WorldWideScience

Sample records for cytoprotection

  1. Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death.

    Science.gov (United States)

    Hegedűs, Csaba; Lakatos, Petra; Kiss-Szikszai, Attila; Patonay, Tamás; Gergely, Szabolcs; Gregus, Andrea; Bai, Péter; Haskó, György; Szabó, Éva; Virág, László

    2013-06-01

    Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways.

    Directory of Open Access Journals (Sweden)

    David E Shore

    Full Text Available Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60, the ER UPR (hsp-4, ROS response (sod-3, gst-4, and xenobiotic detoxification (gst-4. We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.

  3. Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants.

    Directory of Open Access Journals (Sweden)

    Farooqahmed S Kittur

    Full Text Available Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPO(P was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPO(P bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPO(P (20 U/ml provides 2-fold better cytoprotection (44% to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPO(M (21%. The cytoprotective effect of the asialo-rhuEPO(P was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2 and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.

  4. Cytoprotective effect of imatinib mesylate in non-BCR-ABL-expressing cells along with autophagosome formation

    International Nuclear Information System (INIS)

    Ohtomo, Tadashi; Miyazawa, Keisuke; Naito, Munekazu; Moriya, Shota; Kuroda, Masahiko; Itoh, Masahiro; Tomoda, Akio

    2010-01-01

    Treatment with imatinib mesylate (IM) results in an increased viable cell number of non-BCR-ABL-expressing cell lines by inhibiting spontaneous apoptosis. Electron microscopy revealed an increase of autophagosomes in response to IM. IM attenuated the cytotoxic effect of cytosine arabinoside, as well as inhibiting cell death with serum-deprived culture. Cytoprotection with autophagosome formation by IM was observed in various leukemia and cancer cell lines as well as normal murine embryonic fibroblasts (MEFs). Complete inhibition of autophagy by knockdown of atg5 in the Tet-off atg5 -/- MEF system attenuated the cytoprotective effect of IM, indicating that the effect is partially dependent on autophagy. However, cytoprotection by IM was not mediated through suppression of ROS production via mitophagy, ER stress via ribophagy, or proapoptotic function of ABL kinase. Although the target tyrosine kinase(s) of IM remains unclear, our data provide novel therapeutic possibilities of using IM for cytoprotection.

  5. Salivary Cytoprotective Proteins in Inflammation and Resolution during Experimental Gingivitis--A Pilot Study.

    Science.gov (United States)

    Aboodi, Guy M; Sima, Corneliu; Moffa, Eduardo B; Crosara, Karla T B; Xiao, Yizhi; Siqueira, Walter L; Glogauer, Michael

    2015-01-01

    The protective mechanisms that maintain periodontal homeostasis in gingivitis and prevent periodontal tissue destruction are poorly understood. The aim of this study was to identify changes in the salivary proteome during experimental gingivitis. We used oral neutrophil quantification and whole saliva (WS) proteomics to assess changes that occur in the inflammatory and resolution phases of gingivitis in healthy individuals. Oral neutrophils and WS samples were collected and clinical parameters measured on days 0, 7, 14, 21, 28, and 35. Increased oral neutrophil recruitment and salivary cytoprotective proteins increased progressively during inflammation and decreased in resolution. Oral neutrophil numbers in gingival inflammation and resolution correlated moderately with salivary β-globin, thioredoxin, and albumin and strongly with collagen alpha-1 and G-protein coupled receptor 98. Our results indicate that changes in salivary cytoprotective proteins in gingivitis are associated with a similar trend in oral neutrophil recruitment and clinical parameters. We found moderate to strong correlations between oral neutrophil numbers and levels of several salivary cytoprotective proteins both in the development of the inflammation and in the resolution of gingivitis. Our proteomics approach identified and relatively quantified specific cytoprotective proteins in this pilot study of experimental gingivitis; however, future and more comprehensive studies are needed to clearly identify and validate those protein biomarkers when gingivitis is active.

  6. Salivary Cytoprotective Proteins in Inflammation and Resolution during Experimental Gingivitis—A Pilot Study

    Science.gov (United States)

    Aboodi, Guy M.; Sima, Corneliu; Moffa, Eduardo B.; Crosara, Karla T. B.; Xiao, Yizhi; Siqueira, Walter L.; Glogauer, Michael

    2016-01-01

    Objective: The protective mechanisms that maintain periodontal homeostasis in gingivitis and prevent periodontal tissue destruction are poorly understood. The aim of this study was to identify changes in the salivary proteome during experimental gingivitis. Study design: We used oral neutrophil quantification and whole saliva (WS) proteomics to assess changes that occur in the inflammatory and resolution phases of gingivitis in healthy individuals. Oral neutrophils and WS samples were collected and clinical parameters measured on days 0, 7, 14, 21, 28, and 35. Results: Increased oral neutrophil recruitment and salivary cytoprotective proteins increased progressively during inflammation and decreased in resolution. Oral neutrophil numbers in gingival inflammation and resolution correlated moderately with salivary β-globin, thioredoxin, and albumin and strongly with collagen alpha-1 and G-protein coupled receptor 98. Conclusions: Our results indicate that changes in salivary cytoprotective proteins in gingivitis are associated with a similar trend in oral neutrophil recruitment and clinical parameters. Clinical relevance: We found moderate to strong correlations between oral neutrophil numbers and levels of several salivary cytoprotective proteins both in the development of the inflammation and in the resolution of gingivitis. Our proteomics approach identified and relatively quantified specific cytoprotective proteins in this pilot study of experimental gingivitis; however, future and more comprehensive studies are needed to clearly identify and validate those protein biomarkers when gingivitis is active. PMID:26779447

  7. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids.

    Science.gov (United States)

    Kratochwill, Klaus; Boehm, Michael; Herzog, Rebecca; Lichtenauer, Anton Michael; Salzer, Elisabeth; Lechner, Michael; Kuster, Lilian; Bergmeister, Konstantin; Rizzi, Andreas; Mayer, Bernd; Aufricht, Christoph

    2012-03-01

    Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.

  8. Cytoprotective and antioxidant effects of the methanol extract of ...

    African Journals Online (AJOL)

    Background: Ethno-botanical information shows that Eremomastax speciosa is used in the traditional management of various stomach complaints including gastro-duodenal ulcers. Materials and Methods: In this study, we tested the cytoprotective potential of the whole plant methanol extract (100-200 mg/kg, p.o), against ...

  9. Testicular cytoprotective activities of Curcuma longa in STZ-induced ...

    African Journals Online (AJOL)

    This study was aimed at investigating the cytoprotective activities of Curcuma longa (Turmeric) on the histological structure of the testes in diabetic male rats. Turmeric is commonly called the golden spice, is used as a spice in cooking and also has a long history of medicinal use, dating back nearly 4000 years to the Vedic ...

  10. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    Science.gov (United States)

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017

  11. Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide.

    Science.gov (United States)

    Sazwi, Nordin Nur; Nalina, Thurairajah; Abdul Rahim, Zubaidah Haji

    2013-12-11

    Betel quid chewing is a popular habit in Southeast Asia. It is believed that chewing betel quid could reduce stress, strengthen teeth and maintain oral hygiene. The aim of this study was to investigate the antioxidant and cytoprotective activities of each of the ingredients of betel quid and compared with betel quid itself (with and without calcium hydroxide). The correlation of their cytoprotective and antioxidant activities with phenolic content was also determined. Five samples (betel leaf, areca nut, gambir, betel quid and betel quid containing calcium hydroxide) were extracted in deionized distilled water for 12 hours at 37°C. Antioxidant activities were evaluated for radical scavenging activity using DPPH assay, ferric reducing activity using FRAP assay and lipid peroxidation inhibition activity using FTC assay. Total phenolic content (TPC) was determined using Folin-Ciocalteu procedure. Phenolic composition was analyzed using LC-MS/MS. Cytoprotective activity towards human gingival fibroblast cells was examined using MTT assay. Among the ingredients of betel quid, gambir demonstrated the highest antioxidant (DPPH - IC50 = 6.4 ± 0.8 μg/mL, FRAP - 5717.8 ± 537.6 μmol Fe(II)/mg), total phenolic content (TPC - 1142.5 ± 106.8 μg TAE/mg) and cytoprotective (100.1 ± 4.6%) activities. Betel quid when compared with betel quid containing calcium hydroxide has higher antioxidant (DPPH - IC50 =59.4 ± 4.4 μg/mL, FRAP - 1022.2 ± 235.7 μmol Fe(II)/mg), total phenolic content (TPC - 140.0 ± 22.3 μg TAE/mg), and cytoprotective (113.5 ± 15.9%) activities. However, all of the five samples showed good lipid peroxidation inhibition compared to vitamin E. LC-MS/MS analysis revealed the presence of quinic acid as the major compound of gambir and betel quid. A positive correlation was observed between TPC and radical scavenging (r = 0.972), reducing power (r = 0.981) and cytoprotective activity (r = 0.682). The betel quid has higher TPC, and antioxidant and

  12. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  13. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls.

    Science.gov (United States)

    Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Smeriglio, Antonella; Trombetta, Domenico; Bellocco, Ersilia

    2016-04-01

    Every year tons of pistachio hulls are separated and eliminated, as waste products, from pistachio seeds. In this study the hulls of ripe pistachios were extracted with two organic solvents (ethanol and methanol) and characterized for phenolic composition, antioxidant power and cytoprotective activity. RP-HPLC-DAD-FLU separation enabled us to identify 20 derivatives, including and by far the most abundant gallic acid, 4-hydroxybenzoic acid, protocatechuic acid, naringin, eriodictyol-7-O-glucoside, isorhamnetin-7-O-glucoside, quercetin-3-O-rutinoside, isorhamnetin-3-O-glucoside and catechin. Methanol extraction gave the highest yields for all classes of compounds and presented a higher scavenging activity in all the antioxidant assays performed. The same was found for cytoprotective activity on lymphocytes, lipid peroxidation and protein degradation. These findings highlight the strong antioxidant and cytoprotective activity of the extract components, and illustrate how a waste product can be used as a source of nutraceuticals to employ in manufacturing industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Role of the p-Coumaroyl Moiety in the Antioxidant and Cytoprotective Effects of Flavonoid Glycosides: Comparison of Astragalin and Tiliroside

    Directory of Open Access Journals (Sweden)

    Xican Li

    2017-07-01

    Full Text Available The aim of this study was to explore the role of p-coumaroyl in the antioxidant and cytoprotective effects of flavonoid glycosides. The antioxidant effects of astragalin and tiliroside were compared using ferric ion reducing antioxidant power, DPPH• scavenging, ABTS•+ scavenging, •O2– scavenging, and Fe2+-chelating assays. The results of these assays revealed that astragalin and tiliroside both exhibited dose-dependent activities; however, tiliroside exhibited lower IC50 values than astragalin. In the Fe2+-chelating assay, tiliroside gave a larger shoulder-peak at 510 nm than astragalin, and was also found to be darker in color. Both of these compounds were subsequently evaluated in a Fenton-induced mesenchymal stem cell (MSC damaged assay, where tiliroside performed more effectively as a cytoprotective agent than astragalin. Tiliroside bearing a 6′′-O-p-coumaroyl moiety exhibits higher antioxidant and cytoprotective effects than astragalin. The 6′′-O-p-coumaroyl moiety of tiliroside not only enhances the possibility of electron-transfer and hydrogen-atom-transfer-based multi-pathways, but also enhances the likelihood of Fe-chelating. The p-coumaroylation of the 6"-OH position could therefore be regarded as a potential approach for improving the antioxidant and cytoprotective effects of flavonoid glycosides in MSC implantation therapy.

  15. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components

    Directory of Open Access Journals (Sweden)

    Hong Xie

    2018-01-01

    Full Text Available Tibetan tea (Kangzhuan is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea (LATT was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+-catechin, (−-catechin gallate (CG, (−-epicatechin gallate (ECG, and (−-epigallocatechin gallate. Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO• scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG. Gallic acid and the four catechins were also suggested to chelate Fe2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts. In a flow cytometry assay, (+-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H+-transfer, and Fe2+-chelating pathways to exhibit

  16. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    Science.gov (United States)

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or

  17. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    Science.gov (United States)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  18. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins

    International Nuclear Information System (INIS)

    Nakaso, Kazuhiro; Nakamura, Chiharu; Sato, Hiromi; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2006-01-01

    Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, γGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD

  19. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat

    Science.gov (United States)

    Kim, Dong-Hyun; Kim, Baek

    2011-01-01

    The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914

  20. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat.

    Directory of Open Access Journals (Sweden)

    Yuri Kim

    Full Text Available The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors.

  1. Antiradical and Cytoprotective Activities of Several C-Geranyl-substituted Flavanones from Paulownia tomentosa Fruit

    Directory of Open Access Journals (Sweden)

    Ana Lopes

    2010-08-01

    Full Text Available Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb. Steud. (Scrophulariaceae have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.

  2. Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa fruit.

    Science.gov (United States)

    Zima, Ales; Hosek, Jan; Treml, Jakub; Muselík, Jan; Suchý, Pavel; Prazanová, Gabriela; Lopes, Ana; Zemlicka, Milan

    2010-08-31

    Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb.) Steud. (Scrophulariaceae) have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.

  3. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  4. The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid

    Science.gov (United States)

    Zhou, Yong; Doyen, Rand; Lichtenberger, Lenard M.

    2013-01-01

    In cholestatic liver diseases, the ability of hydrophobic bile acids to damage membranes of hepatocytes/ductal cells contributes to their cytotoxicity. However, ursodeoxycholic acid (UDC), a hydrophilic bile acid, is used to treat cholestasis because it protects membranes. It has been well established that bile acids associate with and solubilize free cholesterol (CHOL) contained within the lumen of the gallbladder because of their structural similarities. However, there is a lack of understanding of how membrane CHOL, which is a well-established membrane stabilizing agent, is involved in cytotoxicity of hydrophobic bile acids and the cytoprotective effect of UDC. We utilized phospholipid liposomes to examine the ability of membrane CHOL to influence toxicity of individual bile acids, such as UDC and the highly toxic sodium deoxycholate (SDC), as well as the cytoprotective mechanism of UDC against SDC-induced cytotoxicity by measuring membrane permeation and intramembrane dipole potential. The kinetics of bile acid solubilization of phosphatidylcholine liposomes containing various levels of CHOL was also characterized. It was found that the presence of CHOL in membranes significantly reduced the ability of bile acids to damage synthetic membranes. UDC effectively prevented damaging effects of SDC on synthetic membranes only in the presence of membrane CHOL, while UDC enhances the damaging effects of SDC in the absence of CHOL. This further demonstrates that the cytoprotective effects of UDC depend upon the level of CHOL in the lipid membrane. Thus, changes in cell membrane composition, such as CHOL content, potentially influence the efficacy of UDC as the primary drug used to treat cholestasis. PMID:19150330

  5. Mipu1, a novel direct target gene, is involved in hypoxia inducible factor 1-mediated cytoprotection.

    Directory of Open Access Journals (Sweden)

    Kangkai Wang

    Full Text Available Mipu1 (myocardial ischemic preconditioning up-regulated protein 1, recently identified in our lab, is a novel zinc-finger transcription factor which is up-regulated during ischemic preconditioning. However, it is not clear what transcription factor contributes to its inducible expression. In the present study, we reported that HIF-1 regulates the inducible expression of Mipu1 which is involved in the cytoprotection of HIF-1α against oxidative stress by inhibiting Bax expression. Our results showed that the inducible expression of Mipu1 was associated with the expression and activation of transcription factor HIF-1 as indicated by cobalt chloride (CoCl2 treatment, HIF-1α overexpression and knockdown assays. EMSA and luciferase reporter gene assays showed that HIF-1α bound to the hypoxia response element (HRE within Mipu1 promoter region and promoted its transcription. Moreover, our results revealed that Mipu1 inhibited the expression of Bax, an important pro-apoptosis protein associated with the intrinsic pathway of apoptosis, elevating the cytoprotection of HIF-1 against hydrogen peroxide (H2O2-mediated injury in H9C2 cells. Our findings implied that Bax may be a potential target gene of transcription factor Mipu1, and provided a novel insight for understanding the cytoprotection of HIF-1 and new clues for further elucidating the mechanisms by which Mipu1 protects cell against pathological stress.

  6. Cytoprotective effect of tocopherols in hepatocytes cultured with polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1994-01-01

    When highly unsaturated fatty acids are added to cell cultures, it can become important to include antioxidants in the culture medium to prevent cytotoxic peroxidation. To find an optimal antioxidant for this purpose, the effect of 50 µM a-tocopherol, ¿-tocopherol, a-tocopheryl acetate, a...... of thiobarbituric acid reactive substances in the cultures was also measured. a-Tocopheryl acid succinate was found to be the most effective cytoprotective compound, followed by N,N'-diphenyl-1,4-phenylenediamine, a- tocopherol, ¿-tocopherol and a-tocopheryl acetate, and a-tocopheryl phosphate was without effect....

  7. Progranulin shows cytoprotective effects on trophoblast cells in vitro but does not antagonize TNF-α-induced apoptosis.

    Science.gov (United States)

    Stubert, Johannes; Waldmann, Kathrin; Dieterich, Max; Richter, Dagmar-Ulrike; Briese, Volker

    2014-11-01

    The glycoprotein progranulin directly binds to TNF-receptors and thereby can antagonize the inflammatory effects of TNF-α. Here we analyzed the impact of both cytokines on cytotoxicity and viability of trophoblast cells. Isolated villous first trimester human trophoblast cells and the human choriocarcinoma cell line BeWo were treated with recombinant human progranulin and TNF-α. Analyses were performed by LDH- and MTT-assay and measurement of caspase-8-activity. Progranulin treatment showed some cytoprotective effects on isolated trophoblast cells. However, TNF-α-induced apoptosis was not antagonized by addition of progranulin. Effects were similar, but more pronounced in BeWo cells. The cytoprotective activity of progranulin on trophoblast cells in vitro was only weak and of doubtful biologic relevance. It was not able to antagonize TNF-α. Future studies should focus on possible paracrine activities of progranulin.

  8. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    International Nuclear Information System (INIS)

    Wang, Qiwen; Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping

    2013-01-01

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity

  9. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes

    International Nuclear Information System (INIS)

    Gonzalez-Rubio, Sandra; Linares, Clara I.; Bello, Rosario I.; Gonzalez, Raul; Ferrin, Gustavo; Hidalgo, Ana B.; Munoz-Gomariz, Elisa; Rodriguez, Blanca A.; Barrera, Pilar; Ranchal, Isidora; Duran-Prado, Mario; Aguilar-Melero, Patricia; De la Mata, Manuel; Muntane, Jordi

    2010-01-01

    The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca 2+ on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca 2+ pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca 2+ entrance was induced by A23187 in HepG2. Cell death, Ca 2+ mobilization, NOS-1, -2 and -3 expression, AP-1 activation, and NO production were evaluated. GCDCA reduced intracellular Ca 2+ concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca 2+ entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca 2+ entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca 2+ concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca 2+ -dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.

  10. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rubio, Sandra; Linares, Clara I; Bello, Rosario I [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Gonzalez, Raul; Ferrin, Gustavo [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain); Hidalgo, Ana B [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Munoz-Gomariz, Elisa [Department of Biostatistics, Reina Sofia University Hospital, Cordoba (Spain); Rodriguez, Blanca A [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Barrera, Pilar; Ranchal, Isidora [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain); Duran-Prado, Mario [Instituto de Parasitologia y Biomedicina Lopez Neyra, CSIC, Granada (Spain); CIBER Fisiopatologia de la Obesidad y Nutricion CB06/03, Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo (Spain); Aguilar-Melero, Patricia [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); De la Mata, Manuel [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain); Muntane, Jordi [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain)

    2010-01-15

    The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca{sup 2+} on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca{sup 2+} pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca{sup 2+} entrance was induced by A23187 in HepG2. Cell death, Ca{sup 2+} mobilization, NOS-1, -2 and -3 expression, AP-1 activation, and NO production were evaluated. GCDCA reduced intracellular Ca{sup 2+} concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca{sup 2+} entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca{sup 2+} entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca{sup 2+} concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca{sup 2+}-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.

