pressure. A power supply of 9 MW is available. The report describes three typical experiments that show the versatility of the rig. The first is a 25 rod pressurized water reactor fuel bundle critical heat flux experiment, the second is a parallel channel evaporator test and the third is a model jet pump test. (author)

  16. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  17. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  18. Update on the enhancement of Florida power and light 400 MW steam generator program

    International Nuclear Information System (INIS)

    Mazzarell, G.R.; Chang, P.S.

    1991-01-01

    Florida Power and Light has nine (9) 400 MW units, designed and installed by Foster Wheeler in the 1960's. These fossil units were designed as base loaded units with oil firing. However, natural gas capability was added and for more than seven years these units have been in a cycling mode of operation. The availability of these units has deteriorated over the same time period. This paper reports that Florida Power and Light instituted an enhancement program for improving the availability redundancy of all their fossil fired units. The 400 MW units were the main contributors to the system forced outage rate. Each design and operating problem of these units was studied in detail and the root causes of each problem were identified. The first two (2) units, Port Everglades units No. 3 and 4 have been modified and returned to service. Testing of these two (2) units with respect to performance guarantees and the effectiveness of each of the individual modifications, has been completed. The first unit modified, PPE No. 3 was returned to service May 1989, PPE No. 4 in May of 1990. Both units have performed satisfactorily during subsequent operation. Cape Canaveral Unit No. 2 is modified and scheduled to be returned to service in May 1991

  19. Analysis of Gamma Dose Rate for RTP 2 MW Core Configuration Using MCNP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mohd Amin Sharifuldin Salleh; Julia Abdul Karim

    2011-01-01

    The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of gamma dose rate at water pool surface and concrete shielding surface of the proposed 2-MW core configuration of PUSPATI TRIGA Reactor. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core with pool water and concrete shielding and validation of the input by comparisons with the measured and available safety analysis report (SAR) of the reactor. The model represents in detailed all components of the reactor with literally no physical approximation. Continuous energy cross section data from the more recent nuclear data as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed. (author)

  20. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  1. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  2. Main trends of upgrading the 1000 MW steam turbine

    International Nuclear Information System (INIS)

    Drahy, J.

    1990-01-01

    Parameters are compared for the 1000 MW steam turbine manufactured by the Skoda Works, Czechoslovakia, and turbines in the same power range by other manufacturers, viz. ABB, Siemens/KWU, GEC and LMZ. The Skoda turbine compares well with the other turbines with respect to all design parameters, and moreover, enables the most extensive heat extraction for district heating purposes. The main trends in upgrading this turbine are outlined; in particular, they include an additional increase in the heat extraction, which is made possible by a new design of the low-pressure section or by using a ''satellite'' turbine. The studies performed also indicate that the output of the full-speed saturated steam turbine can be increased to 1300 MW. An experimental turbine representing one flow of the high-pressure part of the 1000 MW turbine is being built on the 1:1 scale. It will serve to verify the methods of calculation of the wet steam flow and to experimentally test the high-pressure part over a wide span of the parameters. (Z.M.). 1 tab., 3 figs., 7 refs

  3. 1000 MW steam turbine for nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1987-01-01

    Skoda Works started the manufacture of the 1000 MW steam turbine for the Temelin nuclear power plant. The turbine will use saturated steam at 3,000 r.p.m. It will allow steam supply to heat water for district heating, this of an output of 893 MW for a three-stage water heating at a temperature of 150/60 degC or of 570 MW for a two-stage heating at a temperature of 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized as concerns the thermal efficiency of the cycle and the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum flow rate of the steam entering the turbine. This is 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. It is expected that throughout the life of the turbine, there will be 300 cold starts, 1,000 starts following shutdown for 55 to 88 hours, and 600 starts following shutdown for 8 hours. (Z.M.). 8 figs., 1 ref

  4. Detailed Debunking of Denial

    Science.gov (United States)

    Enting, I. G.; Abraham, J. P.

    2012-12-01

    The disinformation campaign against climate science has been compared to a guerilla war whose tactics undermine the traditional checks and balances of science. One comprehensive approach has to been produce archives of generic responses such as the websites of RealClimate and SkepticalScience. We review our experiences with an alternative approach of detailed responses to a small number of high profile cases. Our particular examples were Professor Ian Plimer and Christopher Monckton, the Third Viscount Monckton of Brenchley, each of whom has been taken seriously by political leaders in our respective countries. We relate our experiences to comparable examples such as John Mashey's analysis of the Wegman report and the formal complaints about Lomborg's "Skeptical Environmentalist" and Durkin's "Great Global Warming Swindle". Our two approaches used contrasting approaches: an on-line video of a lecture vs an evolving compendium of misrepresentations. Additionally our approaches differed in the emphasis. The analysis of Monckton concentrated on the misrepresentation of the science, while the analysis of Plimer concentrated on departures from accepted scientific practice: fabrication of data, misrepresentation of cited sources and unattributed use of the work of others. Benefits of an evolving compendium were the ability to incorporate contributions from members of the public who had identified additional errors and the scope for addressing new aspects as they came to public attention. `Detailed debunking' gives non-specialists a reference point for distinguishing non-science when engaging in public debate.

  5. The 2009 MW MW 6.1 L'Aquila fault system imaged by 64k earthquake locations

    International Nuclear Information System (INIS)

    Valoroso, Luisa

    2016-01-01

    On April 6 2009, a MW 6.1 normal-faulting earthquake struck the axial area of the Abruzzo region in central Italy. We investigate the complex architecture and mechanics of the activated fault system by using 64k high-resolution foreshock and aftershock locations. The fault system is composed by two major SW dipping segments forming an en-echelon NW trending system about 50 km long: the high-angle L’Aquila fault and the listric Campotosto fault, located in the first 10 km depth. From the beginning of 2009, fore shocks activated the deepest portion of the main shock fault. A week before the MW 6.1 event, the largest (MW 4.0) foreshock triggered seismicity migration along a minor off-fault segment. Seismicity jumped back to the main plane a few hours before the main shock. High-precision locations allowed to peer into the fault zone showing complex geological structures from the metre to the kilometre scale, analogous to those observed by field studies and seismic profiles. Also, we were able to investigate important aspects of earthquakes nucleation and propagation through the upper crust in carbonate-bearing rocks such as: the role of fluids in normal-faulting earthquakes; how crustal faults terminate at depths; the key role of fault zone structure in the earthquake rupture evolution processes.

  6. THULE: A detailed description

    International Nuclear Information System (INIS)

    Terry, M.J.

    1964-07-01

    This report describes the THULE scheme of lattice physics calculation which has been developed in FORTRAN for the IBM 7090. This scheme predicts the neutron flux over energy and space, for many groups and regions, together with reactivity and reaction rate edits for both a single lattice cell and a reactor core. This report describes in detail the input requirements for the THULE programme which forms the main part of the scheme. Brief descriptions of the 7090 programmes TED 6 and NOAH are included as appendices. TED 6 will produce the THULE edits from a WDSN output tape and NOAH is a version of the METHUSELAH programme which contains many of the THULE edits and will also produce input cards for THULE. (author)

  7. Definition of a 5MW/61.5m wind turbine blade reference model.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  8. Yawing characteristics during slippage of the nacelle of a multi MW wind turbine

    Science.gov (United States)

    Kim, M.-G.; Dalhoff, P. H.; Gust, P.

    2016-09-01

    High aerodynamic yaw loads coupled with electrical failures in the wind turbine can result to a slippage of the nacelle, due to limited braking capabilities of the yaw system. A slippage on the other hand can lead to a mechanical malfunction of the yaw system. To analyse the yawing characteristics of a wind turbine during nacelle slippage situations, a detailed multibody system model of the yaw system has been developed and incorporated in a multibody system model of a wind turbine based on a 3.3 MW turbine. Extreme load cases which lead to a nacelle slippage have been simulated. The dynamics and loads on different wind turbine components are presented and discussed. First results show minimal load increases of the rotor torque and the bending moments of the blade root sections during slippage but unfavourable rotational speeds of the yaw drives.

  9. Crowdsourcing detailed flood data

    Science.gov (United States)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  10. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  11. The status of safeguarding 600 MW(e) CANDU reactors

    International Nuclear Information System (INIS)

    Von Baeckmann, A.; Rundquist, D.E.; Pushkarjov, V.; Smith, R.M.; Zarecki, C.W.

    1982-09-01

    There has been extensive work in the development of CANDU safeguards since the last International Conference on Nuclear Power, and this has resulted in the development of improved equipment for the safeguards system now being installed in the 600 MW(e) CANDU generating stations. The overall system is designed to improve on the existing IAEA safeguards and to provide adequate coverage for each plausible nuclear material diversion route. There is sufficient sensitivity and redundancy to enable the timely detection of the possible diversion of significant quantities of nuclear material

  12. Induced radioactivity in a 4 MW target and its surroundings

    CERN Document Server

    Agosteo, Stefano; Otto, Thomas; Silari, Marco

    2003-01-01

    An important aspect of a future CERN Neutrino Factory is the material activation arising from a 2.2 GeV, 4 MW proton beam striking a mercury target. An estimation of the hadronic inelastic interactions and the production of residual nuclei in the target, the magnetic horn, the decay tunnel, the surrounding rock and a downstream dump was performed by the Monte Carlo hadronic cascade code FLUKA. The aim was both to assess the dose equivalent rate to be expected during maintenance work and to evaluate the amount of residual radioactivity, which will have to be disposed of after the facility has ceased operation.

  13. Design Tool for 5-20 MW Direct Drive Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2014-01-01

    This paper reports on a machine design tool for large (5-10MW) direct drive electrical generator. The aim of the work is to construct a flexible calculation tool that enables the analysis of different ideas and concepts for generator design. The tool is intended for engineers that are involved...... in the design of wind turbine systems. The design tool comprises calculation modules that are kept as independent as possible from each other so that new machine geometries and types can be modelled by reusing, recombining and modifying the different modules. Choice of the most suitable candidates...

  14. A 350 MW HTR with an annular pebble bed core

    International Nuclear Information System (INIS)

    Wang Dazhong; Jiang Zhiqiang; Gao Zuying; Xu Yuanhui

    1992-12-01

    A conceptual design of HTR-module with an annular pebble bed core was proposed. This design can increase the unit power capacity of HTR-Module from 200 MWt to 350 MWt while it can keep the inherent safety characteristics of modular reactor. The preliminary safety analysis results for 350 MW HTR are given. In order to solve the problem of uneven helium outlet temperature distribution a gas flow mixing structure at bottom of core was designed. The experiment results of a gas mixing simulation test rig show that the mixing function can satisfy the design requirements

  15. Digital, remote control system for a 2-MW research reactor

    International Nuclear Information System (INIS)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs

  16. Design of 250-MW CW RF system for APT

    International Nuclear Information System (INIS)

    Rees, D.

    1997-01-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning

  17. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...... for metal temperatures above 520 C. Deposition measurements carried out at a position equal to the secondary superheater showed deposits rich in potassium and chlorine and to a lesser extent in silicon, calcium, and sulfur. Potassium and chlorine make up 40-80 wt% of the deposits. Mechanisms of deposit...

  18. Design of an aeroelastically tailored 10 MW wind turbine rotor

    DEFF Research Database (Denmark)

    Zahle, Frederik; Tibaldi, Carlo; Pavese, Christian

    2016-01-01

    This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and structural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained...... not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP...

  19. 5MW Direct Drive Wind Turbine Generator Design

    DEFF Research Database (Denmark)

    Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe

    2012-01-01

    A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...... for the suitable machine are listed and the modelling process presented. The model of the generator was improved by changing design parameters, e.g the position of the magnets or fitting additional I-Cores, and analyse the effect of it....

  20. 1.5 MW RF Load for ITER

    International Nuclear Information System (INIS)

    Ives, Robert Lawrence; Marsden, David; Collins, George; Karimov, Rasul; Mizuhara, Max; Neilson, Jeffrey

    2016-01-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  1. 1.5 MW RF Load for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Karimov, Rasul [Calabazas Creek Research, Inc., San Mateo, CA (United States); Mizuhara, Max [Calabazas Creek Research, Inc., San Mateo, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States)

    2016-09-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  2. Design of 100 MW LNG Floating Barge Power Plant

    Directory of Open Access Journals (Sweden)

    I Made Ariana

    2017-06-01

    Full Text Available Floating bargepower plant able to supply amount of electricity to undeveloped island in Indonesia. In this research, the generator will be use in the power plant is dual-fuel engine. The process was determine the engine and every equipment along with its configuration then arrange the equipment. The result, MAN18V51/60DF selected along with its system configuration and its general arrangement. The final design enable 7.06 days of operation with daily average load (64.76 MW or 4.57 days with continues 100 MW load. In the end, the mobile power plant can be built on Damen B32SPo9832 Barge and comply with the regulation floating bargepower plant able to supply amount of electricity to undeveloped island in Indonesia. In this research, the generator will be use in the power plant is dual-fuel engine. The process was determine the engine and every equipment along with its configuration then arrange the equipment. The result, MAN18V51/60DF selected along with its system configuration and its general arrangement. The final design enable 7.06 days of operation with daily average load (64.76 MW or 4.57 days with continues 100 MW load. In the end, the mobile power plant can be built on Damen B32SPo9832 Barge and comply with the regulation Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  3. Component development for X-band above 100 MW

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Callin, R.S.; Studzinski, M.

    1991-05-01

    The requirement for some of the components described in this paper began with the Relativistic Klystron program done in collaboration with LLNL and LBL. This effort culminated in a klystron operating at 11.4 GHz delivering 330 MW into a pair of high-gradient accelerating structures. The electron beam for this klystron was formed in a 1 MeV induction linac at a very low duty cycle. The subsequent RF source development work at SLAC for the Next Linear Collider utilized some of these components, and required further and new development of others, work reliably at higher average power. 6 refs., 6 figs., 1 tab

  4. Disassembling and rebuilding 900 MW unit fuel assemblies in Celimene

    International Nuclear Information System (INIS)

    Giquel, G.; Leseur, A.; Pillet, C.; Van Craeynest, J.C.

    1987-01-01

    The Celimene high activity laboratory, in the Nuclear Research Centre of Saclay, has equipment for and experience of disassembling and rebuilding fuel assemblies from 900 MW light water reactors. These operations have been performed for R and D purposes; they allow removal for investigation of some of the fuel rods and examination of the skeleton. The rebuilt assemblies are sent to the fuel reprocessing plant. Reirradiation of these assemblies has not been considered so far and would require modifications of the procedure and of parts of the new skeleton. Disassembling and rebuilding have already been performed on three assemblies and a fourth one will be rebuilt in the coming months [fr

  5. Feasibility study of 5MW superconducting wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech; Seiler, E.

    2011-01-01

    The feasibility of installing a direct drive superconducting generator in the 5MW reference offshore wind turbine of the National Renewable Energy Laboratory (NREL) has been examined. The engineering current densities Je obtained in a series of race track coils have been combined with magnetization...... measurements to estimate the properties of suitable field coils for a synchronous generator, which is more light weight than the conventional used combination of a gear box and a fast rotating generator. An analytical model and finite element simulations have been used to estimate the active mass of generators...

  6. Peigan Nation to start 101 MW wind farm this month

    International Nuclear Information System (INIS)

    McArthur, D.; Salaff, S.

    1998-01-01

    A joint venture, named Weather-Dancer Wind Power Inc., between Advanced Thermodynamics Corporation (ATC) and the Peigan First Nation Community in Alberta will begin construction in June of a wind farm on its 39,000 hectare reserve. The construction will be progressive, up to a maximum of 101 MW. If and when the farm reaches its full size, it will have cost around $175 million. The wind farm will utilize Nordex Balcke-Duerr (Nordex BD) wind turbines from Denmark. ATC is the sole distributor of these turbines in Canada, and will seek opportunities to market Nordex BD turbines and components throughout Alberta and Western Canada. ATC is also aggressively pursuing opportunities in Quebec and in Atlantic Canada. Financing for the construction of the wind farm and a long-term power purchase and distribution agreement with TransAlta Utilities are as yet incomplete, but negotiations are reported to be progressing well. The Nordex BD N54/1000, rated at one MW, will be the largest turbine, and the Peigan Nation Farm the largest wind farm in North America. This is the second attempt by the Peigan Nation to develop a wind farm on the reserve. On the first attempt, the development failed to secure access to the land needed for the project. This time around, a referendum will be held well in advance of the starting date for construction to obtain majority band approval of the site

  7. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  8. Physical status of the 10 MW test module

    International Nuclear Information System (INIS)

    Luo Jingyu

    1991-01-01

    Like most graphite moderated HTR systems, the 10 MW Test-Module reactor is undermoderated. This means if the water ingress is into the pebble bed that this system will gain reactivity as moderator is added to the core. The reactivity increase caused by water ingress strongly depends on the geometry of the core, the temperature, the burnup status and especially the moderator to fuel ratio (the metal content per fuel element). For the equilibrium core 5 gram of heavy metal per fuel element is chosen in order to limit the effect of water ingress. Another important effect of water ingress is to reduce the worth of control rods which are usually located in the reflector. The distance between core and control rods in the reflector are carefully calculated. In the 10 MW Test-Module reactor the core shutdown capability of 12 control rods are selected such that any accident reactivity can be counterbalanced and only half of the rods have to be available to render the reactor down from normal operation to the cold, permanent subcritical condition. (author). 5 figs, 3 tabs

  9. Improving 900 MW(e) PWR control rooms

    International Nuclear Information System (INIS)

    Bouat, M.; Marcille, R.

    1983-01-01

    Analyses of the behaviour of operators during operating tests on PWR units and the lessons learned from the TMI-2 accident have demonstrated the need to improve the interface between operators and the facilities they control. To that end, and to complement its establishment of safety panels, Electricite de France (EDF) embarked upon a study on the ''Modification of Control Desks and Boards'' in control rooms. This study, involving twenty-eight 900 MW(e) units, almost all of which are currently in service, began with an ergonomic analysis of control rooms by an external consultant, the ADERSA GERBIOS Association. This analysis was based on interviews with simulator instructors and operators, a study of the operation of the unit, and a general review of previous studies. The analysis began in October 1980 and resulted, in April 1981, in a critical report and a proposal to create a full-scale mock-up of a 900 MW(e) control room. Improvements to this were subsequently proposed, enabling options to be made between, among other things, active overall control panels and function-by-function control panels. Finally, a number of general principles, which largely encompass the operators' suggestions, were defined. The alterations to be made will make it necessary to revamp the control panels completely. The work and tests involved should match the duration of refuelling shut-downs. Audio-visual training programmes are planned (portable model). (author)

  10. E-detailing: information technology applied to pharmaceutical detailing.

    Science.gov (United States)

    Montoya, Isaac D

    2008-11-01

    E-detailing can be best described as the use of information technology in the field of pharmaceutical detailing. It is becoming highly popular among pharmaceutical companies because it maximizes the time of the sales force, cuts down the cost of detailing and increases physician prescribing. Thus, the application of information technology is proving to be beneficial to both physicians and pharmaceutical companies. When e-detailing was introduced in 1996, it was limited to the US; however, numerous other countries soon adopted this novel approach to detailing and now it is popular in many developed nations. The objective of this paper is to demonstrate the rapid growth of e-detailing in the field of pharmaceutical marketing. A review of e-detailing literature was conducted in addition to personal conversations with physicians. E-detailing has the potential to reduce marketing costs, increase accessibility to physicians and offer many of the advantages of face-to-face detailing. E-detailing is gaining acceptance among physicians because they can access the information of a pharmaceutical product at their own time and convenience. However, the drug safety aspect of e-detailing has not been examined and e-detailing remains a supplement to traditional detailing and is not yet a replacement to it.

  11. The analysis with the code TANK of a postulated reactivity-insertion transient in a 10-MW MAPLE research reactor

    International Nuclear Information System (INIS)

    Ellis, R.J.

    1990-10-01

    This report discusses the analysis of a postulated loss-of-regulation (LOR) accident in a metal-fuelled MAPLE Research Reactor. The selected transient scenario involves a slow LOR from low reactor power; the control rods are assumed to withdraw slowly until a trip at 12 MW halts the withdrawal. The simulation was performed using the space-time reactor kinetics computer code TANK, and modelling the reactor in detail in two dimensions and in two neutron-energy groups. Emphasis in this report is placed on the modelling techniques used in TANK and the physics considerations of the analysis

  12. Combined preliminary–detailed design of wind turbines

    Directory of Open Access Journals (Sweden)

    P. Bortolotti

    2016-05-01

    Full Text Available This paper is concerned with the holistic optimization of wind turbines. A multi-disciplinary optimization procedure is presented that marries the overall sizing of the machine in terms of rotor diameter and tower height (often termed “preliminary design” with the detailed sizing of its aerodynamic and structural components. The proposed combined preliminary–detailed approach sizes the overall machine while taking into full account the subtle and complicated couplings that arise due to the mutual effects of aerodynamic and structural choices. Since controls play a central role in dictating performance and loads, control laws are also updated accordingly during optimization. As part of the approach, rotor and tower are sized simultaneously, even in this case capturing the mutual effects of one component over the other due to the tip clearance constraint. The procedure, here driven by detailed models of the cost of energy, results in a complete aero-structural design of the machine, including its associated control laws. The proposed methods are tested on the redesign of two wind turbines, a 2.2 MW onshore machine and a large 10 MW offshore one. In both cases, the optimization leads to significant changes with respect to the initial baseline configurations, with noticeable reductions in the cost of energy. The novel procedures are also exercised on the design of low-induction rotors for both considered wind turbines, showing that they are typically not competitive with conventional high-efficiency rotors.

  13. The new 6 MW gas turbine for the power generation; Die neue 6 MW Gasturbine fuer die Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Blaswich, Michael; Theis, Sascha [MAN Diesel and Turbo SE, Oberhausen (Germany)

    2012-07-01

    MAN Diesel and Turbo SE (Oberhausen, Federal Republic of Germany) had developed a new gas turbine in the 6 MW class. This device is the founding stone for a family of gas turbines which at first cover the power range from 6 to 8 MW for the propulsion of pumps, compressors and electric devices. The two-shaft industrial gas turbine consists of a gas generator with an axial compressor with eleven levels, six external single combustion chambers, one two-step high-pressure turbine and a two-step power turbine. Beside the two-shaft industrial gas turbine, there exists a single-shaft industrial gas turbine for the power generation. The single-shaft industrial gas turbine consists of three turbine stages, a gas turbine compressor and combustion chamber being identical in construction to the two-shaft industrial gas turbine. The gas turbine package contains the gas turbine module as well as a filter module. The gas turbine was successfully tested. Further tests and the commissioning of the first customer's plant are planned for this year.

  14. 15 MW HArdware-in-the-loop Grid Simulation Project

    Energy Technology Data Exchange (ETDEWEB)

    Rigas, Nikolaos [Clemson Univ., SC (United States); Fox, John Curtiss [Clemson Univ., SC (United States); Collins, Randy [Clemson Univ., SC (United States); Tuten, James [Clemson Univ., SC (United States); Salem, Thomas [Clemson Univ., SC (United States); McKinney, Mark [Clemson Univ., SC (United States); Hadidi, Ramtin [Clemson Univ., SC (United States); Gislason, Benjamin [Clemson Univ., SC (United States); Boessneck, Eric [Clemson Univ., SC (United States); Leonard, Jesse [Clemson Univ., SC (United States)

    2014-10-31

    The 15MW Hardware-in-the-loop (HIL) Grid Simulator project was to (1) design, (2) construct and (3) commission a state-of-the-art grid integration testing facility for testing of multi-megawatt devices through a ‘shared facility’ model open to all innovators to promote the rapid introduction of new technology in the energy market to lower the cost of energy delivered. The 15 MW HIL Grid Simulator project now serves as the cornerstone of the Duke Energy Electric Grid Research, Innovation and Development (eGRID) Center. This project leveraged the 24 kV utility interconnection and electrical infrastructure of the US DOE EERE funded WTDTF project at the Clemson University Restoration Institute in North Charleston, SC. Additionally, the project has spurred interest from other technology sectors, including large PV inverter and energy storage testing and several leading edge research proposals dealing with smart grid technologies, grid modernization and grid cyber security. The key components of the project are the power amplifier units capable of providing up to 20MW of defined power to the research grid. The project has also developed a one of a kind solution to performing fault ride-through testing by combining a reactive divider network and a large power converter into a hybrid method. This unique hybrid method of performing fault ride-through analysis will allow for the research team at the eGRID Center to investigate the complex differences between the alternative methods of performing fault ride-through evaluations and will ultimately further the science behind this testing. With the final goal of being able to perform HIL experiments and demonstration projects, the eGRID team undertook a significant challenge with respect to developing a control system that is capable of communicating with several different pieces of equipment with different communication protocols in real-time. The eGRID team developed a custom fiber optical network that is based upon FPGA

  15. Operating results of 220 MW SKODA saturated steam turbines

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    One of the steam turbines produced by the SKODA Works, the 220 MW steam turbine for saturated admission steam of a speed of 3000 r.p.m. is described; it is used in nuclear power plants with 400 MW PWR type reactors. 16 units of 8 turbines each have been in operation in the Jaslovske Bohunice and Dukovany power plants with the total period of operation of all machines exceeding 750,000 hours. The 220 MW steam turbine consists of a two-flow high-pressure section and of two identical two-flow low-pressure sections. The pressure of saturated steam at the inlet of the high-pressure section is 4.32 MPa (the corresponding temperature of the saturation limit being 255 degC) and during the expansion in the high-pressure section it drops to 0.6 MPa; steam moisture reaches 12%. In a separator and two-stage reheater using blend steam, the steam is freed of the moisture and is reheated to a temperature of 217 degC. Some operational problems are discussed, as are the loss of the material of the stator parts of the high-pressure section due to corrosion-erosion wear and corrosion-erosion wear of the guide wheels of the high-pressure section, and measures are presented carried out for the reduction of the corrosion-erosion effects of wet steam. One of the serious problems were the fatigue fractures of the blades of the 4th high-pressure stage, which appeared after 20 000 to 24 000 hours of operation in the dented tee-root. The guide wheels of the 4th stage were substituted by new guide wheels with uniform pitch of the channels and with increased number of guide blades. Also discussed are the dynamic behavior of the low-pressure section of the bridge structure, the operating reliability and the heat off-take for water heating of long-distance heating systems. (Z.S.) 9 figs

  16. Influences on physicians' adoption of electronic detailing (e-detailing).

    Science.gov (United States)

    Alkhateeb, Fadi M; Doucette, William R

    2009-01-01

    E-detailing means using digital technology: internet, video conferencing and interactive voice response. There are two types of e-detailing: interactive (virtual) and video. Currently, little is known about what factors influence physicians' adoption of e-detailing. The objectives of this study were to test a model of physicians' adoption of e-detailing and to describe physicians using e-detailing. A mail survey was sent to a random sample of 2000 physicians practicing in Iowa. Binomial logistic regression was used to test the model of influences on physician adoption of e-detailing. On the basis of Rogers' model of adoption, the independent variables included relative advantage, compatibility, complexity, peer influence, attitudes, years in practice, presence of restrictive access to traditional detailing, type of specialty, academic affiliation, type of practice setting and control variables. A total of 671 responses were received giving a response rate of 34.7%. A total of 141 physicians (21.0%) reported using of e-detailing. The overall adoption model for using either type of e-detailing was found to be significant. Relative advantage, peer influence, attitudes, type of specialty, presence of restrictive access and years of practice had significant influences on physician adoption of e-detailing. The model of adoption of innovation is useful to explain physicians' adoption of e-detailing.

  17. Multi-technology control centre to integrate 460 MW renewables

    International Nuclear Information System (INIS)

    2016-01-01

    The new RWE Innogy Aersa Control Centre that has been certified to act as an interface with CECRE (the Renewable Energy Control Centre) since February 2015, connects RWE’s 20 renewable energy facilities with REE, the Spanish Electricity Grid. As a result, it ensures that wind farms, in addition to hydropower and solar plants, can inject the energy generated by its 460 MW installed safely and with no penalties. Green Eagle Solutions, a provider of software solutions for renewable energy companies, has collaborated with RWE in the development of this Control Centre, meeting the high standards of quality and safety required by RWE. This centre uses CompactSCADA® technology to integrate power generation facilities that need to be integrated in a Control Centre to communicate with REE’s CECRE. (Author)

  18. Loss analysis of a 1 MW class HTS synchronous motor

    International Nuclear Information System (INIS)

    Baik, S K; Kwon, Y K; Kim, H M; Lee, J D; Kim, Y C; Park, H J; Kwon, W S; Park, G S

    2009-01-01

    The HTS (High-Temperature Superconducting) synchronous motor has advantages over the conventional synchronous motor such as smaller size and higher efficiency. Higher efficiency is due to smaller loss than the conventional motor, so it is important to do loss analysis in order to develop a machine with higher efficiency. This paper deals with machine losses those are dissipated in each part of a HTS synchronous motor. These losses are analyzed theoretically and compared with loss data obtained from experimental results of a 1 MW class HTS synchronous motor. Each machine loss is measured based on IEEE 115 standard and the results are analyzed and considered based on the manufacturing of the test machine.

  19. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation

  20. Stability characteristics of the 500 mw Indian PFBR

    Directory of Open Access Journals (Sweden)

    Anuraj Vijayan L.

    2015-01-01

    Full Text Available After the successful operation of the fast breeder test reactor for over two decades, India is now nearing the completion of a 500 MW (electrical prototype fast breeder reactor. This commercial scale power reactor is a sodium-cooled, pool-type, mixed-oxide fuelled fast reactor. The stability characteristics of the reactor are an important safety aspect to be studied. In the present work, linear stability of the prototype fast breeder reactor analysis is carried out using the transfer function method, while the stability of the system is checked via the Nyquist criteria. For the completeness of the study, transient analysis with various kinds of reactivity perturbations was carried out. The response of the system in both cases indicated that the system is stable.

  1. SECURE-400 MW: Failure analysis and calculation of release

    International Nuclear Information System (INIS)

    Bento, J.-P.

