WorldWideScience

Sample records for d-1 receptor upregulation

  1. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  2. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  3. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  4. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines...

  5. Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Zhaoming Li

    Full Text Available Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.

  6. The pathophysiological functions mediated by D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Goldstein, M.; Kuga, S.; Meller, E.; SHimizu, Y.

    1986-01-01

    This chapter describes some behavioral responses which might be mediated by D 1 and D 2 DA receptors, and the authors discuss their clinical relevance. It was of considerable interest to determine whether a selective D 1 DA antagonist, such as SCH 23390, will induce catalepsy and whether this behavior is mediated by D 1 , or by both D 1 and D 2 DA receptors. Rats were used in the experiments. The authors examined whether the addition of the S 2 antagonist ketanserin affects the displacement of 3 H-Spi by SCH 23390. Induction of self-mutilating biting (SMB) behavior in monkeys with unilateral ventromedial tegmental (VMT) lesions by DA agonists and its prevention by DA antagonists is examined. The authors also discuss the possible relationships between abnormal guanine nucleotide metabolism and dopaminergic neuronal function through the implications in LeschNyhan syndrome and in some mental disorders

  7. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1.

    Science.gov (United States)

    Hu, G; Lee, H; Price, S M; Shen, M M; Abate-Shen, C

    2001-06-01

    During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.

  8. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  9. The multiplicity of the D-1 dopamine receptor

    International Nuclear Information System (INIS)

    Mailman, R.B.; Klits, C.D.; Lewis, M.H.; Rollema, H.; Schulz, D.W.; Wyrick, S.

    1986-01-01

    The authors have sought to address two questions of some neuropharmacological importance in this chapter. First, they examine the nature of mechanisms by which dopamine initiates many psychopharmacological effects and, second, they study the possibility of designing highly specific drugs targeted only at a selected subpopulation of dopamine receptors. Effects of SCH23390 and haloperidol on concentrations of dopamine, DOPAC, and HVA in various rat brain regions are shown. In addition, the effects of SCH23390 on the in vivo binding of dipropyl-5, 6-ADTN are shown. Differential distribution of a dopamine sensitive adenylate cyclase and ( 3 H)-SCH23390 binding sites are examined. A model is presented of D 1 dopamine receptors in membrane, illustrating the lack of identity of some of the ( 3 H)-SCH23390 binding sites with the dopamine receptor linked to stimulation of cAMP synthesis

  10. Frontal-subcortical circuits in obsessive-compulsive disorder: role of the dopamine D1 receptor

    International Nuclear Information System (INIS)

    Olver, J.S.; Reutens, D.C.; Maruff, P.; Burrows, G.D.; Norman, T.R.; Ellen, S.R.; Pantelis, C.; Tochon-Danguy, H.; Ackermann, U.; Stekelenberg, N.

    2000-01-01

    Full text: Obsessive-Compulsive Disorder (OCD) is an anxiety disorder which is increasingly being recognised as a neurobiological disorder. While serotonergic mechanisms have been proposed, the major competing theory in the pathophysiology of OCD involves the neurotransmitter dopamine. The Dopamine D1 receptor is implicated in OCD following the finding of specific spatial working memory abnormalities in a series of neuropsychological studies. Spatial working memory is known to depend on the integrity of D1 receptor function in the Dorso-lateral Prefrontal Cortex (DLPFC) of primates. This study aims to examine the role of dopamine in patients with OCD and in particular to test the hypothesis that there is an upregulation of dopamine D1 receptors in the DLPFC which correlates with spatial working memory deficits in OCD. Three OCD patients and three normal controls underwent Positron Emission Tomography (PET) following intravenous injection of the D1 antagonist PET ligand SCH23390. Reconstructed PET images were co registered with subject Magnetic Resonance Images (MRI) and regions of interest drawn manually. We will present the analysis of the Binding Potentials of SCH23390 in the regions of interest of the first three OCD patients and compare them with three normal control patients. In conclusion Dopamine-Serotonergic interactions are involved in the pathophysiology of OCD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  11. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  12. Upregulation of Leukotriene Receptors in Gastric Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Venerito, Marino [Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany); Kuester, Doerthe [Institute of Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany); Harms, Caroline [Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany); Schubert, Daniel [Department of General, Visceral and Vascular Surgery, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120 (Germany); Wex, Thomas, E-mail: thomas.wex@med.ovgu.de; Malfertheiner, Peter [Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany)

    2011-08-08

    Leukotrienes (LT) mediate allergic and inflammatory processes. Previously, we identified significant changes in the expression pattern of LT receptors in the gastric mucosa after eradication of Helicobacter pylori infection. The aim of the present study was to evaluate the expression of 5-lipoxygenase (5-LOX) and LT receptors in gastric cancer (GC). The expression of 5-LOX and receptors for LTB4 (BLT-1, BLT-2) and cysteinyl-LT (CysLT-1, CysLT-2) were analyzed by immunohistochemistry (IHC) in GC samples of 35 consecutive patients who underwent gastrectomy and in 29 tumor-free tissue specimens from gastric mucosa. Male-to-female ratio was 24:11. The median age was 70 years (range 34–91). Twenty-two patients had GC of intestinal, six of diffuse, six of mixed and one of undifferentiated type. The IHC analysis showed a nearly ubiquitous expression of studied proteins in GC (88–97%) and in tumor-free specimens as well (89–100%). An increase in the immunoreactive score of both BLT receptors and CysLT-1 was observed in GC compared to tumor-free gastric mucosa (p < 0.001 for BLT-1; p < 0.01 for BLT-2 and CysLT-1, Mann-Whitney U-test). No differences in the IHC expression of 5-LOX and CsyLT-2 were observed between GC and tumor-free mucosa. The expression of BLT-2, CysLT-1 and CysLT-2 was increased in GC of intestinal type when compared to the diffuse type (p < 0.05; Mann-Whitney U-test). LTB4 receptors and CysLT-1 are up-regulated in GC tissue implying a role in gastric carcinogenesis.

  13. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  14. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    Science.gov (United States)

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  15. Elevated dopamine D1 receptor availability in striatum of Göttingen minipigs after electroconvulsive therapy

    DEFF Research Database (Denmark)

    Landau, Anne M; Alstrup, Aage Ko; Audrain, Helene

    2018-01-01

    Electroconvulsive therapy (ECT), a direct form of brain stimulation, is an effective antidepressant. We hypothesized that the beneficial effects of ECT are mediated by increased dopaminergic neurotransmission, in which the baseline activity of D1 receptors may predict the response to ECT. We esta......, the baseline binding capacity of D1 receptors predicts the magnitude of increased binding, up to a maximum binding capacity....

  16. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    OpenAIRE

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Import...

  17. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  18. Cerebrovascular endothelin receptor upregulation in cerebral ischemia

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2009-01-01

    Stroke is a serious neurological disease and the third leading cause of death in the western world. In roughly 15 % of the cases, the cause is due to an intracranial haemorrhage, and the remaining 85 % represent ischemic strokes. Ischemic stroke is caused by the occlusion of a cerebral artery...... either by an embolus or by local thrombosis. Several studies have shown an involvement of the endothelin system in ischemic stroke. This review aims to examine the alterations of vascular endothelin receptor expression in ischemic stroke. Furthermore, studies of the intracellular signalling pathways...... leading to the enhanced expression of vascular endothelin receptors show that both protein kinase C (PKC) and mitogen activating protein kinase (MAPK) play important roles. The results from this work provide new perspectives on the pathophysiology of ischemic stroke, and give a possible explanation...

  19. A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.

    Science.gov (United States)

    Friend, Danielle M; Keefe, Kristen A

    2013-10-25

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Characterization of D1 dopamine receptors in the central nervous system

    International Nuclear Information System (INIS)

    Hess, E.J.

    1987-01-01

    Several lines of evidence suggest an association of central nervous system dopaminergic systems in the etiology of the schizophrenia. Interest in the role of D 1 dopamine receptors has revived with the advent of selective drugs for this dopamine receptor, particularly the D 1 dopamine receptor antagonists, SCH23390. [ 3 H]SCH23390 represents a superior radioligand for labeling the two-state striatal D 1 dopamine receptor in that its high percent specific binding makes it especially suitable for detailed mechanistic studies of this receptor. Striatal D 1 dopamine receptors have been shown to mediate the stimulation of adenylate cyclase activity via a guanine nucleotide regulatory subunit. Forskolin acts in a synergistic manner with dopamine agonists, guanine nucleotides or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase activity mediated by these reagents. By using the aforementioned reagents and the irreversible receptor modifying reagent N-ethoxycarbonyl-2-ethoxy-1,2,-dihydroquinoline, we demonstrated that the D 1 dopamine receptor population in rat striatum is not a stoichiometrically-limiting factor in agonist stimulation of adenylate cyclase activity

  1. Ionotropic glutamate receptors (iGluRs) of the delta family (GluD1 ...

    African Journals Online (AJOL)

    Muhammad Zahid Khan

    2016-10-20

    Oct 20, 2016 ... GluD1 knockout mice (GluD1 KO) have normal learning in the Morris water maze .... could bind and activate the receptor.5,6 D-Ser and glycine have now been identified as .... English editing of this manuscript. References. 1.

  2. Ionotropic glutamate receptors (iGluRs) of the delta family (GluD1 ...

    African Journals Online (AJOL)

    ... such as Neurexin1. This review presents current knowledge regarding the expression, structure and function of Glu delta receptors (GluD1, GluD2) in brain, focusing on synapse formation, function and dysfunction. Keywords: iGluRs; GluD1; GluD2; Synaptogenesis; Autism spectrum disorder (ASD); Schizophrenia (SCZ) ...

  3. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  4. Dissociable Hippocampal and Amygdalar D1-like receptor contribution to Discriminated Pavlovian conditioned approach learning

    Science.gov (United States)

    Andrzejewski, Matthew E; Ryals, Curtis

    2016-01-01

    Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses. PMID:26632336

  5. Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors.

    Science.gov (United States)

    Gotzes, F; Balfanz, S; Baumann, A

    1994-01-01

    Members of the superfamily of G-protein coupled receptors share significant similarities in sequence and transmembrane architecture. We have isolated a Drosophila homologue of the mammalian dopamine receptor family using a low stringency hybridization approach. The deduced amino acid sequence is approximately 70% homologous to the human D1/D5 receptors. When expressed in HEK 293 cells, the Drosophila receptor stimulates cAMP production in response to dopamine application. This effect was mimicked by SKF 38393, a specific D1 receptor agonist, but inhibited by dopaminergic antagonists such as butaclamol and flupentixol. In situ hybridization revealed that the Drosophila dopamine receptor is highly expressed in the somata of the optic lobes. This suggests that the receptor might be involved in the processing of visual information and/or visual learning in invertebrates.

  6. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  7. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  8. Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D1-D3 Receptor Heterotetramer

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T.; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.

    2014-01-01

    The dopamine D1 receptor–D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa–induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R–D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. PMID:25097189

  9. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  10. Neurobiology of D-1 dopamine receptors after neonatal-6-OHDA treatment: Relevance to Lesch-Nyhan disease

    International Nuclear Information System (INIS)

    Breese, G.R.; Duncan, G.E.; Mueller, R.A.; Napier, T.C.

    1986-01-01

    In the present work, experiments with neonatally and adult-6-OHDA-lesioned rats are described which examine the pharmacology of agonists and antagonists with specificity for D 1 and D 2 dopamine receptors. This work permits conclusions concerning the role of D 1 -dopamine receptors in behavior, about the interaction of D 1 receptors with D 2 -dopamine receptors, and about the importance of D 1 -dopamine receptors for the self-mutilation behavior (SMB) observed in rats treated neonatally with 6-OHDA when challenged with dopamine agonists as adults. The relationship of these findings to Lesch-Nyhan disease are also discussed

  11. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  12. The Roles of Dopamine D1 Receptor on the Social Hierarchy of Rodents and Nonhuman Primates.

    Science.gov (United States)

    Yamaguchi, Yoshie; Lee, Young-A; Kato, Akemi; Goto, Yukiori

    2017-04-01

    Although dopamine has been suggested to play a role in mediating social behaviors of individual animals, it is not clear whether such dopamine signaling contributes to attributes of social groups such as social hierarchy. In this study, the effects of the pharmacological manipulation of dopamine D1 receptor function on the social hierarchy and behavior of group-housed mice and macaques were investigated using a battery of behavioral tests. D1 receptor blockade facilitated social dominance in mice at the middle, but not high or low, social rank in the groups without altering social preference among mates. In contrast, the administration of a D1 receptor antagonist in a macaque did not affect social dominance of the drug-treated animal; however, relative social dominance relationships between the drug-treated and nontreated subjects were altered indirectly through alterations of social affiliative relationships within the social group. These results suggest that dopamine D1 receptor signaling may be involved in social hierarchy and social relationships within a group, which may differ between rodents and primates. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  13. D1 dopamine receptor is involved in shell formation in larvae of Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Liu, Zhaoqun; Wang, Lingling; Yan, Yunchen; Zheng, Yan; Ge, Wenjing; Li, Meijia; Wang, Weilin; Song, Xiaorui; Song, Linsheng

    2018-07-01

    Dopamine (DA), a significant member of catecholamines, is reported to induce biomineralization of calcium carbonate vaterite microspheres via dopamine receptor (DR) in bivalves, implying the modulation of dopaminergic system on shell formation during larval development. In this research, a homologue of D1 type DR (CgD1DR-1) was identified from oyster Crassostrea gigas, whose full length cDNA was 1197 bp. It was widely expressed in various tissues of C. gigas, with the significantly higher levels in hepatopancreas, mantle, muscle and gill. During developmental stages, the mRNA transcripts of CgD1DR-1 in D-shape larvae were obviously higher (p < 0.05) than those in trochophore and umbo larvae, and CO 2 exposure could inhibit the synthesis of DA and mRNA expression of CgD1DR-1. After cell transfection and DA treatment, intracellular cAMP in cells with the expression of CgD1DR-1 increased significantly (p < 0.05). Furthermore, the incubation with SCH 23390 for the blockage of CgD1DR-1 significantly restrained the expressions of six shell formation-related genes including CgTyrosinase-1, CgTyrosinase-3, CgChitinaseLP, CgAMC, CgBMP and CgBMPR in trochophore and D-shape larvae. These results jointly suggested that DA together with its receptor CgD1DR-1 might be involved in shell formation during oyster larval development from trochophore to D-shape larvae, and CO 2 -induced ocean acidification (OA) might influence marine bivalves by inhibiting the DA-D1DR pathway to prohibit their shell formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cell

    Directory of Open Access Journals (Sweden)

    Lei eXing

    2015-09-01

    Full Text Available Radial glial cells (RGCs are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.

  15. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. U.S. Government work not protected by U.S. copyright.

  16. α1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens.

    Science.gov (United States)

    Mitrano, Darlene A; Jackson, Kelsey; Finley, Samantha; Seeley, Allison

    2018-02-10

    The α1-adrenergic receptors (α1ARs) have been implicated in numerous actions of the brain, including attention and wakefulness. Additionally, they have been identified as contributing to disorders of the brain, such as drug addiction, and recent work has shown a role of these receptors in relapse to psychostimulants. While some functionality is known, the actual subcellular localization of the subtypes of the α1ARs remains to be elucidated. Further, their anatomical relationship to receptors for other neurotransmitters, such as dopamine (DA), remains unclear. Therefore, using immunohistochemistry and electron microscopy techniques, this study describes the subcellular localization of the α1b-adrenergic receptor (α1bAR), the subtype most tied to relapse behaviors, as well as its relationship to the D1-dopamine receptor (D1R) in both the shell and core of the rat nucleus accumbens (NAc). Overall, α1bARs were found in unmyelinated axons and axon terminals with some labeling in dendrites. In accordance with other studies of the striatum, the D1R was found mainly in dendrites and spines; therefore, colocalization of the D1R with the α1bAR was rare postsynaptically. However, in the NAc shell, when the receptors were co-expressed in the same neuronal elements there was a trend for both receptors to be found on the plasma membrane, as opposed to the intracellular compartment. This study provides valuable anatomical information about the α1bAR and its relationship to the D1R and the regulation of DA and norepinephrine (NE) neurotransmission in the brain which have been examined previously. Published by Elsevier Ltd.

  17. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia

    Science.gov (United States)

    Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77–534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general

  18. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    International Nuclear Information System (INIS)

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-01-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent [ 3 H]acetylcholine release from rabbit retina labeled in vitro with [ 3 H]choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of [ 3 H]acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of [ 3 H]acetylcholine with the following order of potency: apomorphine ≤ SKF(R)82526 3 H]acetylcholine: SCH 23390 (IC50 = 1 nM) 3 H]acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by [ 3 H]SCH 23390, or as determined by adenylate cyclase activity. [ 3 H]SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of [ 3 H]SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate [ 3 H]acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at [ 3 H]SCH 23390 binding sites (r = 0.755, P < .05, n = 8)

  19. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila.

    Science.gov (United States)

    Pitmon, E; Stephens, G; Parkhurst, S J; Wolf, F W; Kehne, G; Taylor, M; Lebestky, T

    2016-03-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH-positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  20. Sex differences in effects of dopamine D1 receptors on social withdrawal.

    Science.gov (United States)

    Campi, Katharine L; Greenberg, Gian D; Kapoor, Amita; Ziegler, Toni E; Trainor, Brian C

    2014-02-01

    Dopamine signaling in the nucleus accumbens (NAc) plays a critical role in the regulation of motivational states. Recent studies in male rodents show that social defeat stress increases the activity of ventral tegmental dopamine neurons projecting to the NAc, and that this increased activity is necessary for stress-induced social withdrawal. Domestic female mice are not similarly aggressive, which has hindered complementary studies in females. Using the monogamous California mouse (Peromyscus californicus), we found that social defeat increased total dopamine, DOPAC, and HVA content in the NAc in both males and females. These results are generally consistent with previous studies in Mus, and suggest defeat stress also increases NAc dopamine signaling in females. However, these results do not explain our previous observations that defeat stress induces social withdrawal in female but not male California mice. Pharmacological manipulations provided more insights. When 500 ng of the D1 agonist SKF38393 was infused in the NAc shell of females that were naïve to defeat, social interaction behavior was reduced. This same dose of SKF38393 had no effect in males, suggesting that D1 receptor activation is sufficient to induce social withdrawal in females but not males. Intra-accumbens infusion of the D1 antagonist SCH23390 increased social approach behavior in females exposed to defeat but not in females naïve to defeat. This result suggests that D1 receptors are necessary for defeat-induced social withdrawal. Overall, our results suggest that sex differences in molecular pathways that are regulated by D1 receptors contribute to sex differences in social withdrawal behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Is dopamine D1 receptor availability related to social behavior? A positron emission tomography replication study.

    Directory of Open Access Journals (Sweden)

    Pontus Plavén-Sigray

    Full Text Available Associations between dopamine receptor levels and pro- and antisocial behavior have previously been demonstrated in human subjects using positron emission tomography (PET and self-rated measures of personality traits. So far, only one study has focused on the dopamine D1-receptor (D1-R, finding a positive correlation with the trait social desirability, which is characterized by low dominant and high affiliative behavior, while physical aggression showed a negative correlation. The aim of the present study was to replicate these previous findings using a new independent sample of subjects.Twenty-six healthy males were examined with the radioligand [11C]SCH-23390, and completed the Swedish universities Scales of Personality (SSP which includes measures of social desirability and physical trait aggression. The simplified reference tissue model with cerebellum as reference region was used to calculate BPND values in the whole striatum and limbic striatum. The two regions were selected since they showed strong association between D1-R availability and personality scores in the previous study. Pearson's correlation coefficients and replication Bayes factors were then employed to assess the replicability and robustness of previous results.There were no significant correlations (all p values > 0.3 between regional BPND values and personality scale scores. Replication Bayes factors showed strong to moderate evidence in favor no relationship between D1-receptor availability and social desirability (striatum BF01 = 12.4; limbic striatum BF01 = 7.2 or physical aggression scale scores (limbic striatum BF01 = 3.3, compared to the original correlations.We could not replicate the previous findings of associations between D1-R availability and either pro- or antisocial behavior as measured using the SSP. Rather, there was evidence in favor of failed replications of associations between BPND and scale scores. Potential reasons for these results are restrictive

  2. Impairments of exploration and memory after systemic or prelimbic D1-receptor antagonism in rats

    DEFF Research Database (Denmark)

    Clausen, Bettina; Schachtman, Todd R.; Mark, Louise T.

    2011-01-01

    to examine the effects on memory: cross-maze and object recognition task. Systemic administration reduced spatial exploration in cross-maze as well as in an open field test, and also reduced object exploration. Spatial (hippocampus-dependent) short-term memory was inhibited in the cross-maze and non......-spatial short-term object retention was also impaired. In contrast to these systemic effects, bilateral injections of SCH23390 into the prelimbic cortices altered neither spatial nor object exploration, but did inhibit short-term memory in both cross-maze and object recognition task. Therefore, the inhibiting......D1-receptor antagonism is known to impair rodent memory but also inhibits spontaneous exploration of stimuli to be remembered. Hypo-exploration could contribute to impaired memory by influencing event processing. In order to explore this effect, the D1 receptor antagonist, SCH23390...

  3. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    Science.gov (United States)

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  4. Simultaneous Multiple MS Binding Assays Addressing D1 and D2 Dopamine Receptors.

    Science.gov (United States)

    Schuller, Marion; Höfner, Georg; Wanner, Klaus T

    2017-10-09

    MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but use a non-labeled reporter ligand instead of a radioligand. In contrast to radioligand binding assays, MS Binding Assays offer-owing to the selectivity of mass spectrometric detection-the opportunity to monitor the binding of different reporter ligands at different targets simultaneously. The present study shows a proof of concept for this strategy as exemplified for MS Binding Assays selectively addressing D 1 and D 2 dopamine receptors in a single binding experiment. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method capable of quantifying both SCH23390 and raclopride, selectively addressing D 1 and D 2 receptors, respectively, was established and validated for this purpose. Based thereon, simultaneous saturation and competition experiments with SCH23390 and raclopride in the presence of both D 1 and D 2 receptors were performed and analyzed by LC-MS/MS within a single chromatographic cycle. The present study thus demonstrates the feasibility of this strategy and the high versatility of MS Binding Assays that appears to surpass that common for conventional radioligand binding assays. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direct demonstration of D1 dopamine receptors in the bovine parathyroid gland using the D1 selective antagonist [125I]-SCH 23982

    International Nuclear Information System (INIS)

    Monsma, F.J. Jr.; Sibley, D.R.

    1989-01-01

    The presence of D1 dopamine receptors in the parathyroid gland has been proposed based on the demonstration of dopaminergic regulation of adenylate cyclase activity and parathyroid hormone release in dispersed bovine parathyroid cells. Using a radioiodinated D1 selective antagonist [125I]-SCH 23982, we have now directly labeled and characterized the D1 dopamine receptors in bovine parathyroid gland membranes. [125I]-SCH 23982 binds in a saturable manner with high affinity and low nonspecific binding to membranes prepared from bovine parathyroid glands. D1 dopamine receptors are present in this preparation at a concentration of approximately 130 fMoles/mg protein and [125I]-SCH 23982 binding increases with increasing protein concentration in a linear fashion. Determination of the Kd using the association (k1) and dissociation (k-1) rate constants revealed good agreement with the Kd determined by saturation analysis (390 pM vs. 682 pM, respectively). Inhibition of 0.3 nM [125I]-SCH 23982 binding by a series of dopaminergic antagonists verified the D1 nature of this binding site, exhibiting appropriate affinities and rank order of potency. The competition curves of all antagonists exhibited Hill coefficients that were not significantly different from 1. Inhibition of [125I]-SCH 23982 binding by dopamine and other dopaminergic agonists revealed the presence of high and low affinity agonist binding sites. Addition of 200 microM GppNHp effected a complete conversion of high affinity dopamine binding sites to a homogeneous population of low affinity dopamine sites. The D1 receptors identified in the parathyroid gland with [125I]-SCH 23982 appear to be pharmacologically identical with those previously characterized in the central nervous system

  6. Test-retest measurements of dopamine D_1-type receptors using simultaneous PET/MRI imaging

    International Nuclear Information System (INIS)

    Kaller, Simon; Patt, Marianne; Becker, Georg-Alexander; Luthardt, Julia; Meyer, Philipp M.; Werner, Peter; Barthel, Henryk; Bresch, Anke; Sabri, Osama; Rullmann, Michael; Girbardt, Johanna; Fritz, Thomas H.; Hesse, Swen

    2017-01-01

    The role of dopamine D_1-type receptor (D_1R)-expressing neurons in the regulation of motivated behavior and reward prediction has not yet been fully established. As a prerequisite for future research assessing D_1-mediated neuronal network regulation using simultaneous PET/MRI and D_1R-selective ["1"1C]SCH23390, this study investigated the stability of central D_1R measurements between two independent PET/MRI sessions under baseline conditions. Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus injection of 486 ± 16 MBq ["1"1C]SCH23390, on two separate days within 2-4 weeks using a PET/MRI system. Parametric images of D_1R distribution volume ratio (DVR) and binding potential (BP_N_D) were generated by a multi-linear reference tissue model with two parameters and the cerebellar cortex as receptor-free reference region. Volume-of-interest (VOI) analysis was performed with manual VOIs drawn on consecutive transverse MRI slices for brain regions with high and low D_1R density. The DVR varied from 2.5 ± 0.3 to 2.9 ± 0.5 in regions with high D_1R density (e.g. the head of the caudate) and from 1.2 ± 0.1 to 1.6 ± 0.2 in regions with low D_1R density (e.g. the prefrontal cortex). The absolute variability of the DVR ranged from 2.4% ± 1.3% to 5.1% ± 5.3%, while Bland-Altman analyses revealed very low differences in mean DVR (e.g. 0.013 ± 0.17 for the nucleus accumbens). Intraclass correlation (one-way, random) indicated very high agreement (0.93 in average) for both DVR and BP_N_D values. Accordingly, the absolute variability of BP_N_D ranged from 7.0% ± 4.7% to 12.5% ± 10.6%; however, there were regions with very low D_1R content, such as the occipital cortex, with higher mean variability. The test-retest reliability of D_1R measurements in this study was very high. This was the case not only for D_1R-rich brain areas, but also for regions with low D_1R density. These results will provide a solid base

  7. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    Science.gov (United States)

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Two distinct promoters drive transcription of the human D1A dopamine receptor gene.

    Science.gov (United States)

    Lee, S H; Minowa, M T; Mouradian, M M

    1996-10-11

    The human D1A dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'-deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D1A-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D1A intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D1A gene expressed within the human caudate. The relative abundance of D1A transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D1A mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D1A intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D1A gene has

  9. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    Science.gov (United States)

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. TRPA1 receptor is upregulated in human oral lichen planus.

    Science.gov (United States)

    Kun, J; Perkecz, A; Knie, L; Sétáló, G; Tornóczki, T; Pintér, E; Bán, Á

    2017-03-01

    Oral lichen planus (OLP) is a chronic inflammatory disease of unknown etiology with antigen-specific and non-specific mechanisms. Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel activated by noxious stimuli such as oxidative stress products evoking pain and release of proinflammatory mediators from sensory nerve endings culminating in neurogenic inflammation. Extraneuronal TRPA1s, for example, on immune cells possess yet unknown functions. We studied the buccal mRNA expression (qPCR) and protein localization (immunohistochemistry) of TRPA1 receptors and key OLP mediator transcripts in oral mucosa samples of healthy volunteers (n = 9), OLP patients (n = 43), and OLP-like hyperkeratotic patients (n = 12). We measured 27.7- and 25.5-fold TRPA1 mRNA increase in OLP and OLP-like hyperkeratotic patients compared to healthy controls. TRPA1 transcripts elevated 2.4-fold in hypertensive OLP but not in hyperkeratotic patients compared to counterparts, reduced by 1.6-fold by angiotensin-convertase inhibitor intake. TRPA1 messenger RNA was more coexpressed with transcripts of tumor necrosis factor α than with interferon γ. Keratinocytes, macrophages but not T cells expressed TRPA1. We provided evidence for the extraneuronal presence and upregulation of the proinflammatory TRPA1 receptor in buccal samples of patients with OLP. This may implicate the ion channel in the pathomechanism of OLP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain

    International Nuclear Information System (INIS)

    Seeman, P.; Niznik, H.B.; Guan, H.C.; Booth, G.; Ulpian, C.

    1989-01-01

    Dopamine receptor types D 1 and D 2 can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D 1 -D 2 interaction in homogenized tissue as revealed by ligand binding. D 2 agonists lowered the binding of [ 3 H]raclopride to D 2 receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D 1 -selective antagonist SCH 23390 prevented the agonist-induced decrease in [ 3 H]raclopride binding to D 2 sites in the striatum but not in the anterior pituitary, which has no D 1 receptors. Conversely, a dopamine-induced reduction in the binding of [ 3 H]SCH 23390 to D 1 receptors could be prevented by the D 2 -selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D 1 -D 2 interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D 2 receptors in the high-affinity state. Thus, the D 1 -D 2 link may be mediated by guanine nucleotide-binding protein components. The link may underlie D 1 -D 2 interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata

  12. Sexual behavior modulates contextual fear memory through dopamine D1/D5 receptors.

    Science.gov (United States)

    Bai, Hua-Yi; Cao, Jun; Liu, Na; Xu, Lin; Luo, Jian-Hong

    2009-03-01

    Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable experiences, especially instinctive behaviors such as sex, might modulate traumatic memory through a memory competition mechanism. Here, we first report that male rats persistently expressed much lower fear responses when exposed to females, but not when exposed to males, for 24 h immediately after contextual fear conditioning. Remarkably, this effect of sexual behavior was blocked by either systemic or intrahippocampal injection of the dopamine D1/D5 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) and was mimicked by systemic but not intrahippocampal injection of the D1/D5 receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol hydrochloride (SKF39393). Furthermore, as a candidate mechanism underlying contextual fear memory, the impaired induction of hippocampal long-term potentiation (LTP) elicited by conditioned fear was rescued in male rats immediately exposed to female but not male rats for 24 h. Systemic injection of the dopamine D1/D5 receptor antagonist SCH23390 or agonist SKF38393 prevented or mimicked the effect of sexual behavior on the impaired induction of hippocampal LTP. Thus, our finding suggests that dopaminergic functions may, at least partially, govern competition between contextual fear and enjoyable memories through the modulation of hippocampal LTP.

  13. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells.

    Science.gov (United States)

    Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M

    2017-12-15

    Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    Science.gov (United States)

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-05-01

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  16. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  17. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Science.gov (United States)

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  18. Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder.

    Science.gov (United States)

    Galaj, Ewa; Ewing, Scott; Ranaldi, Robert

    2018-06-01

    In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Chen, Chien-Ho; Wang, Y.-J.; Pestell, Richard G.; Albanese, Chris; Chen, R.-J.; Chang, M.-C.; Jeng, J.-H.; Lin, S.-Y.; Liang, Y.-C.; Tseng, H.; Lee, W.-S.; Lin, J.-K.; Chu, J.-S.; Chen, L.-C.; Lee, C.-H.; Tso, W.-L.; Lai, Y.-C.; Wu, C.-H.

    2005-01-01

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser 795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  20. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription

    Directory of Open Access Journals (Sweden)

    James Claudine G

    2006-09-01

    Full Text Available Abstract Background Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3, is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown. Results Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter. Conclusion Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.

  1. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  2. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    Science.gov (United States)

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  3. Cerebral adenosine A₁ receptors are upregulated in rodent encephalitis.

    Science.gov (United States)

    Paul, Soumen; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W; Ishiwata, Kiichi; Elsinga, Philip H; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A; van Waarde, Aren

    2014-05-15

    Adenosine A1 receptors (A1Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A1Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis. Neuroinflammatory processes in turn may affect the expression of A1Rs, but the available data is limited and inconsistent. Here, we applied an animal model of encephalitis to assess how neuroinflammation affects the expression of A1Rs. Two groups of animals were studied: Infected rats (n=7) were intranasally inoculated with herpes simplex virus-1 (HSV-1, 1 × 10(7) plaque forming units), sham-infected rats (n=6) received only phosphate-buffered saline. Six or seven days later, microPET scans (60 min with arterial blood sampling) were made using the tracer 8-dicyclopropyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX). Tracer clearance from plasma and partition coefficient (K₁/k₂ estimated from a 2-tissue compartment model fit) were not significantly altered after virus infection. PET tracer distribution volume calculated from a Logan plot was significantly increased in the hippocampus (+37%) and medulla (+27%) of virus infected rats. Tracer binding potential (k₃/k₄ estimated from the model fit) was significantly increased in the cerebellum (+87%) and the medulla (+148%) which may indicate increased A1R expression. This was confirmed by immunohistochemical analysis showing a strong increase of A1R immunoreactivity in the cerebellum of HSV-1-infected rats. Both the quantitative PET data and immunohistochemical analysis indicate that A1Rs are upregulated in brain areas where active virus is present. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Identification of the D-1 dopamine receptor subunit in rat striatum after photoaffinity labeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, T; Tanaka, C [Kobe Univ. (Japan). School of Medicine

    1982-12-28

    When rat striatal membranes, photolabeled with (/sup 3/H)dopamine under assay conditions similar to those used for dopamine-sensitive adenylate cyclase, were subjected to sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, several radioactively labeled bands appeared. Labeling of these bands was reduced in the presence of non-radioactive dopamine during photolysis, but was unaffected by the presence of sulpiride. Haloperidol preferentially reduced the labeling of the main band which had a molecular weight of about 57,000 rather than the other weakly labeled bands. Labeling of this 57,000 dalton protein was not apparent when rat cerebellar membranes were used and was markedly eliminated by kainic acid-induced lesions that destroyed the intrastriatal nerve cell bodies. These results indicate that this 57,000 dalton protein is the binding subunit of the D-1 dopamine receptor.

  5. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells

    International Nuclear Information System (INIS)

    Mak, Paul; Jaggi, Meena; Syed, Viqar; Chauhan, Subhash C.; Hassan, Sazzad; Biswas, Helal; Balaji, K.C.

    2008-01-01

    Protein kinase D1 (PKD1), founding member of PKD protein family, is down-regulated in advanced prostate cancer (PCa). We demonstrate that PKD1 and androgen receptor (AR) are present as a protein complex in PCa cells. PKD1 is associated with a transcriptional complex which contains AR and promoter sequence of the Prostate Specific Antigen (PSA) gene. Ectopic expression of wild type PKD1 and the kinase dead mutant PKD1 (K628W) attenuated the ligand-dependent transcriptional activation of AR in prostate cancer cells and yeast cells indicating that PKD1 can affect AR transcription activity, whereas knocking down PKD1 enhanced the ligand-dependent transcriptional activation of AR. Co-expression of kinase dead mutant with AR significantly inhibited androgen-mediated cell proliferation in both LNCaP and DU145 PC cells. Our data demonstrate for the first time that PKD1 can influence AR function in PCa cells

  6. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    Science.gov (United States)

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  7. Hyperactivity induced by stimulation of separate dopamine D-1 and D-2 receptors in rats with bilateral 6-OHDA lesions.

    Science.gov (United States)

    Arnt, J

    1985-08-26

    The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.

  8. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex.

    Science.gov (United States)

    Pezze, Marie A; Marshall, Hayley J; Fone, Kevin C F; Cassaday, Helen J

    2015-11-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    Science.gov (United States)

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  10. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  11. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  12. Synthesis of 11C-SCH 23390, a dopamine D-1 receptor antagonist, for use in in vivo receptor binding studies with PET

    International Nuclear Information System (INIS)

    Halldin, Christer; Stone-Elander, Sharon; Farde, Lars; Ehrin, Erling; Fasth, Karl-Johan; Langstroem, Bengt; Sedvall, Goeran; Karolinska Hospital, Stockholm; Uppsala Univ.

    1986-01-01

    Central dopamine receptors are generally accepted to exist in at least two distinct subtypes: D-1 and D-2. Recently a benzazepine, SCH 23390, was reported to be a selective D-1 dopaminergic antagonist. PET studies of the radio-brominated 76 Br-SCH 23390 reported by Friedman, et al. indicated that the analog exhibits specific binding in the striatum of the monkey brain. Here we report the synthesis of 11 C-SCH 23390 suitable for the in vivo study of dopamine D-1 receptors in the human brain. (author)

  13. Effect of Zishenpingchan Granule on Neurobehavioral Manifestations and the Activity and Gene Expression of Striatal Dopamine D1 and D2 Receptors of Rats with Levodopa-Induced Dyskinesias

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2014-01-01

    Full Text Available This study was performed to observe the effects of Zishenpingchan granule on neurobehavioral manifestations and the activity and gene expression of striatal dopamine D1 and D2 receptors of rats with levodopa-induced dyskinesias (LID. We established normal control group, LID model group, and TCM intervention group. Each group received treatment for 4 weeks. Artificial neural network (ANN was applied to excavate the main factor influencing variation in neurobehavioral manifestations of rats with LID. The results showed that overactivation in direct pathway mediated by dopamine D1 receptor and overinhibition in indirect pathway mediated by dopamine D2 receptor may be the main mechanism of LID. TCM increased the efficacy time of LD to ameliorate LID symptoms effectively mainly by upregulating dopamine D2 receptor gene expression.

  14. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    Science.gov (United States)

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    Science.gov (United States)

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  16. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2018-01-01

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  17. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    Directory of Open Access Journals (Sweden)

    Xianglong eZhu

    2016-04-01

    Full Text Available While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The NAc is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs D2 neurons was done in both low expenditure and high expenditure (wheel running conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a DREADD (Designer Receptors Exclusively Activated by Designer Drugs strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from D1 NAc neuronal manipulations depend upon the activity state of the animals (wheel running vs non-running. The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control.

  18. Dopamine D1 receptor gene variation modulates opioid dependence risk by affecting transition to addiction.

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    Full Text Available Dopamine D1 receptor (DRD1 modulates opioid reinforcement, reward, and opioid-induced neuroadaptation. We propose that DRD1 polymorphism affects susceptibility to opioid dependence (OD, the efficiency of transition to OD, and opioid-induced pleasure response. We analyzed potential association between seven DRD1 polymorphisms with the following traits: duration of transition from the first use to dependence (DTFUD, subjective pleasure responses to opioid on first use and post-dependence use, and OD risk in 425 Chinese with OD and 514 healthy controls. DTFUD and level of pleasure responses were examined using a semi-structured interview. The DTFUD of opioid addicts ranged from 5 days to 11 years. Most addicts (64.0% reported non-comfortable response upon first opioid use, while after dependence, most addicts (53.0% felt strong opioid-induced pleasure. Survival analysis revealed a correlation of prolonged DTFUD with the minor allele-carrying genotypes of DRD1 rs4532 (hazard ratios (HR = 0.694; p = 0.001 and rs686 (HR = 0.681, p = 0.0003. Binary logistic regression indicated that rs10063995 GT genotype (vs. GG+TT, OR = 0.261 could predict decreased pleasure response to first-time use and the minor alleles of rs686 (OR = 0.535 and rs4532 (OR = 0.537 could predict decreased post-dependence pleasure. Moreover, rs686 minor allele was associated with a decreased risk for rapid transition from initial use to dependence (DTFUD≤30 days; OR = 0.603 or post-dependence euphoria (OR = 0.603 relative to major allele. In conclusion, DRD1 rs686 minor allele decreases the OD risk by prolonging the transition to dependence and attenuating opioid-induced pleasure in Chinese.