  11. PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Orive, Gorka

    2016-04-01

    Bisphosphonates-related osteonecrosis of the jaw (BRONJ) is a common problem in patients undergoing long-term administration of highly potent nitrogen-containing bisphosphonates (N-BPs). This pathology occurs via bone and soft tissue mechanism. Zoledronic acid (ZA) is the most potent intravenous N-BP used to prevent bone loss in patients with bone dysfunction. The objective of this in vitro study was to evaluate the role of different ZA concentrations on the cells from human oral cavity, as well as the potential of plasma rich in growth factors (PRGF) to overcome the negative effects of this BP. Primary human gingival fibroblasts and primary human alveolar osteoblasts were used. Cell proliferation was evaluated by means of a fluorescence-based method. A colorimetric assay to detect DNA fragmentation undergoing apoptosis was used to determine cell death, and the expression of both NF-κB and pNF-κB were quantified by Western blot analysis. ZA had a cytotoxic effect on both human gingival fibroblasts and human alveolar osteoblasts. This BP inhibits cell proliferation, stimulates apoptosis, and induces inflammation. However, the addition of PRGF suppresses all these negative effects of the ZA. PRGF shows a cytoprotective role against the negative effects of ZA on primary oral cells. At present, there is no definitive treatment for bisphosphonates-related osteonecrosis of the jaw (BRONJ), being mainly palliatives. Our results revealed that PRGF has a cytoprotective role in cells exposed to zoledronic acid, thus providing a reliable adjunctive therapy for the treatment of BRONJ pathology.

  12. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy.

    Science.gov (United States)

    Papalia, Teresa; Barreca, Davide; Panuccio, Maria Rosaria

    2017-03-18

    Jatropha ( Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C -glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.

  13. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas Grown in Southern Italy

    Directory of Open Access Journals (Sweden)

    Teresa Papalia

    2017-03-01

    Full Text Available Jatropha (Jatropha curcas L. is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C-glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.

  14. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  15. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  16. Antioxidant and cytoprotective properties of D-tagatose in cultured murine hepatocytes.

    Science.gov (United States)

    Paterna, J C; Boess, F; Stäubli, A; Boelsterli, U A

    1998-01-01

    D-Tagatose is a zero-energy producing ketohexose that is a powerful cytoprotective agent against chemically induced cell injury. To further explore the underlying mechanisms of cytoprotection, we investigated the effects of D-tagatose on both the generation of superoxide anion radicals and the consequences of oxidative stress driven by prooxidant compounds in intact cells. Primary cultures of hepatocytes derived from male C57BL/6 mice were exposed to the redox cycling drug nitrofurantoin (NFT). Lethal cell injury induced by 300 microM NFT was completely prevented by high concentrations (20 mM) of D-tagatose, whereas equimolar concentrations of glucose, mannitol, or xylose were ineffective. The extent of NFT-induced intracellular superoxide anion radical formation was not altered by D-tagatose, indicating that the ketohexose did not inhibit the reductive bioactivation of NFT. However, the NFT-induced decline of the intracellular GSH content was largely prevented by D-tagatose. The sugar also afforded complete protection against NFT toxicity in hepatocytes that had been chemically depleted of GSH. Furthermore, the ketohexose fully protected from increases in both membrane lipid peroxidation and protein carbonyl formation. In addition, D-tagatose completely prevented oxidative cell injury inflicted by toxic iron overload with ferric nitrilotriacetate (100 microM). In contrast, D-tagatose did not protect against lethal cell injury induced by tert-butyl hydroperoxide, a prooxidant which acts by hydroxyl radical-independent mechanisms and which is partitioned in the lipid bilayer. These results indicate that D-tagatose, which is a weak iron chelator, can antagonize the iron-dependent toxic consequences of intracellular oxidative stress in hepatocytes. The antioxidant properties of D-tagatose may result from sequestering the redox-active iron, thereby protecting more critical targets from the damaging potential of hydroxyl radical.

  17. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.)

    Science.gov (United States)

    Castro-Vazquez, Lucia; Alañón, María Elena; Rodríguez-Robledo, Virginia; Pérez-Coello, María Soledad; Hermosín-Gutierrez, Isidro; Díaz-Maroto, María Consuelo; Jordán, Joaquín; Galindo, María Francisca; Arroyo-Jiménez, María del Mar

    2016-01-01

    Grapefruit (Citrus paradisi Macf.) is an important cultivar of the Citrus genus which contains a number of nutrients beneficial to human health. The objective of the present study was to evaluate changes in bioactive flavonoids, antioxidant behaviour, and in vitro cytoprotective effect of processed white and pink peels after oven-drying (45°C–60°C) and freeze-drying treatments. Comparison with fresh grapefruit peels was also assessed. Significant increases in DPPH, FRAPS, and ABTS values were observed in dried grapefruit peel samples in comparison with fresh peels, indicating the suitability of the treatments for use as tools to greatly enhance the antioxidant potential of these natural byproducts. A total of thirteen flavonoids were quantified in grapefruit peel extracts by HPLC-MS/MS. It was found that naringin, followed by isonaringin, was the main flavonoid occurring in fresh, oven-dried, and freeze-dried grapefruit peels. In vivo assay revealed that fresh and oven-dried grapefruit peel extracts (45°C) exerted a strong cytoprotective effect on SH-SY5Y neuroblastoma cell lines at concentrations ranging within 0.1–0.25 mg/mL. Our data suggest that grapefruit (Citrus paradisi Macf.) peel has considerable potential as a source of natural bioactive flavonoids with outstanding antioxidant activity which can be used as agents in several therapeutic strategies. PMID:26904169

  18. Evidence for the gastric cytoprotective effect of centrally injected agmatine.

    Science.gov (United States)

    Zádori, Zoltán S; Tóth, Viktória E; Fehér, Ágnes; Philipp, Kirsch; Németh, József; Gyires, Klára

    2014-09-01

    Agmatine (decarboxylated arginine) exerts cytoprotective action in several tissues, such as in the brain, heart or kidneys, but there is still controversy over the effects of agmatine on the gastric mucosa. The aim of the present study was to reveal the potential gastroprotective action of agmatine by using an acid-independent ulcer model to clarify which receptors and peripheral factors are involved in it. Gastric mucosal damage was induced by acidified ethanol. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. It was found that agmatine given intracerebroventricularly (i.c.v., 0.044-220 nmol/rat) significantly inhibited the development of ethanol-induced mucosal damage, while in the case of intraperitoneal injection (0.001-50mg/kg i.p.) it had only a minor effect. The central gastroprotective action of agmatine was completely antagonized by mixed alpha2-adrenoceptor and imidazoline I1 receptor antagonists (idazoxan, efaroxan), but only partially by yohimbine (selective alpha2-adrenoceptor antagonist) and AGN 192403 (selective I1 receptor ligand, putative antagonist). It was also inhibited by the non-selective opioid-receptor antagonist naloxone and the selective δ-opioid receptor antagonist naltrindole, but not by β-funaltrexamine and nor-Binaltorphimine (selective μ- and κ-opioid receptor antagonists, respectively). Furthermore, the effect of agmatine was antagonized by bilateral cervical vagotomy and by pretreatment with indomethacin and NG-nitro-l-arginine. Agmatine also reversed the ethanol-induced reduction of gastric mucosal CGRP and somatostatin content, but did not have any significant effect on gastric motor activity. These results indicate that agmatine given centrally induces gastric cytoprotection, which is mediated by central imidazoline I1 receptors, alpha2-adrenoceptors and δ-opioid receptors. Activation of

  19. Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes

    NARCIS (Netherlands)

    Donatus, I A; Sardjoko,; Vermeulen, N P

    1990-01-01

    The cytoprotective effect of curcumin, a natural constituent of Curcuma longa, on the cytotoxicity of paracetamol in rat hepatocytes was studied. Paracetamol was selected as a model-toxin, since it is known to be bioactivated by 3-methylcholanthrene inducible cytochromes P450 presumably to

  20. LC-MS analysis and cytoprotective effect against the mercurium and aluminium toxicity by bioactive products of Psidium brownianum Mart. ex DC.

    Science.gov (United States)

    Sobral-Souza, Celestina E; Silva, Ana R P; Leite, Nadghia F; Costa, José G M; Menezes, Irwin R A; Cunha, Francisco A B; Rolim, Larissa A; Coutinho, Henrique D M

    2018-03-21

    This study aimed to verify the chelating, antioxidant and cytoprotective activities of Psidium brownianum Mart. Ex DC against mercury and aluminum. The ethanolic extract, as well as the tannic and flavonoid fractions, were prepared and subjected to liquid chromatography-mass spectrometry analysis. Ferric ion reduction and antioxidant activity measurement using the FRAP method were performed with P. brownianum. After determining the sub-allelopathic doses, germination tests using Lactuca sativa (lettuce) seeds were performed. The main compounds identified in the extract and fractions were: quercetin and its derivatives; myricetin and its derivatives; gallic acid; ellagic acid; quinic acid and gallocatechin. The Minimum Inhibitory Concentration (MIC) for all samples were ≥ 1024 μg/mL. The flavonoid fraction in association with mercury chloride demonstrated cytoprotection (p flavonoids. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells.

    Science.gov (United States)

    Ávila, Felipe; Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva; Schmeda-Hirschmann, Guillermo

    2017-01-01

    The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries ( Rubus geoides ), strawberries ( Fragaria chiloensis ssp. chiloensis f . chiloensis ), and currants ( Ribes magellanicum ) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis . This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  2. A novel strategy to activate cytoprotective genes in the injured brain

    International Nuclear Information System (INIS)

    Zhao, Jing; Redell, John B.; Moore, Anthony N.; Dash, Pramod K.

    2011-01-01

    Highlights: → A strategy to increase cytoprotective gene expression in injured tissue is outlined. → A peptide containing a DEETGE motif can increase Nrf2 responsive genes in vivo. → Gene expression in injured brains requires a calpain cleavage site. → This peptide decreases BBB compromise when infused pre- or post-brain injury. → Cleavage sites for disease-specific proteases could be used to treat that condition. -- Abstract: The transcription factor nuclear factor E2-related factor 2 (Nrf2) regulates the expression of multiple cytoprotective genes that have been shown to offer protection in response to a number of insults. The present study describes a novel strategy to increase expression of Nrf2-responsive genes in brain injured mice. Under normal conditions, the adapter protein Kelch-like ECH-associated protein 1 (Keap1) binds to Nrf2 and promotes its proteosomal degradation in the cytoplasm. The amino acid sequence DEETGE, located at amino acid 77-82 of Nrf2, is critical for Nrf2-Keap1 interaction, and synthetic peptides containing this sequence can be used to disrupt the complex in vitro. We observed that intracerebroventricular (i.c.v.) infusion of a peptide containing the DEETGE sequence along with the cell transduction domain of the HIV-TAT protein (TAT-DEETGE) into brain-injured mice did not increase the mRNA levels for Nrf2-driven genes. However, when a calpain cleavage sequence was introduced between the TAT sequence and the DEETGE sequence, the new peptide (TAT-CAL-DEETGE) increased the mRNA levels of these genes. Increased gene expression was not observed when the TAT-CAL-DEETGE peptide was injected into uninjured animals. Furthermore, injection of TAT-CAL-DEETGE peptides before or after brain injury reduced blood-brain barrier compromise, a prominent secondary pathology that negatively influences outcome. The present strategy to increase Nrf2-responsive gene expression can be adapted to treat other insults or diseases based on their

  3. Role of submandibular saliva and epidermal growth factor in gastric cytoprotection

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    without submandibular glands. Exogenous EGF and saliva with a high but still physiological concentration of EGF significantly reduced the median area in the stomach displaying ulcers and ulcerations, whereas saliva without EGF had no effect. Although EGF is a known inhibitor of gastric acid secretion......The role of submandibular epidermal growth factor in protection of the gastric mucosa was investigated in rats. Removal of the submandibular glands and thereby submandibular epidermal growth factor (EGF) caused rats to develop gastric lesions (ulcerations and ulcers) after administration......, the dose used in the present study had no effect on gastric acid secretion in chronic gastric fistula rats; removal of the submandibular glands also did not have any such effect. We conclude that exocrine secretion of submandibular EGF has a cytoprotective function in the stomach, an effect that may...

  4. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    Science.gov (United States)

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  5. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect

    International Nuclear Information System (INIS)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto; Borsato, Débora Maria; Almeida, Martinha Antunes; Barboza, Fernanda Malaquias; Zawadzki, Sônia Faria; Kanunfre, Carla Cristine; Farago, Paulo Vitor; Zanin, Sandra Maria Warumby

    2016-01-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3 μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. - Highlights: • Ferulic acid-loaded Eudragit® L100 microparticles with high drug-loading were obtained. • Spray-dried Eudragit® L100 microparticles containing ferulic acid showed improved in vitro cytoprotective effect. • Ferulic acid spray-dried microparticles had potential as in vitro anti-inflammatory and immunomodulatory. • In vivo studies demonstrated an enhanced antiplatelet effect for ferulic acid-loaded Eudragit® L100 microparticles.

  6. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil); Borsato, Débora Maria [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Almeida, Martinha Antunes [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Barboza, Fernanda Malaquias [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zawadzki, Sônia Faria [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Kanunfre, Carla Cristine [Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa (Brazil); Farago, Paulo Vitor, E-mail: pvfarago@gmail.com [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zanin, Sandra Maria Warumby [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil)

    2016-07-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3 μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. - Highlights: • Ferulic acid-loaded Eudragit® L100 microparticles with high drug-loading were obtained. • Spray-dried Eudragit® L100 microparticles containing ferulic acid showed improved in vitro cytoprotective effect. • Ferulic acid spray-dried microparticles had potential as in vitro anti-inflammatory and immunomodulatory. • In vivo studies demonstrated an enhanced antiplatelet effect for ferulic acid-loaded Eudragit® L100 microparticles.

  7. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Cytoprotective and Antioxidant Effects of an Edible Herb, Enhydra fluctuans Lour. (Asteraceae), against Experimentally Induced Lead Acetate Intoxication.

    Science.gov (United States)

    Dua, Tarun K; Dewanjee, Saikat; Khanra, Ritu; Joardar, Swarnalata; Barma, Sujata; Das, Shilpa; Zia-Ul-Haq, M; De Feo, Vincenzo

    2016-01-01

    Enhydra fluctuans Lour. (Asteraceae), an edible aquatic herb, is traditionally employed against toxic effects of heavy metals in India. The present study was planned to discover the protective effect of edible extract of E. fluctuans (AEEF) against Pb toxicity. The cytoprotective role of AEEF was determined on murine hepatocytes employing MTT assay and Hoechst staining. The effects on lipid peroxidation, protein carbonylation, endogenous redox systems and the transcription levels of apoptotic proteins were studied after incubating the hepatocytes with AEEF (400 μg/ml) + Pb-acetate (6.8 μM). The defensive role of AEEF (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication was measured in mice by in vivo assays. Biochemical, haematological and histological parameters, intracellular Pb burden and redox status were measured. AEEF exhibited a concentration dependent cytoprotective effect against Pb-induced cytotoxicity in vitro. Pb-acetate incubation significantly (p intoxicated animals. However, concurrent administration of AEEF (100 mg/kg) could significantly (p < 0.05-0.01) reinstate the Pb-acetate mediated toxicity. Presence of metal chelators and phyto-antioxidants within AEEF would offer overall protection through promoting Pb clearance coupled with restoring redox balance.

  9. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-01-01

    Full Text Available The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs from Chilean raspberries (Rubus geoides, strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis, and currants (Ribes magellanicum and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  10. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  11. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  12. Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells.

    Science.gov (United States)

    Chen, Pei-Yi; Ho, Yi-Ru; Wu, Ming-Jiuan; Huang, Shun-Ping; Chen, Po-Kong; Tai, Mi-Hsueh; Ho, Chi-Tang; Yen, Jui-Hung

    2015-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), a flavonol compound of flavonoids, exhibits a broad spectrum of biological activities including anti-oxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The aim of this study is to investigate the cytoprotective effect of fisetin and the underlying molecular mechanism against hypoxia-induced cell death in PC12 cells. The results of this study showed that fisetin significantly restored the cell viability of PC12 cells under both cobalt chloride (CoCl₂)- and low oxygen-induced hypoxic conditions. Treatment with fisetin successfully reduced the CoCl₂-mediated reactive oxygen species (ROS) production, which was accompanied by an increase in the cell viability of PC12 cells. Furthermore, we found that treatment of PC12 cells with fisetin markedly upregulated hypoxia-inducible factor 1α (HIF-1α), its nuclear accumulation and the hypoxia-response element (HRE)-driven transcriptional activation. The fisetin-mediated cytoprotection during CoCl₂ exposure was significantly attenuated through the administration of HIF-1α siRNA. Moreover, we demonstrated that MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK and phosphatidylinositol 3-kinase (PI3 K) inhibitors significantly blocked the increase in cell survival that was induced by fisetin treatment under hypoxic conditions. Consistently, increased phosphorylation of ERK, p38 and Akt proteins was observed in PC12 cells treated with fisetin. However, the fisetin-induced HRE-driven transcription was not affected by inhibition of these kinase signaling pathways. Current results reveal for the first time that fisetin promotes cell survival and protects against hypoxia-induced cell death through ROS scavenging and the activation of HIF1α-, MAPK/ERK-, p38 MAPK- and PI3 K/Akt-dependent signaling pathways in PC12 cells.

  13. Traditional Herbal Medicine, Rikkunshito, Induces HSP60 and Enhances Cytoprotection of Small Intestinal Mucosal Cells as a Nontoxic Chaperone Inducer

    Directory of Open Access Journals (Sweden)

    Kumiko Tamaki

    2012-01-01

    Full Text Available Increasing incidence of small intestinal ulcers associated with nonsteroidal anti-inflammatory drugs (NSAIDs has become a topic with recent advances of endoscopic technology. However, the pathogenesis and therapy are not fully understood. The aim of this study is to examine the effect of Rikkunshito (TJ-43, a traditional herbal medicine, on expression of HSP60 and cytoprotective ability in small intestinal cell line (IEC-6. Effect of TJ-43 on HSP60 expression in IEC-6 cells was evaluated by immunoblot analysis. The effect of TJ-43 on cytoprotective abilities of IEC-6 cells against hydrogen peroxide or indomethacin was studied by MTT assay, LDH-release assay, caspase-8 activity, and TUNEL. HSP60 was significantly induced by TJ-43. Cell necrosis and apoptosis were significantly suppressed in IEC-6 cells pretreated by TJ-43 with overexpression of HSP60. Our results suggested that HSP60 induced by TJ-43 might play an important role in protecting small intestinal epithelial cells from apoptosis and necrosis in vitro.

  14. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): application of systems biology to understand the mechanism of action.

    Science.gov (United States)

    Wang, Xinyu; Bynum, James A; Stavchansky, Solomon; Bowman, Phillip D

    2014-07-05

    Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-FeIII complex

    Science.gov (United States)

    Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S.