    1978-11-01

    The environmental effects of SECURE-400 MW has been investigated for normal operation and after an accident. When calculating the doses during normal operation it has been assumed that 0.1 % of the fuel elements in the core have fuel cladding damages. The doses after an accident have been calculated only for the cases when there might be an effect on the environment: accidents at change of fuel, fracture of the biggest gas pipe and fracture of the main coolant loop. The result of the investigation is that a core melting accident in SECURE 400 is impossible due to the design of the different systems. Other typs of accidents which might happen will give extremly low doses to the environment. The doses will not differ significantly from doses during normal operation. (K.K.)

  2. Project and characteristics of a 5MW experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1986-05-01

    Characteristics of a 5 MW experimental fast reactor are reported. The reactor is designed with emphasis on fuel and materials irradiation and uses fuel assemblies of a standard structure. The reference core consist of 37 fuel assemblies, each of which contains 19 pins of metallic Pu/Zr fuel. With a core height of 17.6 cm the core volume is 11.4 liter and the central fast (E >=100 KeV) flux is 0.9 x 10 15 n/cm 2 sec. In addition to twelve control rod assemblies with a total reactivity worth of 5.5% Δk, 42 assemblies for reactivity compensation are placed in the two rings outside the core. Replacing these assemblies with driver, blanket, or refletor-shield assemblies, large reactivities can be added to make the central assembly position available for test irradiations and to assure high levels of burnup of driver assemblies. (Author) [pt

  3. Studi Pemanfaatan Limbah Padat dari Perkebunan Kelapa Sawit pada PLTU 6 MW di Bangka Belitung

    Directory of Open Access Journals (Sweden)

    Harris Harris

    2013-03-01

    Full Text Available Limbah padat dari perkebunan kelapa sawit berupa cangkang dan fibre dapat dimanfaatkan sebagai sumber energi alternatif pada PLTU. Cangkang memiliki kandungan energi sebesar 4115 kkal/kg dan fibre sebesar 3500 kkal/kg. Cangkang dan fibre dimanfaatkan sebagai bahan bakar pada PLTU 6 MW, yang digunakan untuk memanaskan air didalam boiler sehingga menghasilkan temperatur uap dan tekanan uap yang mampu memutar turbin uap. Turbin uap berfungsi sebagai prime mover untuk memutar generator sehingga menghasilkan output berupa daya listrik. Pada saat menggunakan bahan bakar cangkang PLTU 6 MW menghasilkan ouput rata – rata sebesar 4.8 MW/hr dan dalam 1 MW output membutuhkan 1.02 ton cangkang dan pada saat menggunakan bahan bakar fibre PLTU 6 MW menghasilkan output rata – rata 2.3 MW/hr dan dalam 1 MW output membutuhkan 1.83 ton fibre. Karena lebih optimal dalam pengoperasian serta maksimalnya output yang dihasilkan dari bahan bakar cangkang, maka efisiensinya pun lebih baik. Efisiensi PLTU 6 MW pada saat menggunakan bahan bakar cangkang sebesar 20.5 % dan efisiensi PLTU 6 MW dari bahan bakar fibre 13 %. Oleh karena itu bahan bakar cangkang merupakan bahan bakar utama yang digunakan pada PLTU 6 MW.

  4. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  5. On Detailing in Contemporary Architecture

    DEFF Research Database (Denmark)

    Kristensen, Claus; Kirkegaard, Poul Henning

    2010-01-01

    Details in architecture have a significant influence on how architecture is experienced. One can touch the materials and analyse the detailing - thus details give valuable information about the architectural scheme as a whole. The absence of perceptual stimulation like details and materiality...... / tactility can blur the meaning of the architecture and turn it into an empty statement. The present paper will outline detailing in contemporary architecture and discuss the issue with respect to architectural quality. Architectural cases considered as sublime piece of architecture will be presented...

  6. Fast protection circuit for 1 MW Klystron based RF system of Low Energy High Intensity Proton Accelerator (LEHIPA)

    International Nuclear Information System (INIS)

    Shrotriya, Sandip; Shiju, A.; Patel, N.R.; Pande, Manjiri; Singh, P.

    2014-01-01

    This paper describes the details of a hardwired protection circuit designed and developed for 1 MW Klystron based Radio Frequency (RF) System. The hardwired protection circuit protects the klystron from fault conditions occurring in high power DC supplies, other bias supplies and inside the klystron itself. Fast response of the order of 1-2 microseconds is necessary in case of critical signals for the protection of such a high power system. The system needs to handle around 10 critical signals comprising of optical signals and different digital signals. In case of malfunction in the existing controller based interlock and protection system, klystron will be protected by this hardwired protection circuit. The hardwired circuit will provide redundant protection and protect the klystron from damage. This circuit and controller based protection system are operating in parallel. This paper describes details of a purely hardwired protection circuit developed for critical signals for achieving reliability and faster response time requirements of the RF system. (author)

  7. Details

    Indian Academy of Sciences (India)

    teju

    2018-05-04

    May 4, 2018 ... ... selected candidate is required to work with Accounts Officer and assist in ... in website of Public Financial Management System etc., and carry out .... Duties also include coordination and liaison with Chief Editors and other ...

  8. Details

    Indian Academy of Sciences (India)

    Admin

    IASc), an institution under the Department of Science &. Technology, Government of India publishes scholarly journals, thematic books and other publications. The Academy currently publishes 10 journals in various disciplines in science.

  9. Details

    Indian Academy of Sciences (India)

    The incumbent should have passed Diploma in Secretarial Practice or Bachelors of Commerce with at least 50% marks. Should be proficient in typing, shorthand and MS office. Age: Not more than. 25 years as on 1 April 2017. Preference will be given to male candidates. Experience: 2 years experience in the administrative ...

  10. 2 MW 110 GHz ECH heating system for DIII-D

    International Nuclear Information System (INIS)

    Moeller, C.; Prater, R.; Callis, R.; Remsen, D.; Doane, J.; Cary, W.; Phelps, R.; Tupper, M.

    1990-09-01

    A 2 MW 110 GHz ECH system using Varian 0.5 MW gyrotrons is under construction for use on the DIII-D tokamak by late 1991. Most of the components are being design and fabricated at General Atomics, including the gyrotron tanks, superconducting magnets, and transmission line. These components are intended for operation with 10 second pulses and, in the future, with 1 MW gyrotrons. 6 refs., 5 figs

  11. Design and test of a 2.25-MW transformer rectifier assembly

    Science.gov (United States)

    Cormier, R.; Daeges, J.

    1989-01-01

    A new 2.25-MW transformer rectifier assembly was fabricated for DSS-13 at Goldstone, California. The transformer rectifier will provide constant output power of 2.25 MW at any voltage from 31 kV to 125 kV. This will give a new capability of 1 MW of RF power at X-band, provided appropriate microwave tubes are in the power amplifier. A description of the design and test results is presented.

  12. Synthesis, structure and optical properties of two isotypic crystals, Na3MO4Cl (M=W, Mo)

    International Nuclear Information System (INIS)

    Han, Shujuan; Bai, Chunyan; Zhang, Bingbing; Yang, Zhihua; Pan, Shilie

    2016-01-01

    Two isotypic compounds, Na 3 MO 4 Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na 3 WO 4 Cl and a=7.4942(12), c=5.3409(18) for Na 3 MoO 4 Cl. The structure exhibits a 3D network built up by the ClNa 6 groups, and the MO 4 groups reside in the tunnels of the 3D network. The structural similarities and differences between Na 3 MO 4 Cl (M=W, Mo) and Sr 3 MO 4 F (M=Al, Ga) have been discussed. Meanwhile, detailed structure comparison analyses between Na 3 MO 4 Cl (M=W, Mo) and Na 3 MO 4 F (M=W, Mo) indicate that the different connection modes of ClNa 6 and FNa 6 make Na 3 MO 4 Cl and Na 3 MO 4 F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na 3 WO 4 Cl and Na 3 MoO 4 Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na 3 MO 4 Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa 6 groups, and the MO 4 groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na 3 MO 4 Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa 6 , and WO 4 lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.

  13. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    OpenAIRE

    Tan Jiqiu; Zhong Dingqing; Wang Qiong

    2014-01-01

    In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction fie...

  14. The detail is dead - long live the detail!

    DEFF Research Database (Denmark)

    Larsen, Steen Nepper; Dalgaard, Kim; Kerstens, Vencent

    2018-01-01

    architecture when we look into architectural history. Too classic examples are; Adolf Loos who provoked already in 1908 with his statement; "Ornament and Crime", which contested the unconscious decorations of contemporary architects. Similarly, referring to the little need for superfluous detailing; "Less...... not change the fact that it is more important than ever to bring this 'small' architectural world to attention. Today, the construction industry is dictated by an economic management that does not leave much room for thorough studies of architectural details or visionary experiments. Today's more efficient......_Delft about the Symposium; "The Detail is Dead - Long Live the Detail". For this occasion a number of leading Danish and Northern European architects, researchers and companies were invited to discuss and suggest their 'architectural detail' and the challenges they face in today's construction. This book...

  15. Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.

    1979-07-01

    A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)

  16. The first test results of the new MAN 6 MW gas turbine; Erste Erprobungsergebnisse zur neuen 6-MW-MAN-Gasturbine

    Energy Technology Data Exchange (ETDEWEB)

    Beukenberg, Markus; Wiedermann, Alexander; Orth, Ulrich; Aschenbruck, Emil; Reiss, Frank [MAN Diesel und Turbo SE, Oberhausen (Germany)

    2011-07-01

    The development of a completely new series of gas turbines requires significant capital, resources and know-how. MAN Diesel and Turbo strategically decided to create a gas turbine in the 6 MW class. The construction of the gas turbine has been on the basis of opportunities in current and future markets and the positioning of competition, this has determined the characteristics and technical parameters which have been optimised in the 6 MW design. (orig.)

  17. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  18. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  19. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  20. NASA Ames Research Center 60 MW Power Supply Modernization

    Science.gov (United States)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  1. Power Electronic System for Multi-MW PV sites

    DEFF Research Database (Denmark)

    Paasch, Kasper

    in Sønderborg (DK) was implemented. A total of 17 PV-inverters have been monitored during a period exceeding one year and the recorded data constitutes the basis of this investigation. A part of the 2.1 MW PV plant was reconfigured to emulate the behavior of a central-inverter and solar panels distributed over...... a distance of 160 m. In parallel a string based inverter configuration was established with solar panels at the same locations. An analysis of irradiation data recorded during the test period showed that non-uniform irradiance due to moving clouds is expected to influence the PV plants for less than 4.......4%. A portable IV-scanning instrument for the fast long term characterization of solar panels was developed as part of the project. Each second a sweep of the IV-characteristics of a solar panel is performed and the result stored for later analysis. The instrument is based on an active load, is optimized...

  2. Design of a 100 MW X-band klystron

    International Nuclear Information System (INIS)

    Eppley, K.

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 KV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and rf efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program. 3 refs., 6 figs., 2 tabs

  3. Design of a 100 MW X-band klystron

    Science.gov (United States)

    Eppley, Kenneth

    1989-02-01

    Future linear colliders will require klystrons with higher peak power at higher frequency than are currently in use. SLAC is currently designing a 100 MW klystron at 11.4 GHz as a prototype for such a tube. The gun has been designed for 440 kV and 510 amps. Transporting this beam through a 5 mm radius X-band drift tube presents the major design problem. The area convergence ratio of 190 to one is over ten times higher than is found in conventional klystrons. Even with high magnetic fields of 6 to 7 kilogauss careful matching is required to prevent excessive scalloping. Extensive EGUN and CONDOR simulations have been made to optimize the transmission and RF efficiency. The EGUN simulations indicate that better matching is possible by using resonant magnetic focusing. CONDOR calculations indicate efficiencies of 45 percent are possible with a double output cavity. We will discuss the results of the simulations and the status of the experimental program.

  4. Probabilistic safety assessment for Balakovo 1000 MW NPP

    International Nuclear Information System (INIS)

    Foden, R.W.

    1995-01-01

    In July 1993 the Commission of the European Communities (CEC) placed a contract with NNC Ltd (National Nuclear Corporation) for performing a Probabilistic Safety Assessment (PSA) for a 1000 MW NPP in the Russian Federation. The contract is part (Project 3.1) of the 1991 TACIS (Technical Assistance to the CIS) programme. This paper describes the objectives and scope of the Project and provides a description of the progress that has been made. For this Project, NNC is the leader of a Consortium of Western European companies that has been formed to undertake this Project and other Projects in the TACIS 91 programme. NNC therefore has overall responsibility for the coordination and management of the complete PSA Project. Other members of the Consortium involved in this Project are Empresarios Agrupados from Spain, Belgatom from Belgium and AEA-Technology from the UK. The analytical work for the Project is performed by the Russian Company Atomenergoproekt in Moscow, under contract to NNC. The official recipient institution for the results of the Project is the Russian Utility, Rosenergatom. The NPP chosen to be the subject of the Project is the Balakovo Unit 4 VVER 1000. (author)

  5. Experiences and results from Elkraft 1 MW wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Raben, N; Jensen, F V [SEAS Distribution A.m.b.A., Wind Power Dept., Haslev (Denmark); Oeye, S [DTU, Inst. for Energiteknik, Lyngby (Denmark); Markkilde Petersen, S; Antoniou, I [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The Elkraft 1 MW Demonstration wind turbine was at the time of installation in 1993 the largest stall controlled wind turbine in the world. It was constructed to allow accurate comparison of two different forms of operation: pitch control and stall control. A comprehensive programme for the investigation of the two operation modes was established. This paper presents the main experiences from five years of operation and measurements. For a three-year period the wind turbine was in operation in stall controlled mode. During this period the turbine faced problems of various significance. Especially lightning strikes and unusually poor wind conditions caused delays of the project. In early 1997, the wind turbine was modified to enable pitch controlled operation. The gearbox ratio was changed in order to allow higher rotor speed, the hydraulic system was altered and new control software was installed. Tests were carried out successfully during the spring of 1997 and the wind turbine has since been operating as a pitch controlled wind turbine. The most significant events and problems are presented and commented in this paper along with results from the measurement programme. The results cover both stall and pitch controlled operation and include power curves, annual energy production, structural loads, fatigue loads etc. (au) 10 refs.

  6. From concept to construction: a 15 MW small hydro project

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.; Neegan, K.

    1995-12-31

    An audio recording of an address by Chief Stanley Stephens and Deputy-Chief Ken Neegan of the Constance Lake First Nation, at the Renewable Energy Commercial Trade Show and Markets Conference was presented. The speech concerned development of a 15 MW hydro project on the reservation. Stephens recalled how initial opposition was overcome by addressing simple misconceptions about the project. The project was initiated by the Ontario Energy Corporation with a series of community discussions which addressed environmental impacts, and benefits that would result from the project. Neegan explained that after deliberation and negotiations, the Constance Lake First Nation was pleased with the project. This project was evidence that sound partnership could be formed between First Nations and hydro developers, while preserving respect for `Mother Earth` in the process. Trust between the community, the developers and government was considered to be the critical component of the project. Sound legal, technical, environmental and financial information was also indispensable in allowing the Constance Lake First Nation to make its decision to proceed with the project.

  7. From concept to construction: a 15 MW small hydro project

    International Nuclear Information System (INIS)

    Stephens, S.; Neegan, K.

    1995-01-01

    An audio recording of an address by Chief Stanley Stephens and Deputy-Chief Ken Neegan of the Constance Lake First Nation, at the Renewable Energy Commercial Trade Show and Markets Conference was presented. The speech concerned development of a 15 MW hydro project on the reservation. Stephens recalled how initial opposition was overcome by addressing simple misconceptions about the project. The project was initiated by the Ontario Energy Corporation with a series of community discussions which addressed environmental impacts, and benefits that would result from the project. Neegan explained that after deliberation and negotiations, the Constance Lake First Nation was pleased with the project. This project was evidence that sound partnership could be formed between First Nations and hydro developers, while preserving respect for 'Mother Earth' in the process. Trust between the community, the developers and government was considered to be the critical component of the project. Sound legal, technical, environmental and financial information was also indispensable in allowing the Constance Lake First Nation to make its decision to proceed with the project

  8. CFD-based design load analysis of 5MW offshore wind turbine

    Science.gov (United States)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  9. Mitsubishi latest coal fired USC boiler technology (CFE Pacifico 700 MW)

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Sakamoto, K. [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Power Systems; Fujitab, M. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan). Power Systems

    2013-07-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has successfully completed commissioning work for CFE (Comision Federal de Electricidad) Pacifico 700 MW coal-fired unit in March 2010 which is the first supercritical unit in Latin America. This supercritical boiler was designed with state of the art technologies such as low NOx burners, high fineness pulverizers, advanced vertical furnace wall technology and so on. Especially the advanced vertical furnace wall technology with some improvements is a key technology to realize swift load changes such as 5% load per minute ramping rate with assuring dynamic characteristics. Recently the requirement of the high efficiency and the swift load changes for the power boilers has been increased so that even a coal-fired unit needs flexible operation characteristics for balancing variety of power sources. One of the challenges for the swift load change is to keep the furnace wall metal temperature low during the load change, which the advanced vertical furnace wall could realize. The report describes the features of the unit and commissioning result including load swing test results in details.

  10. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)

    Science.gov (United States)

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-01

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  11. Neutronic Analysis of the 3 MW TRIGA MARK II Research Reactor, Part I: Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Huda, M.Q.; Chakrobortty, T.K.; Rahman, M.; Sarker, M.M.; Mahmood, M.S.

    2003-05-01

    This study deals with the neutronic analysis of the current core configuration of a 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh and validation of the results by benchmarking with the experimental, operational and available Final Safety Analysis Report (FSAR) values. The three-dimensional continuous-energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the TRIGA core. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Continuous energy cross-section data from ENDF/B-VI and S(α, β) scattering functions from the ENDF/B-V library were used. The validation of the model against benchmark experimental results is presented. The MCNP predictions and the experimentally determined values are found to be in very good agreement, which indicates that the Monte Carlo model is correctly simulating the TRIGA reactor. (author)

  12. Equipment for maintenance and repair of 900 MW PWR units in France

    International Nuclear Information System (INIS)

    Blary, F.; Castaing, C.; Haessig, M.

    1984-01-01

    As of March 1984, Electricite de France has been operating twenty-seven 900 MW PWR power units. To cut down unit unavailability and reduce the dosimetric requirements of maintenance staff, a wide range of special devices for inspecting and repairing equipment has been designed; details of 64 operational devices and a further 18 still being developed are given in a maintenance catalogue. This special equipment, together with maintenance and repair procedures, has been devised in collaboration with Framatome, the constructor of the nuclear island. One particular problem resolved was that of replacing the pins of the upper internals (UI) of 21 operational units, preventive measures having been taken at the other units. The strategy adopted consisted, first, in setting up a pin-changing workshop to enable the pins and guide tubes to be replaced separately and, second, in devising and applying wherever possible a method for partially replacing the guide tubes outside the critical path of the outage by means of a mobile pool known as the 'Aquarium'. (author)

  13. Maintenance concept of the gas turbine in a 1640 MW direct cycle HTR

    International Nuclear Information System (INIS)

    Schmied, H.; Karaus, H.; Schenker, E.

    1981-01-01

    The description which follows refers to a helium-cooled high-temperature reactor with a gas turbine and a thermal output of 1640 MW. The turbomachine which comes into contact with the cooling gas is contaminated with radioactivity during its operation. For the maintenance of the turbomachine, a major inspection is planned at six-year intervals. This overhaul involves disassembling and dismantling the turbomachine. Two minor inspections, at two-year intervals, are planned between the major inspections. The minor inspections involve inspection of the bearings, for which purpose the turbomachine does not have to be disassembled and dismantled. This paper presents in summarized form the sequence in which the maintenance work is to be carried out for both the major and minor inspections. The shutdown time and the collective dose were estimated to this end. Costs have not yet been determined. Details of the concept are given and significant results from the areas dealing with release, deposition and decontamination have been appropriately adapted

  14. A 34 MW, 120 MJ pulsed dc supply for the UK tokamak reactor ''DITE''

    International Nuclear Information System (INIS)

    Fry, M.G.J.

    1978-01-01

    A static rectifier set supplying as much as 120 MJ of energy at a peak power of 34 MW to the toroidal magnet coils in the DITE experiment is described in detail. The power supply is designed to meet the stringent requirements concerning the maximum admissible peak reactive power. The rectifier is divided into two series-connected sections, one with diode bridges providing a fixed voltage, the other with thyristors which may work in either the rectifier or line-commutated inverter mode. The rectifier transformers are preceded by mechanical line-voltage regulators of the patented ''Interstep'' types, which comprise dual-voltage 11/33 kV tapped autotransformers and tap selection switches. Four parallel-connected thyristor bridges are used, perfect current sharing being assured by independent control of firing circuits. The firing circuits consist of non-conventional pulse generators and pulse amplifiers. Trains of precisely timed firing pulses are produced by using the phase-lock loop technique and the TTL logic. An extremely high noise immunity is achieved. (J.U.)

  15. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-01-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized

  16. The application of safeguards design principles to the spent fuel bundle counter for 600 MW

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1978-10-01

    The irradiated fuel bundle counters for CANDU 600 MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent fuel storage bay at each inspection. Their function is straightforward: to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ΣintelligentΣ instruments which have required a major development program. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A Microprocessor analyzes the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnomal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  17. 6MW solar plant integration feasibility study : Bonaire island case study

    NARCIS (Netherlands)

    Sun, Yin; De Jong, Erik; Cuk, Vladimir; Cobben, Sjef

    2016-01-01

    The power supply on Bonaire is characterized by a high penetration of wind energy. Currently 5 diesel generators (total capacity 14MW) and 12 wind turbines (total capacity 10.8MW) operated by ContourGlobal generate electricity for Water and Electricity Bonaire (WEB). To meet future power demand

  18. Design features of Beijing Shijingshan 3 x 200 MW cogeneration plant

    International Nuclear Information System (INIS)

    Li, T.X.; Ou, Y.Z.

    1991-01-01

    This paper describes the design feature of Beijing Shijingshan 3 x 200 MW Cogeneration Plant. The design optimized the scheme and system of 200 MW units for heating. The cogeneration plant has achieved comprehensive economic benefit in energy saving and environmental pollution reduction

  19. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  20. Revitalization of Tuzla Thermal Power Plant's Unit 3 (100 MW)

    International Nuclear Information System (INIS)

    Sakovic, A.; Praso, N.

    1998-01-01

    Power Plant Revitalization is a highly ranged concept essentially aimed at continued operations of the generating unit at, or near, rated capacities for the rest of the economic life of the plant or even for an extended life. In essence, the need to rehabilitate may arise due to reasons such as low availability factor, low efficiency, increasing operating and maintenance costs, loss of reliability, drop in safety of plant and personnel, poor maintainability or environmental requirements. The term revitalization is therefore normally used in the context to cover the range of activities including repairing components, replacing equipment, modifying systems, adding new system and equipment and perhaps restoration to rated capacities. This exercise on already complex power generation process will naturally require the application of various technologies in order to ensure a safe and efficient installation of electricity supply. In normal conditions of producing and consumption of electricity (load demands) in order to answer the question of what kind of revitalization to undertake it is necessary to state at the very beginning: - whether it is necessary, from the point of equipment wear-out, to revitalize all equipment at once (one-phase revitalization), or - whether it is possible to postpone the revitalization of a part of equipment for the next period (phased revitalization). Both concepts have some specific advantages and disadvantages. In essence the decision-making process between these two approaches, three basic conditions should be considered: technical-technological adequacy, energy-economy adequacy and financial adequacy. This paper covers general considerations, approach and methodology implemented during the revitalization the Tuzla Thermal Power Plant's Unit 3 (100MW) which was imposed by urgent demands of the Power System, the war conditions and financial possibilities including: - General data on TPP Tuzla and Unit 3 - Scope of work and economic effects

  1. TRIGA 14 MW spent fuel shipment to USA

    International Nuclear Information System (INIS)

    Toma, C.; Barbos, D.; Preda, M.; Covaci, St.; Ciocanescu, M.

    2008-01-01

    Romania has begun to convert Pitesti TRIGA 14 MW reactor having HEU fuel in its first loading and has agreed to complete conversion of the reactor to LEU fuel by May 12, 2006. Thus it became possible to benefit of US policy as set forth in the Record of Decision (ROD) issued by the Department of Energy (DOE ) on May 13 , 1996 directed for acceptance, management and disposition of the Authorized Material which has been discharged from the foreign research reactors. Consequently, United States, DOE Idaho Operations Office and Institute for Nuclear Research at Pitesti, Romania have mutually agreed the terms and conditions set forth in a contract applicable to the receipt of the Authorized Material. Irradiated and spent nuclear fuel rods from TRIGA reactor containing uranium enriched in the United States that have met the requirements set forth in the Environmental Impact Statement and the ROD have been designated as 'Authorized Material' and transferred to Idaho National Engineering and Environmental Laboratory (INEEL)- USA during the summer of 1999 in a joint shipment. 267 TRIGA spent fuel rods loaded in a Legal Weight Truck Shipping Cask belonging to the NAC International have been transported through an overland truck route from Pitesti, Romania to Koper, Slovenia and from there it was shipped to USA. The paper has the following contents: 1.Introduction; 2.Fuel rods selection; 3.Fuel rods characterization; 4.Evaluation of TRIGA fuel in wet storage; 5.Fuel rods transfer from TRIGA pool to the transport cask; 6.Supporting documentation for transfer approval; 7. Conclusions. In conclusion one is stressed that, on site fuel evaluation process evidenced the existence of very good running and storage conditions in reactor pool during reactor operation and fuel storage. Only one fuel rod had to be packaged prior to placement in the shipping cask because of damaged cladding during negligent handling

  2. Flow measurement in a 170-MW hydraulic turbine using the Gibson method; Medicion del flujo de una turbina hidraulica de 170 MW utilizando el metodo Gibson

    Energy Technology Data Exchange (ETDEWEB)

    Urquiza, Gustavo [Universidad Autonoma del Estado de Morelos (Mexico); Adamkowski, Adam [The Szewalski Institute of Fluid-Flow Machinery (Poland); Kubiak, Janusz; Sierra, Fernando [Universidad Autonoma del Estado de Morelos (Mexico); Janicki, Waldemar [The Szewalski Institute of Fluid-Flow Machinery (Poland); Fernandez, J. Manuel [Comision Federal de Electricidad (Mexico)

    2007-07-15

    This paper describes the methodology applied for measuring water flow through a 170-MW hydraulic turbine. The flow rate was measured using the pressure-time method, also known as the Gibson method. This method uses the well-known water hammer phenomenon in pipelines; in turbine penstocks, for instance. The version of this method used here is based on measuring, during total stop of the water stream, the time-history of pressure change in one section of the turbine penstock and relate it to the pressure in the upper reservoir to which the penstock is connected. The volumetric flow rate is determined from the relevant integration of the measured temporary pressure rise. Flow measurement was possible this way because the influence of the penstock inlet was negligible as far as an error of the measurement is concerned. The length of the penstock was 300 m. Previous experience and a standard IEC-41-1991 were the criteria adopted and applied. A fast and efficient acquisition system, including a 16 bit card, was used. The flow rate was calculated using a computer program developed and tested on several cases. The results obtained with the Gibson method were used for calibration of the on-line flow measuring system based on the Winter-Kennedy method as one of the index methods. This method is very often used for continuous monitoring of the flow rate through hydraulic turbines, when the calibration has been done on site by using the results of measurements obtained by the absolute method. Having measured the flow rate and output power, the efficiency was calculated for any operating conditions. A curve showing the best operating conditions based on the highest efficiency is presented and discussed. The details of the instrumentation, its installation, and the results obtained are discussed in the paper. [Spanish] Este articulo describe la metodologia aplicada para la medicion del flujo en una turbina hidraulica de 170 MW. El flujo se midio utilizando el metodo de presion

  3. Design and safety considerations for the 10 MW(t) multipurpose TRIGA reactor in Thailand

    International Nuclear Information System (INIS)

    Razvi, J.; Bolin, J.M.; Saurwein, J.J.; Whittemore, W.L.; Proongmuang, S.

    1999-01-01

    General Atomics (GA) is constructing the Ongkharak Nuclear Research Center (ONRC) near Bangkok, Thailand for the Office of Atomic Energy for Peace. The ONRC complex includes the following: A multipurpose 10 MW(t) research reactor; An Isotope Production Facility; Centralized Radioactive Waste Processing and Storage Facilities. The Center is being built 60-km northeast of Bangkok, with a 10 MW(t) TRIGA type research reactor as the centerpiece. Facilities are included for neutron transmutation doping of silicon, neutron capture therapy neutron beam research and for production of a variety of radioisotopes. The facility will also be utilized for applied research and technology development as well as training in reactor operations, conduct of experiments and in reactor physics. The multipurpose, pool-type reactor will be fueled with high-density (45 wt%), low-enriched (19.7 wt%) uranium-erbium-zirconium-hydride (UErZrH) fuel rods, cooled and moderated by light water, and reflected by beryllium and heavy water. The general arrangement of the reactor and auxiliary pool structure allows irradiated targets to be transferred entirely under water from their irradiation locations to the hot cell, then pneumatically transferred to the adjacent Isotope Production Facility for processing. The core configuration includes 4 x 4 array standard TRIGA fuel clusters, modified clusters to serve as fast-neutron irradiation facilities, control rods and an in-core Ir-192 production facility. The active core is reflected on two sides by beryllium and on the other two sides by D 2 O. Additional irradiation facilities are also located in the beryllium reflector blocks and the D 2 O reflector blanket. The fuel provides the fundamental safety feature of the ONRC reactor, and as a result of all the well established accident-mitigating characteristics of the UErZrH fuel itself (large prompt negative temperature coefficient of reactivity, fission product retention and chemical stability), a

  4. Methodological Details and Full Bibliography

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset has several components, The first part describes fully our literature review, providing details not included in the text. The second part provides all...