  19. A D1 receptor antagonist, ecopipam, for treatment of tics in Tourette syndrome.

    Science.gov (United States)

    Gilbert, Donald L; Budman, Cathy L; Singer, Harvey S; Kurlan, Roger; Chipkin, Richard E

    2014-01-01

    Dysregulation of dopaminergic signaling has been hypothesized to underlie the motor and phonic tics in Tourette syndrome (TS). The objective of this trial was to evaluate the safety and tic-reducing activity of the selective dopamine D1 receptor antagonist ecopipam in adults with TS. This was a multicenter, nonrandomized, open-label study of 50-mg ecopipam daily (weeks 1-2) and then 100 mg daily (weeks 3-8), taken orally before bedtime. The primary efficacy end point was the change in the Yale Global Tic Severity Scale (YGTSS) total tic score. Comorbid psychiatric symptoms and premonitory urges were rated; weight, serum metabolic studies, and adverse effects were monitored. Eighteen adults (15 men; 15 white, 2 African American, 1 Asian), with a mean age of 36.2 years (range, 18-63 years), were enrolled, and 15 completed the study. Mean (SD) YGTSS Total Tic score was 30.6 (8.8) at baseline and 25.3 (9.2) at 8 weeks (2-tailed paired t17 = 4.4; P = 0.0004). Mean (SD) YGTSS impairment score was 29.7 (10.9) at baseline and 22.8 (13.7) at final visit (t17 = 2.2; P = 0.04). There was no significant change in premonitory urges or psychiatric symptoms. Mean change in weight was -0.7 kg (P = 0.07). The most commonly reported adverse events were sedation (39%), fatigue (33%), insomnia (33%), somnolence (28%), anxiety (22%), headache (22%), and muscle twitching (22%). In this open-label study in adults with TS, tics were reduced after 8 weeks of treatment with ecopipam. To confirm safety and efficacy, randomized, double blind, placebo-controlled trials are warranted.

  20. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Science.gov (United States)

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model

    NARCIS (Netherlands)

    Homberg, J.R.; Olivier, J.D.; VandenBroeke, M.; Youn, J.; Ellenbroek, A.K.; Karel, P.; Shan, L.; Boxtel, R. van; Ooms, S.; Balemans, M.; Langedijk, J.; Muller, M.; Vriend, G.; Cools, A.R.; Cuppen, E.; Ellenbroek, B.A.

    2016-01-01

    Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1

  2. The role of the dopamine D1 receptor in social cognition : Studies using a novel genetic rat model

    NARCIS (Netherlands)

    Homberg, Judith R.; Olivier, Jocelien D A; VandenBroeke, Marie; Youn, Jiun; Ellenbroek, Arabella K.; Karel, Peter; Shan, Ling; Van Boxtel, Ruben; Ooms, Sharon; Balemans, Monique; Langedijk, Jacqueline; Muller, Mareike; Vriend, Gert; Cools, Alexander R.; Cuppen, Edwin; Ellenbroek, Bart A.

    2016-01-01

    Social cognitionisan endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1

  3. The role of the dopamine D1 receptor in social cognition : Studies using a novel genetic rat model

    NARCIS (Netherlands)

    Homberg, J R; Olivier, J D A; VandenBroeke, M; Youn, J; Ellenbroek, A K; Karel, P; Shan, L; van Boxtel, R; Ooms, S; Balemans, M; Langedijk, J; Muller, M; Vriend, G; Cools, A R; Cuppen, E; Ellenbroek, B A

    2016-01-01

    Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1

  4. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring

    Directory of Open Access Journals (Sweden)

    Zhengmeng Ye

    2018-03-01

    Full Text Available Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5 exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R, regulated by G protein-coupled receptor kinase type 4 (GRK4, plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the

  5. Cerebral adenosine A1 receptors are upregulated in rodent encephalitis

    NARCIS (Netherlands)

    Paul, Souman; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W.; Ishiwata, Kiichi; Elsinga, Philip H.; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A.; van Waarde, Aren

    2014-01-01

    Adenosine A(1) receptors (A(1) Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A(1) Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis.

  6. Effect of age on upregulation of the cardiac adrenergic beta receptors

    International Nuclear Information System (INIS)

    Tumer, N.; Houck, W.T.; Roberts, J.

    1990-01-01

    Radioligand binding studies were performed to determine whether upregulation of postjunctional beta receptors occurs in sympathectomized hearts of aged animals. Fischer 344 rats 6, 12, and 24 months of age (n = 10) were used in these experiments. To produce sympathectomy, rats were injected with 6-hydroxydopamine hydrobromide (6-OHDA; 2 x 50 mg/kg iv) on days 1 and 8; the animals were decapitated on day 15. The depletion of norepinephrine in the heart was about 86% in each age group. 125I-Iodopindolol (IPIN), a beta adrenergic receptor antagonist, was employed to determine the affinity and total number of beta adrenergic receptors in the ventricles of the rat heart. The maximal number of binding sites (Bmax) was significantly elevated by 37%, 48%, and 50% in hearts from sympathectomized 6-, 12-, and 24-month-old rats, respectively. These results indicate that beta receptor mechanisms in older hearts can respond to procedures that cause upregulation of the beta adrenergic receptors

  7. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi

    International Nuclear Information System (INIS)

    Wang, Rong; Xiao, Xue; Cao, Lei; Shen, Zhen-xing; Lei, Ying; Cao, Yong-xiao

    2016-01-01

    Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ET A and ET B receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ET A and ET B receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ET A and ET B receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ET B receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ET A receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ET B receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ET A receptor is involved in JNK and p38 pathways. - Highlights: • Airborne PM2.5 induces bronchial hyperreactivity mediated with endothelin ET B and ET A receptors in rats. • PM2.5 increases mRNA and protein expressions of endothelin ET B and ET A receptors in bronchi. • The upregulation of ET B receptor is associated with MEK1/2 and p38 pathways. • The upregulation of ET A receptor is involved in JNK and p38 pathways. • The research provides novel understanding for PM2.5-associated respiratory diseases.

  8. Involvement of Dopamine D1/D5 and D2 Receptors in Context-Dependent Extinction Learning and Memory Reinstatement.

    Science.gov (United States)

    André, Marion Agnès Emma; Manahan-Vaughan, Denise

    2015-01-01

    Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal) of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context "A") to associate a goal arm with a food reward, despite low reward probability (acquisition phase). On day 4, extinction learning (unrewarded) occurred, that was reinforced by a context change ("B"). On day 5, re-exposure to the (unrewarded) "A" context took place (renewal of context "A", followed by extinction of context "A"). In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal) on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context "B". By contrast, a D1/D5-agonist impaired renewal in context "A". Extinction in the "A" context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context "B" or renewal in context "A", although extinction of the renewal effect was impaired on day 5, compared to controls. Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.

  9. Involvement of dopamine D1/D5 and D2 receptors in context-dependent extinction learning and memory reinstatement

    Directory of Open Access Journals (Sweden)

    Marion Agnes Emma Andre

    2016-01-01

    Full Text Available Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context ‘A’ to associate a goal arm with a food reward, despite low reward probability (acquisition phase. On day 4, extinction learning (unrewarded occurred, that was reinforced by a context change (‘B’. On day 5, re-exposure to the (unrewarded ‘A’-context took place (renewal of context ‘A’, followed by extinction of context ‘A’. In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context ‘B’. By contrast, a D1/D5-agonist impaired renewal in context ’A’. Extinction in the ‘A’ context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context ‘B or renewal in context ‘A’, although extinction of the renewal effect was impaired on day 5, compared to controls.Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.

  10. Dopamine D1 receptor-dependent regulation of extracellular citrulline level in the rat nucleus accumbens during conditioned fear response.

    Science.gov (United States)

    Saulskaya, Natalia B; Fofonova, Nellia V; Sudorghina, Polina V; Saveliev, Sergey A

    2008-08-01

    Nucleus accumbens (N.Acc) contains a subclass of nitric oxide (NO)-generating interneurons that are presumably regulated by the dopamine input. Receptor mechanisms underlying dopamine-NO interaction in the N.Acc are poorly understood. In the current study, we used in vivo microdialysis combined with high-performance liquid chromatography to examine participation of dopamine D1 receptors in regulation of extracellular levels of citrulline (an NO co-product) in the medial N.Acc of Sprague-Dawley rats during both pharmacological challenge and a conditioned fear response. The intraaccumbal infusion of the D1 receptor agonist SKF-38393 (100-500 microM) increased dose-dependently the local dialysate citrulline levels. The SKF-38393-induced increase in extracellular citrulline was prevented by intraaccumbal infusions of 500 microM 7-nitroindazole, a neuronal NO synthase inhibitor. In behavioral microdialysis experiment, the accumbal levels of extracellular citrulline markedly increased in rats given a mild footshock paired with tone. The presentation of the tone previously paired with footshock (the conditioned fear response) produced a "conditioned" rise of extracellular citrulline levels in the N.Acc which was attenuated by intraaccumbal infusion of 100 microM SCH-23390, a dopamine D1 receptor antagonist, and prevented by intraaccumbal infusion of 500 microM 7-nitroindazole. The results suggest that in the N.Acc, the dopamine D1 receptors might regulate the neuronal NO synthase activity; this dopamine-dependent mechanism seems to participate in activation of the neuronal NO synthase and probably NO formation in this brain area during the conditioned fear response.

  11. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca2+]i Imaging

    International Nuclear Information System (INIS)

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-01-01

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca 2+ ] i ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca 2+ ] i in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca 2+ ] i increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca 2+ ] i in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca 2+ ] i decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  12. Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors.

    Science.gov (United States)

    Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José

    2006-03-01

    The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.

  13. Leptin Receptor Deficiency is Associated With Upregulation of Cannabinoid 1 Receptors in Limbic Brain Regions

    Science.gov (United States)

    THANOS, PANAYOTIS K.; RAMALHETE, ROBERTO C.; MICHAELIDES, MICHAEL; PIYIS, YIANNI K.; WANG, GENE-JACK; VOLKOW, NORA D.

    2009-01-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB1R) in overeating and the effects of food deprivation on CB1R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB1R (CB1R binding levels) were assessed using [3H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB1R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB1R binding levels than Le in most brain regions and food restriction was associated with higher CB1R levels in all brain regions in Ob, but not in Le rats. CB1R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB1R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB1R and that leptin interferes with CB1R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. PMID:18563836

  14. The effect of full agonist/antagonist of D1 receptor on cognitive function in dizocilpine-treated rats

    Czech Academy of Sciences Publication Activity Database

    Bubeníková-Valešová, V.; Svoboda, Jan; Stuchlík, Aleš; Valeš, Karel

    2008-01-01

    Roč. 11, Suppl.1 (2008), s. 263-263 ISSN 1461-1457. [CINP Congress /26./. 13.07.2008-17.07.2008, Munich] R&D Projects: GA MŠk(CZ) 1M0517; GA MZd(CZ) NR9178; GA ČR(CZ) GA309/07/0341 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * D1 receptor * schizophrenia * cognitive function Subject RIV: FH - Neurology

  15. Functional aspects of dexamethasone upregulated nicotinic acetylcholine receptors in C2C12 myotubes

    NARCIS (Netherlands)

    Maestrone, E; Lagostena, L; Henning, RH; DenHertog, A; Nobile, M

    Three days of treatment with the glucocorticoid dexamethasone (1 nM-mu M) induced a concentration-dependent up-regulation of muscle nicotinic acetylcholine receptor (nAChR) in C2C12 mouse myotubes (EC(50)=10+/-7.3 nM), as assessed by [H-3]alpha-BuTx binding. The maximum increase in binding amounted

  16. Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Johansson, Sara Ellinor; Larsen, Carl Christian

    2013-01-01

    shown to be mediated by intracellular signalling via the mitogen activated protein kinase kinase (MEK1/2)--extracellular regulated kinase 1/2 (ERK1/2) pathway. However, it is not known what event(s) that trigger MEK-ERK1/2 activation and vasoconstrictor receptor upregulation after SAH.We hypothesise...

  17. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity

    Directory of Open Access Journals (Sweden)

    Anna M. Klawonn

    2018-04-01

    Full Text Available The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs in dopamine D1 receptor (D1R expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT, during various reward-enforced behaviors and in a “waiting”-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs in the 5-choice-serial-reaction-time-task (5CSRTT than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG expression (cFos and FosB induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  18. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity.

    Science.gov (United States)

    Klawonn, Anna M; Wilhelms, Daniel B; Lindström, Sarah H; Singh, Anand Kumar; Jaarola, Maarit; Wess, Jürgen; Fritz, Michael; Engblom, David

    2018-01-01

    The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression ( cFos and FosB ) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  19. 6-hydroxydopamine-induced degeneration of nigral dopamine neurons: differential effect on nigral and striatal D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Porceddu, M.L.; Giorgi, O.; De Montis, G.; Mele, S.; Cocco, L.; Ongini, E.; Biggio, G.

    1987-01-01

    Dopamine-sensitive adenylate cyclase and 3 H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3 H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3 H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3 H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: a) within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and and/or dendrites of dopaminergic neurons; b) striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers. 24 references, 1 figure, 1 table

  20. Effects of chronic REM sleep restriction on D1 receptor and related signal pathways in rat prefrontal cortex.

    Science.gov (United States)

    Han, Yan; Wen, Xiaosa; Rong, Fei; Chen, Xinmin; Ouyang, Ruying; Wu, Shuai; Nian, Hua; Ma, Wenling

    2015-01-01

    The prefrontal cortex (PFC) mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR), particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR) on the D1 receptor (D1R) and key molecules in D1R' signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P CSR rats (P CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function.

  1. Vitamin D receptor FokI genotype may modify the susceptibility to schizophrenia and bipolar mood disorder by regulation of dopamine D1 receptor gene expression.

    Science.gov (United States)

    Ahmadi, S; Mirzaei, K; Hossein-Nezhad, A; Shariati, G

    2012-10-01

    This study is designed to test association of FOKI polymorphism in Vitamin D receptor (VDR) gene and its potential effect on expression of dopamine D1 receptor in schizophrenia and bipolar mood disorder as well as in healthy individuals. In this case-control study 196 patient with schizophrenia, 119 patients with bipolar mood disorder and 192 healthy individuals as the control group were recruited. All psychiatric disorders were diagnosed according to DSM IV criteria. Healthy control group denied any family history of such disorders. FOKI was genotyped by means of PCR-RFLP method. The mRNA was extracted from the peripheral blood mononuclear cells (PBMC) and the cDNA was synthesized. Frequency of ff genotype was more common in patients with bipolar disorders compared to the healthy control group (Odds ratio=1.84, 95% CI; 0.81 to 4.17) with increased relative risk (Relative risk=1.31, CI 95%; 0.86 to 1.99). There were significant differences between relative expressions of dopamine D1 receptor gene in various genotypes. Our results indicated that the ff genotype was associated with lower expression of dopamine D1 receptor gene. VDR as a nuclear receptor may contribute to bipolar disorders via modification of the expression of the neurotransmitters receptor such as dopamine.

  2. Up-regulation of the Neuronal Nicotinic Receptor α7 by HIV Glycoprotein 120

    Science.gov (United States)

    Ballester, Leomar Y.; Capó-Vélez, Coral M.; García-Beltrán, Wilfredo F.; Ramos, Félix M.; Vázquez-Rosa, Edwin; Ríos, Raymond; Mercado, José R.; Meléndez, Roberto I.; Lasalde-Dominicci, José A.

    2012-01-01

    Approximately 30–50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV+ individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120IIIB on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca2+, we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV+ patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection. PMID:22084248

  3. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  4. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors.

    Science.gov (United States)

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-07-17

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. © 2014 The Authors.

  5. Upregulation of neurokinin-1 receptor expression in the lungs of patients with sarcoidosis.

    LENUS (Irish Health Repository)

    O'Connor, Terence M

    2012-02-03

    Substance P (SP) is a proinflammatory neuropeptide that is secreted by sensory nerves and inflammatory cells. Increased levels of SP are found in sarcoid bronchoalveolar lavage fluid. SP acts by binding to the neurokinin-1 receptor and increases secretion of tumor necrosis factor-alpha in many cell types. We sought to determine neurokinin-1 receptor expression in patients with sarcoidosis compared with normal controls. Neurokinin-1 receptor messenger RNA and protein expression were below the limits of detection by reverse transcriptase-polymerase chain reaction and immunohistochemistry in peripheral blood mononuclear cells of healthy volunteers (n = 9) or patients with stage 1 or 2 pulmonary sarcoidosis (n = 10), but were detected in 1\\/9 bronchoalveolar lavage cells of controls compared with 8\\/10 patients with sarcoidosis (p = 0.012) and 2\\/9 biopsies of controls compared with 9\\/10 patients with sarcoidosis (p = 0.013). Immunohistochemistry localized upregulated neurokinin-1 receptor expression to bronchial and alveolar epithelial cells, macrophages, lymphocytes, and sarcoid granulomas. The patient in whom neurokinin-1 receptor was not detected was taking corticosteroids. Incubation of the type II alveolar and bronchial epithelial cell lines A549 and SK-LU 1 with dexamethasone downregulated neurokinin-1 receptor expression. Upregulated neurokinin-1 receptor expression in patients with sarcoidosis may potentiate substance P-induced proinflammatory cytokine production in patients with sarcoidosis.

  6. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Austin, Mark C; Szewczyk, Bernadeta; Daigle, Mireille; Stockmeier, Craig A; Albert, Paul R

    2009-08-01

    Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.

  7. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons.

    Science.gov (United States)

    Cantrell, A R; Scheuer, T; Catterall, W A

    1999-07-01

    Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.

  8. A human D1 dopamine receptor gene is located on chromosome 5 at q35.1 and identifies an EcoRI RFLP.

    OpenAIRE

    Grandy, D K; Zhou, Q Y; Allen, L; Litt, R; Magenis, R E; Civelli, O; Litt, M

    1990-01-01

    Dopaminergic neurons have been shown to affect voluntary movement, hormone secretion, and emotional tone. Mediating these activities are two receptor subtypes, D1 and D2, which are biochemically and pharmacologically distinct. The D1 subtype, the most abundant form of dopamine receptor in the central nervous system, stimulates adenylate cyclase, modulates D2 receptor activity, regulates neuron growth and differentiation, and mediates several behavioral responses. Recently we reported the clon...

  9. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    Science.gov (United States)

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. Copyright © 2014 the American Physiological Society.

  10. Hints on the Lateralization of Dopamine Binding to D-1 Receptors in Rat Striatum

    Czech Academy of Sciences Publication Activity Database

    Franco, R.; Casadó-Anguera, V.; Muňoz, A.; Petrovič, Miloš; Navarro, G.; Moreno, E.; Lanciego, J. L.; Labandeira-García, J. L.; Cortés, A.; Casadó, V.

    2016-01-01

    Roč. 53, č. 8 (2016), s. 5436-5445 ISSN 0893-7648 Institutional support: RVO:67985823 Keywords : lateralization * basal ganglia * G-protein-coupled receptor dimer * dyskinesia * 6-hydroxydopamine Subject RIV: ED - Physiology Impact factor: 6.190, year: 2016

  11. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  12. Effects of the D1 dopamine receptor agonist dihydrexidine (DAR-0100A) on working memory in schizotypal personality disorder.

    Science.gov (United States)

    Rosell, Daniel R; Zaluda, Lauren C; McClure, Margaret M; Perez-Rodriguez, M Mercedes; Strike, K Sloan; Barch, Deanna M; Harvey, Philip D; Girgis, Ragy R; Hazlett, Erin A; Mailman, Richard B; Abi-Dargham, Anissa; Lieberman, Jeffrey A; Siever, Larry J

    2015-01-01

    Pharmacological enhancement of prefrontal D1 dopamine receptor function remains a promising therapeutic approach to ameliorate schizophrenia-spectrum working memory deficits, but has yet to be rigorously evaluated clinically. This proof-of-principle study sought to determine whether the active enantiomer of the selective and full D1 receptor agonist dihydrexidine (DAR-0100A) could attenuate working memory impairments in unmedicated patients with schizotypal personality disorder (SPD). We performed a randomized, double-blind, placebo-controlled trial of DAR-0100A (15 mg/150 ml of normal saline administered intravenously over 30 min) in medication-free patients with SPD (n=16) who met the criteria for cognitive impairment (ie, scoring below the 25th percentile on tests of working memory). We employed two measures of verbal working memory that are salient to schizophrenia-spectrum cognitive deficits, and that clinical data implicate as being associated with prefrontal D1 availability: (1) the Paced Auditory Serial Addition Test (PASAT); and (2) the N-back test (ratio of 2-back:0-back scores). Study procedures occurred over four consecutive days, with working memory testing on Days 1 and 4, and DAR-0100A/placebo administration on Days 2-4. Treatment with DAR-0100A was associated with significantly improved PASAT performance relative to placebo, with a very large effect size (Cohen's d=1.14). Performance on the N-back ratio was also significantly improved; however, this effect rested on both a non-significant enhancement and diminution of 2-back and 0-back performance, respectively; therefore interpretation of this finding is more complicated. DAR-0100A was generally well tolerated, with no serious medical or psychiatric adverse events; common side effects were mild to moderate and transient, consisting mainly of sedation, lightheadedness, tachycardia, and hypotension; however, we were able to minimize these effects, without altering the dose, with supportive

  13. Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances.

    Science.gov (United States)

    Roberts, Michael D; Gilpin, Leigh; Parker, Kyle E; Childs, Thomas E; Will, Matthew J; Booth, Frank W

    2012-02-01

    Dopamine signaling in the nucleus accumbens (NAc) has been postulated to influence reward development towards drugs of abuse and exercise. Herein, we used generation 4-5 rats that were selectively bred to voluntary run high (HVR) versus low (LVR) distances in order to examine if dopamine-like 1 (D1) receptor modulation in the NAc differentially affects nightly voluntary wheel running between these lines. A subset of generation 5-6 HVR and LVR rats were also used to study the mRNA expression of key genes related to reward and addiction in the NAc (i.e., DRD1, DRD5, DRD2, Nr4a2, FosB, and BDNF). In a crossover fashion, a D1-like agonist SKF 82958 (2 μg per side) or D1-like full antagonist SCH 23390 (4 μg per side) was bilaterally injected into the NAc of HVR and LVR female Wistar rats prior to their high running nights. Notably, during hours 2-4 (between 2000 and 2300) of the dark cycle there was a significant decrement in running distances in the HVR rats treated with the D1 agonist (p=0.025) and antagonist (p=0.017) whereas the running distances in LVR rats were not affected. Interestingly, HVR and LVR rats possessed similar NAc concentrations of the studied mRNAs. These data suggest that: a) animals predisposed to run high distances on a nightly basis may quickly develop a rewarding response to exercise due to an optimal D1-like receptor signaling pathway in the NAc that can be perturbed by either activation or blocking, b) D1-like agonist or antagonist injections do not increase running distances in rats that are bred to run low nightly distances, and c) running differences between HVR and LVR animals are seemingly not due to the expression of the studied mRNAs. Given the societal prevalence of obesity and extraneous physical inactivity, future studies should be performed in order to further determine the culprit for the low running phenotype observed in LVR animals. Copyright © 2011. Published by Elsevier Inc.

  14. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina

    International Nuclear Information System (INIS)

    Dubocovich, M.L.; Weiner, N.

    1985-01-01

    The effect of dopamine receptor agonists and antagonists was studied on the calcium-dependent release of [ 3 H]dopamine elicited by field stimulation at 3 Hz for a duration of 1 min (20 mA, 2 msec) from the rabbit retina in vitro and on adenylate cyclase activity in homogenates of rabbit retina. The relative order of potency of dopamine receptor agonists to inhibit the stimulation-evoked [ 3 H]dopamine release was pergolide greater than bromocriptine greater than apomorphine greater than LY 141865 greater than N,N-di-n-propyldopamine greater than or equal to dopamine. The relative order of potencies of dopamine receptor antagonists to increase [ 3 H]dopamine release was: S-sulpiride greater than or equal to domperidone greater than or equal to spiroperidol greater than metoclopramide greater than fluphenazine greater than or equal to R-sulpiride. alpha-Flupenthixol (0.01-1 microM) and (+)-butaclamol (0.01-1 microM) did not increase [ 3 H]dopamine overflow when added alone, but they antagonized the concentration-dependent inhibitory effect of apomorphine (0.1-10 microM). These results suggest that the dopamine inhibitory autoreceptor involved in the modulation of dopamine release from the rabbit retina possesses the pharmacological characteristics of a D-2 dopamine receptor. Maximal stimulation by 30 microM dopamine resulted in a 3-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 2.46 microM. Apomorphine and pergolide elicited a partial stimulation of adenylate cyclase activity. However, at low concentrations both compounds were more potent than dopamine

  15. Benzazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects

    International Nuclear Information System (INIS)

    Iorio, L.C.; Billiard, W.; Gold, E.H.

    1986-01-01

    This chapter describes the displacement of 3 H-23390 and 3 H-spiperone binding by dopamine agonists and antagonists. The authors undertook an evaluation of the ability of selected analogs of SCH 23390 to displace 3 H-SCH 23390 and 3 H-spiperone. Structure-activity relationships of SCH 23390 analogs: 7-position substituents, is shown. It is shown that, in general, benzazepines with a variety of substituents in the 7-position retain their selectivity for D 1 sites. Substituents at the 8-position and at the N-position are also discussed. The authors determine a correlation between displacement of 3 H-SCH 23390 and blockade of dopamine-sensitive adenylate cyclase (DSAC). These effects and inhibition of conditioned avoidance responsing (CAS) in rats was also studied. A detailed evaluation is presented of the effects of SCH 23390 and haloperidol in the Inclined Screen and CAR tests

  16. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Upregulation of endothelin ETB receptor-mediated vasoconstriction in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Eskesen, Karen; Edvinsson, Lars

    2006-01-01

    The aim of this study was to examine if endothelin ET(B) receptor-mediated contraction occurred in isolated segments of rat coronary arteries during organ culture. Presence of contractile endothelin ET(B) receptors was studied by measuring the change in isometric tension in rings of left anterior......(+)-solution was not modified after 1 day in culture medium. The experiments indicate that organ culture of rat coronary arteries upregulate endothelin ET(B) receptor-mediated contraction by inducing synthesis of new protein....... descending coronary arteries isolated from hearts of rats as response to application of the selective endothelin ET(B) receptor agonist, Sarafotoxin 6c and endothelin-1. In segments cultured 1 day in serum free Dulbecco's Modified Eagle's Medium, Sarafotoxin 6c induced a concentration dependent contraction...

  18. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model­

    Directory of Open Access Journals (Sweden)

    Judith R. Homberg

    2016-10-01

    Full Text Available Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1. Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.

  20. Irradiation inactivation studies of the dopamine D1 receptor and dopamine-stimulated adenylate cyclase in rat striatum

    International Nuclear Information System (INIS)

    Anderson, P.H.; Nielson, M.

    1987-01-01

    In frozen rat striatal tissue, exposed to 10 MeV electrons from a linear accelerator, the sizes of the dopamine (DA) D 1 receptor and the DA sensitive adenylate cyclase complex were determined using target size analysis. The number of D 1 receptors (labelled by [ 3 H]SCH 23390)declined monoexponentially with increasing radiation intensity, yielding a molecular weight (mol. wt.) of 80kDa. Also the activity of the catalytic unit (C) of the adenylate cyclase (as measured by forskolin stimulation), decreased monoexponentially however with a mol. wt. of 145 kDa. Both basal, DA- and flouride (F - ) stimulated activity declined in a concave downward fashion with a limiting mol. wt. of 134, 138 and 228 kDa respectively. It was estimated that the basal and DA - stimulated activity originated from an enzyme complex with a mol. wt. of 325 kDa a value close to the combined size of R G S + C. These data suggest that F - stimulation of the adenylate cyclase, which occurs by a G S activation, does not cause disassociation of G S into the α S and βγ subunits. Further, the AA-regulated adenylate cyclase apparently exists as a complex consisting of RG S and C; the mechanisms of hormonal activation is dissociation of C from this complex

  1. Genetic association between the dopamine D1-receptor gene and paranoid schizophrenia in a northern Han Chinese population.

    Science.gov (United States)

    Yao, Jun; Ding, Mei; Xing, Jiaxin; Xuan, Jinfeng; Pang, Hao; Pan, Yuqing; Wang, Baojie

    2014-01-01

    Dysregulation of dopaminergic neurotransmission at the D1 receptor in the prefrontal cortex has been implicated in the pathogenesis of schizophrenia. Genetic polymorphisms of the dopamine D1-receptor gene have a plausible role in modulating the risk of schizophrenia. To determine the role of DRD1 genetic polymorphisms as a risk factor for schizophrenia, we undertook a case-control study to look for an association between the DRD1 gene and schizophrenia. We genotyped eleven single-nucleotide polymorphisms within the DRD1 gene by deoxyribonucleic acid sequencing involving 173 paranoid schizophrenia patients and 213 unrelated healthy individuals. Statistical analysis was performed to identify the difference of genotype, allele, or haplotype distribution between cases and controls. A significantly lower risk of paranoid schizophrenia was associated with the AG + GG genotype of rs5326 and the AG + GG genotype of rs4532 compared to the AA genotype and the AA genotype, respectively. Distribution of haplotypes was no different between controls and paranoid schizophrenia patients. In the males, the genotype distribution of rs5326 was statistically different between cases and controls. In the females, the genotype distribution of rs4532 was statistically different between cases and controls. However, the aforementioned statistical significances were lost after Bonferroni correction. It is unlikely that DRD1 accounts for a substantial proportion of the genetic risk for schizophrenia. As an important dopaminergic gene, DRD1 may contribute to schizophrenia by interacting with other genes, and further relevant studies are warranted.

  2. Adolescent changes in dopamine D1 receptor expression in orbitofrontal cortex and piriform cortex accompany an associative learning deficit.

    Directory of Open Access Journals (Sweden)

    Anna K Garske

    Full Text Available The orbitofrontal cortex (OFC and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning.

  3. Medial prefrontal cortex lesions impair decision-making on a rodent gambling task: reversal by D1 receptor antagonist administration.

    Science.gov (United States)

    Paine, Tracie A; Asinof, Samuel K; Diehl, Geoffrey W; Frackman, Anna; Leffler, Joseph

    2013-04-15

    Decision-making is a complex cognitive process that is impaired in a number of psychiatric disorders. In the laboratory, decision-making is frequently assessed using "gambling" tasks that are designed to simulate real-life decisions in terms of uncertainty, reward and punishment. Here, we investigate whether lesions of the medial prefrontal cortex (PFC) cause impairments in decision-making using a rodent gambling task (rGT). In this task, rats have to decide between 1 of 4 possible options: 2 options are considered "advantageous" and lead to greater net rewards (food pellets) than the other 2 "disadvantageous" options. Once rats attained stable levels of performance on the rGT they underwent sham or excitoxic lesions of the medial PFC and were allowed to recover for 1 week. Following recovery, rats were retrained for 5 days and then the effects of a dopamine D1-like receptor antagonist (SCH23390) or a D2-like receptor antagonist (haloperidol) on performance were assessed. Lesioned rats exhibited impaired decision-making: they made fewer advantageous choices and chose the most optimal choice less frequently than did sham-operated rats. Administration of SCH23390 (0.03 mg/kg), but not haloperidol (0.015-0.03 mg/kg) attenuated the lesion-induced decision-making deficit. These results indicate that the medial PFC is important for decision-making and that excessive signaling at D1 receptors may contribute to decision-making impairments. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Uddman Rolf

    2005-09-01

    Full Text Available Abstract Background Toll-like receptors enable the host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharide, viral RNA, CpG-containing DNA and flagellin. Toll-like receptors have also been shown to play a pivotal role in both innate and adaptive immune responses. The role of Toll-like receptors as a primary part of our microbe defense system has been shown in several studies, but their possible function as mediators in allergy and asthma remains to be established. The present study was designed to examine the expression of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with intermittent allergic rhinitis, focusing on changes induced by exposure to pollen. Methods 27 healthy controls and 42 patients with seasonal allergic rhinitis volunteered for the study. Nasal biopsies were obtained before and during pollen season as well as before and after allergen challenge. The seasonal material was used for mRNA quantification of Toll-like receptors 2, 3 and 4 with real-time polymerase chain reaction, whereas specimens achieved in conjunction with allergen challenge were used for immunohistochemical localization and quantification of corresponding proteins. Results mRNA and protein representing Toll-like receptors 2, 3 and 4 could be demonstrated in all specimens. An increase in protein expression for all three receptors could be seen following allergen challenge, whereas a significant increase of mRNA only could be obtained for Toll-like receptor 3 during pollen season. Conclusion The up-regulation of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with symptomatic allergic rhinitis supports the idea of a role for Toll-like receptors in allergic airway inflammation.

  6. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  7. Effect of dopamine, dopamine D-1 and D-2 receptor modulation on ACTH and cortisol levels in normal men and women

    DEFF Research Database (Denmark)

    Boesgaard, S; Hagen, C; Andersen, A N

    1990-01-01

    The regulation of the hypothalamic-pituitary-adrenal axis by dopamine is not fully understood. Therefore, we have studied the effect of dopamine, metoclopramide, a D-2 receptor antagonist, and fenoldopam, a specific D-1 receptor agonist, on ACTH and cortisol levels in normal subjects. Normal women...

  8. Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Science.gov (United States)

    Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.

    2009-01-01

    Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501

  9. Ionotropic glutamate receptors (iGluRs of the delta family (GluD1 and GluD2 and synaptogenesis

    Directory of Open Access Journals (Sweden)

    Muhammad Zahid Khan

    2017-08-01

    Full Text Available Glutamate delta-1 (GluD1 and glutamate delta-2 (GluD2 form the delta family of ionotropic glutamate receptors (iGluRs and are distinct from other (iGluRs in that they do not exhibit typical agonist-induced ion channel currents. Recent studies have demonstrated a crucial role of the delta receptors in synapse formation by interacting with presynaptic proteins such as Neurexin1. This review presents current knowledge regarding the expression, structure and function of Glu delta receptors (GluD1, GluD2 in brain, focusing on synapse formation, function and dysfunction.

  10. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  11. Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Karina Possa Abrahao

    Full Text Available In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as "sensitized" and the 33% with the lowest levels as "non-sensitized". The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of

  12. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  13. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson’s rats

    Directory of Open Access Journals (Sweden)

    Song L

    2016-02-01

    Full Text Available Lu Song,1,* Zhanzhao Zhang,2,* Rongguo Hu,1 Jie Cheng,1 Lin Li,1 Qinyi Fan,1 Na Wu,1 Jing Gan,1 Mingzhu Zhou,1 Zhenguo Liu11Department of Neurology, Xinhua Hospital, 2Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: L-3,4-dihydroxyphenylalanine (L-dopa remains the most effective therapy for Parkinson’s disease (PD, but its long-term administration is associated with the development of debilitating motor complications known as L-dopa-induced dyskinesia (LID. Enhanced function of dopamine D1 receptor (D1R and N-methyl-d-aspartate receptor (NMDAR is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1 interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2. In this study, we demonstrated in 6-hydroxydopamine (6-OHDA-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson’s patients.Keywords: 6-hydroxydopamine, Parkinson’s disease, dyskinesia, L-dopa, D1 receptor, NMDA, protein–protein interaction

  14. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  15. Differentiation of Forebrain and Hippocampal Dopamine 1-Class Receptors, D1R and D5R, in Spatial Learning and Memory

    Science.gov (United States)

    Sariñana, Joshua; Tonegawa, Susumu

    2017-01-01

    Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R- specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. PMID:26174222

  16. Possible involvement of dopamine D-1 and D-2 receptors in diazepam-induced hyperphagia in rats.

    Science.gov (United States)

    Naruse, T; Amano, H; Koizumi, Y

    1991-01-01

    Possible involvement of dopamine receptors in diazepam-induced (1 mg/kg, subcutaneous (sc] hyperphagia was studied in nondeprived rats. Pretreatment with the selective D-1 antagonist, SCH23390 (0.03 mg/kg, sc) inhibited diazepam-induced hyperphagia. In addition, pretreatment with the preferential D-2 antagonists, haloperidol (0.1 to 0.3 mg/kg, sc) and clebopride (0.1 to 0.3 mg/kg, sc) inhibited diazepam-induced hyperphagia in a dose-dependent manner. Pretreatment with co-administration of SCH23390 (0.1 mg/kg, sc) and clebopride (0.03 mg/kg, sc) completely inhibited this hyperphagia. The selective D-2 antagonist, sulpiride (40 mg/kg, sc) and the peripheral D-2 antagonist, domperidone (10 mg/kg, sc) did not affect diazepam-induced hyperphagia. However, sulpiride (10 micrograms, icv) or domperidone (2 micrograms, icv) administered centrally inhibited this hyperphagia. The highest dose of haloperidol (0.3 mg/kg, sc) or clebopride (0.3 mg/kg, sc) and higher doses of SCH23390 (0.01 and 0.03 mg/kg, sc) or SCH23390/clebopride (0.01/0.03 and 0.01/0.1 mg/kg, sc) tended to decrease spontaneous feeding in non-deprived rats. In addition, the highest dose of haloperidol, clebopride or SCH23390/clebopride inhibited spontaneous feeding in deprived rats. Interestingly, diazepam-induced hyperphagia was inhibited significantly by doses of haloperidol (0.1 mg/kg, sc), clebopride (0.1 mg/kg, sc) and SCH23390/clebopride (0.003/0.03 and 0.003/0.1 mg/kg, sc) which did not affect spontaneous feeding in non-deprived or deprived rats. Pretreatment with alpha-methyl-p-tyrosine (40 mg/kg, IP x 2, 6 and 2 h prior to diazepam administration) failed to inhibit this hyperphagia. Furthermore, pretreatment with a large dose of haloperidol (5 mg/kg, sc, 4 days before diazepam administration) augmented the sub-hyperphagic effect to diazepam (0.5 mg/kg, sc). Thus, these findings suggest that hyperphagia to diazepam is mediated in part by both dopamine D-1 and D-2 receptors in non-deprived rats.

  17. Plasma homovanillic acid, plasma anti-D1 and -D2 dopamine-receptor activity, and negative symptoms in chronically mediated schizophrenia.

    Science.gov (United States)

    Suzuki, E; Kanba, S; Nibuya, M; Koshikawa, H; Nakaki, T; Yagi, G

    1992-02-15

    We have investigated the relationship between the concentration of homovanillic acid in human plasma (pHVA) and plasma anti-D1 and anti-D2 dopamine receptor activity in chronic schizophrenic patients whose neuroleptic dosage was changed. The change in pHVA level correlated with that in anti-D1, not anti-D2 activity, thus suggesting that the neuroleptic-induced changes in pHVA concentration may be associated with the blocking of D1- as well as D2- receptors. The change of scores on the Scale for the Assessment of Negative Symptoms did not significantly correlate with changes in anti-D1 or anti-D2 activity, but did so correlated with the change in pHVA level.

  18. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    Science.gov (United States)

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in

  19. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    Science.gov (United States)

    Fernández-Trapero, María; Espejo-Porras, Francisco; Rodríguez-Cueto, Carmen; Coates, Joan R.; Pérez-Díaz, Carmen; de Lago, Eva; Fernández-Ruiz, Javier

    2017-01-01

    ABSTRACT Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS). The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM), caused by mutations in the superoxide dismutase 1 gene (SOD1). We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity). Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining) or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells. PMID:28069688

  20. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    María Fernández-Trapero

    2017-05-01

    Full Text Available Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS. The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM, caused by mutations in the superoxide dismutase 1 gene (SOD1. We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity. Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells.

  1. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail.

    Science.gov (United States)

    Kleitz-Nelson, H K; Cornil, C A; Balthazart, J; Ball, G F

    2010-07-01

    A key brain site in the control of male sexual behavior is the medial pre-optic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections and therefore much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigated the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influenced appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigated the effects of intracerebroventricular injections at three doses of D1 or D2 agonists and antagonists. The results indicated that D1 receptors facilitated consummatory male sexual behavior, whereas D2 receptors inhibited both appetitive and consummatory behaviors. Experiment 3 examined the effects of the same compounds specifically injected in the mPOA and showed that, in this region, both receptors stimulated male sexual behaviors. Together, these data indicated that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggested that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior.