    2015-11-01

    Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature.Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature. Electronic supplementary information (ESI) available: Experimental details, LSCM images, and SEM and TEM images. See DOI: 10.1039/c5nr05573c

  16. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    Science.gov (United States)

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cytoprotection of Human Endothelial Cells From Menadione Cytotoxicity by Caffeic Acid Phenethyl Ester: The Role of Heme Oxygenase-1

    Science.gov (United States)

    2008-06-08

    cells (HUVEC) to evaluate potential gene expression involvement. CAPE exhibited dose- dependent cytoprotection of HUVEC. A gene screen with...highly induced (8.25-fold) by CAPE compared to DMSO control. To validate this particular microarray screening result, quantitative real-time RT-PCR was...the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. The Journal of Biological Chemistry 279, 8919–8929. Minami, T

  18. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karine Andreau

    2012-01-01

    Full Text Available Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.

  19. Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity.

    Science.gov (United States)

    Li, Xia; Jiang, Xinwei; Sun, Jianxia; Zhu, Cuijuan; Li, Xiaoling; Tian, Lingmin; Liu, Liu; Bai, Weibin

    2017-06-01

    Cadmium (Cd) damages the liver, kidney, bones, reproductive system, and other organs. Flavonoids, such as anthocyanins and flavonols, which are commonly found in plant foods, have shown protective effects against Cd-induced damage. The cytoprotective effects of flavonoids against Cd-induced diseases are mainly attributable to three mechanisms. First, flavonoids clear reactive oxygen species, thereby reducing lipid peroxide production and improving the activity of antioxidation enzymes. Second, flavonoids chelate Cd, thus reducing the accumulation of Cd and altering the levels of other essential metal ions in vivo. Third, flavonoids reduce DNA damage and inhibit apoptosis. In addition, flavonoids were found to inhibit inflammation and fibrosis and improve glycometabolism and the secretion of reproductive hormones. We introduce the daily dosage and absorption rate of flavonoids and then focus on their bioactive effects against Cd-induced toxicity and reveal the underlying metabolic pathway, which provides a basis for further study of the nutritional prevention of Cd-induced injury. In particular, a better understanding is needed of the structure-activity relationship of flavonoids against Cd toxicity, which has not yet been reported. © 2017 New York Academy of Sciences.

  20. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires

    Science.gov (United States)

    Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy

    2014-11-01

    Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.

  1. Antioxidative and cytoprotective effects of andrographolide against CCl4-induced hepatotoxicity in HepG2 cells.

    Science.gov (United States)

    Krithika, R; Verma, R J; Shrivastav, P S

    2013-05-01

    This article describes antioxidative and cytoprotective property of andrographolide, a major active component of the plant Andrographis paniculata (A. paniculata). High yields (2.7%) of andrographolide was isolated from the aerial parts of this plant via silica column chromatography. The purity of the compound was determined by high-performance thin-layer chromatography (HPTLC) and reversed phase high-performance liquid chromatography (HPLC) analysis. The structure was elucidated using techniques such as UV-visible spectrophotometry, elemental analysis, Fourier transform infrared (FT-IR), (1)H nuclear magnetic resonance ((1)H NMR), (13)C nuclear magnetic resonance ((13)C NMR) and mass spectral analysis and the data obtained were comparable with reported results. It was observed that andrographolide exhibited significant antioxidative property (IC50 = 3.2 µg/ml) by its ability to scavenge a stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) as compared to known antioxidants like ascorbic acid, butylated hydroxy toluene (BHT) and the plant extract. The cytoprotective role of andrographolide against carbon tetrachloride (CCl4) toxicity in human hepatoma HepG2 cell line was assessed using trypan blue exclusion test, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, by estimation of various leakage enzymes and by measuring the glutathione levels. The recovery obtained for andrographolide treatment in the presence of CCl4 was two-fold compared to A. paniculata extract for all other related biochemical parameters investigated. The results of the study indicate that andrographolide is a potent inhibitor of CCl4-mediated lipid peroxidation.

  2. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    Science.gov (United States)

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  3. Synthetic Growth Hormone-Releasing Peptides (GHRPs): A Historical Appraisal of the Evidences Supporting Their Cytoprotective Effects.

    Science.gov (United States)

    Berlanga-Acosta, Jorge; Abreu-Cruz, Angel; Herrera, Diana García-Del Barco; Mendoza-Marí, Yssel; Rodríguez-Ulloa, Arielis; García-Ojalvo, Ariana; Falcón-Cama, Viviana; Hernández-Bernal, Francisco; Beichen, Qu; Guillén-Nieto, Gerardo

    2017-01-01

    Growth hormone-releasing peptides (GHRPs) constitute a group of small synthetic peptides that stimulate the growth hormone secretion and the downstream axis activity. Mounting evidences since the early 1980s delineated unexpected pharmacological cardioprotective and cytoprotective properties for the GHRPs. However, despite intense basic pharmacological research, alternatives to prevent cell and tissue demise before lethal insults have remained as an empty niche in the clinical armamentarium. Here, we have rigorously reviewed the investigational development of GHRPs and their clinical niching perspectives. PubMed/MEDLINE databases, including original research and review articles, were explored. The search design was date escalated from 1980 and included articles in English only. GHRPs bind to two different receptors (GHS-R1a and CD36), which redundantly or independently exert relevant biological effects. GHRPs' binding to CD36 activates prosurvival pathways such as PI-3K/AKT1, thus reducing cellular death. Furthermore, GHRPs decrease reactive oxygen species (ROS) spillover, enhance the antioxidant defenses, and reduce inflammation. These cytoprotective abilities have been revealed in cardiac, neuronal, gastrointestinal, and hepatic cells, representing a comprehensive spectrum of protection of parenchymal organs. Antifibrotic effects have been attributed to some of the GHRPs by counteracting fibrogenic cytokines. In addition, GHRP family members have shown a potent myotropic effect by promoting anabolia and inhibiting catabolia. Finally, GHRPs exhibit a broad safety profile in preclinical and clinical settings. Despite these fragmented lines incite to envision multiple pharmacological uses for GHRPs, especially as a myocardial reperfusion damage-attenuating candidate, this family of "drugable" peptides awaits for a definitive clinical niche.

  4. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Varshney, Ritu; Gupta, Sumeet; Roy, Partha

    2017-06-15

    Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol-mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Potential antioxidant and cytoprotective effects of essential oil extracted from Cymbopogon citratus on OxLDL and H2O2 LDL induced Human Peripheral Blood Mononuclear Cells (PBMC

    Directory of Open Access Journals (Sweden)

    Jamuna S.

    2017-06-01

    Full Text Available Cymbopogon citratus (lemon grass is commonly used in traditional folk medicine. The essential oil extracted from C. citratus has been reported as a potential anti-oxidant and anti-inflammatory agent. This study has been designed to explore the protective effect of C. citratus (lemon grass against modified LDL (OxLDL and H2O2 LDL induced cytotoxicity in Peripheral Blood Mononuclear Cells (PBMC. The essential oil extracted from C. citratus (EOC was subjected to FT-IR spectroscopic analysis for the identification of functional groups. In vitro antioxidant assays were carried out to assess the electron donating capability of EOC as compared with a known standard L-ascorbic acid. The cytoprotective effects of EOC were determined in PBMC induced with modified LDL. Spectra obtained from FT-IR analysis showed the presence of functional groups in EOC such as H-bonded, OH stretching, NH stretching, aldehydeCH stretching, aldehyde/ketoneCO stretching, CC-stretching, CH3 bending, CH in plane bending. EOC has greater antioxidant property when compared with the standard L-ascorbic acid. EOC at all test concentrations demonstrated free radical scavenging activity and cytoprotective effect when challenged against modified LDL in PBMC. The above results show EOC as a promising antioxidant and cytoprotective agent.

  6. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure

    Directory of Open Access Journals (Sweden)

    Sooklert K

    2016-02-01

    Full Text Available Kanidta Sooklert,1,2 Supreecha Chattong,3 Krissanapong Manotham,3 Chawikan Boonwong,1 I-yanut Klaharn,1 Depicha Jindatip,4 Amornpun Sereemaspun1,4 1Nanobiomedicine Laboratory, Department of Anatomy, Faculty of Medicine, 2Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, 3Renal Unit, Department of Medicine, Lerdsin General Hospital, 4Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: The toxic effects from exposure to silver nanoparticles (AgNPs, which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO, a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO. Keywords: glutaraldehyde erythropoietin, silver nanoparticles, cytoprotection

  7. Comparative Study on the Cytoprotective Effects of Activated Protein C Treatment in Nonsteatotic and Steatotic Livers under Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Akitoshi Matsuda

    2015-01-01

    Full Text Available Activated protein C (APC has cytoprotective effects on liver ischemia-reperfusion injury (IRI. However, it is unclear whether APC is beneficial in steatotic liver IRI. We compared the cytoprotective effects of APC in nonsteatotic and steatotic liver IRI. Methods. Mice fed either normal diets (ND mice or high fat diets (HF mice, were treated with APC or saline (control and were performed 60 min partial IRI. Moreover, primary steatotic hepatocytes were either untreated or treated with APC and then incubated with H2O2. Results. APC significantly reduced serum transaminase levels and the inflammatory cells infiltration compared with control at 4 h in ND mice and at 24 h in HF mice. APC inhibited sinusoidal endothelial injury in ND mice, but not in HF mice. In contrast, APC activated adenosine monophosphate-activated protein kinase (AMPK phosphorylation in HF mice, but not in ND mice. In the in vitro study, APC significantly increased AMPK phosphorylation, ATP concentration, and survival rates of hepatocytes compared with control. Conclusion. During IRI in normal liver, APC attenuated initial damage by inhibiting inflammatory cell infiltration and sinusoidal endothelial injury, but not in steatotic liver. However, in steatotic liver, APC might attenuate late damage via activation of AMPK.

  8. Synthetic Growth Hormone-Releasing Peptides (GHRPs: A Historical Appraisal of the Evidences Supporting Their Cytoprotective Effects

    Directory of Open Access Journals (Sweden)

    Jorge Berlanga-Acosta

    2017-02-01

    Full Text Available Background: Growth hormone-releasing peptides (GHRPs constitute a group of small synthetic peptides that stimulate the growth hormone secretion and the downstream axis activity. Mounting evidences since the early 1980s delineated unexpected pharmacological cardioprotective and cytoprotective properties for the GHRPs. However, despite intense basic pharmacological research, alternatives to prevent cell and tissue demise before lethal insults have remained as an empty niche in the clinical armamentarium. Here, we have rigorously reviewed the investigational development of GHRPs and their clinical niching perspectives. Methodology: PubMed/MEDLINE databases, including original research and review articles, were explored. The search design was date escalated from 1980 and included articles in English only. Results and Conclusions: GHRPs bind to two different receptors (GHS-R1a and CD36, which redundantly or independently exert relevant biological effects. GHRPs’ binding to CD36 activates prosurvival pathways such as PI-3K/AKT1, thus reducing cellular death. Furthermore, GHRPs decrease reactive oxygen species (ROS spillover, enhance the antioxidant defenses, and reduce inflammation. These cytoprotective abilities have been revealed in cardiac, neuronal, gastrointestinal, and hepatic cells, representing a comprehensive spectrum of protection of parenchymal organs. Antifibrotic effects have been attributed to some of the GHRPs by counteracting fibrogenic cytokines. In addition, GHRP family members have shown a potent myotropic effect by promoting anabolia and inhibiting catabolia. Finally, GHRPs exhibit a broad safety profile in preclinical and clinical settings. Despite these fragmented lines incite to envision multiple pharmacological uses for GHRPs, especially as a myocardial reperfusion damage-attenuating candidate, this family of “drugable” peptides awaits for a definitive clinical niche.

  9. A hybrid of coumarin and phenylsulfonylfuroxan induces caspase-dependent apoptosis and cytoprotective autophagy in lung adenocarcinoma cells.

    Science.gov (United States)

    Wang, Qian; Guo, Yalan; Jiang, Shanshan; Dong, Mengxue; Kuerban, Kudelaidi; Li, Jiyang; Feng, Meiqing; Chen, Ying; Ye, Li

    2018-01-15

    Lung adenocarcinoma is the most primary histologic subtype of non-small cell lung cancer (NSCLC). Compound 8b, a novel coumarin derivative with phenylsulfonylfuroxan group, shows significant antiproliferation activity against lung adenocarcinoma cell with low toxicity. This study aims to uncover the potential of compound 8b in relation to apoptosis as well as autophagy induction in lung adenocarcinoma cells. The cytotoxicity and apoptosis of A549 and H1299 cells induced by compound 8b were detected by MTT, microscope and western blot analysis. Autophagy was determined by TEM, confocal microscopy and western blot analysis. Akt/mTOR and Erk signaling pathway were also examined by western blot analysis. First, significant growth inhibition and caspase-dependent apoptosis were observed in compound 8b-treated A549 and H1299 cells. Then, we confirmed compound 8b-induced autophagy by autophagosomes formation, upregulated expression of autophagy-related protein LC3-II and autophagic flux. Importantly, abolishing autophagy using inhibitors and ATG5 siRNA enhanced the cytotoxicity of compound 8b, indicating the cytoprotective role of autophagy in lung adenocarcinoma. Further mechanistic investigations suggested that Akt/mTOR and Erk signaling pathways contributed to autophagy induction by compound 8b. This results demonstrate that compound 8b induces caspase-dependent apoptosis as well as cytoprotective autophagy in lung adenocarcinoma cells, which may provide scientific evidence for developing this furoxan-based NO-releasing coumarin derivative as a potential anti-lung adenocarcinoma therapeutic agents. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage)

    International Nuclear Information System (INIS)

    Kim, Sang Chan; Byun, Sung Hui; Yang, Chae Ha; Kim, Chul Young; Kim, Jin Woong; Kim, Sang Geon

    2004-01-01

    Glycyrrhizae radix has been popularly used as one of the oldest and most frequently employed botanicals in herbal medicine in Asian countries, and currently occupies an important place in food products. Cadmium (Cd) induces both apoptotic and non-apoptotic cell death, in which alterations in cellular sulfhydryls participate. In the present study, we determined the effects of G. radix extract (GRE) and its representative active components on cell death induced by Cd and explored the mechanistic basis of cytoprotective effects of G. radix. Incubation of H4IIE cells with GRE inhibited cell death induced by 10 μM Cd. Also, GRE effectively blocked Cd (1 μM)-induced cell death potentiated by buthionine sulfoximine (BSO) without restoration of cellular GSH. GRE prevented both apoptotic and non-apoptotic cell injury induced by Cd (10 μM) or Cd (0.3-1 μM) + BSO. Inhibition of Cd-induced cell injury by pretreatment of cells with GRE suggested that the cytoprotective effect result from alterations in the levels of the protein(s) responsible for cell viability. GRE inhibited mitochondrial Bad translocation by Cd or Cd+BSO, and caused restoration of mitochondrial Bcl xL and cytochrome c levels. Cd-induced poly(ADP-ribose)polymerase cleavage in control cells or in cells deprived of sulfhydryls was prevented by GRE treatment. Among the major components present in GRE, liquiritigenin, but not liquiritin, isoliquiritigenin or glycyrrhizin, exerted cytoprotective effect. These results demonstrated that GRE blocked Cd-induced cell death by inhibiting the apoptotic processes involving translocation of Bad into mitochondria, decreases in mitochondrial Bcl xL and cytochrome c, and poly(ADP-ribose)polymerase cleavage

  11. Cytotoxicity and Hsp 70 induction in Hep G2 cells in response to zearalenone and cytoprotection by sub-lethal heat shock

    International Nuclear Information System (INIS)

    Hassen, Wafa; Golli, Emna El; Baudrimont, Isabelle; Mobio, A. Theophile; Ladjimi, M. Moncef; Creppy, E. Edmond; Bacha, Hassen

    2005-01-01

    Zearalenone (ZEN) is a mycotoxin with several adverse effects in laboratory and domestic animals. The mechanism of ZEN toxicity that involves mainly binding to oestrogen receptors and inhibition of macromolecules synthesis is not fully understood. Using human hepatocytes Hep G2 cells as a model, the aim of this work was (i) to investigate the ability of ZEN to induce heat shock proteins Hsp 70 and (ii) to find out the mechanisms of ZEN cytotoxicity by examining cell proliferation and protein synthesis. Our study demonstrated that ZEN induces Hsp 70 expression in a time and dose-dependant manner; this induction occurs at non-cytotoxic concentrations, it could be therefore considered as a biomarker of toxicity. A cytoprotective effect of Hsp 70 was elicited when Hep G2 cells were exposed to Sub-Lethal heat shock prior to ZEN treatment and evidenced by a reduced ZEN cytolethality. This cytoprotection suggests that Hsp 70 may constitute an important cellular defence mechanism. Finally, our data show that ZEN is cytotoxic in Hep G2 cells by inhibiting cell proliferation and total protein synthesis and pointed out oxidative damage as possible pathway involved in ZEN toxicity; however, other investigations are needed to further confirm Zen induced oxidative stress

  12. An exceptionally potent inducer of cytoprotective enzymes: elucidation of the structural features that determine inducer potency and reactivity with Keap1.

    Science.gov (United States)

    Dinkova-Kostova, Albena T; Talalay, Paul; Sharkey, John; Zhang, Ying; Holtzclaw, W David; Wang, Xiu Jun; David, Emilie; Schiavoni, Katherine H; Finlayson, Stewart; Mierke, Dale F; Honda, Tadashi

    2010-10-29

    The Keap1/Nrf2/ARE pathway controls a network of cytoprotective genes that defend against the damaging effects of oxidative and electrophilic stress, and inflammation. Induction of this pathway is a highly effective strategy in combating the risk of cancer and chronic degenerative diseases, including atherosclerosis and neurodegeneration. An acetylenic tricyclic bis(cyano enone) bearing two highly electrophilic Michael acceptors is an extremely potent inducer in cells and in vivo. We demonstrate spectroscopically that both cyano enone functions of the tricyclic molecule react with cysteine residues of Keap1 and activate transcription of cytoprotective genes. Novel monocyclic cyano enones, representing fragments of rings A and C of the tricyclic compound, reveal that the contribution to inducer potency of the ring C Michael acceptor is much greater than that of ring A, and that potency is further enhanced by spatial proximity of an acetylenic function. Critically, the simultaneous presence of two cyano enone functions in rings A and C within a rigid three-ring system results in exceptionally high inducer potency. Detailed understanding of the structural elements that contribute to the reactivity with the protein sensor Keap1 and to high potency of induction is essential for the development of specific and selective lead compounds as clinically relevant chemoprotective agents.

  13. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1

    DEFF Research Database (Denmark)

    Huelsenbeck, Stefanie C; Roggenkamp, Dennis; May, Martin

    2013-01-01

    B expression, based on the inactivation of Rho/Ras proteins. In this study, we report on a long lasting expression of RhoB in cultured cells upon activation of Rho proteins by the cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. The observations of this study highlight a new pathway involving Rac1...... without any signs of cell death. In conclusion, the cytoprotective RhoB response is not only evoked by bacterial protein toxins inactivating Rho/Ras proteins but also by the Rac1-activating toxin CNF1....