  5. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    Science.gov (United States)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  6. EURISOL-DS Multi-MW Target Comparative Neutronic Performance of the Baseline Configuration vs. the Hg-Jet Option

    CERN Document Server

    Herrera-Martínez, A

    2006-01-01

    This technical report summarises the comparative study between several design options for the Multi-MW target station performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS) [1]. Previous analyses were carried out, using the Monte Carlo code FLUKA [2], to determine optimal values for relevant parameters in the target design [3] and to analyse a preliminary Multi-MW target assembly configuration [4]. The second report showed that the aimed fission rates, i.e. ~1015 fissions/s, could be achieved with such a configuration. Nevertheless, a preliminary study of the target assembly integration [5] suggested reducing some of the dimensions. Moreover, the yields of specific isotopes have yet to be assessed and compared to other target configurations. This note presents a detailed comparison of the baseline configuration and the Hg-jet option, in terms of primary and neutron distribution, power densities and fission product yields. A scaled-down versi...

  7. The low enriched fuel cycle in the GA 1160 MW design and the switch-over to thorium

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.

    1974-03-15

    Calculations for the GA 1160 MW HTR are presented. The aim of these investigations was to compare the Low Enriched Uranium (LEU) cycle and the Thorium cycle for the GA 1160 MW HTR both using the same GA designed integral block fuel element. The total fuel cycle cost for the equilibrium cycle comes out to be about 16% cheaper for the Thorium cycle than for the Low-Enriched cycle. However, these favorable results for the thorium cycle are completely dependent on the availability of reprocessing and refabrication facilities, for costs comparable with the costs used for these investigations. The possibility of starting the reactor on a LEU 3 year cycle and later switching over to a thorium 4 year cycle was investigated. No cost penalties were found to be paid during the switch-over. The problems of local power peaks and age factors were not investigated in greater detail as only integral physical quantities were obtained from the neutron physics calculations. However, no indications of any problem in the switch-over phase were given. Elaborate 3-dimensional methods are necessary for further investigation of these types of problems.

  8. Nuclear research reactor 0.5 to 3 MW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-15

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW{sub TH}, with a minimum thermal neutron flux of approx, 10{sup 13} n/cm{sup 2}{center_dot}sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor

  9. Nuclear research reactor 0.5 to 3 MW

    International Nuclear Information System (INIS)

    1992-05-01

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW TH , with a minimum thermal neutron flux of approx, 10 13 n/cm 2 ·sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor building has a ventilation

  10. 3D electromagnetic design and electrical characteristics analysis of a 10-MW-class hightemperature superconducting synchronous generator for wind power

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Le, T. D.; Kim, H. M.

    2014-01-01

    In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

  11. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    Directory of Open Access Journals (Sweden)

    Tan Jiqiu

    2014-05-01

    Full Text Available In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction field of MW- level vertical axis wind turbine tower has little effect on the modal vibration mode, but has a great effect on its natural frequency and the maximum deformation, and the influence will decrease with increasing of modal order; MW-level vertical axis wind turbine tower needs to be raised the stiffness and strength, its structure also needs to be optimized; In the case of satisfy the intensity, the larger the ratio of the tower height and wind turbines diameter, the more soft the MW-level vertical axis wind turbine tower, the lower its frequency.

  12. Reaction of the immune system to low-level RF/MW exposures

    International Nuclear Information System (INIS)

    Szmigielski, Stanislaw

    2013-01-01

    Radiofrequency (RF) and microwave (MW) radiation have been used in the modern world for many years. The rapidly increasing use of cellular phones in recent years has seen increased interest in relation to the possible health effects of exposure to RF/MW radiation. In 2011 a group of international experts organized by the IARC (International Agency for Research on Cancer in Lyon) concluded that RF/MW radiations should be listed as a possible carcinogen (group 2B) for humans. The incomplete knowledge of RF/MW-related cancer risks has initiated searches for biological indicators sensitive enough to measure the “weak biological influence” of RF/MWs. One of the main candidates is the immune system, which is able to react in a measurable way to discrete environmental stimuli. In this review, the impacts of weak RF/MW fields, including cell phone radiation, on various immune functions, both in vitro and in vivo, are discussed. The bulk of available evidence clearly indicates that various shifts in the number and/or activity of immunocompetent cells are possible, however the results are inconsistent. For example, a number of lymphocyte functions have been found to be enhanced and weakened within single experiments based on exposure to similar intensities of MW radiation. Certain premises exist which indicate that, in general, short-term exposure to weak MW radiation may temporarily stimulate certain humoral or cellular immune functions, while prolonged irradiation inhibits the same functions

  13. Energy and Exergy Analysis of 210 MW Jamshoro Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Muhib Ali Rajper

    2016-04-01

    Full Text Available In this paper, thermodynamic analysis of 210 MW dual-fire, subcritical, reheat steam power plant, situated near Jamshoro, Pakistan has been performed. Firstly, the plant is modeled by EES (Engineering Equation Solver software. Moreover; a parametric study is performed to assess the impacts of various operating parameters on the performance. The net power output, energy efficiency and exergy efficiency are considered as performance parameters of the plant whereas, condenser pressure, main steam pressure and main steam temperature are nominated as operating parameters. According to the results, the net power output, energy efficiency and exergy efficiency are determined as 186.5 MW, 31.37% and 30.41% respectively, under design operating conditions. The condenser contributed a major share in the total energy loss i.e. 280 MW (68.7% followed by boiler with 89 MW (21.8%. The major exergy destructing area is found in the boiler with 350 MW (82.11% of the total exergy destruction followed by turbine with 43.1 MW (10.12% and condenser 12 MW (5.74 %. According to the parametric study, variation in operating parameters had great influence on the plant performance

  14. Reaction of the immune system to low-level RF/MW exposures

    Energy Technology Data Exchange (ETDEWEB)

    Szmigielski, Stanislaw, E-mail: szmigielski@wihe.waw.pl

    2013-06-01

    Radiofrequency (RF) and microwave (MW) radiation have been used in the modern world for many years. The rapidly increasing use of cellular phones in recent years has seen increased interest in relation to the possible health effects of exposure to RF/MW radiation. In 2011 a group of international experts organized by the IARC (International Agency for Research on Cancer in Lyon) concluded that RF/MW radiations should be listed as a possible carcinogen (group 2B) for humans. The incomplete knowledge of RF/MW-related cancer risks has initiated searches for biological indicators sensitive enough to measure the “weak biological influence” of RF/MWs. One of the main candidates is the immune system, which is able to react in a measurable way to discrete environmental stimuli. In this review, the impacts of weak RF/MW fields, including cell phone radiation, on various immune functions, both in vitro and in vivo, are discussed. The bulk of available evidence clearly indicates that various shifts in the number and/or activity of immunocompetent cells are possible, however the results are inconsistent. For example, a number of lymphocyte functions have been found to be enhanced and weakened within single experiments based on exposure to similar intensities of MW radiation. Certain premises exist which indicate that, in general, short-term exposure to weak MW radiation may temporarily stimulate certain humoral or cellular immune functions, while prolonged irradiation inhibits the same functions.

  15. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    Science.gov (United States)

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  16. Monte Carlo simulation of a research reactor with nominal power of 7 MW to design new control safety rods

    Energy Technology Data Exchange (ETDEWEB)

    Shoushtari, M.K.; Kakavand, T. [Faculty of Science, University of Zanjan, Zanjan, P.O. Box 451-313 (Iran, Islamic Republic of); Sadat Kiai, S.M., E-mail: sadatkiai@yahoo.co [Nuclear Science and Technology Research Institute (NSTR), Nuclear Science Research, A.E.O.I., P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Ghaforian, H. [Faculty of Science and Technology of Marine, Tehran (Iran, Islamic Republic of)

    2010-03-01

    The Monte Carlo simulation has been established for a research reactor with nominal power of 7 MW. A detailed model of the reactor core was employed including standard and control fuel elements, reflectors, irradiation channels, control rods, reactor pool and thermal column. The following physical parameters of reactor core were calculated for the present LEU core: core reactivity (rho), control rod (CR) worth, thermal and epithermal neutron flux distributions, shutdown margin and delayed neutron fraction. Reduction of unfavorable effects of blockage probability of control safety rod (CSR)s in their interiors because of not enough space in their sites, and lack of suitable capabilities to fabricate very thin plates for CSR cladding, is the main aim of the present study. Making the absorber rod thinner and CSR cladding thicker by introducing a better blackness absorbing material and a new stainless steel alloy, respectively, are two studied ways to reduce the effects of mentioned problems.

  17. Commissioning of indigenous microwave test facility for development and pilot production of 2 MW S-band magnetrons

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.; Prasad, Sharda

    2005-01-01

    To have self reliance in the field of microwave devices and to have consistent supply of pulsed magnetrons for the Indian accelerator programme. CAT initiated development of 2 MW S-Band pulsed magnetrons in collaboration with CEERI, Pilani. The design, development and testing of the microwave test facilities for ageing. conditioning and performance testing of Indian magnetrons, was successfully done by CAT indigenously. After the rigorous testing. the test facility was shifted, installed and commissioned at CEERI, Pilani by CAT. Over a period of 10 years, nine prototypes were aged and tested, two magnetrons were life tested and five magnetrons under production programme have been successfully conditioned and tested. Testing of more numbers is underway. The system details. commissioning aspects are discussed, results are shown. (author)

  18. Failure investigation of a secondary super heater tube in a 140 MW thermal power plant

    Directory of Open Access Journals (Sweden)

    Atanu Saha

    2017-04-01

    Full Text Available This article describes the findings of a detailed investigation into the failure of a secondary super heater tube in a 140 MW thermal power plant. Preliminary macroscopic examinations along with visual examination, dimensional measurement and chemical analysis were carried out to deduce the probable cause of failure. In addition optical microscopy was a necessary supplement to understand the cause of failure. It was concluded that the tube had failed due to severe creep damage caused by high metal temperature during service. The probable causes of high metal temperature may be in sufficient flow of steam due to partial blockage, presence of thick oxide scale on ID surface, high flue gas temperature etc. rupture.

  19. 100 MW anthracite culm CFB small power producer

    International Nuclear Information System (INIS)

    McKenzie, R.; Wilhelm, B.

    1991-01-01

    This paper will discuss the development and design aspects of the Schuylkill Energy Resources, Inc., St. Nicholas Cogeneration Project. The project is an anthracite culm-fired 80 MWe qualifying cogeneration facility. The project is privately financed, owned, and is to be operated to produce process steam for commercial use along with cogenerating electricity for sale to the local utility. This paper highlights (1) the details of the power sales agreement with Pennsylvania Power and Light Company, (2) the development of the project for third-party financing, (3) and the design considerations for fueling the facility with anthracite culm

  20. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  1. DAGAL: Detailed Anatomy of Galaxies

    Science.gov (United States)

    Knapen, Johan H.

    2017-03-01

    The current IAU Symposium is closely connected to the EU-funded network DAGAL (Detailed Anatomy of Galaxies), with the final annual network meeting of DAGAL being at the core of this international symposium. In this short paper, we give an overview of DAGAL, its training activities, and some of the scientific advances that have been made under its umbrella.

  2. Energy and exergy evaluation of a 220MW thermal power plant ...

    African Journals Online (AJOL)

    Energy and exergy evaluation of a 220MW thermal power plant. ... Nigerian Journal of Technology ... At the variation of environmental or dead state temperature, ther e were no appreciable changes in the values of exergy efficiency of the ...

  3. 2000 MW(t) HTGR-DC-GT Modesto Site dry cooled model 346 concice

    International Nuclear Information System (INIS)

    1979-07-01

    Construction information is presented for a 800 MW(e) HTGR power reactor. The information is itemized for each reactor component or system and incudes quantity, labor hours, labor cost, material cost, and total costs

  4. The heating operational summarization in three winters of a 5 MW test heating reactor

    International Nuclear Information System (INIS)

    Wang Dazhong; Dong Duo; Su Qingshan; Zhang Yajun

    1992-09-01

    The 5 MW THR (5 MW test heating reactor) is a new type reactor with inherent safety developed by INET (Institute of Nuclear Energy Technology). It is the first 'pressure vessel type' heating reactor in operation in the world. It was put into operation in November, 1989. Since then it has operated for three winter seasons. The total operation time has reached to 8174 hours and its availability of heating has reached to 99%. The advanced technology of this reactor has been proved in the past three years operation. The characteristics of power regulating, load following, reactivity disturbance and the variation of parameters under the condition of ATWS (anticipated transients without scram) were studied with experiments in 5 MW THR. The 5 MW THR is an ideal heating reactor and has outstanding performances

  5. Reactor control and protection of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhu Jinping; Sun Jiliang

    1996-01-01

    The control and protection simulation of Qinshan 300 MW Nuclear Power Unit, including the nuclear control, the pressurizer pressure control, the pressurizer level control, the rod control, the reactor shutdown protection and engineered safety feature etc are briefly introduced

  6. Seismic strengthening of overhead roads between reactor buildings of WWER-1000 MW type NPP

    International Nuclear Information System (INIS)

    Stoyanov, G.; Jordanov, M.

    2005-01-01

    This paper presents results obtained during the upgrading design of overhead roads (OHR) between WWER-1000 MW Reactor Units at Kozloduy NPP. In order to avoid the deficiencies of OHR seismic capacity different approaches were developed based on the site and structure specifics. Overhead roads are precasted RC structures. They consist of pedestrian gallery and pipeline RC box, connecting reactor buildings with auxiliary building. They are mounted at approximately 10 m above ground level. The overhead roads are evaluated at their as-is status and a seismic upgrading of the structure is designed. The analysis of the upgraded structure is performed for Review Level Earthquake (RLE). Soil-Structure Interaction (SSI) effects are taken into account through equivalent soil springs with frequency adjusted stiffnesses. The upgraded structure is checked for conformance with the specially developed technical design specification based on International, US and Bulgarian standards and codes, taking into account site specific conditions. The general approach is consistent with up-to-date practice for evaluation and upgrade of nuclear power plant facilities. The existing site conditions and Owner's requirements are taken into account during development of the upgrading. The proposed upgrading measures can be divided in two major categories global and local. Special attention is paid to improvement of the ductile behavior of the structure through new detailing and upgrading of existing connection. These measures are grouped in two final design concepts and after a comparative study one of them is chosen for implementation. For the upgraded structure response spectra are derived at locations where equipment is attached. (authors)

  7. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J.; Leo, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); O`Shea, T.P. [Santa Clara Demonstration Project, CA (United States)

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  8. Investigation of in service inspection for pressure vessel of the 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    He Shuyan; Yin Ming; Liu Junjie; Chang Huanjian; Zhou Ningning

    1997-01-01

    The Nuclear District Heating Reactor (NHR) is a new type of reactor. There are some differences in the arrangement of the primary circuit components and in safety features between NHR and PWR or other reactors. In this paper the safety features of the 200 MW NHR are described. The failure probability, the LBB property and the in-service inspection requirement for the 200 MW NHR pressure vessel are also discussed. (author). 16 refs, 6 figs, 4 tabs

  9. Development of over-1 MW gyrotrons for the LHD and the GAMMA 10 ECH systems

    International Nuclear Information System (INIS)

    Imai, T.; Kariya, T.; Minami, R.

    2010-11-01

    For the ECH upgrade program of LHD and GAMMA10, over-1 MW power gyrotrons have been developed in the joint program of NIFS and University of Tsukuba. The gyrotrons for LHD and GAMMA 10 have TE 18,6 cavity and a diamond window at 77 GHz, and with TE 8,3 cavity at 28 GHz, respectively. The maximum outputs obtained are 1.9 MW for 0.1 s on the 77 GHz LHD tube and ∼ 1 MW on the 28 GHz one, which are the new records in these frequency ranges. The results of 1.8 MW for 1 s, 1.6 MW for 1.8s, 1 MW for 5 s, 300 kW for 40 min and 200 kW for 75 min were achieved at 77 GHz. In the long pulse operation, it is found that the stray RF is the major cause limiting the pulse length. Design improvements of the diffraction loss, the cavity and pitch factor α (=v sub(perpendicular)/v sub(parallel)) dispersion of the MIG have made the 77 GHz tube performance better, which have enabled to demonstrate 1.9 MW output and long pulse operation for more than 1 hour with 200 kW. The three 77 GHz gyrotrons have already been installed in the LHD ECH system and more than 3 MW has been injected into LHD plasma. In the 28 GHz long pulse operation, 400 kW for 1 sec has been obtained and it is found the higher and longer pulse operation would be possible with the operation optimization and conditioning. (author)

  10. Design of a tunable 4-MW Free Electron Maser for heating fusion plasmas

    International Nuclear Information System (INIS)

    Caplan, M.; Kamin, G.; Shang, C.C.; Lindquist, W.

    1993-09-01

    There is an ongoing program at the FOM institute, The Netherlands, to develop a 1-MW, long-pulse, 200-Ghz Free Electron Maser (FEM) using a DC accelerator system with depressed collector. We present an extrapolation of this design to more than 4MW of output microwave power in order to reduce the cost per kW and increase the power per module in a plasma heating system

  11. Design of a tunable 4-MW free electron maser for heating fusion plasmas

    International Nuclear Information System (INIS)

    Caplan, M.; Kamin, G.; Shang, C.C.; Lindquist, W.

    1993-01-01

    There is an ongoing program at the FOM institute, The Netherlands, to develop a 1 -MW, long-pulse, 200-GHz Free Electron Maser (FEM) using a DC accelerator system with depressed collector. The authors present an extrapolation of this design to more than 4 MW of output microwave power in order to reduce the cost per kW and increase the power per module in a plasma heating system

  12. The moment magnitude Mw and the energy magnitude Me: common roots and differences

    OpenAIRE

    2010-01-01

    Abstract Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude Mw and energy magnitude Me is outlined and critically discussed. The formulas for Mw and Me calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical Gutenberg?Richter magnit...

  13. EURISOL-DS MULTI-MW TARGET ISSUES: BEAM WINDOW AND TRANSVERSE FILM TARGET

    CERN Document Server

    Adonai Herrera-Martínez, Yacine Kadi

    The analysis of the EURISOL-DS Multi_MW target precise geometry (Fig.1) has proved that large fission yields can be achieved with a 4 MW, providing a technically feasible design to evacuate the power deposited in the liquid mercury. Different designs for the mercury flow have been proposed, which maintain its temperature below the boiling point with moderate flow speeds (maximum 4 m/s).

  14. Multi-MW target station: Beam Window Issues and Transverse Film Target

    CERN Document Server

    Herrera-Martinez, A

    The analysis of the EURISOL-DS Multi_MW target precise geometry has proved that large fission yields can be achieved with a 4 MW, providing a technically feasible design to evacuate the power deposited in the liquid mercury. Different designs for the mercury flow have been proposed, which maintain its temperature below the boiling point with moderate flow speeds (maximum 4 m/s).

  15. Investigation of in service inspection for pressure vessel of the 200 MW nuclear heating reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shuyan, He; Ming, Yin; Junjie, Liu; Huanjian, Chang; Ningning, Zhou [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The Nuclear District Heating Reactor (NHR) is a new type of reactor. There are some differences in the arrangement of the primary circuit components and in safety features between NHR and PWR or other reactors. In this paper the safety features of the 200 MW NHR are described. The failure probability, the LBB property and the in-service inspection requirement for the 200 MW NHR pressure vessel are also discussed. (author). 16 refs, 6 figs, 4 tabs.

  16. Operation of a 1.3 GHz, 10 MW Multiple Beam Klystron

    CERN Document Server

    Bohlen, H P; Cattelino, M; Cox, L; Cusick, M; Forrest, S; Friedlander, F; Staprans, A; Wright, E; Zitelli, L

    2004-01-01

    Results will be reported for a 1.3 GHz, 10 MW multiple beam klystron that is being developed for the TESLA linear accelerator facility. The design parameters for the device are 10 MW peak RF output power with 150 kW average power, 1.5 ms pulse length, 65% efficiency, 50 dB gain, and 2.0 A/cm2

  17. Performance Analysis of 14 MW Grid-Connected Photovoltaic System

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.; Tawel, Abduraouf M.

    2015-01-01

    Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.(author)

  18. The removal of VOC from air using EB, MW and catalyst - Laboratory plant results

    International Nuclear Information System (INIS)

    Calinescu, I.; Ighigeanu, D.; Martin, D.

    2011-01-01

    A new hybrid technique for the VOCs removal from gases, based on the combined use of EB induced NTP (non-thermal plasma), MW induced NTP and catalytic oxidation, named “EB+MW-plasma catalysis”, is presented. The main goal of our research was to combine the features of each known technique used in gas pollution control, i.e. the very high efficiency of EB in converting VOCs to intermediate products, the ability of MW to produce and sustain NTP in large electrodeless reactors, and the important role of catalysts in the complete conversion to CO 2 and H 2 O. Our experiences shown that the two means of treating the gases are complementary: the catalytic oxidation in the presence of MW is efficient for high VOC initial concentrations and low flow rates while the exclusive use of the EB irradiation determines high decomposition efficiencies only in the case of very low concentrations of VOC but for large flow rates. Real synergistic effects between NTP and catalysis were obtained by introducing the catalyst into the irradiation zone. The main conclusion of this work is that the combined treatment EB+MW+catalyst improves both decomposition efficiency and oxidation efficiency. The EB+MW+Catalysis method demonstrated good results on a wide range of concentrations and flow rates. (author)

  19. The removal of VOC from air using EB, MW and catalyst - Laboratory plant results

    Energy Technology Data Exchange (ETDEWEB)

    Calinescu, I. [Polytechnic University, Bucharest (Romania); Ighigeanu, D.; Martin, D. [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania)

    2011-07-01

    A new hybrid technique for the VOCs removal from gases, based on the combined use of EB induced NTP (non-thermal plasma), MW induced NTP and catalytic oxidation, named “EB+MW-plasma catalysis”, is presented. The main goal of our research was to combine the features of each known technique used in gas pollution control, i.e. the very high efficiency of EB in converting VOCs to intermediate products, the ability of MW to produce and sustain NTP in large electrodeless reactors, and the important role of catalysts in the complete conversion to CO{sub 2} and H{sub 2}O. Our experiences shown that the two means of treating the gases are complementary: the catalytic oxidation in the presence of MW is efficient for high VOC initial concentrations and low flow rates while the exclusive use of the EB irradiation determines high decomposition efficiencies only in the case of very low concentrations of VOC but for large flow rates. Real synergistic effects between NTP and catalysis were obtained by introducing the catalyst into the irradiation zone. The main conclusion of this work is that the combined treatment EB+MW+catalyst improves both decomposition efficiency and oxidation efficiency. The EB+MW+Catalysis method demonstrated good results on a wide range of concentrations and flow rates. (author)

  20. Numerical analysis of loads effect on combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Yang, Weihong; Blasiak, Wlodzimierz [Royal Institute of Technology (KTH), Stockholm (Sweden). Div. of Energy and Furnace Technology; Jankowski, Radoslaw; Kotecki, Michal; Szewczyk, Dariusz [Industrial Combustion Systems (ICS) Company, Poznan (Poland); Brzdekiewicz, Artur [Remak-Rozruch SA, Opole (Poland)

    2013-07-01

    This paper presents numerical study on the combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler. Three different loads have been simulated with combusting coal, 200, 170 and 140 MW, respectively. In order to get as precise as possible numerical analysis results, two-step simulation method has been adopted in this work, namely, air supply system simulation and furnace simulation. After air supply system simulation, the results have been taken as the initial and boundary conditions for furnace simulation. The comparison between the measured values and predicted results from 200 MW case shows much better agreement. According to the simulation results, the adopted two-step simulation method is reasonable and suitable for predicting the characters of the flow and combustion process. It is concluded that the distributions of temperature, O{sub 2} and CO concentration inside furnace with different loads shows good similarly. The total NOx emissions decreased with the boiler load reducing, and fuel NO{sub x} has the same trend as total NO{sub x}, and fuel NO{sub x} account for about 66% in total NO{sub x} in all the three cases. More important, thermal NO{sub x} slowly decreased with the rise of boiler load. More detailed results presented in this paper enhance the understanding of combustion processes and complex flow patterns of front-wall pulverized coal boilers.

  1. Performance review of an indigenously developed high power test stand built for the Indian S-band 5 MW pulsed klystron development

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Baxy, D.; Mulchandani, J.; Hannurkar, P.R.; Joshi, L.M.

    2003-01-01

    CAT took up development of 5 MW S-Band klystrons indigenously in collaboration with CEERI Pilani. The development of klystron prototype is completed. These klystrons are very crucial devices, for energizing the 10-20 MeV electron accelerators, which are developed in the country for various industrial, medical and scientific applications. A test station has been developed indigenously at CAT for these klystrons. It consists of a 12 MW peak power 130 kV klystron pulse modulator, a 1 : 10 pulse transformer, 130 kV high voltage deck having high voltage pulse divider, pulse current transformer as well indigenously built klystron socket, filament supplies, klystron support structure and pulse transformer oil tank. After development/rigorous testing the test stand was shifted to CEERI and was installed and commissioned there by CAT. Gun collector test module and prototypes of the 5 MW klystron were tested, aged and conditioned at high power using this test stand. The details of the system / test results are discussed

  2. Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: fault movement investigation and seismic hazard analysis

    Science.gov (United States)

    Jiang, Zhongshan; Huang, Dingfa; Yuan, Linguo; Hassan, Abubakr; Zhang, Lupeng; Yang, Zhongrong

    2018-04-01

    The 2016 moment magnitude (Mw) 7.8 Kaikoura earthquake demonstrated that multiple fault segments can undergo rupture during a single seismic event. Here, we employ Global Positioning System (GPS) observations and geodetic modeling methods to create detailed images of coseismic slip and postseismic afterslip associated with the Kaikoura earthquake. Our optimal geodetic coseismic model suggests that rupture not only occurred on shallow crustal faults but also to some extent at the Hikurangi subduction interface. The GPS-inverted moment release during the earthquake is equivalent to a Mw 7.9 event. The near-field postseismic deformation is mainly derived from right-lateral strike-slip motions on shallow crustal faults. The afterslip did not only significantly extend northeastward on the Needles fault but also appeared at the plate interface, slowly releasing energy over the past 6 months, equivalent to a Mw 7.3 earthquake. Coulomb stress changes induced by coseismic deformation exhibit complex patterns and diversity at different depths, undoubtedly reflecting multi-fault rupture complexity associated with the earthquake. The Coulomb stress can reach several MPa during coseismic deformation, which can explain the trigger mechanisms of afterslip in two high-slip regions and the majority of aftershocks. Based on the deformation characteristics of the Kaikoura earthquake, interseismic plate coverage, and historical earthquakes, we conclude that Wellington is under higher seismic threat after the earthquake and great attention should be paid to potential large earthquake disasters in the near future.[Figure not available: see fulltext.

  3. Development of over 1 MW and multi-frequency gyrotrons for fusion

    International Nuclear Information System (INIS)

    Imai, T.; Kariya, T.; Minami, R.; Numakura, T.; Kato, T.; Endo, Y.; Ichimura, M.; Eguchi, T.; Mitsunaka, Y.; Shimozuma, T.; Kubo, S.; Takahashi, H.; Yoshimura, Y.; Igami, H.; Ito, S.; Mutoh, T.; Sakamoto, Keishi; Idei, H.; Zushi, H.; Nagasaki, K.; Sano, F.; Ono, M.

    2014-10-01

    The development of wide frequency range from 14 to 300 GHz of high power mega-watt gyrotron for fusion is in progress in University of Tsukuba. The strong development activity was carried out in collaboration with JAEA, NIFS, TETD and universities. Over-1 MW dual frequency gyrotron of new frequency range (14 – 35 GHz), where the reduction of diffraction loss and cathode optimization are quite important, has been developed for EC/EBW H and CD for GAMMA 10/PDX, QUEST, Heliotron J and NSTX-U. Output power of 1.25 MW at 28 GHz and estimated oscillation power of 1.2 MW at 35.45 GHz from the same tube have been achieved with the cathode angle improvement and two frequency window. This is the first demonstration of the over 1 MW dual-frequency operations in lower frequency, which contributes to the technology of wide band multi-frequency/multi-MW tube. The output power of 600 kW for 2 s at 28 GHz is also demonstrated. It is applied to the QUEST and has resulted higher EC-driven current than ever. As for higher frequency range, in the joint program of NIFS and Tsukuba for LHD ECH gyrotrons, a new frequency of 154 GHz has been successfully developed with a TE 28,8 cavity, which delivered 1.16 MW for 1 s and the total power of 4.4 MW to LHD plasma with other three 77 GHz tubes, which extended the LHD plasma to high T e region. All these gyrotron performances are new records in each frequency range. The sub-THz gyrotron development is also just begun in collaboration with JAEA for Demo-Reactor ECH system. (author)

  4. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    Science.gov (United States)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active

  5. Detailed clinical models: a review.

    Science.gov (United States)

    Goossen, William; Goossen-Baremans, Anneke; van der Zel, Michael

    2010-12-01

    Due to the increasing use of electronic patient records and other health care information technology, we see an increase in requests to utilize these data. A highly level of standardization is required during the gathering of these data in the clinical context in order to use it for analyses. Detailed Clinical Models (DCM) have been created toward this purpose and several initiatives have been implemented in various parts of the world to create standardized models. This paper presents a review of DCM. Two types of analyses are presented; one comparing DCM against health care information architectures and a second bottom up approach from concept analysis to representation. In addition core parts of the draft ISO standard 13972 on DCM are used such as clinician involvement, data element specification, modeling, meta information, and repository and governance. SIX INITIATIVES WERE SELECTED: Intermountain Healthcare, 13606/OpenEHR Archetypes, Clinical Templates, Clinical Contents Models, Health Level 7 templates, and Dutch Detailed Clinical Models. Each model selected was reviewed for their overall development, involvement of clinicians, use of data types, code bindings, expressing semantics, modeling, meta information, use of repository and governance. Using both a top down and bottom up approach to comparison reveals many commonalties and differences between initiatives. Important differences include the use of or lack of a reference model and expressiveness of models. Applying clinical data element standards facilitates the use of conceptual DCM models in different technical representations.

  6. Analysis of seismicity and stress before and after the Mw 8.1 Pisagua, Chile, 2014 earthquake

    Science.gov (United States)

    Grigoli, F.; Cesca, S.; Dahm, T.; Hainzl, S.