  2. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists

    Directory of Open Access Journals (Sweden)

    Andrew John Dudley Nelson

    2013-05-01

    Full Text Available Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006. To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (3 sessions. Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1a-1c or in non-sensitized animals (Experiment 2. Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behaviour is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behaviour.

  3. Extinction and reinstatement to cocaine-associated cues in male and female juvenile rats and the role of D1 dopamine receptor.

    Science.gov (United States)

    Brenhouse, Heather C; Thompson, Britta S; Sonntag, Kai C; Andersen, Susan L

    2015-08-01

    Extinction of behaviors in response to drug-associated cues and prevention of reinstatement are integral for addiction treatment, and can reverse or ameliorate the harmful consequences of drug use. The mechanisms controlling extinction and reinstatement involve prefrontal cortical dopamine receptors, which change in expression and activity during the juvenile and adolescent transitions until they mature in adulthood. Little is known about the role that PFC D1 dopamine receptors play in extinction of drug-paired associations early in life. We used extinction of place preferences for cocaine in juvenile male and female rats following genetic, cell-specific overexpression of D1 on glutamatergic cells in the PFC. All subjects needed to demonstrate cocaine preferences for inclusion in the extinction studies. Here, male juveniles with a preference to 10 mg/kg cocaine took longer to extinguish preferences compared to both male adults and female juveniles. Female juveniles extinguished more rapidly than male juveniles at 20 mg/kg cocaine. Overexpression of D1 in juvenile males significantly facilitated extinction relative to juvenile male controls, whereas D1 prolonged expression of extinction in adults overexpressing D1 and adolescents who naturally have elevated D1 expression. These data suggest that an immature D1 profile in juveniles prevented the learning of new associations, and D1 overexpression may provide sufficient activity to facilitate extinction learning. D1 overexpression reduced reinstatement to a priming dose of cocaine in juvenile males. Together, these data show D1 expression may re-program motivational circuitry to facilitate extinction learning during juvenility that is normally unavailable to juveniles and that sex differences exist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Extinction and reinstatement to cocaine-associated cues in male and female juvenile rats and the role of D1 dopamine receptor

    Science.gov (United States)

    Brenhouse, Heather C.; Thompson, Britta S.; Sonntag, Kai C.; Andersen, Susan L.

    2015-01-01

    Extinction of behaviors in response to drug-associated cues and prevention of reinstatement are integral for addiction treatment, and can reverse or ameliorate the harmful consequences of drug use. The mechanisms controlling extinction and reinstatement involve prefrontal cortical dopamine receptors, which change in expression and activity during the juvenile and adolescent transitions until they mature in adulthood. Little is known about the role that PFC D1 dopamine receptors play in extinction of drug-paired associations early in life. We used extinction of place preferences for cocaine in juvenile male and female rats following genetic, cell-specific overexpression of D1 on glutamatergic cells in the PFC. All subjects needed to demonstrate cocaine preferences for inclusion in the extinction studies. Here, male juveniles with a preference to 10 mg/kg cocaine took longer to extinguish preferences compared to both male adults and female juveniles. Female juveniles extinguished more rapidly than male juveniles at 20 mg/kg cocaine. Overexpression of D1 in juvenile males significantly facilitated extinction relative to juvenile male controls, whereas D1 prolonged expression of extinction in adults overexpressing D1 and adolescents who naturally have elevated D1 expression. These data suggest that an immature D1 profile in juveniles prevented the learning of new associations, and D1 overexpression may provide sufficient activity to facilitate extinction learning. D1 overexpression reduced reinstatement to a priming dose of cocaine in juvenile males. Together, these data show D1 expression may re-program motivational circuitry to facilitate extinction learning during juvenility that is normally unavailable to juveniles and that sex differences exist. PMID:25749358

  5. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  6. Prefrontal Dopamine D1 Receptors and Working Memory in Schizotypal Personality Disorder: A PET Study with [11C]NNC112

    Science.gov (United States)

    Thompson, Judy L.; Rosell, Daniel R.; Slifstein, Mark; Girgis, Ragy R.; Xu, Xiaoyan; Ehrlich, Yosefa; Kegeles, Lawrence S.; Hazlett, Erin A.; Abi-Dargham, Anissa; Siever, Larry J.

    2014-01-01

    Rationale Schizotypal personality disorder (SPD) is associated with working memory (WM) impairments that are similar to those observed in schizophrenia. Imaging studies have suggested that schizophrenia is associated with alterations in dopamine D1-receptor availability in the prefrontal cortex (PFC) that may be related to the WM impairments that characterize this disorder. Objectives To characterize prefrontal D1-receptor availability and its relation to WM performance in SPD. Methods We used positron emission tomography (PET) and the radiotracer [11C]NNC112 with 18 unmedicated SPD and 21 healthy-control participants; as an index of D1-receptor availability, binding-potential (BP) measures (BPF, BPND, and BPP) were calculated for prefrontal and striatal subregions. To assess WM, SPD participants completed the 2-back and Paced Auditory Serial Addition Test (PASAT). Results There were no significant group differences in PFC BP. BPF and BPP in the medial PFC were significantly negatively related to PASAT performance (rs=-0.551, p=.022 and rs=-0.488, p=.047, respectively), but BP was not related to 2-back performance. Conclusions In contrast to what has been found in schizophrenia, SPD was not associated with significant prefrontal D1-receptor alterations. Similar to previous schizophrenia findings, however, higher prefrontal D1-receptor availability was associated with poorer WM performance (as measured by the PASAT) in SPD. These findings suggest that schizophrenia and SPD may share a common pathophysiological feature related to prefrontal dopamine functioning that contributes to WM dysfunction, but that in SPD, alterations in D1 may occur only in a subset of individuals and/or to an extent that is minor relative to what occurs in schizophrenia. PMID:24781514

  7. Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-07-01

    Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.

  8. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  9. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model : Dis Model Mech

    NARCIS (Netherlands)

    Homberg, J. R.; Olivier, J. D.; VandenBroeke, M.; Youn, J.; Ellenbroek, A. K.; Karel, P.; Shan, L.; van Boxtel, R.; Ooms, S.; Balemans, M.; Langedijk, J.; Muller, M.; Vriend, G.; Cools, A. R.; Cuppen, E.; Ellenbroek, B. A.

    2016-01-01

    Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1

  10. Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Xu, Cang-Bao

    2003-01-01

    experimental SAH. METHODS: Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive...... RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed. CONCLUSIONS: Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH...... to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm....

  11. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2.

    Directory of Open Access Journals (Sweden)

    Melissa L Perreault

    Full Text Available In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs coexpress D1 and D2 receptors (D1R and D2R along with the neuropeptides dynorphin (DYN and enkephalin (ENK. These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc, ventral tegmental area (VTA, caudate putamen and substantia nigra (SN. Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.

  12. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  13. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  14. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  15. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    Science.gov (United States)

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  16. Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Ansar, Saema; Maddahi, Aida; Edvinsson, Lars

    2011-01-01

    of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide...

  17. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus.

    Science.gov (United States)

    Shafiei, Iman; Vatankhah, Mahsaneh; Zarepour, Leila; Ezzatpanah, Somayeh; Haghparast, Abbas

    2018-05-01

    The role of dopaminergic system in modulation of formalin-induced orofacial nociception has been established. The present study aims to investigate the role of dopaminergic receptors in the nucleus accumbens (NAc) in modulation of nociceptive responses induced by formalin injection in the orofacial region. One hundred and six male Wistar rats were unilaterally implanted with two cannulae into the lateral hypothalamus (LH) and NAc. Intra-LH microinjection of carbachol, a cholinergic receptor agonist, was done 5min after intra-accumbal administration of different doses of SCH23390 (D1-like receptor antagonist) or sulpiride (D2-like receptor antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the orofacial pain. Carbachol alone dose-dependently reduced both phases of the formalin-induced orofacial pain. Intra-accumbal administration of SCH23390 (0.25, 1 and 4μg/0.5μl saline) or sulpiride (0.25, 1 and 4μg/0.5μl DMSO) before LH stimulation by carbachol (250nM/0.5μl saline) antagonized the antinociceptive responses during both phases of orofacial formalin test. The effects of D1- and D2-like receptor antagonism on the LH stimulation-induced antinociception were almost similar during the early phase. However, compared to D1-like receptor antagonism, D2-like receptor antagonism was a little more effective but not significant, at blocking the LH stimulation-induced antinociception during the late phase of formalin test. The findings revealed that there is a direct or indirect neural pathway from the LH to the NAc which is at least partially contributed to the modulation of formalin-induced orofacial nociception through recruitment of both dopaminergic receptors in this region. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shuya; Baba, Kiwako; Makio, Akiko; Kumazoe, Motofumi; Huang, Yuhui; Lin, I-Chian; Bae, Jaehoon; Murata, Motoki; Yamada, Shuhei; Tachibana, Hirofumi, E-mail: tatibana@agr.kyushu-u.ac.jp

    2016-05-13

    Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein. - Highlights: • γ-T3 upregulated the expression of AhR in mouse melanoma. • Promotion of the binding activity of Sp1 is associated with the increasing effect of γ-T3 on AhR expression. • γ-T3 enhanced the anti-proliferative activity of baicalein that has an AhR ligand activity. • γ-T3 enhanced the inducing activity of baicalein on the expression of AhR target genes.

  19. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    International Nuclear Information System (INIS)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi; Tomaru, Yasuhisa; Koshikiya, Noboru; Nojima, Junya; Kokabu, Shoichiro; Sakata, Yasuaki; Kobayashi, Akio; Yoda, Tetsuya

    2008-01-01

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblastic cells

  20. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    Science.gov (United States)

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Upregulation of vascular endothelial growth factor receptor-1 contributes to sevoflurane preconditioning–mediated cardioprotection

    Directory of Open Access Journals (Sweden)

    Qian B

    2018-04-01

    Full Text Available Bin Qian,1 Yang Yang,2 Yusheng Yao,3 Yanling Liao,3 Ying Lin3 1Department of Anesthesiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; 2Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; 3Department of Anesthesiology, The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China Purpose: Sevoflurane preconditioning (SPC can provide myocardial protective effects similar to ischemic preconditioning. However, the exact mechanism of SPC remains unclear. Previous studies indicate that vascular endothelial growth factor receptor 1 (VEGFR-1 is involved in ischemic preconditioning-mediated cardioprotection. This study was designed to determine the significance of VEGFR-1 signaling in SPC-mediated cardioprotection.Materials and methods: Myocardial ischemia–reperfusion (I/R rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, after 15 min of baseline equilibration, the isolated hearts were pretreated with 2.5% sevoflurane, 2.5% sevoflurane+MF1 10 µmol/L, or 2.5% sevoflurane+placental growth factor 10 µmol/L, and then subjected to 30 min of global ischemia and 120 min of reperfusion. The changes in hemodynamic parameters, myocardial infarct size, and the levels of creatine kinase-MB, lactate dehydrogenase, cardiac troponin-I, tumor necrosis factor-α, and interleukin 6 in the myocardium were evaluated.Results: Compared to the I/R group, pretreatment with 2.5% sevoflurane significantly improved the cardiac function, limited myocardial infarct size, reduced cardiac enzyme release, upregulated VEGFR-1 expression, and decreased inflammation. In addition, the selective VEGFR-1 agonist, placental growth factor, did not enhance the cardioprotection and anti-inflammation effects of sevoflurane, while the specific VEGFR-1 inhibitor, MF1, completely reversed these effects

  2. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  3. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancer cells.

    Science.gov (United States)

    Kregel, Steven; Szmulewitz, Russell Z; Vander Griend, Donald J

    2014-11-01

    The Androgen Receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in all stages of prostate cancer progression, including progression to castration-resistance following androgen-deprivation therapy. Thus, identifying and targeting critical AR-regulated genes is one potential method to block castration-resistant cancer proliferation. Of particular importance are transcription factors that regulate stem cell pluripotency; many of these genes are emerging as critical oncogenes in numerous tumor cell types. Of these, Nanog has been previously shown to increase the self-renewal and stem-like properties of prostate cancer cells. Thus, we hypothesized that Nanog is a candidate AR target gene that may impart castration-resistance. We modulated AR signaling in LNCaP prostate cancer cells and assayed for Nanog expression. Direct AR binding to the NANOG promoter was tested using AR Chromatin Immunoprecipation (ChIP) and analyses of publically available AR ChIP-sequencing data-sets. Nanog over-expressing cells were analyzed for cell growth and cytotoxicity in response to the AR antagonist enzalutamide and the microtubule stabilizing agent docetaxel. AR signaling upregulates Nanog mRNA and protein. AR binds directly to the NANOG promoter, and was not identified within 75 kb of the NANOGP8 pseudogene, suggesting the NANOG gene locus was preferentially activated. Nanog overexpression in LNCaP cells increases overall growth, but does not increase resistance to enzalutamide or docetaxel. Nanog is a novel oncogenic AR target gene in prostate cancer cells, and stable expression of Nanog increases proliferation and growth of prostate cancer cells, but not resistance to enzalutamide or docetaxel. © 2014 Wiley Periodicals, Inc.

  4. Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test.

    Science.gov (United States)

    Nasehi, Mohammad; Piri, Morteza; Nouri, Maryam; Farzin, Davood; Nayer-Nouri, Touraj; Zarrindast, Mohammad Reza

    2010-05-25

    Ingestion of harmane and other alkaloids derived from plant Peganum harmala has been shown to elicit profound behavioural and toxic effects in humans, including hallucinations, excitation, feelings of elation, and euphoria. These alkaloids in the high doses can cause a toxic syndrome characterized by tremors and convulsions. Harmane has also been shown to act on a variety of receptor systems in the mammalian brain, including those for serotonin, dopamine and benzodiazepines. In animals, it has been reported to affect short and long term memory. In the present study, effects of dopamine D1 and D2 receptor antagonists on the harmane (HA)-induced amnesia and exploratory behaviors were examined in mice. One-trial step-down and hole-board paradigms were used for the assessment of memory retention and exploratory behaviors in adult male NMRI mice respectively. Intraperitoneal (i.p.) administration of HA (5 and 10 mg/kg) immediately after training decreased memory consolidation, while had no effect on anxiety-like behavior. Memory retrieval was not altered by 15- or 30 min pre-testing administration of the D1 (SCH23390, 0.025, 0.05 and 0.1 mg/kg) or D2 (sulpiride 12.5, 25 and 50 mg/kg) receptor antagonists, respectively. In contrast, SCH23390 (0.05 and 0.1 mg/kg) or sulpiride (25 and 50 mg/kg) pre-test administration fully reversed HA-induced impairment of memory consolidation. Finally, neither D1 nor D2 receptor blockade affected exploratory behaviors in the hole-board paradigm. Altogether, these findings strongly suggest an involvement of D1 and D2 receptors modulation in the HA-induced impairment of memory consolidation. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells

    International Nuclear Information System (INIS)

    Snyers, L.; De Wit, L.; Content, J.

    1990-01-01

    Interleukin 6 (IL-6) is a potent pleiotropic cytokine, known, among others, to stimulate immunoglobulin production by B cells and to trigger acute-phase protein synthesis by hepatocytes. Similar to IL-1, it is produced by monocytes and macrophages following an inflammatory challenge. Analysis of IL-6 receptor (IL-6R) expression on different human cell lines indicates that dexamethasone could up-regulate the number of IL-6R on one epithelial cell line (UAC) and on two hepatoma cell lines (HepG2 and Hep3B). This effect was confirmed by Scatchard analysis of binding experiments, using [ 35 S]methionine and [ 35 S]cysteine metabolically labeled IL-6. It was confirmed at the level of mRNA expression by Northern blot analysis. These results provide evidence for a link between IL-6 and glucocorticoids. They could represent an example of a system in which one role of glucocorticoids is to define more accurately the target of cytokines, and they could explain, at least partly, the frequently observed synergy between IL-6 and glucocorticoids, notably in the case of hepatocytes

  6. Fear Memory Recall Potentiates Opiate Reward Sensitivity through Dissociable Dopamine D1 vs. D4 Receptor-Dependent Memory Mechanisms in the Prefrontal Cortex.

    Science.gov (United States)

    Li, Jing Jing; Szkudlarek, Hanna; Renard, Justine; Hudson, Roger; Rushlow, Walter; Laviolette, Steven R

    2018-04-23

    Disturbances in prefrontal cortical (PFC) dopamine (DA) transmission are well-established features of psychiatric disorders involving pathological memory processing, such as post-traumatic stress disorder (PTSD) and opioid addiction. Transmission through PFC DA D4 receptors (D4R) has been shown to potentiate the emotional salience of normally non-salient emotional memories whereas transmission through PFC DA D1 receptors (D1R) has been demonstrated to selectively block recall of reward or aversion-related associative memories. In the present study, using a combination of fear conditioning and opiate reward conditioning in male rats, we examined the role of PFC D4/D1R signaling during the processing of fear-related memory acquisition and recall and subsequent sensitivity to opiate reward memory formation. We report that PFC D4R activation potentiates the salience of normally sub-threshold fear conditioning memory cues and simultaneously potentiates the rewarding effects of systemic or intra-ventral tegmental area (VTA) morphine conditioning cues. In contrast, blocking the recall of salient fear memories with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or intra-VTA morphine place preference. These effects were dependent upon dissociable PFC phosphorylation states involving calcium-calmodulin-kinase II (CaMKII-α) or extracellular-signal-related-kinase 1-2 (ERK 1/2), following intra-PFC D4 or D1R activation, respectively. Together, these findings reveal new insights into how aberrant PFC DAergic transmission and associated downstream molecular signaling pathways may modulate fear-related emotional memory processing and concomitantly increase opioid addiction vulnerability. Significance Statement: Post-traumatic stress disorder is highly comorbid with addiction. In this study, we use a translational model of fear memory conditioning to examine how transmission through dopamine D1 or D4 receptors, in the prefrontal cortex

  7. T156. IN VIVO CHARACTERIZATION OF THE FIRST AGONIST DOPAMINE D1 RECEPTORS PET IMAGING TRACER [18F]MNI-968 IN HUMAN

    Science.gov (United States)

    Tamagnan, Gilles; Barret, Olivier; Alagille, David; Carroll, Vincent; Madonia, Jennifer; Constantinescu, Cristian; SanDiego, Christine; Papin, Caroline; Morley, Thomas; Russell, David; McCarthy, Timothy; Zhang, Lei; Gray, David; Villalobos, Anna; Lee, Chewah; Chen, Jianqing; Seibyl, John; Marek, Kenneth

    2018-01-01

    Abstract Background D1 receptors, which couple to inhibitory G-proteins, have been shown to regulate neuronal growth and development, mediate some behavioral responses. Its function has been shown to be altered in both neurologic and psychiatric disorders. To date, there is a lack of agonist PET tracers for the D1 receptors labeled with 18F with relevance in clinical studies. We report the evaluation in non-human primates of [18F]MNI-968 (PF-06730110), a novel PET radiotracer of the D1 receptors Methods Four brain PET studies, 2 baselines and 2 blockade studies using PF-2562, a D1 partial agonist compound, were conducted for 90 min in two rhesus monkeys with [18F]MNI-968 (169 ± 31 MBq). [18F]PF-06730110 was administered at the same dose level for both monkeys as a bolus followed by a 2-hour infusion, with [18F]MNI-968 administered 30 min into the infusion. Additionally, six brain PET studies were conducted over 180 min (317 ± 49 MBq) in 6 healthy human volunteers (3 test/retest and 3 test). PET data were modeled with 2-tissue compartmental model (2T), Logan graphical analysis (LGA), and non-invasive Logan graphical analysis (NI-LGA) with cerebellar cortex as reference region to estimate total distribution volume VT, and binding potential BPND. For the blockade studies in rhesus monkeys, occupancy was estimated from BPND at baseline and post blockade. Results In rhesus monkeys, [18F]MNI-968 (PF-06730110), penetrated the brain with a peak whole-brain uptake up to ~3% of the injected dose at ~ 6 min post injection and showed a fast washout. The highest signal was found in the caudate, putamen, with moderate extrastriatal uptake. The lowest signal was in the cerebellum. BPND values were up to ~1.4 in the putamen. All three quantification methods (2T, LGA and NI-LGA) were in excellent agreement, with a similar estimated D1 receptors occupancy of PF-06730110 of ~40% for both monkeys in the caudate and putamen. In human, [18F]MNI-968 kinetics appeared to be faster

  8. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  9. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  10. The effect of a full agonist/antagonist of the D1 receptor on locomotor activity sensorimotor gating and cognitive function in dizocilpine-treated rats

    Czech Academy of Sciences Publication Activity Database

    Bubeníková-Valešová, V.; Svoboda, Jan; Horáček, J.; Valeš, Karel

    2009-01-01

    Roč. 12, č. 7 (2009), s. 873-883 ISSN 1461-1457 R&D Projects: GA MŠk(CZ) 1M0517; GA ČR(CZ) GA309/07/0341; GA MZd(CZ) NR9178 Institutional research plan: CEZ:AV0Z50110509 Keywords : animal model * cognitive function * D1 receptor Subject RIV: FH - Neurology Impact factor: 4.874, year: 2009

  11. Chronic restraint stress causes a delayed increase in responding for palatable food cues during forced abstinence via a dopamine D1-like receptor-mediated mechanism.

    Science.gov (United States)

    Ball, Kevin T; Best, Olivia; Luo, Jonathan; Miller, Leah R

    2017-02-15

    Relapse to unhealthy eating habits in dieters is often triggered by stress. Animal models, moreover, have confirmed a causal role for acute stress in relapse. The role of chronic stress in relapse vulnerability, however, has received relatively little attention. Therefore, in the present study, we used an abstinence-based relapse model in rats to test the hypothesis that exposure to chronic stress increases subsequent relapse vulnerability. Rats were trained to press a lever for highly palatable food reinforcers in daily 3-h sessions and then tested for food seeking (i.e., responding for food associated cues) both before and after an acute or chronic restraint stress procedure (3h/day×1day or 10days, respectively) or control procedure (unstressed). The second food seeking test was conducted either 1day or 7days after the last restraint. Because chronic stress causes dopamine D1-like receptor-mediated alterations in prefrontal cortex (a relapse node), we also assessed dopaminergic involvement by administering either SCH-23390 (10.0μg/kg; i.p.), a dopamine D1-like receptor antagonist, or vehicle prior to daily treatments. Results showed that chronically, but not acutely, stressed rats displayed increased food seeking 7days, but not 1day, after the last restraint. Importantly, SCH-23390 combined with chronic stress reversed this effect. These results suggest that drugs targeting D 1 -like receptors during chronic stress may help to prevent future relapse in dieters. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nucleus Accumbens Dopamine D1-Receptor-Expressing Neurons Control the Acquisition of Sign-Tracking to Conditioned Cues in Mice

    Directory of Open Access Journals (Sweden)

    Tom Macpherson

    2018-06-01

    Full Text Available Following repeated pairings, the reinforcing and motivational properties (incentive salience of a reward can be transferred onto an environmental stimulus which can then elicit conditioned responses, including Pavlovian approach behavior to the stimulus (a sign-tracking response. In rodents, acquisition of sign-tracking in autoshaping paradigms is sensitive to lesions and dopamine D1 receptor antagonism of the nucleus accumbens (NAc of the ventral striatum. However, currently, the possible roles of dorsal striatal subregions, as well as of the two major striatal neuron types, dopamine D1-/D2-expressing medium spiny neurons (MSNs, in controlling the development of conditioned responses is still unclear and warrants further study. Here, for the first time, we used a transgenic mouse line combined with striatal subregion-specific AAV virus injections to separately express tetanus toxin in D1-/D2- MSNs in the NAc, dorsomedial striatum, and dorsolateral striatum, to permanently block neurotransmission in these neurons during acquisition of an autoshaping task. Neurotransmission blocking of NAc D1-MSNs inhibited the acquisition of sign-tracking responses when the initial conditioned response for each conditioned stimulus presentation was examined, confirming our initial hypothesis. These findings suggest that activity in NAc D1-MSNs contributes to the attribution of incentive salience to conditioned stimuli.

  13. Dopamine D1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio

    2018-01-15

    The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (Pmotor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (Pmotor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. D1 receptors in the nucleus accumbens-shell, but not the core, are involved in mediating ethanol-seeking behavior of alcohol-preferring (P) rats.

    Science.gov (United States)

    Hauser, S R; Deehan, G A; Dhaher, R; Knight, C P; Wilden, J A; McBride, W J; Rodd, Z A

    2015-06-04

    Clinical and preclinical research suggest that activation of the mesolimbic dopamine (DA) system is involved in mediating the rewarding actions of drugs of abuse, as well as promoting drug-seeking behavior. Inhibition of DA D1 receptors in the nucleus accumbens (Acb) can reduce ethanol (EtOH)-seeking behavior of non-selective rats triggered by environmental context. However, to date, there has been no research on the effects of D1 receptor agents on EtOH- seeking behavior of high alcohol-preferring (P) rats following prolonged abstinence. The objective of the present study was to examine the effects of microinjecting the D1 antagonist SCH 23390 or the D1 agonist A-77636 into the Acb shell or Acb core on spontaneous recovery of EtOH-seeking behavior. After 10 weeks of concurrent access to EtOH and water, P rats underwent seven extinction sessions (EtOH and water withheld), followed by 2 weeks in their home cages without access to EtOH or operant sessions. In the 2nd week of the home cage phase, rats were bilaterally implanted with guide cannula aimed at the Acb shell or Acb core; rats were allowed 7d ays to recover before EtOH-seeking was assessed by the Pavlovian Spontaneous Recovery (PSR) model. Administration of SCH23390 (1μg/side) into the Acb shell inhibited responding on the EtOH lever, whereas administration of A-77636 (0.125μg/side) increased responding on the EtOH lever. Microinfusion of D1 receptor agents into the Acb core did not alter responding on the EtOH lever. Responses on the water lever were not altered by any of the treatments. The results suggest that activation of D1 receptors within the Acb shell, but not Acb core, are involved in mediating PSR of EtOH-seeking behavior of P rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    International Nuclear Information System (INIS)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-01-01

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  16. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells

    Science.gov (United States)

    Bansal, Nitu; Mishra, Prasun J.; Stein, Mark; DiPaola, Robert S.; Bertino, Joseph R.

    2015-01-01

    Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl. PMID:26036314

  17. Regulation of 1,25-dihydroxyvitamin D, receptors by [3H]-1,25-dihydroxyvitamin D3 in cultured cells (T-47D): evidence for receptor upregulation

    International Nuclear Information System (INIS)

    Reinhardt, T.A.; Horst, R.L.

    1986-01-01

    The authors examined the effect of 1,25-(OH) 2 D 3 on receptor concentration in cultured cells (T-47D). Two days prior to experiment, cells were fed with RPMI 1640 + 10% serum and 24-32 hours prior to experiment the media was replaced with RPMI 1640 + 25 mM Hepes + 1% serum. [ 3 H]-1,25-(OH) 2 D 3 +/- 100-fold molar excess cold hormone was used to treat the cells. Occupied receptors were measured in freshly prepared cytosols. Total receptors were measured following a 16-hour incubation of cytosols in the presence of 0.6 nM [ 3 H]-1,25-(OH) 2 D 3 +/- 100-fold molar excess of cold hormone at 4 0 C. Treatment of cell cultures for 16-18 hours with 0.5-1.0 nM [ 3 H]-1,25-(OH) 2 D 3 resulted in a 30-40% receptor occupancy by the hormone and a 2- to 3-fold increase in total cell receptor as compared to vehicle-treated controls. Time course studies showed a rapid increase in total receptors up to 16 hours post-treatment in the face of declining receptor occupancy. Actinomycin D blocked the [ 3 H]-1,25-(OH) 2 D 3 -dependent rise in cell receptor. The physiological significance of this receptor upregulation is not known nor is it known whether upregulation results from synthesis of new receptors and/or is the result of the activation of preformed receptors by a inducible activator protein

  18. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei

    2017-05-02

    Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.

  19. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis.

    Science.gov (United States)

    Belda, Xavier; Armario, Antonio

    2009-10-01

    Whereas the role of most biogenic amines in the control of the hypothalamus-pituitary-adrenal (HPA) response to stress has been extensively studied, the role of dopamine has not. We studied the effect of different dopamine receptor antagonists on HPA response to a severe stressor (immobilization, IMO) in adult male Sprague-Dawley rats. Haloperidol administration reduced adrenocorticotropin hormone and corticosterone responses to acute IMO, particularly during the post-IMO period. This effect cannot be explained by a role of dopamine to maintain a sustained activation of the HPA axis as haloperidol did not modify the response to prolonged (up to 6 h) IMO. Administration of more selective D1 and D2 receptor antagonists (SCH23390 and eticlopride, respectively) also resulted in lower and/or shorter lasting HPA response to IMO. Dopamine, acting through both D1 and D2 receptors, exerts a stimulatory role on the activation of the HPA axis in response to a severe stressor. The finding that dopamine is involved in the maintenance of post-stress activation of the HPA axis is potentially important because the actual pathological impact of HPA activation is likely to be related to the area under the curve of plasma glucocorticoid levels, which is critically dependent on how long after stress high levels of glucocorticoid are maintained.

  20. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    Science.gov (United States)

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. S36. DIFFERENTIAL ENCODING OF SENSITIZATION AND CROSS SENSITIZATION TO PSYCHOSTIMULANTS AND ANTIPSYCHOTICS IN NUCLEUS ACCUMBENS D1- AND D2- RECEPTOR EXPRESSING MEDIUM SPINY NEURONS

    Science.gov (United States)

    Amato, Davide; Heinsbroek, Jasper; Kalivas, Peter W

    2018-01-01

    Abstract Background Nearly half of all individuals diagnosed with schizophrenia abuse addictive substances such as cocaine. Currently, the neurobiological mechanisms in patients with schizophrenia that lead to cocaine abuse are unknown. A possible explanation for the co-morbidity between schizophrenia and addiction is that the rewarding properties of cocaine reverse the diminished motivational drive caused by chronic antipsychotic regimen. Moreover, chronic antipsychotic treatment can sensitize and amplify cocaine rewarding effects and exacerbate psychoses. Methods The rewarding properties of cocaine are attributed to the differential effects of dopamine on D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc). Using in vivo Ca2+ miniature microscopic imaging, we characterize the role of D1 and D2 MSN in mono- and a cross- sensitization paradigms. D1- and D2-Cre mice were injected with a Cre dependent calcium indicator (gCaMP6f) and implanted with a gradient index (GRIN) lens above the nucleus accumbens and calcium activity was recorded using a head mounted miniature microscope. Cocaine sensitization was measured after a classic repeated cocaine regiment and antipsychotic and psychostimulant cross-sensitization was measured by a single cocaine injection after chronic pre-treatment with haloperidol. Results We found that both D1-MSN and D2-MSN populations are modulated by initial cocaine experience and further modulated during the expression of cocaine sensitization. A subpopulation of D1-MSN displayed initial activation, but reduced activity during the expression of sensitization. By contrast, the majority of D2-MSNs were suppressed by initial cocaine experience, but became active during the expression of sensitization. Furthermore, activity of D1- and D2-MSNs bidirectionally related with the observed behavioral responses to cocaine. Cross-sensitization following haloperidol treatment led to increased behavioral responses to

  2. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    Science.gov (United States)

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  3. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    DEFF Research Database (Denmark)

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard

    2014-01-01

    BACKGROUND: Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB...... and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed...... neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby...

  4. [Knockdown of dopamine receptor D2 upregulates the expression of adiogenic genes in mouse primary mesencephalic neurons].

    Science.gov (United States)

    Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi

    2018-01-01

    Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.

  5. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs.

    Science.gov (United States)

    Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio

    2018-01-22

    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

  6. Secondhand cigarette smoke exposure causes upregulation of cerebrovascular 5-HT(1) (B) receptors via the Raf/ERK/MAPK pathway in rats

    DEFF Research Database (Denmark)

    Cao, L; Xu, C B; Zhang, Y

    2013-01-01

    Cigarette smoke exposure increases the risk of stroke. Upregulation of 5-hydroxytryptamine 1B (5-HT(1) (B) ) receptors is associated with the pathogenesis of cerebral ischaemia. This study examined the hypothesis that the expression of 5-HT(1) (B) receptors is altered in brain vessels after secon...... secondhand smoke (SHS) exposure.......Cigarette smoke exposure increases the risk of stroke. Upregulation of 5-hydroxytryptamine 1B (5-HT(1) (B) ) receptors is associated with the pathogenesis of cerebral ischaemia. This study examined the hypothesis that the expression of 5-HT(1) (B) receptors is altered in brain vessels after...

  7. A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1-like dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Jason M Meyer

    2012-01-01

    Full Text Available BACKGROUND: Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. METHODOLOGY/PRINCIPAL FINDINGS: We describe a "genome-to-lead" approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2 from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D(1-like (Gα(s-coupled receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC(50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM. Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC(50 = 5.8±1.5 nM and norepinephrine (EC(50 = 760±180 nM, while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as "hits," and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D(1 dopamine receptor (hD(1 revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2

  8. Extracellular dopamine, acetylcholine, and activation of dopamine D1 and D2 receptors after selective breeding for cocaine self-administration in rats.

    Science.gov (United States)

    Xu, Haiyang; Das, Sasmita; Sturgill, Marc; Hodgkinson, Colin; Yuan, Qiaoping; Goldman, David; Grasing, Kenneth

    2017-08-01

    The low self-administration (LS)/Kgras (LS) and high self-administration (HS)/Kgras (HS) rat lines were generated by selective breeding for low- and high-intravenous cocaine self-administration, respectively, from a common outbred Wistar stock (Crl:WI). This trait has remained stable after 13 generations of breeding. The objective of the present study is to compare cocaine preference, neurotransmitter release, and dopamine receptor activation in LS and HS rats. Levels of dopamine, acetylcholine, and cocaine were measured in the nucleus accumbens (NA) shell of HS and LS rats by tandem mass spectrometry of microdialysates. Cocaine-induced locomotor activity and conditioned-place preference were compared between LS and HS rats. HS rats displayed greater conditioned-place preference scores compared to LS and reduced basal extracellular concentrations of dopamine and acetylcholine. However, patterns of neurotransmitter release did not differ between strains. Low-dose cocaine increased locomotor activity in LS rats, but not in HS animals, while high-dose cocaine augmented activity only in HS rats. Either dose of cocaine increased immunoreactivity for c-Fos in the NA shell of both strains, with greater elevations observed in HS rats. Activation identified by cells expressing both c-Fos and dopamine receptors was generally greater in the HS strain, with a similar pattern for both D1 and D2 dopamine receptors. Diminished levels of dopamine and acetylcholine in the NA shell, with enhanced cocaine-induced expression of D1 and D2 receptors, are associated with greater rewarding effects of cocaine in HS rats and an altered dose-effect relationship for cocaine-induced locomotor activity.

  9. D1- and D2-like dopamine receptors within the nucleus accumbens contribute to stress-induced analgesia in formalin-related pain behaviours in rats.

    Science.gov (United States)

    Faramarzi, G; Zendehdel, M; Haghparast, A

    2016-10-01

    Stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). Meanwhile, it has been widely established that the mesolimbic dopamine pathway and nucleus accumbens (NAc) have a profound role in pain modulation. In this study, we examined the role of accumbal dopamine receptors in antinociception caused by forced swim stress (FSS) in order to understand more about the function of these receptors within the NAc in FSS-induced analgesia. Stereotaxic surgery was unilaterally performed on adult male Wistar rats weighing 230-250 g (some on the left and some on the right side of the midline). Two supergroups were microinjected into the NAc with a D1-like dopamine receptor antagonist, SCH-23390, at doses of 0.25, 1 and 4 μg/0.5 μl saline per rat or Sulpiride as a D2-like dopamine receptor antagonist at the same doses [0.25, 1 and 4 μg/0.5 μl dimethyl sulfoxide (DMSO) per rat]; while their controls just received intra-accumbal saline or DMSO at 0.5 μl, respectively. The formalin test was performed after rats were subjected to FSS (6 min, 25 ± 1 °C) to assess pain-related behaviours. The results demonstrated that intra-accumbal infusions of SCH-23390 and Sulpiride dose-dependently reduced FSS-induced antinociception in both phases of the formalin test. However, the percentage decrease in area under the curve (AUC) values calculated for treatment groups compared to formalin-control group was more significant in the late phase than the early phase. Our findings suggest that D1- and D2-like dopamine receptors in the NAc are involved in stress-induced antinociceptive behaviours in the formalin test as an animal model of persistent inflammatory pain. Forced swim stress (FSS) induces the antinociception in both phases of formalin test. Blockade of accumbal dopamine receptors attenuate the antinociception induced by FSS. Stress-induced analgesia is dose-dependently reduced by dopamine receptor antagonists in both phases, although it is more

  10. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    Directory of Open Access Journals (Sweden)

    Sachiko Hirai

    Full Text Available Up-regulated sirtuin 1 (SIRT1, an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53. Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5. In the KatoIII cell line (TP53-null, DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  11. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Sang Doo; Baek, Suk-Hwan; Choi, Joon Hyuk; Cho, Kyung-Hyun; Zabel, Brian A.; Bae, Yoe-Sik

    2013-01-01

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis

  12. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  13. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  14. Selective up-regulation of NMDA-NR1 receptor expression in myenteric plexus after TNBS induced colitis in rats

    Directory of Open Access Journals (Sweden)

    Price Donald D

    2006-01-01

    Full Text Available Abstract Background N-methyl-D-aspartic acid (NMDA spinal cord receptors play an important role in the development of hyperalgesia following inflammation. It is unclear, however, if changes in NMDA subunit receptor gene expression in the colonic myenteric plexus are associated with colonic inflammation. We investigated regulation of NMDA-NR1 receptor gene expression in TNBS induced colitis in rats. Male Sprague-Dawley rats (150 g–250 g were treated with 20 mg trinitrobenzene sulfonic acid (TNBS diluted in 50% ethanol. The agents were delivered with a 24 gauge catheter inserted into the lumen of the colon. The animals were sacrificed at 2, 7, 14, 21, and 28 days after induction of the colitis, their descending colon was retrieved for reverse transcription-polymerase chain reaction; a subset of animals' distal colon was used for two-dimensional (2-D western analysis and immunocytochemistry. Results NR1-exon 5 (N1 and NR1-exon 21 (C1 appeared 14, 21 and 28 days after TNBS treatment. NR1 pan mRNA was up-regulated at 14, 21, and 28 days. The NR1-exon 22 (C2 mRNA did not show significant changes. Using 2-D western analysis, untreated control rats were found to express only NR1001 whereas TNBS treated rats expressed NR1001, NR1011, and NR1111. Immunocytochemistry demonstrated NR1-N1 and NR1-C1 to be present in the myenteric plexus of TNBS treated rats. Conclusion These results suggest a role for colonic myenteric plexus NMDA receptors in the development of neuronal plasticity and visceral hypersensitivity in the colon. Up-regulation of NMDA receptor subunits may reflect part of the basis for chronic visceral hypersensitivity in conditions such as post-infectious irritable bowel syndrome.

  15. Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats.