  14. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  15. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Fei-Fei; Ling, Hui; Ang, Xiaohui; Reddy, Shridhivya A.; Lee, Stephanie S-H.; Yang, Hong; Tan, Sock-Hoon [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Hayes, John D. [Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland (United Kingdom); Chui, Wai-Keung [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Chew, Eng-Hui, E-mail: phaceh@nus.edu.sg [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore)

    2013-11-01

    Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG) was assessed by evaluating its effects on signaling pathways. At non-toxic concentrations, 3-Ph-3-SG suppressed cancer cell invasion in MDA-MB-231 and MCF-7 breast carcinoma cells through inhibition of PMA-activated MMP-9 expression. At similar concentrations, 3-Ph-3-SG reduced expression of the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanglandin-E{sub 2} (PGE{sub 2}) in RAW 264.7 macrophage-like cells. Inhibition of cancer cell invasion and inflammation by 3-Ph-3-SG were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway. The 3-Ph-3-SG also demonstrated cytoprotective effects by inducing the antioxidant response element (ARE)-driven genes NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1). Cytoprotection by 3-Ph-3-SG was achieved at least partly through modification of cysteine residues in the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 (Keap1), which resulted in accumulation of transcription factor NF-E2 p45-related factor 2 (Nrf2). The activities of 3-Ph-3-SG were comparable to those of 6-shogaol, the most abundant naturally-occurring shogaol, and stronger than those of 4-hydroxyl-null deshydroxy-3-phenyl-3-shogaol, which attested the importance of the 4-hydroxy substituent in the vanilloid moiety for bioactivity. In summary, 3-Ph-3-SG is shown to possess activities that modulate stress-associated pathways relevant to multiple steps in carcinogenesis. Therefore, it warrants further investigation of this compound as a promising candidate for use in chemotherapeutic and chemopreventive strategies. - Highlights:

  16. Cytoprotective effects of atmospheric-pressure plasmas against hypoxia-induced neuronal injuries

    Science.gov (United States)

    Yan, Xu; Meng, Zhaozhong; Ouyang, Jiting; Qiao, Yajun; Li, Jiaxin; Jia, Mei; Yuan, Fang; (Ken Ostrikov, Kostya

    2018-02-01

    Atmospheric pressure plasma jet (APPJ) has recently been the focus of cytoprotective research due to the physiological roles of ROS and RNS. In the current study, we investigated the effect of APPJ treatment on the hypoxia (1% oxygen) induced cell injuries. SH-SY5Y cells were treated by APPJ for different duration and incubated in normoxic condition (20% oxygen) for 5 h followed by 24 h hypoxia treatment. Cell viability was evaluated by lactate dehydrogenase (LDH) release and further monitored using the electric cell-substrate impedance sensing (ECIS) system after APPJ treatment. Results showed that APPJ could reduce cell injuries after 24 h hypoxia, which was consistent with the ECIS results. Furthermore, extracellular NO and H2O2 production was significantly increased with the APPJ treatment. It was also interesting to find that APPJ treatment reduced SH-SY5Y cells proliferation in the hypoxic microenvironment during the first 20 h of hypoxia. Although more work was still need to clarify whether the cell viability maintenance was related to the cell proliferation during hypoxia, our results provide the first evidence of real-time cell viability changes after APPJ treatment under both normoxic and hypoxic conditions, which could provide evidence for the neuroprotective applications of APPJ.

  17. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  18. Irradiation Effect on the antioxidant properties, anti-microbial and cytoprotective of the bark of Punica granatum

    International Nuclear Information System (INIS)

    Sanaa, Chahnez

    2013-01-01

    The bark of pomegranate has been used for some years to treat various health problems . Several studies have focused on specifying these problems, including antibacterial , antioxidant and cytoprotective . The use of pomegranate rind powder is an effective treatment against gastric ulcer and intestines and to strengthen the wall of the gastrointestinal tract. In this work, we studied the effects of gamma irradiation on the type antibacterial, anti-ulcer and bark grenade. This study was conducted on powdered pomegranate bark irradiated by applying decreasing radiation doses from 25kGy to 1.25KGy. All of our results shows that irradiation with a low degree improves the effectiveness of pomegranate bark for the treatment of gastric ulcer , however high degree irradiation enhances the antibacterial activity of bark pomegranate against Staphylococcus aureus.

  19. Activity of ethanolic extracts leaves of Machaerium floribundum against acne-inducing bacteria, and their cytoprotective and antioxidant effects on fibroblast

    Directory of Open Access Journals (Sweden)

    Lorena Díaz

    2011-08-01

    Full Text Available Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus have been recognized as the bacteria that are involved in the inflammatory process of acne, while oxidants and antioxidants are involved in the repair of cutaneous tissue affected. In this study an evaluation was made of the antibacterial effect by the agar diffusion and broth dilution method, the cytoprotective and antioxidant effect on 3T3 dermic fibroblast cells, treated with hydrogen peroxide and the scavenging capacity of free radicals was determined by the 2, 2-diphenyl-l-picrylhydrazyl (DPPH method as well as the Reducing Power of the ethanolic extracts of the leaves of the Machaerium floribundum. Minimal bactericidal concentrations (MBC were obtained against Propionibacterium acnes and Staphylococcus aureus of 5 mg/mL and 2 mg/mL, respectively. A cytoprotective effect of 111% was observed over the cellular viability of the fibroblasts at 10 μg/mL and an antioxidant effect of 92% over the viability of the fibroblasts treated with hydrogen peroxide at 25 μg/mL. A stimulation of 24% growth of fibroblasts at 50 μg/mL was evidenced. On the other hand a 93% scavenging activity of the DPPH free radical was shown for 100 μg/mL with a CI50 of 34 μg/mL. The reducing power was evidenced to be dependent on the concentration. The results obtained indicated that the ethanolic extract of Machaerium floribundum shows a good antibacterial activity against bacteria that induce acne and a high potential for scavenging of free radicals at relatively low concentrations.

  20. Cytoprotective effect of cytoflavinum in the treatment of thermal injuries of various severity levels

    Directory of Open Access Journals (Sweden)

    Alexey J. Bozhedomov

    2012-12-01

    Full Text Available The research aimed to conduct studying of cytoprotective effect of cytoflavinum in thermal traumas of various severity levels. Material and methods – 169 patients were included into the research with thermal burns and with a favorable outcome and the severity of a thermal injury from 30 to 170 points according Frank index. 28 patients received cytoflavinum in a complex therapy in a standard dosage. Results – During the cytoflavinum usage in patients with the severity of a thermal injury more than 60 points by Frank there had been fixed: the decrease of a systemic inflammatory response syndrome (SIRS, reduction of stab neutrophils content, slower decrease of erythrocytes, smaller activation of thrombopoiesis, decrease of concentration of the vascular endothelial growth factor. In the group of patients with thermal injuries less than 60 points who had been receiving cytoflavinum there had not positive effects been fixed. Conclusion – Cytoflavinum is the most effective when the severity of a thermal trauma is more than 60 points by Frank.

  1. In vitro antioxidant and cytoprotective properties of Maillard reaction products from phloridzin-amino acid model systems.

    Science.gov (United States)

    Han, Linna; Li, Feng; Yu, Qijian; Li, Dapeng

    2018-01-01

    The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterised by Fourier transform-infrared spectroscopy (FTIR). MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P Maillard reaction. The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol

    Science.gov (United States)

    Bath, Sundeep

    2015-01-01

    Resveratrol is a phenolic phytochemical, with a stilbene backbone, derived from edible plants such as grape and peanut. It is a bioactive molecule with physiological effects on multiple organ systems. Its effects range from the neuroprotective to the nephroprotective, including cardiovascular, neuronal, and antineoplastic responses as a part of its broad spectrum of action. In this review, we examine the effects of resveratrol on the following organ systems: the central nervous system, including neurological pathology such as Parkinson's and Alzheimer's disease; the cardiovascular system, including disorders such as atherosclerosis, ischemia-reperfusion injury, and cardiomyocyte hypertrophy; the kidneys, including primary and secondary nephropathies and nephrolithiasis; multiple forms of cancer; and metabolic syndromes including diabetes. We emphasize commonalities in extracellular matrix protein alterations and intracellular signal transduction system induction following resveratrol treatment. We summarize the known anti-inflammatory, antioxidative, and cytoprotective effects of resveratrol across disparate organ systems. Additionally, we analyze the available literature regarding the pharmacokinetics of resveratrol formulations used in these studies. Finally, we critically examine select clinical trials documenting a lack of effect following resveratrol treatment. PMID:26180596

  3. In vitro cytoprotective effects of acetylsalicylic acid, carprofen, meloxicam, or robenacoxib against apoptosis induced by sodium nitroprusside in canine cruciate ligament cells.

    Science.gov (United States)

    Waldherr, Katrin; Zurbriggen, Andreas; Spreng, David E; Forterre, Simone

    2012-11-01

    To determine whether incubation of cruciate ligament cells with acetylsalicylic acid, carprofen, meloxicam, or robenacoxib provides protection against apoptosis induced by sodium nitroprusside (SNP). Explants of cranial (CCL) and caudal (CaCL) cruciate ligaments from eight 1-day-old Beagles. Primary cultures of CCL and CaCL cells were created via enzymatic dissociation of cruciate explants. Purified cell cultures were incubated for 2 hours without (controls) or with 1 of 3 concentrations of 1 of 4 NSAIDs (10, 100, or 200 μg of acetylsalicylic acid/mL; 0.1, 1, or 10 μg of carprofen/mL; 0.1, 1, or 10 μg of meloxicam/mL; or 0.1, 1, or 10 μg of robenacoxib/mL) and subsequently incubated for 18 hours with 1 of 3 concentrations of SNP in an attempt to induce mild, moderate, or severe cytotoxic effects. Cell viability and apoptosis were analyzed via a cell proliferation assay and flow cytometry, respectively. Prostaglandin E(2) concentrations were measured via an ELISA. Cytoprotective effects of NSAIDs were dependent on the extent of SNP-induced apoptosis and were greatest in CCL and CaCL cell cultures with moderate SNP-induced cytotoxic effects. Preincubation with an NSAID improved cell viability by 15% to 45% when CCL and CaCL cells were subsequently incubated with SNP. Carprofen (10 μg/mL) had the greatest cytoprotective effects for CCL and CaCL cells. Incubation with NSAIDs resulted in a nonsignificant decrease in PGE(2) production from SNP-damaged cells. Results indicated that carprofen, meloxicam, and robenacoxib may reduce apoptosis in cells originating from canine cruciate ligaments.

  4. Elevation of serum N-terminal pro-brain natriuretic peptide after exercise is an index of myocardial damage or a cytoprotective reflection?

    Science.gov (United States)

    Faviou, E; Zachari, A; Nounopoulos, C; Agrafiotis, E; Vourli, G; Dionyssiou-Asteriou, A

    2008-03-01

    Recent investigations have suggested the occurrence of transient cardiac dysfunction and reversible myocardial injury in healthy individuals after heavy exercise. Our purpose was to examine if the release of N-terminal pro-brain natriuretic peptide (NT-proBNP) after intense exercise in obviously healthy participants may have cytoprotective and growth-regulating effects or may result from myocardial dysfunction/damage with changes in cTnT as a marker for myocardial cell necrosis during exercise. In 43 highly-trained male athletes hypertrophy. A normal plasma concentration of NT-proBNP in consecutive routine check-up, before and after exercise, could minimize the possibility of cardiac dysfunction, whereas persistent elevated plasma concentrations warrant further cardiological evaluation.

  5. Fructose 1,6-Bisphosphate: A Summary of Its Cytoprotective Mechanism.

    Science.gov (United States)

    Alva, Norma; Alva, Ronald; Carbonell, Teresa

    2016-01-01

    In clinical and experimental settings, a great deal of effort is being made to protect cells and tissues against harmful conditions and to facilitate metabolic recovery following these insults. Much of the recent attention has focused on the protective role of a natural form of sugar, fructose 1,6-bisphosphate (F16bP). F16bP is a high-energy glycolytic intermediate that has been shown to exert a protective action in different cell types and tissues (including the brain, kidney, intestine, liver and heart) against various harmful conditions. For example, there is much evidence that it prevents neuronal damage due to hypoxia and ischemia. Furthermore, the cytoprotective effects of F16bP have been documented in lesions caused by chemicals or cold storage, in a decrease in mortality during sepsis shock and even in the prevention of bone loss in experimental osteoporosis. Intriguingly, protection in such a variety of targets and animal models suggests that the mechanisms induced by F16bP are complex and involve different pathways. In this review we will discuss the most recent theories concerning the molecular model of action of F16bP inside cells. These include its incorporation as an energy substrate, the mechanism for the improvement of ATP availability, and for preservation of organelle membrane stability and functionality. In addition we will present new evidences regarding the capacity of F16bP to decrease oxidative stress by limiting free radical production and improving antioxidant systems, including the role of nitric oxide in the protective mechanism induced by F16bP. Finally we will review the proposed mechanisms for explaining its anti-inflammatory, immunomodulatory and neuroprotective properties.

  6. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva).

    Science.gov (United States)

    Song, Yi; Yang, Yang; Zhang, Yuyu; Duan, Liusheng; Zhou, Chunli; Ni, Yuanying; Liao, Xiaojun; Li, Quanhong; Hu, Xiaosong

    2013-10-15

    Acetylation of pumpkin (Cucurbita pepo, lady godiva variety) polysaccharide using acetic anhydride with pyridines as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale. Furthermore, antioxidant activities and cytoprotective effects of pumpkin polysaccharide and its acetylated derivatives were investigated employing various established in vitro systems. Results showed that addition of pyridine as catalyst could increase the degree of substitution, whereas volume of acetic anhydride had little effect. The acetylated polysaccharides in DPPH scavenging radical activity assay, superoxide anion radical activity assay and reducing power assay exhibited higher antioxidant activity than that of unmodified polysaccharide. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by pumpkin polysaccharide and its acetylated derivatives and the derivatives presented higher protective effects. On the whole, acetylated polysaccharide showed relevant antioxidant activity both in vitro and in a cell system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Piper betle Induced Cytoprotective Genes and Proteins via the Nrf2/ARE Pathway in Aging Mice.

    Science.gov (United States)

    Aliahmat, Nor Syahida; Abdul Sani, Nur Fathiah; Wan Hasan, Wan Nuraini; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2016-01-01

    The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins. Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis. PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes. PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process. © 2016 S. Karger AG, Basel.

  8. An Odyssey of cytoprotective bisbenzimidazole as therapeutic agent for human well being

    International Nuclear Information System (INIS)

    Tandon, Vibha

    2014-01-01

    Radiotherapy is utilized by 80% patients as a part of their treatment to most prevalent disease like cancer. Ionizing radiation causes radiolysis of water, generation of ROS and has deleterious effect penetrating the living tissues resulting in the-transfer of radiation energy to the biological materials. Radioprotectors protect the normal cells from the unwanted radiation damage. Since the beginning of the nuclear era, despite extensive research on the development of radioprotectors from natural and synthetic compounds, success has been limited. The only clinically acceptable radioprotector, amifostine, has inherent dose-limiting toxicities and has therefore stimulated extensive search for nontoxic, effective, and alternative radioprotectors. We have developed a cytoprotective radioprotector DMA, having a bisbenzimidazole nucleus. Relative quantitation of gene expression of the identified proteins and their interacting partners led to the identification of NFkB inducing kinase (NIK) as one of the plausible target. Subsequently, over expression and knock down of NIK suggested that DMA affects NFkB inducing kinase mediated phosphorylation of IKKα and IKKβ both alone and in the presence of ionizing radiation. We observed 51% radioprotection in untreated cells that attenuated to 17% in siRNA NIK treated U87 cells at 24h. Further studies concluded that the Coactivation of AKT/NFkB triggered by DMA, is a reason behind protection against ionizing radiation-induced apoptosis of normal cells, and this was consistent with the alteration of DNA-PKcs. Pharmacokinetic (PK) evaluations and bioavailability measurements proved superior in vivo efficacy, higher AUCs, greater residence time of DMA. (author)

  9. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  10. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  11. Orthodontic forces induce the cytoprotective enzyme heme oxygenase-1 in rats

    Directory of Open Access Journals (Sweden)

    Christiaan M. Suttorp

    2016-07-01

    Full Text Available Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL, and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalization. Heme oxygenase-1 (HO-1 forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Ni-Ti 10 cN coil spring. The contralateral side served as control. After 6, 12, 72, 96 and 120 hrs rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of multinuclear osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in the mononuclear cell population within the PDL at both the apposition- and resorption side. Shortly after appliance placement HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 hours. Some osteoclasts were HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of cytoprotective enzymes as HO-1 in the PDL determines the level of hyalinization and, subsequently, fast and slow tooth movers during orthodontic treatment.

  12. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    International Nuclear Information System (INIS)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-01-01

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin

  13. Isolating a cytoprotective compound from Ganoderma tsugae: effects on induction of Nrf-2-related genes in endothelial cells.

    Science.gov (United States)

    Wei, Yu-Shan; Wung, Being-Sun; Lin, Yuan-Chun; Hsieh, Chia-Wen

    2009-08-01

    Ganoderma tsugae is a medicinal fungus with several biological activities. It has long been used as a folk remedy for the promotion of health and longevity in China and other oriental countries. Here, a bioactive fraction of G. tsugae was progressively purified to be enriched in the activity of cytoprotective enzymes. The highest bioactivity was detected in the 20% EtOH-precipitated fraction, which was prepared from submerged fermentation filtrate of G. tsugae. Following further purification by gel filtration chromatography and acetone extraction, the most bioactive fraction, F5-2, was identified as a peptidoglycan-like compound. Extracts of G. tsugae (F5-2) induced heme oxygenase-1 (HO-1) and thioredoxin reductase-1 (TrxR1) expression in endothelial cells by increasing NF-E2-related factor-2 (Nrf2) nuclear translocation. Pretreatment with F5-2 increased intracellular glutathione (GSH) and protected against H(2)O(2), suggesting that induction of these antioxidant enzymes is important in protection against oxidative stress. Hence the bioactive peptidoglycan-like compound from G. tsugae might protect endothelial cells.

  14. Cytoprotection mediated antiulcer effect of aqueous fruit pulp extract of Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Swapnil Sharma

    2012-05-01

    Full Text Available Objective: The study was aimed to evaluate the gastroprotective potential of Cucumis Sativus fruit pulp aqueous extract (CSE in gastric ulcerated rats. Methods: Cytoprotective potential was evaluated via oral administration of CSE at the doses of 250, 500 &1000 mg/kg three times in a day, for 5 days before the induction of ulcers in indomethacin and pyloric ligation induced ulcer model. Further, its effects were studied on various parameters volume of gastric juice, pH, free and total acidity, protein concentration, acid output in gastric juice, lipid peroxide (LPO, and activities of enzymic antioxidants-super oxide dismutase (SOD and catalase (CAT in gastric mucosa. The levels of hexose, hexosamine, sialic acid, fucose in gastric mucosa and gastric juice were also examined. The extent of healing was also determined with post administration of CSE at the same doses & dosage schedule in acetic acid induced model. Results: In indomethacin and pyloric ligation model, the pretreatment with CSE and ranitidine significantly reduced the lesion index, in comparison with control treated group (P< 0.05. The percentages of protection of ulcers were 25.8, 65.7, 80.6 & 93.8 for the treated groups of CSE and ranitidine whereas in pyloric ligation it was 31.26, 55.18, 93.26 & 95.51 respectively. In pyloric ligation model, CSE resulted in significant increase in pH, enzymic antioxidants i.e. SOD & CAT, with a significant decrease in volume of gastric juice, free and total acidity, protein & carbohydrate concentration and LPO levels. In acetic acid inducer model, treatment with Cucumis sativus (CSE caused significant reduction in lesion index in when compared to control treated group, providing evidence for ulcer healing capacity of it. The presence of the flavonoids and polyphenols may be responsible for the gastroprotective effect of CSE. Conclusions: The aqueous fruit pulp extract of Cucumis sativus (CSE has a gastroprotective property.

  15. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    Science.gov (United States)

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  16. Anti-inflammatory, antiproliferative, and cytoprotective activity of NO chimera nitrates of use in cancer chemoprevention.