    2014-12-01

    On April 1st, 2014 at 23:46:50 UTC, a powerful earthquake of magnitude Mw 8.1 occurred offshore the Northern Chile in the region of the North Chilean seismic gap. The epicenter of the earthquake was approximately 50 km offshore the Chilean coast, near the town of Pisagua. Two days after the main event a Mw 7.6 aftershock struck approximately the same area. In order to identify spatio-temporal changes of source parameters and stress before and after the mainshock, we analyzed in detail the local seismicity above magnitude Mw 3.0 within the time period 01/01/2013-30/04/2014 and estimated long term trends in b-values and earthquake productivity. We used data from the IPOC (Integrated Plate boundary Observatory Chile) regional seismic network, consisting of 20 "in land" broadband station deployed and managed by the GFZ-Potsdam. The recorded earthquake catalog shows an intense foreshock activity consisting of more than 1000 M3+ events in the source region. Full waveform techniques are used to derive both locations and focal mechanisms of about 435 seismic events. The location process has been performed by using a waveform stacking method (Grigoli et al 2013, 2014) with a layered velocity model based on CRUST 2.0 (see the attached figure for the location results of one of these events). Moment tensor inversion has been performed by using the KIWI tool software (Cesca et al. 2010), which is based on a two-step inversion approach. The first step consists in the inversion of the amplitude spectra to retrieve the best fitting focal planes, while the second inversion step is carried out in time domain to solve the focal mechanism polarity and to obtain the centroid location and time. Both location and moment tensor inversion resulted in agreement with the geodynamical settings of the region. Mapping the b-value reveals a spatiotemporal anomaly of low b-values characterizing the frequency-magnitude distribution of the foreshocks in the source area of the mainshock. Finally

  7. The isolated ˜680 km deep 30 May 2015 MW 7.9 Ogasawara (Bonin) Islands earthquake

    Science.gov (United States)

    Ye, Lingling; Lay, Thorne; Zhan, Zhongwen; Kanamori, Hiroo; Hao, Jin-Lai

    2016-01-01

    Deep-focus earthquakes, located in very high-pressure conditions 300 to 700 km below the Earth's surface within sinking slabs of relatively cold oceanic lithosphere, are mysterious phenomena. The largest recorded deep-focus earthquake (MW 7.9) in the Izu-Bonin slab struck on 30 May 2015 beneath the Ogasawara (Bonin) Islands, isolated from prior seismicity by over 100 km in depth, and followed by only a few small aftershocks. Globally, this is the deepest (680 km centroid depth) event with MW ≥ 7.8 in the seismological record. Seismicity indicates along-strike contortion of the Izu-Bonin slab, with horizontal flattening near a depth of 550 km in the Izu region and rapid steepening to near-vertical toward the south above the location of the 2015 event. This event was exceptionally well-recorded by seismic stations around the world, allowing detailed constraints to be placed on the source process. Analyses of a large global data set of P, SH and pP seismic phases using short-period back-projection, subevent directivity, and broadband finite-fault inversion indicate that the mainshock ruptured a shallowly-dipping fault plane with patchy slip that spread over a distance of ∼40 km with a multi-stage expansion rate (∼ 5 + km /s down-dip initially, ∼3 km/s up-dip later). During the 17 s total rupture duration the radiated energy was ∼ 3.3 ×1016 J and the stress drop was ∼38 MPa. The radiation efficiency is moderate (0.34), intermediate to that of the 1994 Bolivia and 2013 Sea of Okhotsk MW 8.3 deep earthquakes, indicating that source processes of very large deep earthquakes sample a wide range of behavior from dissipative, more viscous failure to very brittle failure. The isolated occurrence of the event, much deeper than the apparently thermally-bounded distribution of Bonin-slab seismicity above 600 km depth, suggests that localized stress concentration associated with the pronounced deformation of the Izu-Bonin slab and proximity to the 660-km phase

  8. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  9. The Macroseismic Intensity Distribution of the 30 October 2016 Earthquake in Central Italy (Mw 6.6): Seismotectonic Implications

    Science.gov (United States)

    Galli, Paolo; Castenetto, Sergio; Peronace, Edoardo

    2017-10-01

    The central Italy Apennines were rocket in 2016 by the strongest earthquakes of the past 35 years. Two main shocks (Mw 6.2 and Mw 6.6) between the end of August and October caused the death of almost 300 people, and the destruction of 50 villages and small towns scattered along 40 km in the hanging wall of the N165° striking Mount Vettore fault system, that is, the structure responsible for the earthquakes. The 24 August southern earthquake, besides causing all the casualties, razed to the ground the small medieval town of Amatrice and dozens of hamlets around it. The 30 October main shock crushed definitely all the villages of the whole epicentral area (up to 11 intensity degree), extending northward the level of destruction and inducing heavy damage even to the 30 km far Camerino town. The survey of the macroseismic effects started the same day of the first main shock and continued during the whole seismic sequence, even during and after the strong earthquakes at the end of October, allowing the definition of a detailed picture of the damage distribution, day by day. Here we present the results of the final survey in terms of Mercalli-Cancani-Sieberg intensity, which account for the cumulative effects of the whole 2016 sequence (465 intensity data points, besides 435 related to the 24 August and 54 to the 26 October events, respectively). The distribution of the highest intensity data points evidenced the lack of any possible overlap between the 2016 earthquakes and the strongest earthquakes of the region, making this sequence a unique case in the seismic history of Italy. In turn, the cross matching with published paleoseismic data provided some interesting insights concerning the seismogenic behavior of the Mount Vettore fault in comparison with other active normal faults of the region.

  10. Experience in a 6.2 MW{sub e} pressurized fluidized bed gasifier with high ash Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, G.; Rajasekaran, A.; Periyakaruppan, V.; Krishnamoorthy, S. [Bharat Heavy Electricals Ltd., Tiruchirappalli (India)

    2006-07-01

    Bharat Heavy Electrical Limited has installed a 165 tons/day air-blown pressurized fluidized bed gasifier (PFBG) as an add-on to their 6.2 MW IGCC demonstration plant and has operated it for more than 4000 hours. Improvements in the gasifier refractory lining, ash extraction and cooling devices, air distribution and temperature measuring devices were incorporated to improve the reliability and performance. Coal with 30-42% ash and high calorific value in the range of 15-20 MJ/kg was used during these operations with crushed coal of 1-4 mm as well as -6 mm coal with fines. Tests were conducted at gasifier pressure of 0.3-1.0 MPa, fluidized bed temperature of 980-1050{sup o}C and at various fluidized velocities and air to steam ratios. Once through carbon conversion efficiency of 90%, cold gas efficiency of 69% and dry gas calorific value of 4.4-4.6 MJ/Nm{sup 3} were obtained. About 15% char in fly ash (with 40% ash coal) was established by TGA. Seal pot system was added for recyling fly ash from the first cyclone to enhance carbon conversion, other parameters and to reduce the char in fly ash to acceptable level. Trends and correlations were established for constituents of gas, carbon conversion efficiency, cold gas efficiency, calorific value of gas and gas yield. BHEL is currently working with a partner to install a 125 MW IGCC plant. The paper elaborates the schematic and constructional details of the PFBG, operating experience and performance. 3 refs., 9 figs.

  11. The ANSS response to the Mw 5.8 Central Virginia Seismic Zone earthquake of August 23, 2011

    Science.gov (United States)

    McNamara, D. E.; Horton, S.; Benz, H.; Earle, P. S.; Withers, M. M.; Hayes, G. P.; Kim, W. Y.; Chapman, M. C.; Herrmann, R. B.; Petersen, M. D.; Williams, R. A.

    2011-12-01

    An Mw 5.8 earthquake (depth=6km) occurred on August 23, 2011 (17:51:04 UTC) near Mineral, Virginia, which was widely felt from Maine to Georgia along the eastern seaboard and west to Chicago and western Tennessee. The USGS tallied nearly 142,000 felt reports submitted to the Did You Feel It (DYFI) internet community intensity system, making it the most widely felt earthquake since the web-site began, and demonstrating that more people felt this earthquake than any other in U.S. history. Significant damage was reported in the epicentral area and as far away as Washington D.C. (135 km away); minor damage was reported in Baltimore (200 km). The reverse faulting earthquake occurred on a northeast-striking plane within a region of diffuse seismicity known as the Central Virginia Seismic Zone. Within the first week, the mainshock was followed by 17 aftershocks with magnitude greater than 2, including Mw 4.5, 4.2, and 3.8 events. In the days following the mainshock, 46 portable seismic stations were deployed by several organizations, making this among the best-recorded aftershock sequence in the eastern U.S. Within 24 hours of the mainshock, 8 portable stations were deployed in time to record the largest aftershock to date (M4.5). We will present the results of our post-earthquake response, including attenuation and site amplification observations using portable aftershock station data, details on the initial USGS NEIC post earthquake response products and an assessment of the seismotectonics of the Central Virginia Seismic Zone based on aftershock locations and source parameter modeling of the larger earthquakes.

  12. Relaxation on the Ismetpasa segment of the North Anatolian Fault after the Golcuk Mw = 7.4 and Duzce Mw = 7.2 shocks

    Directory of Open Access Journals (Sweden)

    E. Koksal

    2010-12-01

    Full Text Available The Ismetpasa segment of the North Anatolian Fault (NAF is a rare place where aseismic fault slip (creep has been observed. Its creep behaviour has been monitored using different observation methods since the 1950s. The findings obtained from the studies until 1990s showed that the creep rate exponentially decreased before the major shocks in 1999, Golcuk (Mw = 7.4 and Duzce (Mw = 7.2. After these shocks, three GPS periods observation in 2002, 2007 and 2008 were carried out on the geodetic network established around the segment. The evaluations of these observations showed that the creep behaviour relaxed after the major earthquakes. This result demonstrates that the creep behaviour of the Ismetpasa segment might be a warning before future major earthquakes.

  13. Development of MW gyrotrons for fusion devices by University of Tsukuba

    International Nuclear Information System (INIS)

    Minami, R.; Kariya, T.; Imai, T.; Numakura, T.; Endo, Y.; Nakabayashi, H.; Eguchi, T.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.; Ito, S.; Idei, H.; Zushi, H.; Yamaguchi, Y.; Sakamoto, Keishi; Mitsunaka, Y.

    2012-11-01

    Over-1 MW power gyrotrons for electron cyclotron heating (ECH) have been developed in the joint program of NIFS and University of Tsukuba. The obtained maximum outputs are 1.9 MW for 0.1 s on the 77 GHz Large Helical Device (LHD) tube and 1.0 MW for 1 ms on the 28 GHz GAMMA 10 one, which are new records in these frequency ranges. In long pulse operation, 300 kW for 40 min at 77 GHz and 540 kW for 2 s at 28 GHz were achieved. A new program of 154 GHz 1 MW development has started for high density plasma heating in LHD and the first tube has been fabricated. These lower frequency tubes like 77 GHz or 28 GHz one are also important for advanced magnetic fusion devices, which use Electron Bernstein Wave (EBW) heating / current drive. As a next activity of 28 GHz gyrotron, we have already started the development of over-1.5 MW gyrotron and a new design study of 28 GHz / 35 GHz dual frequency gyrotron, which indicates the practicability of the multi-purpose gyrotron. (author)

  14. Source complexity of the May 20, 2012, Mw 5.9, Ferrara (Italy event

    Directory of Open Access Journals (Sweden)

    Davide Piccinini

    2012-10-01

    Full Text Available A Mw 3.9 foreshock on May 19, 2012, at 23:13 UTC, was followed at 02:03 on May 20, 2012, by a Mw 5.9 earthquake that hit a densely populated area in the Po Plain, west of the city of Ferrara, Italy (Figure 1. Over the subsequent 13 days, six Mw >5 events occurred; of these, the most energetic was a Mw 5.8 earthquake on May 29, 2012, 12 km WSW of the main shock. The tragic balance of this sequence was 17 casualties, hundreds of injured, and severe damage to the historical and cultural heritage of the area. From a seismological point of view, the 2012 earthquake was not an outstanding event in its regional context. The same area was hit in 1996 by a Mw 5.4 earthquake [Selvaggi et al. 2001], and previously in 1986 and in 1967 (DBMI11 [Locati et al. 2011]. The most destructive historical event was the 1570, Imax 8 event, which struck the town of Ferrara [Guidoboni et al. 2007, Rovida et al. 2011]. The 2012 seismic sequence lasted for several weeks and probably developed on a well-known buried thrust fault [Basili et al. 2008, Toscani et al. 2009, DISS Working Group 2010], at depths between 2 km and 10-12 km. […

  15. S-band 45 MW peak power test facility at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, A. Yashwant; Reddy, Sivananda; Mulchandani, J.; Mohania, Praveen; Shrivastava, B. Purushottam

    2015-01-01

    RRCAT is engaged in the design and development of high energy electron LINAC as future injectors for the Booster Synchrotron for Indus-1 and Indus-2 SRS. The high energy LINAC will need microwave power over 30 MW depending on the number of structures to be energized. In order to have advance preparations for this development a 45 MW S-Band test facility has been designed and developed at RRCAT. The test stand is built around a 45 MW peak power S-band pulsed klystron, A conventional pulse forming network based modulator for klystron has been designed and developed. The WR-284 waveguide transmission system consisting of dual directional couplers, SF 6 gas pressurization unit, high power waveguide load and arc sensor has been developed and interfaced with the klystron. The klystron has been successfully tested up to 30 MW peak power at 2856 MHz on SF 6 pressurized waveguide line. A solid state S Band driver amplifier up to 1 kW output power was designed developed for driving the klystron. This paper describes the results of 30 MW peak power test of this facility. (author)

  16. Structural Considerations of a 20MW Multi-Rotor Wind Energy System

    Science.gov (United States)

    Jamieson, P.; Branney, M.

    2014-12-01

    The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.

  17. Structural Considerations of a 20MW Multi-Rotor Wind Energy System

    International Nuclear Information System (INIS)

    Jamieson, P; Branney, M

    2014-01-01

    The drive to upscale offshore wind turbines relates especially to possiblereductions in O and M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept

  18. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  19. Devil's in the (diffuse) detail

    International Nuclear Information System (INIS)

    Welberry, R.

    2006-07-01

    X-ray crystallography is an important workhorse in the world of solid-state chemistry. However, while it's a powerful tool in determining the average structure in a crystal lattice, conventional crystallography is very limited when it comes to understanding nano-scale disorder within that crystal structure. And when it comes to understanding the properties of many important materials, the devil is in the detail. X-ray diffraction is still one of the keys to understanding this finer scale structure but using it requires a capacity to read between the lines - to understand the diffuse diffraction that most crystallography ignores. Scientists at the Research School of Chemistry are leading the world in this field. Their work on modelling nano-scaled disorder using diffuse diffraction is opening up new possibilities in understanding and modifying many of our most important materials

  20. Remote Triggering of the Mw 6.9 Hokkaido Earthquake as a Result of the Mw 6.6 Indonesian Earthquake on September 11, 2008

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2012-01-01

    Full Text Available Only just recently, the phenomenon of earthquakes being triggered by a distant earthquake has been well established. Yet, most of the triggered earthquakes have been limited to small earthquakes (M < 3. Also, the exact triggering mechanism for earthquakes is still not clear. Here I show how one strong earthquake (Mw = 6.6 is capable of triggering another (Mw = 6.9 at a remote distance (~4750 km. On September 11, 2008, two strong earthquakes with magnitudes (Mw of 6.6 and 6.9 hit respectively in Indonesia and Japan within a short interval of ~21 minutes time. Careful examination of broadband seismograms recorded in Japan shows that the Hokkaido earthquake occurred just as the surface waves generated by the Indonesia earthquake arrived. Although the peak dynamic stress estimated at the focus of the Hokkaido earthquake was just reaching the lower bound for the capability of triggering earthquakes in general, a more plausible mechanism for triggering an earthquake might be attributed to the change of a fault property by fluid infiltration. These observations suggest that the Hokkaido earthquake was likely triggered from a remote distance by the surface waves generated from the Indonesia earthquake. If some more cases can be observed, a temporal warning of possible interaction between strong earthquakes might be concerned in the future.

  1. Calculational criticality analyses of 10- and 20-MW UF6 freezer/sublimer vessels

    International Nuclear Information System (INIS)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF 6 freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF 6 in each vessel have been considered for uranium enriched between 2 and 5 wt % 235 U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control

  2. 4 MW upgrade to DIII-D FWCD system: System commissioning and initial operation

    International Nuclear Information System (INIS)

    Cary, W.P.; Callis, R.W.; deGrassie, J.S.; Harris, T.E.; O'Neill, R.C.; Pinsker, R.I.; Baity, F.W.; Barber, G.C.; Ferguson, S.W.

    1995-01-01

    The initial installation of the 4 MW fast wave current drive (FWCD) upgrade started in 1992 with the purchase of two ABB/Thomcast AG rf power amplifiers. These amplifiers cover the frequency range 30 MHz to 120 MHz. A maximum output power of over 2 MW between 30 MHz and 80 MHz and 1 MW at 120 MHz were the specification requirements. The system as installed is comprised of the two mentioned rf amplifiers, coaxial transmission and matching components, rf phase and amplitude monitoring, and a SUN SparcStation 10 control system. Due to various reasons almost every major component in the system required redesign and engineering in order to meet the system requirements. The failures, probable cause and the final redesigns will be discussed as well as some thoughts on how better to specify system requirements for future systems

  3. 4 MW upgrade to DIII-D FWCD system: System commissioning and initial operation

    International Nuclear Information System (INIS)

    Cary, W.P.; Callis, R.W.; Grassie, J.S. de; Harris, T.E.; O'Neill, R.C.; Pinsker, R.I.; Baity, F.W.; Barber, G.C.; Ferguson, S.W.

    1995-10-01

    The initial installation of the 4 MW fast wave current drive (FWCD) upgrade started in 1992 with the purchase of two ABB/Thomcast AG rf power amplifiers. These amplifiers cover the frequency range 30 MHz to 120 MHz. A maximum output power of over 2 MW between 30 MHz and 80 MHz and 1 MW at 120 MHz were the specification requirements. The system as installed is comprised of the two mentioned rf amplifiers, coaxial transmission and matching components, rf phase and amplitude monitoring, and a SUN SparcStation 10 control system. Due to various reasons almost every major component in the system required redesign and engineering in order to meet the system requirements. The failures, probable cause and the final redesigns will be discussed as well as some thoughts on how better to specify system requirements for future systems

  4. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.; Hendrickson, S.

    2011-08-01

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  5. Improvement of Candu-1000 MW(e) power cycle by moderator heat recovery

    International Nuclear Information System (INIS)

    Fath, H.E.S.

    1988-01-01

    Four different moderator heat recovery circuits are proposed for CANDU-1000 MW(e) reactors. The proposed circuits utilize all, or part, of the 155 MW(th) moderator heat load (at 70 0 C moderator outlet temperature from calandria) to the first stage of the feed water heating system. An economics study was carried out and indicated that the direct circulation of feed water through the moderator heat exchanger (with full heat recovery) is the most economical scheme. For this scheme the saved steam from the turbine extraction was found to produce additional electric power of 8 MW(e). This additional power represents a 0.7% increase in the plants nominal electric output. The outstanding features and advantages of the selected scheme are also presented. (author)

  6. Initiation process of the Mw 6.2 central Tottori, Japan, earthquake on October 21, 2016: Stress transfer due to its largest foreshock of Mw 4.1

    Science.gov (United States)

    Noda, S.; Ellsworth, W. L.

    2017-12-01

    On October 21, 2016, a strike-slip earthquake with Mw 6.2 occurred in the central Tottori prefecture, Japan. It was preceded by a foreshock sequence that began with a Mw 4.1 event, the largest earthquake for the sequence, and lasted about two hours. According to the JMA catalog, the largest foreshock had a similar focal mechanism as the mainshock and was located in the immediate vicinity of the mainshock hypocenter. The goal of this study is to understand the relationship between the foreshock and the initial rupture of the mainshock. We first determine the relative hypocenter distance between the foreshock and mainshock using the P-wave onsets on Hi-net station records. The initiation points of the two events are likely about 100 m apart according to the current results, but could be closer. Within the location uncertainty, they might either be coplanar or on subparallel planes. Next, we obtain the slip-history models from a kinematic inversion method using empirical Green's functions derived from other foreshocks with M 2.2 - 2.4. The Mw 4.1 foreshock and Mw 6.2 mainshock started in a similar way until approximately 0.2 s after their onsets. For the foreshock, the rapid growth stage completed by 0.2 s even though the rupture propagation continued for 0.4 - 0.5 s longer (note that 0.2 s is significantly shorter than the typical source duration of a Mw 4.1 earthquake). On the other hand, the mainshock rupture continued to grow rapidly after 0.2 s. The comparison between the relative hypocenter locations and the slip models shows that the mainshock nucleated within the area strongly effected by both static and dynamic stress changes created by the foreshock. We also find that the mainshock initially propagated away from the foreshock hypocenter. We consider that the stress transfer process is a key to understand the mainshock nucleation as well as its rupture growth process.

  7. Seismic quiescence before the 2016 Mw 6.0 Amatrice earthquake, central Italy

    Science.gov (United States)

    Di Giovambattista, R.; Gentili, S.; Peresan, A.

    2017-12-01

    Seismic quiescence before major worldwide earthquakes has been reported by many authors. We have analyzed the seismicity preceding the last damaging 2016-2017 seismic sequence occurred in central Italy, and we have characterized the temporal and spatial extension of the foregoing seismic quiescence. The multiple mainshock sequence (24/08/2016, Mw 6.0; 26/10/2016 Mw 5.4 and 5.9; 30/10/2016, Mw 6.5), which occurred in central Italy, caused the death of nearly 300 people and widespread destruction of entire villages. The Mw 6.5 earthquake was the most powerful recorded in Italy since the 1980 M 6.9 Irpinia earthquake. The Region-Time-Length (RTL) method has been used to quantitatively analyze the seismic quiescence preceding the first Mw 6.0 Amatrice mainshock. This analysis was performed using the earthquake catalogue maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) declustered using a novel statistical approach, which is based on the "nearest-neighbor" distances between pairs of earthquakes in the space-time-energy domain. A well-evident quiescence that preceded the sequence was detected. The quiescence extended throughout a broad region north of the epicenter. The largest event of the sequence and its aftershocks covered most of the quiescence region, except for a small area to the west. The quiescence started from the beginning of September 2015 and lasted for approximately 1 year, up to the Amatrice mainshock. The results obtained have been compared with those of previous seismic sequences occurred in Italy. A similar analysis applied to the 1997-1998, Mw 5.7 Umbria-Marche earthquakes located at the northern termination of the Amatrice sequence, showed a decrease in RTL corresponding to a seismic quiescence, followed by a foreshock activation in the epicentral area before the occurrence of the mainshock.

  8. Feasibility study 6 MW Multiwind MWT 6000 Triple Rotor Offshore Wind Turbine

    International Nuclear Information System (INIS)

    De Vries, E.

    2000-08-01

    This report contains results of a feasibility study carried out between September 1999 and January 2000. Multi-rotor technology is rather complex compared to conventional wind turbines, largely due to the increased number of components and (sub)systems. There are on the other hand also indications that the application of MULTIWIND features like the turnable subframe has the potential for a substantial reduction in energy generating costs. The study commenced with a set of preconditions and parameters like masses, dimensions, design features, indicative safety and control systems, etc. The key question to be answered was: 'is it possible to design a large 5 - 6 MW multi-rotor offshore wind turbine which can compete with comparable wind turbines of the same capacity and a single rotor, on the basis of overall concept, market acceptance and Costs of Energy (COE)? The main objectives are (1) to improve understanding of primary dynamic system interactions; (2) to quantify 'white spots' in the MULTIWIND know-how base (solvable problems with state-of-the-art solutions and not (immediately) solvable problems, requiring a technological breakthrough); and (3) to determine critical design parameters for various systems and alternative solutions. Secondary objectives were to analyse various concepts on the basis of technical aspects and Costs Of Energy (COE). The expected results are (1) a viable prototype concept based on proven state-of-the-art design solutions; and (2) clear outlines of a workable and cost effective installation and O and M strategy for large MWT-system optimised offshore wind power plants. For the methodology an integrated concept design approach has been adopted. This is considered essential from a project management, system dynamics, and COE points of view. Starting point were conclusions and recommendations of the lv-Marcon report. The structural design commenced with the positioning of the main yawing system and the conceptual dimensioning of the main

  9. Sequence Control System of 1-MW CW Klystron for the PEFP

    CERN Document Server

    Park, Byoung R; Chun Myung Hwan; Han Yeung Jin; Hyo Jeong Maeng; Kim Sung Chul; Yang Jae Seok; Yu In Ha

    2005-01-01

    Sequence control system of 1-MW CW klystron for the PEFP (Proton Engineering Frontier Project) has been developed in order to drive the 1-MW klystron amplifier. The system is able to control several power supplies and many environment conditions. The hardware of sequence control and the interlock system are based on the Allen-Bradley's SLC500 Program Logic Controller (PLC). Also the system can be controlled by a touch screen at local mode or Ethernet network with high level HMI at remote mode.

  10. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  11. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...

  12. The safety feature of hydraulic driving system of control rod for 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Chi Zongbo; Wu Yuanqiang

    1997-01-01

    The hydraulic driving system of control rod is used as control rod drive mechanism in 200 MW nuclear heating reactor. Design of this system is based on passive system, integrating drive and guide of control rod. The author analyzes the inherent safety and the design safety of this system, with mechanism of control rod not ejecting when the pressure of pressure vessel is lost, and calculating result of core not exposing when the amount of coolant is drained by broken pipe. The results indicate that this system has good safety feature, and assures reactor safety under any accident conditions, providing important technology support for 200 MW nuclear heating reactor with inherent safety feature

  13. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    International Nuclear Information System (INIS)

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L.

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE 15,2,1 interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs

  14. Target station design for a 1 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-01-01

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described

  15. Running-in strategies for the low-enriched 600 MW(e) D-HHT reactor. Part 1. Comparison of different on-load refuelling schemes

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1973-03-14

    This paper presents detailed burn-up calculations and fuel management strategies for the Dragon-HHT, D-HHT, reference core. The reference layout was chosen from the outcome of a design survey with the 1-D equilibrium fuel cycle code FLATTER. The decision was based on aspects of engineering and economics. The purpose of the investigation is to devise a suitable first core, follow the irradiation history of the fuel and the general behaviour of the reactor during the first core replacements until equilibrium operating conditions are reached. A detailed description of time dependant burn-up and spatial power production for specified reactivity limits is required. For this purpose the reactor code system VSOP was employed. Different combinations of the parameters are investigated and the influence on reactor operation and economics discussed. From the strategy analysis a reference fuel management scheme is chosen for the low enriched 600 MW(e) D-HHT reactor.

  16. Detailed Astrometric Analysis of Pluto

    Science.gov (United States)

    ROSSI, GUSTAVO B.; Vieira-Martins, R.; Camargo, J. I.; Assafin, M.

    2013-05-01

    Abstract (2,250 Maximum Characters): Pluto is the main representant of the transneptunian objects (TNO's), presenting some peculiarities such as an atmosphere and a satellite system with 5 known moons: Charon, discovered in 1978, Nix and Hydra, in 2006, P4 in 2011 and P5 in 2012. Until the arrival of the New Horizons spacecraft to this system (july 2015), stellar occultations are the most efficient method, from the ground, to know physical and dinamical properties of this system. In 2010, it was evident a drift in declinations (about 20 mas/year) comparing to the ephemerides. This fact motivated us to remake the reductions and analysis of a great set of our observations at OPD/LNA, in a total of 15 years. The ephemerides and occultations results was then compared with the astrometric and photometric reductions of CCD images of Pluto (around 6500 images). Two corrections were used for a refinement of the data set: diferential chromatic refraction and photocenter. The first is due to the mean color of background stars beeing redder than the color of Pluto, resulting in a slightly different path of light through the atmosphere (that may cause a difference in position of 0.1”). It became more evident because Pluto is crossing the region of the galactic plane. The photocenter correction is based on two gaussians curves overlapped, with different hights and non-coincident centers, corresponding to Pluto and Charon (since they have less than 1” of angular separation). The objective is to separate these two gaussian curves from the observed one and find the right position of Pluto. The method is strongly dependent of the hight of each of the gaussian curves, related to the respective albedos of charon and Pluto. A detailed analysis of the astrometric results, as well a comparison with occultation results was made. Since Pluto has an orbital period of 248,9 years and our interval of observation is about 15 years, we have around 12% of its observed orbit and also, our

  17. Modelling and simulation of containment on full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zou Tingyun

    1996-01-01

    A multi-node containment thermal-hydraulic model has been developed and adapted in Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit with good realtime simulation effects. Containment pressure for LBLOCA calculated by the model is well agreed with those of CONTEMPT-4/MOD3

  18. The Effect of Mounting Vortex Generators on the DTU 10MW Reference Wind Turbine Blade

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Bak, Christian

    2014-01-01

    The aim of the current work is to analyze possible advantages of mounting Vortex Generators (VG's) on a wind turbine blade. Specifically, the project aims at investigating at which radial sections of the DTU 10 MW Reference Wind Turbine blade it is most beneficial to mount the VG's in order...

  19. Start-up analysis of INET-5 MW district heating prototype reactor

    International Nuclear Information System (INIS)

    Li Tianshu

    1991-09-01

    The main features and thermohydraulic design parameters of the INET-5 MW reactor (INET: Institute of Nuclear Technology of Tsinghua University, Beijing) are presented. The start-up process and the effect of thermohydraulic instability on start-up process have been analyzed. The main obstacle of start-up process of INET-5 MW reactor is to pass the instability region from 1 atm to normal operation condition. For avoiding instability, the start-up process should be divided into two steps. The results of three different start-up proposals calculated by DACOL code are given and compared. The possibility of instabilities for each proposal has been checked. The checked results show that there is no instability during start-up of the three proposals. So, it is supposed that the INET-5 MW reactor can safely and stably reach the operation conditions. Finally, some conclusions about the effect of instability on start-up in boiling mode of INET-5MW reactor are given

  20. Developing an international consortium to build an 800 MW coal fired power plant in Indonesia

    International Nuclear Information System (INIS)

    Jones, R.H.; Hashima, T.