    Science.gov (United States)

    Dela Cruz, J A D; Coke, T; Icaza-Cukali, D; Khalifa, N; Bodnar, R J

    2014-10-01

    Animals learn to prefer flavors associated with the intake of sugar (sucrose, fructose, glucose) and fat (corn oil: CO) solutions. Conditioned flavor preferences (CFP) have been elicited for sugars based on orosensory (flavor-flavor: e.g., fructose-CFP) and post-ingestive (flavor-nutrient: e.g., intragastric (IG) glucose-CFP) processes. Dopamine (DA) D1, DA D2 and NMDA receptor antagonism differentially eliminate the acquisition and expression of fructose-CFP and IG glucose-CFP. However, pharmacological analysis of fat (CO)-CFP, mediated by both flavor-flavor and flavor-nutrient processes, indicated that acquisition and expression of fat-CFP were minimally affected by systemic DA D1 and D2 antagonists, and were reduced by NMDA antagonism. Therefore, the present study examined whether systemic DA D1 (SCH23390), DA D2 (raclopride) or NMDA (MK-801) receptor antagonists altered acquisition and/or expression of CFP induced by oral glucose that should be mediated by both flavor-flavor and flavor-nutrient processes. Oral glucose-CFP was elicited following by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in 8% glucose and another flavor (CS-, e.g., grape) mixed in 2% glucose. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 2% glucose occurred 0.5 h after systemic administration of vehicle (VEH), SCH23390 (50-800 nmol/kg), raclopride (50-800 nmol/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (94-95%) which was significantly though marginally attenuated by SCH23390 (67-70%), raclopride (77%) or MK-801 (70%) at doses that also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH, SCH23390 (50-400 nmol/kg), raclopride (50-400 nmol/kg) or MK-801 (100 μg/kg) 0.5 h prior to ten 1-bottle training trials with CS+/8%G and CS-/2%G training solutions that was

  16. Comparison of MEK/ERK pathway inhibitors on the upregulation of vascular G-protein coupled receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Ansar, Saema; Edvinsson, Lars

    2010-01-01

    on translational level and increased respective contractions. The prostanoid TP receptor mediated contraction curve was left-wards shifted by organ culture. Organ culture was associated with elevated pERK1/2 in the vascular smooth muscle cells: the MEK1/2 inhibitor U0126 attenuated the endothelin ET(B) receptor......Organ culture is an in vitro method for investigating cellular mechanisms involved in upregulation of vasocontractile G-protein coupled receptors. We hypothesize that mitogen-activated-protein kinase (MEK) and/or extracellular-signal-regulated kinase (ERK) specific inhibitors will attenuate the G......), prostanoid TP receptor, and angiotensin II receptor type 1 and type 2 were investigated. Results were verified by measurement of mRNA with real time PCR and by protein immunohistochemistry. Organ culture induced transcriptional upregulation of endothelin ET(B) receptor and of serotonin 5-HT(1B) receptor...

  17. Protein kinase activity associated with Fcγ/sub 2a/ receptor of a murine macrophage like cell line, P388D1

    International Nuclear Information System (INIS)

    Hirata, Y.; Suzuki, T.

    1987-01-01

    The properties of protein kinase activity associated with Fc receptor specific for IgG/sub 2a/(Fcγ/sub 2a/R) of a murine macrophage like cell line, P388D 1 , were investigated. IgG/sub 2a/-binding protein isolated from the detergent lysate of P388D 1 cells by affinity chromatography of IgG-Sepharose was found to contain four distinct proteins of M/sub r/ 50,000, 43,000, 37,000, and 17,000, which could be autophosphorylated upon incubation with [γ- 32 P]ATP. The autophosphorylation of Fcγ/sub 2a/ receptor complex ceased when exogenous phosphate acceptors (casein or histone) were added in the reaction mixture. Phosphorylation of casein catalyzed by Fcγ/sub 2a/ receptor complex was dependent on casein concentration, increased with time or temperature, was dependent on the concentration of ATP and Mg 2+ , and was maximum at pH near 8. Casein phosphorylation was significantly inhibited by a high concentration of Mn 2+ or KCl or by a small amount of heparin and was enhanced about 2-fold by protamine. Casein kinase activity associated with Fcγ/sub 2a/ receptor used ATP as substrate with an apparent K/sub m/ of 2 μM as well as GTP with an apparent K/sub m/ of 10 μM. Prior heating (60 0 C for 15 min) or treatment with protease (trypsin or Pronase) of Fcγ/sub 2a/ receptor complex almost totally abolished casein kinase activity. Thin-layer chromatography of a partial acid hydrolysate of the phosphorylated casein showed that the site of phosphorylation is at a seryl residue. These results suggest that Fcγ 2 /sub a/ receptor forms a molecule complex with protein kinase, whose characteristics resemble those of type II casein kinase but are different from those of cyclic nucleotide dependent protein kinase or from those of C protein kinase

  18. Comparison of MEK/ERK pathway inhibitors on the upregulation of vascular G-protein coupled receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Ansar, Saema; Edvinsson, Lars

    2010-01-01

    on translational level and increased respective contractions. The prostanoid TP receptor mediated contraction curve was left-wards shifted by organ culture. Organ culture was associated with elevated pERK1/2 in the vascular smooth muscle cells: the MEK1/2 inhibitor U0126 attenuated the endothelin ET(B) receptor...... mediated contraction at post-translational level or by changing the receptor affinities. The serotonin 5-HT(1B) receptor and prostanoid TP receptor mediated contractions were abolished by U0126. Administration of U0126 6h after start of incubation blocked the receptor upregulation. In conclusion, MEK...

  19. Dopamine D1 receptor agonist treatment attenuates extinction of morphine conditioned place preference while increasing dendritic complexity in the nucleus accumbens core.

    Science.gov (United States)

    Kobrin, Kendra L; Arena, Danielle T; Heinrichs, Stephen C; Nguyen, Olivia H; Kaplan, Gary B

    2017-03-30

    The dopamine D1 receptor (D1R) has a role in opioid reward and conditioned place preference (CPP), but its role in CPP extinction is undetermined. We examined the effect of D1R agonist SKF81297 on the extinction of opioid CPP and associated dendritic morphology in the nucleus accumbens (NAc), a region involved with reward integration and its extinction. During the acquisition of morphine CPP, mice received morphine and saline on alternate days; injections were given immediately before each of eight daily conditioning sessions. Mice subsequently underwent six days of extinction training designed to diminish the previously learned association. Mice were treated with either 0.5mg/kg SKF81297, 0.8mg/kg SKF81297, or saline immediately after each extinction session. There was a dose-dependent effect, with the highest dose of SKF81297 attenuating extinction, as mice treated with this dose had significantly higher CPP scores than controls. Analysis of medium spiny neuron morphology revealed that in the NAc core, but not in the shell, dendritic arbors were significantly more complex in the morphine conditioned, SKF81297-treated mice compared to controls. In separate experiments using mice conditioned with only saline, SKF81297 administration after extinction sessions had no effect on CPP and produced differing effects on dendritic morphology. At the doses used in our experiments, SKF81297 appears to maintain previously learned opioid conditioned behavior, even in the face of new information. The D1R agonist's differential, rather than unidirectional, effects on dendritic morphology in the NAc core suggests that it may be involved in encoding reward information depending on previously learned behavior. Published by Elsevier B.V.

  20. The effect of modafinil on the rat dopamine transporter and dopamine receptors D1-D3 paralleling cognitive enhancement in the radial arm maze

    Directory of Open Access Journals (Sweden)

    Yasemin eKarabacak

    2015-08-01

    Full Text Available A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT and norepinephrine (NET by modafinil was tested. 60 male Sprague Dawley rats were divided into six groups (modafinil-treated 1-5-10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days and tested in a radial arm maze (RAM, a paradigm for testing spatial WM. Hippocampi were taken six hours following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC and complexes containing the D1-3 dopamine receptor subunits (D1-D3-CC were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50=11.11; SERT 1547; NET 182. From day 8 (day 9 for 1 mg/kg body weight modafinil was decreasing WM errors in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1-D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1-3-CC is proposed as a possible mechanism of action.

  1. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca(superscript)2+]subscript)i Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-09-14

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca{sup 2+}]{sub i} ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca{sup 2+}]{sub i} in D1R-expressing neurons (10.6 {+-} 3.2%) in striatum within 8.3 {+-} 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca{sup 2+}]{sub i} increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca{sup 2+}]{sub i} in D2R-expressing neurons (10.4 {+-} 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca{sup 2+}]{sub i} decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  2. Differences in the time course of haloperidol-induced up-regulation of rat striatal and mesolimbic dopamine receptors

    International Nuclear Information System (INIS)

    Prosser, E.S.; Csernansky, J.G.; Hollister, L.E.

    1988-01-01

    Regional differences in the onset and persistence of increased dopamine D2 receptor density in rat brain were studied following daily injections of haloperidol for 3, 7, 14, or 28 days. Striatal [ 3 H]-spiroperidol Bmax values were significantly increased following 3 - 28 days of haloperidol treatment, as compared to saline controls. Olfactory tubercle Bmax values were significantly increased only after 14 or 28 days of haloperidol treatment. Nucleus accumbens Bmax values were significantly increased only in the 14-day drug treatment group, suggesting that dopamine D2 receptor up-regulation in nucleus accumbens may reverse during ongoing neuroleptic treatment. These findings suggest that important differences in adaptive responses to chronic dopamine blockade may exist between dopaminergic synapses located in various rat brain regions

  3. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    Science.gov (United States)

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor.

    Science.gov (United States)

    Kim, So Young; Choi, Yong Jun; Joung, Sun Myung; Lee, Byung Ho; Jung, Yi-Sook; Lee, Joo Young

    2010-04-01

    Toll-like receptors (TLRs) are germline-encoded innate immune receptors that recognize invading micro-organisms and induce immune and inflammatory responses. Deregulation of TLRs is known to be closely linked to various immune disorders and inflammatory diseases. Cells at sites of inflammation are exposed to hypoxic stress, which further aggravates inflammatory processes. We have examined if hypoxic stress modulates the TLR activity of macrophages. Hypoxia and CoCl(2) (a hypoxia mimetic) enhanced the expression of TLR4 messenger RNA and protein in macrophages (RAW264.7 cells), whereas the messenger RNA of other TLRs was not increased. To determine the underlying mechanism, we investigated the role of hypoxia-inducible factor 1 (HIF-1) in the regulation of TLR4 expression. Knockdown of HIF-1alpha expression by small interfering RNA inhibited hypoxia-induced and CoCl(2)-induced TLR4 expression in macrophages, while over-expression of HIF-1alpha potentiated TLR4 expression. Chromatin immunoprecipitation assays revealed that HIF-1alpha binds to the TLR4 promoter region under hypoxic conditions. In addition, deletion or mutation of a putative HIF-1-binding motif in the TLR4 promoter greatly attenuated HIF-1alpha-induced TLR4 promoter reporter expression. Up-regulation of TLR4 expression by hypoxic stress enhanced the response of macrophages to lipopolysaccharide, resulting in increased expression of cyclooxygenase-2, interleukin-6, regulated on activation normal T cell expressed and secreted, and interferon-inducible protein-10. These results demonstrate that TLR4 expression in macrophages is up-regulated via HIF-1 in response to hypoxic stress, suggesting that hypoxic stress at sites of inflammation enhances susceptibility to subsequent infection and inflammatory signals by up-regulating TLR4.

  5. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish.

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    Full Text Available In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.

  6. Up-regulation of VEGF and its receptor in refractory leukemia cells

    OpenAIRE

    Wang, Lei; Zhang, Wenjun; Ding, Yi; Xiu, Bing; Li, Ping; Dong, Yan; Zhu, Qi; Liang, Aibin

    2015-01-01

    Objective: To analyze the causative mechanisms in refractory leukemia cells. Methods: Vascular endothelial growth factor (VEGF) blood plasma concentrations in 35 de novo, 6 relapse, 20 remission leukemia patients and 10 healthy kids were determined via ELISA analyses. Transcription levels of the VEGF receptors (VEGFR) Fms-like tyrosine kinase-1 (Flt-1) and kinase-domain insert containing receptor (KDR) were determined in participants’ leucocytes with RT-PCR. Apoptosis rates as well as Cyt-C a...

  7. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    International Nuclear Information System (INIS)

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-01-01

    Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET B ) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-κB specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET B receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET B receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET B receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET B receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET B receptors. Thus, the MAPK-mediated upregulation of contractile ET B receptors in cerebral arteries might be a

  8. [{sup 11}C]A-69024: A potent and selective non-benzazepine radiotracer for in vivo studies of dopamine D1 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kassiou, Michael; Scheffel, Ursula; Ravert, Hayden T; Mathews, William B; Musachio, John L; Lambrecht, Richard M; Dannals, Robert F

    1995-02-01

    [{sup 11}C]A-69024, ({+-})-1-(2-bromo-4,5-dimethoxybenzyl)-7-hydroxy-6-methoxy-2-[{sup 11}C]methyl-1,2= ,3,4-tetrahydroisoquinoline, is a specific and selective dopamine D1 radiotracer. The in vivo biodistribution of this novel radioligand in mice showed a high uptake in the striatum (6.7% ID/g) at 5 min, followed by clearance with a half-life of 16.1 min. As a measure of specificity, the striatal/cerebellar ratio reached a maximum of 7.4 at 30 min post-injection. Radioactivity in the striatum was reduced to the level of the cerebellum by pre-administration of the D1 antagonist SCH 23390 (1 mg/kg). Pretreatment of mice with spiperone (D2), 7-hydroxydipropylaminotetralin (7-OH-DPAT) (D3), clozapine (D4), ketanserin (5-HT2/5-HT2C), mazindol (monoamine reuptake), prazosin ({alpha}{sub 1}), and haloperidol (D2/{sigma}) had no inhibitory effect on [{sup 11}C]A-69024 uptake in the striatum. The dextrotatory enantiomer of the dopamine antagonist butaclamol inhibited striatal uptake, while the less active isomer (-)-butaclamol did not. [{sup 11}C]A-69024 binding was inhibited by unlabeled A-69024 in a dose dependent manner (ED{sub 50} = 0.3 mg/kg) in the striatum while no change occurred in the cerebellum. [{sup 11}C]A-69024 warrants further investigation as a PET ligand for examination of central dopamine D1 receptors in humans.

  9. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Eric C Kong

    2010-04-01

    Full Text Available Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  10. Chronic restraint stress during withdrawal increases vulnerability to drug priming-induced cocaine seeking via a dopamine D1-like receptor-mediated mechanism.

    Science.gov (United States)

    Ball, Kevin T; Stone, Eric; Best, Olivia; Collins, Tyler; Edson, Hunter; Hagan, Erin; Nardini, Salvatore; Neuciler, Phelan; Smolinsky, Michael; Tosh, Lindsay; Woodlen, Kristin

    2018-06-01

    A major obstacle in the treatment of individuals with cocaine addiction is their high propensity for relapse. Although the clinical scenario of acute stress-induced relapse has been well studied in animal models, few pre-clinical studies have investigated the role of chronic stress in relapse or the interaction between chronic stress and other relapse triggers. We tested the effect of chronic restraint stress on cocaine seeking in rats using both extinction- and abstinence-based animal relapse models. Rats were trained to press a lever for I.V. cocaine infusions (0.50 mg/kg/infusion) paired with a discrete tone + light cue in daily 3-h sessions. Following self-administration, rats were exposed to a chronic restraint stress procedure (3 h/day) or control procedure (unstressed) during the first seven days of a 13-day extinction period during which lever presses had no programmed consequences. This was followed by cue- and cocaine priming-induced drug seeking tests. In a separate group of rats, cocaine seeking was assessed during forced abstinence both before and after the same chronic stress procedure. A history of chronic restraint stress was associated with increased cocaine priming-induced drug seeking, an effect attenuated by co-administration of SCH-23390 (10.0 μg/kg; i.p.), a dopamine D 1 -like receptor antagonist, with daily restraint. Repeated SCH-23390 administration but not stress during extinction increased cue-induced reinstatement. Exposure to chronic stress during early withdrawal may confer lasting vulnerability to some types of relapse, and dopamine D 1 -like receptors appear to mediate both chronic stress effects on cocaine seeking and extinction of cocaine seeking. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    Science.gov (United States)

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  12. In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT

    International Nuclear Information System (INIS)

    Kassiou, Michael; Eberl, Stefan; Meikle, Steven R.; Birrell, Alex; Constable, Chris; Fulham, Michael J.; Wong, Dean F.; Musachio, John L.

    2001-01-01

    To quantify changes in neuronal nAChR binding in vivo, quantitative dynamic SPECT studies were performed with 5-[ 123 I]-iodo-A-85380 in baboons pre and post chronic treatment with (-)-nicotine or saline control. Infusion of (-)-nicotine at a dose of 2.0 mg/kg/24h for 14 days resulted in plasma (-)-nicotine levels of 27.3 ng/mL. This is equivalent to that found in an average human smoker (20 cigarettes a day). In the baboon brain the regional distribution of 5-[ 123 I]-iodo-A-85380 was consistent with the known densities of nAChRs (thalamus > frontal cortex > cerebellum). Changes in nAChR binding were estimated from the volume of distribution (V d ) and binding potential (BP) derived from 3-compartment model fits. In the (-)-nicotine treated animal V d was significantly increased in the thalamus (52%) and cerebellum (50%) seven days post cessation of (-)-nicotine treatment, suggesting upregulation of nAChRs. The observed 33% increase in the frontal cortex failed to reach significance. A significant increase in BP was seen in the thalamus. In the saline control animal no changes were observed in V d or BP under any experimental conditions. In this preliminary study, we have demonstrated for the first time in vivo upregulation of neuronal nAChR binding following chronic (-)-nicotine treatment

  13. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  14. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    International Nuclear Information System (INIS)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  15. Selective up-regulation of 5-HT(1B/1D) receptors during organ culture of cerebral arteries

    DEFF Research Database (Denmark)

    Hoel, N L; Hansen-Schwartz, J; Edvinsson, L

    2001-01-01

    5-Hydroxytryptamine (5-HT) is thought to be involved in migraine headache and the pathophysiology of cerebrovascular diseases. Previous data show that organ culture induces a phenotypic change in cerebral vessels. Therefore we investigated if these changes also applied for the vasoconstrictive 5-HT......(cultured) 6.8+/-0.4). The response was inhibited by the 5-HT(1B/1D) selective antagonist GR55562 (pEC50(fresh) 5.1+/-0.2 and pEC50(cultured) 6.0+/-0.3). The organ model might mimic the phenotypic changes during cerebrovascular diseases....... receptors. Rat cerebral arteries express 5-HT2 receptors. Using organ culture we observed a phenotypic change with a selective up-regulation of 5-HT(1B/1D) receptors. This was revealed by an increased sensitivity to the selective 5-HT(1B/1D) agonist 5-CT after organ culture (pEC50(fresh) 5.6+/-0.2 and pEC50...

  16. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  17. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Axel, Anne Marie Dixen; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    ) and partially antagonized by co-administration of SCH23390 (0.03 mg/kg, DA D(1) receptor antagonist). In contrast, tesofensine-induced hypophagia was not affected by RX821002 (0.3 mg/kg, alpha(2) adrenoceptor antagonist), haloperidol (0.03 mg/kg, D(2) receptor antagonist), NGB2904 (0.1 mg/kg, D(3) receptor...

  18. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Escubedo, Elena; Pubill, David

    2007-01-01

    Previous work from our group indicated that α7 nicotinic acetylcholine receptors (α7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric α7 nAChR ([ 3 H]methyllycaconitine binding) and other heteromeric subtypes ([ 3 H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K i values in the micromolar range, MDMA revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [ 3 H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B max of high-affinity sites for both radioligands without affecting K d . The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes related to addiction and dependence

  19. The Environmental Neurotoxicant PCB 95 Promotes Synaptogenesis via Ryanodine Receptor-Dependent miR132 Upregulation

    Science.gov (United States)

    Lesiak, Adam; Zhu, Mingyan; Chen, Hao; Appleyard, Suzanne M.; Impey, Soren; Wayman, Gary A.

    2014-01-01

    Non–dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca2+ oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders. PMID:24431430

  20. TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumours

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Kosmidou, V.; Katseli, A.; Kothonidis, K.; Mourtzoukou, D.; Kontogeorgos, G.; Anděra, Ladislav; Zografos, G.; Pintzas, A.

    2009-01-01

    Roč. 125, č. 9 (2009), s. 2127-2135 ISSN 0020-7136 R&D Projects: GA MŠk 1M0506 Grant - others:EC(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal tumours * TRAIL receptors expression * KRAS/ BRAF oncogenic mutations Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.722, year: 2009

  1. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    Science.gov (United States)

    Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981

  2. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Boato, Francesco; Schwengel, Katja

    2013-01-01

    -culture of GFP-positive entorhinal cortices with hippocampal target tissue served to evaluate the impact of C21 on reinnervation. Neuronal differentiation, apoptosis and expression of neurotrophins were investigated in primary murine astrocytes and neuronal cells. C21 significantly improved functional recovery...... outgrowth was absent in neurons derived from AT2R-KO mice. In primary neurons, treatment with C21 further induced RNA expression of anti-apoptotic Bcl-2 (+75.7%), brain-derived neurotrophic factor (BDNF) (+53.7%), the neurotrophin receptors TrkA (+57.4%) and TrkB (+67.9%) and a marker for neurite growth...

  3. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    International Nuclear Information System (INIS)

    Aceves, J.; Young, J.M.; Arias-Montano, J.A.; Floran, B.; Garcia, M.

    1997-01-01

    The release of [ 3 H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K + from 6 to 15 mM in the presence of 10 μM sulpiride was inhibited by 73±3% by 1 μM SCH 23390, consistent with a large component of release dependent upon D 1 receptor activation. The histamine H 3 receptor-selective agonist immepip (1 μM) and the non-selective agonist histamine (100 μM) inhibited [ 3 H]GABA release by 78±2 and 80±2%, respectively. The inhibition by both agonists was reversed by the H 3 receptor antagonist thioperamide (1 μM). However, in the presence of 1 μM SCH 23390 depolarization-induced release of [ 3 H]GABA was not significantly decreased by 1 μM immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [ 3 H]GABA, but in the presence of 1 μM SKF 38393, which produced a 7±1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 μM) also inhibited the depolarization-induced release of [ 3 H]dopamine from substantia nigra pars reticulata slices, by 38±3%.The evidence is consistent with the proposition that activation of histamine H 3 receptors leads to the selective inhibition of the component of depolarization-induced [ 3 H]GABA release in substantia nigra pars reticulata slices which is dependent upon D 1 receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [ 3 H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    2010-02-01

    Full Text Available Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis.Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium.Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  5. Up-regulation of proproliferative genes and the ligand/receptor pair placental growth factor and vascular endothelial growth factor receptor 1 in hepatitis C cirrhosis.

    Science.gov (United States)

    Huang, Xiao X; McCaughan, Geoffrey W; Shackel, Nicholas A; Gorrell, Mark D

    2007-09-01

    Cirrhosis can lead to hepatocellular carcinoma (HCC). Non-diseased liver and hepatitis C virus (HCV)-associated cirrhosis with or without HCC were compared. Proliferation pathway genes, immune response genes and oncogenes were analysed by a quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunostaining. Real-time RT-PCR showed up-regulation of genes in HCV cirrhosis including the proliferation-associated genes bone morphogenetic protein 3 (BMP3), placental growth factor 3 (PGF3), vascular endothelial growth factor receptor 1 (VEGFR1) and soluble VEGFR1, the oncogene FYN, and the immune response-associated genes toll-like receptor 9 (TLR9) and natural killer cell transcript 4 (NK4). Expressions of TLR2 and the oncogenes B-cell CLL/lymphoma 9 (BCL9) and PIM2 were decreased in HCV cirrhosis. In addition, PIM2 and TLR2 were increased in HCV cirrhosis with HCC compared with HCV cirrhosis. The ligand/receptor pair PGF and VEGFR1 was intensely expressed by the portal tract vascular endothelium. VEGFR1 was expressed in reactive biliary epithelial structures in fibrotic septum and in some stellate cells and macrophages. PGF and VEGFR1 may have an important role in the pathogenesis of the neovascular response in cirrhosis.

  6. Calciotrophic hormones and hyperglycemia modulate vitamin D receptor and 25 hydroxyy vitamin D 1-α hydroxylase mRNA expression in human vascular smooth muscle cells.

    Science.gov (United States)

    Somjen, D; Knoll, E; Sharon, O; Many, A; Stern, N

    2015-04-01

    Estrogen receptors (ERα and ERβ), the vitamin D receptor (VDR) and 25 hydroxyy vitamin D 1-α hydroxylase (1OHase) mRNA are expressed in vascular smooth muscle cells (VSMC). In these cells estrogenic hormones modulate cell proliferation as measured by DNA synthesis (DNA). In the present study we determined whether or not the calciotrophic hormones PTH 1-34 (PTH) and less- calcemic vitamin D analog QW as well as hyperglycemia can regulate DNA synthesis and CK. E2 had a bimodal effect on VSMC DNA synthesis, such that proliferation was inhibited at 30nM but stimulated at 0.3nM. PTH at 50nM increased, whereas QW at 10nM inhibited DNA synthesis. Hyperglycemia inhibited the effects on high E2, QW and PTH on DNA only. Both QW and PTH increased ERα mRNA expression, but only PTH increased ERβ expression. Likewise, both PTH and QW stimulated VDR and 1OHase expression and activity. ERβ, VDR and 1OHase expression and activity were inhibited by hyperglycemia, but ERα expression was unaffected by hyperglycemia. In conclusion, calcitrophic hormones modify VSMC growth and concomitantly affect ER expression in these cells as well as the endogenous VSMC vitamin D system elements, including VDR and 1OHase. Some of the later changes may likely participate in growth effects. Of importance in the observation is that several regulatory effects are deranged in the presence of hyperglycemia, particularly the PTH- and vitamin D-dependent up regulation of VDR and 1OHase in these cells. The implications of these effects require further studies. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist

    DEFF Research Database (Denmark)

    2015-01-01

    BACKGROUND: To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. METHODS: We created a genetic score combining the effects of alleles...... of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers...... of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type...

  8. Upregulation of FLG, LOR, and IVL Expression by Rhodiola crenulata Root Extract via Aryl Hydrocarbon Receptor: Differential Involvement of OVOL1

    Directory of Open Access Journals (Sweden)

    Akiko Hashimoto-Hachiya

    2018-06-01

    Full Text Available Rhodiola species are antioxidative, salubrious plants that are known to inhibit oxidative stress induced by ultraviolet and γ-radiation in epidermal keratinocytes. As certain phytochemicals activate aryl hydrocarbon receptors (AHR or OVO-like 1 (OVOL1 to upregulate the expression of epidermal barrier proteins such as filaggrin (FLG, loricrin (LOR, and involucrin (IVL, we investigated such regulation by Rhodiola crenulata root extract (RCE. We demonstrated that RCE induced FLG and LOR upregulation in an AHR-OVOL1-dependent fashion. However, RCE-mediated IVL upregulation was AHR-dependent but OVOL1-independent. Coordinated upregulation of skin barrier proteins by RCE via AHR may be beneficial in the management of barrier-disrupted inflammatory skin diseases such as atopic dermatitis.

  9. The effects of MEK1/2 inhibition on cigarette smoke exposure-induced ET receptor upregulation in rat cerebral arteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University (Sweden); Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Ping, Na-Na; Cao, Yong-Xiao [Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Li, Wei, E-mail: 13572512207@163.com [Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Cai, Yan [Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Warfvinge, Karin; Edvinsson, Lars [Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University (Sweden)

    2016-08-01

    Cigarette smoking, a major stroke risk factor, upregulates endothelin receptors in cerebral arteries. The present study examined the effects of MEK1/2 pathway inhibition on cigarette smoke exposure-induced ET receptor upregulation. Rats were exposed to the secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of MEK1/2 inhibitor, U0126 for another 4 weeks. The urine cotinine levels were assessed with high-performance liquid chromatography. Contractile responses of isolated cerebral arteries were recorded by a sensitive wire myograph. The mRNA and protein expression levels of receptor and MEK/ERK1/2 pathway molecules were examined by real-time PCR and Western blotting, respectively. Cerebral artery receptor localization was determined with immunohistochemistry. The results showed the urine cotinine levels from SHS exposure group were significantly higher than those from the fresh group. In addition, the MEK1/2 inhibitor, U0126 significantly reduced SHS exposure-increased ET{sub A} receptor mRNA and protein levels as well as contractile responses mediated by ET{sub A} receptors. The immunoreactivity of increased ET{sub A} receptor expression was primarily cytoplasmic in smooth muscle cells. In contrast, ET{sub B} receptor was noted in endothelial cells. However, the SHS-induced decrease in endothelium-dependent relaxation was unchanged after U0126 treatment. Furthermore, SHS increased the phosphorylation of MEK1/2 and ERK1/2 protein in cerebral arteries. By using U0126 could inhibit the phosphorylated ERK1/2 protein but not MEK1/2. Taken together, our data show that treatment with MEK1/2 pathway inhibitor offsets SHS exposure-induced ET{sub A} receptor upregulation in rat cerebral arteries. - Highlights: • Cigarette smoke exposure induces ET{sub A} receptor upregulation in rat cerebral arteries. • U0126 can alleviate the receptor upregulation. • The mechanism relies on MEK/ERK1/2 pathway activation. • We may provide a new target for the

  10. The effects of MEK1/2 inhibition on cigarette smoke exposure-induced ET receptor upregulation in rat cerebral arteries

    International Nuclear Information System (INIS)

    Cao, Lei; Ping, Na-Na; Cao, Yong-Xiao; Li, Wei; Cai, Yan; Warfvinge, Karin; Edvinsson, Lars

    2016-01-01

    Cigarette smoking, a major stroke risk factor, upregulates endothelin receptors in cerebral arteries. The present study examined the effects of MEK1/2 pathway inhibition on cigarette smoke exposure-induced ET receptor upregulation. Rats were exposed to the secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of MEK1/2 inhibitor, U0126 for another 4 weeks. The urine cotinine levels were assessed with high-performance liquid chromatography. Contractile responses of isolated cerebral arteries were recorded by a sensitive wire myograph. The mRNA and protein expression levels of receptor and MEK/ERK1/2 pathway molecules were examined by real-time PCR and Western blotting, respectively. Cerebral artery receptor localization was determined with immunohistochemistry. The results showed the urine cotinine levels from SHS exposure group were significantly higher than those from the fresh group. In addition, the MEK1/2 inhibitor, U0126 significantly reduced SHS exposure-increased ET A receptor mRNA and protein levels as well as contractile responses mediated by ET A receptors. The immunoreactivity of increased ET A receptor expression was primarily cytoplasmic in smooth muscle cells. In contrast, ET B receptor was noted in endothelial cells. However, the SHS-induced decrease in endothelium-dependent relaxation was unchanged after U0126 treatment. Furthermore, SHS increased the phosphorylation of MEK1/2 and ERK1/2 protein in cerebral arteries. By using U0126 could inhibit the phosphorylated ERK1/2 protein but not MEK1/2. Taken together, our data show that treatment with MEK1/2 pathway inhibitor offsets SHS exposure-induced ET A receptor upregulation in rat cerebral arteries. - Highlights: • Cigarette smoke exposure induces ET A receptor upregulation in rat cerebral arteries. • U0126 can alleviate the receptor upregulation. • The mechanism relies on MEK/ERK1/2 pathway activation. • We may provide a new target for the treatment of SHS

  11. Gemfibrozil, a lipid-lowering drug, upregulates interleukin-1 receptor antagonist in mouse cortical neurons: Implications for neuronal self-defense

    Science.gov (United States)

    Corbett, Grant T.; Roy, Avik; Pahan, Kalipada

    2012-01-01

    Chronic inflammation is becoming a hallmark of several neurodegenerative disorders and accordingly, interleukin-1 beta (IL-1β), a proinflammatory cytokine, is implicated in the pathogenesis of neurodegenerative diseases. While IL-1β binds to its high-affinity receptor, interleukin-1 receptor (IL-1R), and upregulates proinflammatory signaling pathways, interleukin-1 receptor antagonist (IL-1Ra) adheres to the same receptor and inhibits proinflammatory cell signaling. Therefore, upregulation of IL-1Ra is considered important in attenuating inflammation. The present study underlines a novel application of gemfibrozil, an FDA-approved lipid-lowering drug, in increasing the expression of IL-1Ra in primary mouse and human neurons. Gemfibrozil alone induced an early and pronounced increase in the expression of IL-1Ra in primary mouse cortical neurons. Activation of type IA p110α phosphatidylinositol 3-kinase (PI3-K) and Akt by gemfibrozil and abrogation of gemfibrozil-induced upregulation of IL-1Ra by inhibitors of PI3-K and Akt indicate a role of the PI3-K – Akt pathway in the upregulation of IL-1Ra. Gemfibrozil also induced the activation of cAMP response element-binding (CREB) via the PI3-K – Akt pathway and siRNA attenuation of CREB abolished the gemfibrozil-mediated increase in IL-1Ra. Furthermore, gemfibrozil was able to protect neurons from IL-1β insult. However, siRNA knockdown of neuronal IL-1Ra abrogated the protective effect of gemfibrozil against IL-1β suggesting that this drug increases the defense mechanism of cortical neurons via upregulation of IL-1Ra. Together, these results highlight the importance of the PI3-K – Akt – CREB pathway in mediating gemfibrozil-induced upregulation of IL-1Ra in neurons and suggest gemfibrozil as a possible therapeutic treatment for propagating neuronal self defense in neuroinflammatory and neurodegenerative disorders. PMID:22706077

  12. Diagnostic value of asymmetric striatal D2 receptor upregulation in Parkinson's disease: an [123I]IBZM and [123I]FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Verstappen, C.C.P.; Bloem, B.R.; Haaxma, C.A.; Horstink, M.W.I.M.; Oyen, W.J.G.

    2007-01-01

    Striatal postsynaptic D 2 receptors in Parkinson's disease (PD) are thought to be upregulated in the first years of the disease, especially contralateral to the clinically most affected side. The aim of this study was to evaluate whether the highest striatal D 2 binding is found contralateral to the most affected side in PD, and whether this upregulation can be used as a diagnostic tool. Cross-sectional survey was undertaken of 81 patients with clinically asymmetric PD, without antiparkinsonian drugs and with a disease duration of ≤5 years and 26 age-matched controls. Striatal D 2 binding was assessed with [ 123 I]IBZM SPECT, and severity of the presynaptic dopaminergic lesion with [ 123 I]FP-CIT SPECT. The mean striato-occipital ratio of [ 123 I]IBZM binding was significantly higher in PD patients (1.56 ±0.09) than in controls (1.53 ±0.06). In PD patients, higher values were found contralateral to the clinically most affected side (1.57 ±0.09 vs 1.55 ±0.10 ipsilaterally), suggesting D 2 receptor upregulation, and the reverse was seen using [ 123 I]FP-CIT SPECT. However, on an individual basis only 56% of PD patients showed this upregulation. Our study confirms asymmetric D 2 receptor upregulation in PD. However, the sensitivity of contralateral higher striatal [ 123 I]IBZM binding is only 56%. Therefore, the presence of contralateral higher striatal IBZM binding has insufficient diagnostic accuracy for PD, and PD cannot be excluded in patients with parkinsonism and no contralateral upregulation of D 2 receptors, assessed with [ 123 I]IBZM SPECT. (orig.)

  13. Atorvastatin and fenofibrate increase apolipoprotein AV and decrease triglycerides by up-regulating peroxisome proliferator-activated receptor

    Science.gov (United States)

    Huang, Xian-sheng; Zhao, Shui-ping; Bai, Lin; Hu, Min; Zhao, Wang; Zhang, Qian

    2009-01-01

    Background and purpose: Combining statin and fibrate in clinical practice provides a greater reduction of triglycerides than either drug given alone, but the mechanism for this effect is poorly understood. Apolipoprotein AV (apoAV) has been implicated in triglyceride metabolism. This study was designed to investigate the effect of the combination of statin and fibrate on apoAV and the underlying mechanism(s). Experimental approach: Hypertriglyceridaemia was induced in rats by giving them 10% fructose in drinking water for 2 weeks. They were then treated with atorvastatin, fenofibrate or the two agents combined for 4 weeks, and plasma triglyceride and apoAV measured. We also tested the effects of these two agents on triglycerides and apoAV in HepG2 cells in culture. Western blot and reverse transcription polymerase chain reaction was used to measure apoAV and peroxisome proliferator-activated receptor-α (PPARα) expression. Key results: The combination of atorvastatin and fenofibrate resulted in a greater decrease in plasma triglycerides and a greater increase in plasma and hepatic apoAV than either agent given alone. Hepatic expression of the PPARα was also more extensively up-regulated in rats treated with the combination. A similar, greater increase in apoAV and a greater decrease in triglycerides were observed following treatment of HepG2 cells pre-exposed to fructose), with the combination. Adding an inhibitor of PPARα (MK886) abolished the effects of atorvastatin on HepG2 cells. Conclusions and implications: A combination of atorvastatin and fenofibrate increased apoAV and decreased triglycerides through up-regulation of PPARα. PMID:19694729

  14. Curcumin attenuates morphine antinociceptive tolerance through suppressing up-regulation of spinal Toll-like receptor 4 in rats

    Directory of Open Access Journals (Sweden)

    Fei GAO

    2017-12-01

    Full Text Available Objective To investigate the effects of curcumin (Cur on activation of spinal Toll-like receptor 4 (TLR4 and on the chronic antinociceptive tolerance of morphine. Methods Sixty male Sprague-Dawley rats with successful intrathecal catheterization were randomly divided into four groups (n=15: saline (NS group; morphine (MOR group; curcumin (Cur group and morphine plus curcumin (MOR+Cur group. A morphine tolerance model of rats was induced by intrathecal injection of morphine 15μg, once a day for 7 consecutive days in MOR and MOR+Cur group; 100μg curcumin was administered intrathecally once a day for 7 consecutive days in Cur and MOR+Cur group, 10μl saline was administered intrathecally once a day for 7 consecutive days in NS group. The effect of curcumin intrathecal catheterization on morphine antinociceptive tolerance was explored by the tail flick latency (TFL method and mechanical withdrawal threshold (MWT, and then the maximum possible potential effect (MPE was calculated. The immunofluorescence staining method was applied to detect the effect of curcumin on the activation of lumbar spinal microglia. Real-time PCR and Western blotting were used to evaluate the effect of curcumin on the expression of mRNA and protein of spinal TLR4. Results The %MPE TFL and %MPE MWT increased significantly in MOR+Cur group than in MOR group (P0.05. The lumbar spinal microglia increased markedly and the expressions of polyclonal antibody IBA-1 and TLR4 were significantly up-regulated in MOR group than in NS group (P0.05. Conclusion Curcumin may attenuate chronic morphine antinociceptive tolerance through inhibiting spinal TLR4 up-regulation. DOI: 10.11855/j.issn.0577-7402.2017.12.06

  15. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  16. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  17. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Pedrazuela

    Full Text Available Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  18. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  19. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

    Science.gov (United States)

    Campbell, Sharon E; Stone, William L; Whaley, Sarah G; Qui, Min; Krishnan, Koyamangalath

    2003-01-01

    Background Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. Results We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of

  20. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

    International Nuclear Information System (INIS)

    Campbell, Sharon E; Stone, William L; Whaley, Sarah G; Qui, Min; Krishnan, Koyamangalath

    2003-01-01

    Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of α-tocopherol. Our data suggest that

  1. Gefitinib upregulates death receptor 5 expression to mediate rmhTRAIL-induced apoptosis in Gefitinib-sensitive NSCLC cell line

    Directory of Open Access Journals (Sweden)

    Yan D

    2015-07-01

    TRAIL synergistically interact to inhibit cell proliferation, and apoptosis assessment demonstrated that associations of drug increased the apoptotic index. rmhTRAIL when used alone downregulated DR5 and upregulated BAX, FLIP, and cleaved-caspase3 proteins expressions. However, results obtained in Western blot analyses demonstrated that the combined treatment-induced cell apoptosis was achieved involving upregulated DR5, cleaved-caspase3, and BAX proteins expression and downregulated FLIP protein expression. Moreover, quantitative polymerase chain reaction showed that gefitinib modulated the expression of targets related to rmhTRAIL activity.Conclusion: These results indicate that epidermal growth factor receptor inhibitors enhance rmhTRAIL antitumor activity in the gefitinib-responsive PC9 cell line, and upregulated DR5 expression plays a critical role in activating caspase-signaling apoptotic pathway.Keywords: gefitinib, rmhTRAIL, apoptosis, DR5

  2. Estradiol upregulates calcineurin expression via overexpression of estrogen receptor alpha gene in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Hui-Li Lin

    2011-04-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease primarily affecting women (9:1 compared with men. To investigate the influence of female sex hormone estrogen on the development of female-biased lupus, we compared the expression of estrogen receptor alpha (ERα gene and protein levels as well as expression of T-cell activation gene calcineurin in response to estrogen in peripheral blood lymphocytes (PBLs from SLE patients and normal controls. PBLs were isolated from 20 female SLE patients and 6 normal female controls. The amount of ERα protein in PBL was measured by flow cytometry. The expression of ERα and calcineurin messenger RNA was measured by semi-quantitative reverse transcription-polymerase chain reaction. Calcineurin phosphatase activity was measured by calcineurin assay kit. The expression of ERα messenger RNA and ERα protein was significantly increased (p=0.001 and p=0.023, respectively in PBL from SLE patients compared with that from normal controls. In addition, the basal calcineurin in PBL from SLE patients was significantly higher (p=0.000 than that from normal controls, and estrogen-induced expression of calcineurin was increased (p=0.007 in PBL from SLE patients compared with that from normal controls, a 3.15-fold increase. This increase was inhibited by the ERα antagonism ICI 182,780. The effects of ER antagonism were also found in calcineurin activity. These data suggest that overexpression of ERα gene and enhanced activation of calcineurin in response to estrogen in PBL may contribute to the pathogenesis of female dominant in SLE.