    Science.gov (United States)

    Hagos, Ghenet K; Abdul-Hay, Samer O; Sohn, Johann; Edirisinghe, Praneeth D; Chandrasena, R Esala P; Wang, Zhiqiang; Li, Qian; Thatcher, Gregory R J

    2008-11-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown promise in colorectal cancer (CRC), but they are compromised by gastrotoxicity. NO-NSAIDs are hybrid nitrates conjugated to an NSAID designed to exploit the gastroprotective properties of NO bioactivity. The NO chimera ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094), a novel nitrate containing an NSAID and disulfide pharmacophores, is effective in vivo in rat models of CRC and is a lead compound for design of agents of use in CRC. Preferred chemopreventive agents possess 1) antiproliferative and 2) anti-inflammatory actions and 3) the ability to induce cytoprotective phase 2 enzymes. To determine the contribution of each pharmacophore to the biological activity of GT-094, these three biological activities were studied in vitro in compounds that deconstructed the structural elements of the lead GT-094. The anti-inflammatory and antiproliferative actions of GT-094 in vivo were recapitulated in vitro, and GT-094 was seen to induce phase 2 enzymes via the antioxidant responsive element. In the variety of colon, macrophage-like, and liver cell lines studied, the evidence from structure-activity relationships was that the disulfide structural element of GT-094 is the dominant contributor in vitro to the anti-inflammatory activity, antiproliferation, and enzyme induction. The results provide a direction for lead compound refinement. The evidence for a contribution from the NO mimetic activity of nitrates in vitro was equivocal, and combinations of nitrates with acetylsalicylic acid were inactive.

  17. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Science.gov (United States)

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  18. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    William P Clafshenkel

    Full Text Available Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP, may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidylsuberate (BS3. A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  19. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract.

    Science.gov (United States)

    Escher, Graziela Bragueto; Santos, Jânio Sousa; Rosso, Neiva Deliberali; Marques, Mariza Boscacci; Azevedo, Luciana; do Carmo, Mariana Araújo Vieira; Daguer, Heitor; Molognoni, Luciano; Prado-Silva, Leonardo do; Sant'Ana, Anderson Souza; da Silva, Marcia Cristina; Granato, Daniel

    2018-05-19

    This study aimed to optimise the experimental conditions of extraction of the phytochemical compounds and functional properties of Centaurea cyanus petals. The following parameters were determined: the chemical composition (LC-ESI-MS/MS), the effects of pH on the stability and antioxidant activity of anthocyanins, the inhibition of lipid peroxidation, antioxidant activity, anti-hemolytic activity, antimicrobial, anti-hypertensive, and cytotoxic/cytoprotective effect, and the measurements of intracellular reactive oxygen species. Results showed that the temperature and time influenced (p ≤ 0.05) the content of flavonoids, anthocyanins, and FRAP. Only the temperature influenced the total phenolic content, non-anthocyanin flavonoids, and antioxidant activity (DPPH). The statistical approach made it possible to obtain the optimised experimental extraction conditions to increase the level of bioactive compounds. Chlorogenic, caffeic, ferulic, and p-coumaric acids, isoquercitrin, and coumarin were identified as the major compounds in the optimised extract. The optimised extract presented anti-hemolytic and anti-hypertensive activity in vitro, in addition to showing stability and reversibility of anthocyanins and antioxidant activity with pH variation. The C. cyanus extract exhibited high IC 50 and GI 50 (>900 μg/mL) values for all cell lines, meaning low cytotoxicity. Based on the stress oxidative assay, the extract exhibited pro-oxidant action (10-100 μg/mL) but did not cause damage or cell death. Copyright © 2018. Published by Elsevier Ltd.

  20. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage

    Science.gov (United States)

    Takeda, Taka-aki; Mu, Anfeng; Tai, Tran Tien; Kitajima, Sakihito; Taketani, Shigeru

    2015-01-01

    It is well known that haem serves as the prosthetic group of various haemoproteins that function in oxygen transport, respiratory chain, and drug metabolism. However, much less is known about the functions of the catabolites of haem in mammalian cells. Haem is enzymatically degraded to iron, carbon monoxide (CO), and biliverdin, which is then converted to bilirubin. Owing to difficulties in measuring bilirubin, however, the generation and transport of this end product remain unclear despite its clinical importance. Here, we used UnaG, the recently identified bilirubin-binding fluorescent protein, to analyse bilirubin production in a variety of human cell lines. We detected a significant amount of bilirubin with many non-blood cell types, which was sensitive to inhibitors of haem metabolism. These results suggest that there is a basal level of haem synthesis and its conversion into bilirubin. Remarkably, substantial changes were observed in the bilirubin generation when cells were exposed to stress insults. Since the stress-induced cell damage was exacerbated by the pharmacological blockade of haem metabolism but was ameliorated by the addition of biliverdin and bilirubin, it is likely that the de novo synthesis of haem and subsequent conversion to bilirubin play indispensable cytoprotective roles against cell damage. PMID:25990790

  1. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy.

    Science.gov (United States)

    Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E; Powers, Jeffery C; Ottiger, Isabel; Parikh, Suraj; Kulczycki, Anna M; Hurst, Marykathryn; Ring, Nadja; Wang, Tao; Shaikh, Farah; Gross, Polina; Singh, Harinder; Kolpakov, Mikhail A; Linke, Axel; Houser, Steven R; Rizzo, Victor; Sabri, Abdelkarim; Madesh, Muniswamy; Giacca, Mauro; Recchia, Fabio A

    2015-07-14

    Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline.

    Directory of Open Access Journals (Sweden)

    Yaron D Barac

    Full Text Available TVP1022, the S-enantiomer of rasagiline (Azilect® (N-propargyl-1R-aminoindan, exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I(1 & I(2 are potential targets for TVP1022 (IC(50 =9.5E-08 M and IC(50 =1.4E-07 M, respectively. Western blotting analysis showed that TVP1022 (1-20 µM dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM. This effect of TVP1022 was significantly attenuated by efaroxan, a selective I(1 imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I(1imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I(1imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.

  3. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline.

    Science.gov (United States)

    Barac, Yaron D; Bar-Am, Orit; Liani, Esti; Amit, Tamar; Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B H; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I(1) & I(2)) are potential targets for TVP1022 (IC(50) =9.5E-08 M and IC(50) =1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1-20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I(1) imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I(1)imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I(1)imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.

  4. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    Science.gov (United States)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  5. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chandan Kanta Das

    2018-03-01

    Full Text Available Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC, and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6 of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20 and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000 cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.

  6. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells.

    Science.gov (United States)

    Das, Chandan Kanta; Linder, Benedikt; Bonn, Florian; Rothweiler, Florian; Dikic, Ivan; Michaelis, Martin; Cinatl, Jindrich; Mandal, Mahitosh; Kögel, Donat

    2018-03-01

    Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549 r DOX 20 ) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468 r 5-FU 2000 ) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549 r DOX 20 and MDA-MB-468 r 5-FU 2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Study on interaction of gastrointestinal agents in the presence of cytoprotective drugs. Part III. In vitro study on the adsorption of selected prokinetic drugs on sucralfate.

    Science.gov (United States)

    Grimling, Bozena; Pluta, Janusz

    2005-01-01

    Adsorbance of certain prokinetic drugs, regulating the motility of the digestive tract, on a cytoprotective drug--sucralfate was investigated. The evaluation of adsorbance capability was carried out by means of a statistical method in in vitro conditions, taking into account environmental pH, concentration of the investigated drugs as well as the form of sucralfate. Obtained results prove that the analyzed active agents are adsorbed on sucralfate at all the investigated pH ranges and the capability of sucralfate binding depends on its form and environmental pH. The highest binding capability was revealed by samples with pH = 3.6 in the presence of sucralfate in the form of suspension, while the lowest binding capability was observed at pH = 1.5 in the presence of sucralfate in the form of paste. The adsorbance capacity of sucralfate (k) at pH = 3.6 is the highest for cisaprid (k = 8.5) and it is significantly lower for metoclopramide (k = 1.5)

  8. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    Directory of Open Access Journals (Sweden)

    Craciunescu Oana

    2012-09-01

    Full Text Available Abstract Background Arnica montana L. and Artemisia absinthium L. (Asteraceae are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders.

  9. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jae Yun [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Seung Sik [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Da Eon [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Bang, Joon Seok [Graduate School of Clinical Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Jung, Young Suk [College of Pharmacy, Pusan National University, Busan (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  10. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    International Nuclear Information System (INIS)

    Han, Jae Yun; Cho, Seung Sik; Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho; Park, Da Eon; Bang, Joon Seok; Jung, Young Suk; Ki, Sung Hwan

    2015-01-01

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  11. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2-ARE pathway.

    Science.gov (United States)

    Wang, Rui; Paul, Valerie J; Luesch, Hendrik

    2013-04-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE-luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate-cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched with

  12. Mechanisms of CDDO-imidazolide-mediated cytoprotection against acrolein-induced neurocytotoxicity in SH-SY5Y cells and primary human astrocytes.

    Science.gov (United States)

    Speen, Adam; Jones, Colton; Patel, Ruby; Shah, Halley; Nallasamy, Palanisamy; Brooke, Elizabeth A S; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is a ubiquitous unsaturated aldehyde has been implicated in the pathogenesis of various neurological disorders. However, limited study has been conducted into potential therapeutic protection and underlying mechanism against acrolein-induced cytotoxicity via upregulation of cellular aldehyde-detoxification defenses. In this study we have utilized RA-differentiated human SH-SY5Y cells and primary human astrocytes to investigate the induction of glutathione (GSH) by the synthetic triterpenoid 2-cyano-3,12-dixooleana-1,9-dien-28-imidazolide (CDDO-Im) and the protective effects CDDO-Im-mediated antioxidant defenses on acrolein toxicity. Acrolein exposure to RA-differentiated SH-SY5Y cells resulted in a significant time dependent depletion of cellular GSH preceding a reduction in cell viability and LDH release. Further, we demonstrated the predominance of cellular GSH in protection against acrolein-induced cytotoxicity. Buthionine sulfoximine (BSO) at 25μM dramatically depleted GSH and significantly potentiated acrolein-induced cytotoxicity. Pretreatment of the cells with 100nM CDDO-Im afforded a dramatic protection against acrolein-induced cytotoxicity. Pretreatment of BSO and CDDO was found to prevent the CDDO-Im-mediated GSH induction and partially reversed the cytoprotective effects of CDDO-Im against acrolein cytotoxicity. Overall, this study represents for the first time the CDDO-Im mediated upregulation of GSH is a predominant mechanism against acrolein-induced neurotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. MODULATION OF THE INFLAMMATORY CYTOKINES AND CYTOPROTECTIVE ENZYME BY BILIRUBIN TREATMENT TO ENHANCE CUTANEOUS WOUND HEALING IN RATS

    Directory of Open Access Journals (Sweden)

    Raju Prasad

    2017-06-01

    Full Text Available Inflammation is the main process of wound healing where expression of certain cytokines likes Interleukin-10 (IL-10 and Tumour necrosis factor ∝ (TNF ∝ plays an important role. In view of the antioxidant potential of bilirubin, the present study was aimed to evaluate time-dependent (day 3, 7, 14 wound healing effects of bilirubin ointment (0.3% in excisional wound model in rats. Thirty-six acclimatized healthy male Wistar rats (120-150g were divided into control and treated groups containing 18 rats each. Each group was further sub- divided into three sub-groups (day 3, 7 and 14 days, n= 6. The ointment base (soft paraffin 90%, lanolin 5% and hard paraffin 5% and bilirubin ointment (0.3% were applied topically once daily for 14 days in control and treated group respectively. The wound area was determined on days 3, 7, and 14. The mRNA expression of TNF ∝ gene and IL-10 gene were determined on days 3, 7 and 14 by Real Time PCR and their protein levels by ELISA method. The protein expression of cyto-protective enzyme HO-1 (Heme oxygenage-1 and growth factor VEGF (Vascular growth factor was determined by western blotting method. The mRNA expression and protein level of TNF ∝ was significantly reduced and IL-10 was significantly increased whereas the expression of HO-1 enzyme and VEGF was significantly increased in treated group on days 3, 7 and 14. It may be concluded that the bilirubin has pro-healing potential.

  14. Comparative analysis of the role of small G proteins in cell migration and cell death: Cytoprotective and promigratory effects of RalA

    International Nuclear Information System (INIS)

    Jeon, Hyejin; Zheng, Long Tai; Lee, Shinrye; Lee, Won-Ha; Park, Nammi; Park, Jae-Yong; Heo, Won Do; Lee, Myung-Shik; Suk, Kyoungho

    2011-01-01

    Small G protein superfamily consists of more than 150 members, and is classified into six families: the Ras, Rho, Rab, Arf, Ran, and RGK families. They regulate a wide variety of cell functions such as cell proliferation/differentiation, cytoskeletal reorganization, vesicle trafficking, nucleocytoplasmic transport and microtubule organization. The small G proteins have also been shown to regulate cell death/survival and cell shape. In this study, we compared the role of representative members of the six families of small G proteins in cell migration and cell death/survival, two cellular phenotypes that are associated with inflammation, tumorigenesis, and metastasis. Our results show that small G proteins of the six families differentially regulate cell death and cell cycle distribution. In particular, our results indicate that Rho family of small G proteins is antiapoptotic. Ras, Rho, and Ran families promoted cell migration. There was no significant correlation between the cell death- and cell migration-regulating activities of the small G proteins. Nevertheless, RalA was not only cytoprotective against multiple chemotherapeutic drugs, but also promigratory inducing stress fiber formation, which was accompanied by the activation of Akt and Erk pathways. Our study provides a framework for further systematic investigation of small G proteins in the perspectives of cell death/survival and motility in inflammation and cancer.

  15. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2–ARE pathway

    Science.gov (United States)

    Wang, Rui; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE–luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate–cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched

  16. The cytoprotective role of DJ-1 and p45 NFE2 against human primary alveolar type II cell injury and emphysema.

    Science.gov (United States)

    Tan, Li Hui; Bahmed, Karim; Lin, Chih-Ru; Marchetti, Nathaniel; Bolla, Sudhir; Criner, Gerard J; Kelsen, Steven; Madesh, Muniswamy; Kosmider, Beata

    2018-02-23

    Emphysema is characterized by irreversibly enlarged airspaces and destruction of alveolar walls. One of the factors contributing to this disease pathogenesis is an elevation in extracellular matrix (ECM) degradation in the lung. Alveolar type II (ATII) cells produce and secrete pulmonary surfactants and proliferate to restore the epithelium after damage. We isolated ATII cells from control non-smokers, smokers and patients with emphysema to determine the role of NFE2 (nuclear factor, erythroid-derived 2). NFE2 is a heterodimer composed of two subunits, a 45 kDa (p45 NFE2) and 18 kDa (p18 NFE2) polypeptides. Low expression of p45 NFE2 in patients with emphysema correlated with a high ECM degradation. Moreover, we found that NFE2 knockdown increased cell death induced by cigarette smoke extract. We also studied the cross talk between p45 NFE2 and DJ-1. DJ-1 protein is a redox-sensitive chaperone that protects cells from oxidative stress. We detected that cigarette smoke significantly increased p45 NFE2 levels in DJ-1 KO mice compared to wild-type mice. Our results indicate that p45 NFE2 expression is induced by exposure to cigarette smoke, has a cytoprotective activity against cell injury, and its downregulation in human primary ATII cells may contribute to emphysema pathogenesis.

  17. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    International Nuclear Information System (INIS)

    Li, Kuiqing; Chen, Xu; Liu, Cheng; Gu, Peng; Li, Zhuohang; Wu, Shaoxu; Xu, Kewei; Lin, Tianxin; Huang, Jian

    2015-01-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway

  18. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiqing; Chen, Xu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Liu, Cheng [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Gu, Peng; Li, Zhuohang; Wu, Shaoxu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Xu, Kewei [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Lin, Tianxin, E-mail: tianxinl@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Huang, Jian, E-mail: urolhj@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China)

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.

  19. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  20. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin.

    Science.gov (United States)

    Reisman, Scott A; Lee, Chun-Yue I; Meyer, Colin J; Proksch, Joel W; Ward, Keith W

    2014-07-01

    RTA 408 is a member of the synthetic oleanane triterpenoid class of compounds known to potently activate the cytoprotective transcription factor Nrf2. Because skin is constantly exposed to external oxidative stress, such as that from ultraviolet radiation, from chemical exposure, during improper wound healing, and throughout the course of cancer radiation therapy, it may benefit from activation of Nrf2. This study was conducted to evaluate the transdermal penetration properties and Nrf2 activation potential of RTA 408 in normal rat skin. RTA 408 (0.1, 1.0, or 3.0%) was applied topically to the shaved skin of male Sprague-Dawley rats twice daily for 4 days and once on Day 5. Topical application of RTA 408 resulted in transdermal penetration, with low but dose-dependent plasma exposure with AUC(0-24 h) values of 3.6, 26.0, and 41.1 h ng/mL for the 0.1, 1.0, and 3.0% doses, respectively. Further, topical application of RTA 408 resulted in increased translocation of Nrf2 to the nucleus, dose-dependent mRNA induction of Nrf2 target genes (e.g. Nqo1, Srxn1, Gclc, and Gclm), and induction of the protein expression of the prototypical Nrf2 target gene Nqo1 and increased total glutathione (GSH) in normal rat skin. Immunohistochemistry demonstrated that increased staining for Nqo1 and total GSH of structures in both the epidermis and dermis was consistent with the full transdermal penetration of RTA 408. Finally, topically administered RTA 408 was well tolerated with no adverse in-life observations and normal skin histology. Thus, the data support the further development of RTA 408 for the potential treatment of skin diseases.

  1. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis.

    Science.gov (United States)

    De Franceschi, Lucia; Bertoldi, Mariarita; De Falco, Luigia; Santos Franco, Sara; Ronzoni, Luisa; Turrini, Franco; Colancecco, Alessandra; Camaschella, Clara; Cappellini, Maria Domenica; Iolascon, Achille

    2011-11-01

    β-thalassemic syndromes are inherited red cell disorders characterized by severe ineffective erythropoiesis and increased levels of reactive oxygen species whose contribution to β-thalassemic anemia is only partially understood. We studied erythroid precursors from normal and β-thalassemic peripheral CD34(+) cells in two-phase liquid culture by proteomic, reverse transcriptase polymerase chain reaction and immunoblot analyses. We measured intracellular reactive oxygen species, heme levels and the activity of δ-aminolevulinate-synthase-2. We exposed normal cells and K562 cells with silenced peroxiredoxin-2 to H(2)O(2) and generated a recombinant peroxiredoxin-2 for kinetic measurements in the presence of H(2)O(2) or hemin. In β-thalassemia the increased production of reactive oxygen species was associated with down-regulation of heme oxygenase-1 and biliverdin reductase and up-regulation of peroxiredoxin-2. In agreement with these observations in β-thalassemic cells we found decreased heme levels related to significantly reduced activity of the first enzyme of the heme pathway, δ-aminolevulinate synthase-2 without differences in its expression. We demonstrated that the activity of recombinant δ-aminolevulinate synthase-2 is inhibited by both reactive oxygen species and hemin as a protective mechanism in β-thalassemic cells. We then addressed the question of the protective role of peroxiredoxin-2 in erythropoiesis by exposing normal cells to oxidative stress and silencing peroxiredoxin-2 in human erythroleukemia K562 cells. We found that peroxiredoxin-2 expression is up-regulated in response to oxidative stress and required for K562 cells to survive oxidative stress. We then showed that peroxiredoxin-2 binds heme in erythroid precursors with high affinity, suggesting a possible multifunctional cytoprotective role of peroxiredoxin-2 in β-thalassemia. In β-thalassemic erythroid cells the reduction of δ-aminolevulinate synthase-2 activity and the increased

  2. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  3. The Cytoprotective Effects of E-α-(4-Methoxyphenyl-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC--A Novel and Non-Cytotoxic HO-1 Inducer.