    1990-01-01

    This paper describes the cooperative construction of a fossil-fueled power plant in Indonesia. The topics discussed in the paper include energy use and the market for electric power, fuel resources, history of business activities, the role of joint resources and government business policy, and preparing for bidding an 800MW coal-fired power plant

  1. Impact of modulation strategies on power devices loading for 10 MW multilevel wind power converter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Isidori, Andrea; Rossi, Fabio Mario

    2012-01-01

    This paper focuses on the control and modulation of a three-level Neutral Point Clamped (3L-NPC) back-to-back full scale converter for a 10 MW direct-drive wind turbine, equipped with a Permanent Magnet Synchronous Generator (PMSG). Emphasis is oriented towards the investigation of the power losses...

  2. Two fixed point theorems on quasi-metric spaces via mw- distances

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, C.

    2017-07-01

    In this paper we prove a Banach-type fixed point theorem and a Kannan-type theorem in the setting of quasi-metric spaces using the notion of mw-distance. These theorems generalize some results that have recently appeared in the literature. (Author)

  3. Revisiting the Canterbury earthquake sequence after the 14 February 2016 Mw 5.7 event

    NARCIS (Netherlands)

    Herman, Matthew W.; Furlong, Kevin P.

    2016-01-01

    On 14 February 2016, an Mw 5.7 (GNS Science moment magnitude) earthquake ruptured offshore east of Christchurch, New Zealand. This earthquake occurred in an area that had previously experienced significant seismicity from 2010 to 2012 during the Canterbury earthquake sequence, starting with the 2010

  4. Potentials for site-specific design of MW sized wind turbines

    DEFF Research Database (Denmark)

    Thomsen, K.; Fuglsang, P.; Schepers, G.

    2001-01-01

    The potential for site specific design of MW sized wind turbines is quantified by comparing design loads for wind turbines installed at a range of different sites. The sites comprise on-shore normal flat terrain stand-alone conditions and wind farm conditions together with offshore and mountainous...

  5. VizieR Online Data Catalog: Very metal poor stars in MW halo (Mashonkina+, 2017)

    Science.gov (United States)

    Mashonkina, L.; Jablonka, P.; Sitnova, T.; Pakhomov, Yu; North, P.

    2017-10-01

    Tables 3 and 4 from the article are presented. They include the LTE and NLTE abundances from individual lines and average abundances of the investigated stars in the dSphs Sculptor (Scl), Ursa Minor (UMi), Fornax (Fnx), Sextans (Sex), Bootes I (Boo), UMa II, and Leo IV and the Milky Way (MW) halo. (3 data files).

  6. Robustness of MW-Level IGBT modules against gate oscillations under short circuit events

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wu, Rui; Iannuzzo, Francesco

    2015-01-01

    The susceptibility of MW-level IGBT power modules to critical gate voltage oscillations during short circuit events has been evidenced experimentally. This paper proposes a sensitivity analysis method to better understand the oscillating behavior dependence on different operating conditions (i...... the oscillation phenomenon, as well as to further improve the device performance during short circuit....

  7. Design of project management system for 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Zhu Yan; Xu Yuanhui

    1998-01-01

    A framework of project management information system (MIS) for 10 MW high temperature gas-cooled test reactor is introduced. Based on it, the design of nuclear project management information system and project monitoring system (PMS) are given. Additionally, a new method of developing MIS and Decision Support System (DSS) has been tried

  8. Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers.

    Science.gov (United States)

    Herranz, Sonia; Gavela, Adrián Fernández; Lechuga, Laura M

    2017-01-01

    The bimodal waveguide (BiMW) sensor is a novel common path interferometric transducer based on the evanescent field detection principle, which in combination with a bio-recognition element allows the direct detection of biomolecular interactions in a label-free scheme. Due to its inherent high sensitivity it has great potential to become a powerful analytical tool for monitoring substances of interest in areas such as environmental control, medical diagnostics and food safety, among others. The BiMW sensor is fabricated using standard silicon-based technology allowing cost-effective production, and meeting the requirements of portability and disposability necessary for implementation in a point-of-care (POC) setting.In this chapter we describe the design and fabrication of the BiMW transducer, as well as its application for bio-sensing purposes. We show as an example the biosensor capabilities two different applications: (1) the immunodetection of Irgarol 1051 biocide useful in the environmental field, and (2) the detection of human growth hormone as used in clinical diagnostics. The detection is performed in real time by monitoring changes in the intensity pattern of light exiting the BiMW transducer resulting from antigen-antibody interactions on the surface of the sensor.

  9. Brief introduction to project management of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Chen Jie

    1996-01-01

    The key points in development and engineering project management of full scope simulator for Qinshan 300 MW Nuclear Power Unit are briefly introduced. The Gantt chart, some project management methods and experience are presented. The key points analysis along with the project procedure will be useful to the similar project

  10. Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.

    2015-01-01

    This article presents a comparison of CFD simulations of the DTU 10 MW reference wind turbine with and without vortex generators installed on the inboard part of the blades. The vortex generators are modelled by introducing body forces determined using a modified version of the so-called BAY mode...

  11. Update on the modernization of 200 MW hard coal power plants in Poland

    International Nuclear Information System (INIS)

    Szabo, T.E.; Kopec, M.

    1993-01-01

    In June 1990, the Coalition of 200 MW, Hard Coal, Polish Power Plants representing an installed base of 10,240 MW, including 45 units of 200 MW, signed an agreement with the Westinghouse Electric Corporation, Power Generation Business Unit, based in Orlando, Florida, to cooperate on developing a modernization program for the 200 MW units. Program funding was obtained with The United States Trade Development Program (TDP) providing approximately 2/3 of the cost, and the balance provided by Westinghouse. On March 5, 1992, the Polish-American (51% Westinghouse, 49% Seven (7) Hard Coal Power Plants), Joint Venture Company, MODELPOL, Ltd. (Polish acronym for 'MODernizacja ELektrowni POLskich' or Modernization of Polish Power Plants) was established with the goal to implement not only technically but financially the recommendations of the Modernization Study. The mission given MODELPOL, Ltd. by their Polish-American Shareholders was to: develop the specific modernization programs for each hard coal power plant; assist in identifying and obtaining the financial resources required for implementation; and provide technological preventative maintenance services to improve unit availability. Within these aims was the target to reduce SO 2 , and particulate emissions. The first program is taking place at the Laziska Power Plant, followed by Rybnik. Further projects are in the planning stages. Finance is a constant problem, this should be eased by the restructuring of the power industry. Future programmes include connection to the European Community Power Grid. 5 figs

  12. NedWind with 80 MW wind power capacity leader in the Netherlands

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    At 31 December 1995 1050 wind turbines were in operation in the Netherlands with a total capacity of 255 MW. An overview is given of the top locations of wind turbines in different categories and from different manufacturers and owners. The wind turbine manufacturer NedWind is leading the field. 9 figs

  13. Emergency planning and emergency drill for a 5 MW district heating reactor

    International Nuclear Information System (INIS)

    Shi Zhongqi; Wu Zhongwang; Hu Jingzhong; Feng Yuying; Li Zhongsan; Dong Shiyuan

    1991-01-01

    The authors describes the main contents of the emergency planning for a 5 MW nuclear district heating reactor and some considerations for the planning's making, and presents the situation on implementing emergency preparedness and an emergency drill that has been carried out

  14. Control conception for REP 1300 MW units of the Electricite de France

    International Nuclear Information System (INIS)

    Blanc, P.; Guesnier, G.

    1986-01-01

    The paper describes the control equipment for the REP 1300 MW units including the reactor protection system, the control rods drive system and nuclear instrumentation, the control of the auxiliaries in the systems important for the reactor safety and the safety survey computer. Finally, the digital connections between different control systems are presented

  15. Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems

    Science.gov (United States)

    Luis, Raul Fernandes

    Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second

  16. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    Science.gov (United States)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  17. HFBR restart activity A2.6: Review of FSAR and 60 MW addendum to assure consistency of operation at 40 MW

    International Nuclear Information System (INIS)

    Rao, D.V.; Ross, S.B.; Darby, J.L.; Clark, R.A.

    1990-01-01

    The purpose of this task (HFBR Restart Activity A2.6) is to perform a review of the design basis accident (DBA) analyses sections of the 1964 HFBR-Final Safety Analysis Report; Volumes I and II, and the 1982 Addendum to the HFBR-FSAR for 60 MW operation to assure that operation at 40 MW will be consistent with these analyses. Additional documents utilized in the review included the Level 1 PRA for HFBR, HFBR-PDMs and HFBR-OPMs. The review indicates that the 1964 FSAR-DBA analysis in incomplete in the sense that it did not analyze some of the important initiators for 1-loop operation that include: Accidental throttling of primary flow control valves; seizure of primary pump; loss of secondary pump; accidental throttling of secondary flow control valves; rupture of secondary piping. The first three initiators were later studied in the 1982 addendum. The other two initiators have not been examined to-date for 1-loop operation. It is recommended that the impact of these initiators be assessed prior to the restart, if 1-loop operation is chosen for the restart. The review demonstrated that at 40 MW operation there are only a few accident initiators that will culminate in core damage (fuel melting and /or cladding failure) regardless of the availability of mitigating systems. For 1-loop Operation these accidents include: Fuel channel blockage, primary pump seizure, and large-large LOCA (a LOCA with effective break diameter > 2.81 in. is referred to as a large-large LOCA in this document as well as in PRA). Although all these accidents listed above could lead to core damage for 1-loop operation as well, the probability is expected be very low

  18. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake

    Science.gov (United States)

    Sumy, Danielle F.; Neighbors, Corrie J.; Cochran, Elizabeth S.; Keranen, Katie M.

    2017-01-01

    In November 2011, three Mw ≥ 4.8 earthquakes and thousands of aftershocks occurred along the structurally complex Wilzetta fault system near Prague, Oklahoma. Previous studies suggest that wastewater injection induced a Mw 4.8 foreshock, which subsequently triggered a Mw 5.7 mainshock. We examine source properties of aftershocks with a standard Brune-type spectral model and jointly solve for seismic moment (M0), corner frequency (f0), and kappa (κ) with an iterative Gauss-Newton global downhill optimization method. We examine 934 earthquakes with initial moment magnitudes (Mw) between 0.33 and 4.99 based on the pseudospectral acceleration and recover reasonable M0, f0, and κ for 87 earthquakes with Mw 1.83–3.51 determined by spectral fit. We use M0 and f0 to estimate the Brune-type stress drop, assuming a circular fault and shear-wave velocity at the hypocentral depth of the event. Our observations suggest that stress drops range between 0.005 and 4.8 MPa with a median of 0.2 MPa (0.03–26.4 MPa with a median of 1.1 MPa for Madariaga-type), which is significantly lower than typical eastern United States intraplate events (>10 MPa). We find that stress drops correlate weakly with hypocentral depth and magnitude. Additionally, we find the stress drops increase with time after the mainshock, although temporal variation in stress drop is difficult to separate from spatial heterogeneity and changing event locations. The overall low median stress drop suggests that the fault segments may have been primed to fail as a result of high pore fluid pressures, likely related to nearby wastewater injection.

  19. SIROCCO project: 15 advanced instructor desk and 4 simulated control room for 900MW and 1300MW EDF power plant simulators

    International Nuclear Information System (INIS)

    Alphonse, J.; Roth, P.; Sicard, Y.; Rudelli, P.

    2006-01-01

    This presentation describes the fifteen advanced instructors station and four simulated control delivered to EDF in the frame of the SIROCCO project by the Consortium formed by ATOS Origin, CORYS Tess, for the Electricite de France (EDF). These instructor stations are installed on fifteen replica training simulators located on different sites throughout France for the purposes of improving the job-related training of the EDF PWR nuclear power plant operating teams. This covers all 900 MW and 1300MW nuclear power plant of EDF. The simulated control rooms are installed on maintenance platform located at EDF and the consortium facilities. The consortium uses it to maintain and upgrade the simulators. EDF uses it to validate the upgrade delivered by the consortium before on site installation and to perform engineering analysis. This presentation sets out successively: - The major advantages of the generic and configurable connected module concept for flexible and quick adaptation to different simulators; - The innovative functionalities of the advanced Instructor Desk (IS) which make the instructor's tasks of preparation, monitoring and postanalysis of a training session easier and more homogeneous; - The use of the Simulated Control Room (SCR) for training purposes but also for those of maintenance and design studies for upgrades of existing control rooms

  20. Failure analysis to the weights of balance of a 350 MW turbo-generator; Analisis de falla a los pesos de balanceo de un turbogenerador de 350 MW

    Energy Technology Data Exchange (ETDEWEB)

    Vital Flores, Francisco; Gamero Arroyo, Jose Manuel [LAPEM, Comision Federal de Electricidad (Mexico)

    2007-11-15

    The selection of materials and the quality control in the supply of the components, as well as the involved operative variables in the process of work to which an equipment, device or a system of a power station of electrical generation are subjected, impact in the same in their useful life in a decisive way. In this document it is presented an analysis of a failure occurred in a 350 MW turbo-generator by the loosening of the balance weights, in which it is mentioned the flaws occurred by this cause and a metallographic analysis that indicates the main fault for the happening. [Spanish] La seleccion de material y el control de calidad en los suministros de los componentes, asi como las variables operativas involucradas en el proceso de trabajo al cual es sometido un equipo, dispositivo o un sistema de una central de generacion electrica, impactan en los mismos de manera decisiva en su vida util. En este documento se presenta un analisis de falla ocurrido en un turbogenerador de 350 MW, por el desprendimiento de los pesos de balanceo, el cual se menciona de los desperfectos ocurridos por esta causa y un analisis metalografico que indica la falla principal por lo ocurrido.

  1. The ShakeOut scenario: A hypothetical Mw7.8 earthquake on the Southern San Andreas Fault

    Science.gov (United States)

    Porter, K.; Jones, L.; Cox, D.; Goltz, J.; Hudnut, K.; Mileti, D.; Perry, S.; Ponti, D.; Reichle, M.; Rose, A.Z.; Scawthorn, C.R.; Seligson, H.A.; Shoaf, K.I.; Treiman, J.; Wein, A.

    2011-01-01

    In 2008, an earthquake-planning scenario document was released by the U.S. Geological Survey (USGS) and California Geological Survey that hypothesizes the occurrence and effects of a Mw7.8 earthquake on the southern San Andreas Fault. It was created by more than 300 scientists and engineers. Fault offsets reach 13 m and up to 8 m at lifeline crossings. Physics-based modeling was used to generate maps of shaking intensity, with peak ground velocities of 3 m/sec near the fault and exceeding 0.5 m/sec over 10,000 km2. A custom HAZUS??MH analysis and 18 special studies were performed to characterize the effects of the earthquake on the built environment. The scenario posits 1,800 deaths and 53,000 injuries requiring emergency room care. Approximately 1,600 fires are ignited, resulting in the destruction of 200 million square feet of the building stock, the equivalent of 133,000 single-family homes. Fire contributes $87 billion in property and business interruption loss, out of the total $191 billion in economic loss, with most of the rest coming from shakerelated building and content damage ($46 billion) and business interruption loss from water outages ($24 billion). Emergency response activities are depicted in detail, in an innovative grid showing activities versus time, a new format introduced in this study. ?? 2011, Earthquake Engineering Research Institute.

  2. Proposition of primary methods for nitrogen oxides emissions reduction at coal-fired 200 MW power unit (Yugoslavia)

    International Nuclear Information System (INIS)

    Repic, B.; Mladenovic, R.; Crnomarkovic, N.

    1997-01-01

    The combustion of coal is followed by increased pollution of the environment with toxic products. Together with the generation of other pollutants, the emission of nitrogen oxides (NO x ) represents, due to its high toxicity, a great environmental risk. Appropriate measures must be taken for lowering NO x emission, both on new facilities and those already in operation. Basic technologies (primary reduction methods) of several generations, developed until now and used in practice, are presented in the paper. The technologies applicable on domestic facilities and adjusted to domestic coals have been given particular consideration. Proposition of primary methods for NO x emission reduction at coal-fired 200 MW power unit at TPS 'Nikola Tesla' is analyzed. The following methods have been considered in detail: flue gases recirculation, multi-stage combustion, low-NO x burners, additional over-fire air, multi-stage air intake into the furnace, staged fuel injection, grinding fineness increase, etc. Considerations were performed according to existing constructive characteristics of the furnace and the burners, and characteristics of used fuels, i. e. lignites from Kolubara pit. (Author)

  3. Application of safeguards design principles to the spent-fuel bundle counters for 600-MW CANDU reactors

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1979-01-01

    The irradiated fuel bundle counters for CANDU 600-MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent-fuel storage bay at each inspection. Their function is straightforward - to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ''intelligent'' instruments which have required a major development programme. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper-resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel-bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A microprocessor analyses the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnormal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  4. New insights on co- and post-seismic deformation and slip behavior associated with the Mw7.8 2016 Pedernales, Ecuador earthquake and its aftershock sequence

    Science.gov (United States)

    Soto-Cordero, L.; Nealy, J. L.; Meltzer, A.; Agurto-Detzel, H.; Alvarado, A. P.; Beck, S. L.; Benz, H.; Bergman, E. A.; Charvis, P.; Font, Y.; Hayes, G. P.; Hernandez, S.; Hoskins, M.; Leon Rios, S.; Lynner, C.; Regnier, M. M.; Rietbrock, A.; Stachnik, J. C.; Yeck, W. L.

    2017-12-01

    On April 16, 2016, a Mw7.8 earthquake, associated with oblique subduction of the Nazca Plate under South America, ruptured a segment approximately 130x100km in the region north of the intersection of the Carnegie ridge with the Ecuador subduction zone. The rupture coincides with the rupture area of the Mw7.8 1942 earthquake. To characterize the aftershock sequence, we analyze seismic data recorded by 30 stations from April 17, 2016 to May 8, 2017; 11 stations belong to Ecuador's national network and 19 are part of a PASSCAL temporary deployment. We apply a kurtosis detector to obtain automatic P- and S-wave picks. Earthquake locations, magnitudes, and regional moment tensors are obtained using the U.S. Geological Survey National Earthquake Information Center (NEIC) processing system. We also determine calibrated relocations using the Hypocentroidal Decomposition approach for a subset of events for which we combine phase readings from local and temporary PASSCAL stations with regional and teleseismic phase readings from the NEIC. In contrast with other earthquake relocation approaches, this method evaluates absolute location uncertainties for each event in the cluster, which allows us to more confidently assess the relationships between mainshock slip and aftershock activity. We find the aftershock sequence is characterized by a series of event clusters that predominantly surround the main rupture patches. However, the aftershocks extend beyond the mainshock rupture area, covering a region approximately 250x100km. Aftershocks north of the 2016 rupture fall in the rupture area of the Mw7.7 1958 earthquake. The southernmost region of elevated seismicity occurs south of a region of low coupling where the Carnegie ridge meets the subduction zone. The characterization of this sequence allows a detailed spatial and temporal analysis of the rupture processes, stress patterns and slip behavior during this earthquake sequence in Ecuador subduction zone.

  5. Template Assembly for Detailed Urban Reconstruction

    KAUST Repository

    Nan, Liangliang; Wonka, Peter; Ghanem, Bernard; Jiang, Caigui

    2015-01-01

    Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance (texture images). Then, building details are reconstructed

  6. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  7. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  8. Monte Carlo methods beyond detailed balance

    NARCIS (Netherlands)

    Schram, Raoul D.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080

    2015-01-01

    Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying

  9. Active tectonics and Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (NW Himalaya, India)

    Science.gov (United States)

    Draganits, Erich; Grasemann, Bernhard; Gier, Susanne; Hofmann, Christa-Charlotte; Janda, Christoph; Bookhagen, Bodo; Preh, Alexander

    2015-04-01

    The Baspa River is one of the most important tributaries to the Sutlej River in the NW Himalaya (India). Its catchment is 1116 km2 in size, ranges from c. 6400 m asl to 1770 m asl and contains India's largest private hydroelectric facility, the 300 MW Baspa II. Geologically, the hydroelectric installation is located in the Higher Himalayan Crystalline, just above the active Karcham Normal Fault, which is reactivating the Early Miocene Main Central Thrust, one of the principal Himalayan faults. The area is seismically active and mass-movements are common. Around 8200 yrs BP the Baspa was dammed by a rock-avalanche dam, leading to the formation of the originally c. 260 m deep palaeo-lake Sangla palaeo-lake. Detailed sedimentological investigations and radiocarbon dating indicate that the palaeo-lake was completely filled with sediments until c. 5100 yrs BP. This makes the Sangla palaeo-lake to a very rare example of a mass-movement dam with very long duration and its lacustrine sediments represent a valuable archive for geological processes and environmental proxies within the Baspa catchment during the c. 3100 years of its existence - which are the aim of our study. At least 5 levels of soft-sediment deformation have been recorded in the exposed part of the lacustrine sediments of Sangla palaeo-lake, including brecciated laminae, overturned laminae, folds, faults and deformation bands, separated by undeformed deposits. They are interpreted as seismites, indicating at least 5 earthquakes within 2500 years strong enough to cause liquefaction. The 300 MW Baspa II hydro-electric power plant has been built exactly on top of this palaeo-lake. This special location represents a very rare possibility to evaluate the short-term, river load and hydrological parameters measured during the planning and operational stages of Baspa II with the long-term parameters gained from the palaeo-lake sediments from the catchment. This data show that the Mid-Holocene erosion rates of the

  10. Postseismic deformation associated with the 2015 Mw 7.8 Gorkha earthquake, Nepal: Investigating ongoing afterslip and constraining crustal rheology

    Science.gov (United States)

    Jiang, Zhongshan; Yuan, Linguo; Huang, Dingfa; Yang, Zhongrong; Hassan, Abubakr

    2018-05-01

    The 2015 Mw 7.8 Gorkha earthquake has not only imposed effective constraints on the geometrical structures, friction behaviours and seismogenic patterns of the Nepal Himalaya thrust systems but has also provided valuable insights into the uplift mechanism and lithosphere rheology of the Tibetan Plateau. Here, ∼1.6-year GPS observations are used to reveal the postseismic deformation characteristics following the Gorkha earthquake, investigate the ongoing aseismic afterslip on the Main Himalayan Thrust (MHT) fault and constrain the crustal rheology of the Southern Tibetan Plateau. First, afterslip is considered to be solely responsible for the postseismic deformation (afterslip-only model). The results show that afterslip is anticorrelated with peak coseismic slip areas. One high-afterslip-concentration area, with a peak of ∼24 cm, is distributed downdip of the coseismic rupture, as well as in two other regions: one partially overlapping the mainshock rupture, and the other next to the Mw 7.3 aftershock area. Second, the GPS postseismic observations are inverted to jointly investigate afterslip and viscoelastic deformation (multiple-mechanism model). The afterslip inversion results of the above two models are highly consistent, indicating the dominant contribution of afterslip to surface deformation during the ∼1.6-year postseismic period. Considering the interseismic fault coupling and historical seismicity, no appreciable fault slip associated with the Gorkha earthquake is found to occur both updip and west of the mainshock rupture areas. This reveals that the Gorkha earthquake only unzipped the lower edge of the locked portion of the MHT, leaving the shallow portion and western segment of the seismogenic zone still locked and the Nepal region under high seismic risk. The viscoelastic mechanism contributes minorly to surface deformation during the ∼1.6-year postseismic period. The middle-lower crust is assumed to comprise Maxwell material beneath an elastic

  11. Source model and Coulomb stress change of 2017 Mw 6.5 Philippine (Ormoc) Earthquake revealed by SAR interferometry

    Science.gov (United States)

    Tsai, M. C.; Hu, J. C.; Yang, Y. H.; Hashimoto, M.; Aurelio, M.; Su, Z.; Escudero, J. A.

    2017-12-01

    Multi-sight and high spatial resolution interferometric SAR data enhances our ability for mapping detailed coseismic deformation to estimate fault rupture model and to infer the Coulomb stress change associated with a big earthquake. Here, we use multi-sight coseismic interferograms acquired by ALOS-2 and Sentinel-1A satellites to estimate the fault geometry and slip distribution on the fault plane of the 2017 Mw 6.5 Ormoc Earthquake in Leyte island of Philippine. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 325.8º and dip of 78.5ºE. This model infers that the rupture of 2017 Ormoc earthquake is dominated by left-lateral slip with minor dip-slip motion, consistent with the left-lateral strike-slip Philippine fault system. The fault tip has propagated to the ground surface, and the predicted coseismic slip on the surface is about 1 m located at 6.5 km Northeast of Kananga city. Significant slip is concentrated on the fault patches at depth of 0-8 km and an along-strike distance of 20 km with varying slip magnitude from 0.3 m to 2.3 m along the southwest segment of this seismogenic fault. Two minor coseismic fault patches are predicted underneath of the Tononan geothermal field and the creeping segment of the northwest portion of this seismogenic fault. This implies that the high geothermal gradient underneath of the Tongonan geothermal filed could prevent heated rock mass from the coseismic failure. The seismic moment release of our preferred fault model is 7.78×1018 Nm, equivalent to Mw 6.6 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the northwest segment of the Philippine fault in Leyte Island which has coseismic slip deficit and is absent from aftershocks. Consequently, this segment should be considered to have increasing of risk for future seismic hazard.

  12. Numerical investigations of combustion and emissions of syngas as compared to methane in a 200 MW package boiler

    International Nuclear Information System (INIS)

    Habib, Mohamed A.; Mokheimer, Esmail M.A.; Sanusi, Sofihullahi Y.; Nemitallah, Medhat A.

    2014-01-01

    Highlights: • Syngas combustion is numerically investigated in a two-burner 200 MW package boiler. • Different syngas compositions were considered for combustion with air. • The 33% CO:67% H 2 syngas composition was found to have the shortest flame. • The boiler exit temperature was found to increase with the increase of hydrogen contents. • The 50% CO:50% H 2 syngas composition had the best combustion characteristics. - Abstract: During the last decades, focus has been made on the use of syngas instead of conventional hydrocarbon fuels targeting NO x emission reduction in the exhaust gases. With advances in solar-steam methane reforming for the production of synthesis gas, the applicability of syngas at industrial scale becomes imperative. In the present work, syngas combustion and emission characteristics are numerically investigated and compared with the case of pure methane combustion in a two-burner 200 MW package boiler. A detailed reaction kinetics mechanism of 21 steps and 11 species was considered for the modeling of syngas–air combustion. Different syngas compositions were considered for combustion with air including 67% CO:33% H 2 , 50% CO:50% H 2 and 33% CO:67% H 2 . The results showed a combustion delay in case of pure methane combustion as compared to syngas combustion. The case of 33% CO:67% H 2 syngas composition was found to have the shortest flame as compared to that of other syngas compositions. The case of 50% CO:50% H 2 syngas resulted in lowest maximum boiler temperature while 67% CO:33% H 2 syngas resulted in highest maximum boiler temperature. The boiler exit temperature was found to increase with the increase of hydrogen content in the syngas. The excess air factor was found to have a significant effect on both CO and NO x emissions. NO x emission decreases by about 30% when the amount of excess air is increased from 5% to 25%, which is very promising. Among the tested syngas compositions, the 50% CO:50% H 2 syngas composition

  13. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  14. 200 MW S-band traveling wave resonant ring development at IHEP

    Science.gov (United States)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  15. Status of the development of the EU 170 GHz/1 MW/CW gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Pagonakis, Ioannis Gr., E-mail: ioannis.pagonakis@kit.edu [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Albajar, Ferran [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Alberti, Stefano [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Avramidis, Konstantinos [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Bonicelli, Tullio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Braunmueller, Falk [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Bruschi, Alex [Plasma Physics Institute, National Research Council of Italy, Milano (Italy); Chelis, Ioannis [School of Electrical and Computer Engineering, National Technical University of Athens (Greece); Cismondi, Fabio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Gantenbein, Gerd [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hermann, Virgile [Thales Electron Devices (TED), Vélizy-Villacoublay (France); Hesch, Klaus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hogge, Jean-Philippe [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Jelonnek, John; Jin, Jianbo; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Ioannidis, Zisis C. [Faculty of Physics, National and Kapodistrian University of Athens (Greece); Kobarg, Thorsten [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); and others

    2015-10-15

    The progress in the development of the European 170 GHz, 1 MW/CW gyrotron for electron cyclotron heating & current drive (ECH&CD) on ITER is reported. A continuous wave (CW) prototype is being manufactured by Thales Electron Devices (TED), France, while a short-pulse (SP) prototype gyrotron is in parallel under manufacture at Karlsruhe Institute of Technology (KIT), with the purpose of validating the design of the CW industrial prototype components. The fabrication of most of the sub-assemblies of the SP prototype has been completed. In a first step, an existing magnetron injection gun (MIG) available at KIT was used. Despite this non-ideal configuration, the experiments provided a validation of the design, substantiated by an excellent agreement with numerical simulations. The tube, operated without a depressed collector, is able to produce more than 1 MW of output power with efficiency in excess of 30%, as expected, and compatible with the ITER requirements.

  16. Comparison of 10 MW superconducting generator topologies for direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been...... magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages...... proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high...

  17. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...... turbines. In the meantime, superconducting generators (SCSGs) have been of particular interest to become a significant competitor because of their compactness and light weight. This paper compares the performance indicators of these two direct-drive generator types in the same 10-MW wind turbine under...... the same design and optimization method. Such comparisons will be interesting and insightful for commercialization of superconducting generators and for development of future wind energy industry, although SCSGs are still far from a high technology readiness level. The results show that the SCSGs may...

  18. 60-MW/sub t/ methanation plant design for HTGR process heat

    International Nuclear Information System (INIS)

    Davis, C.R.; Arcilla, N.T.; Hui, M.M.; Hutchins, B.A.

    1982-07-01

    This report describes a 60 MW(t) Methanation Plant for generating steam for industrial applications. The plant consists of four 15 MW(t) methanation trains. Each train is connected to a pipeline and receives synthesis gas (syngas) from a High Temperature Gas-Cooled Reactor Reforming (HTGR-R) plant. Conversion of the syngas to methane and water releases exothermic heat which is used to generate steam. Syngas is received at the Methanation Plant at a temperature of 80 0 F and 900 psia. One adiabatic catalytic reactor and one isothermal catalytic reactor, in each methanation train, converts the syngas to 92.2% (dry bases) methane. Methane and condensate are returned at temperatures of 100 to 125 0 F and at pressures of 860 to 870 psia to the HTGR-R plant for the reproduction of syngas

  19. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    2014-01-01

    study on an alternative downwind two-bladed rotor configuration. The study is based on a model representative of next generation multi-MW wind turbines: the DTU 10-MW Reference Wind Turbine (RWT). As a first design iteration, the aerodynamic characteristics of the original rotor are maintained......As the size of wind turbine rotors continuously grows, the need for innovative solutions that would yield to lighter rotor configurations becomes more urgent. Traditional wind turbine designs have favored the classic three-bladed upwind rotor configuration. This work presents instead a concept...... in load variations, and hence in fatigue damage, affects the turbine blades, shaft and tower, and originates from the aerodynamic unbalance on the rotor, as well as from aeroelastic interaction with the tower frequency. To mitigate the load amplification caused by the interaction between the tower...