  3. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle.

    Science.gov (United States)

    Hussey, Sophie E; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-03-01

    Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3, p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of inhibitor of kappa Bα (p = 0.09). The muscle content of most diacylglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin resistance in humans. ClinicalTrials.gov NCT01740817.

  4. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.

    Science.gov (United States)

    Li, Y; Ge, S; Li, N; Chen, L; Zhang, S; Wang, J; Wu, H; Wang, X; Wang, X

    2016-02-19

    Reactivation of consolidated memory initiates a memory reconsolidation process, during which the reactivated memory is susceptible to strengthening, weakening or updating. Therefore, effective interference with the memory reconsolidation process is expected to be an important treatment for drug addiction. The nucleus accumbens (NAc) has been well recognized as a pathway component that can prevent drug relapse, although the mechanism underlying this function is poorly understood. We aimed to clarify the regulatory role of the NAc in the cocaine memory reconsolidation process, by examining the effect of applying different pharmacological interventions to the NAc on Zif 268 and Fos B expression in the entire reward circuit after cocaine memory reactivation. Through the cocaine-induced conditioned place preference (CPP) model, immunohistochemical and immunofluorescence staining for Zif 268 and Fos B were used to explore the functional activated brain nuclei after cocaine memory reactivation. Our results showed that the expression of Zif 268 and Fos B was commonly increased in the medial prefrontal cortex (mPFC), the infralimbic cortex (IL), the NAc-core, the NAc-shell, the hippocampus (CA1, CA2, and CA3 subregions), the amygdala, the ventral tegmental area (VTA), and the supramammillary nucleus (SuM) following memory reconsolidation, and Zif 268/Fos B co-expression was commonly observed (for Zif 268: 51-68%; for Fos B: 52-66%). Further, bilateral NAc-shell infusion of MK 801 and SCH 23390, but not raclopride or propranolol, prior to addictive memory reconsolidation, decreased Zif 268 and Fos B expression in the entire reward circuit, except for the amygdala, and effectively disturbed subsequent CPP-related behavior. In summary, N-methyl-d-aspartate (NMDA) and dopamine D1 receptors, but not dopamine D2 or β adrenergic receptors, within the NAc-shell, may regulate Zif 268 and Fos B expression in most brain nuclei of the reward circuit after cocaine memory reactivation

  5. A new synthetic drug 5-(2-aminopropyl)indole (5-IT) induces rewarding effects and increases dopamine D1 receptor and dopamine transporter mRNA levels.

    Science.gov (United States)

    Botanas, Chrislean Jun; Yoon, Seong Shoon; de la Peña, June Bryan; Dela Peña, Irene Joy; Kim, Mikyung; Custodio, Raly James; Woo, Taeseon; Seo, Joung-Wook; Jang, Choon-Gon; Yang, Ji Seul; Yoon, Yoon Mi; Lee, Yong Sup; Kim, Hee Jin; Cheong, Jae Hoon

    2018-04-02

    In recent years, there has been a marked increase in the use of recreational synthetic psychoactive substances, which is a cause of concern among healthcare providers and legal authorities. In particular, there have been reports on the misuse of 5-(2-aminopropyl)indole (5-API; 5-IT), a new synthetic drug, and of fatal and non-fatal intoxication. Despite these reports, little is known about its psychopharmacological effects and abuse potential. Here, we investigated the abuse potential of 5-IT by evaluating its rewarding and reinforcing effects through conditioned place preference (CPP) (1, 10, and 30 mg/kg, i.p.) in mice and self-administration test (0.1, 0.3, 1, and 3 mg/kg/inf., i.v.) in rats. We also examined whether 5-IT (1, 3, and 10 mg/kg, i.p.) induces locomotor sensitization in mice following a 7-day treatment and drug challenge. Then, we explored the effects of 5-IT (10 mg/kg, i.p.) on dopamine-related genes in the striatum, prefrontal cortex (PFC), and substantia nigra pars compacta (SNc)/ventral tegmental (VTA) of mice by quantitative real-time polymerase chain reaction. 5-IT produced CPP in mice but was not reliably self-administered by rats. 5-IT also induced locomotor sensitization following repeated administration and drug challenge. Moreover, 5-IT increased mRNA levels of dopamine D1 receptor in the striatum and PFC and dopamine transporter in the SNc/VTA of mice. These results indicate that 5-IT has psychostimulant and rewarding properties, which may be attributed to its ability to affect the dopaminergic system in the brain. These findings suggest that 5-IT poses a substantial risk for abuse and addiction in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    Science.gov (United States)

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment. (c) 2015 APA, all rights reserved).

  7. Effects of dopamine D1 receptor blockade in the prelimbic prefrontal cortex or lateral dorsal striatum on frontostriatal function in Wistar and Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Gauthier, Jamie M; Tassin, David H; Dwoskin, Linda P; Kantak, Kathleen M

    2014-07-15

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with dysfunctional prefrontal and striatal circuitry and dysregulated dopamine neurotransmission. Spontaneously Hypertensive Rats (SHR), a heuristically useful animal model of ADHD, were evaluated against normotensive Wistar (WIS) controls to determine whether dopamine D1 receptor blockade of either prelimbic prefrontal cortex (plPFC) or lateral dorsal striatum (lDST) altered learning functions of both interconnected sites. A strategy set shifting task measured plPFC function (behavioral flexibility/executive function) and a reward devaluation task measured lDST function (habitual responding). Prior to tests, rats received bilateral infusions of SCH 23390 (1.0 μg/side) or vehicle into plPFC or lDST. Following vehicle, SHR exhibited longer lever press reaction times, more trial omissions, and fewer completed trials during the set shift test compared to WIS, indicating slower decision-making and attentional/motivational impairment in SHR. After reward devaluation, vehicle-treated SHR responded less than WIS, indicating relatively less habitual responding in SHR. After SCH 23390 infusions into plPFC, WIS expressed the same behavioral phenotype as vehicle-treated SHR during set shift and reward devaluation tests. In SHR, SCH 23390 infusions into plPFC exacerbated behavioral deficits in the set shift test and maintained the lower rate of responding in the reward devaluation test. SCH 23390 infusions into lDST did not modify set shifting in either strain, but produced lower rates of responding than vehicle infusions after reward devaluation in WIS. This research provides pharmacological evidence for unidirectional interactions between prefrontal and striatal brain regions, which has implications for the neurological basis of ADHD and its treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. EMMPRIN promotes melanoma cells malignant properties through a HIF-2alpha mediated up-regulation of VEGF-receptor-2.

    Directory of Open Access Journals (Sweden)

    Faten Bougatef

    Full Text Available EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2 in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2alpha and its translocation to the nucleus where it forms heterodimers with HIF-1beta. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2alpha localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2alpha/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion.

  9. Farnesoid X receptor up-regulates expression of Lipid transfer inhibitor protein in liver cells and mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Liu, Hong [Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Peng, Jiahe; Wang, Yongchao; Zhang, Yan; Dong, Jinyu; Liu, Xiaohua; Guo, Dongmei [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Jiang, Yu, E-mail: yujiang61@gmail.com [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China)

    2013-11-29

    Highlights: •FXR up-regulates apoF. •It binds to ER1 element. •It activates apoF gene promoter. -- Abstract: Apolipoprotein F is a component protein mainly secreted by liver and resides on several lipoprotein classes. It can inhibit lipids transfer between different lipoproteins. FXR is a member of the nuclear receptor superfamily which is also highly expressed in the liver. It modulates bile acids synthesis and lipids metabolism by transcriptional regulation. We aimed to determine whether apoF can be regulated by FXR. The FXR agonist Chenodeoxycholic acid (CDCA) and GW4064 both can activate the expression of apoF in liver cell lines and in C57/BL6 mouse liver. This is dependent on the binding of FXR to the FXR element ER1 (−2904 to −2892 bp) in the apoF gene promoter. Taken together, we have identified apoF as likely another target gene of FXR.

  10. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  11. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Mi-Kyoung; Park, Kyoung Sun; Bae, Yun Hee; Yun, Jeanho; Park, Joo-In; Kwak, Jong-Young; Bae, Yoe-Sik

    2005-01-01

    In the present study, we found that serum amyloid A (SAA) stimulated matrix-metalloproteinase-9 (MMP-9) upregulation at the transcription and translational levels in THP-1 cells. SAA stimulated the activation of nuclear factor κB (NF-κB), which was required for the MMP-9 upregulation by SAA. The signaling events induced by SAA included the activation of ERK and intracellular calcium rise, which were found to be required for MMP-9 upregulation. Formyl peptide receptor like 1 (FPRL1) was found to be involved in the upregulation of MMP-9 by SAA. Among several FPRL1 agonists, including Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), SAA selectively stimulated MMP-9 upregulation. With respect to the molecular mechanisms involved in the differential action of SAA and WKYMVm, we found that SAA could not competitively inhibit the binding of 125 I-labeled WKYMVm to FPRL1. Taken together, we suggest that SAA plays a role in the modulation of inflammatory and immune responses via FPRL1, by inducing MMP-9 upregulation in human monocytic cells

  12. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway.

    Science.gov (United States)

    Singh, A S; Shah, A; Brockmann, A

    2018-02-01

    In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses. © 2017 The Royal Entomological Society.

  13. Hath1 inhibits proliferation of colon cancer cells probably through up-regulating expression of Muc2 and p27 and down-regulating expression of cyclin D1.

    Science.gov (United States)

    Zhu, Dai-Hua; Niu, Bai-Lin; Du, Hui-Min; Ren, Ke; Sun, Jian-Ming; Gong, Jian-Ping

    2012-01-01

    Previous studies showed that Math1 homologous to human Hath1 can cause mouse goblet cells to differentiate. In this context it is important that the majority of colon cancers have few goblet cells. In the present study, the potential role of Hath1 in colon carcinogenesis was investigated. Sections of paraffin-embedded tissues were used to investigate the goblet cell population of normal colon mucosa, mucosa adjacent colon cancer and colon cancer samples from 48 patients. Hath1 and Muc2 expression in these samples were tested by immunohistochemistry, quantitative real-time reverse transcription -PCR and Western blotting. After the recombinant plasmid, pcDNA3.1(+)-Hath1 had been transfected into HT29 colon cancer cells, three clones were selected randomly to test the levels of Hath1 mRNA, Muc2 mRNA, Hath1, Muc2, cyclin D1 and p27 by quantitative real-time reverse transcription-PCR and Western blotting. Moreover, the proliferative ability of HT29 cells introduced with Hath1 was assessed by means of colony formation assay and xenografting. Expression of Hath1, Muc2, cyclin D1 and p27 in the xenograft tumors was also detected by Western blotting. No goblet cells were to be found in colon cancer and levels of Hath1 mRNA and Hath1, Muc2 mRNA and Muc2 were significantly down-regulated. Hath1 could decrease cyclin D1, increase p27 and Muc2 in HT29 cells and inhibit their proliferation. Hath1 may be an anti-oncogene in colon carcinogenesis.

  14. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation

    International Nuclear Information System (INIS)

    Akao, Yukihiro; Banno, Yoshiko; Nakagawa, Yoshihito; Hasegawa, Nobuko; Kim, Tack-Joong; Murate, Takashi; Igarashi, Yasuyuki; Nozawa, Yoshinori

    2006-01-01

    Although most of pharmacological therapies for cancer utilize the apoptotic machinery of the cells, the available anti-cancer drugs are limited due to the ability of prostate cancer cells to escape from the anti-cancer drug-induced apoptosis. A human prostate cancer cell line PC3 is resistant to camptothecin (CPT). To elucidate the mechanism of this resistance, we have examined the involvement of sphingosine kinase (SPHK) and sphingosine 1-phosphate (S1P) receptor in CPT-resistant PC3 and -sensitive LNCaP cells. PC3 cells exhibited higher activity accompanied with higher expression levels of protein and mRNA of SPHK1, and also elevated expression of S1P receptors, S1P 1 and S1P 3 , as compared with those of LNCaP cells. The knockdown of SPHK1 by small interfering RNA and inhibition of S1P receptor signaling by pertussis toxin in PC3 cells induced significant inhibition of cell growth, suggesting implication of SPHK1 and S1P receptors in cell proliferation in PC3 cells. Furthermore, the treatment of PC3 cells with CPT was found to induce up-regulation of the SPHK1/S1P signaling by induction of both SPHK1 enzyme and S1P 1 /S1P 3 receptors. These findings strongly suggest that high expression and up-regulation of SPHK1 and S1P receptors protect PC3 cells from the apoptosis induced by CPT

  15. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    Science.gov (United States)

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  16. Effect of the dopamine D1-like receptor antagonist SCH 23390 on the microstructure of ingestive behaviour in water-deprived rats licking for water and NaCl solutions.

    Science.gov (United States)

    Galistu, Adriana; D'Aquila, Paolo S

    2012-01-18

    The analysis of licking microstructure provides measures, size and number of licking bouts, which might reveal, respectively, reward evaluation and behavioural activation. Based on the different effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 and raclopride on licking for sucrose, in particular the failure of the former to reduce bout size and the ability of the latter to induce a within-session decrement of bout number resembling either reward devaluation or neuroleptics on instrumental responding, we suggested that activation of reward-associated responses depends on dopamine D1-like receptor stimulation, and its level is updated on the basis of a dopamine D2-like receptor-mediated reward evaluation. Consistent results were obtained in a study examining the effect of dopamine D2-like receptor antagonism in rats licking for NaCl solutions and water. In this study, we examined the effects of the dopamine D1-like receptor antagonist SCH 23390 (0, 10, 20 and 40 μg/kg) on the microstructure of licking for water and sodium chloride solutions (0.075 M, 0.15 M, 0.3 M) in 12 h water deprived rats. Rats were exposed to each solution for 60 s either after the first lick or after 3 min that the animals were placed in the chambers. Bout size, but not bout number, was decreased at the highest NaCl concentration. SCH 23390 produced a decrease of bout number and of lick number mainly due to the decreased number of subjects engaging in licking behaviour, and failed to reduce bout size for Na Cl and water at a dose which increased the latency to the 1st lick but did not affect the intra-bout lick rate. In agreement with previous observations, these results suggest that dopamine D1-like receptors play an important role in the activation of reward-oriented responses. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    Science.gov (United States)

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  18. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I...... expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596...... is involved in A-582941-induced up-regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist-dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine...

  19. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis.

    Directory of Open Access Journals (Sweden)

    Lizhi Wu

    Full Text Available UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA, the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.

  20. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation. Copyright 1999 Elsevier Science B.V.

  1. Differential involvement of dopamine D-1 and D-2 receptors in the circling behaviour induced by apomorphine, SK & F 38393, pergolide and LY 171555 in 6-hydroxydopamine-lesioned rats.

    Science.gov (United States)

    Arnt, J; Hyttel, J

    1985-01-01

    The antagonistic effect of dopamine (DA) D-1 and D-2 antagonists against circling behaviour induced by various DA agonists in 6-OHDA-lesioned rats has been investigated. DA D-1/D-2 selectivity of agonists in vitro was measured by the stimulatory effect on DA-sensitive adenylate cyclase in rat striatal homogenates (D-1), the inhibitory effect on electrically-induced release of 3H-DA in rabbit striatal slices (D-2) and the affinity to 3H-piflutixol (D-1) and 3H-spiroperidol (D-2) binding sites in rat striatal membranes. The contralateral circling behaviour induced by the DA D-1 agonist SK & F 38393 was blocked by the DA D-1 antagonist, SCH 23390, and by the mixed DA D-1/D-2 antagonist cis(Z)-flupentixol, but was not influenced by the DA D-2 antagonists spiroperidol and clebopride. In contrast, circling behaviour induced by the preferential DA D-2 agonists pergolide and LY 171555 was blocked by clebopride, spiroperidol, and cis(Z)-flupentixol, but weakly or not influenced by SCH 23390. Apomorphine-induced circling behaviour was blocked by cis(Z)-flupentixol, partially antagonized by SCH 23390 and clebopride but not inhibited by spiroperidol, although the time-course of circling was changed. Combinations of SCH 23390 with spiroperidol or clebopride in low doses completely blocked the effect of apomorphine. These results indicate that DA D-1 and D-2 receptors mediate circling behaviour through separate mechanisms which can be independently manipulated with respective agonists and antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Hypercholesterolemia Up-Regulates the Expression of Intermedin and Its Receptor Components in the Aorta of Rats via Inducing the Oxidative Stress.

    Science.gov (United States)

    Meng, Qingtao; Shi, Di; Feng, Jiayue; Su, Yanling; Long, Yang; He, Sen; Wang, Si; Wang, Yong; Zhang, Xiangxun; Chen, Xiaoping

    2016-01-01

    Hypercholesterolemia can cause damage to the artery. Intermedin (IMD) is a novel member of the calcitonin gene-related peptide family. This study aims to investigate the aortic expression of IMD and its receptors in hypercholesterolemia without atherosclerosis. Male Wistar rats were fed with high cholesterol diet, with or without simvastatin and vitamin C. Both the malondialdehyde (MDA) and superoxide dismutase (SOD) in plasma and aorta were determined as the oxidative stress biomarkers. The plasma IMD was assessed by radioimmunoassay. Within the aorta, the mRNA expression of IMD along with its receptor components was determined, and the corresponding protein level of the CRLR/RAMPs was also assessed. The hypercholesterolemia rats without atherosclerotic lesion manifested a higher level of MDA and SOD and the plasma IMD elevated. Increased expression of IMD and all its receptor components (CRLR, RAMP1, RAMP2, and RAMP3) were displayed within the aorta. The simvastatin indirectly attenuated oxidative stress by improving lipid profiles, while the vitamin C directly reduced oxidative stress without interfering with the serum lipids. Both simvastatin and vitamin C ameliorated the aortic injury, decreased the plasma IMD level, and recovered the expression of IMD and its receptors within the aorta. The up-regulated expression of IMD is observed within the aorta of the hypercholesterolemia rats. In addition, the oxidative stress participates in the up-regulation. © 2016 by the Association of Clinical Scientists, Inc.

  3. Skeletal Muscle Estrogen Receptor Activation in Response to Eccentric Exercise Up-Regulates Myogenic-Related Gene Expression Independent of Differing Serum Estradiol Levels Occurring during the Human Menstrual Cycle.

    Science.gov (United States)

    Haines, Mackenzie; McKinley-Barnard, Sarah K; Andre, Thomas L; Gann, Josh J; Hwang, Paul S; Willoughby, Darryn S

    2018-03-01

    This study sought to determine if the differences in serum estradiol we have previously observed to occur during the mid-follicular (MF) and mid-luteal (ML) phases of the female menstrual cycle could be attributed to estrogen-induced receptor activation and subsequent effects on myogenic-related genes which may otherwise impact muscle regeneration in response to eccentric exercise. Twenty-two physically-active females (20.9 ± 1.4 years, 63.5 ± 9.0 kg, 1.65 ± 0.08 m) underwent an eccentric exercise bout of the knee extensors during the MF and ML phases of their 28-day menstrual cycle. Prior to (PRE), at 6 (6HRPOST), and 24 (24HRPOST) hours post-exercise for each session, participants had muscle biopsies obtained. Skeletal muscle estradiol and estrogen receptor-α (ER-α) content and ER-DNA binding were determined with ELISA. Real-time PCR was used to assess ER-α, Myo-D, and cyclin D1 mRNA expression. Data were analyzed utilizing a 2 x 3 repeated measures univariate analyses of variance (ANOVA) for each criterion variable (p ≤ .05). Skeletal muscle estradiol levels were not significantly impacted by either menstrual phase (p > 0.05); however, both ER-α mRNA and protein were significantly increased during MF (p < 0.05). ER-DNA binding and Myo-D mRNA expression increased significantly in both menstrual phases in response to exercise but were not different from one another; however, cyclin D1 mRNA expression was significantly greater during MF. This study demonstrates that skeletal muscle ER-α activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of serum estradiol levels occurring during the human menstrual cycle.

  4. Vasopressin up-regulates the expression of growth-related immediate-early genes via two distinct EGF receptor transactivation pathways

    Science.gov (United States)

    Fuentes, Lida Q.; Reyes, Carlos E.; Sarmiento, José M.; Villanueva, Carolina I.; Figueroa, Carlos D.; Navarro, Javier; González, Carlos B.

    2008-01-01

    Activation of V1a receptor triggers the expression of growth-related immediate-early genes (IEGs), including c-Fos and Egr-1. Here we found that pre-treatment of rat vascular smooth muscle A-10 cell line with the EGF receptor inhibitor AG1478 or the over-expression of an EGFR dominant negative mutant (HEBCD533) blocked the vasopressin-induced expression of IEGs, suggesting that activation of these early genes mediated by V1a receptor is via transactivation of the EGF receptor. Importantly, the inhibition of the metalloproteinases, which catalyzed the shedding of the EGF receptor agonist HB-EGF, selectively blocked the vasopressin-induced expression c-Fos. On the other hand, the inhibition of c-Src selectively blocked the vasopressin-induced expression of Egr-1. Interestingly, in contrast to the expression of c-Fos, the expression of Egr-1 was mediated via the Ras/MEK/MAPK-dependent signalling pathway. Vasopressin-triggered expression of both genes required the release of intracellular calcium, activation of PKC and β-arrestin 2. These findings demonstrated that vasopressin up-regulated the expression of c-Fos and Erg-1 via transactivation of two distinct EGF receptor-dependent signalling pathways. PMID:18571897

  5. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat

    Science.gov (United States)

    Sanathara, Nayna M.; Moreas, Justine; Mahavongtrakul, Matthew; Sinchak, Kevin

    2014-01-01

    Background Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; aka nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. Methods We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. Results The number of PR and OFQ/N immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple-labeled indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. Conclusion Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis. PMID:24821192

  6. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways.

    Science.gov (United States)

    Rogers, Scott W; Gahring, Lorise C

    2015-01-01

    High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.

  7. Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial learning

    Directory of Open Access Journals (Sweden)

    Hardy Hagena

    2016-09-01

    Full Text Available Although the mossy fiber (MF synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24h synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH-CA1 and perforant path (PP-dentate gyrus (DG synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP and long-term depression (LTD. These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about spatial experience effectively occurs and the neuromodulator dopamine plays a key role in motivation-based learning. Prior research on the regulation by dopamine receptors of long-term synaptic plasticity in CA1 and dentate gyrus synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of these receptors in persistent (>24h forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data

  8. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  9. Autoantibodies Targeting AT1 Receptor from Patients with Acute Coronary Syndrome Upregulate Proinflammatory Cytokines Expression in Endothelial Cells Involving NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Weijuan Li

    2014-01-01

    Full Text Available Our study intended to prove whether agonistic autoantibodies to angiotensin II type 1 receptor (AT1-AAs exist in patients with coronary heart disease (CHD and affect the human endothelial cell (HEC by upregulating proinflammatory cytokines expression involved in NF-κB pathway. Antibodies were determined by chronotropic responses of cultured neonatal rat cardiomyocytes coupled with receptor-specific antagonists (valsartan and AT1-EC2 as described previously. Interleukin-6 (IL-6, vascular cell adhesion molecule-1 (VCAM-1, and monocyte chemotactic protein-1 (MCP-1 expression were improved at both mRNA and protein levels in HEC, while NF-κB in the DNA level was improved detected by electrophoretic mobility shift assays (EMSA. These improvements could be inhibited by specific AT1 receptor blocker valsartan, NF-κB blocker pyrrolidine dithiocarbamate (PDTC, and specific short peptides from the second extracellular loop of AT1 receptor. These results suggested that AT1-AAs, via the AT1 receptor, induce expression of proinflammatory cytokines involved in the activation of NF-κB. AT1-AAs may play a great role in the pathogenesis of the acute coronary syndrome by mediating vascular inflammatory effects involved in the NF-κB pathway.

  10. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that [3H]dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    International Nuclear Information System (INIS)

    Leff, S.E.; Creese, I.

    1985-01-01

    The interactions of dopaminergic agonists and antagonists with 3 H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of [ 3 H]dopamine and [ 3 H]apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/[ 3 H]dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific [ 3 H]dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and [ 3 H]flupentixol-binding activities. The affinities of agonists to inhibit D3 specific [ 3 H]dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/[ 3 H]flupentixol competition curves. Both D3 specific [ 3 H] dopamine binding and the high affinity agonist-binding component of dopamine/[ 3 H]flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor

  11. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    NARCIS (Netherlands)

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  12. PI3K is involved in PDGF-beta receptor upregulation post-PDGF-BB treatment in mouse HSC.

    Science.gov (United States)

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Hernández, Elizabeth; Bustamante, Marcia; Desierto, Gregory; Cotty, Adam; Dharker, Nachiket; Choe, Moran; Rojkind, Marcos

    2006-12-01

    Increased expression of PDGF-beta receptors is a landmark of hepatic stellate cell activation and transdifferentiation into myofibroblasts. However, the molecular mechanisms that regulate the fate of the receptor are lacking. Recent studies suggested that N-acetylcysteine enhances the extracellular degradation of PDGF-beta receptor by cathepsin B, thus suggesting that the absence of PDGF-beta receptors in quiescent cells is due to an active process of elimination and not to a lack of expression. In this communication we investigated further molecular mechanisms involved in PDGF-beta receptor elimination and reappearance after incubation with PDGF-BB. We showed that in culture-activated hepatic stellate cells there is no internal protein pool of receptor, that the protein is maximally phosphorylated by 5 min and completely degraded after 1 h by a lysosomal-dependent mechanism. Inhibition of receptor autophosphorylation by tyrphostin 1296 prevented its degradation, but several proteasomal inhibitors had no effect. We also showed that receptor reappearance is time and dose dependent, being more delayed in cells treated with 50 ng/ml (48 h) compared with 10 ng/ml (24 h).

  13. NMDA receptor dependent PGC-1alpha up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury.

    Science.gov (United States)

    Luo, Yun; Zhu, Wenjing; Jia, Jia; Zhang, Chenyu; Xu, Yun

    2009-09-01

    The peroxisome proliferator activated receptor coactivator 1 alpha (PGC-1alpha) is a nuclear transcriptional coactivator that is widely expressed in the brain areas. Over-expression of PGC-1alpha can protect neuronal cells from oxidant-induced injury. The purpose of the current study is to investigate the role of PGC-1alpha in the oxygen (anoxia) deprivation (OGD) neurons. The PGC-1alpha mRNA and protein level between control and OGD neurons were examined by real-time PCR and Western blot. More PGC-1alpha expression was found in the OGD neurons compared with the normal group. Over-expression of PGC-1alpha suppressed cell apoptosis while inhibition of the PGC-1alpha expression induced cell apoptosis in OGD neurons. Furthermore, increase of PGC-1alpha resulted in activation of N-methyl-D-aspartate (NMDA) receptor, p38, and ERK mitogen-activated protein kinase (MAPK) pathway. The blocking of the NMDA receptor by its antagonists MK-801 reduced PGC-1alpha mRNA expression in OGD neurons, while NMDA itself can directly induce the expression of PGC-1alpha in neuronal cells. At the same time, PD98059 (ERK MAPK inhibitor) and SB203580 (P38 MAPK inhibitor) also prevented the up-regulation of PGC-1alpha in OGD neurons and MK801 can inhibit the expression of P38 and ERK MAPK. These data suggested that the expression of PGC-1alpha was up-regulated in OGD mice cortical neurons, which protected the neurons against OGD injury. Moreover, this effect was correlated to the NMDA receptor and the ERK and P38 MAPK pathway. The protective effect of PGC-1alpha on OGD cortical neurons may be useful for stroke therapy.

  14. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    International Nuclear Information System (INIS)

    Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas

    2009-01-01

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPARβ/δ signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPARβ/δ and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  15. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    Energy Technology Data Exchange (ETDEWEB)

    Volakakis, Nikolaos; Joodmardi, Eliza [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); The Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  16. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    Science.gov (United States)

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  17. Upregulation of the Chemokine Receptor CCR2B in Epstein‒Barr Virus-Positive Burkitt Lymphoma Cell Lines with the Latency III Program

    Directory of Open Access Journals (Sweden)

    Svetlana Kozireva

    2018-05-01

    Full Text Available CCR2 is the cognate receptor to the chemokine CCL2. CCR2–CCL2 signaling mediates cancer progression and metastasis dissemination. However, the role of CCR2–CCL2 signaling in pathogenesis of B-cell malignancies is not clear. Previously, we showed that CCR2B was upregulated in ex vivo peripheral blood B cells upon Epstein‒Barr virus (EBV infection and in established lymphoblastoid cell lines with the EBV latency III program. EBV latency III is associated with B-cell lymphomas in immunosuppressed patients. The majority of EBV-positive Burkitt lymphoma (BL tumors are characterized by latency I, but the BL cell lines drift towards latency III during in vitro culture. In this study, the CCR2A and CCR2B expression was assessed in the isogenic EBV-positive BL cell lines with latency I and III using RT-PCR, immunoblotting, and immunostaining analyses. We found that CCR2B is upregulated in the EBV-positive BL cells with latency III. Consequently, we detected the migration of latency III cells toward CCL2. Notably, the G190A mutation, corresponding to SNP CCR2-V64I, was found in one latency III cell line with a reduced migratory response to CCL2. The upregulation of CCR2B may contribute to the enhanced migration of malignant B cells into CCL2-rich compartments.

  18. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The use of [18F]4-fluorobenzyl iodide (FBI) in PET radiotracer synthesis: model alkylation studies and its application in the design of dopamine D1 and D2 receptor-based imaging agents

    International Nuclear Information System (INIS)

    Mach, R.H.; Elder, S.T.; Morton, T.E.

    1993-01-01

    [ 18 F]4-Fluorobenzyl iodide ([ 18 F]FBI) was prepared, and a series of model alkylation studies were conducted to determine its chemical reactivity toward nitrogen and sulfur nucleophiles of varying nucleophilicities. [ 18 F]FBI was found to react rapidly with secondary amines and anilines to give the corresponding N-[ 18 F]4-fluorobenzyl analogue in high yield. Amides and thiol groups required the use of a base catalyst. The utility of [ 18 F]FBI was documented by investigation of dopamine D 1 and D 2 receptor-based radiotracers. (author)

  20. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3.

    Science.gov (United States)

    Grieco, Steven F; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-09-01

    We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition. We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice. Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold). This up-regulation was abolished in GSK3 knockin mice that express mutant constitutively active GSK3. The GSK3 specific inhibitor L803-mts was antidepressant in the learned helplessness and novelty suppressed feeding depression-like behaviours and up-regulated the 5HTR2C miRNA cluster in mouse hippocampus. After administration of the learned helplessness paradigm mice were divided into cohorts that were resilient (non-depressed) or were susceptible (depressed) to learned helplessness. The resilient, but not depressed, mice displayed increased hippocampal levels of miRNAs 448-3p and 1264-3p. Administration of an antagonist to miRNA 448-3p diminished the antidepressant effect of ketamine in the learned helplessness paradigm, indicating that up-regulation of miRNA 448-3p provides an antidepressant action. These findings identify a new outcome of GSK3 inhibition by ketamine that may contribute to antidepressant effects.

  1. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Ekhtear [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Karnan, Sivasundaram; Damdindorj, Lkhagvasuren [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Takahashi, Miyuki [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan)

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.

  2. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia.

    Science.gov (United States)

    Espinosa, Janaína; Rocha, Andreia; Nunes, Fernanda; Costa, Marcelo S; Schein, Vanessa; Kazlauckas, Vanessa; Kalinine, Eduardo; Souza, Diogo O; Cunha, Rodrigo A; Porciúncula, Lisiane O

    2013-01-01

    Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimer's disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-β-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.

  3. Acute up-regulation of the rat brain somatostatin receptor-effector system by leptin is related to activation of insulin signaling and may counteract central leptin actions.

    Science.gov (United States)

    Perianes-Cachero, A; Burgos-Ramos, E; Puebla-Jiménez, L; Canelles, S; Frago, L M; Hervás-Aguilar, A; de Frutos, S; Toledo-Lobo, M V; Mela, V; Viveros, M P; Argente, J; Chowen, J A; Arilla-Ferreiro, E; Barrios, V

    2013-11-12

    Leptin and somatostatin (SRIF) have opposite effects on food seeking and ingestive behaviors, functions partially regulated by the frontoparietal cortex and hippocampus. Although it is known that the acute suppression of food intake mediated by leptin decreases with time, the counter-regulatory mechanisms remain unclear. Our aims were to analyze the effect of acute central leptin infusion on the SRIF receptor-effector system in these areas and the implication of related intracellular signaling mechanisms in this response. We studied 20 adult male Wister rats including controls and those treated intracerebroventricularly with a single dose of 5 μg of leptin and sacrificed 1 or 6h later. Density of SRIF receptors was unchanged at 1h, whereas leptin increased the density of SRIF receptors at 6h, which was correlated with an elevated capacity of SRIF to inhibit forskolin-stimulated adenylyl cyclase activity in both areas. The functional capacity of SRIF receptors was unaltered as cell membrane levels of αi1 and αi2 subunits of G inhibitory proteins were unaffected in both brain areas. The increased density of SRIF receptors was due to enhanced SRIF receptor subtype 2 (sst2) protein levels that correlated with higher mRNA levels for this receptor. These changes in sst2 mRNA levels were concomitant with increased activation of the insulin signaling, c-Jun and cyclic AMP response element-binding protein (CREB); however, activation of signal transducer and activator of transcription 3 was reduced in the cortex and unchanged in the hippocampus and suppressor of cytokine signaling 3 remained unchanged in these areas. In addition, the leptin antagonist L39A/D40A/F41A blocked the leptin-induced changes in SRIF receptors, leptin signaling and CREB activation. In conclusion, increased activation of insulin signaling after leptin infusion is related to acute up-regulation of the SRIF receptor-effector system that may antagonize short-term leptin actions in the rat brain

  4. Hippocampal deletion of BDNF gene attenuates gamma oscillations in area CA1 by up-regulating 5-HT3 receptor.

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2011-01-01

    Full Text Available Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown.Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice.These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system.

  5. No upregulation of digitalis glycoside receptor (Na,K-ATPase) concentration in human heart left ventricle samples obtained at necropsy after long term digitalisation.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1991-08-01

    life is associated with a 34% occupancy of digitalis glycoside receptors with digoxin. In the human heart there was no evidence for upregulation of digitalis glycoside receptor concentration due to long term digitalisation. Thus at receptor level there was no evidence for development of tolerance to digoxin therapy. The lower digitalis glycoside receptor concentration in the left ventricle observed in the heart failure patients may support the report of a relationship between Na,K-ATPase concentration as evaluated by 3H-ouabain binding and left ventricular function.

  6. Type I and type II interferons upregulate functional type I interleukin-1 receptor in a human fibroblast cell line TIG-1.

    Science.gov (United States)

    Takii, T; Niki, N; Yang, D; Kimura, H; Ito, A; Hayashi, H; Onozaki, K

    1995-12-01

    The regulation of type I interleukin-1 receptor (IL-1R) expression by type I, interferon (IFN)-alpha A/D, and type II IFN, IFN-gamma, in a human fibroblast cell line TIG-1 was investigated. After 2 h stimulation with human IFN-alpha A/D or IFN-gamma, the levels of type I IL-1R mRNA increased. We previously reported that IL-1 upregulates transcription and cell surface molecules of type I IL-1R in TIG-1 cells through induction of prostaglandin (PG) E2 and cAMP accumulation. However, indomethacin was unable to inhibit the effect of IFNs, indicating that IFNs augment IL-1R expression through a pathway distinct from that of IL-1. The augmentation was also observed in other fibroblast cell lines. Nuclear run-on assays and studies of the stability of mRNA suggested that the increase in IL-1R mRNA was a result of the enhanced transcription of IL-1R gene. Binding studies using 125I-IL-1 alpha revealed that the number of cell surface IL-1R increased with no change in binding affinity by treatment with these IFNs. Pretreatment of the cells with IFNs enhanced IL-1-induced IL-6 production, indicating that IFNs upregulate functional IL-1R. IL-1 and IFNs are produced by the same cell types, as well as by the adjacent different cell types, and are concomitantly present in lesions of immune and inflammatory reactions. These results therefore suggest that IFNs exhibit synergistic effects with IL-1 through upregulation of IL-1R. Augmented production of IL-6 may also contribute to the reactions.

  7. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats.

    Science.gov (United States)

    Sun, Yanru; Han, Mingfeng; Shen, Zhenhuang; Huang, Haibo; Miao, Xiaoqing

    2018-02-01

    Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL), which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs). We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  8. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats

    Directory of Open Access Journals (Sweden)

    Yanru Sun

    2018-02-01

    Full Text Available Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL, which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs. We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.

  9. The upregulation of receptor activator NF-kappaB ligand expression by interleukin-1alpha and Porphyromonas endodontalis in human osteoblastic cells.

    Science.gov (United States)

    Chen, S-C; Huang, F-M; Lee, S-S; Li, M-Z; Chang, Y-C

    2009-04-01

    To investigate the receptor activator of nuclear factor-kappa B (NF-kappaB) ligand (RANKL) in osteoblastic cells stimulated with inflammatory mediators. The expression of RANKL in human osteoblastic cell line U2OS stimulated by pro-inflammatory cytokine interleukin (IL)-1alpha and black-pigmented bacteria Porphyromonas endodontalis was investigated by Western blot and enzyme-linked immunosorbent assay (ELISA). The significance of the results obtained from control and treated groups was statistically analysed by the paired Student's t-test. IL-1alpha was found to upregulate RANKL production in U2OS cells (P endodontalis also increased RANKL expression in U2OS cells after 4-h incubation period demonstrated by Western blot and ELISA (P endodontalis may be involved in developing apical periodontitis through the stimulation of RANKL production.

  10. Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation.

    Science.gov (United States)

    Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Chen, Wen-Yih; Ruaan, Ruoh-Chyu; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng

    2014-06-01

    Urothelial carcinoma (UC) is the most common histologic subtype of bladder cancer. The administration of mitomycin C (MMC) into the bladder after transurethral resection of the bladder tumor (TURBT) is a common treatment strategy for preventing recurrence after surgery. We previously applied hydrostatic pressure combined with MMC in UC cells and found that hydrostatic pressure synergistically enhanced MMC-induced UC cell apoptosis through the Fas/FasL pathways. To understand the alteration of gene expressions in UC cells caused by hydrostatic pressure and MMC, oligonucleotide microarray was used to explore all the differentially expressed genes. After bioinformatics analysis and gene annotation, Toll-like receptor 6 (TLR6) and connective tissue growth factor (CTGF) showed significant upregulation among altered genes, and their gene and protein expressions with each treatment of UC cells were validated by quantitative real-time PCR and immunoblotting. Under treatment with MMC and hydrostatic pressure, UC cells showed increasing apoptosis using extrinsic pathways through upregulation of TLR6 and CTGF.