    Directory of Open Access Journals (Sweden)

    Kai B Kaufmann

    Full Text Available Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1, is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264

  4. Amifostine (WR-2721, a cytoprotective agent during high-dose cyclophosphamide treatment of non-Hodgkin's lymphomas: a phase II study

    Directory of Open Access Journals (Sweden)

    C.A. De Souza

    2000-07-01

    Full Text Available Clinical trials indicate that amifostine may confer protection on various normal tissues without attenuating anti-tumor response. When administered prior to chemotherapy or radiotherapy, it may provide a broad spectrum of cytoprotection including against alkylating drugs. The mechanism of protection resides in the metabolism at normal tissue site by membrane-bound alkaline phosphatase. Toxicity of this drug is moderate with hypotension, nausea and vomiting, and hypocalcemia being observed. We report a phase II study using amifostine as a protective drug against high-dose cyclophosphamide (HDCY (7 g/m2, used to mobilize peripheral blood progenitor cells (PBPC and to reduce tumor burden. We enrolled 29 patients, 22 (75.9% affected by aggressive and 7 (24.1% by indolent non-Hodgkin's lymphoma (NHL, who were submitted to 58 infusions of amifostine and compared them with a historical group (33 patients affected by aggressive NHL and treated with VACOP-B followed by HDCY. The most important results in favor of amifostine were the reduction of intensity of cardiac, pulmonary and hepatic toxicity, and a significant reduction of frequency and severity of mucositis (P = 0.04. None of the 29 patients died in the protected group, while in the historical group 2/33 patients died because of cardiac or pulmonary toxicity and 2 patients stopped therapy due to toxicity. Amifostine did not prevent the aplastic phase following HDCY. PBPC collection and hematological recovery were adequate in both groups. The number of CFU-GM (colony-forming units-granulocyte/macrophage colonies and mononuclear cells in the apheresis products was significantly higher in the amifostine group (P = 0.02 and 0.01, respectively. Side effects were mild and easily controlled. We conclude that amifostine protection should be useful in HDCY to protect normal tissues, with acceptable side effects.

  5. The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity.

    Science.gov (United States)

    Mazzio, Elizabeth; Soliman, Karam F A

    2003-01-01

    1-Methyl-4-phenylpyridinium (MPP+) is a mitochondrial Complex I inhibitor and is frequently used to investigate the pathological degeneration of neurons associated with Parkinson's disease (PD). In vitro, extracellular concentration of glucose is one of the most critical factors in establishing the vulnerability of neurons to MPP+ toxicity. While glucose is the primary energy fuel for the brain, central nervous system (CNS) neurons can also take up and utilize other metabolic intermediates for energy. In this study, we compared various monosaccharides, disaccharides, nutritive/non-nutritive sugar alcohols, glycolytic and gluconeogenic metabolic intermediates for their cytoprotection against MPP+ in murine brain neuroblastoma cells. Several monosaccharides were effective against MMP+ (500 microM) including glucose, fructose and mannose, which restored cell viability to 109 +/- 5%, 70 +/- 5%, 99 +/- 3% of live controls, respectively. Slight protective effects were observed in the presence of 3-phosphoglyceric acid and glucose-6-phosphate; however, no protective effects were exhibited by galactose, sucrose, sorbitol, mannitol, glycerol or various gluconeogenic and ketogenic amino acids. On the other hand, fructose 1,6 bisphosphate and gluconeogenic energy intermediates [pyruvic acid, malic acid and phospho(enol)pyruvate (PEP)] were neuroprotective against MPP+. The gluconeogenic intermediates elevated intracellular levels of ATP and reduced propidium iodide (PI) nucleic acid staining to live controls, but did not alter the MPP(+)-induced loss of mitochondrial O2 consumption. These data indicate that malic acid, pyruvic acid and PEP contribute to anaerobic substrate level phosphorylation. The use of hydrazine sulfate to impede gluconeogenesis through PEP carboxykinase (PEPCK) inhibition heightened the protective effects of energy substrates possibly due to attenuated ATP demands from pyruvate carboxylase (PC) activity and pyruvate mitochondrial transport. It was

  6. Identification of an unintended consequence of Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteracting chemopreventive intervention

    Science.gov (United States)

    Paonessa, Joseph D.; Ding, Yi; Randall, Kristen L.; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng

    2011-01-01

    Nrf2 is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. While Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2+/+ mice than in Nrf2−/− mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. While glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, while higher liver UGT activity may protect the liver against ABP it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further demonstrate that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues, but does not appear to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2. PMID:21487034

  7. Hydrogen Sulfide Releasing 2-Mercaptoacrylic Acid-Based Derivative Possesses Cytoprotective Activity in a Small Intestine of Rats with Medication-Induced Enteropathy

    Directory of Open Access Journals (Sweden)

    Yulia Sklyarova

    2017-10-01

    Full Text Available Small intestinal injury is known to be one of the most commonly appearing pathologies, resulting in the use of medications such as: nonsteroidal anti-inflammatory drugs (NSAIDs, antitumor drugs and angiotensin-converting enzyme (ACE inhibitors. The principal objective of this study is to evaluate the action of a novel mercaptoacrylic acid derivative able to release H2S on parameters of NO-synthase system and oxidative stress. Inducing enteropathy, three types of medications were used: indomethacin, an NSAID (35 mg/kg; methotrexate, an antitumor drug (10 mg/kg; and enalapril, an ACE inhibitor (2 mg/kg/day. 2-[(4-chlorophenyl-carbamoyl-methyl]-3-(3,5-di-tert-butyl-4-hydroxyphenyl-acrylic acid (2C3DHTA was introduced based on the background of medication-induced enteropathy (10 mg/kg/day. The survey showed that malondialdehyde (MDA concentration, myeloperoxidase (MPO activity, superoxide dismutase (SOD, catalase, and NO-synthases (NOS were determined in the small intestinal mucosa. The increase in inducible NO-synthase (iNOS activity was due to indomethacin and methotrexate administration. Constitutive NO-synthase (cNOS activity was decreased by an ACE-inhibitor. The cytoprotective effect was demonstrated by 2C3DHTA, which returned iNOS activity to its control level and increased cNOS activity. The enterotoxic action of studied medication was accompanied by the development of oxidative stress manifested, activity of MPO was increased. MPO activity and manifestations of oxidative stress were decreased by 2C3DHTA. Effects of 2C3DHTA can be explained by the action of H2S, released from this compound in the gastrointestinal (GI system.

  8. Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage

    Science.gov (United States)

    2013-10-01

    against menadione -induced-oxidative stress, also induces HIF1a and this may explain their cytoprotective effect. KEY RESEARCH ACCOMPLISHMENTS: Due to...August 2010 - October 2011 : Compared CDDO-lm, CAPE, CAPA induced H0-1 mediated cytoprotection against menadione -induced-oxidative stress in HUVEC cells...Pharmaceutical Scientists (AAPS) 2013: Comparison of atmospheric oxygen versus physiological levels on cytotoxicity of menadione and cytoprotection by

  9. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Kazuaki Kajimoto

    2014-01-01

    Full Text Available The fatty acid binding protein 4 (FABP4, one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6 and vascular endothelial growth factor (VEGF production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH, superoxide dismutase (SOD and glutathione S-transferase A4 (GSTA4 were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2. FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1, the signal sequence receptor α (Ssr1, the ORM1-like 3 (Ormdl3, and the spliced X-box binding protein 1 (Xbp1s, were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  10. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    International Nuclear Information System (INIS)

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-01-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA

  11. Milk products and intestinal health

    NARCIS (Netherlands)

    Van der Meer, R; Bovee-Oudenhoven, IMJ; Sesink, ALA; Kleibeuker, JH

    Milk products may improve intestinal health by means of the cytoprotective effects of their high calcium phosphate (CaPi) content. We hypothesized that this cytoprotection may increase host defenses against bacterial infections as well as decrease colon cancer risk. This paper summarizes our studies

  12. Inhibition of galactosamine cytotoxicity in an in vivo/in vitro hepatocellular toxicity model

    International Nuclear Information System (INIS)

    MacDonald, J.R.; Thayer, K.J.; White, C.

    1987-01-01

    A combined in vivo/in vitro model of galactosamine hepatotoxicity was employed to test whether previously reported cytoprotective actions of cystamine administration on galactosamine-induced hepatic injury in vivo could be attributed to a direct action of cystamine on toxicant-challenged hepatocytes. In this model, male Sprague-Dawley rats received a 400 mg/kg galactosamine challenge via intraperitoneal injection 1 hr prior to portal vein cannulation for hepatocyte isolation. Isolated cells are established in monolayer culture and galactosamine-induced cellular injury is then expressed over the ensuing 24-48 hr in culture. Consistent with the biochemical basis of galactosamine-induced hepatocellular injury in vivo, cytotoxicity could be prevented by in vitro uridine treatments within 3 hr of the in vivo galactosamine challenge, but not when added 12 hr later. Cystamine, in contrast, exhibited a cytoprotective effect even when added to cultures 12 hr after the in vivo toxicant challenge. Post-toxicant cytoprotection by cystamine in vitro was concentration dependent and did not produce an alteration of hepatocyte nonprotein sulfhydryl content. Post-toxicant cytoprotection by uridine and cystamine in this in vivo/in vitro model of toxicity were fully consistent with in vivo protection from galactosamine-induced necrosis by these agents. This model eliminates potential extrahepatic mechanisms for cystamine's hepatoprotective effect and demonstrates a direct cytoprotective action on galactosamine-challenged hepatocytes

  13. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth

    Directory of Open Access Journals (Sweden)

    Bikul Das

    2008-10-01

    Full Text Available Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II (cisplatin-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato platinum(II (carboplatin-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage. Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity.

  14. Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter

    International Nuclear Information System (INIS)

    Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun; Lovelace, Gregory L.; Smith, Charles D.; Lemasters, John J.

    2013-01-01

    Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca 2+ uptake was measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca 2+ uptake and suppressed the Ca 2+ -induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca 2+ uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective tetracyclines protect

  15. Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun; Lovelace, Gregory L.; Smith, Charles D. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Lemasters, John J., E-mail: JJLemasters@musc.edu [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (United States)

    2013-11-15

    Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca{sup 2+} uptake was measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca{sup 2+} uptake and suppressed the Ca{sup 2+}-induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca{sup 2+} uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective

  16. Attenuation of rotenone toxicity in SY5Y cells by taurine and N-acetyl cysteine alone or in combination.

    Science.gov (United States)

    Alkholifi, Faisal K; Albers, David S

    2015-10-05

    There is accumulating evidence that supports the involvement of reactive oxygen species (ROS), mitochondrial dysfunction and inflammation in the pathogenesis of neurodegenerative diseases. Thus, it is plausible that a multi-targeted therapeutic approach may be a more effective strategy to retard or even potentially halt the progression of the disease. Taurine is an organic acid that has a role in the regulation of oxidative stress and promoting mitochondrial normal functions, and N-Acetyl cysteine (NAC) is a well-known anti-oxidant and glutathione precursor. The main purpose of this study was to examine the cytoprotective effects of taurine alone or in combination with NAC against rotenone-induced toxicity in the SH-SY5Y neuroblastoma cell line. Taurine treatment produced a concentration-dependent reduction in rotenone-induced cell death. From this, we tested sub-effective concentrations of taurine in combination with low, sub-effective concentrations of NAC against rotenone toxicity, and found the combined treatment afforded greater cytoprotection than either treatment alone. The combined taurine/NAC treatment also attenuated rotenone-induced reductions in aconitase activity suggesting the cytoprotection afforded by the combined treatment may be associated with anti-oxidative mechanisms. Together, our data suggest that a multi-targeted approach may yield new avenues of research exploring the utility of combining therapeutic agents with different mechanisms of actions at concentrations lower than previously tested and shown to be cytoprotective. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase.

    Science.gov (United States)

    Yoshioka, Yasuhiro; Kitao, Tatsuya; Kishino, Takashi; Yamamuro, Akiko; Maeda, Sadaaki

    2006-04-15

    We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.

  18. 8-Alkylcoumarins from the Fruits of Cnidium monnieri Protect against Hydrogen Peroxide Induced Oxidative Stress Damage

    Directory of Open Access Journals (Sweden)

    Chi-I Chang

    2014-03-01

    Full Text Available Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1, 7-methoxy-8-(3-methyl- 2,3-epoxy-1-oxobutylchromen-2-one (2, and 3'-O-methylvaginol (3, together with seven known compounds (4–10 were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the three new 8-alkylcoumarins exhibited cytoprotective effect on Neuro-2a neuroblastoma cells injured by hydrogen peroxide.

  19. Pre-treatment with mild whole-body heating prevents gastric ulcer induced by restraint and water-immersion stress in rats.

    Science.gov (United States)

    Itoh, Y H; Noguchi, R

    2000-01-01

    The purpose of this study was to assess the preventive effect of pre-mild whole-body heating (WBH) on gastric ulcer induced by restraint and water-immersion stress. The ulcer index and ulcer area ratio in rats exposed to restraint and water-immersion stress were significantly decreased (p immersion stress alone (p immersion, thereby preventing gastric ulcer formation. Pre-treatment with mild WBH is the safest cytoprotective method through the accumulation of HSP 70f. The concentration of HSP 70f in peripheral lymphocytes may be a useful clinical laboratory indicator for assessing the level of HSP 70f as having cytoprotective activity.

  20. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  1. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection.

    Directory of Open Access Journals (Sweden)

    Takuya Kanno

    Full Text Available Therapeutic agents to the central nervous system (CNS need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316, as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS. One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG and hemopexin (HPX, requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.

  2. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-12-23

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity.

  3. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2008-10-01

    Full Text Available Abstract Lowering plasma low density lipoprotein-cholesterol (LDL-C, blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a β blocker, and an angiotensin converting enzyme (ACE inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by ~80%. Essential fatty acids (EFAs and their long-chain metabolites: γ-linolenic acid (GLA, dihomo-GLA (DGLA, arachidonic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA and other products such as prostaglandins E1 (PGE1, prostacyclin (PGI2, PGI3, lipoxins (LXs, resolvins, protectins including neuroprotectin D1 (NPD1 prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-γ ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of ω-3 and ω-6 fatty acids and the co

  4. Synthesis of Reactive Polymers for Acrolein Capture Using AGET ATRP.

    Science.gov (United States)

    Beringer, Laura T; Li, Shaohua; Gilmore, Gary; Lister, John; Averick, Saadyah

    2015-10-05

    Acrolein is a toxic metabolite of the anticancer agent cyclophosphamide (CP). Current strategies to mitigate acrolein toxicity are insufficient, and in this brief article, we report the synthesis of well-defined low molecular weight block copolymers using activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) capable of reacting with the cytotoxic small molecule acrolein. Acrolein reactivity was introduced into the block copolymers via incorporation of either (a) aminooxy or (b) sulfhydryl groups. The cytoprotective effect of the polymers was compared to sodium 2-sulfanylethanesulfonate (mesna) the current gold standard for protection from CP urotoxicity, and we found that the polymers bearing sulfhydryl moieties demonstrated superior cytoprotective activity.

  5. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis.

    Science.gov (United States)

    Lu, Hong; Lei, Xiaohong; Zhang, Qinghao

    2015-07-30

    liver, which was associated with higher lipogenic factors Pparγ, Lxr, Fasn, Scd1, and CD36. In summary, moderate activation of IKK2-NF-kB in unstressed adult mouse hepatocytes produces a cytoprotective gene expression profile and induces lipogenesis without apparent signs of inflammation or fibrosis, likely due to strong activation of the anti-inflammatory IKK1-RelB alternative NF-kB pathway as well as the Lxr.

  6. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Directory of Open Access Journals (Sweden)

    Haule Emmanuel E

    2012-10-01

    Full Text Available Abstract Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich. Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae, Maytenus senegalensis (Lam. Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922, Salmonella typhi (NCTC 8385, Vibrio cholerae (clinical isolate, and Klebsiella pneumoniae (clinical isolate using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole

  7. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Science.gov (United States)

    2012-01-01

    Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual

  8. Glioprotective Effects of Ashwagandha Leaf Extract against Lead Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Praveen Kumar

    2014-01-01

    Full Text Available Withania somnifera (Ashwagandha, also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM resulted in normalization of glial fibrillary acidic protein (GFAP expression as well as heat shock protein (HSP70, mortalin, and neural cell adhesion molecule (NCAM expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx levels, catalase, and superoxide dismutase (SOD but not reduced glutathione (GSH contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.

  9. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    Directory of Open Access Journals (Sweden)

    Carlos F. Araujo-Lima

    2018-01-01

    Full Text Available Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay, cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS or cyclophosphamide (CPA. Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA.

  10. Biochemical signaling by remote ischemic conditioning of the arm versus thigh: Is one raise of the cuff enough?

    Directory of Open Access Journals (Sweden)

    Cameron Dezfulian

    2017-08-01

    Full Text Available Remote Ischemic Conditioning (RIC, induced by brief cycles of ischemia and reperfusion, protects vital organs from a prolonged ischemic insult. While several biochemical mediators have been implicated in RIC's mechanism of action, it remains unclear whether the localization or “dose” of RIC affects the extent of protective signaling. In this randomized crossover study of healthy individuals, we tested whether the number of cycles of RIC and its localization (arm versus thigh determines biochemical signaling and cytoprotection. Subjects received either arm or thigh RIC and then were crossed over to receive RIC in the other extremity. Blood flow, tissue perfusion, concentrations of the circulating protective mediator nitrite, and platelet mitochondrial function were measured after each RIC cycle. We found that plasma nitrite concentration peaked after the first RIC cycle and remained elevated throughout RIC. This plasma nitrite conferred cytoprotection in an in vitro myocyte model of hypoxia/reoxygenation. Notably, though plasma nitrite returned to baseline at 24 h, RIC conditioned plasma still mediated protection. Additionally, no difference in endpoints between RIC in thigh versus arm was found. These data demonstrate that localization and “dose” of RIC does not affect cytoprotection and further elucidate the mechanisms by which nitrite contributes to RIC-dependent protection.

  11. Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death.