  20. An opportunity for capacity up-rating of 1000 MW steam turbine plant in Kozloduy NPP

    International Nuclear Information System (INIS)

    Popov, D.

    2005-01-01

    In connection with earlier and forced decommissioning of the Kozloduy NPP units 1 - 4, an alternative has to be found in order to substitute these capacities. As a reasonable options, capacity up-rating of 1000 MW steam turbine plants without nuclear reactor thermal capacity increase, is investigated in the present study. The cooling water for these units is delivered by Danube river. The cooling water temperatures substantially decrease during the winter months. These changes create an opportunity for steam back end pressure reduction. It was found that when the cooling water temperature decreases from 15 0 C to 3 0 C, the steam back end pressure is on the decrease of from 3.92 kPa to 2.3 kPa. As a result capacity of the plant could be raised up to 50 MW without any substantial equipment and systems change

  1. Development of steady-state 2 MW, 170 GHz gyrotrons for ITER

    International Nuclear Information System (INIS)

    Piosczyk, B.; Arnold, A.; Thumm, M.; Dammertz, G.; Heidinger, R.; Illy, S.; Jin, J.; Koppenburg, K.; Leonhardt, W.; Neffe, G.; Rzesnicki, T.; Schmid, M.; Yang, X.; Alberti, S.; Chavan, R.; Fasel, D.; Goodman, T.; Henderson, M.; Hogge, J.P.; Tran, M.Q.; Yovchev, I.; Erckmann, V.; Laqua, H.P.; Michel, G.; Gantenbein, G.; Kasparek, W.; Mueller, G.; Schwoerer, K.; Bariou, D.; Beunas, A.; Giguet, E.; LeCloarec, G.; Legrand, F.; Lievin, C.; Dumbrajs, O.

    2005-01-01

    A prototype of a 1 MW, CW, 140 GHz conventional gyrotron for the W7-X stellarator in Greifswald/Germany has been tested successfully and the fabrication of series tubes started. In extended studies the feasibility for manufacturing a continuously operated high power coaxial cavity gyrotron has been demonstrated and all needed data for an industrial design has been obtained. Based on this results the fabrication of a first prototype of a 2 MW, CW, 170 GHz coaxial cavity gyrotron started recently in cooperation between European research institutions and European tube industry. The prototype tube is foreseen to be tested in 2006 at CRPP Lausanne where a suitable test facility is under construction. (author)

  2. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    International Nuclear Information System (INIS)

    Bauer, G.S.; Salvatores, M.; Heusener, G.

    2001-01-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  3. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    Science.gov (United States)

    Choi, E. M.; Marchewka, C. D.; Mastovsky, I.; Sirigiri, J. R.; Shapiro, M. A.; Temkin, R. J.

    2006-02-01

    A new result from a 110GHz gyrotron at MIT is reported with an output power of 1.67MW and an efficiency of 42% when operated at 97kV and 41A for 3μs pulses in the TE22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110GHz gyrotron.

  4. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    International Nuclear Information System (INIS)

    Choi, E.M.; Marchewka, C.D.; Mastovsky, I.; Sirigiri, J.R.; Shapiro, M.A.; Temkin, R.J.

    2006-01-01

    A new result from a 110 GHz gyrotron at MIT is reported with an output power of 1.67 MW and an efficiency of 42% when operated at 97 kV and 41 A for 3 μs pulses in the TE 22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43 MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE 19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110 GHz gyrotron

  5. Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

    OpenAIRE

    Yongsheng Zhao; Jianmin Yang; Yanping He

    2012-01-01

    Currently, floating wind turbines (FWTs) may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP) foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP) was developed for the NREL 5-MW offshore wind...

  6. Management of a 600 MW CANDU project to facilitate electricity export

    International Nuclear Information System (INIS)

    Gunter, G.E.

    1983-06-01

    The export of electricity from 600-MW CANDU nuclear power plants built in Canada remains feasible providing certain requirements continue to be met. The principal objective in developing nuclear power resources for export is that they must produce economically attractive electricity. A review of the experience of construction and operation of Point Lepreau Unit 1 suggests an inherent ability to reduce construction costs and shorten construction schedules so as to make electrical power output from these stations even more attractive to export customers

  7. A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4

    Directory of Open Access Journals (Sweden)

    Hiroo Kanamori

    2017-01-01

    Full Text Available Despite a moderate magnitude, Mw = 6.4, the 5 February 2016 Meinong, Taiwan, earthquake caused significant damage in Tainan City and the surrounding areas. Several seismograms display an impulsive S-wave velocity pulse with an amplitude of about 1 m s-1, which is similar to large S-wave pulses recorded for the past several larger damaging earthquakes, such as the 1995 Kobe, Japan, earthquake (Mw = 6.9 and the 1994 Northridge, California, earthquake (Mw = 6.7. The observed PGV in the Tainan area is about 10 times larger than the median PGV of Mw = 6.4 crustal earthquakes in Taiwan. We investigate the cause of the localized strong ground motions. The peak-to-peak ground-motion displacement at the basin sites near Tainan is about 35 times larger than that at a mountain site with a similar epicentral distance. At some frequency bands (0.9 - 1.1 Hz, the amplitude ratio is as large as 200. Using the focal mechanism of this earthquake, typical “soft” and “hard” crustal structures, and directivity inferred from the observed waveforms and the slip distribution, we show that the combined effect yields an amplitude ratio of 17 to 34. The larger amplitude ratios at higher frequency bands can be probably due to the effects of complex 3-D basin structures. The result indicates that even from a moderate event, if these effects simultaneously work together toward amplifying ground motions, the extremely large ground motions as observed in Tainan can occur. Such occurrences should be taken into consideration in hazard mitigation measures in the place with frequent moderate earthquakes.

  8. New results in development of MW output power gyrotrons for fusion systems

    International Nuclear Information System (INIS)

    Litvak, A.G.; Denisov, G.G.; Ilin, V.I.; Kurbatov, V.I.; Myasnikov, V.E.; Soluyanova, E.A.; Tai, E.M.; Usachev, S.V.; Zapevalov, V.E.

    2005-01-01

    The paper presents the latest achievements of the Russian gyrotron team in development of MW power gyrotrons for fusion installations. During two last years four new gyrotrons were designed and tested: a new version of 170 GHz gyrotron for ITER; multi-frequency (105-140 GHz) gyrotron for Asdex-Up, 84GHz gyrotron for LHD and 82.7 GHz gyrotron for SST-1. All these gyrotrons are equipped with diamond CVD windows and depressed collectors

  9. Radiological consequence analysis for upgradation of Pakistan Research Reactor-1 from 9 to 10 MW

    International Nuclear Information System (INIS)

    Khan, L.A.; Raza, S.S.

    1993-12-01

    Radiological consequence analysis has been carried out for upgradation of PARR-I from 9 to 10 MW. A hypothetical loss of coolant accident resulting in core meltdown and release of fission products to the atmosphere has been analyzed. Whole body and thyroid doses have been calculated as a function of time and distance from the containment building. Based on these dose estimates, boundaries of exclusion and low population zones are assessed. (author)

  10. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Liu, Dong

    2014-01-01

    A design study of a 10 MW direct drive wind turbine generator based on MgB2 superconducting wires is presented and the cost of the active materials of the generator is estimated to be between 226 €/kW and 84 €/kw, which is lower than the threshold values of 300 €/kW of the INNWIND.EU project. A n...

  11. Power Devices Loading in Multilevel Converters for 10 MW Wind Turbines

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Xu, Dehong

    2011-01-01

    Several promising multilevel converter solutions for 10 MW wind turbines using permanent magnet synchronous generators are proposed, designed and compared both with one-stage gear-box drive and direct drive systems. The current and loss distributions, as well as the utilization of power devices......-level NeutralPoint-Clamped topology with both the direct-drive and one-stage gear box drive systems....

  12. Development of frequency step tunable 1 MW gyrotron at 131 to 146.5 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Samartsev, A.; Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Schlaich, A.; Schmid, M.; Thumm, M., E-mail: andrey.samartsev@kit.edu [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2011-07-01

    Effective control of power absorption in tokamaks and stellarators could be achieved by the frequency tuning of ECH and CD power delivered by high-power gyrotrons. In this report some results of the development of a frequency tunable gyrotron with fused-silica Brewster window are presented. Excitation of several modes at 1 MW power level in the range of frequencies from 131 to 146.5 GHz is achieved. (author)

  13. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  14. JPRS Report, Science & Technology, Europe & Latin America, Argentina: Specifications of ARGOS 380 MW Reactor.

    Science.gov (United States)

    1988-02-18

    and economy in operation. ENACE is an acronym for Empresa Nuclear Argentina de Centrales Electricas, or Argentine Nuclear Power Plant Corporation...products. The fuel transport system can be used during full reactor power operation to remove specially de - signed fuel assemblies containing rods for...SPECIFICATIONS OF ARGOS 380 MW REACTOR [Buenos Aires COMISION NACIONAL DE ENERGIA ATOMICA: INFORME in English 1987 pp 1-93] CONTENTS Argentine Offer of

  15. Analyses of hypothetical nuclear criticality excursions in 10- and 20-MW freezer/sublimer vessels

    International Nuclear Information System (INIS)

    Haught, C.F.; Jordan, W.C.; Basoglu, B.; Dodds, H.L.; Wilkinson, A.D.

    1995-01-01

    A theoretical model is used to predict the consequences of a postulated hypothetical nuclear criticality excursion in a freezer/sublimer (F/S). Previous work has shown that an intrusion of water into a F/S may result in a critical configuration. A first attempt is made to model the neutronic and thermal-hydraulic phenomena occurring during a criticality excursion involving both uranium hexafluoride (UF 6 ) and uranyl fluoride (UO 2 F 2 ) solution, which is present in the F/S during upset conditions. The model employs point neutronics coupled with simple thermal hydraulics. Reactivity feedback from changes in the properties of the system are included in the model. The excursion is studied in a 10-MW F/S with an initial load of 3,500 kg of 5% weight enriched UF 6 and in a 20-MW F/S with an initial load of 6,800 kg of 2% weight enriched UF 6 . The magnitude of the fission release determined in this work is 5.93 x 10 18 fissions in the 10-MW F/S and 4.21 x 10 18 fissions in the 20-MW F/S. In order to demonstrate the reliability of the techniques used in this work, a limited validation study was conducted by comparing the fission release and peak fission rate determined by this work with experimental results for a limited number of experiments. The agreement between calculations and experiments in the validation study is considered to be satisfactory. The calculational results for the hypothetical accidents in the two F/S vessels appear reasonable

  16. Safety report concerning Melusine (after power increase to 4 MW). Descriptive part. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Baas, C.; Delcroix, V.; Jacquemain, M.; Marouby, R.; Meunier, C.; De Robien, E.; Rossillon, F.

    1967-03-01

    Construction of Melusine was started in January 1957, It first diverged on July 1, 1958. It operated at: 1 MW from March 1959; 1.4 MW from April 1960; 2 MW from September 1961; 4 MW from December 1965. Various modifications have been made since the reactor was built. They concern: - the addition of a hot cell. - the effluents: 2 reservoirs of 15 m 3 for liquid waste have been installed. The resin regeneration equipment has been completely modified. - the building: offices have been added - experimental zones have been set up in the hall - the electrical supply. - the cooling and purification circuits (installation of a second exchanger, replacement of the primary pumps, creation of a hot layer, etc... ). - the fuel elements (at the moment of the MTR type enriched to 90 per cent). - the swimming-pool (which has been partially equipped with a stainless steel coating). - the core (placing of 'stools', of a diving-board, etc...). - the ventilation: the hall has been de-pressurized during normal working in the event of an accident, the hall can be isolated and a safety circuit can be started up. A chimney has been installed. - the hall (which has been strengthened and sealed more effectively). - the control electronics (modification of the principle, and which are now entirely transistorized). So many changes have been made that the reactor now bears only a slight resemblance to the initial model. It has appeared necessary to make a brief review of these improvements in order to be able to judge more effectively the installations present safety characteristics; these latter are furthermore fairly well known as a result of the experiments carried out not only by the Thermal Transfer Service in Grenoble but also at Cadarache (Cabri) and Toulon (the work of Mr. PASCOUET). (authors) [fr

  17. Multimode harmonic power measurement of 40 MW pulsed S-band klystrons

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Wu, E.S.

    1984-08-01

    An array of 12 calibrated RF electric field probes on the waveguide walls are used to sample the complex field profile at the second and third harmonics where the fundamental power is in the 40 MW range at 2856 MHx. The measured amplitude and phase signals from these are Fourier analyzed to determine with good accuracy the power in each of the many possible propagating modes

  18. Study on the shuffling scheme in HTR-10 MW test module

    International Nuclear Information System (INIS)

    Jing Xingqing; Zhang Xu; Luo Jingyu

    1993-01-01

    The shuffling ways, once through then out and multiple through then out, in HTR-10 MW Test Module are studied. Multiple through then out is better than once through with regard to rational use of the fuel and flattening the power. The behaviour of equilibrium core and loss of coolant accident is analyzed. The results indicate that characteristic features of the multiple through then out could be better to satisfy the demands of safety criterions

  19. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    OpenAIRE

    B. Shiva Kumar; K. Sudhakar

    2015-01-01

    The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the larg...

  20. Increase of the competition on the electric power french market: 6000 MW for the concurrence

    International Nuclear Information System (INIS)

    2001-01-01

    In the framework of the energy market deregulation in France, EDF became wedded to three objectives: encourage the competition in France, contribute to the development of a unique energy market in Europe and and allowed the EDF group development in the same conditions of the concurrence. In this mind, EDF put 6000 MW for auction. An economic analysis of the EDF group policy facing the competition of the new energy de-regulated market is proposed. (A.L.B.)

  1. The ''controbloc'', a programmable automatic device for the 1,300 MW generation of power stations

    International Nuclear Information System (INIS)

    Pralus, B.; Winzelle, J.C.

    1983-01-01

    Technological progress in the field of microelectronics has led to the development of an automatic control device, the ''controbloc'', for operating and controlling nuclear power plants. The ''controbloc'' will be used in automatic systems with a high degree of safety and versatility and is now being installed in the first of the new generation 1,300 MW power stations. The main characteristics of the device and the evaluation tests which have been carried out are described [fr

  2. Large scale experiments with a 5 MW sodium/air heat exchanger for decay heat removal

    International Nuclear Information System (INIS)

    Stehle, H.; Damm, G.; Jansing, W.

    1994-01-01

    Sodium experiments in the large scale test facility ILONA were performed to demonstrate proper operation of a passive decay heat removal system for LMFBRs based on pure natural convection flow. Temperature and flow distributions on the sodium and the air side of a 5 MW sodium/air heat exchanger in a natural draught stack were measured during steady state and transient operation in good agreement with calculations using a two dimensional computer code ATTICA/DIANA. (orig.)

  3. Power for southern Italy: hvdc Sardinia to mainland 200 MW scheme now commissioned

    Energy Technology Data Exchange (ETDEWEB)

    1967-02-16

    Transmission of the maximum rated power of 200 MW over the hvdc system which now links Sardinia with the Italian Mainland marks the successful completion of a notable British Export contract by English Electric. The link was commissioned on February 1. The Sardinia scheme is the seventh hvdc scheme to be completed in the world and is the first to be engineered by submarine cable.

  4. Coherent Seismic Arrivals in the P Wave Coda of the 2012 Mw 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?

    Science.gov (United States)

    Fan, Wenyuan; Shearer, Peter M.

    2018-04-01

    Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

  5. Intermediate heat exchanger design study of 25 MW straight-tube hexagonal modular type

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tanaka, Toshiyuki

    1983-09-01

    The helium-to-helium Intermediate Heat Exchanger(IHX), straight-tube hexagonal modular type was designed at General Atomic Company(GA), which heat duty is 421 MW. For this type IHX, at the selection of basic design, emphasis is placed on cost reduction and size reduction. Then small diameter tube size(11.1 mm), with wall thickness of 1.2 mm is applied to this IHX, necessary for the compact surface geometry. The other side, the helical-tube type IHX was designed at JAERI, which heat duty is 25 MW. This paper discusses the referance design of 25 MW scale IHX, with GA type application. The basic feature of this type IHX is as follows. (1) Thermal stress is reduced, as a result of using small diameter and thin wall thickness tube. (2) The possible improvements can make for higher heat flux, because of short length tube, compare with helical or U-tube type. (3) The simple tube support can use compare with helical or U-tube type. The conclusion reached is that GA type IHX is about one forth compactness and one forth weight compare with helical tube IHX. (author)

  6. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  7. Research on Operation and Control Strategy of 600MW PWR in Load Follow

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Bing Yang; Cao, Xin Rong [Harbin Engineering University, Harbin (China); Li, Han Chen [China Nuclear Power Engineering Co., Beijing (China)

    2014-08-15

    600MW Pressurized Water Reactor (PWR) is designed to operate in Constant Axial Offset Control (CAOC) strategy with base load originally. By calculations over a typical load follow scenario '12-3-6-3 {sup (}100-50-100%FP) via the CASMO-4E and SIMULATE-3 package, values of core operating parameter have been examined. With the progress of the nuclear power industry, advanced reactors are considered to have a good performance in load follow, economy and flexibility. Under the premise of fuel loading and structural dimensions unchanged, two independent control rod groups M and AO are used in 600MW pressurized water reactor to provide fine control of both the core reactivity and axial power distribution, which is named ' Improved G strategy .' The influences of different control rod distributions, composition materials, and overlap steps had in power changes have been examined in a comparative study to choose the optimal one.Then we simulate a range of load follow scenarios of the redesigned 600MW core without adjusting soluble boron concentration in the begin, middle and end of first cycle. This paper additionally demonstrated the moderator temperature coefficient and shutdown margin values of the reactor in Improved G strategy to compare with the thermal safety design criteria. It's demonstrated that adequate adjustment of control rod groups enable the core to perform load follow through Improved G strategy in 80% of cycle and save a large volume of liquid effluent particularly toward the end of cycle.

  8. Development of a field pole of 1 MW-class HTS motor

    International Nuclear Information System (INIS)

    Yuan, S; Kimura, Y; Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Ida, T; Umemoto, K; Aizawa, K; Yokoyama, M

    2010-01-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  9. Long pulse characteristics of 5 MW ion source for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M.R. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: mukti@ipr.res.in; Mattoo, S.K.; Chakraborty, A.K.; Baruah, U.K.; Patel, G.B.; Jayakumar, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2008-10-15

    We present characteristics of a 5 MW ion source for SST-1 neutral beam injector. Before the source could be tested for its performance, it was conditioned by 480 arc discharges of 1 s and beam extraction of hydrogen species at various beam voltages ranging between 19 kV and 56 kV. Breakdown free beam extraction could be secured only after about 3000 beam second extraction. The ion source is capable of delivering 1.7 MW of neutral beam power at 55 kV with horizontal and vertical focal length of 5.4 m and 7 m respectively. Beam divergence is {approx}0.97 deg. Steady-state beam energy of 31 MJ at 41 kV was achieved during 14 s long beam extraction. We have not noticed any deterioration of beam parameters, including beam divergence during long pulse operation. These results indicate that 0.5 MW of neutral beam power at 30 kV required for heating of plasma in SST-1 can be delivered.

  10. Long pulse characteristics of 5 MW ion source for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.; Chakraborty, A.K.; Baruah, U.K.; Patel, G.B.; Jayakumar, P.K.

    2008-01-01

    We present characteristics of a 5 MW ion source for SST-1 neutral beam injector. Before the source could be tested for its performance, it was conditioned by 480 arc discharges of 1 s and beam extraction of hydrogen species at various beam voltages ranging between 19 kV and 56 kV. Breakdown free beam extraction could be secured only after about 3000 beam second extraction. The ion source is capable of delivering 1.7 MW of neutral beam power at 55 kV with horizontal and vertical focal length of 5.4 m and 7 m respectively. Beam divergence is ∼0.97 deg. Steady-state beam energy of 31 MJ at 41 kV was achieved during 14 s long beam extraction. We have not noticed any deterioration of beam parameters, including beam divergence during long pulse operation. These results indicate that 0.5 MW of neutral beam power at 30 kV required for heating of plasma in SST-1 can be delivered.

  11. Thermal Hydraulics Analysis for the 3MW TRIGA MARK-II Research Reactor Under Transient Condition

    International Nuclear Information System (INIS)

    Huda, M.Q.; Bhuiyan, S.I.; Mondal, M.A.W.

    1996-12-01

    Some important thermal hydraulic parameters of the 3 MW TRIGA MARK-II research reactor operating under transient condition were investigated using two computer codes PULTRI and TEMPUL. Major transient parameters, such as, peak power and prompt energy released after pulse, maximum fuel and coolant temperature, surface heat flux, time and radial distribution of temperature within fuel element after pulse, fuel, fuel-cladding gap width variation, etc. were computer and compared with the experimental and operational values as reported in the safety Analysis Report (SAR). It was observed that pulsing of the reactor inserting an excess reactivity of $2.00 shoots the reactor power level to 854.353 MW compared to an experimental value of 852 MW; the maximum fuel temperature corresponding to this peak power was found to be 846.76 o C which is much less than the limiting maximum value of fuel temperature of 1150 0 C as reported in SAR. During a pulse if the film boiling occurs for a peak adiabatic fuel temperature of 1000 o C, the calculated outer cladding wall temperature was observed to be 702.39 0 C compared to a value of 760 o C reported in SAR under the same condition. The investigated other results were also found to be in good agreement with the values reported in the SAR. 16 refs., 22 figs. (author)

  12. Towards a 1 MW, 170 GHz gyrotron design for fusion application

    Science.gov (United States)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Bhattacharya, Ranajoy; Yadav, Vivek; Sinha, A. K.

    2013-03-01

    The electrical design of different components of 1 MW, 170 GHz gyrotron such as, magnetron injection gun, cylindrical interaction cavity and collector and RF window is presented in this article. Recently, a new project related to the development of 170 GHz, 1 MW gyrotron has been started for the Indian Tokamak. TE34,10 mode is selected as the operating mode after studied the problem of mode competition. The triode type geometry is selected for the design of magnetron injection gun (MIG) to achieve the required beam parameters. The maximum transverse velocity spread of 3.28% at the velocity ratio of 1.34 is obtained in simulations for a 40 A, 80 kV electron beam. The RF output power of more than 1 MW with 36.5% interaction efficiency without depressed collector is predicted by simulation in single-mode operation at 170 GHz frequency. The simulated single-stage depressed collector of the gyrotron predicted the overall device efficiencies >55%. Due to the very good thermal conductivity and very weak dependency of the dielectric parameters on temperature, PACVD diamond is selected for window design for the transmission of RF power. The in-house developed code MIGSYN and GCOMS are used for initial geometry design of MIG and mode selection respectively. Commercially available simulation tools MAGIC and ANSYS are used for beam-wave interaction and mechanical analysis respectively.

  13. Development of a field pole of 1 MW-class HTS motor

    Science.gov (United States)

    Yuan, S.; Kimura, Y.; Miki, M.; Felder, B.; Tsuzuki, K.; Ida, T.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yokoyama, M.

    2010-06-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  14. Multi-technology control centre to integrate 460 MW renewables; Centro de control multitecnología para la integración de 460 MW renovables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The new RWE Innogy Aersa Control Centre that has been certified to act as an interface with CECRE (the Renewable Energy Control Centre) since February 2015, connects RWE’s 20 renewable energy facilities with REE, the Spanish Electricity Grid. As a result, it ensures that wind farms, in addition to hydropower and solar plants, can inject the energy generated by its 460 MW installed safely and with no penalties. Green Eagle Solutions, a provider of software solutions for renewable energy companies, has collaborated with RWE in the development of this Control Centre, meeting the high standards of quality and safety required by RWE. This centre uses CompactSCADA® technology to integrate power generation facilities that need to be integrated in a Control Centre to communicate with REE’s CECRE. (Author)

  15. The Chiloé Mw 7.6 earthquake of 2016 December 25 in Southern Chile and its relation to the Mw 9.5 1960 Valdivia earthquake

    Science.gov (United States)

    Lange, Dietrich; Ruiz, Javier; Carrasco, Sebastián; Manríquez, Paula

    2018-04-01

    On 2016 December 25, an Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (˜15 Ma), and therefore hot, oceanic plate. We estimate the coseismic slip distribution based on a kinematic finite-fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94 × 1020 N.m that occurred over ˜30 s, with the rupture propagating mainly downdip, reaching a peak slip of ˜4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 2016 Chiloé event broke a region with increased locking and most likely broke an asperity of the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and interseismic activity are spatially similar, located ˜15 km offshore and parallel to Chiloé Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 1960 Valdivia earthquake.

  16. Postseismic deformation following the 2010 Mw 8.8 Maule and 2014 Mw 8.1 Pisagua megathrust earthquakes in Chile

    Science.gov (United States)

    Weiss, J. R.; Saunders, A.; Qiu, Q.; Foster, J. H.; Gomez, D.; Bevis, M. G.; Smalley, R., Jr.; Cimbaro, S.; Lenzano, L. E.; Barón, J.; Baez, J. C.; Echalar, A.; Avery, J.; Wright, T. J.

    2017-12-01

    We use a large regional network of continuous GPS sites to investigate postseismic deformation following the Mw 8.8 Maule and Mw 8.1 Pisagua earthquakes in Chile. Geodetic observations of surface displacements associated with megathrust earthquakes aid our understanding of the subduction zone earthquake cycle including postseismic processes such as afterslip and viscoelastic relaxation. The observations also help place constraints on the rheology and structure of the crust and upper mantle. We first empirically model the data and find that, while single-term logarithmic functions adequately fit the postseismic timeseries, they do a poor job of characterizing the rapid displacements in the days to weeks following the earthquakes. Combined exponential-logarithmic functions better capture the inferred near-field transition between afterslip and viscous relaxation, however displacements are best fit by three-term exponential functions with characteristic decay times of 15, 250, and 1500 days. Viscoelastic modeling of the velocity field and timeseries following the Maule earthquake suggests that the rheology is complex but is consistent with a 100-km-thick asthenosphere channel of viscosity 1018 Pa s sandwiched between a 40-km-thick elastic lid and a strong viscoelastic upper mantle. Variations in lid thickness of up to 40 km may be present and in some locations rapid deformation within the first months to years following the Maule event requires an even lower effective viscosity or a significant contribution from afterslip. We investigate this further by jointly inverting the GPS data for the time evolution of afterslip and viscous flow in the mantle wedge surrounding the Maule event.

  17. Co-seismic deformation of the August 27, 2012 Mw 7.3 El Salvador and September 5, 2012 Mw 7.6 Costa Rica earthquakes

    Science.gov (United States)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Mattioli, G. S.; Hernández, D.

    2013-05-01

    We investigate the co-seismic deformation of two significant earthquakes that occurred along the Middle America trench in 2012. The August 27 Mw 7.3 El Salvador and September 5 Mw 7.6 Nicoya Peninsula, Costa Rica earthquakes, were examined using a combination of episodic and continuous Global Positioning System (GPS) data. USGS finite fault models based on seismic data predict fundamentally different characteristics for the two ruptures. The El Salvador event occurred in a historical seismic gap and on the shallow segment of the Middle America Trench main thrust, rupturing a large area, but with a low magnitude of slip. A small tsunami was observed along the coast in Nicaragua and El Salvador, additionally indicating near-trench rupture. Conversely, the Nicoya, Costa Rica earthquake was predicted to have an order of magnitude higher slip on a spatially smaller patch deeper on the main thrust. We present results from episodic and continuous geodetic GPS measurements made in conjunction with the two earthquakes, including data from newly installed COCONet (Continuously Operating Caribbean GPS Observational Network) sites. Episodic GPS measurements made in El Salvador, Honduras, and Nicaragua following the earthquakes, allow us to estimate the co-seismic deformation field from both earthquakes. Because of the small magnitude of the El Salvador earthquake and its shallow rupture the observed co-seismic deformation is small (earthquake occurred directly beneath a seismic and geodetic network specifically designed to capture such events. The observed displacements exceeded 0.5 m and there is a significant post-seismic transient following the earthquake. We use our estimated co-seismic offsets for both earthquakes to model the magnitude and spatial variability of slip for these two events.