  11. 5HT-1A receptors and anxiety-like behaviours: studies in rats with constitutionally upregulated/downregulated serotonin transporter.

    Science.gov (United States)

    Bordukalo-Niksic, Tatjana; Mokrovic, Gordana; Stefulj, Jasminka; Zivin, Marko; Jernej, Branimir; Cicin-Sain, Lipa

    2010-12-01

    Altered activity of brain serotonergic (5HT) system has been implicated in a wide range of behaviours and behavioural disorders, including anxiety. Functioning of 5HT-1A receptor has been suggested as a modulator of emotional balance in both, normal and pathological forms of anxiety. Here, we studied serotonergic modulation of anxiety-like behaviour using a genetic rat model with constitutional differences in 5HT homeostasis, named Wistar-Zagreb 5HT (WZ-5HT) rats. The model, consisting of high-5HT and low-5HT sublines, was developed by selective breeding of animals for extreme activities of peripheral (platelet) 5HT transporter, but selection process had affected also central 5HT homeostasis, as evidenced from neurochemical and behavioural studies. Anxiety-like behaviour in WZ-5HT rats was evaluated by two commonly used paradigms: open field and elevated-plus maze. The involvement of 5HT-1A receptors in behavioural response was assessed by measuring mRNA expression in cell bodies (raphe nuclei) and projection regions (frontal cortex, hippocampus) by use of RT-PCR and in situ hybridization, and by measuring functionality of cortical 5HT-1A receptors by use of [(3)H]8-OH-DPAT radioligand binding. Animals from the high-5HT subline exhibit increased anxiety-like behaviour and decreased exploratory activity when exposed to novel environment. No measurable differences in constitutional (baseline) functionality or expression of 5HT-1A receptors between sublines were found. The results support contribution of increased serotonergic functioning to the anxiety-like behaviour. They also validate the high-5HT subline of WZ-5HT rats as a potential model to study mechanisms of anxiety, especially of its nonpathological form, while the low-5HT subline may be useful to model sensation seeking phenotype. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Interferon-β Inhibits Neurotrophin 3 Signalling and Pro-Survival Activity by Upregulating the Expression of Truncated TrkC-T1 Receptor.

    Science.gov (United States)

    Dedoni, Simona; Olianas, Maria C; Ingianni, Angela; Onali, Pierluigi

    2017-04-01

    Although clinically useful for the treatment of various diseases, type I interferons (IFNs) have been implicated as causative factors of a number of neuroinflammatory disorders characterized by neuronal damage and altered CNS functions. As neurotrophin 3 (NT3) plays a critical role in neuroprotection, we examined the effects of IFN-β on the signalling and functional activity of the NT3/TrkC system. We found that prolonged exposure of differentiated human SH-SY5Y neuroblastoma cells to IFN-β impaired the ability of NT3 to induce transphosphorylation of the full-length TrkC receptor (TrkC-FL) and the phosphorylation of downstream signalling molecules, including PLCγ1, Akt, GSK-3β and ERK1/2. NT3 was effective in protecting the cells against apoptosis triggered by serum withdrawal or thapsigargin but not IFN-β. Prolonged exposure to the cytokine had little effects on TrkC-FL levels but markedly enhanced the messenger RNA (mRNA) and protein levels of the truncated isoform TrkC-T1, a dominant-negative receptor that inhibits TrkC-FL activity. Cell depletion of TrkC-T1 by small interfering RNA (siRNA) treatment enhanced NT3 signalling through TrkC-FL and allowed the neurotrophin to counteract IFN-β-induced apoptosis. Furthermore, the upregulation of TrkC-T1 by IFN-β was associated with the inhibition of NT3-induced recruitment of the scaffold protein tamalin to TrkC-T1 and tamalin tyrosine phosphorylation. These data indicate that IFN-β exerts a negative control on NT3 pro-survival signalling through a novel mechanism involving the upregulation of TrkC-T1.

  13. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  14. Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor.

    Science.gov (United States)

    Bose, Sudeep K; Gibson, Willietta; Giri, Shailendra; Nath, Narender; Donald, Carlton D

    2009-09-01

    Paired homeobox 2 gene (PAX2) is a transcriptional regulator, aberrantly expressed in prostate cancer cells and its down-regulation promotes cell death in these cells. The molecular mechanisms of tumor progression by PAX2 over-expression are still unclear. However, it has been reported that angiotensin-II (A-II) induces cell growth in prostate cancer via A-II type 1 receptor (AT1R) and is mediated by the phosphorylation of mitogen activated protein kinase (MAPK) as well as signal transducer and activator of transcription 3 (STAT3). Here we have demonstrated that A-II up-regulates PAX2 expression in prostate epithelial cells and prostate cancer cell lines resulting in increased cell growth. Furthermore, AT1R receptor antagonist losartan was shown to inhibit A-II induced PAX2 expression in prostate cancer. Moreover, analysis using pharmacological inhibitors against MEK1/2, ERK1/2, JAK-II, and phospho-STAT3 demonstrated that AT1R-mediated stimulatory effect of A-II on PAX2 expression was regulated in part by the phosphorylation of ERK1/2, JAK II, and STAT3 pathways. In addition, we have showed that down-regulation of PAX2 by an AT1R antagonist as well as JAK-II and STAT3 inhibitors suppress prostate cancer cell growth. Collectively, these findings show for the first time that the renin-angiotensin system (RAS) may promote prostate tumorigenesis via up-regulation of PAX2 expression. Therefore, PAX2 may be a novel therapeutic target for the treatment of carcinomas such as prostate cancer via the down-regulation of its expression by targeting the AT1R signaling pathways.

  15. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1.

    Directory of Open Access Journals (Sweden)

    Seok-Jun Kim

    Full Text Available BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1 PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a galectin-3 silencing decreases the expression of PAR-1. b galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis.

  16. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    Science.gov (United States)

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  17. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  18. Snake venom toxin from vipera lebetina turanica induces apoptosis of colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression

    International Nuclear Information System (INIS)

    Park, Mi Hee; Jo, MiRan; Won, Dohee; Song, Ho Sueb; Han, Sang Bae; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    Abundant research suggested that the cancer cells avoid destruction by the immune system through down-regulation or mutation of death receptors. Therefore, it is very important that finding the agents that increase the death receptors of cancer cells. In this study, we demonstrated that the snake venom toxin from Vipera lebetina turanica induce the apoptosis of colon cancer cells through reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) dependent death receptor (DR4 and DR5) expression. We used cell viability assays, DAPI/TUNEL assays, as well as western blot for detection of apoptosis related proteins and DRs to demonstrate that snake venom toxin-induced apoptosis is DR4 and DR5 dependent. We carried out transient siRNA knockdowns of DR4 and DR5 in colon cancer cells. We showed that snake venom toxin inhibited growth of colon cancer cells through induction of apoptosis. We also showed that the expression of DR4 and DR5 was increased by treatment of snake venom toxin. Moreover, knockdown of DR4 or DR5 reversed the effect of snake venom toxin. Snake venom toxin also induced JNK phosphorylation and ROS generation, however, pretreatment of JNK inhibitor and ROS scavenger reversed the inhibitory effect of snake venom toxin on cancer cell proliferation, and reduced the snake venom toxin-induced upregulation of DR4 and DR5 expression. Our results indicated that snake venom toxin could inhibit human colon cancer cell growth, and these effects may be related to ROS and JNK mediated activation of death receptor (DR4 and DR5) signals

  19. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Tae Woon Kim

    2015-03-01

    Full Text Available Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT, acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH, immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  20. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats.

    Science.gov (United States)

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-03-01

    Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  1. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats

    Directory of Open Access Journals (Sweden)

    Diaz Heijtz Rochellys

    2006-05-01

    Full Text Available Abstract Background Molecular genetic studies suggest the dopamine D1 receptor (D1R may be implicated in attention-deficit/hyperactivity disorder (ADHD. As little is known about the potential motor role of D1R in ADHD, animal models may provide important insights into this issue. Methods We investigated the effects of a full and selective D1R agonist, SKF-81297 (0.3, 3 and 10 mg/kg, on motor behaviour and expression of the plasticity-associated gene, c-fos, in habituated young adult male Spontaneously Hypertensive Rats (SHR, the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived. Results SHR rats were more behaviourally active than WKY rats after injection with vehicle. The 0.3 mg/kg dose of SKF-81297 increased motor behaviour (locomotion, sifting, rearing, and sniffing in both SHR and WKY rats. Total grooming was also stimulated, but only in WKY rats. The same dose increased c-fos mRNA expression in the piriform cortex of both strains. The 3 mg/kg dose increased sifting and sniffing in both strains. Locomotion was also stimulated towards the end of the testing period. The intermediate dose decreased total rearing in both strains, and produced a significant increase in c-fos mRNA in the striatum, nucleus accumbens, olfactory tuberculum, and in the cingulate, agranular insular and piriform cortices. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The 10 mg/kg dose also stimulated sifting and sniffing in both strains. Both the 3 and 10 mg/kg doses had no effect on total grooming. The 10 mg/kg dose induced significantly higher levels of c-fos mRNA expression in the nucleus accumbens and adjacent cortical regions (but not striatum of SHR when compared to WKY rats

  2. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    Atherosclerosis is a key factor in vascular disease, and cigarette smoking is a well-known risk factor that may induce an inflammatory response and enhance plaque formation in arteries. Thromboxane (Tx) is one key inflammatory mediator involved in the pathogenesis of cardiovascular disease....... The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl...

  3. Cannabinoid CB2 Receptors Contribute to Upregulation of β-endorphin in Inflamed Skin Tissues by Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Su Tang-feng

    2011-12-01

    Full Text Available Abstract Background Electroacupuncture (EA can produce analgesia by increasing the β-endorphin level and activation of peripheral μ-opioid receptors in inflamed tissues. Endogenous cannabinoids and peripheral cannabinoid CB2 receptors (CB2Rs are also involved in the antinociceptive effect of EA on inflammatory pain. However, little is known about how peripheral CB2Rs interact with the endogenous opioid system at the inflammatory site and how this interaction contributes to the antinociceptive effect of EA on inflammatory pain. In this study, we determined the role of peripheral CB2Rs in the effects of EA on the expression of β-endorphin in inflamed skin tissues and inflammatory pain. Results Inflammatory pain was induced by injection of complete Freund's adjuvant into the left hindpaw of rats. Thermal hyperalgesia was tested with a radiant heat stimulus, and mechanical allodynia was quantified using von Frey filaments. The mRNA level of POMC and protein level of β-endorphin were quantified by real-time PCR and Western blotting, respectively. The β-endorphin-containing keratinocytes and immune cells in the inflamed skin tissues were detected by double-immunofluorescence labeling. The CB2R agonist AM1241 or EA significantly reduced thermal hyperalgesia and mechanical allodynia, whereas the selective μ-opioid receptor antagonist β-funaltrexamine significantly attenuated the antinociceptive effect produced by them. AM1241 or EA significantly increased the mRNA level of POMC and the protein level of β-endorphin in inflamed skin tissues, and these effects were significantly attenuated by pretreatment with the CB2R antagonist AM630. AM1241 or EA also significantly increased the percentage of β-endorphin-immunoreactive keratinocytes, macrophages, and T-lymphocytes in inflamed skin tissues, and these effects were blocked by AM630. Conclusions EA and CB2R stimulation reduce inflammatory pain through activation of μ-opioid receptors. EA increases

  4. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling.

    Science.gov (United States)

    Mittal, Smriti P K; Khole, Swati; Jagadish, Nidhi; Ghosh, Debjani; Gadgil, Vijay; Sinkar, Vilas; Ghaskadbi, Saroj S

    2016-11-01

    Andrographolide, principle constituent of Andrographis paniculata Nees is used in traditional medicine in Southeast Asia and is known to exhibit various biological activities. Its antioxidant activity is due to its ability to activate one of the antioxidant enzymes, heme oxygenase-1 (HO-1) which is regulated transcriptionally through Nrf-2. However, molecular mechanism underlying activation of Nrf-2/HO-1 has not yet been clearly understood. Protective effect of andrographolide against H2O2 induced cell death, reactive oxygen species and lipid peroxidation was observed in HepG2 cells. Ability of andrographolide to modulate G-protein coupled receptor (GPCR) mediated signalling was determined using in silico docking and gene expression was analyzed by qRT-PCR, confocal microscopy and western blot analysis. We clearly show that andrographolide via adenosine A2A receptor signalling leads to activation of p38 MAP kinase, resulting in upregulation of Nrf-2, its translocation to nucleus and activation of HO-1. Additionally, it activates adenylate cyclase resulting in cAMP formation which in turn activates protein kinase A leading to inhibition of GSK-3β by phosphorylation. Inactivated GSK-3β leads to retention of Nrf-2 in the nucleus leading to sustained expression of HO-1 by binding to its antioxidant response element (ARE). Thus, andrographolide probably by binding to adenosine A2a receptor activates Nrf-2 transcription and also inhibits its exclusion from the nucleus by inactivating GSK-3β, together resulting in activation of HO-1. We speculate that andrographolide can be used as a therapeutic drug to combat oxidative stress implicated in pathogenesis of various diseases such as diabetes, osteoporosis, neurodegenerative diseases etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    Science.gov (United States)

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  6. The Locus Coeruleus–Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yun-Fei Lü

    2017-09-01

    results, empathy for pain observed in the CO rats is likely to be mediated by activation of the top-down mPFC-LC/NE-sympathoadrenomedullary (SAM system that further up-regulates P2X3 receptors in the periphery, however, social stress observed in the NCO rats is mediated by activation of both hypothalamic-pituitary-adrenocortical axis and SAM axis.

  7. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2016-04-01

    Full Text Available A fundamental step in cellular defense mechanisms is the recognition of “danger signals” made of conserved pathogen associated molecular patterns (PAMPs expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs. In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG to identify PRRs together with the network pathway of differentially expressed genes (DEGs that recognize salmonid alphavirus subtype 3 (SAV-3 infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs 3 and 8 together with RIG-I-like receptors (RLRs and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I, melanoma differentiation association 5 (MDA5 and laboratory of genetics and physiology 2 (LGP2. The study points to possible involvement of the tripartite motif containing 25 (TRIM25 and mitochondrial antiviral signaling protein (MAVS in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN regulatory factors (IRFs 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.

  8. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    Science.gov (United States)

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (Psolar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  9. Upregulation of estrogen receptor expression in the uterus of ovariectomized B6C3F1 mice and Ishikawa cells treated with bromoethane

    International Nuclear Information System (INIS)

    Aoyama, Hiroaki; Couse, John F.; Hewitt, Sylvia C.; Haseman, Joseph K.; He, Hong; Zheng, Xiaolin; Majstoravich, Sonja; Korach, Kenneth S.; Dixon, D.

    2005-01-01

    In a 2-year NTP bioassay, Bromoethane (BE) was found to induce endometrial neoplasms in the uterus of B6C3F1 mice [; ]. In women, hormonal influences, such as 'unopposed' estrogenic stimulus, have been implicated as important etiologic factors in uterine cancer. BE, however, does not affect the serum concentrations of sex hormones in female B6C3F1 mice [] and the mechanism of BE-induced uterine carcinogenesis still remains unclear. In the present study, we examined the estrogenic effects of BE on the uterus of ovariectomized B6C3F1 mice and on Ishikawa cells. Groups of 6 mice were given daily s.c. injections of 0, 100, 500 or 1000 mg BE/kg for 3 consecutive days. Mice treated with 17β-estradiol served as positive controls. Mice were necropsied 24 h after the final injection, and uteri were weighed and examined histologically and immunohistochemically along with the vagina. Changes observed in the estrogen-treated mice included increased uterine weights, edema and inflammation of the endometrium, increased epithelial layers of the uterine and vaginal lumens and keratinization of the vaginal epithelium. In the BE-treated mice, no such changes occurred; however, immunohistochemical staining of the uterus revealed a significant increase in immunoexpression of the estrogen receptor alpha (ERα) in the two higher dose groups. Analysis of mRNA also showed slightly increased uterine ERα expression in these groups. Upregulated expression of ERα was confirmed in BE-treated Ishikawa cells, in which Western blotting analyses identified an intense signal at approximately 66 kDa, which is consistent with ERα. These data suggest that upregulated expression of ERα may be important in the induction of endometrial neoplasms in BE-treated mice

  10. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Li, Meng; Fu, Qiang; Li, Ying; Li, Shanshan; Xue, Jinsong; Ma, Shiping

    2014-10-01

    Emodin, the major active component of Rhubarb, has shown neuroprotective activity. This study is attempted to investigate whether emodin possesses beneficial effects on chronic unpredictable mild stress (CUMS)-induced behavioral deficits (depression-like behaviors) and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, emodin and fluoxetine (positive control drug) were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests: open field test (OFT), sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST) were applied to evaluate the antidepressant effects of emodin. Then plasma corticosterone concentration, hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) levels were tested to probe the mechanisms. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with high, plasma corticosterone concentration and low hippocampal GR and BDNF expression levels. Whereas, chronic emodin (20, 40 and 80 mg/kg) treatments reversed the behavioral deficiency induced by CUMS exposure. Treatment with emodin normalized the change of plasma corticosterone level, which demonstrated that emodin could partially restore CUMS-induced HPA axis impairments. Besides, hippocampal GR (mRNA and protein) and BDNF (mRNA) expressions were also up-regulated after emodin treatments. In conclusion, emodin remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the up-regulating GR and BDNF levels in hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. IFN-Alpha receptor-1 upregulation in PBMC from HCV naïve patients carrying cc genotype. possible role of IFN-lambda.

    Directory of Open Access Journals (Sweden)

    Eleonora Lalle

    Full Text Available IL-28B gene polymorphisms predict better therapeutic response and spontaneous clearance of HCV. Moreover, higher expression of IFN-lambda has been reported in patients with the rs12979860 CC favourable genotype. The study aim was to establish possible relationships between IL-28B rs12979860 genotypes and expression of IFN-alpha receptor-1 (IFNAR-1 in naïve HCV patients, and to explore the possible role of IFN-lambda.IFNAR-1 mRNA levels were measured in PBMC from naïve patients with chronic hepatitis C with different IL-28 genotypes. The ability of IFN-lambda to up-regulate the expression of IFNAR-1 was established in PBMC from healthy donors carrying different IL-28B genotypes.Lower IFNAR-1 mRNA levels were observed in PBMC from HCV-infected naïve patients as compared to healthy donors. In healthy donors, IFNAR-1 mRNA levels were independent from IL-28B genotype, while in HCV patients, an increasing gradient was observed in TT vs CT vs CC carriers. In the latter group, a direct correlation between IFNAR-1 and endogenous IL-28B expression was observed. Moreover, IFN-lambda up-regulated IFNAR-1 expression in normal PBMC in a time-and dose-dependent manner, with a more effective response in CC vs TT carriers.Endogenous levels of IFN-lambda may be responsible for partial restoration of IFNAR-1 expression in HCV patients with favourable IL-28 genotype. This, in turn, may confer to CC carriers a response advantage to either endogenous or exogenous IFN-alpha, representing the biological basis for the observed association between CC genotype and favourable outcome of either natural infection (clearance vs chronicization or IFN therapy.

  12. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  13. Lansoprazole Upregulates Polyubiquitination of the TNF Receptor-Associated Factor 6 and Facilitates Runx2-mediated Osteoblastogenesis.

    Science.gov (United States)

    Mishima, Kenichi; Kitoh, Hiroshi; Ohkawara, Bisei; Okuno, Tatsuya; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2015-12-01

    The transcription factor, runt-related transcription factor 2 (Runx2), plays a pivotal role in the differentiation of the mesenchymal stem cells to the osteochondroblast lineages. We found by the drug repositioning strategy that a proton pump inhibitor, lansoprazole, enhances nuclear accumulation of Runx2 and induces osteoblastogenesis of human mesenchymal stromal cells. Systemic administration of lansoprazole to a rat femoral fracture model increased osteoblastogenesis. Dissection of signaling pathways revealed that lansoprazole activates a noncanonical bone morphogenic protein (BMP)-transforming growth factor-beta (TGF-β) activated kinase-1 (TAK1)-p38 mitogen-activated protein kinase (MAPK) pathway. We found by in cellulo ubiquitination studies that lansoprazole enhances polyubiquitination of the TNF receptor-associated factor 6 (TRAF6) and by in vitro ubiquitination studies that the enhanced polyubiquitination of TRAF6 is attributed to the blocking of a deubiquitination enzyme, cylindromatosis (CYLD). Structural modeling and site-directed mutagenesis of CYLD demonstrated that lansoprazole tightly fits in a pocket of CYLD where the C-terminal tail of ubiquitin lies. Lansoprazole is a potential therapeutic agent for enhancing osteoblastic differentiation.

  14. Prevotella intermedia induces severe bacteremic pneumococcal pneumonia in mice with upregulated platelet-activating factor receptor expression.

    Science.gov (United States)

    Nagaoka, Kentaro; Yanagihara, Katsunori; Morinaga, Yoshitomo; Nakamura, Shigeki; Harada, Tatsuhiko; Hasegawa, Hiroo; Izumikawa, Koichi; Ishimatsu, Yuji; Kakeya, Hiroshi; Nishimura, Masaharu; Kohno, Shigeru

    2014-02-01

    Streptococcus pneumoniae is the leading cause of respiratory infection worldwide. Although oral hygiene has been considered a risk factor for developing pneumonia, the relationship between oral bacteria and pneumococcal infection is unknown. In this study, we examined the synergic effects of Prevotella intermedia, a major periodontopathic bacterium, on pneumococcal pneumonia. The synergic effects of the supernatant of P. intermedia (PiSup) on pneumococcal pneumonia were investigated in mice, and the stimulation of pneumococcal adhesion to human alveolar (A549) cells by PiSup was assessed. The effects of PiSup on platelet-activating factor receptor (PAFR) transcript levels in vitro and in vivo were analyzed by quantitative real-time PCR, and the differences between the effects of pneumococcal infection induced by various periodontopathic bacterial species were verified in mice. Mice inoculated with S. pneumoniae plus PiSup exhibited a significantly lower survival rate, higher bacterial loads in the lungs, spleen, and blood, and higher inflammatory cytokine levels in the bronchoalveolar lavage fluid (macrophage inflammatory protein 2 and tumor necrosis factor alpha) than those infected without PiSup. In A549 cells, PiSup increased pneumococcal adhesion and PAFR transcript levels. PiSup also increased lung PAFR transcript levels in mice. Similar effects were not observed in the supernatants of Porphyromonas gingivalis or Fusobacterium nucleatum. Thus, P. intermedia has the potential to induce severe bacteremic pneumococcal pneumonia with enhanced pneumococcal adhesion to lower airway cells.

  15. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    International Nuclear Information System (INIS)

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien; Sabourin, Jean-Christophe; Benderitter, Marc; Francois, Agnes

    2009-01-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET A ), and ET type B receptor (ET B ) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectum tissue were done; the sections were also immunostained for ET A and ET B receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET A /ET B expression and ET A /ET B localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET A and ET B in healthy human rectums was similar to that in rat rectums. However, strong ET A immunostaining was seen in the presence of human radiation proctitis, and increased ET A mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET A was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET A , radiation exposure deregulates the endothelin system through an 'ET A profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or specific ET A receptor blockade do not prevent radiation damage

  16. Up-regulation of PI3K/Akt signaling by 17β-estradiol through activation of estrogen receptor-α, but not estrogen receptor-β, and stimulates cell growth in breast cancer cells

    International Nuclear Information System (INIS)

    Lee, Young-Rae; Park, Jinny; Yu, Hong-Nu; Kim, Jong-Suk; Youn, Hyun Jo; Jung, Sung Hoo

    2005-01-01

    Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-α (ERα) and estrogen receptor-β (ERβ). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP 3 ), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17β-estradiol (E2) up-regulates PI3K in an ERα-dependent manner, but not ERβ, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ERα-positive MCF-7 cells and ERα-negative MDA-MB-231 cells with 10 nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP 3 level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ERα-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ERα-dependent mechanism in MCF-7 cells

  17. Up-Regulation of Follistatin-Like 1 By the Androgen Receptor and Melanoma Antigen-A11 in Prostate Cancer.

    Science.gov (United States)

    Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M

    2017-04-01

    High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to

  18. Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy

    International Nuclear Information System (INIS)

    Hirano, Ken-ichi; Tanaka, Tatsuya; Ikeda, Yoshihiko; Yamaguchi, Satoshi; Zaima, Nobuhiro; Kobayashi, Kazuhiro; Suzuki, Akira; Sakata, Yasuhiko

    2014-01-01

    Highlights: •Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare severe heart disease. •PPARγ is up-regulated in myocardium in patients with TGCV. •Possible vicious cycle for fatty acid may be involved in pathophysiology of TGCV. -- Abstract: Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, “Triglyceride deposit cardiomyovasculopathy (TGCV)”. Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5′ splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules’ lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients’ passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG

  19. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  20. Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in patients with triglyceride deposit cardiomyovasculopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Ken-ichi, E-mail: khirano@cnt-osaka.com [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Tatsuya [Center for Medical Research and Education, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Ikeda, Yoshihiko [Department of Pathology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita 565-8565 (Japan); Yamaguchi, Satoshi [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zaima, Nobuhiro [Department of Applied Biochemistry, Kinki University, 3327-204, Nakamachi, Nara 631-8505 (Japan); Kobayashi, Kazuhiro [Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Suzuki, Akira [Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Graduate School of Medicine, Osaka University, 6-2-3, Furuedai, Suita, Osaka 565-0874 (Japan); Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakata, Yasuhiko [Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-cho, Aoba-ku, Sendai 980-8574 (Japan); and others

    2014-01-10

    Highlights: •Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare severe heart disease. •PPARγ is up-regulated in myocardium in patients with TGCV. •Possible vicious cycle for fatty acid may be involved in pathophysiology of TGCV. -- Abstract: Adipose triglyceride lipase (ATGL, also known as PNPLA2) is an essential molecule for hydrolysis of intracellular triglyceride (TG). Genetic ATGL deficiency is a rare multi-systemic neutral lipid storage disease. Information regarding its clinical profile and pathophysiology, particularly for cardiac involvement, is still very limited. A previous middle-aged ATGL-deficient patient in our institute (Case 1) with severe heart failure required cardiac transplantation (CTx) and exhibited a novel phenotype, “Triglyceride deposit cardiomyovasculopathy (TGCV)”. Here, we tried to elucidate molecular mechanism underlying TGCV. The subjects were two cases with TGCV, including our second case who was a 33-year-old male patient (Case 2) with congestive heart failure requiring CTx. Case 2 was homozygous for a point mutation in the 5′ splice donor site of intron 5 in the ATGL, which results in at least two types of mRNAs due to splicing defects. The myocardium of both patients (Cases 1 and 2) showed up-regulation of peroxisome proliferated activated receptors (PPARs), key transcription factors for metabolism of long chain fatty acids (LCFAs), which was in contrast to these molecules’ lower expression in ATGL-targeted mice. We investigated the intracellular metabolism of LCFAs under human ATGL-deficient conditions using patients’ passaged skin fibroblasts as a model. ATGL-deficient cells showed higher uptake and abnormal intracellular transport of LCFA, resulting in massive TG accumulation. We used these findings from cardiac specimens and cell-biological experiments to construct a hypothetical model to clarify the pathophysiology of the human disorder. In patients with TGCV, even when hydrolysis of intracellular TG

  1. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4.

    Science.gov (United States)

    Niu, Gengming; Ye, Taiyang; Qin, Liuliang; Bourbon, Pierre M; Chang, Cheng; Zhao, Shengqiang; Li, Yan; Zhou, Lei; Cui, Pengfei; Rabinovitz, Issac; Mercurio, Arthur M; Zhao, Dezheng; Zeng, Huiyan

    2015-01-01

    Tissue repair/wound healing, in which angiogenesis plays an important role, is a critical step in many diseases including chronic wound, myocardial infarction, stroke, cancer, and inflammation. Recently, we were the first to report that orphan nuclear receptor TR3/Nur77 is a critical mediator of angiogenesis and its associated microvessel permeability. Tumor growth and angiogenesis induced by VEGF-A, histamine, and serotonin are almost completely inhibited in Nur77 knockout mice. However, it is not known whether TR3/Nur77 plays any roles in wound healing. In these studies, skin wound-healing assay was performed in 3 types of genetically modified mice having various Nur77 activities. We found that ectopic induction of Nur77 in endothelial cells of mice is sufficient to improve skin wound healing. Although skin wound healing in Nur77 knockout mice is comparable to the wild-type control mice, the process is significantly delayed in the EC-Nur77-DN mice, in which a dominant negative Nur77 mutant is inducibly and specifically expressed in mouse endothelial cells. By a loss-of-function assay, we elucidate a novel feed-forward signaling pathway, integrin β4 → PI3K → Akt → FAK, by which TR3 mediates HUVEC migration. Furthermore, TR3/Nur77 regulates the expression of integrin β4 by targeting its promoter activity. In conclusion, expression of TR3/Nur77 improves wound healing by targeting integrin β4. TR3/Nur77 is a potential candidate for proangiogenic therapy. The results further suggest that TR3/Nur77 is required for pathologic angiogenesis but not for developmental/physiologic angiogenesis and that Nur77 and its family members play a redundant role in normal skin wound healing. © FASEB.

  2. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors.

    Science.gov (United States)

    Bene, Krisztián P; Kavanaugh, Devon W; Leclaire, Charlotte; Gunning, Allan P; MacKenzie, Donald A; Wittmann, Alexandra; Young, Ian D; Kawasaki, Norihito; Rajnavolgyi, Eva; Juge, Nathalie

    2017-01-01

    The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.

  3. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  4. The mechanism of functional up-regulation of P2X3 receptors of trigeminal sensory neurons in a genetic mouse model of familial hemiplegic migraine type 1 (FHM-1.

    Directory of Open Access Journals (Sweden)

    Swathi K Hullugundi

    Full Text Available A knock-in (KI mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP.

  5. Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice.

    Science.gov (United States)

    Gould, Georgianna G; Burke, Teresa F; Osorio, Miguel D; Smolik, Corey M; Zhang, Wynne Q; Onaivi, Emmanuel S; Gu, Ting-Ting; DeSilva, Mauris N; Hensler, Julie G

    2014-01-01

    Hypothalamic pituitary adrenal (HPA) axis responses to change and social challenges during adolescence can influence mental health and behavior into adulthood. To examine how HPA tone in adolescence may contribute to psychopathology, we challenged male adolescent (5 weeks) and adult (16 weeks) BTBR T(+)tf/J (BTBR) and 129S1/SvImJ (129S) mice with novelty in sociability tests. In prior studies these strains had exaggerated or altered HPA stress responses and low sociability relative to C57BL/6J mice in adulthood. In adolescence these strains already exhibited similar or worse sociability deficits than adults or age-matched C57 mice. Yet BTBR adolescents were less hyperactive and buried fewer marbles than adults. Novelty-induced corticosterone (CORT) spikes in adolescent BTBR were double adult levels, and higher than 129S or C57 mice at either age. Due to their established role in HPA feedback, we hypothesized that hippocampal Gαi/o-coupled serotonin 5-HT1A and cannabinoid CB1 receptor function might be upregulated in BTBR mice. Adolescent BTBR mice had higher hippocampal 5-HT1A density as measured by [(3)H] 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) binding than C57 mice, and adult BTBR 8-OH-DPAT-stimulated GTPγS binding was higher than in either C57 or 129S mice in this region. Further, BTBR hippocampal CB1 density measured by [(3)H]CP55,940 binding was 15-20% higher than in C57. CP55,940-stimulated GTPγS binding in adult BTBR dentate gyrus was 30% higher then 129S (p<0.05), but was not a product of greater neuronal or cell density defined by NeuN and DAPI staining. Hence hyperactive HPA responsiveness during adolescence may underlie 5-HT1A and CB1 receptor up-regulation and behavioral phenotype of BTBR mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Serial analysis of resected prostate cancer suggests up-regulation of type 1 IGF receptor with disease progression.

    Science.gov (United States)

    Turney, Benjamin W; Turner, Gareth D H; Brewster, Simon F; Macaulay, Valentine M

    2011-05-01

    • To compare immunostaining protocols using different antibodies for the type 1 insulin-like growth factor receptor (IGF-1R) in channel transurethal resection of the prostate (chTURP) chips, and to investigate how IGF-1R expression varies with time in serial prostate cancer specimens from individual patients. • We studied IGF-1R expression in 44 prostate cancer specimens from 18 patients who had undergone serial chTURP at least 3 months apart. • Retrospective analysis of the hospital notes was undertaken to obtain clinical information, including age, Gleason score, prostate-specific antigen (PSA) level, hormone treatment and metastatic disease status at the time of each operation. • After an optimization process using three commercially-available IGF-1R antibodies, we used two antibodies for semiquantititve immunostaining of serial chTURP chips. • Santa Cruz antibody sc713 gave positive staining in IGF-1R null R- cells, and was not used further. Antibodies from Cell Signaling Technology (Beverly, MA, USA) (CS) and NeoMarkers Inc. (Fremont, CA, USA) (NM) did not stain R- cells and, in prostate tissue, showed staining of the glandular epithelium, with negligible stromal staining. All 44 chTURP samples contained identifiable malignant tissue and, of these, 73% and 64% scored moderately or strongly (score 3 or 4) with the CS and NM antibodies respectively. • There was significant correlation of IGF-1R scores of malignant tissue between the two antibodies (P < 0.001). By contrast, staining of benign glands showed poor correlation between antibodies: CS gave significantly weaker staining than malignant epithelium in the same sections (P < 0.001), whereas NM showed poor discrimination between malignant and benign glands. IGF-1R staining scores generated by the CS antibody were used to analyze the clinical data. • Most patients (six of seven) with falling IGF-1R staining scores were responding to androgen deprivation therapy (confirmed by PSA response

  7. A novel heterocyclic compound improves working memory in the radial arm maze and modulates the dopamine receptor D1R in frontal cortex of the Sprague-Dawley rat.

    Science.gov (United States)

    Hussein, Ahmed M; Aher, Yogesh D; Kalaba, Predrag; Aher, Nilima Y; Dragačević, Vladimir; Radoman, Bojana; Ilić, Marija; Leban, Johann; Beryozkina, Tetyana; Ahmed, Abdel Baset M A; Urban, Ernst; Langer, Thierry; Lubec, Gert

    2017-08-14

    A series of compounds have been shown to enhance cognitive function via the dopaminergic system and indeed the search for more active and less toxic compounds is continuing. It was therefore the aim of the study to synthetise and test a novel heterocyclic compound for cognitive enhancement in a paradigm for working memory. Specific and effective dopamine re-uptake inhibition DAT (IC50=4,1±0,8μM) made us test this compound in a radial arm maze (RAM) in the rat. CE-125 (4-((benzhydrylsulfinyl)methyl)-2-cyclopropylthiazole), was tested for dopamine (DAT), serotonin and norepinephrine re-uptake inhibition by a well-established system. The working memory index (WMI) was evaluated in male Sprague Dawley rats that were intraperitoneally injected with CE-125 (1 or 10mg/kg body weight). In order to evaluate basic neurotoxicity, the open field, elevated plus maze, rota rod studies and the forced swim test were carried out. Frontal cortex was taken at the last day of the RAM test and dopamine receptors D1R and D2R, DAT and phosphorylated DAT protein levels were determined. On the 10th day both doses were increasing the WMI as compared to the vehicle-treated group. In both, trained and treated groups, D1R levels were significantly reduced while D2R levels were unchanged. DAT levels were comparable between all groups while phosphorylated DAT levels were increased in the trained group treated with 1mg/kg body weight. CE-125 as a probably non-neurotoxic compound and specific reuptake inhibitor was shown to increase performance (WMI) and modulation of the dopaminergic system is proposed as a possible mechanism of action. Copyright © 2017. Published by Elsevier B.V.

  8. Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin-resistant rats.

    Science.gov (United States)

    Dias, Jenny Pena; Gariépy, Helaine De Brito; Ongali, Brice; Couture, Réjean

    2015-07-01

    Kinin B1 receptor (B1R) is virtually absent under physiological condition, yet it is highly expressed in models of diabetes mellitus. This study aims at determining: (1) whether B1R is induced in the brain of insulin-resistant rat through the oxidative stress; (2) the consequence of B1R activation on stereotypic nocifensive behavior; (3) the role of downstream putative mediators in B1R-induced behavioral activity. Sprague-Dawley rats were fed with 10% D-glucose in their drinking water or tap water (controls) for 4 or 12 weeks, combined either with a standard chow diet or a diet enriched with α-lipoic acid (1 g/kg feed) for 4 weeks. The distribution and density of brain B1R binding sites were assessed by autoradiography. Behavioral activity evoked by i.c.v. injection of the B1R agonist Sar-[D-Phe(8)]-des-Arg(9)-BK (10 μg) was measured before and after i.c.v. treatments with selective antagonists (10 μg) for kinin B1 (R-715, SSR240612), tachykinin NK1 (RP-67580) and glutamate NMDA (DL-AP5) receptors or with the inhibitor of NOS (L-NNA). Results showed significant increases of B1R binding sites in various brain areas of glucose-fed rats that could be prevented by the diet containing α-lipoic acid. The B1R agonist elicited head scratching, grooming, sniffing, rearing, digging, licking, face washing, wet dog shake, teeth chattering and biting in glucose-fed rats, which were absent after treatment with α-lipoic acid or antagonists/inhibitors. Data suggest that kinin B1R is upregulated by the oxidative stress in the brain of insulin-resistant rats and its activation causes stereotypic nocifensive behavior through the release of substance P, glutamate and NO. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Adaptive upregulation of gastric and hypothalamic ghrelin receptors and increased plasma ghrelin in a model of cancer chemotherapy-induced dyspepsia.

    Science.gov (United States)

    Malik, N M; Moore, G B T; Kaur, R; Liu, Y-L; Wood, S L; Morrow, R W; Sanger, G J; Andrews, P L R

    2008-06-05

    Chemotherapy treatment can lead to delayed gastric emptying, early satiety, anorexia, nausea and vomiting, described collectively as the cancer-associated dyspepsia syndrome (CADS). Administration of ghrelin (GHRL), an endogenous orexigenic peptide known to stimulate gastric motility, has been shown to reduce the symptoms of CADS induced in relevant animal models with the potent chemotherapeutic agent, cisplatin. We examined the effects in the rat of cisplatin (6 mg/kg i.p.) treatment on the expression of GHRL and ghrelin receptor (GHSR) mRNAs in the hypothalamus and the stomach at a time-point (2 days) when the effects of cisplatin are pronounced. In addition, plasma levels of GHRL (acylated and total including des-acyl GHRL) were measured and the effect on these levels of treatment with the synthetic glucocorticoid dexamethasone (2 mg/kg s.c. bd.) was investigated. Cisplatin increased GHSR mRNA expression in the stomach (67%) and hypothalamus (52%) but not GHRL mRNA expression and increased the percentage of acylated GHRL (7.03+/-1.35% vs. 11.38+/-2.40%) in the plasma. Dexamethasone reduced the plasma level of acylated GHRL and the percentage of acylated GHRL to values below those in animals treated with saline alone (7.03+/-1.35% vs. 2.60+/-0.49%). Our findings support the hypothesis that an adaptive upregulation of the ghrelin receptor may occur during cancer chemotherapy-associated dyspepsia. This may have a role in defensive responses to toxic challenges to the gut. In addition, our results provide preliminary evidence for glucocorticoid modulation of plasma ghrelin levels.

  10. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  11. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-01-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  12. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase.