    Science.gov (United States)

    Tu, Zhi-Shan; Wang, Qi; Sun, Dan-Dan; Dai, Fang; Zhou, Bo

    2017-07-07

    Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent Nrf2 activator and cancer chemopreventive agent. In this study, we synthesized a series of curcumin analogs by introducing the geminal dimethyl substituents on the active methylene group to find more potent Nrf2 activators and cytoprotectors against oxidative death. The geminally dimethylated and catechol-type curcumin analog (compound 3) was identified as a promising lead molecule in terms of its increased stability and cytoprotective activity against the tert-butyl hydroperoxide (t-BHP)-induced death of HepG2 cells. Mechanism studies indicate that its cytoprotective effects are mediated by activating the Nrf2 signaling pathway in the Michael acceptor- and catechol-dependent manners. Additionally, we verified by using copper and iron ion chelators that the two metal ion-mediated oxidations of compound 3 to its corresponding electrophilic o-quinone, contribute significantly to its Nrf2-dependent cytoprotection. This work provides an example of successfully designing natural curcumin-directed Nrf2 activators by a stability-increasing and proelectrophilic strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Suplementação com ácido ascórbico tem efeito citoprotetor na cirrose biliar secundária: estudo experimental em ratos jovens Ascorbic acid supplementation has a cytoprotective effect on secondary biliary cirrhosis: experimental study in young rats

    Directory of Open Access Journals (Sweden)

    Cynthia R. Matos Silva Passoni

    2008-12-01

    Full Text Available OBJETIVO: Testar se a suplementação com ácido ascórbico tem algum afeito citoprotetor em um modelo de cirrose biliar secundária em ratos jovens. MÉTODOS: Foram estudados 40 ratos Wistar desmamados no 21º dia pós-natal. Cada grupo de 10 foi submetido a um dos seguintes quatro tratamentos, até o 49º dia pós-natal, quando foram submetidos a eutanásia: 1 LC - ligadura dupla e ressecção do ducto biliar comum e administração diária de ácido ascórbico [100 mg/g de peso corporal (pc]; 2 LA - ligadura dupla e ressecção do ducto biliar comum e administração diária de veículo aquoso (1 mL/g pc; 3 SC - operação simulada e administração diária de ácido ascórbico (100 mg/g pc; 4 SA - ligadura dupla e ressecção do ducto biliar comum e administração diária de veículo aquoso (1 mL/g pc. Os ratos eram pesados diariamente. No 27º dia pós-operatório, eles receberam injeção intraperitoneal de 1,5 mg/g pc de pentobarbital sódico, e o tempo de sono induzido pelo pentobarbital foi medido. Coletou-se sangue para determinação de atividade sérica de alanina aminotransferase e de aspartato aminotransferase, níveis de albumina e globulina séricas, e o fígado foi analisado quanto à conteúdo de água e gordura. Os dados foram submetidos à ANOVA two-way, e comparações pareadas entre grupos foram testadas com o método de SNK. O nível de significância foi estabelecido em 0,05. RESULTADOS: A suplementação com ácido ascórbico atenuou os efeitos da colestase: reduziu o tempo de anestesia pelo pentobarbital, globulina sérica e o conteúdo de gordura no fígado. CONCLUSÕES: Nossos resultados corroboram a hipótese de que a suplementação com ácido ascórbico tem um efeito citoprotetor na cirrose biliar secundária.OBJECTIVE: To test whether ascorbic acid supplementation has any cytoprotective effect on a model of secondary biliary cirrhosis in young rats. METHODS: We studied 40 Wistar rats weaned at the 21st postnatal

  13. Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury

    Directory of Open Access Journals (Sweden)

    Tonguç Utku Yilmaz

    2015-01-01

    Interpretation & conclusions: Our results showed that the cell proliferative, cytoprotective and anti-apoptotic effects of EPO were associated with KATP channels in the renal tubular cell culture model under hypoxic/normal conditions.

  14. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  15. Red Chicory (Cichorium intybus L. cultivar as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    Directory of Open Access Journals (Sweden)

    Laura D'evoli

    2013-01-01

    Full Text Available Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  16. In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation

    International Nuclear Information System (INIS)

    Fernández-Moriano, Carlos; Divakar, Pradeep Kumar; Crespo, Ana; Gómez-Serranillos, M. Pilar

    2017-01-01

    The lichen-forming fungi Cetraria islandica has been largely used in folk medicines, and it has recently showed promising in vitro antioxidant effects in glial-like cells. Current work aimed at investigating the neuroprotective potential of its major isolated secondary metabolite: the depsidone fumarprotocetraric acid (FUM). H 2 O 2 was used herein to induce oxidative stress (OS)-mediated cytotoxicity in two models of neurons and astrocytes cells (SH-SY5Y and U373-MG cell lines). We found that a pre-treatment with FUM significantly enhanced cell viability compared to H 2 O 2 -treated cells, and we selected the optimal concentrations in each model (1 and 25 μg/ml, respectively) for assessing its cytoprotective mechanisms. FUM, which exerted effective peroxyl radical scavenging effect in the chemical oxygen radical antioxidant capacity (ORAC) assay, alleviated the alterations in OS markers provoked by H 2 O 2 . It attenuated intracellular ROS formation, lipid peroxidation and GSH depletion. At mitochondrial level, FUM prevented from the dissipation of mitochondrial membrane potential and the increase in mitochondrial calcium, implying a protective role against oxidative damage in mitochondrial membrane. Similarly, FUM pre-treatment diminished H 2 O 2 -induced apoptosis, as evidenced by the reduction in caspase-3 activity and expression; inmunoblot analysis also revealed a decrease in Bax and an increase in Bcl-2 proteins levels. Furthermore, FUM up-regulated the expression of the antioxidant enzymes catalase, superoxide dismutase-1, and hemeoxigenase-1. These findings and the activation of Nrf2 binding activity in nuclear extracts suggest a plausible involvement of Nrf2 signaling pathway in the cytoprotection by FUM. In conclusion, FUM emerges as a potential drug candidate in the therapy of OS-related diseases, such as the neurodegenerative disorders. - Highlights: • FUM pre-treatment exerts significant cytoprotection against H 2 O 2 -mediated apoptosis. • ROS

  17. ORGANOPROTECTIVE EFFECTS OF BENASEPRIL IN PATIENTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    V. S. Zadionchenko

    2006-01-01

    Full Text Available Aim. To evaluate antihypertensive efficiency of benasepril therapy (Lotensin, Novartis and its effects on microcirculation, endothelium function, system of cytoprotection, ophthalmoscopic and functional characteristics of eye retina in patients with arterial hypertension (AH. Material and methods. 40 patients with AH of 1-3 degree (AH1, AH2, and AH3 were studied. After wash-out period all patients were prescribed benasepril 5-10 mg daily. If necessary, hydrochlorothiazide 12,5 mg daily was added. Treatment lasted during 6 months. Patients were examined at the beginning and at the end of the study. Ambulatory blood pressure (BP monitoring was carried out. Microcirculation was assessed by method of laser Doppler flowmetry. Stable plasma metabolites of nitric oxide (NO were determined by spectral photometry. Cytoprotection was assessed by content of heat shock proteins (HSP70 in leucocytes of peripheral blood. Ophthalmoscopy, color and contrast static campimetry with evaluation of sensory-motor reaction (SMR time in different fields of vision were carried out. Results. Therapy with benasepril allowed to improve daily profile of BP and to reach its target level in all AH patients. Number of patients with spastic type of microcirculation decreased. Functional condition of endothelium improved which revealed in normalization of endothelial production of NO. Therapy with benasepril resulted in intracellular HSP70 level decrease which testified restriction of cellular destruction. The cytoprotective effect of benasepril was stronger in patient with severe AH. Therapy with benasepril resulted in SMR time decrease which signifies its positive influence on retinal blood flow. Evaluation of contrast and color sensitiveness of retina allowed to reveal and quantitatively assess earlier dysfunctions of retinal tissue perfusion, compared to ophthalmoscopy. Conclusion. Benasepril is an efficient antihypertensive drug which improves microcirculation, endothelium

  18. In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Moriano, Carlos [Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Divakar, Pradeep Kumar; Crespo, Ana [Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Gómez-Serranillos, M. Pilar, E-mail: pserra@ucm.es [Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain)

    2017-02-01

    The lichen-forming fungi Cetraria islandica has been largely used in folk medicines, and it has recently showed promising in vitro antioxidant effects in glial-like cells. Current work aimed at investigating the neuroprotective potential of its major isolated secondary metabolite: the depsidone fumarprotocetraric acid (FUM). H{sub 2}O{sub 2} was used herein to induce oxidative stress (OS)-mediated cytotoxicity in two models of neurons and astrocytes cells (SH-SY5Y and U373-MG cell lines). We found that a pre-treatment with FUM significantly enhanced cell viability compared to H{sub 2}O{sub 2}-treated cells, and we selected the optimal concentrations in each model (1 and 25 μg/ml, respectively) for assessing its cytoprotective mechanisms. FUM, which exerted effective peroxyl radical scavenging effect in the chemical oxygen radical antioxidant capacity (ORAC) assay, alleviated the alterations in OS markers provoked by H{sub 2}O{sub 2}. It attenuated intracellular ROS formation, lipid peroxidation and GSH depletion. At mitochondrial level, FUM prevented from the dissipation of mitochondrial membrane potential and the increase in mitochondrial calcium, implying a protective role against oxidative damage in mitochondrial membrane. Similarly, FUM pre-treatment diminished H{sub 2}O{sub 2}-induced apoptosis, as evidenced by the reduction in caspase-3 activity and expression; inmunoblot analysis also revealed a decrease in Bax and an increase in Bcl-2 proteins levels. Furthermore, FUM up-regulated the expression of the antioxidant enzymes catalase, superoxide dismutase-1, and hemeoxigenase-1. These findings and the activation of Nrf2 binding activity in nuclear extracts suggest a plausible involvement of Nrf2 signaling pathway in the cytoprotection by FUM. In conclusion, FUM emerges as a potential drug candidate in the therapy of OS-related diseases, such as the neurodegenerative disorders. - Highlights: • FUM pre-treatment exerts significant cytoprotection against H

  19. Mesna

    Science.gov (United States)

    ... class of medications called cytoprotectants. It works by protecting the bladder against some of the harmful effects ... such as weekly pill minders and those for eye drops, creams, patches, and inhalers) are not child- ...

  20. Browse Title Index

    African Journals Online (AJOL)

    Items 151 - 200 of 316 ... Vol 11 (2007), Evaluation Of Antimitotic And Anticancer Activity Of ... CYTOPROTECTIVE EFFECTS OF CISSUS QUADRANGULARIS L. VARIAN II IN RATS. ... Vol 11 (2007), Hepatoprotective Action Of Cordia dichotoma ...

  1. Crystalline lens radioprotectors

    International Nuclear Information System (INIS)

    Belkacemi, Y.; Pasquier, D.; Castelain, B.; Lartigau, E.; Warnet, J.M.

    2003-01-01

    During more than a half of century, numerous compounds have been tested in different models against radiation-induced cataract. In this report, we will review the radioprotectors that have been already tested for non-human crystalline lens protection. We will focus on the most important published studies in this topic and the mechanisms of cyto-protection reported in. vitro and in. vivo from animals. The most frequent mechanisms incriminated in the cyto-protective effect are: free radical scavenging, limitation of lipid peroxidation, modulation of cycle progression increase of intracellular reduced glutathione pool, reduction of DNA strand breaks and limitation of apoptotic cell death. Arnifostine (or Ethyol) and anethole dithiolethione (or Sulfarlem), already used clinically as chemo- and radio-protectants, could be further test?r for ocular radioprotection particularly for radiation-induced cataract. (author)

  2. Thiazoline peptides and a tris-phenethyl urea from Didemnum molle with anti-HIV activity.

    Science.gov (United States)

    Lu, Zhenyu; Harper, Mary Kay; Pond, Christopher D; Barrows, Louis R; Ireland, Chris M; Van Wagoner, Ryan M

    2012-08-24

    As part of our screening for anti-HIV agents from marine invertebrates, the MeOH extract of Didemnum molle was tested and showed moderate in vitro anti-HIV activity. Bioassay-guided fractionation of a large-scale extract allowed the identification of two new cyclopeptides, mollamides E and F (1 and 2), and one new tris-phenethyl urea, molleurea A (3). The absolute configurations were established using the advanced Marfey's method. The three compounds were evaluated for anti-HIV activity in both an HIV integrase inhibition assay and a cytoprotective cell-based assay. Compound 2 was active in both assays with IC(50) values of 39 and 78 μM, respectively. Compound 3 was active only in the cytoprotective cell-based assay, with an IC(50) value of 60 μM.

  3. Amang et al., Afr J Tradit Complement Altern Med. (2014) 11(1):165 ...

    African Journals Online (AJOL)

    cadewumi

    Materials and Methods: In this study, we tested the cytoprotective potential of the ... In the present experiment, various animal models of gastric ulcer were used to test the ..... Ionization: Reactivity relationships for cysteine thiols in polypeptides.

  4. Mitochondrial Roles and Cytoprotection in Chronic Liver Injury

    Directory of Open Access Journals (Sweden)

    Davide Degli Esposti

    2012-01-01

    Full Text Available The liver is one of the richest organs in terms of number and density of mitochondria. Most chronic liver diseases are associated with the accumulation of damaged mitochondria. Hepatic mitochondria have unique features compared to other organs' mitochondria, since they are the hub that integrates hepatic metabolism of carbohydrates, lipids and proteins. Mitochondria are also essential in hepatocyte survival as mediator of apoptosis and necrosis. Hepatocytes have developed different mechanisms to keep mitochondrial integrity or to prevent the effects of mitochondrial lesions, in particular regulating organelle biogenesis and degradation. In this paper, we will focus on the role of mitochondria in liver physiology, such as hepatic metabolism, reactive oxygen species homeostasis and cell survival. We will also focus on chronic liver pathologies, especially those linked to alcohol, virus, drugs or metabolic syndrome and we will discuss how mitochondria could provide a promising therapeutic target in these contexts.

  5. Cytoprotection: Immune and Matrix Modulation of Tissue Repair

    Science.gov (United States)

    2013-04-01

    TREM-2 and DAP12, and tested them in THP -1 cells, a monocyte-like cell line  Initiated tests of additional antibodies for detection of TREM-2 and...interactions. The goal of Aim 2 is to develop an engineered tissue model (a “myobridge” for replacement of skeletal muscle) and use it as a test -bed to...Regulation Task 1 (Months 1–9) Develop and test stable, shear-resistant HMW-HA/fibrillar collagen hydrogels on dye-cut 2.9 mm nylon mesh rings

  6. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaijun [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Jiang, Yiqian [The First People Hospital of Xiaoshan, Hangzhou (China); Wang, Wei; Ma, Jian [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Chen, Min, E-mail: eyedrchenminzj@163.com [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China)

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.

  7. Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response.

    Science.gov (United States)

    Adin, Christopher A; VanGundy, Zachary C; Papenfuss, Tracey L; Xu, Feng; Ghanem, Mostafa; Lakey, Jonathan; Hadley, Gregg A

    2017-01-24

    Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation.

  8. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis.

    Science.gov (United States)

    Poliandri, Ariel H B; Velardez, Miguel O; Cabilla, Jimena P; Bodo, Cristian C A; Machiavelli, Leticia I; Quinteros, Alnilan F; Duvilanski, Beatriz H

    2004-11-01

    Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.

  9. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gβ1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gβ1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  10. Two New Stilbenoids from the Aerial Parts of Arundina graminifolia (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Florence Auberon

    2016-10-01

    Full Text Available Two new phenanthrene derivatives, a phenanthrenequinone named arundiquinone (1 and a 9,10-dihydrophenanthrene named arundigramin (2 together with a known lignin dimer (3 and seven known stilbenoids (4–10 were isolated from the aerial parts of the Asian orchid Arundina graminifolia. The structures of the isolated compounds were elucidated by spectroscopic methods, including extensive 1D, 2D NMR (heteronuclear single quantum coherence (HSQC, heteronuclear multiple-bond correlation spectroscopy (HMBC, and HR-ESI-MS techniques, as well as comparison with respective literature reports. The cytoprotective activity of the isolated compounds were evaluated for their ability to reduce beta amyloid induced toxicity on undifferentiated PC12 cells. Compound 8 showed moderate cytoprotective activity at 0.5 µmol/L (71% of cell viability while the other compounds showed no significant activity at the highest concentration tested.

  11. Does autophagy have a license to kill mammalian cells?

    NARCIS (Netherlands)

    Scarlatti, F.; Granata, R.; Meijer, A. J.; Codogno, P.

    2009-01-01

    Macroautophagy is an evolutionarily conserved vacuolar, self-digesting mechanism for cellular components, which end up in the lysosomal compartment. In mammalian cells, macroautophagy is cytoprotective, and protects the cells against the accumulation of damaged organelles or protein aggregates, the

  12. Download this PDF file

    African Journals Online (AJOL)

    acer

    Figure 3 portraits the histopathological changes in a cerebral section of pups ..... against gastric injury induced by ethanol and indomethacin in rodents. .... Cytoprotective effect of mangiferin on benzo(a)pyreneinduced lung ... Prenatal Curcumin Administration Reverses Behavioral and Neurochemical Effects and Decreases.

  13. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia

    NARCIS (Netherlands)

    Sakabe, Masao; Shiroshita-Takeshita, Akiko; Maguy, Ange; Brundel, Bianca J. J. M.; Fujiki, Akira; Inoue, Hiroshi; Nattel, Stanley

    2008-01-01

    Aims Heat shock proteins (HSPs) are a set of endogenous cytoprotective factors activated by various pathological conditions. This study addressed the effects of geranylgeranylacetone (GGA), an orally active HSP inducer, on the atrial fibrillation (AF) substrate associated with acute atria( ischaemia

  14. Cytoprotection with amifostine in radiotherapy or combined radio-chemotherapy of head and neck cancer; Zytoprotektion mit Amifostin in der Strahlentherapie bzw. Strahlen-/Chemotherapie von Kopf-Hals-Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, S.; Hoffmanns, H. [Krankenhaus Maria-Hilf, Moenchengladbach (Germany). Strahlentherapie und Radiologische Onkologie

    1999-11-01

    Background: A considerable amount of experimental and clinical data prove the cytoprotective effect of amifostine on normal tissue exposed to different types of antineoplastic treatments. The present study examines its influence on the short-term toxicity of either radiotherapy alone or combined radio-chemotherapy in patients with advanced head and neck cancer. Patients and methods: Twenty-three patients with advanced head and neck cancer, mainly Stage III and IV, were treated with preoperative radiation (n=1), pre- as well as postoperative radiotherapy (n=5), postoperative radiation (n=9) or combined postoperative radio-chemotherapy (n=6). Before each radiation application a total dose of 500 mg amifostine was administered intravenously over 15 minutes. The documentation of this unselected patient group was compared retrospectively to a historical control group comprising 17 patients. Results: In 15 patients (65%) of the amifostine group, therapy induced side effects such as mucositis and dermatitis of WHO Grade {<=}2 were detected, requiring interruptions of the radiotherapy (mean: 6.5, maximum 17 days). No mucosa or dermatologic toxicity of WHO Grade 3 or 4 was observed in this group. Significantly more acute toxicity was detected in the historical control group. Stomatitis or epitheliolysis of WHO Grade 3 occurred in 7 patients (41%). The side effects induced by the antineoplastic therapy caused an interruption of treatment in 15 patients (88%) (mean: 16, maximum 40 days; p=0.0016). Conclusion: The application of amifostine before each radiation treatment seems to result in a distinct reduction of short-term toxicity of radiotherapy or combined radio-chemotherapy in patients with head and neck cancer, allowing for a better adherence to the planned radiation time schedule. (orig.) [German] Hintergrund: Zahlreiche experimentelle und klinische Daten belegen die zytoprotektive Wirkung von Amifostin auf gesundes Gewebe bei Anwendung verschiedener antineoplastischer

  15. Protective Role of Commiphora molmol Extract against Liver and ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research January 2016; 15 (1): 65-72 ... aminotransferase (AST), total bilirubin, urea, creatinine, cholesterol and triglycerides showed a ... rabbits and Giardia lamblia infection in rats [11]. ... [12], antigastric ulcer and cytoprotective effects ... temperature and humidity, fed with commercial.

  16. Effects of sucralfate on gastric irritant-induced necrosis and apoptosis in cultured guinea pig gastric mucosal cells.