  18. A 20 MW{sub t} pilot plant for the generation of electric power by magnetohydrodynamic process using biomass; Planta piloto de 20 MW{sub t} de geracao de energia eletrica por magnetohidrodinamica a partir da biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Pinatti, D G; Guimaraes, O L.C.; Silva, A C da; Batista, J F [Fundacao de Tecnologia Industrial (FTI), Lorena, SP (Brazil); Fernandes Filho, G E.F.; Magalhaes Filho, P [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    1991-12-31

    The combustion of celulignin from biomass with addition of 1% of K, generates a plasma with electric conductivity of 100 S/M. This allows the establishment of a small size thermoelectric plants in triple or double cycle with magnetohydrodynamic generator (MHD), gas turbine and steam turbine. It is presented calculations of a pilot plant of 20 MW{sub t} in the MHD circuit and a total of 30 MW{sub t} with net efficiency of 27%. For plants larger than 60 MW{sub t} it is expected net efficiency larger than 37%. 3 refs., 10 figs., 3 tabs

  19. Design and simulation for the pulse high-voltage DC power supply (HVPS) of 1.2 MW/2.45 GHz HT-7U lower hybrid current drive system

    International Nuclear Information System (INIS)

    Huang Yiyun; Kuang Guangli; Xu Weihua; Liu Baohua; Lin Jianan; Wu Junshuan; Zheng Guanghua; Yang Chunshen

    2000-01-01

    The superconducting tokamak HT-7U has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW/2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation now, and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the Institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred

  20. Final stage of first supercritical 460MW{sub e} CFB boiler construction. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Goral, Damian [Foster Wheeler Energia Polska (Poland); Ostrowski, Waldemar [PKE (Poland)

    2009-07-01

    Circulating fluidized bed (CFB) boiler technology has been growing in size and number over the past two decades and it has established its position as utility scale boiler technology. Plant sizes up to 300 MW{sub e} are in operation today and designs for larger boilers are being developed. The next natural step for CFB technology is to go for supercritical steam parameters and larger boiler sizes. A Polish utility company Poludniowy Koncern Energetyczny SA (PKE) placed an order to Foster Wheeler Energia Oy for a 460 MW{sub e} supercritical CFB boiler for their Lagisza power plant. Contract was signed at the end of year 2002 and the engineering work is now ongoing. This will be the first supercritical once-through CFB boiler in the world. A modern power plant is designed for high efficiency not only for economical reasons but also for enhanced environmental performance in terms of reduced emissions and quantity of ash generated due to lower fuel consumption. Cutting CO{sub 2} emissions is one of the main drivers. To achieve these goals, supercritical steam parameters have been applied. Now this technology is available also for CFB technology. This combines a high plant efficiency with the other well known benefits of CFB technology, such as: fuel flexibility, low emissions and high availability. The boiler design for 460 MW{sub e} Lagisza power plant utilizes low mass flux BENSON Vertical once-through technology developed and licensed by Siemens AG, Germany. CFB boiler with low and uniform furnace heat flux is extremely well suited for the Benson technology providing a stable operation of the boiler also during load changes and abnormal operation conditions. The paper describes the 460 MW{sub e} supercritical CFB boiler concept and presents the technical solutions of the boiler design with auxiliary equipment, as well as first experiences from boiler erection period and commissioning. In spite of achieving this remarkable milestone the development of the CFB

  1. Recent R and D status for 70 MW class superconducting generators in the Super-GM project

    International Nuclear Information System (INIS)

    Ageta, T.

    2000-01-01

    Three types of 70 MW class superconducting generators called model machines have been developed to establish basic technologies for a pilot machine. The series of on-site verification tests was completed in June 1999. The world's highest generator output (79 MW), the world's longest continuous operation (1500 hours) and other excellent results were obtained. The model machine was connected to a commercial power grid and fundamental data were collected for future utilization. It is expected that fundamental technologies on design and manufacture required for a 200 MW class pilot machine are established. (author)

  2. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Yu, Ping; Balslev, Søren

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5 x 10(6) atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  3. Slip pulse and resonance of Kathmandu basin during the 2015 Mw 7.8 Gorkha earthquake, Nepal imaged with space geodesy

    Science.gov (United States)

    Galetzka, John; Melgar, D.; Genrich, J.F.; Geng, J.; Owen, S.; Lindsey, E. O.; Xu, X.; Bock, Y.; Avouac, J.-P.; Adhikari, L. B.; Upreti, B. N.; Pratt-Sitaula, B.; Bhattarai, T. N.; Sitaula, B. P.; Moore, A.; Hudnut, Kenneth W.; Szeliga, W.; Normandeau, J.; Fend, M.; Flouzat, M; Bollinger, L.; Shrestha, P.; Koirala, B.; Gautam, U.; Bhatterai, M.; Gupta, R.; Kandel, T.; Timsina, C.; Sapkota, S.N.; Rajaure, S.; Maharjan, N.

    2015-01-01

    Detailed geodetic imaging of earthquake rupture enhances our understanding of earthquake physics and induced ground shaking. The April 25, 2015 Mw 7.8 Gorkha, Nepal earthquake is the first example of a large continental megathrust rupture beneath a high-rate (5 Hz) GPS network. We use GPS and InSAR data to model the earthquake rupture as a slip pulse of ~20 km width, ~6 s duration, and with peak sliding velocity of 1.1 m/s that propagated toward Kathmandu basin at ~3.3 km/s over ~140 km. The smooth slip onset, indicating a large ~5 m slip-weakening distance, caused moderate ground shaking at high >1Hz frequencies (~16% g) and limited damage to regular dwellings. Whole basin resonance at 4-5 s period caused collapse of tall structures, including cultural artifacts.

  4. Preliminary scoping study of some neutronic aspects of new shim safety rods for a typical 5 MW research reactor by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shoushtari, M.K.; Kakavand, T. [Faculty of Science, University of Zanjan, P.O. BOX 1415, Zanjan (Iran, Islamic Republic of); Ghaforian, H. [Faculty of Science and Technology of Marine, P.O. BOX 212 Tehran (Iran, Islamic Republic of); Kiai, S.M. Sadat [Nuclear Science and Technology Research Institute (NSTR), Nuclear Science Research, A.E.O.I. P.O. BOX 14155-1339, Tehran (Iran, Islamic Republic of)], E-mail: sadatkiai@yahoo.com

    2009-02-15

    A Monte Carlo simulation of a typical 5 MW research reactor (TRR) was carried out using MCNP4C code. The geometry of the reactor core was modeled including the details of all fuel elements, control rods, all irradiation channels, graphite reflectors, reactor pool and thermal column. The model predicted neutron flux distributions within the core, control rod (CR) worth, core reactivity ({rho}), shutdown margin, and some kinetic parameters when the control rod insert or withdraw. This study was carried out to reduce blockage probability of shim safety rod (SSR)s of the TRR. Two introduced more blackness SSRs were chosen and made thinner in a way adequate blackness, in comparison to the present rods, achieved.

  5. Clinical professional governance for detailed clinical models.

    Science.gov (United States)

    Goossen, William; Goossen-Baremans, Anneke

    2013-01-01

    This chapter describes the need for Detailed Clinical Models for contemporary Electronic Health Systems, data exchange and data reuse. It starts with an explanation of the components related to Detailed Clinical Models with a brief summary of knowledge representation, including terminologies representing clinic relevant "things" in the real world, and information models that abstract these in order to let computers process data about these things. Next, Detailed Clinical Models are defined and their purpose is described. It builds on existing developments around the world and accumulates in current work to create a technical specification at the level of the International Standards Organization. The core components of properly expressed Detailed Clinical Models are illustrated, including clinical knowledge and context, data element specification, code bindings to terminologies and meta-information about authors, versioning among others. Detailed Clinical Models to date are heavily based on user requirements and specify the conceptual and logical levels of modelling. It is not precise enough for specific implementations, which requires an additional step. However, this allows Detailed Clinical Models to serve as specifications for many different kinds of implementations. Examples of Detailed Clinical Models are presented both in text and in Unified Modelling Language. Detailed Clinical Models can be positioned in health information architectures, where they serve at the most detailed granular level. The chapter ends with examples of projects that create and deploy Detailed Clinical Models. All have in common that they can often reuse materials from earlier projects, and that strict governance of these models is essential to use them safely in health care information and communication technology. Clinical validation is one point of such governance, and model testing another. The Plan Do Check Act cycle can be applied for governance of Detailed Clinical Models

  6. Visual Memory : The Price of Encoding Details

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Kromm, Maria

    2017-01-01

    Studies on visual long-term memory have shown that we have a tremendous capacity for remembering pictures of objects, even at a highly detailed level. What remains unclear, however, is whether encoding objects at such a detailed level comes at any cost. In the current study, we examined how the

  7. Understanding brains: details, intuition, and big data.

    Science.gov (United States)

    Marder, Eve

    2015-05-01

    Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.

  8. Understanding Brains: Details, Intuition, and Big Data

    OpenAIRE

    Marder, Eve

    2015-01-01

    Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.

  9. Understanding brains: details, intuition, and big data.

    Directory of Open Access Journals (Sweden)

    Eve Marder

    2015-05-01

    Full Text Available Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.

  10. The multi-interlock and check of logical system for 5 MW low power reactor automatic rod

    International Nuclear Information System (INIS)

    Li Guangjian; Zhao Zengqiao

    1992-01-01

    The safety and reliability of the logical system for 5 MW LPR automatic rod are improved, because of using multi-interlock and manual check on line. The design character and function of the logical system are introduced

  11. Analysis of the malfunctioning and failure of a 15 MW hydraulic turbine; Analisis de malfuncionamiento y de falla de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, R.; Perez Rodriguez, N. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    A case history is presented of the rehabilitation process of three hydraulic turbines with a capacity of 15 MW each one. Such units are used for electric power generation, mainly to supply part of the center zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was recovered and reconditioned for its operation. One of the three turbines presented serious functioning problems preventing its reliable operation that was evidenced by excessive mechanical vibrations and heating in the bearing zone. This paper presents the diagnosis of the possible causes of failure and the corrective measures taken. Serious rotor misalignment problems were observed respect to its bearings and the turbine scroll. Additionally, during the inspection of the turbine runner and of the bearing it was observed that important friction have existed, which incremented the vibrations. It is shown that such rubbings are not the cause of the problem but only a manifestation of the same. Finally some of the conclusions and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la republica mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomandas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al caracol de la turbina

  12. Analysis of the fault and malfunctioning of a 15 MW hydraulic turbine; Analisis de la falla y malfuncionamiento de una turbina hidraulica de 15 MW

    Energy Technology Data Exchange (ETDEWEB)

    Garcia I, Rafael; Perez R, Norberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    An historical case of the rehabilitation process of three hydraulic turbines with capacity of 15 MW each is presented. These units are used for the electrical generation, mainly to supply part of the central zone of the Mexican Republic. The turbo-generator units had been practically destroyed by catastrophic floods and only part of the equipment was rescued and rehabilitated for its operation. One of the three turbines presented serious operational problems, preventing its reliable operation evidenced by the excessive mechanical vibrations and heating of the bearing zone. This article presents the diagnosis of the possible causes of fault and the remedial actions taken. Strong misalignment problems of the runner with respect to its bearings and to the scroll case of the turbine are observed. In addition, during the inspection of the turbine runner and of the bearings it is observed that important frictions have existed, which increased the vibrations. It is shown that these frictions are not the cause of the problem but only one manifestation of the same. Finally some conclusions of the problem and their solution are presented. [Spanish] Se presenta un caso historico del proceso de rehabilitacion de tres turbinas hidraulicas con capacidad de 15 MW cada una. Dichas unidades son empleadas en la generacion electrica, principalmente para abastecer parte de la zona centro de la Republica Mexicana. Las unidades turbogeneradores habian sido practicamente destruidas por inundaciones catastroficas y solo parte del equipo fue rescatado y rehabilitado para su operacion. Una de las tres turbinas presento graves problemas de funcionamiento, impidiendo su operacion confiable, lo cual se manifestaba mediante vibraciones mecanicas excesivas y calentamiento en zona de chumaceras. En este articulo se presenta el diagnostico de las posibles causas de falla y las acciones correctivas tomadas. Se observan problemas fuertes de desalineamiento del rotor respecto a sus chumaceras y al

  13. Dynamic Parameters of the 2015 Nepal Gorkha Mw7.8 Earthquake Constrained by Multi-observations

    Science.gov (United States)

    Weng, H.; Yang, H.

    2017-12-01

    Dynamic rupture model can provide much detailed insights into rupture physics that is capable of assessing future seismic risk. Many studies have attempted to constrain the slip-weakening distance, an important parameter controlling friction behavior of rock, for several earthquakes based on dynamic models, kinematic models, and direct estimations from near-field ground motion. However, large uncertainties of the values of the slip-weakening distance still remain, mostly because of the intrinsic trade-offs between the slip-weakening distance and fault strength. Here we use a spontaneously dynamic rupture model to constrain the frictional parameters of the 25 April 2015 Mw7.8 Nepal earthquake, by combining with multiple seismic observations such as high-rate cGPS data, strong motion data, and kinematic source models. With numerous tests we find the trade-off patterns of final slip, rupture speed, static GPS ground displacements, and dynamic ground waveforms are quite different. Combining all the seismic constraints we can conclude a robust solution without a substantial trade-off of average slip-weakening distance, 0.6 m, in contrast to previous kinematical estimation of 5 m. To our best knowledge, this is the first time to robustly determine the slip-weakening distance on seismogenic fault from seismic observations. The well-constrained frictional parameters may be used for future dynamic models to assess seismic hazard, such as estimating the peak ground acceleration (PGA) etc. Similar approach could also be conducted for other great earthquakes, enabling broad estimations of the dynamic parameters in global perspectives that can better reveal the intrinsic physics of earthquakes.

  14. Seismic evaluation and upgrading design of overhead roads between reactor buildings of WWER-1000 MW type NPP

    International Nuclear Information System (INIS)

    Jordanov, M.J.; Stoyanov, G.S.; Geshanov, I.H.; Kirilov, K.P.; Schuetz, W.

    2003-01-01

    This paper presents results obtained during the study of overhead roads between Reactor Building (RB) of WWER-1000 MW NPP and possible measures for their seismic upgrade. The main objective of this project is to evaluate the behavior of overhead roads under site-specific seismic loading and to determine whether this structure satisfies current international safety regulations, followed by development of upgrading concepts. Overhead roads are pre-cast RC structure, which can be divided to separate substructures. They comprise of pedestrian gallery and pipeline box, connecting reactor buildings with auxiliary building. They are mounted at approximately 10 m above ground level. The overhead roads are evaluated for Review Level Earthquake (RLE) as seismic category II structures. As seismic input motion is RLE, free field response spectra anchored to 0.2 g PGA are used with 0.5 scaling factor. Soil-Structure Interaction effects are taken into account through equivalent soil springs with frequency adjusted stiffness. In order to meet the objective of the project a technical design specification is developed for conformance with International, US and Bulgarian standards and codes, taking into account site specific conditions. The general approach is consistent with up-to-date practice for evaluation and upgrade of nuclear power plant facilities. The separate steps comprising the overall fulfillment of project's major objectives may be summarized as follows: study of all available data for initial design and as built conditions, creation of 3-D detailed finite element models for as-built structure, determination of dynamic characteristics, evaluation of adequacy of initial design under new seismic loading (calculation of D/C ratios for structural members and connections, evaluation of embedment lengths for embedded parts and rebars, deformation evaluation, stability checks), development of upgrading concepts for enhancement, verification of capability of upgraded structure

  15. Structural capacity assessment of WWER-1000 MW reactor containment. Progress report

    International Nuclear Information System (INIS)

    Jordanov, M.

    1999-01-01

    The objective of the project is to provide assessment of the structural behaviour and safety capacity of the WWER-1000 MW Reactor Building Containment at Kozloduy NPP under critical combination of loads according to the current international requirements. The analysis is focused on a realistic assessment of the Containment taking into account the non-linear shell behaviour of the pre-stressed reinforced concrete structure. Previous assessments of the status of pre stressing cables pointed out that the efficiency of the Containment as a final defence barrier for internal and external events depends on their reliability. Due to this, the experimental data obtained from embedded sensors (gauges) at pre-stressed shell structure is to be compared with the results from analytical investigations. The reliability of the WWER-1000 MW accident prevention system is under evaluation in the project. The Soviet standard design WWER-1000 MW type units installed in Kozloduy NPP were originally designed for a Safe Shutdown Earthquake (SSE) with a peak ground acceleration (PGA) of 0.1g. The new site seismicity studies revealed that the seismic hazard for the site significantly exceeds the originally estimated and a Review Level Earthquake (RLE) anchored to PGA=0.20g was proposed for re-assessment of the structures and equipment at Kozloduy NPP. The scope of the study is a re-assessment of the Containment structure under critical combination of loads according to the current safety and reliability requirements, including comparison between the Russian design requirements and the international regulations. Additionally, an investigation of the pre-stressing technology and the annual control of the cables' pre-stressing of the Containment is to be made. The crane influence on the dynamic behaviour of the Containment will be done as well as a study of the integrity of the Containment as a final defence barrier

  16. Exergy analysis of a 1000 MW double reheat ultra-supercritical power plant

    International Nuclear Information System (INIS)

    Si, Ningning; Zhao, Zhigang; Su, Sheng; Han, Pengshuai; Sun, Zhijun; Xu, Jun; Cui, Xiaoning; Hu, Song; Wang, Yi; Jiang, Long; Zhou, Yingbiao; Chen, Gang; Xiang, Jun

    2017-01-01

    Highlights: • Set up a simple and effective method to analysis the performance of double reheat USC unit. • Exergy loss distribution of the double reheat USC unit was declared. • The sensitivity variations of the unit’s exergy efficiency has been revealed. • Provide the foundation for the operation optimization of double reheat USC unit. - Abstract: This study evaluates the performance of a 1000 MW double reheat ultra-supercritical power plant. An exergy analysis was performed to direct the energy loss distribution of this system. Based on the exergy balance equation, together with exergy efficiency, exergy loss coefficient, and exergy loss rate, the exergy distribution and efficiency of the unit were determined. Results show that the highest exergy loss in furnace is as high as 85%, which caused by the combustion of fuel and heat exchange of water wall. The VHP and the two LPs suffer the highest exergy losses, namely 1.86%, 2.04% and 2.13% respectively. The regenerative heating system has an exergy loss rate of 2.3%. The condenser suffers a heat loss of 999 MW, but its exergy is as low as 20.49 MW. The sensitivity variations of the unit’s exergy efficiency with load, feedwater temperature, main steam temperature and pressure, the twice reheat steam temperatures, and steam exhaust pressure were also analyzed, indicating that load, feedwater temperature, and steam exhaust pressure influence the exergy efficiency of this unit than other elements. The overall exergy efficiency decreases along with the gradual increase of steam exhaust pressure at any constant outlet boiler temperature, but it increases as the load, feedwater temperature, main steam temperature and pressure, and twice reheat steam temperatures increase at fixed steam exhaust pressure.

  17. Multifractal analysis of 2001 Mw 7 . 7 Bhuj earthquake sequence in Gujarat, Western India

    Science.gov (United States)

    Aggarwal, Sandeep Kumar; Pastén, Denisse; Khan, Prosanta Kumar

    2017-12-01

    The 2001 Mw 7 . 7 Bhuj mainshock seismic sequence in the Kachchh area, occurring during 2001 to 2012, has been analyzed using mono-fractal and multi-fractal dimension spectrum analysis technique. This region was characterized by frequent moderate shocks of Mw ≥ 5 . 0 for more than a decade since the occurrence of 2001 Bhuj earthquake. The present study is therefore important for precursory analysis using this sequence. The selected long-sequence has been investigated first time for completeness magnitude Mc 3.0 using the maximum curvature method. Multi-fractal Dq spectrum (Dq ∼ q) analysis was carried out using effective window-length of 200 earthquakes with a moving window of 20 events overlapped by 180 events. The robustness of the analysis has been tested by considering the magnitude completeness correction term of 0.2 to Mc 3.0 as Mc 3.2 and we have tested the error in the calculus of Dq for each magnitude threshold. On the other hand, the stability of the analysis has been investigated down to the minimum magnitude of Mw ≥ 2 . 6 in the sequence. The analysis shows the multi-fractal dimension spectrum Dq decreases with increasing of clustering of events with time before a moderate magnitude earthquake in the sequence, which alternatively accounts for non-randomness in the spatial distribution of epicenters and its self-organized criticality. Similar behavior is ubiquitous elsewhere around the globe, and warns for proximity of a damaging seismic event in an area. OS: Please confirm math roman or italics in abs.

  18. The isolated 678-km deep 30 May 2015 MW 7.9 Ogasawara (Bonin) Islands earthquake

    Science.gov (United States)

    Ye, L.; Lay, T.; Zhan, Z.; Kanamori, H.; Hao, J.

    2015-12-01

    Deep-focus earthquakes, located 300 to 700 km below the Earth's surface within sinking slabs of relatively cold oceanic lithosphere, are mysterious phenomena. Seismic radiation from deep events is essentially indistinguishable from that for shallow stick-slip frictional-sliding earthquakes, but the confining pressure and temperature are so high for deep-focus events that a distinct process is likely needed to account for their abrupt energy release. The largest recorded deep-focus earthquake (MW 7.9) in the Izu-Bonin slab struck on 30 May 2015 beneath the Ogasawara (Bonin) Islands, isolated from prior seismicity by over 100 km in depth, and followed by only 2 small aftershocks. Globally, this is the deepest (678 km) major (MW > 7) earthquake in the seismological record. Seismicity indicates along-strike contortion of the Izu-Bonin slab, with horizontal flattening near a depth of 550 km in the Izu region and progressive steepening to near-vertical toward the south above the location of the 2015 event. Analyses of a large global data set of P, SH and pP seismic phases using short-period back-projection, subevent directivity, and broadband finite-fault inversion indicate that the mainshock ruptured a shallowly-dipping fault plane with patchy slip that spread over a distance of ~40 km with variable expansion rate (~5 km/s down-dip initially, ~3 km/s up-dip later). During the 17 s rupture duration the radiated energy was ~3.3 x 1016 J and the stress drop was ~38 MPa. The radiation efficiency is moderate (0.34), intermediate to that of the 1994 Bolivia and 2013 Sea of Okhotsk MW 8.3 earthquakes, indicating a continuum of processes. The isolated occurrence of the event suggests that localized stress concentration associated with the pronounced deformation of the Izu-Bonin slab likely played a role in generating this major earthquake.

  19. Neutron flux measurement in the central channel (XC-1) of TRIGA 14 MW LEU core

    International Nuclear Information System (INIS)

    BARBOS, D.; BUSUIOC, P.; ROTH, Cs.; PAUNOIU, C.

    2008-01-01

    The TRIGA 14 MW reactor, operated by Institute for Nuclear Research Pitesti, Romania, is a pool type reactor, and has a rectangular shape which holds fuel bundles and is surrounded with beryllium reflectors. Each fuel bundle is composed of 25 nuclear fuel rods. The TRIGA 14 MW reactor was commissioned 28 years ago with HEU fuel rods. The conversion was gradually achieved, starting in February 1992 and completed in March 2006. The full conversion of the 14 MW TRIGA Research Reactor was completed in May 2006 and each step of the conversion was achieved by removal of HEU fuel, replaced by LEU fuel, accompanied by a large set of theoretical evaluation and physical measurements intended to confirm the performances of gradual conversion. After the core full conversion, a program of measurements and comparisons with previous results of core physics and measurements is underway, allowing data acquisition for normal operation, demonstration of safety and economics of the converted core. Neutron flux spectrum measurements in the XC in the XC-1 water 1 water-filled channel were performed using multi multi-foil activation techniques. The neutron spectra and flux are obtained by unfolding from measured reaction rates using SAND II computer code. The integral neutron flux value for LEU core is greater of 13% than for the standard HEU core. Also thermal neutron flux value for converted LEU core is smaller by 0.38% than for the standard HEU core. These differences appear because the foil activation detectors have been irradiated using a pneumatic rabbit having a diameter of 32 mm, whereas foil irradiations in standard HEU core has been performed with a pneumatic rabbit having a diameter of 14 mm, and therefore the neutron spectra in LEU core is less thermalized and the weight of fast neutron is greater

  20. Cancer risks related to low-level RF/MW exposures, including cell phones.

    Science.gov (United States)

    Szmigielski, Stanislaw

    2013-09-01

    For years, radiofrequency (RF) and microwave (MW) radiations have been applied in the modern world. The rapidly increasing use of cellular phones called recent attention to the possible health risks of RF/MW exposures. In 2011, a group of international experts organized by IARC (International Agency for Research on Cancer in Lyon) concluded that RF/MW radiations should be listed as a possible carcinogen (group 2B) for humans. Three meta-analyses of case-control studies have concluded that using cell phones for more than ten years was associated with an increase in the overall risk of developing a brain tumor. The Interphone Study, the largest health-related case-control international study of use of cell phones and head and neck tumors, showed no statistically significant increases in brain cancers related to higher amounts of cell phone use, but excess risk in a small subgroup of more heavily exposed users associated with latency and laterality was reported. So far, the published studies do not show that mobile phones could for sure increase the risk of cancer. This conclusion is based on the lack of a solid biological mechanism, and the fact that brain cancer rates are not going up significantly. However, all of the studies so far have weaknesses, which make it impossible to entirely rule out a risk. Mobile phones are still a new technology and there is little evidence about effects of long-term use. For this reason, bioelectromagnetic experts advise application of a precautionary resources. It suggests that if people want to use a cell phone, they can choose to minimize their exposure by keeping calls short and preferably using hand-held sets. It also advises discouraging children from making non essential calls as well as also keeping their calls short.

  1. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ichter, Brian; Steele, Adam; Loth, Eric; Moriarty, Patrick; Selig, Michael

    2016-04-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degrees at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.

  2. Hypothetical accident scenario analyses for a 250-MW(t) modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1985-11-01

    This paper describes calculations performed to characterize the inherent safety of a 250-MW(t), 100-MW(e), pebble bed modular high temperature gas-cooled reactor (HTGR) design with vertical in-line arrangement (i.e., upflow core with steam generators directly above the core). A variety of postulated accident sequences involving combinations of loss of forced primary coolant (helium) circulation, loss of primary coolant pressurization, and loss of heat sink were studied and were discussed

  3. The design and performance of 150-MW S-band klystrons

    International Nuclear Information System (INIS)

    Sprehn, D.; Phillips, R.M.; Caryotakis, G.

    1994-09-01

    As part of an international collaboration, the Stanford Linear Accelerator Center (SLAC) klystron group has designed, fabricated and tested a 60 Hz, 3 μs, 150 MW klystron built for Deutsches Elektronen Synchrotron (DESY). A test diode with a 535 kV, 700 A electron beam was constructed to verify the gun operation. The first klystron was built and successfully met design specifications. This paper discusses design issues and experimental results of the diode and klystron including the suppression of gun oscillations

  4. Reactive Power Compensation of a 24 MW Wind Farm using a 12-Pulse Voltage Source Converter

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Pedersen, Jørgen Kaas

    1998-01-01

    Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop and investig......Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop...... and investigate the use of a STATCOM by modelling and field testing an 8 MVar unit in a 24 MW wind farm....

  5. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  6. Characterization of blade throw from a 2.3MW horizontal axis wind turbine upon failure

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Sørensen, Jens Nørkær

    2015-01-01

    The present work concerns aerodynamics of thrown objects from a 2.3 MW Horizontal Axis Wind Turbine (HAWT), as a consequence of blade failure. The governing set of ordinary differential equations for the flying objects are derived and numerically solved using a 4th order Runge-Kutta time advancing...... on their size. Thereafter, throw distance picks up exponentially with the tip speed. By comparing the throw distance calculations with and without dynamic stall model being active, it is concluded that dynamic stall does not play a major role in throw distances....

  7. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    DEFF Research Database (Denmark)

    Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens

    2016-01-01

    to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty...... conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters...

  8. A 2 MW, 170 GHz coaxial cavity gyrotron - experimental verification of the design of main components

    Energy Technology Data Exchange (ETDEWEB)

    Piosczyk, B [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dammertz, G [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dumbrajs, O [Department of Engineering Physics and Mathematics, Helsinki University of Technology, Association EURATOM-TEKES, FIN-02150 Espoo (Finland)] (and others)

    2005-01-01

    A 2 MW, CW, 170 GHz coaxial cavity gyrotron is under development in cooperation between European Research Institutions (FZK Karlsruhe, CRPP Lausanne, HUT Helsinki) and the European tube industry (TED, Velizy, France). The design of critical components has recently been examined experimentally at FZK Karlsruhe with a short pulse ({approx} few ms) coaxial cavity gyrotron. This gyrotron uses the same cavity and the same quasioptical (q.o.) RF-output system as designed for the industrial prototype and a very similar electron gun.

  9. Hybrid 21 MW wind-solar system to limit energy costs at an industrial plant

    International Nuclear Information System (INIS)

    López, C.

    2016-01-01

    Ereda has undertaken a project that aims to analyse the possibility of limiting the cost of the energy supply to a medium-sized industrial plant, with an installed capacity of over 26 MW, located in the south-west of Kazakhstan. The cost of electricity for its processes accounts for an important part of its production cost, achieving values in excess of 40%. The price of electricity in the country is expected to rise over the coming years. In addition, the plant is now required to reduce CO2 emissions from its industrial activity, which is why a further cost arising from the acquisition of emissions rights is expected in future. (Author)

  10. 1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10 9 m 3 (1000 x 10 9 bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region

  11. CFD simulation of combustion in a 150 MW{sub e} CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nan; Wang, Wei; Li, Jinghai [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Multiphase Complex Systems

    2013-07-01

    Eulerian granular multiphase model with meso-scale modeling of drag coefficient and mass transfer coefficient, based on the energy minimization multi-scale (EMMS) model, was presented to simulate a 150 MW{sub e} CFB boiler. The three-dimensional (3D), time-dependent simulation results were presented in terms of the profiles of pressure, the distributions of carbon and oxygen, as well as the temperature. The EMMS-based sub-grid modeling allows using coarse grid with proven accuracy, and hence it is suitable for simulation of such large-scale industrial reactors.

  12. Development of 70 MW class superconducting generator with quick-response excitation

    Science.gov (United States)

    Miyaike, Kiyoshi; Kitajima, Toshio; Ito, Tetsuo

    2002-03-01

    The development of a superconducting generator had been carried out for 12 years under the first stage of a Super GM project. The 70 MW class model machine with quick response excitation was manufactured and evaluated in the project. This type of superconducting generator improves power system stability against rapid load fluctuations at the power system faults. This model machine achieved all development targets including high stability during rapid excitation control. It was also connected to the actual 77 kV electrical power grid as a synchronous condenser and proved advantages and high-operation reliability of the superconducting generator.

  13. Reconfiguration of the NRAD delay loop for proposed 1 MW operations

    International Nuclear Information System (INIS)

    Heidel, C.C.; Richards, W.J.; Pruett, D.P.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination technqiues utilized at HFEF is neutron radiography. Neutron radiography is provided by the NRAD reactor facility, which is located beneath the HFEF hot cell. The NRAD reactor is a TRIGA reactor and is operated at a steady-state power level of 250 kw solely for neutron radiography and the development of radiography techniques. Modifications of the NRAD delay loop for 1 MW operations are described

  14. Experimental and numerical investigation of 3D aerofoil characteristics on a MW wind turbine

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Sørensen, Niels N.