    Science.gov (United States)

    Kim, Ji-Hyun; Lee, Hyo-Jung; Jeong, Soo-Jin; Lee, Min-Ho; Kim, Sung-Hoon

    2012-09-01

    Hyperlipidemia is an important factor to induce metabolic syndrome such as obesity, diabetes and cardiovascular diseases. Recently, some antihyperlipidemic agents from herbal medicines have been in the spotlight in the medical science field. Thus, the present study evaluated the antihyperlipidemic activities of the essential oil from the leaves of Pinus koraiensis SIEB (EOPK) that has been used as a folk remedy for heart disease. The reverse transcription polymerase chain reaction (RT-PCR) revealed that EOPK up-regulated low density lipoprotein receptor (LDLR) at the mRNA level as well as negatively suppressed the expression of sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) involved in lipid metabolism in HepG2 cells. Also, western blotting showed that EOPK activated LDLR and attenuated the expression of FAS at the protein level in the cells. Consistently, EOPK significantly inhibited the level of human acylcoenzyme A: cholesterol acyltransferase (hACAT)1 and 2 and reduced the low-density lipoprotein (LDL) oxidation activity. Furthermore, chromatography-mass spectrometry (GC-MS) analysis showed that EOPK, an essential oil mixture, contained camphene (21.11%), d-limonene (21.01%), α-pinene (16.74%) and borneol (11.52%). Overall, the findings suggest that EOPK can be a potent pharmaceutical agent for the prevention and treatment of hyperlipidemia. Copyright © 2012 John Wiley & Sons, Ltd.

  13. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway.

    Science.gov (United States)

    Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi

    2014-02-14

    Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The Hypocholesterolemic Effect of Germinated Brown Rice Involves the Upregulation of the Apolipoprotein A1 and Low-Density Lipoprotein Receptor Genes

    Directory of Open Access Journals (Sweden)

    Mustapha Umar Imam

    2013-01-01

    Full Text Available Germinated brown rice (GBR is rich in bioactive compounds, which confer GBR with many functional properties. Evidence of its hypocholesterolemic effects is emerging, but the exact mechanisms of action and bioactive compounds involved have not been fully documented. Using type 2 diabetic rats, we studied the effects of white rice, GBR, and brown rice (BR on lipid profile and on the regulation of selected genes involved in cholesterol metabolism. Our results showed that the upregulation of apolipoprotein A1 and low-density lipoprotein receptor genes was involved in the hypocholesterolemic effects of GBR. Additionally, in vitro studies using HEPG2 cells showed that acylated steryl glycoside, gamma amino butyric acid, and oryzanol and phenolic extracts of GBR contribute to the nutrigenomic regulation of these genes. Transcriptional and nontranscriptional mechanisms are likely involved in the overall hypocholesterolemic effects of GBR suggesting that it may have an impact on the prevention and/or management of hypercholesterolemia due to a wide variety of metabolic perturbations. However, there is need to conduct long-term clinical trials to determine the clinical relevance of the hypocholesterolemic effects of GBR determined through animal studies.

  15. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1β expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms.

    Science.gov (United States)

    Hagel, Christian; Krasemann, Susanne; Löffler, Judith; Püschel, Klaus; Magnus, Tim; Glatzel, Markus

    2015-03-01

    In 2011, a large outbreak of Shiga toxin-producing enterohemorrhagic Escherichia coli (EHEC) infections occurred in northern Germany, which mainly affected adults. Out of 3842 patients, 104 experienced a complicated course comprising hemolytic uremic syndrome and neurological complications, including cognitive impairment, aphasia, seizures and coma. T2 hyperintensities on magnet resonance imaging (MRI) bilateral in the thalami and in the dorsal pons were found suggestive of a metabolic toxic effect. Five of the 104 patients died because of toxic heart failure. In the present study, the post-mortem neuropathological findings of the five EHEC patients are described. Histological investigation of 13 brain regions (frontal, temporal, occipital cortex, corpora mammillaria, thalamus, frontal operculum, corona radiata, gyrus angularis, pons, medulla oblongata, cerebellar vermis and cerebellar hemisphere) showed no thrombosis, ischemic changes or fresh infarctions. Further, no changes were found in electron microscopy. In comparison with five age-matched controls, slightly increased activation of microglia and a higher neuronal expression of interleukin-1β and of Shiga toxin receptor CD77/globotriaosylceramide 3 was observed. The findings were confirmed by Western blot analyses. It is suggested that CD77/globotriaosylceramide upregulation may be a consequence to Shiga toxin exposure, whereas increased interleukin-1β expression may point to activation of inflammatory cascades. © 2014 International Society of Neuropathology.

  16. Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells

    DEFF Research Database (Denmark)

    Kongsbak, Martin; von Essen, Marina R; Boding, Lasse

    2014-01-01

    The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR...... protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up......-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR...

  17. Upregulation of adhesion molecules on leukemia targets improves the efficacy of cytotoxic T cells transduced with chimeric anti-CD19 receptor.

    Science.gov (United States)

    Laurin, David; Marin, Virna; Biagi, Ettore; Pizzitola, Irene; Agostoni, Valentina; Gallot, Géraldine; Vié, Henri; Jacob, Marie Christine; Chaperot, Laurence; Aspord, Caroline; Plumas, Joël

    2013-04-01

    T lymphocytes engineered to express chimeric antigen receptors (CARs) interact directly with cell surface molecules, bypassing MHC antigen presentation dependence. We generated human anti-CD19ζ CAR cytotoxic T lymphocytes and cytokine-induced killer cells and studied their sensitivity to the expression of adhesion molecules for the killing of primary B-lineage acute lymphoblastic leukemia (B-ALL) targets. Despite a very low basal expression of surface adhesion molecules, B-ALL blasts were lysed by the anti-CD19ζ-CAR transduced effectors as expected. We next investigated the regulatory role of adhesion molecules during CAR-mediated cytolysis. The blocking of these accessory molecules strongly limited the chimeric effector's cytotoxicity. Thereafter, B-ALL cells surface adhesion molecule level expression was induced by IFN-γ or by the combined use of CD40L and IL-4 and the cells were submitted to anti-CD19ζ-CAR transduced effectors lysis. Upregulation of adhesion molecules expression by blasts potentiated their killing. The improved cytotoxicity observed was dependent on target surface expression of adhesion molecules, particularly CD54. Taken together, these results indicate that adhesion molecules, and principally CD54, are involved in the efficiency of recognition by effector chimeric ζ. These observations have potential implications for the design of immunotherapy treatment approaches for hematological malignancies and tumors based on the adoption of CAR effector cells.

  18. Synergistic Effect of Vaginal Trauma and Ovariectomy in a Murine Model of Stress Urinary Incontinence: Upregulation of Urethral Nitric Oxide Synthases and Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Huey-Yi Chen

    2014-01-01

    Full Text Available The molecular mechanisms underlying stress urinary incontinence (SUI are unclear. We aimed to evaluate the molecular alterations in mice urethras following vaginal trauma and ovariectomy (OVX. Twenty-four virgin female mice were equally distributed into four groups: noninstrumented control; vaginal distension (VD group; OVX group; and VD + OVX group. Changes in leak point pressures (LPPs, genital tract morphology, body weight gain, plasma 17β-estradiol level and expressions of neuronal nitric oxide synthase (nNOS, induced nitric oxide synthase (iNOS, and estrogen receptors (ERs—ERα and ERβ were analyzed. Three weeks after VD, the four groups differed significantly in genital size and body weight gain. Compared with the control group, the plasma estradiol levels were significantly decreased in the OVX and VD + OVX groups, and LPPs were significantly decreased in all three groups. nNOS, iNOS, and ERα expressions in the urethra were significantly increased in the VD and VD + OVX groups, whereas ERβ expression was significantly increased only in the VD + OVX group. These results show that SUI following vaginal trauma and OVX involves urethral upregulations of nNOS, iNOS, and ERs, suggesting that NO- and ER-mediated signaling might play a role in the synergistic effect of birth trauma and OVX-related SUI pathogenesis.

  19. Gemfibrozil and Fenofibrate, Food and Drug Administration-approved Lipid-lowering Drugs, Up-regulate Tripeptidyl-peptidase 1 in Brain Cells via Peroxisome Proliferator-activated Receptor α

    Science.gov (United States)

    Ghosh, Arunava; Corbett, Grant T.; Gonzalez, Frank J.; Pahan, Kalipada

    2012-01-01

    The classical late infantile neuronal ceroid lipofuscinosis (LINCLs) is an autosomal recessive disease, where the defective gene is Cln2, encoding tripeptidyl-peptidase I (TPP1). At the molecular level, LINCL is caused by accumulation of autofluorescent storage materials in neurons and other cell types. Currently, there is no established treatment for this fatal disease. This study reveals a novel use of gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, in up-regulating TPP1 in brain cells. Both gemfibrozil and fenofibrate up-regulated mRNA, protein, and enzymatic activity of TPP1 in primary mouse neurons and astrocytes as well as human astrocytes and neuronal cells. Because gemfibrozil and fenofibrate are known to activate peroxisome proliferator-activated receptor-α (PPARα), the role of PPARα in gemfibrozil- and fenofibrate-mediated up-regulation of TPP1 was investigated revealing that both drugs up-regulated TPP1 mRNA, protein, and enzymatic activity both in vitro and in vivo in wild type (WT) and PPARβ−/−, but not PPARα−/−, mice. In an attempt to delineate the mechanism of TPP1 up-regulation, it was found that the effects of the fibrate drugs were abrogated in the absence of retinoid X receptor-α (RXRα), a molecule known to form a heterodimer with PPARα. Accordingly, all-trans-retinoic acid, alone or together with gemfibrozil, up-regulated TPP1. Co-immunoprecipitation and ChIP studies revealed the formation of a PPARα/RXRα heterodimer and binding of the heterodimer to an RXR-binding site on the Cln2 promoter. Together, this study demonstrates a unique mechanism for the up-regulation of TPP1 by fibrate drugs via PPARα/RXRα pathway. PMID:22989886

  20. Gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, up-regulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: implications for late infantile Batten disease therapy.

    Science.gov (United States)

    Ghosh, Arunava; Corbett, Grant T; Gonzalez, Frank J; Pahan, Kalipada

    2012-11-09

    The classical late infantile neuronal ceroid lipofuscinosis (LINCLs) is an autosomal recessive disease, where the defective gene is Cln2, encoding tripeptidyl-peptidase I (TPP1). At the molecular level, LINCL is caused by accumulation of autofluorescent storage materials in neurons and other cell types. Currently, there is no established treatment for this fatal disease. This study reveals a novel use of gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, in up-regulating TPP1 in brain cells. Both gemfibrozil and fenofibrate up-regulated mRNA, protein, and enzymatic activity of TPP1 in primary mouse neurons and astrocytes as well as human astrocytes and neuronal cells. Because gemfibrozil and fenofibrate are known to activate peroxisome proliferator-activated receptor-α (PPARα), the role of PPARα in gemfibrozil- and fenofibrate-mediated up-regulation of TPP1 was investigated revealing that both drugs up-regulated TPP1 mRNA, protein, and enzymatic activity both in vitro and in vivo in wild type (WT) and PPARβ(-/-), but not PPARα(-/-), mice. In an attempt to delineate the mechanism of TPP1 up-regulation, it was found that the effects of the fibrate drugs were abrogated in the absence of retinoid X receptor-α (RXRα), a molecule known to form a heterodimer with PPARα. Accordingly, all-trans-retinoic acid, alone or together with gemfibrozil, up-regulated TPP1. Co-immunoprecipitation and ChIP studies revealed the formation of a PPARα/RXRα heterodimer and binding of the heterodimer to an RXR-binding site on the Cln2 promoter. Together, this study demonstrates a unique mechanism for the up-regulation of TPP1 by fibrate drugs via PPARα/RXRα pathway.

  1. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.; Gandia, Luis; Escubedo, Elena; Pubill, David

    2010-01-01

    Previous work by our group demonstrated that homomeric α7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca 2+ increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific α7 agonist PNU 282987 with IC 50 values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human α7 but not with α4β2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and α-bungarotoxin but not by dihydro-β-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on α7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca 2+ release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca 2+ levels and induced an increase in α-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and α7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca 2+ -dependent enzymes such as

  2. The dopamine D1 receptor agonist SKF81297 has dose-related effects on locomotor activity but is without effect in a CER trace conditioning procedure conducted with two versus four trials.

    Science.gov (United States)

    Pezze, M A; Marshall, H J; Cassaday, H J

    2016-08-01

    In an appetitively motivated procedure, we have previously reported that systemic treatment with the dopamine (DA) D1 receptor agonist SKF81297 (0.4 and 0.8 mg/kg) depressed acquisition at a 2 s inter-stimulus-interval (ISI), suitable to detect trace conditioning impairment. However since DA is involved in reinforcement processes, the generality of effects across appetitively- and aversively-motivated trace conditioning procedures cannot be assumed. The present study tested the effects of SKF81297 (0.4 and 0.8 mg/kg) in an established conditioned emotional response (CER) procedure. Trace-dependent conditioning was clearly shown in two experiments: while conditioning was relatively strong at a 3-s ISI, it was attenuated at a 30-s ISI. This was shown after two (Experiment 1) or four (Experiment 2) conditioning trials conducted in - as far as possible - the same CER procedure. Contrary to prediction, in neither experiment was there any indication that trace conditioning was attenuated by treatment with 0.4 or 0.8 mg/kg SKF81297. In the same rats, locomotor activity was significantly enhanced at the 0.8 mg/kg dose of SKF81297. These results suggest that procedural details of the trace conditioning variant in use are an important determinant of the profile of dopaminergic modulation.

  3. Upregulation of the Chemokine Receptor CCR7 expression by HIF-1αand HIF-2α in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yang LI

    2008-10-01

    Full Text Available Background and objective CCR7 is closely related with the lymph node metastasis of non-small cell lung cancer. The objective of this work is to investigate the expressions of chemokine receptor CCR7, hypoxiainducible factor 1α (HIF-1α and hypoxia inducible factor 2α (HIF-2α protein in non small cell lung cancer and the relationships of their expression, and to study the mechanism of CCR7 upregulation in NSCLC. Methods T he levels of expressions of CCR7, HIF-1α and HIF-2α protein were detected in 94 specimens of human primary non small cell lung cancer by immunohistochemical S-P method. Human lung adenocarcinoma cell line A549 cells were transfected by lipofection with HIF-1α siRNA、HIF-2α siRNA, the change of CCR7 was observed by RT-PCR and immunofluorescence staining. Correlations between the expression of CCR7 and HIF-1α, HIF-2α were respectively analyzed. Results Immunohistochemistry showed that CCR7 was distributed in cytoplasm and/or membrane of tumor cells, HIF-1α, HIF-2α was distributed in nucleus and/or cytoplasm of tumor cells. The levels of expressions of CCR7, HIF-1α and HIF-2α protein were found to be 75.53% (71/94, 54.25% (51/ 94 and 70.21% (66/94 in non small celllung cancer, respectively. the levels of expression of CCR7 protein were closely related to the clinical stages (P 0.05. Furthermore, A significant correlation were found among CCR7, Hif-1α and HIF-2α (r =0.272, P <0.01 (r=0.225, P <0.05. In addition, the expression of CCR7 mRNA and protein levels were decreased in the transfected specificHIF-1α, HIF-2αsiRNA group (P <0.05. Conclusion CCR7 expression is significantly associated with non small cell lung cancer invasion and metastasis. The upregulation of CCR7 is regulated by HIF-1α and HIF-2α in non small cell lung cancer.

  4. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M.

    2006-01-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERα signaling. However, many ERα-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERα signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERα-negative cells. We previously noticed that both ERα-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERα-negative cell lines even exceeded its over-expression level in ERα-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERα-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene

  5. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    Science.gov (United States)

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist

  6. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1.

    Science.gov (United States)

    Maeda, Yasuhiro; Yagi, Hideki; Takemoto, Kana; Utsumi, Hiroyuki; Fukunari, Atsushi; Sugahara, Kunio; Masuko, Takashi; Chiba, Kenji

    2014-05-01

    Sphingosine 1-phosphate (S1P) and S1P receptor 1 (S1P1) play an important role in the egress of mature CD4 or CD8 single-positive (SP) thymocytes from the thymus. Fingolimod hydrochloride (FTY720), an S1P1 functional antagonist, induced significant accumulation of CD62L(high)CD69(low) mature SP thymocytes in the thymic medulla. Immunohistochemical staining using anti-S1P1 antibody revealed that S1P1 is predominantly expressed on thymocytes in the thymic medulla and is strongly down-regulated even at 3h after FTY720 administration. 2-Acetyl-4-tetrahydroxybutylimidazole (THI), an S1P lyase inhibitor, also induced accumulation of mature SP thymocytes in the thymic medulla with an enlargement of the perivascular spaces (PVS). At 6h after THI administration, S1P1-expressing thymocytes reduced partially as if to form clusters and hardly existed in the proximity of CD31-expressing blood vessels in the thymic medulla, suggesting S1P lyase expression in the cells constructing thymic medullary PVS. To determine the cells expressing S1P lyase in the thymus, we newly established a mAb (YK19-2) specific for mouse S1P lyase. Immunohistochemical staining with YK19-2 revealed that S1P lyase is predominantly expressed in non-lymphoid thymic stromal cells in the thymic medulla. In the thymic medullary PVS, S1P lyase was expressed in ER-TR7-positive cells (reticular fibroblasts and pericytes) and CD31-positive vascular endothelial cells. Our findings suggest that S1P lyase expressed in the thymic medullary PVS keeps the tissue S1P concentration low around the vessels and promotes thymic egress via up-regulation of S1P1.

  7. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    Science.gov (United States)

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  8. Maternal immunization with ovalbumin prevents neonatal allergy development and up-regulates inhibitory receptor FcγRIIB expression on B cells

    Directory of Open Access Journals (Sweden)

    Duarte Alberto JS

    2010-03-01

    Full Text Available Abstract Background Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results Maternal immunization with OVA showed increased levels of FcγRIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-γ-secreting T cells and IL-4 and IL-12- secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced FcγRIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion Maternal immunization upregulates the inhibitory FcγRIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.

  9. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    Science.gov (United States)

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  10. Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2016-04-01

    Full Text Available Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription.

  11. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats.

    Science.gov (United States)

    Sakuma, Yoshihiro; Ohtori, Seiji; Miyagi, Masayuki; Ishikawa, Tetsu; Inoue, Gen; Doya, Hideo; Koshi, Takana; Ito, Toshinori; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Moriya, Hideshige; Takahashi, Kazuhisa

    2007-08-01

    The rat L5/6 facet joint is multisegmentally innervated from the L1 to L6 dorsal root ganglia (DRG). Tumor necrosis factor (TNF) is a known mediator of inflammation. It has been reported that satellite cells are activated, produce TNF and surround DRG neurons innervating L5/6 facet joints after facet injury. In the current study, changes in TNF receptor (p55) expression in DRG neurons innervating the L5/6 facet joint following facet joint injury were investigated in rats using a retrograde neurotransport method followed by immunohistochemistry. Twenty rats were used for this study. Two crystals of Fluorogold (FG; neurotracer) were applied into the L5/6 facet joint. Seven days after surgery, the dorsal portion of the capsule was cut in the injured group (injured group n = 10). No injury was performed in the non-injured group (n = 10). Fourteen days after the first application of FG, bilateral DRGs from T13 to L6 levels were resected and sectioned. They were subsequently processed for p55 immunohistochemistry. The number of FG labeled neurons and number of FG labeled p55-immunoreactive (IR) neurons were counted. FG labeled DRG neurons innervating the L5/6 facet joint were distributed from ipsilateral L1 to L6 levels. Of FG labeled neurons, the ratio of DRG neurons immunoreactive for p55 in the injured group (50%) was significantly higher than that in the non-injured group (13%). The ratio of p55-IR neurons of FG labeled DRG neurons was significantly higher in total L1 and L2 DRGs than that in total L3, 4, 5 and 6 DRGs in the injured group (L1 and 2 DRG, 67%; L3, 4, 5 and 6 DRG, 37%, percentages of the total number of p55-IR neurons at L1 and L2 level or L3-6 level/the total number of FG-labeled neurons at L1 and L2 level or L3-6 level). These data suggest that up-regulation of p55 in DRG neurons may be involved in the sensory transmission from facet joint injury. Regulation of p55 in DRG neurons innervating the facet joint was different between upper DRG innervated

  12. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1.

    Science.gov (United States)

    Mikami, Risako; Mizutani, Koji; Aoki, Akira; Tamura, Yukihiko; Aoki, Kazuhiro; Izumi, Yuichi

    2018-04-01

    Low-level laser irradiation (LLLI) exerts various biostimulative effects, including promotion of wound healing and bone formation; however, few studies have examined biostimulation using blue lasers. The purpose of this study was to investigate the effects of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts. The MC3T3-E1 osteoblast cell line was used in this study. Following LLLI with a 405 nm newly developed UHF-USP blue laser (80 MHz, 100 fs), osteoblast proliferation, and alkaline phosphatase (ALP) activity were assessed. In addition, mRNA levels of the osteoblast differentiation markers, runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), and osteopontin (Opn) was evaluated, and extracellular calcification was quantified. To clarify the involvement of transient receptor potential (TRP) channels in LLLI-induced biostimulation, cells were treated prior to LLLI with capsazepine (CPZ), a selective inhibitor of TRP vanilloid 1 (TRPV1), and subsequent proliferation and ALP activity were measured. LLLI with the 405 nm UHF-USP blue laser significantly enhanced cell proliferation and ALP activity, compared with the non-irradiated control and LLLI using continuous-wave mode, without significant temperature elevation. LLLI promoted osteoblast proliferation in a dose-dependent manner up to 9.4 J/cm 2 and significantly accelerated cell proliferation in in vitro wound healing assay. ALP activity was significantly enhanced at doses up to 5.6 J/cm 2 , and expression of Osx and Alp mRNAs was significantly increased compared to that of the control on days 3 and 7 following LLLI at 5.6 J/cm 2 . The extent of extracellular calcification was also significantly higher as a result of LLLI 3 weeks after the treatment. Measurement of TRPV1 protein expression on 0, 3, and 7 days post-irradiation revealed no differences between the LLLI and control groups; however, promotion of cell

  13. Resolvin D1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats: Possible involvement of NLRP3 inflammasome and NF-κB signaling pathway.

    Science.gov (United States)

    Yin, Yizhou; Chen, Fei; Wang, Wenyan; Wang, Han; Zhang, Xuedong

    2017-01-01

    To investigate the effect of resolvin D1 (RvD1) on the Nod-like receptor family pyrin domain-containing (NLRP3) inflammasome and the nuclear factor-kappa beta (NF-κB) pathway in streptozotocin (STZ)-induced diabetic retinopathy in rats. Ninety-six male rats were divided into four groups: control, STZ, RvD1, and vehicle. The rats with diabetic retinopathy induced by STZ in the RvD1 and vehicle groups were given an intravitreal injection of RvD1 (1,000 ng/kg) or the same dosage of vehicle, respectively. All rats were euthanized 7 days following treatment. Hematoxylin and eosin staining was used to observe the pathological changes in the retinal tissues. The location and expression of the NLRP3 inflammasome components, including NLRP3, caspase-associated recruitment domain (ASC), and caspase-1, in the retinas were detected using immunohistochemistry, real-time PCR, and western blot, respectively. Retinal homogenate of rats were collected for the detection of the downstream molecules interleukin 1 beta (IL-1β) and IL-18 of the NLRP3 inflammasome with enzyme-linked immunosorbent assay kits. The levels of NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18 were upregulated in the retinas of the STZ-induced diabetic rats; however, these changes were partially inhibited by the RvD1 treatment. Furthermore, the administration of RvD1 suppressed activation of NF-kB, which was upregulated in STZ-induced diabetic retinopathy. RvD1 plays a protective role in STZ-induced diabetic retinopathy by inhibiting the level of activation of the NLRP3 inflammasome and associated cytokine production, suggesting targeting of this pathway might be an effective strategy in treatment of diabetic retinopathy.

  14. Grass Carp Follisatin: Molecular Cloning, Functional Characterization, Dopamine D1 Regulation at Pituitary Level, and Implication in Growth Hormone Regulation

    Directory of Open Access Journals (Sweden)

    Roger S. K. Fung

    2017-08-01

    Full Text Available Activin is involved in pituitary hormone regulation and its pituitary actions can be nullified by local production of its binding protein follistatin. In our recent study with grass carp, local release of growth hormone (GH was shown to induce activin expression at pituitary level, which in turn could exert an intrapituitary feedback to inhibit GH synthesis and secretion. To further examine the activin/follistatin system in the carp pituitary, grass carp follistatin was cloned and confirmed to be single-copy gene widely expressed at tissue level. At the pituitary level, follistatin signals could be located in carp somatotrophs, gonadotrophs, and lactotrophs. Functional expression also revealed that carp follistatin was effective in neutralizing activin’s action in stimulating target promoter with activin-responsive elements. In grass carp pituitary cells, follistatin co-treatment was found to revert activin inhibition on GH mRNA expression. Meanwhile, follistatin mRNA levels could be up-regulated by local production of activin but the opposite was true for dopaminergic activation with dopamine (DA or its agonist apomorphine. Since GH stimulation by DA via pituitary D1 receptor is well-documented in fish models, the receptor specificity for follistatin regulation by DA was also investigated. Using a pharmacological approach, the inhibitory effect of DA on follistatin gene expression was confirmed to be mediated by pituitary D1 but not D2 receptor. Furthermore, activation of D1 receptor by the D1-specific agonist SKF77434 was also effective in blocking follistatin mRNA expression induced by activin and GH treatment both in carp pituitary cells as well as in carp somatotrophs enriched by density gradient centrifugation. These results, as a whole, suggest that activin can interact with dopaminergic input from the hypothalamus to regulate follistatin expression in carp pituitary, which may contribute to GH regulation by activin/follistatin system

  15. Development of specific dopamine D-1 agonists and antagonists

    International Nuclear Information System (INIS)

    Sakolchai, S.

    1987-01-01

    To develop potentially selective dopamine D-1 agonists and to investigate on the structural requirement for D-1 activity, the derivatives of dibenzocycloheptadiene are synthesized and pharmacologically evaluated. The target compounds are 5-aminomethyl-10,11-dihydro-1,2-dihydroxy-5H-dibenzo[a,d]cycloheptene hydrobromide 10 and 9,10-dihydroxy-1,2,3,7,8,12b-hexahydrobenzo[1,2]cyclohepta[3,4,5d,e]isoquinoline hydrobromide 11. In a dopamine-sensitive rat retinal adenylate cyclase assay, a model for D-1 activity, compound 10 is essentially inert for both agonist and antagonist activity. In contrast, compound 11 is approximately equipotent to dopamine in activation of the D-1 receptor. Based on radioligand and binding data, IC 50 of compound 11 for displacement of 3 H-SCH 23390, a D-1 ligand, is about 7 fold less than that for displacement of 3 H-spiperone, a D-2 ligand. These data indicate that compound 11 is a potent selective dopamine D-1 agonist. This study provides a new structural class of dopamine D-1 acting agent: dihydroxy-benzocycloheptadiene analog which can serve as a lead compound for further drug development and as a probe for investigation on the nature of dopamine D-1 receptor

  16. Liver Receptor Homolog-1 Is Critical for Adequate Up-regulation of Cyp7a1 Gene Transcription and Bile Salt Synthesis During Bile Salt Sequestration

    NARCIS (Netherlands)

    Out, Carolien; Hageman, Jurre; Bloks, Vincent W.; Gerrits, Han; Gelpke, Maarten D. Sollewijn; Bos, Trijnie; Havinga, Rick; Smit, Martin J.; Kuipers, Folkert; Groen, Albert K.

    Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion

  17. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2,p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression.

    Science.gov (United States)

    Vats, Ishwar Dutt; Chaudhary, Snehlata; Sharma, Ahuti; Nath, Mahendra; Pasha, Santosh

    2010-07-25

    The physiological role of NPFF/FMRFa family of peptides appears to be complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, another analog of YGGFMKKKFMRFamide (YFa), a chimeric peptide of met-enkephalin and FMRFamide, was rationally designed and synthesized which contain D-alanine and p-Cl-phenylalanine residues at 2nd and 4th positions, respectively i.e., Y-(D-Ala)-G-(p-Cl-Phe)-MKKKFMRFamide ([D-Ala(2), p-Cl-Phe(4)]YFa) in order to achieve improved bioavailability and blood brain barrier penetration. Therefore, present study investigates the possible antinociceptive effect of [D-Ala(2), p-Cl-Phe(4)]YFa on intra-peritoneal (i.p.) administration using tail-flick test in rats followed by its opioid receptor(s) specificity using mu, delta and kappa receptor antagonists. Further, its antinociceptive effect was examined during 6 days of chronic i.p. treatment and assessed effect of this treatment on differential expression of opioid receptors. [D-Ala(2), p-Cl-Phe(4)]YFa in comparison to parent peptide YFa, induce significantly higher dose dependent antinociception in rats which was mediated by all three opioid receptors (mu, delta and kappa). Importantly, it induced comparable antinociception in rats throughout the chronic i.p. treatment and significantly up-regulated the overall expression (mRNA and protein) of mu, delta and kappa opioid receptors. Therefore, pharmacological and molecular behavior of [D-Ala(2), p-Cl-Phe(4)]YFa demonstrate that incorporation of D-alanine and p-Cl-phenylalanine residues at appropriate positions in chimeric peptide leads to altered opioid receptor selectivity and enhanced antinociceptive potency, relative to parent peptide. (c) 2010 Elsevier B.V. All rights reserved.

  18. Lack of T-cell receptor-induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-cell lymphoma cells from activation-induced cell death.

    Science.gov (United States)

    Klemke, Claus-Detlev; Brenner, Dirk; Weiss, Eva-Maria; Schmidt, Marc; Leverkus, Martin; Gülow, Karsten; Krammer, Peter H

    2009-05-15

    Restimulation of previously activated T cells via the T-cell receptor (TCR) leads to activation-induced cell death (AICD), which is, at least in part, dependent on the death receptor CD95 (APO-1, FAS) and its natural ligand (CD95L). Here, we characterize cutaneous T-cell lymphoma (CTCL) cells (CTCL tumor cell lines and primary CTCL tumor cells from CTCL patients) as AICD resistant. We show that CTCL cells have elevated levels of the CD95-inhibitory protein cFLIP. However, cFLIP is not responsible for CTCL AICD resistance. Instead, our data suggest that reduced TCR-proximal signaling in CTCL cells is responsible for the observed AICD resistance. CTCL cells exhibit no PLC-gamma1 activity, resulting in an impaired Ca(2+)release and reduced generation of reactive oxygen species upon TCR stimulation. Ca(2+) and ROS production are crucial for up-regulation of CD95L and reconstitution of both signals resulted in AICD sensitivity of CTCL cells. In accordance with these data, CTCL tumor cells from patients with Sézary syndrome do not up-regulate CD95L upon TCR-stimulation and are therefore resistant to AICD. These results show a novel mechanism of AICD resistance in CTCL that could have future therapeutic implications to overcome apoptosis resistance in CTCL patients.

  19. Protein kinase C inhibition prevents upregulation of vascular ET(B) and 5-HT(1B) receptors and reverses cerebral blood flow reduction after subarachnoid haemorrhage in rats

    DEFF Research Database (Denmark)

    Beg, Saema S; Hansen-Schwartz, Jacob A; Vikman, Petter J

    2007-01-01

    with Western blot; only PKCdelta and PKCalpha subtypes were increased after SAH RO-31-7549 treatment abolished this. At 2 days after the SAH basilar and middle cerebral arteries were harvested and the contractile response to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and 5-carboxamidotryptamine (5......-CT; 5-HT(1) receptor agonist) were investigated with a myograph. The contractile responses to ET-1 and 5-CT were increased (Poperated rats. In parallel, the ET(B) and 5-HT(1B) receptor mRNA and protein expression were significantly elevated after SAH, as analysed...

  20. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine.

    Science.gov (United States)

    Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong

    2018-03-01

    The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.

  1. PPARγ agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca(2+)]i increases in renal mesangial cells.

    Science.gov (United States)

    Koch, Alexander; Völzke, Anja; Puff, Bianca; Blankenbach, Kira; Meyer Zu Heringdorf, Dagmar; Huwiler, Andrea; Pfeilschifter, Josef

    2013-11-01

    We previously identified peroxisome proliferator-activated receptor gamma (PPARγ) agonists (thiazolidinediones, TZDs) as modulators of the sphingolipid metabolism in renal mesangial cells. TZDs upregulated sphingosine kinase 1 (SK-1) and increased the formation of intracellular sphingosine 1-phosphate (S1P), which in turn reduced the expression of pro-fibrotic connective tissue growth factor. Since S1P also acts as extracellular ligand at specific S1P receptors (S1PR, S1P1-5), we investigated here the effect of TZDs on S1PR expression in mesangial cells and evaluated the functional consequences by measuring S1P-induced increases in intracellular free Ca(2+) concentration ([Ca(2+)]i). Treatment with two different TZDs, troglitazone and rosiglitazone, enhanced S1P1 mRNA and protein expression in rat mesangial cells, whereas S1P2-5 expression levels were not altered. Upregulation of S1P1 mRNA upon TZD treatment was also detected in human mesangial cells and mouse glomeruli. PPARγ antagonism and promoter studies revealed that the TZD-dependent S1P1 mRNA induction involved a functional PPAR response element in the S1P1 promoter. Pharmacological approaches disclosed that S1P-induced [Ca(2+)]i increases in rat mesangial cells were predominantly mediated by S1P2 and S1P3. Interestingly, the transcriptional upregulation of S1P1 by TZDs resulted in a reduction of S1P-induced [Ca(2+)]i increases, which was reversed by the S1P1/3 antagonist VPC-23019, the protein kinase C (PKC) inhibitor PKC-412, and by S1P1 siRNA. These data suggest that PPARγ-dependent upregulation of S1P1 leads to an inhibition of S1P-induced Ca(2+) signaling in a PKC-dependent manner. Overall, these results reveal that TZDs not only modulate intracellular S1P levels but also regulate S1PR signaling by increasing S1P1 expression in mesangial cells. © 2013.

  2. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    Science.gov (United States)

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  3. Geodesics in (Rn, d1

    Directory of Open Access Journals (Sweden)

    Mehmet KILIÇ

    2016-09-01

    Full Text Available The notion of geodesic, which may be regarded as an extension of the line segment in Euclidean geometry to the space we study in, has an important place in many branches of geometry, such as Riemannian geometry, Metric geometry, to name but a few. In this article, the concept of geodesic in a metric space will be introduced, then geodesics in the space (Rn, d1 will be characterized. Furthermore, some examples will be presented to demonstrate the effectiveness of the main result.

  4. Lipid-soluble smoke particles upregulate vascular smooth muscle ETB receptors via activation of mitogen-activating protein kinases and NF-kappaB pathways

    DEFF Research Database (Denmark)

    Xu, C.B.; Zheng, J.P.; Zhang, W.

    2008-01-01

    Cigarette smoke is a strong risk factor for cardiovascular disease. However, the underlying molecular mechanisms that lead to cigarette smoke-associated cardiovascular disease remain elusive. With functional and molecular methods, we demonstrate for the first time that lipid-soluble cigarette smoke...... particles (dimethylsulfoxide-soluble cigarette smoke particles; DSP) increased the expression of endothelin type B (ET(B)) receptors in arterial smooth muscle cells. The increased ET(B) receptors in arterial smooth muscle cells was documented as enhanced contractility (sensitive myograph technique...

  5. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression.

    Science.gov (United States)

    Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C

    2010-09-01

    Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of

  6. Pathophysiological role of prostaglandin E2-induced up-regulation of the EP2 receptor in motor neuron-like NSC-34 cells and lumbar motor neurons in ALS model mice.

    Science.gov (United States)

    Kosuge, Yasuhiro; Miyagishi, Hiroko; Yoneoka, Yuki; Yoneda, Keiko; Nango, Hiroshi; Ishige, Kumiko; Ito, Yoshihisa

    2017-07-04

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of motor neurons. The primary triggers for motor neuronal death are still unknown, but inflammation is considered to be an important factor contributing to the pathophysiology of ALS both clinically and in ALS models. Prostaglandin E2 (PGE2) and its corresponding four E-prostanoid receptors play a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. It has also been shown that PGE2-EP2 signaling in glial cells (astrocytes or microglia) promotes motor neuronal death in G93A mice. The present study was designed to investigate the levels of expression of EP receptors in the spinal motor neurons of ALS model mice and to examine whether PGE2 alters the expression of EP receptors in differentiated NSC-34 cells, a motor neuron-like cell line. Immunohistochemical staining demonstrated that EP2 and EP3 immunoreactivity was localized in NeuN-positive large cells showing the typical morphology of motor neurons in mice. Semi-quantitative analysis showed that the immunoreactivity of EP2 in motor neurons was significantly increased in the early symptomatic stage in ALS model mice. In contrast, the level of EP3 expression remained constant, irrespective of age. In differentiated NSC-34 cells, bath application of PGE2 resulted in a concentration-dependent decrease of MTT reduction. Although PGE2 had no effect on cell survival at concentrations of less than 10 μM, pretreatment with 10 μM PGE2 significantly up-regulated EP2 and concomitantly potentiated cell death induced by 30 μM PGE2. These results suggest that PGE2 is an important effector for induction of the EP2 subtype in differentiated NSC-34 cells, and that not only EP2 up-regulation in glial cells but also EP2 up-regulation in motor neurons plays a pivotal role in the vulnerability of motor neurons in ALS model mice. Copyright © 2017 Elsevier Ltd. All rights

  7. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats.

    Science.gov (United States)

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar

    2013-01-01

    Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. GABA and ORZ from

  8. EMGWS, D1 projectile tests

    International Nuclear Information System (INIS)

    Creighton, W.J.

    1991-01-01

    This paper reports on the 90 mm EMGWS D1 Projectile which is an unguided projectile that is designed for launch from an Electromagnetic gun to achieve significant armor penetration. It is being developed under the broader program called Electromagnetic Gun Weapon System (EMGWS) which is sponsored by DARPA, DNA, and the U.S. Army. The 90 mm D1 Type II 'workhorse' Projectile is used to prove out material strength, fabrication techniques, and projectile structural integrity. The type II flight projectile is designed to allow maximum stress levels of 100-ksi when launched at 100-kilogees peak acceleration. The total weight of the projectile is 2.0 kg to attain a muzzle velocity of 3.0 km/s from a 9-Megajoule EM Gun. The Type II projectile configuration employs a tungsten nosetip plus 12 segmented tungsten penetrators, a two-piece aluminum discarding sabot, an aluminum pusher plate, and a nylon obturator. The pusher plate can incorporate either a solid or plasma armature

  9. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Svensson, Carl-Lennart; Xu, Cang-Bao

    2002-01-01

    with ET-1 (unspecific ET(A) and ET(B) agonist), S6c (specific ET(B) agonist) and 5-CT (5-HT(1) agonist). Levels of mRNA coding for the ET(A), ET(B), 5-HT(1B) and 5-HT(1D) receptors were analysed using real-time RT-PCR. 3. Classical PKC's are critically involved in the appearance of the ET(B) receptor; co....... 2. The effect of inhibiting protein kinases during organ culture with staurosporine (unspecific protein kinase inhibitor), RO 31-7549 (specific inhibitor of classical PKC's) and H 89 (specific inhibitor of PKA) was examined using in vitro pharmacological examination of cultured vessel segments......-culture with RO 31-7549 abolished the contractile response (6.9 +/- 1.8%) and reduced the ET(B) receptor mRNA by 44 +/- 4% as compared to the cultured control. Correlation between decreased ET(B) receptor mRNA and abolished contractile function indicates upstream involvement of PKC. 4. Inhibition of PKA generally...

  10. Equal contribution of increased intracranial pressure and subarachnoid blood to cerebral blood flow reduction and receptor upregulation after subarachnoid hemorrhage. Laboratory investigation

    DEFF Research Database (Denmark)

    Ansar, Saema; Edvinsson, Lars

    2009-01-01

    chain reaction was used to determine the mRNA levels for ET(A), ET(B), and 5-HT(1) receptors. Regional and global cerebral blood flow (CBF) were quantified by means of an autoradiographic technique. RESULTS: Compared with the sham condition, both SAH and saline injection resulted in significantly...