    2013-01-01

    3D aerofoil characteristics on a MW wind turbine is investigated through a combination of field measurements, wind tunnel tests and computational fluid dynamics (CFD). Surface pressuremeasurements as well as the integrated force coefficients for selected aerofoil sections on a blade of the turbine...... is compared to wind tunnel measurements on the same aerofoil sections in order to reveal the difference in performance of aerofoils on full scale rotors in atmospheric conditions and aerofoils in wind tunnels. The findings of the measurements are backed up by analogous CFD analysis involving fully resolved 3D...... computations on the wind turbine as well as 2D aerofoil simulations....

  15. ENEL (Italy) 3.3 MW photovoltaic power plant at Serre

    International Nuclear Information System (INIS)

    Iliceto, A.; Previ, A.; Corsi, S.; Belcastro, G.N.; Vigotti, R.

    1993-01-01

    This paper describes the key design and performance features of a demonstration 3.3 MW photovoltaic power plant which is being built by ENEL (the Italian National Electricity Board) to determine the technical-economic feasibility of such installations and to augment national engineering know-how and construction capability in this field. The plant is to be made up of 60,000 modules, each equipped with sets of 36 or 72 10x10 cm polycrystalline silicon cells. The paper also provides sketches of module support systems, main electrical layouts and computerized control systems, as well as, a breakdown of project costs

  16. Neutronics analysis of the proposed 25-MW leu TRIGA Multipurpose Research Reactor

    International Nuclear Information System (INIS)

    Nurdin, M.; Bretscher, M.M.; Snelgrove, J.L.

    1982-01-01

    More than two years ago the government of Indonesia announced plans to purchase a research reactor for the Puspiptek Research Center in Serpong Indonesia to be used for isotope production, materials testing, neutron physics measurements, and reactor operator training. Reactors using low-enriched uranium (LEU) plate-type and rod-type fuel elements were considered. This paper deals with the neutronic evaluation of the rod-type 25-MW LEU TRIGA Multipurpose Research Reactor (MPRR) proposed by the General Atomic Company of the United States of America

  17. Process Control System of a 500-MW Unit of the Reftinskaya Local Hydroelectric Power Plant

    International Nuclear Information System (INIS)

    Grekhov, L. L.; Bilenko, V. A.; Derkach, N. N.; Galperina, A. I.; Strukov, A. P.

    2002-01-01

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity

  18. Design of power auto-regulating system's high reliability controller for 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    An Zhencai; Liu Longzhi; Chen Yuan

    1996-01-01

    The paper mainly introduces power auto-regulating system's high reliability controller for 200 MW Nuclear Heating Reactor. The controller is implemented with excellent performance 16 bit single chip microcomputer 8097. Master controller and 10 digit samplers are blocked. Each and every block's hardware is identical. These blocks communicate each other through 8 bit BUS and operate synchronously by united clock and reset signal and are designed with three redundancies. The identity comparison principle through two-out-of three is also introduced. The test proves that designing scheme is feasible

  19. Optimization and comparison of superconducting generator topologies for a 10 MW wind turbine application

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    A direct-drive superconducting generator (DDSCG) is proposed for 10 MW wind turbines in the INNWIND.EU project. To fit the generator into the "king-pin" conceptual nacelle design, the generator structure with inner stationary superconducting (SC) field winding and outer rotating copper armature...... winding is investigated in the first research phase. Since the cost is an important performance indicator for this application, this paper presents a method to minimize the active material cost of the "king-pin" fitted DDSCG. In this method a relatively fast optimization program is developed with 2D non...

  20. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high......As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  1. A Pole Pair Segment of a 2-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2017-01-01

    A 2-MW high-temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a full-size stationary experimental setup, which is one pole pair segment...... and the setup in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the setup is a good surrogate for these that would be used...

  2. A Pole Pair Segment of a 2 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Kellers, Jürgen

    2016-01-01

    A 2 MW high temperature superconducting (HTS) generator with 24 pole pairs has been designed for the wind turbine application. In order to identify potential challenges and obtain practical knowledge prior to production, a fullsize stationary experimental set-up, which is one pole pair segment...... generator and the set-up in terms of the flux density, the operating condition of the HTS winding, and the force-generation capability. Finite element (FE) software MagNet is used to carry out numerical simulations. The findings show that the HTS winding in the set-up is a good surrogate...

  3. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized

  4. Field Validation of the Stability Limit of a Multi MW Turbine

    Science.gov (United States)

    Kallesøe, Bjarne S.; Kragh, Knud A.

    2016-09-01

    Long slender blades of modern multi-megawatt turbines exhibit a flutter like instability at rotor speeds above a critical rotor speed. Knowing the critical rotor speed is crucial to a safe turbine design. The flutter like instability can only be estimated using geometrically non-linear aeroelastic codes. In this study, the estimated rotor speed stability limit of a 7 MW state of the art wind turbine is validated experimentally. The stability limit is estimated using Siemens Wind Powers in-house aeroelastic code, and the results show that the predicted stability limit is within 5% of the experimentally observed limit.

  5. Design of 120 MW beam power electron gun for high power klystron

    International Nuclear Information System (INIS)

    Zhou Zusheng; Dong Dong

    2005-01-01

    An electron gun was designed and the beam optics for a China-made 50 MW klystron was simulated. The electron gun ceramic cylinder was designed and optimized. The China-made cathode was replaced with an imported one to lessen evaporation and arcing. The high voltage (320 kV) of the cathode was increased to meet the klystron output power demand and a low electric field strength (22.1 kV/mm) electron gun was designed to avoid the high power operation which damaged the ceramic cylinder. The klystron output power was increased and life span extended. (authors)

  6. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Yoshio; Nakagami, Yasuo; Fujii, Hisashi; Shibanai, Hirooki.

    1980-01-01

    Two 1175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  7. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Y.; Nakagami, Y.; Fujii, H.; Shibanai, H.

    1980-01-01

    Two 1,175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  8. Neutronic design of a 22 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.; Soleman, I.; Ghazi, N.

    2006-12-01

    The neutronic design calculations of a 22 MW MTR type nuclear research reactor are conducted in this project. This reactor type is selected by the Arab Atomic Energy Commission in a cooperated project. The design calculations are conducted in two methods: The deterministic method, solving the neutron transport and diffusion equations using the WIMSD4 and the CITATION codes, and the probabilistic method using the MCNP code. Good agreements are noticed between the results of the multiplication factor and the neutron flux distribution which prove the accuracy of our models using the two methods. (author)

  9. Analysis of a prototype of a novel 1.5 MW, 170 GHz coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Rzesnicki, T.

    2007-06-01

    A 170 GHz, 2 MW coaxial cavity gyrotron is under development at the Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM) at Forschungszentrum Karlsruhe (FZK) which will be used as a high power microwave source for heating, current drive and stability control of plasmas in the International Thermonuclear Experimental Reactor (ITER). At frequencies above about 100 GHz the output power of conventional gyrotrons with cylindrical hollow waveguide cavities is limited to 1 MW in CW operation mainly due to the high Ohmic losses and the space charge voltage depression of the electron beam. The coaxial geometry enables a reduction of the mode competition in the gyrotron resonator and decreases also the influence of the beam voltage depression. As result a very high order operating mode (for example TE34,19 at 170 GHz) can be chosen which ultimately allows to increase the output power of the gyrotron in CW operation to a value as high as 2 MW. A first prototype of the 170 GHz, 2 MW coaxial cavity gyrotron has been designed, built and experimentally tested in short pulse operation at FZK. The main goal of this work was to investigate experimentally the design of the critical gyrotron components such as electron gun, resonator and a quasi-optical RF system. Those components are same as used in the first industrial coaxial prototype gyrotron for ITER. During the experiments a strong instability was observed inside the gyrotron tube due to the excitation of parasitic low frequency oscillations. The mechanism of the oscillations has been studied and possibilities for their suppression of these oscillations are proposed and experimentally verified. The RF output system is one of the most critical components. It is responsible for the coupling of the gyrotron power out of the gyrotron by converting the microwave power generated in the TE 34,19 -mode into a fundamental free space TEM 0,0 ''Gaussian'' mode. The performance of the RF output system has been tested in low

  10. The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks

    Science.gov (United States)

    Shi, Q.; Wei, S.

    2017-12-01

    The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks

  11. Neutronic design of a 22 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.; Soleman, I.; Ghazi, N.

    2008-01-01

    The neutronic design calculations of a 22 MW MTR type nuclear research reactor are conducted in this project. This reactor type is selected by the Arab Atomic Energy Commission in a cooperated project. The design calculations are conducted in two methods: The deterministic method, solving the neutron transport and diffusion equations using the WIMSD4 and the CITATION codes, and the probabilistic method using the MCNP code. Good agreements are noticed between the results of the multiplication factor and the neutron flux distribution which prove the accuracy of our models using the two methods. (authors)

  12. Instructor station of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Wu Fanghui

    1996-01-01

    The instructor station of Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit is based on SGI graphic workstation. The operation system is real time UNIX, and the development of man-machine interface, mainly depends on standard X window system, special for X TOOLKITS and MOTIF. The instructor station has been designed to increase training effectiveness and provide the most flexible environment possible to enhance its usefulness. Based on experiences in the development of the instructor station, many new features have been added including I/O panel diagrams, simulation diagrams, graphic operation of malfunction, remote function and I/O overrides etc

  13. Final stage of first super-critical 460 MW CFB boiler construction. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, Waldemar [PKE, Lagisza Power Plant (Poland); Goral, Damian [Foster Wheeler Energia Polska, Sosnowiec (Poland)

    2010-07-01

    Steam boilers with circulating fluidised bed combustion have been advanced in the past years and proved well as large-scale technology. A further step was the development and construction of a boiler with super-critical steam parameters and increased output. In 2002 the Polish utility Poludniowy Koncern Energetyczny SA awarded a contract to Foster Wheeler Energia Oy to erect a fluidised bed boiler for the Lagisza power plant. Construction of the 460 MW plant was started in 2006. The plant has been in commercial operation since 2009. (orig.)

  14. Power quality issues of 3MW direct-driven PMSG wind turbine

    OpenAIRE

    Ahmed, IA; Zobaa, AF; Taylor, GA

    2015-01-01

    This paper presents power quality issues of a grid connected wind generation system with a MW-class direct-driven permanent magnet synchronous generator (PMSG). A variable speed wind turbine model was simulated and developed with the simulation tool of PSCAD/EMTDC. The model includes a wind turbine with one mass-model drive train model, a PMSG model and a full-scale voltage source back to back PWM converter. The converter controller model is employed in the dq-synchronous rotating reference f...

  15. Experimental investigation of the chemical looping method on a 1 MW pilot plant; Experimentelle Untersuchung des Chemical Looping Verfahrens an einer 1 MW Versuchsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Orth, Matthias

    2014-08-27

    Attempting to counteract the consequences of climate change, leading industrial nations have agreed on reducing their CO{sub 2} emissions significantly. To reach these reduction goals, it is essential to reduce the CO{sub 2} emissions in the field of energy conversion. This PHD thesis covers the field of chemical looping combustion, a technology that uses fossil fuels for energy conversion with inherent capture of CO{sub 2}. Since the research regarding chemical looping had so far focused mainly on lab scale or small scale experiments, a 1 MW pilot plant has been erected at Technische Universitaet Darmstadt in order to investigate the process in a semi-industrial scale and to check the process efficiency with commercially usable equipment. This pilot consists of two interconnected fluidized bed reactors and has an overall height of more than 11 m. In this thesis, some experiments with ilmenite - used as the oxygen carrier - are explained. Furthermore, the design, erection and commissioning of the pilot plant are presented as well as the results of the first test campaigns. The evaluation of the latter proves that the process can be handled in the design configuration and that CO{sub 2} can be safely captured in a pilot plant of this scale.

  16. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  17. Economic Analyses and Potential Market of the 200MW Nuclear Heating Reactor

    International Nuclear Information System (INIS)

    Wang, Yongqing; Wang, Guiying

    1992-01-01

    Based on the 5MW experimental nuclear heating reactor, Intent has developed a 200MW demonstration nuclear heating reactor. Owing to its simplified systems and low operating parameters, the NCR-200 has preferable investment in comparison with that of a nuclear power plant. The pre-feasibility studies for several cities in Northern China have shown that the heat cost of a NCR-200 can be competitive with a coal fired heating plant. As a safe, clean and economic heat source, the NCR could pose a large market in replacement of coal for heating. The R and D work performed up to now has demonstrated that the NCR-200 operating under the present parameters can supply low pressure steam for industrial process and co-generation to enhance it economic benefit. The NCR-200 could also serve a heat source for air condition by using Li Br refrigerator, this application is very interesting to some cities in Central and Southern China. The applications of the NCR in oil recovery by injecting hot water and transportation are very promising for some oil fields in North China. In addition, the study on sea water desalination using the NCR-200 is being carried out at present under international cooperation. All of these will expansion the possible application of the NCR. The paper presents the economic analysis and the potential market of the NCR-200

  18. Reconfiguration of the NRAD delay loop for proposed 1 MW operations

    International Nuclear Information System (INIS)

    Heidel, C.C.; Richards, W.J.; Pruett, D.P.

    1984-01-01

    Neutron radiography is provided by the NRAD reactor facility, which is located beneath the HFEF hot cell. The NRAD reactor is a TRIGA reactor and is operated at a steady-state power level of 250 kw solely for neutron radiography and the development of radiography techniques. When the NRAD facility was designed and constructed, an operating power level of 250 kw was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. Since that time a second radiography station was installed and the thickness of the specimens being radiographed is greater than was initially envisaged. In order to decrease exposure times, the reactor power level is to be increased to 1 Mw. The present delay loop can not to be used at 1 Mw operation, because the passage way where the primary piping exits the reactor room must be maintained less than 1 MR/hr. To obtain the needed delay before the primary water exits the reactor room using the present internal delay loop system would require two more delay loops of the same size to be placed in series with the present delay loop. Because the NRAD reactor tank is small this is not possible; therefore, the delay must take place external to the reactor tank. The delay loop will have to be located in a shielded area to allow the decay of N 16 . The best location for the delay tank will be in the east radiography

  19. MW-assisted synthesis of LiFePO 4 for high power applications

    Science.gov (United States)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina

    LiFePO 4/C was prepared by solid-state reaction from Li 3PO 4, Fe 3(PO 4) 2·8H 2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF 6 was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO 4/C for full-HEV batteries at low energy costs.

  20. Performance test of a 1 MW class HTS synchronous motor for industrial application

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Kim, H.M.; Baik, S.K.; Lee, E.Y.; Lee, J.D.; Kim, Y.C.; Lee, S.H.; Hong, J.P.; Jo, Y.S.; Ryu, K.S.

    2008-01-01

    This paper deals with development activities of high temperature superconducting (HTS) synchronous motor at DOOSAN heavy industry and Korea Electrotechnology Research Institute (KERI) in Korea, and is sponsored by DAPAS program which is supported by Korean government. The final aim of the project is realization of HTS motor in the field of industry such as large driving pumps, fans and compressors for utility and industrial environments. At present time, 1 MW HTS motor is developed for the purpose to fully represent the design and manufacturing issues for the larger capacity machine. The number of pole and rotating speed of machine are 2 pole and 3600 rpm. The HTS field coil of the developed motor is cooled by way of neon thermosyphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes status of 1 MW HTS motor development, such as design, fabrication and performance test results, which was conducted at steady state in generator mode and motor mode

  1. Development of 1 MW-class HTS motor for podded ship propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K; Aizawa, K; Yokoyama, M; Yoshikawa, K [Kawasaki Heavy Industries LTD., 673-8666, Hyogo (Japan); Kimura, Y; Izumi, M [Tokyo University of Marine Science Technology, 135-8533, Tokyo (Japan); Ohashi, K; Numano, M [National Maritime Research Institute, 181-0004, Tokyo (Japan); Okumura, K; Yamaguchi, M; Gocho, Y; Kosuge, E, E-mail: umemoto@ati.khi.co.j [Japan Super-conductivity Organization Co. LTD., 135-8533, Tokyo (Japan)

    2010-06-01

    To reduce fuel consumption and lead to a major reduction of pollution from NOx, SOx and CO{sub 2}, the electric ship propulsion system is one of the most prospective substitutes for conventional ship propulsion systems. In order to spread it, innovative technologies for the improvement of the power transmission are required. The high temperature superconducting technology has the possibility for a drastic reduction of power transmission loss. Recently, electric podded propulsions have become popular for large cruise vessels, icebreakers and chemical tankers because of the flexibility of the equipment arrangement and the stern hull design, and better maneuverability in harbour, etc. In this paper, a 1 MW-class High temperature superconducting (HTS) motor with high efficiency, smaller size and simple structure, which is designed and manufactured for podded propulsion, is reported. For the case of a coastal ship driven by the optimized podded propulsion in which the 1MW HTS motor is equipped, the reductions of fluid dynamic resistance and power transmission losses are demonstrated. The present research and development has been supported by the New Energy and Industrial Technology Development Organization (NEDO).

  2. Fault-tolerant superconducting linac design for a 5-MW neutron spallation source

    International Nuclear Information System (INIS)

    Swain, G.R.

    1993-01-01

    An 805-MHz superconducting linac is proposed which could accelerate protons from 0.1 to 2.0 GeV in less than 730 m for a peak surface field in the cavities of 17 MV/m. The linac would furnish 5 MW of beam for a neutron spallation source, plus up to 10 additional MW of beam for other purposes. The design uses 454 elliptical cavities arranged in twelve groups, identical cavities being used within each group. Characterization of elliptical cavities for betas from 0.44 to 0.94 and the steps of the design procedure are presented. The effective peak power fed by each rf coupler would be less than 100 kW for all of the cavities. 6.5 kW of power at 2 deg K would need to be extracted by the cryogenic system. Space charge was found to have a negligible effect on emittance growth. The design is such that one cavity per group could be inoperable, and the gradient in the remaining cavities could be increased to compensate. The longitudinal and transverse acceptances of the linac would not be significantly degraded under such fault conditions. A corresponding 402.5 MHz linac design is being developed

  3. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Spallation Neutron Source Division, Villigen-PSI (Switzerland); Salvatores, M. [CEA Cadarache, Direction des Reacteurs Nucleaires, Saint-Paul-lez-Durance Cedex (France); Heusener, G. [Forschungszentrum Karlsruhe, Projekt Nukleare Sicherheitsforschung, Karlsruhe (Germany)

    2001-03-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  4. A Shielding Analysis of Hot Cell for a 10 MW Research Reactor

    International Nuclear Information System (INIS)

    Alnajjar, Alaaddin; Park, Chang Je; Roh, Gyuhong; Lee, Byunchul

    2013-01-01

    In this paper, a shielding analysis has been performed for the hot cell in a 10 MW research reactor. Two kinds of shielding analysis code systems are used such as MCNPX2.7 and M-Shield7. The first one is Monte Carlo stochastic code and the second one is a deterministic point kernel code. The results are compared in this study. In order to obtain source term, the ORIGEN-S code is used for different kinds of source. Four kinds of sources are taken into consideration. From the simulation, it is also proposed that the proper thickness of shielding material and the maximum source capacity in the hot cell. This study shows preliminary analysis results of hot cell shielding for 10MW research reactor. Total four different source terms are considered such as spent fuel assembly, Ir-192, Mo-99, and I-131. For shielding material, general concrete, heavy concrete, and lead are used. MCNPX code is mainly used for a simplified hot cell model and the result are nearly consistent when compared with M-Shield code. Required shielding thickness and the hot cell capacity are also obtained for various criterion of surface dose rates

  5. The 10 MW multipurpose TRIGA reactor at Ongkharak Nuclear Research Center, Thailand

    International Nuclear Information System (INIS)

    Thurgood, B.E.; Razvi, J.; Whittemore, J.L.; Bhadrakom, K.

    1997-01-01

    General Atomics (GA), has been selected to lead a team of firms from the United States, Japan, Australia and Thailand to design, build and commission the Ongkharak Nuclear Research Center near Bangkok, Thailand, for the Office of Atomic Energy for Peace. The facilities to be provided comprise of: A Reactor Island, consisting of a 10 MW TRIGA reactor that takes full advantage of the inherent safety characteristics of uranium-zirconium hydride (UZrH) fuel; An Isotope Production Facility for the production of radioisotopes and radiopharmaceuticals using the TRIGA reactor; A Waste Processing and Storage Facility for the processing and storage of radioactive waste from the facility as well as other locations in Thailand. The centerpiece of the Center will be the TRIGA reactor, fueled with low-enriched UZrH fuel, cooled and moderated by light water, and reflected by beryllium and heavy water. The UZrH fueled reactor will have a rated steady state thermal power output of 10 MW, and will be capable of performing the following: Radioisotope production for medical, industrial and agricultural uses; Neutron transmutation doping of silicon; Beam experiments such as Neutron Scattering, Neutron Radiography (NR), and Prompt Gamma Neutron Activation Analysis (PGNAA); Medical therapy of patients using Boron Neutron Capture Therapy (BNCT); Applied research and technology development in the nuclear field; Training in principles of reactor operation, reactor physics, reactor experiments, etc. (author)

  6. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  7. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  8. Turbine-generators for 400 mw coal-fired power plants

    International Nuclear Information System (INIS)

    Engelke, W.; Bergmann, D.; Boer, J.; Termuehlen, H.

    1991-01-01

    This paper reports that presently, standard coal-fired power plant concepts including flue gas desulfurization (FGD) and DENO x systems are in the design stage to be built on relatively short delivery schedules. The rating in the 400 MW range has generally been selected, because such small power plant units with short delivery times cause a minimum financial burden during planning, delivery and installation. They also follow more closely the growth of electric energy demand at specific locations. However economical considerations could lead to larger unit ratings, since the planning and building process of higher capacity plants is not significantly different but specific plant costs are certainly smaller with increased unit size. Historically large tandem-compound steam turbine-generators have been built and have proven reliable operation with ratings in excess of 800 MW. Already in the late 1950's main steam pressures and temperatures as high as 4,500 psig and 1,200 degrees F respectively were successfully used for smaller steam turbines

  9. The TFTR 40 MW neutral beam injection system and DT operations

    International Nuclear Information System (INIS)

    Stevenson, T.; O'Connor, T.; Garzotto, V.

    1995-01-01

    Since December 1993, TFTR has performed DT experiments using tritium fuel provided mainly by neutral beam injection. Significant alpha particle populations and reactor-like conditions have been achieved at the plasma core, and fusion output power has risen to a record 10.7 MW using a record 40 MW NB heating. Tritium neutral beams have injected into over 480 DT plasmas and greater than 500 kCi have been processed through the neutral beam gas, cryo, and vacuum systems. Beam tritium injections, as well as tritium feedstock delivery and disposal, have now become part of routine operations. Shot reliability with tritium is about 90% and is comparable to deuterium shot reliability. This paper describes the neutral beam DT experience including the preparations, modifications, and operating techniques that led to this high level of success, as well as the critical differences in beam operations encountered during DT operations. Also, the neutral beam maintenance and repair history during DT operations, the corrective actions taken, and procedures developed for handling tritium contaminated components are discussed in the context of supporting a continuous DT program

  10. Cooling system upgrading from 250 kW to 1 MW

    International Nuclear Information System (INIS)

    Anderson, T.V.; Johnson, A.G.; Ringle, J.C.

    1972-01-01

    The Oregon State TRIGA reactor (OSTR) power capability was upgraded from 250 KW to 1 MW in 1969; however, funds were not available for simultaneous upgrading of the cooling system. Since then, the OSTR has been selectively operating at full power with the original 250 KW cooling system. After funds were made available in 1971 the construction on the new heat exchanger building began. The new cooling system was installed, equipment was checked out, corrections were made, and acceptance tests were run. In addition, several days were required to clean up the primary system water, since increased water flow (350 gpm) swirled 4 year's collection of sediment off the reactor tank bottom and into the primary system. Three interesting items have been noticed, which are apparently a result of the cooling system upgrading: (1) the radiation levels above the reactor tank have been reduced by a factor of 2 to 3, (2) a low resonance vibration in the reactor core occurs at 1 MW. The vibration is attributed to a combination of increased water turbulence and subcooled (surface) nucleate boiling, and (3) direct radiation levels from the demineralizer tank have increased approximately 8-fold. This resulted in a relocation of the tank and the use of supplemental shielding. Increased operating time at higher average power levels, plus disturbance of; sediment on the bottom of the reactor tank are believed to be the main sources of the higher radiation levels

  11. Assessing the Exergy Costs of a 332-MW Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Victor H. Rangel-Hernandez

    2016-08-01

    Full Text Available In this paper, we analyze the exergy costs of a real large industrial boiler with the aim of improving efficiency. Specifically, the 350-MW front-fired, natural circulation, single reheat and balanced draft coal-fired boiler forms part of a 1050-MW conventional power plant located in Spain. We start with a diagram of the power plant, followed by a formulation of the exergy cost allocation problem to determine the exergy cost of the product of the boiler as a whole and the expenses of the individual components and energy streams. We also define a productive structure of the system. Furthermore, a proposal for including the exergy of radiation is provided in this study. Our results show that the unit exergy cost of the product of the boiler goes from 2.352 to 2.5, and that the maximum values are located in the ancillary electrical devices, such as induced-draft fans and coil heaters. Finally, radiation does not have an effect on the electricity cost, but affects at least 30% of the unit exergy cost of the boiler’s product.

  12. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  13. 1170-MW(t) HTGR-PS/C plant application study report: heavy oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    This report describes the application of a high-temperature gas-cooled reactor (HTGR) which operates in a process steam/cogeneration (PS/C) mode in supplying steam for enhanced recovery of heavy oil and in exporting electricity. The technical and economic merits of an 1170-MW(t) HTGR-PS/C are compared with those of coal-fired plants and (product) oil-fired boilers for this application. The utility requirements for enhanced oil recovery were calculated by establishing a typical pattern of injection wells and production wells for an oil field similar to that of Kern County, California. The safety and licensing issues of the nuclear plant were reviewed, and a comparative assessment of the alternative energy sources was performed. Technically and economically, the HTGR-PS/C plant has attractive merits. The major offsetting factors would be a large-scale development of a heavy oil field by a potential user for the deployment of a 1170-MW(t) HTGR-PS/C; plant and the likelihood of available prime heavy oil fields for the mid-1990 operation

  14. A Proton Flare Triggered the Mw 8.1 Chiapos Mexican Earthquake

    Science.gov (United States)

    Elfaki, H.; Yousef, S.

    2017-12-01

    In a 2015 Cairo University M.Sc. thesis by Sarah Khodairy, very strong earthquakes were found to be highly correlated with proton flares. Strange blue and green bright flashes of light across Mexico accompanied the 8th of September 2017 Mw 1.8 Chiapas earthquake. Those lights were contemporary with a solar proton flare. Those green and blue lights are indicative of the arrival of proton streams over Mexico and their interaction with atmospheric Oxygen and Nitrogen atoms respectively in analogy with aurora lights. The proton streams attacked the weak spots of tectonic plates where the Coscos plate is being subducted below the North American plate. It is suggested that they induced telluric electric currents in the ground and in the magma thus caused motion and more subduction in the tectonic plates. Such motion immediately trigged the Chiapas earthquake in the near vicinity. The Bz component of the interplanetary magnetic field was highly negative, a door was opened in the magnetosphere and the proton stream easily leaked inside and targeted Mexico. This proton flare was accompanied by coronal mass ejection and extremely strong X.9.3- class X-ray flare as well as magnetic storms. On the other hand, the 19th of September Mw 7.1 Puebla central Mexico earthquake was initiated by fast solar wind coronal hole stream. Such stream if they hit ground they cause earthquakes, if they hit narrow seas like the Red Sea they cause flash floods. However if they target Oceans they initiate hurricanes.

  15. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  16. Analysis of the stability of the instrumented fuel temperature type flip, for operation times between 0 and 72 H at 1 MW (Final report of the project); Analisis de la estabilidad de la temperatura del combustible instrumentado tipo flip, para tiempos de operacion entre 0 y 72 H a 1 MW

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L C

    1991-12-15

    It was found that the behavior of the temperature of the three thermo pars of the instrumented fuel of the Reactor in operations in stationary state to 1 MW is stable. For times of operation minor to 3 h, the standard deviations are of the order of 0.5%, while it stops operations with more duration to 3 h, the presence of the poisons for fission has an important effect being obtained standard deviations until of 2.7% for 72 h in continuous operation to 1 MW. During the outburst stages and court of the reactor, the found deviations standard were of 30%. It was not rhythm some in the small ones fluctuations that it presents the temperature of the thermo pars of the fuel. After a detailed analysis of the temperature response of the fuel in different positions of the core, it was selected to the position C-6 at 180 for the relocation of the instrumented fuel so that it has a pursuit but appropriate of the temperature during operations in stationary state and in pulse mode. It was found that the influence that its present the control bars on the temperature of the Flip fuel in the rings C and D, can produce interferences of up to 125 C in the fuels temperature. (Author)

  17. Post Entitlement Management Information - Detail Database

    Data.gov (United States)

    Social Security Administration — Contains data that supports the detailed and aggregate receipt, pending and clearance data, as well as other strategic and tactical MI for many Title II and Title...

  18. Detailed Safety Review of Anthrax Vaccine Adsorbed

    National Research Council Canada - National Science Library

    2001-01-01

    To date, 18 human studies have assessed the safety of anthrax vaccination. These studies, some stretching back almost 50 years, reported adverse events after vaccination in varying degrees of detail...

  19. Cleaner combustion developing detailed chemical kinetic models

    CERN Document Server

    Battin-Leclerc, Frédérique; Simmie, John M

    2013-01-01

    This book describes the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for traditional fuels, and also for innovative surrogates, describing the complex chemistry of new, environmentally important bio-fuels.

  20. Template Assembly for Detailed Urban Reconstruction

    KAUST Repository

    Nan, Liangliang

    2015-05-04

    We propose a new framework to reconstruct building details by automatically assembling 3D templates on coarse textured building models. In a preprocessing step, we generate an initial coarse model to approximate a point cloud computed using Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance (texture images). Then, building details are reconstructed by assembling templates on the textured faces of the coarse model. The 3D templates are automatically chosen and located by our optimization-based template assembly algorithm that balances image matching and structural regularity. In the results, we demonstrate how our framework can enrich the details of coarse models using various data sets.