  11. The low-affinity neurotrophin receptor, p75, is upregulated in ganglioneuroblastoma/ganglioneuroma and reduces tumorigenicity of neuroblastoma cells in vivo

    NARCIS (Netherlands)

    Schulte, Johannes H.; Pentek, Falk; Hartmann, Wolfgang; Schramm, Alexander; Friedrichs, Nicolaus; Ora, Ingrid; Koster, Jan; Versteeg, Rogier; Kirfel, Jutta; Buettner, Reinhard; Eggert, Angelika

    2009-01-01

    Neuroblastoma, the most common extracranial tumor of childhood, is derived from neural crest progenitor cells that fail to differentiate along their predefined route to sympathetic neurons or sympatho-adrenergic adrenal cells. Although expression of the high-affinity neurotrophin receptors, TrkA and

  12. Enhancement of Bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells

    NARCIS (Netherlands)

    van Tol, Helena T A; van Eerdenburg, Frank J C M; Colenbrander, Ben; Roelen, Bernard A J

    In this study, the mechanisms of supposed leptin action on oocyte maturation were examined. Expression of leptin mRNA, as determined with RT-PCR, was present in oocytes but not in cumulus cells. The long isoform of the leptin receptor (ObR-L) was expressed exclusively in cumulus cells after 7 and 23

  13. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression.

    Science.gov (United States)

    Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun

    2017-06-05

    Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH 1-19 , and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Min, Kyung-Won [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Zhang, Xiaobo [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100 (China); Imchen, Temjenmongla [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Baek, Seung Joon, E-mail: sbaek2@utk.edu [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2012-09-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  15. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    International Nuclear Information System (INIS)

    Min, Kyung-Won; Zhang, Xiaobo; Imchen, Temjenmongla; Baek, Seung Joon

    2012-01-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  16. Helicobacter pylori-Induced HB-EGF Upregulates Gastrin Expression via the EGF Receptor, C-Raf, Mek1, and Erk2 in the MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Niluka Gunawardhana

    2018-01-01

    Full Text Available Helicobacter pylori is associated with hypergastrinemia, which has been linked to the development of gastric diseases. Although the molecular mechanism is not fully understood, H. pylori is known to modulate the Erk pathway for induction of gastrin expression. Herein we found that an epidermal growth factor (EGF receptor kinase inhibitor significantly blocked H. pylori-induced gastrin promoter activity, suggesting involvement of EGF receptor ligands. Indeed, H. pylori induced mRNA expression of EGF family members such as amphiregulin, EGF, heparin-binding EGF-like growth factor (HB-EGF, and transforming growth factor-α. Of these, specific siRNA targeting of HB-EGF significantly blocked H. pylori-induced gastrin expression. Moreover, H. pylori induced HB-EGF ectodomain shedding, which we found to be a critical process for H. pylori-induced gastrin expression. Thus, we demonstrate a novel role for human mature HB-EGF in stimulating gastrin promoter activity during H. pylori infection. Further investigation using specific siRNAs targeting each isoform of Raf, Mek, and Erk elucidated that the mechanism underlying H. pylori-induced gastrin expression can be delineated as the sequential activation of HB-EGF, the EGF receptor, C-Raf, Mek1, and the Erk2 molecules in the MAPK pathway. Surprisingly, whereas Erk2 acts as a potent activator of gastrin expression, siRNA knockdown of Erk1 induced gastrin promoter activity, suggesting that Erk1 typically acts as a repressor of gastrin expression. Elucidation of the mechanism of gastrin modulation by HB-EGF-mediated EGF receptor transactivation should facilitate the development of therapeutic strategies against H. pylori-related hypergastrinemia and consequently gastric disease development, including gastric cancers.

  17. Helicobacter pylori-Induced HB-EGF Upregulates Gastrin Expression via the EGF Receptor, C-Raf, Mek1, and Erk2 in the MAPK Pathway.

    Science.gov (United States)

    Gunawardhana, Niluka; Jang, Sungil; Choi, Yun Hui; Hong, Youngmin A; Jeon, Yeong-Eui; Kim, Aeryun; Su, Hanfu; Kim, Ji-Hye; Yoo, Yun-Jung; Merrell, D Scott; Kim, Jinmoon; Cha, Jeong-Heon

    2017-01-01

    Helicobacter pylori is associated with hypergastrinemia, which has been linked to the development of gastric diseases. Although the molecular mechanism is not fully understood, H. pylori is known to modulate the Erk pathway for induction of gastrin expression. Herein we found that an epidermal growth factor (EGF) receptor kinase inhibitor significantly blocked H. pylori -induced gastrin promoter activity, suggesting involvement of EGF receptor ligands. Indeed, H. pylori induced mRNA expression of EGF family members such as amphiregulin, EGF, heparin-binding EGF-like growth factor (HB-EGF), and transforming growth factor-α. Of these, specific siRNA targeting of HB-EGF significantly blocked H. pylori -induced gastrin expression. Moreover, H. pylori induced HB-EGF ectodomain shedding, which we found to be a critical process for H. pylori -induced gastrin expression. Thus, we demonstrate a novel role for human mature HB-EGF in stimulating gastrin promoter activity during H. pylori infection. Further investigation using specific siRNAs targeting each isoform of Raf, Mek, and Erk elucidated that the mechanism underlying H. pylori -induced gastrin expression can be delineated as the sequential activation of HB-EGF, the EGF receptor, C-Raf, Mek1, and the Erk2 molecules in the MAPK pathway. Surprisingly, whereas Erk2 acts as a potent activator of gastrin expression, siRNA knockdown of Erk1 induced gastrin promoter activity, suggesting that Erk1 typically acts as a repressor of gastrin expression. Elucidation of the mechanism of gastrin modulation by HB-EGF-mediated EGF receptor transactivation should facilitate the development of therapeutic strategies against H. pylori -related hypergastrinemia and consequently gastric disease development, including gastric cancers.

  18. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Alena Chumanevich

    2016-01-01

    Full Text Available Mast cells (MC are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2- mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF- A and matrix metalloproteinase- (MMP- 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation.

  19. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  20. Interleukin 2 (IL 2) up-regulates its own receptor on a subset of human unprimed peripheral blood lymphocytes and triggers their proliferation

    International Nuclear Information System (INIS)

    Harel-Bellan, A.; Bertoglio, J.; Quillet, A.; Marchiol, C.; Wakasugi, H.; Mishall, Z.; Fradelizi, D.

    1986-01-01

    Several reports indicate that human peripheral blood lymphoctyes (PBL) seeded in culture with purified or recombinant interleukin 2 (IL 2) immediately after separation from the blood display a substantial level of proliferation at day 5 or 6, even in the absence of any activating signal. The spontaneously IL 2 proliferating cells are large lymphocytes, and they co-purify on a Percoll gradient in the large granular lymphocytes (third (LGL) fraction) together with the natural killer (NK) activity. When LGL were separated into NKH1 (an NK-specific surface marker)-positive and NKH1-negative cells by fluorescence-activated cell sorting (FACS), proliferating cells were mainly found in the NKH1-negative fraction. On the contrary, when cells from Percoll fraction 3 were separated into OKT3-negative and positive cells, the majority of the proliferating cells was found in the OKT3-positive cells. These results indicate that spontaneously IL 2 proliferating (SIP) cells most probably belong to the T cell lineage, but are distinct from NK cells. Additional analysis of Il 2 receptor induced in culture with IL 2 was performed by [ 125 I]anti-TAC binding and by [ 3 H]Il 2 binding. Scatchard analysis of [ 3 H]IL 2 binding, in the range of concentrations leading to the detection of high-affinity binding sites, showed an affinity constant similar to that of conventional phytohemagglutinin blasts. The results indicate that SIP cells are preactivated cells circulating in the blood. They are large cells and represent a very small proportion of circulating lymphocytes (0.3%). They express a subliminar amount of IL 2 receptor. Cultivated in the presence of IL 2, IL 2 receptor expression is enhanced to a detectable level, and the SIP cells begin to proliferate. These SIP cells could be activated T cells in the course of a current immune response or memory T cells present in every normal individual

  1. Dopamine D1 receptors and phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein-32 in the medial preoptic area are involved in experience-induced enhancement of male sexual behavior in rats.

    Science.gov (United States)

    McHenry, Jenna A; Bell, Genevieve A; Parrish, Bradley P; Hull, Elaine M

    2012-08-01

    The medial preoptic area (MPOA) is an integral site for male sexual behavior. Dopamine is released in the MPOA before and during copulation and facilitates male rat sexual behavior. Repeated sexual experience and noncopulatory exposures to an estrous female facilitate subsequent copulation. However, the neurobiological mechanisms that mediate such enhancement remain unclear. Here, we examined the role of dopamine D₁ receptors in the MPOA in experience-induced enhancement of male sexual behavior in rats. In experiment 1, microinjections of the D₁ antagonist SCH-23390 into the MPOA before each of seven daily 30-min noncopulatory exposures to a receptive female impaired copulation on a drug-free test on Day 8, compared to vehicle-treated female-exposed animals. Copulatory performance in drug-treated animals was similar to that of vehicle-treated males that had not been preexposed to females. This effect was site specific. There were no group differences in locomotor activity in an open field on the copulation test day. In experiment 2, a separate cohort of animals was used to examine phosphorylation of dopamine- and cAMP-regulated phosphoprotein (DARPP-32) in the MPOA of animals with acute and/or chronic sexual experience. DARPP-32 is a downstream marker of D₁ receptor signaling and substrate of cAMP-dependent protein kinase (PKA). Western immunoblot analysis revealed that p-DARPP-32 expression was greatest in the MPOA of males that received both acute and chronic sexual experience, compared to all other mated conditions and naïve controls. These data suggest that D₁ receptors in the MPOA contribute to experience-induced enhancement of male sexual behavior, perhaps through a PKA regulated mechanism.

  2. Up-regulated BAFF and BAFF receptor expression in patients with intractable temporal lobe epilepsy and a pilocarpine-induced epilepsy rat model.

    Science.gov (United States)

    Ma, Limin; Li, Ruohan; Huang, Hao; Yuan, Jinxian; Ou, Shu; Xu, Tao; Yu, Xinyuan; Liu, Xi; Chen, Yangmei

    2017-05-01

    Some studies have suggested that BAFF and BAFFR are highly expressed in the central nervous system (CNS) and participate in inflammatory and immune associated diseases. However, whether BAFF and BAFFR are involved in the pathogenesis of epilepsy remains unknown. This study aimed to investigate the expression of BAFF and BAFFR proteins in the brains of patients with temporal lobe epilepsy (TLE) and in a pilocarpine-induced rat model of TLE to identify possible roles of the BAFF-BAFFR signaling pathway in epileptogenesis. Real-time quantitative polymerase chain reaction (RT-qPCR), western blot, immunohistochemistry, and double-immunofluorescence were performed in this study. The results showed that BAFF and BAFFR expression levels were markedly up-regulated in intractable TLE patients and TLE rats. Moreover, BAFF and BAFFR proteins mainly highly expressed in the membranes and cytoplasms of the dendritic marker MAP2 in the cortex and hippocampus. Therefore, the significant increased in BAFF and BAFFR protein expression in both TLE patients and rats suggest that BAFF and BAFFR may play important roles in regulating the pathogenesis of epilepsy. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus.

    Science.gov (United States)

    Berrout, Liza; Isokawa, Masako

    2018-01-01

    Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The expression of inflammatory cytokines, TAM tyrosine kinase receptors and their ligands is upregulated in venous leg ulcer patients: a novel insight into chronic wound immunity.

    Science.gov (United States)

    Filkor, Kata; Németh, Tibor; Nagy, István; Kondorosi, Éva; Urbán, Edit; Kemény, Lajos; Szolnoky, Győző

    2016-08-01

    The systemic host defence mechanisms, especially innate immunity, in venous leg ulcer patients are poorly investigated. The aim of the current study was to measure Candida albicans killing activity and gene expressions of pro- and anti-inflammatory cytokines and innate immune response regulators, TAM receptors and ligands of peripheral blood mononuclear cells separated from 69 venous leg ulcer patients and 42 control probands. Leg ulcer patients were stratified into responder and non-responder groups on the basis of wound healing properties. No statistical differences were found in Candida killing among controls, responders and non-responders. Circulating blood mononuclear cells of patients overexpress pro-inflammatory (IL-1α, TNFα, CXCL-8) and anti-inflammatory (IL-10) cytokines as well as TAM receptors (Tyro, Axl, MerTK) and their ligands Gas6 and Protein S compared with those of control individuals. IL-1α is notably overexpressed in venous leg ulcer treatment non-responders; in contrast, Axl gene expression is robustly stronger among responders. These markers may be considered as candidates for the prediction of treatment response among venous leg ulcer patients. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  5. Nanoparticulate anatase TiO2 (TiO2 NPs) upregulates the expression of silkworm (Bombyx mori) neuropeptide receptor and promotes silkworm feeding, growth, and silking.

    Science.gov (United States)

    Ni, Min; Zhang, Hua; Li, Fan Chi; Wang, Bin Bin; Xu, Kai Zun; Shen, Wei De; Li, Bing

    2015-06-01

    Bombyx mori orphan G protein-coupled receptor, BNGR-A4, is the specific receptor of B. mori neuropeptide F (BmNPFR, neuropeptide F designated NPF). BmNPFR binds specifically and efficiently to B. mori neuropeptides BmNPF1a and BmNPF1b, which activates the ERK1/2 signaling pathway to regulate B. mori food intake and growth. Titanium dioxide nanoparticles (TiO2 NPs) can promote B. mori growth. However, whether the mechanisms of TiO2 NPs' effects are correlated with BmNPFR remains unknown. In this study, the effects of TiO2 NPs (5mg/L) feeding and BmNPFR-dsRNA injection on B. mori food intake and growth were investigated; after TiO2 NPs treatments, B. mori food intake, body weight, and cocoon shell weight were 5.82%, 4.64%, and 9.30% higher, respectively, than those of controls. The food intake, body weight, and cocoon shell weight of the BmNPFR-dsRNA injection group were reduced by 8.05%, 6.28%, and 6.98%, respectively, compared to the control. After TiO2 NPs treatment for 72h, the transcriptional levels of BmNPFR, BmNPF1a, and BmNPF1b in the midgut were 1.58, 1.43, and 1.34-folds, respectively, of those of the control, but 1.99, 2.26, and 2.19-folds, respectively, of the BmNPFR-dsRNA injection group; the phosphorylation level of MAPK was 24.03% higher than the control, while the phosphorylation level of BmNPFR-dsRNA injection group was 71.00% of control. The results indicated that TiO2 NPs affect B. mori feeding and growth through increasing the expression of BmNPFR. This study helps clarify the roles of BmNPF/BmNPFR system in TiO2 NPs' effects on B. mori feeding, growth, and development. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-01-01

    Full Text Available Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist, affected activities of matrix metalloproteinase (MMP and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with nicotine at different concentrations (0, 1, 10, and 100 ng/ml for 0–120 min. Nicotine markedly stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2 and c-Jun in RAW264.7 cells. Pretreatment with U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP- 1, and regulated upon activation normal T cell expressed and secreted (RANTES. Similarly, nicotine treatment also increased phosphorylation of c-Jun and expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987, nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited. Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated. Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal aortic aneurysm.

  7. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    Science.gov (United States)

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Estradiol up-regulates L-type Ca2+ channels via membrane-bound estrogen receptor/phosphoinositide-3-kinase/Akt/cAMP response element-binding protein signaling pathway.

    Science.gov (United States)

    Yang, Xiaoyan; Mao, Xiaofang; Xu, Gao; Xing, Shasha; Chattopadhyay, Ansuman; Jin, Si; Salama, Guy

    2018-05-01

    In long QT syndrome type 2, women are more prone than men to the lethal arrhythmia torsades de pointes. We previously reported that 17β-estradiol (E2) up-regulates L-type Ca 2+ channels and current (I Ca,L ) (∼30%) in rabbit ventricular myocytes by a classic genomic mechanism mediated by estrogen receptor-α (ERα). In long QT syndrome type 2 (I Kr blockade or bradycardia), the higher Ca 2+ influx via I Ca,L causes Ca 2+ overload, spontaneous sarcoplasmic reticulum Ca 2+ release, and reactivation of I Ca,L that triggers early afterdepolarizations and torsades de pointes. The purpose of this study was to investigate the molecular mechanisms whereby E2 up-regulates I Ca,L , which are poorly understood. H9C2 and rat myocytes were incubated with E2 ± ER antagonist, or inhibitors of downstream transcription factors, for 24 hours, followed by western blots of Cav1.2α1C and voltage-clamp measurements of I Ca,L . Incubation of H9C2 cells with E2 (10-100 nM) increased I Ca,L density and Cav1.2α1C expression, which were suppressed by the ER antagonist ICI182,780 (1 μM). Enhanced I Ca,L and Cav1.2α1C expression by E2 was suppressed by inhibitors of phosphoinositide-3-kinase (Pi3K) (30 μM LY294002; P L via plasma membrane ER and by activating Pi3K, Akt, and CREB signaling. The promoter regions of the CACNA1C gene (human-rabbit-rat) contain adjacent/overlapping binding sites for p-CREB and ERα, which suggests a synergistic regulation by these pathways. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Soluble Receptor for Advanced Glycation End Products (sRAGE is Up-Regulated in Multiple Sclerosis Patients Treated with Interferon β-1a

    Directory of Open Access Journals (Sweden)

    Mahnoosh Rahimi

    2018-03-01

    Full Text Available Background/Aims: Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system. Considering the role of immune system in its pathogenesis, researchers have focused on evaluation of the expression of immune-related genes or proteins in MS patients. Among proteins whose participation in inflammatory process has been documented is the receptor for advanced glycation end products (RAGE. Methods: In the present study, we compared RAGE transcript levels by means of quantitative real-time PCR as well as the serum level of soluble RAGE (sRAGE by means of enzyme- linked immunosorbent assay (ELISA in 50 IFNβ-1a responsive relapsing-remitting MS patients when compared with age and sex-matched healthy subjects. Results: Elevated expression of RAGE as well as higher levels of sRAGE were detected in IFN-β responsive MS patients compared with the controls. A significant inverse correlation between sRAGE plasma concentrations and the expanded disability status scale (EDSS was also detected in which each unit of increase in sRAGE level resulted in a 0.308 unit decrease in EDSS. Conclusion: Considering the stable clinical state of the MS patients in this study and their response to IFNβ-1a, the elevated levels of sRAGE in patients compared with healthy subjects could be related to the effects of this kind of treatment.

  10. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes.

    Science.gov (United States)

    Catanuto, Paola; Doublier, Sophie; Lupia, Enrico; Fornoni, Alessia; Berho, Mariana; Karl, Michael; Striker, Gary E; Xia, Xiaomei; Elliot, Sharon

    2009-06-01

    Diabetic nephropathy remains one of the most important causes of end-stage renal disease. This is particularly true for women from racial/ethnic minorities. Although administration of 17beta-estradiol to diabetic animals has been shown to reduce extracellular matrix deposition in glomeruli and mesangial cells, effects on podocytes are lacking. Given that podocyte injury has been implicated as a factor leading to the progression of proteinuria and diabetic nephropathy, we treated db/db mice, a model of type 2 diabetic glomerulosclerosis, with 17beta-estradiol or tamoxifen to determine whether these treatments reduce podocyte injury and decrease glomerulosclerosis. We found that albumin excretion, glomerular volume, and extracellular matrix accumulation were decreased in these mice compared to placebo treatment. Podocytes isolated from all treatment groups were immortalized and these cell lines were found to express the podocyte markers WT-1, nephrin, and the TRPC6 cation channel. Tamoxifen and 17beta-estradiol treatment decreased podocyte transforming growth factor-beta mRNA expression but increased that of the estrogen receptor subtype beta protein. 17beta-estradiol, but not tamoxifen, treatment decreased extracellular-regulated kinase phosphorylation. These data, combined with improved albumin excretion, reduced glomerular size, and decreased matrix accumulation, suggest that both 17beta-estradiol and tamoxifen may protect podocytes against injury and therefore ameliorate diabetic nephropathy.

  11. Protective Effect of Peroxisome Proliferator-Activated Receptor α Activation against Cardiac Ischemia-Reperfusion Injury Is Related to Upregulation of Uncoupling Protein-3

    Directory of Open Access Journals (Sweden)

    Jong Wook Song

    2016-01-01

    Full Text Available Activation of peroxisome proliferator-activated receptor α (PPARα confers cardioprotection, while its mechanism remains elusive. We investigated the protective effect of PPARα activation against cardiac ischemia-reperfusion injury in terms of the expression of uncoupling protein (UCP. Myocardial infarct size and UCP expression were measured in rats treated with WY-14643 20 mg/kg, a PPARα ligand, or vehicle. WY-14643 increased UCP3 expression in vivo. Myocardial infarct size was decreased in the WY-14643 group (76 ± 8% versus 42 ± 12%, P<0.05. During reperfusion, the incidence of arrhythmia was higher in the control group compared with the WY-14643 group (9/10 versus 3/10, P<0.05. H9c2 cells were incubated for 24 h with WY-14643 or vehicle. WY-14643 increased UCP3 expression in H9c2 cells. WY-14643 decreased hypoxia-stimulated ROS production. Cells treated with WY-14643 were more resistant to hypoxia-reoxygenation than the untreated cells. Knocking-down UCP3 by siRNA prevented WY-14643 from attenuating the production of ROS. UCP3 siRNA abolished the effect of WY-14643 on cell viability against hypoxia-reoxygenation. In summary, administration of PPARα agonist WY-14643 mitigated the extent of myocardial infarction and incidence of reperfusion-induced arrhythmia. PPARα activation conferred cytoprotective effect against hypoxia-reoxygenation. Associated mechanisms involved increased UCP3 expression and resultant attenuation of ROS production.

  12. Aromatic hydrocarbons upregulate glyceraldehyde-3-phosphate dehydrogenase and induce changes in actin cytoskeleton. Role of the aryl hydrocarbon receptor (AhR)

    International Nuclear Information System (INIS)

    Reyes-Hernandez, O.D.; Mejia-Garcia, A.; Sanchez-Ocampo, E.M.; Castro-Munozledo, F.; Hernandez-Munoz, R.; Elizondo, G.

    2009-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme involved in several cellular functions including glycolysis, membrane transport, microtubule assembly, DNA replication and repair, nuclear RNA export, apoptosis, and the detection of nitric oxide stress. Therefore, modifications in the regulatory ability and function of GAPDH may alter cellular homeostasis. We report here that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone, which are well-known ligands for the aryl hydrocarbon receptor (AhR), increase GAPDH mRNA levels in vivo and in vitro, respectively. These compounds fail to induce GAPDH transcription in an AhR-null mouse model, suggesting that the increase in GAPDH level is dependent upon AhR activation. To analyse the consequences of AhR ligands on GAPDH function, mice were treated with TCDD and the level of liver activity of GAPDH was determined. The results showed that TCDD treatment increased GAPDH activity. On the other hand, treatment of Hepa-1 cells with β-naphthoflavone leads to an increase in microfilament density when compared to untreated cultures. Collectively, these results suggest that AhR ligands, such as polycyclic hydrocarbons, can modify GAPDH expression and, therefore, have the potential to alter the multiple functions of this enzyme.

  13. Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses.

    Science.gov (United States)

    Machado, Nuno J; Simões, Ana Patrícia; Silva, Henrique B; Ardais, Ana Paula; Kaster, Manuella P; Garção, Pedro; Rodrigues, Diana I; Pochmann, Daniela; Santos, Ana Isabel; Araújo, Inês M; Porciúncula, Lisiane O; Tomé, Ângelo R; Köfalvi, Attila; Vaugeois, Jean-Marie; Agostinho, Paula; El Yacoubi, Malika; Cunha, Rodrigo A; Gomes, Catarina A

    2017-03-01

    Caffeine prophylactically prevents mood and memory impairments through adenosine A 2A receptor (A 2A R) antagonism. A 2A R antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now explored if chronic (4 weeks) caffeine consumption (0.3 g/L) reverts mood and memory impairment in helpless mice (HM, 12 weeks old), a bred-based model of depression. HM displayed higher immobility in the tail suspension and forced swimming tests, greater anxiety in the elevated plus maze, and poorer memory performance (modified Y-maze and object recognition). HM also had reduced density of synaptic (synaptophysin, SNAP-25), namely, glutamatergic (vGluT1; -22 ± 7 %) and GABAergic (vGAT; -23 ± 8 %) markers in the hippocampus. HM displayed higher A 2A R density (72 ± 6 %) in hippocampal synapses, an enhanced facilitation of hippocampal glutamate release by the A 2A R agonist, CGS21680 (30 nM), and a larger LTP amplitude (54 ± 8 % vs. 21 ± 5 % in controls) that was restored to control levels (30 ± 10 %) by the A 2A R antagonist, SCH58261 (50 nM). Notably, caffeine intake reverted memory deficits and reverted the loss of hippocampal synaptic markers but did not affect helpless or anxiety behavior. These results reinforce the validity of HM as an animal model of depression by showing that they also display reference memory deficits. Furthermore, caffeine intake selectively reverted memory but not mood deficits displayed by HM, which are associated with an increased density and functional impact of hippocampal A 2A R controlling synaptic glutamatergic function.

  14. The farnesoid X receptor agonist obeticholic acid upregulates biliary excretion of asymmetric dimethylarginine via MATE-1 during hepatic ischemia/reperfusion injury

    Science.gov (United States)

    Berardo, Clarissa; Siciliano, Veronica; Rizzo, Vittoria; Adorini, Luciano; Richelmi, Plinio

    2018-01-01

    Background We previously showed that increased asymmetric dimethylarginine (ADMA) biliary excretion occurs during hepatic ischemia/reperfusion (I/R), prompting us to study the effects of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) on bile, serum and tissue levels of ADMA after I/R. Material and methods Male Wistar rats were orally administered 10mg/kg/day of OCA or vehicle for 5 days and were subjected to 60 min partial hepatic ischemia or sham-operated. After a 60 min reperfusion, serum, tissue and bile ADMA levels, liver mRNA and protein expression of ADMA transporters (CAT-1, CAT-2A, CAT-2B, OCT-1, MATE-1), and enzymes involved in ADMA synthesis (protein-arginine-N-methyltransferase-1, PRMT-1) and metabolism (dimethylarginine-dimethylaminohydrolase-1, DDAH-1) were measured. Results OCA administration induced a further increase in biliary ADMA levels both in sham and I/R groups, with no significant changes in hepatic ADMA content. A reduction in CAT-1, CAT-2A or CAT-2B transcripts was found in OCA-treated sham-operated rats compared with vehicle. Conversely, OCA administration did not change CAT-1, CAT-2A or CAT-2B expression, already reduced by I/R. However, a marked decrease in OCT-1 and increase in MATE-1 expression was observed. A similar trend occurred with protein expression. Conclusion The reduced mRNA expression of hepatic CAT transporters suggests that the increase in serum ADMA levels is probably due to decreased liver uptake of ADMA from the systemic circulation. Conversely, the mechanism involved in further increasing biliary ADMA levels in sham and I/R groups treated with OCA appears to be MATE-1-dependent. PMID:29346429

  15. Thyroid hormone receptor beta2 is strongly up-regulated at all levels of the hypothalamo-pituitary-thyroidal axis during late embryogenesis in chicken.

    Science.gov (United States)

    Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert

    2008-03-01

    In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.

  16. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinru [Department of Pharmacology, Chongqing Medical University, Chongqing 400016 (China); Gong, Xia [Department of Anatomy, Chongqing Medical University, Chongqing 400016 (China); Zhang, Li; Jiang, Rong [Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016 (China); Kuang, Ge [Department of Pharmacology, Chongqing Medical University, Chongqing 400016 (China); Wang, Bin [Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chen, Xinyu [Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021 (China); Wan, Jingyuan, E-mail: jywan@cqmu.edu.cn [Department of Pharmacology, Chongqing Medical University, Chongqing 400016 (China)

    2017-04-01

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100 mg/kg) 1 h before lipopolysaccharide (LPS)/D-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, western blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. - Highlights: • Glycyrrhetinic acid protected from LPS/D-GalN-induced liver injury in mice. • Glycyrrhetinic acid inhibited LPS-induced TNF-α production in vivo and in vitro. • Glycyrrhetinic

  17. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Vee, Marc; Jouan, Elodie; Lecureur, Valérie [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Fardel, Olivier, E-mail: olivier.fardel@univ-rennes1.fr [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes (France)

    2016-01-01

    The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC{sub 50} values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development. - Highlights: • The amino acid transporter LAT1/CD98hc is up-regulated in DEPe-treated lung cells. • The aryl hydrocarbon receptor is involved in DEPe-triggered induction of LAT1/CD98hc.

  18. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex.

    Science.gov (United States)

    Mor, Michal; Nardone, Stefano; Sams, Dev Sharan; Elliott, Evan

    2015-01-01

    MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). However, these technologies have not yet been employed to uncover changes in microRNAs in the brain of individuals diagnosed with asd. Small RNA next-generation sequencing was performed on RNA extracted from 12 human autism brain samples and 12 controls. Real-time PCR was used to validate a sample of the differentially expressed microRNAs, and bioinformatic analysis determined common pathways of gene targets. MicroRNA expression data was correlated to genome-wide DNA methylation data to determine if there is epigenetic regulation of dysregulated microRNAs in the autism brain. Luciferase assays, real-time PCR, and Western blot analysis were used to determine how dysregulated microRNAs may regulate the expression and translation of an autism-related gene transcript. We determined that miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and miR-21-5p are overexpressed in the asd brain. Furthermore, the promoter region of the miR-142 gene is hypomethylated in the same brain samples, suggesting that epigenetics plays a role in dysregulation of microRNAs in the brain. Bioinformatic analysis revealed that these microRNAs target genes that are involved in synaptic function. Further bioinformatic analysis, coupled with in vitro luciferase assays, determined that miR-451a and miR-21-5p can target the oxytocin receptor (OXTR) gene. OXTR gene expression is increased in these same brain samples, and there is a positive correlation between miR-21-5p and OXTR expression. However, miR-21-5p expression negatively correlates to production of OXTR protein from the OXTR transcript. Therefore, we suggest that miR-21-5p may attenuate OXTR expression in

  19. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate.

    Science.gov (United States)

    Lee, Dong-Sung; Lee, Eun-Sol; Alam, Md Morshedul; Jang, Jun-Hyeog; Lee, Ho-Sub; Oh, Hyuncheol; Kim, Youn-Chul; Manzoor, Zahid; Koh, Young-Sang; Kang, Dae-Gil; Lee, Dae Ho

    2016-02-01

    Studies have shown that dipeptidyl peptidase-4 (DPP-4) inhibitors have anti-inflammatory effects. Soluble DPP-4 (sDPP-4) has been considered as an adipokine of which actions need to be further characterized. We investigated the pro-inflammatory actions of sDPP-4 and the anti-inflammatory effects of DPP-4 inhibition, using vildagliptin, as an enzymatic inhibitor, and mannose-6-phosphate (M6P) as a competitive binding inhibitor. In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, vildagliptin suppressed the increased expression of inducible nitric oxide synthase (iNOS) and phosphorylated JNK (pJNK), activation of the NF-κB pathway, and the resultant NO and proinflammatory cytokine production. Although sDPP-4 alone did not affect the protein level of iNOS or pJNK or the production of NO in RAW264.7 cells, it did amplify iNOS expression, NO responses, and proinflammatory cytokine production in LPS-stimulated RAW264 cells. As a probable mechanism, we found that sDPP-4 caused dose-dependent increases in the expression levels of toll-like receptor 4 (TLR4) and TLR2 in RAW264.7 cells, and that these alterations were inhibited by vildagliptin, M6P, or bisindolylmaleimide II, a protein kinase C inhibitor. Either vildagliptin or M6P suppressed iNOS expression and NO and cytokine production in LPS+DPP-4-co-stimulated macrophages, while combined treatment of the co-stimulated cells with both agents had increased anti-inflammatory effects compared with either treatment alone. Intravenous injection of sDPP-4 to C57BL/6J mice increased the expression of both TLRs in kidney and white adipose tissues. Our findings suggest that sDPP-4 enhances inflammatory actions via TLR pathway, while DPP-4 inhibition with either an enzymatic or binding inhibitor has anti-inflammatory effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  1. Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: an in vivo and in vitro study.

    Science.gov (United States)

    Ju, X-H; Xu, H-J; Yong, Y-H; An, L-L; Jiao, P-R; Liao, M

    2014-09-01

    Global warming is a challenge to animal health, because of increased heat stress, with subsequent induction of immunosuppression and increased susceptibility to disease. Toll-like receptors (TLR) are pattern recognition receptors that act as sentinels of pathogen invasion and tissue damage. Ligation of TLRs results in a signaling cascade and production of inflammatory cytokines, which eradicate pathogens and maintain the health of the host. We hypothesized that the TLR signaling pathway plays a role in immunosuppression in heat-stressed pigs. We explored the changes in the expression of TLR2, TLR4 and the concentration of acute inflammatory cytokines, such as IL-2, IL-8, IL-12 and IFN-γ in Bama miniature pigs subjected to 21 consecutive days of heat stress, both in vitro and in vivo models. The results showed that heat stress induced the upregulation of cortisol in the plasma of pigs (Pblood mononuclear cells (PBMC, Pblood cell count and the percentage of granulocytes (eosinophilic+basophilic) decreased significantly in heat-stressed pigs (Pheat shocked for 1 h followed by a 9 h recovery period), TLR2 and TLR4 mRNA expression also increased, as did the concentration of IL-12 in supernatants. However, IFN-γ was significantly reduced in PBMC culture supernatants (Pheat stress period elevated the expression of TLR2 and TLR4 in PBMC and increased the plasma levels of inflammatory cytokines. These data indicate that TLR activation and dysregulation of cytokine expression in response to prolonged heat stress may be associated with immunosuppression and increased susceptibility to antigenic challenge in Bama miniature pigs.

  2. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  3. Fisetin up-regulates the expression of adiponectin in 3T3-L1 adipocytes via the activation of silent mating type information regulation 2 homologue 1 (SIRT1)-deacetylase and peroxisome proliferator-activated receptors (PPARs).

    Science.gov (United States)

    Jin, Taewon; Kim, Oh Yoen; Shin, Min-Jeong; Choi, Eun Young; Lee, Sung Sook; Han, Ye Sun; Chung, Ji Hyung

    2014-10-29

    Adiponectin, an adipokine, has been described as showing physiological benefits against obesity-related malfunctions and vascular dysfunction. Several natural compounds that promote the expression and secretion of adipokines in adipocytes could be useful for treating metabolic disorders. This study investigated the effect of fisetin, a dietary flavonoid, on the regulation of adiponectin in adipocytes using 3T3-L1 preadipocytes. The expression and secretion of adiponectin increased in 3T3-L1 cells upon treatment with fisetin in a dose-dependent manner. Fisetin-induced adiponectin secretion was inhibited by peroxisome proliferator-activated receptor (PPAR) antagonists. It was also revealed that fisetin increased the activities of PPARs and silent mating type information regulation 2 homologue 1 (SIRT1) in a dose-dependent manner. Furthermore, the up-regulation of adiponectin and the activation of PPARs induced by fisetin were prevented by a SIRT1 inhibitor. Fisetin also promoted deacetylation of PPAR γ coactivator 1 (PGC-1) and its interaction with PPARs. SIRT knockdown by siRNA significantly decreased both adiponectin production and PPARs-PGC-1 interaction. These results provide evidence that fisetin promotes the gene expression of adiponectin through the activation of SIRT1 and PPARs in adipocytes.

  4. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin

    Directory of Open Access Journals (Sweden)

    Hyosang Kim

    2017-01-01

    Full Text Available Endoplasmic reticulum (ER stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1 hemeoxygenase-1 (HO-1/thioredoxin pathway. Renal tubular cells, tunicamycin (TM-induced ER stress, and unilateral ureteral obstruction (UUO mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78 and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α, through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor. Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.

  5. Basaloid Squamous Cell Carcinoma of the Head and Neck: Subclassification into Basal, Ductal, and Mixed Subtypes Based on Comparison of Clinico-pathologic Features and Expression of p53, Cyclin D1, Epidermal Growth Factor Receptor, p16, and Human Papillomavirus

    Directory of Open Access Journals (Sweden)

    Kyung-Ja Cho

    2017-07-01

    Full Text Available Background Basaloid squamous cell carcinoma (BSCC is a rare variant of squamous cell carcinoma with distinct pathologic characteristics. The histogenesis of BSCC is not fully understood, and the cancer has been suggested to originate from a totipotent primitive cell in the basal cell layer of the surface epithelium or in the proximal duct of secretory glands. Methods Twenty-six cases of head and neck BSCC from Asan Medical Center, Seoul, Korea, reported during a 14-year-period were subclassified into basal, ductal, and mixed subtypes according to the expression of basal (cytokeratin [CK] 5/6, p63 or ductal markers (CK7, CK8/18. The cases were also subject to immunohistochemical study for CK19, p53, cyclin D1, epidermal growth factor receptor (EGFR, and p16 and to in situ hybridization for human papillomavirus (HPV, and the results were clinico-pathologically compared. Results Mixed subtype (12 cases was the most common, and these cases showed hypopharyngeal predilection, older age, and higher expression of CK19, p53, and EGFR than other subtypes. The basal subtype (nine cases showed frequent comedo-necrosis and high expression of cyclin D1. The ductal subtype (five cases showed the lowest expression of p53, cyclin D1, and EGFR. A small number of p16- and/or HPV-positive cases were not restricted to one subtype. BSCC was the cause of death in 19 patients, and the average follow-up period for all patients was 79.5 months. Overall survival among the three subtypes was not significantly different. Conclusions The results of this study suggest a heterogeneous pathogenesis of head and neck BSCC. Each subtype showed variable histology and immunoprofiles, although the clinical implication of heterogeneity was not determined in this study.

  6. Targeting allergen to FcgammaRI reveals a novel T(H)2 regulatory pathway linked to thymic stromal lymphopoietin receptor.

    Science.gov (United States)

    Hulse, Kathryn E; Reefer, Amanda J; Engelhard, Victor H; Patrie, James T; Ziegler, Steven F; Chapman, Martin D; Woodfolk, Judith A

    2010-01-01

    The molecule H22-Fel d 1, which targets cat allergen to FcgammaRI on dendritic cells (DCs), has the potential to treat cat allergy because of its T-cell modulatory properties. We sought to investigate whether the T-cell response induced by H22-Fel d 1 is altered in the presence of the T(H)2-promoting cytokine thymic stromal lymphopoietin (TSLP). Studies were performed in subjects with cat allergy with and without atopic dermatitis. Monocyte-derived DCs were primed with H22-Fel d 1 in the presence or absence of TSLP, and the resulting T-cell cytokine repertoire was analyzed by flow cytometry. The capacity for H22-Fel d 1 to modulate TSLP receptor expression on DCs was examined by flow cytometry in the presence or absence of inhibitors of Fc receptor signaling molecules. Surprisingly, TSLP alone was a weak inducer of T(H)2 responses irrespective of atopic status; however, DCs coprimed with TSLP and H22-Fel d 1 selectively and synergistically amplified T(H)2 responses in highly atopic subjects. This effect was OX40 ligand independent, pointing to an unconventional TSLP-mediated pathway. Expression of TSLP receptor was upregulated on atopic DCs primed with H22-Fel d 1 through a pathway regulated by FcgammaRI-associated signaling components, including src-related tyrosine kinases and Syk, as well as the downstream molecule phosphoinositide 3-kinase. Inhibition of TSLP receptor upregulation triggered by H22-Fel d 1 blocked TSLP-mediated T(H)2 responses. Discovery of a novel T(H)2 regulatory pathway linking FcgammaRI signaling to TSLP receptor<