    Science.gov (United States)

    Hoshino, Tatsuya; Takano, Tatsunori; Tomisato, Wataru; Tsutsumi, Shinji; Hwang, Hyun-Jung; Koura, Yuko; Nishimoto, Kiyo; Tsuchiya, Tomofusa; Mizushima, Tohru

    2003-01-01

    We previously reported that several gastric irritants, including ethanol, hydrogen peroxide, and hydrochloric acid, induced both necrosis and apoptosis in cultured gastric mucosal cells. In the present study, we examined the effects of sucralfate, a unique gastroprotective drug, on gastric irritant-induced necrosis and apoptosis produced in vitro. Sucralfate strongly inhibited ethanol-induced necrosis in primary cultures of guinea pig gastric mucosal cells. The preincubation of cells with sucralfate was not necessary for its cytoprotective effect to be observed, thus making its mechanism of action different from that of other gastroprotective drugs. Necrosis of gastric mucosal cells induced by hydrogen peroxide or indomethacin was also suppressed by sucralfate. On the other hand, sucralfate only weakly inhibited ethanol-induced apoptosis. These results suggest that the cytoprotective effect of sucralfate on gastric mucosa in vivo can be explained, at least in part, by its inhibitory effect on gastric irritant-induced necrosis.

  17. Antiulcerogenic effects of coconut (Cocos nucifera) extract in rats.

    Science.gov (United States)

    Nneli, R O; Woyike, O A

    2008-07-01

    A warm water crude extract of coconut milk and a coconut water dispersion were investigated for their antiulcerogenic effects in male Wistar albino rats. Ulcers were induced in the male rats by subcutaneous administration of indomethacin (40 mg/kg) using standard procedures. The ulcer inhibition rate (UIR) was taken as a measure of the cytoprotection offered by test substances. Coconut milk (2 mL daily oral feeding) produced a stronger percentage (54%) reduction in the mean ulcer area than coconut water (39%). The effect of coconut milk was similar to the effect of sucralfate that reduced the mean ulcer area by 56% in this study. Sucralfate is a conventional cytoprotective agent. The results showed that coconut milk and water via macroscopic observation had protective effects on the ulcerated gastric mucosa. It is concluded that coconut milk offered stronger protection on indomethacin-induced ulceration than coconut water in rats.

  18. Redox Modulation by Amaranth Oil in Human Lung Fibroblasts

    NARCIS (Netherlands)

    Semen, K.O.; den Hartog, G.J.M.; Kaminsky, D.V.; Sirota, T.V.; Maij, N.G.A.A.; Yelisyeyeva, O.P.; Bast, A.

    2013-01-01

    Amaranth oil has several health benefits. It has lipid lowering, anti-diabetic, immune modulatory and cytoprotective properties, activates the function of mitochondria and improves heart rate variability. It has been suggested that the effect of amaranth oil on redox status is involved in this

  19. Clinical efficacy of sucralfate in reflux esophagitis. Comparison with cimetidine

    NARCIS (Netherlands)

    Tytgat, G. N.

    1987-01-01

    Sucralfate has been evaluated in reflux esophagitis, based on its protective adherence to denuded surfaces, its bile salt-binding properties, and its cytoprotective properties. Histamine (H2)-receptor blockers are currently considered the standard therapy. The goal of this study was to compare the

  20. Protective Effects of Tetrahydrocurcumin and Curcumin against ...

    African Journals Online (AJOL)

    Purpose: To investigate the cytoprotective effect of tetrahydrocurcumin, (THC) and curcumin (CUR) on cytotoxicity induced by doxorubicin and cadmium in Chang liver cells. Methods: Cytotoxicity was determined by sulforhodamine B assay. The expression of nuclear factorerythroid- 2-related factor 2 (Nrf2) Nrf2 regulated ...

  1. BKR 27(1) pp. 50-55 (Achuba et al)

    African Journals Online (AJOL)

    Femi J. Olorunniji

    2015-03-31

    Mar 31, 2015 ... Biokemistri 27(1): 50–55. 54. Farombi, E.O. (2000) Mechanisms for the hepatoprotective action of kolaviron, studies on hepatic enzymes, microsomal lipids and peroxidation in carbon tetrachloride-treated rats. Pharmacological Research 42: 75–80. Farris MW (1991) Cadmium toxicity: Unique cytoprotective.

  2. Size distribution of fullerenol nanoparticles in cell culture medium and their influence on antioxidative enzymes in Chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Srđenović Branislava U.

    2015-01-01

    Full Text Available Fullerenol (C60(OH24 nanoparticles (FNP have a significant role in biomedical research due to their numerous biological activities, some of which are cytoprotective and antioxidative properties. The aim of this study was to measure distribution of fullerenol nanoparticles and zeta potential in cell medium RPMI 1640 with 10% fetal bovine serum (FBS and to investigate the influence of FNP on Chinese hamster ovary cells (CHO-K1 survival, as well as to determine the activity of three antioxidative enzymes: superoxide-dismutase, glutathione-reductase and glutathione-S-transferase in mitomycin C-treated cell line. Our investigation implies that FNP, as a strong antioxidant, influence the cellular redox state and enzyme activities and thus may reduce cell proliferation, which confirms that FNP could be exploited for its use as a cytoprotective agent.[Projekat Ministarstva nauke Republike Srbije, br. III45005 i Pokrajinski Sekretarijat za nauku i tehnološki razvoj Vojvodine, grant number 114-451-2056/2011-01

  3. Melatonin, mitochondria, and the metabolic syndrome.

    Science.gov (United States)

    Cardinali, Daniel P; Vigo, Daniel E

    2017-11-01

    A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.

  4. Heme oxygenase-1 comes back to endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  5. Immunohistochemical localization of epidermal growth factor in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands is...... antisera against human urinary EGF worked in rat as well as man. EGF was found only in cells with an exocrine function.......Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands...... is well documented. The localization of EGF in other tissues is still unclarified. In the present study, the immunohistochemical localization of EGF in tissues from rat, man and a 20 week human fetus were investigated. In man and rat, immunoreaction was found in the submandibular glands, the serous glands...

  6. Cytoprotective Effects of Lysophospholipids from Sea Cucumber Holothuria atra.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Nishikawa

    Full Text Available Lysophospholipids are important signaling molecules in animals and metazoan cells. They are widely distributed among marine invertebrates, where their physiological roles are unknown. Sea cucumbers produce unique lysophospholipids. In this study, two lysophospholipids were detected in Holothuria atra for the first time, lyso-platelet activating factor and lysophosphatidylcholine, with nuclear magnetic resonance and liquid chromatography-time-of-flight mass spectrometric analyses. The lipid fraction of H. atra contained lyso-platelet activating factor and lysophosphatidylcholine, and inhibited H2O2-induced apoptosis in the macrophage cell line J774A.1. The antioxidant activity of the lysophospholipid-containing lipid fraction of H. atra was confirmed with the oxygen radical absorbance capacity method. Our results suggest that the lysophospholipids from H. atra are potential therapeutic agents for the inflammation induced by oxidative stress.

  7. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity

    Czech Academy of Sciences Publication Activity Database

    Pyszková, M.; Biler, M.; Biedermann, David; Valentová, Kateřina; Kuzma, Marek; Vrba, J.; Ulrichová, J.; Sokolová, Romana; Mojovic, M.; Popovic-Bijelic, A.; Kubala, M.; Trouillas, P.; Křen, Vladimír; Vacek, J.

    2016-01-01

    Roč. 90, JAN 2016 (2016), s. 114-125 ISSN 0891-5849 R&D Projects: GA MŠk(CZ) LD14096; GA ČR(CZ) GA15-03037S Grant - others:MŠMT(CZ) LO1024 Institutional support: RVO:61388971 ; RVO:61388955 Keywords : Flavonolignans * Antioxidants * Oxidation Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 5.606, year: 2016

  8. Author Details

    African Journals Online (AJOL)

    Simoyi, Reuben H. Vol 55 (2002) - Articles Complex Kinetics in the Reaction of Taurine with Aqueous Bromine and Acidic Bromate : A Possible Cytoprotective Role against Hypobromous Acid Abstract PDF. ISSN: 0379-4350. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  9. Lamium album or Urtica dioica? Which is more effective in ...

    African Journals Online (AJOL)

    Objectives: Diabetes mellitus, the most common endocrine disorder, is defined by hyperglycaemia. Urtica dioica or stinging nettle is known to have antidiabetic effects. Lamium album or non stinging nettle is shown to have some beneficial effects such as antioxidant, and cytoprotective properties. The purpose of this study ...

  10. Lamium album or urtica dioica?

    African Journals Online (AJOL)

    Proff.Adewunmi

    Objectives: Diabetes mellitus, the most common endocrine disorder, is defined by hyperglycaemia. Urtica dioica or stinging nettle is known to have antidiabetic effects. Lamium album or non stinging nettle is shown to have some beneficial effects such as antioxidant, and cytoprotective properties. The purpose of this study ...

  11. Protective effects of aqueous and ethanolic extracts of Nigella sativa L. and Portulaca oleracea L. on free radical induced hemolysis of RBCs

    Science.gov (United States)

    Karimi, G; Aghasizadeh, M; Razavi, M; Taghiabadi, E

    2011-01-01

    Background and the purpose of the study It has been shown that Nigella sativa L. and Portulaca oleracea L. have many antioxidant components. In the present study, the cytoprotective effect of ethanolic and aqueous extracts of N.sativa and P.oleracea against hemolytic damages induced by free radical initiator, AAPH [2, 2’ azobis (2- amidinopropane) hydrochloride] was evaluated. Methods Hemolysis was induced by addition of AAPH. To study the cytoprotective effect, aqueous (50, 200, 300, 400, 800 µg/ml) and ethanolic (25, 100, 150, 200 and 400 µg/ml) extracts of N. sativa and aqueous (25, 50, 100, 150, 200 and 400 µg/ml) and ethanolic (300, 600, 900, 1200 and 1800 µg/ml) extracts of P. oleracea were employed. RBCs were incubated with both extracts and AAPH at 37 °C for 6 hrs. In order to evaluate the impact of the time of addition, extracts were added one and 2 hrs after AAPH. Samples of suspensions were removed at different times and the degree of hemolysis was assessed spectrophotometrically by reading the absorption of supernatants at 540 nm. Results Aqueous (300, 400 and 800 µg/ml) and ethanolic (150, 200 and 400 µg/ml) extracts of N.sativa and also, aqueous (100, 150, 200 and 400 µg/ml) and ethanolic (1200, 1800 µg/ml) extracts of P.oleracea showed concentration-dependent cytoprotective effects. Addition of extracts one hour after AAPH reduced but did not eliminate protective activities of extracts. Conclusion Cytorotective effect of aqueous and ethanolic extracts of N. sativa and P. oleracea against AAPH- induced hemolysis may be related to antioxidant properties of these plants. PMID:22615672

  12. Global Proteome Changes in the Rat Diaphragm Induced by Endurance Exercise Training.

    Directory of Open Access Journals (Sweden)

    Kurt J Sollanek

    Full Text Available Mechanical ventilation (MV is a life-saving intervention for many critically ill patients. Unfortunately, prolonged MV results in the rapid development of diaphragmatic atrophy and weakness. Importantly, endurance exercise training results in a diaphragmatic phenotype that is protected against ventilator-induced diaphragmatic atrophy and weakness. The mechanisms responsible for this exercise-induced protection against ventilator-induced diaphragmatic atrophy remain unknown. Therefore, to investigate exercise-induced changes in diaphragm muscle proteins, we compared the diaphragmatic proteome from sedentary and exercise-trained rats. Specifically, using label-free liquid chromatography-mass spectrometry, we performed a proteomics analysis of both soluble proteins and mitochondrial proteins isolated from diaphragm muscle. The total number of diaphragm proteins profiled in the soluble protein fraction and mitochondrial protein fraction were 813 and 732, respectively. Endurance exercise training significantly (P<0.05, FDR <10% altered the abundance of 70 proteins in the soluble diaphragm proteome and 25 proteins of the mitochondrial proteome. In particular, key cytoprotective proteins that increased in relative abundance following exercise training included mitochondrial fission process 1 (Mtfp1; MTP18, 3-mercaptopyruvate sulfurtransferase (3MPST, microsomal glutathione S-transferase 3 (Mgst3; GST-III, and heat shock protein 70 kDa protein 1A/1B (HSP70. While these proteins are known to be cytoprotective in several cell types, the cyto-protective roles of these proteins have yet to be fully elucidated in diaphragm muscle fibers. Based upon these important findings, future experiments can now determine which of these diaphragmatic proteins are sufficient and/or required to promote exercise-induced protection against inactivity-induced muscle atrophy.

  13. Protective effects of Lagerstroemia speciosa on 3-morpholinosydnonimine (SIN-1)-induced oxidative stress in HIT-T15 pancreatic β cells.

    Science.gov (United States)

    Song, Jia-Le; Zhao, Xin; Wang, Qiang; Zhang, Ting

    2013-05-01

    Reactive oxygen species (ROS)-induced pancreatic β cell death affects insulin secretion and is important in the pathogenesis of diabetes. Lagerstroemia speciosa, a traditional folk medicine, has been used for t he prevention and treatment of diabetes. However, whether Lagerstroemia speciosa has a cytoprotective effect on pancreatic β cells remains to be elucidated. The present study aimed to investigate the cytoprotective effects of hot water extracts from Lagerstroemia speciosa leaves (LWE) on 3-morpholinosydnonimine (SIN-1)-induced oxidative damage in Syrian hamster pancreatic insulinoma HIT-T15 cells. The HIT-T15 cells were first treated with SIN-1 (50 µM) for 24 h and then co-incubated with LWE for 48 h. SIN-1 significantly decreased HIT-T15 cell viability (PHIT-T15 cells in a dose‑dependent manner. To further investigate the protective effects of LWE on SIN-1‑induced oxidative stress in HIT-T15 cells, the cellular levels of ROS, lipid peroxidation and endogenous antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-px), were determined. LWE decreased the intracellular levels of ROS and lipid peroxidation, and increased the activities of antioxidant enzymes. These results suggest that LWE has a cytoprotective effect against SIN-1‑induced oxidative stress in HIT-T15 cells through the inhibition of lipid peroxidation, a decrease in ROS levels and an increase in antioxidant enzyme activity. In addition, LWE increased insulin secretion in SIN-1-treated HIT-T15 cells. Our results suggested that LWE were effective in the treatment of diabetes. Further studies are required to study the anti-diabetic molecular mechanism in a cell model.

  14. Mononuclear nonheme iron(III) complexes that show superoxide dismutase-like activity and antioxidant effects against menadione-mediated oxidative stress.

    Science.gov (United States)

    Hitomi, Yutaka; Iwamoto, Yuji; Kashida, Akihiro; Kodera, Masahito

    2015-05-21

    This communication describes the superoxide dismutase (SOD)-like activity of mononuclear iron(III) complexes with pentadentate monocarboxylamido ligands. The SOD activity can be controlled by the electronic nature of the substituent group on the ligand. The nitro-substituted complex showed clear cytoprotective activity against menadione-mediated oxidative stress in cultured cells.

  15. Gastroprotective effects of leaf extracts of Carpolobia lutea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... INTRODUCTION. Carpolobia lutea G.Don (family: polygalaceae) occurred .... nary profile of antiulcer effects of C. lutea leaf (Andreo et al., 2006). The antiulcer assays ..... (John and Onabanjo, 1990; Nwafor et al., 1996). Flav- onoids have ... Cytoprotection (Robert et al., 1979) in rats as evidenced by the ...

  16. Ventilator-associated pneumonia in critically ill African patients on ...

    African Journals Online (AJOL)

    Background: Stress ulcer prophylaxis is an integral part of the care of the critically ill. Agents that alter gastric pH may predispose these patients to gastric colonisation, with subsequent pneumonia and/or sepsis. Cytoprotective agents such as sucralfate preserve gastric acidity and may be protective. Objective: To determine ...

  17. Author Details

    African Journals Online (AJOL)

    Effects of tahitian noni (Morinda citrifolia L.) juice on some hematological and biochemical parameters of male albino wistar rats. Abstract · Vol 26, No 1 (2011) - Articles The relationship between body mass index, semen and sex hormones in adult male. Abstract PDF · Vol 26, No 1 (2011) - Articles Gastric Cytoprotection and ...

  18. Protective effects of aqueous and ethanolic extracts of Nigella sativa L.and Portulaca oleracea L. on free radical induced hemolysis of RBCs

    Directory of Open Access Journals (Sweden)

    E Taghiabadi

    2011-10-01

    Full Text Available "n  Background and the purpose of the study: It has been shown that Nigella sativa L. and Portulaca oleracea L. have many antioxidant components. In the present study, the cytoprotective effect of ethanolic and aqueous extracts of N.sativa and P.oleracea against hemolytic damages induced by free radical initiator, AAPH [2, 2' azobis (2- amidinopropane hydrochloride] was evaluated. "n  Methods: Hemolysis was induced by addition of AAPH. To study the cytoprotective effect, aqueous (50, 200, 300, 400, 800 μg/ml and ethanolic (25, 100, 150, 200 and 400 μg/ml extracts of N. sativa and aqueous (25, 50, 100, 150, 200 and 400 μg/ml and ethanolic (300, 600, 900, 1200 and 1800 μg/ml extracts of P. oleracea were employed. RBCs were incubated with both extracts and AAPH at 37 °C for 6 hrs. In order to evaluate the impact of the time of addition, extracts were added one and 2 hrs after AAPH. Samples of suspensions were removed at different times and the degree of hemolysis was assessed spectrophotometrically by reading the absorption of supernatants at 540 nm. "n  Results: Aqueous (300, 400 and 800 μg/ml and ethanolic (150, 200 and 400 μg/ml extracts of N.sativa and also, aqueous (100, 150, 200 and 400 μg/ml and ethanolic (1200, 1800 μg/ml extracts of P.oleracea showed concentration-dependent cytoprotective effects. Addition of extracts one hour after AAPH reduced but did not eliminate protective activities of extracts. "n  Conclusion: Cytorotective effect of aqueous and ethanolic extracts of N. sativa and P. oleracea against AAPH- induced hemolysis may be related to antioxidant properties of these plants.

  19. Phase II multicenter randomized study of amifostine for prevention of acute radiation rectal toxicity: Topical intrarectal versus subcutaneous application

    International Nuclear Information System (INIS)

    Kouloulias, Vassilis E.; Kouvaris, John R.; Pissakas, George; Mallas, Elias; Antypas, Christos; Kokakis, John D.; Matsopoulos, George; Michopoulos, Spyros; Mystakidou, Kyriaki; Vlahos, Lambros J.

    2005-01-01

    Purpose: To investigate the cytoprotective effect of subcutaneous vs. intrarectal administration of amifostine against acute radiation toxicity. Methods and materials: Patients were randomized to receive amifostine either intrarectally (Group A, n = 27) or a 500-mg flat dose subcutaneously (Group B, n = 26) before irradiation. Therapy was delivered using a four-field technique with three-dimensional conformal planning. In Group A, 1,500 mg of amifostine was administered intrarectally as an aqueous solution in 40 mL of enema. Two different toxicity scales were used: the European Organization for Research and Treatment of Cancer/Radiation Therapy Oncology Group (RTOG) rectal and urologic toxicity criteria and the Subjective-RectoSigmoid scale based on the endoscopic terminology of the World Organization for Digestive Endoscopy. Objective measurements with rectosigmoidoscopy were performed at baseline and 1-2 days after radiotherapy completion. The area under the curve for the time course of mucositis (RTOG criteria) during irradiation represented the mucositis index. Results: Intrarectal amifostine was feasible and well tolerated without any systemic or local side effects. According to the RTOG toxicity scale, Group A had superior results with a significantly lower incidence of Grades I-II rectal radiation morbidity (11% vs. 42%, p 0.04) but inferior results concerning urinary toxicity (48% vs. 15%, p 0.03). The mean rectal mucositis index and Subjective-RectoSigmoid score were significantly lower in Group A (0.44 vs. 2.45 [p = 0.015] and 3.9 vs. 6.0 [p = 0.01], respectively), and the mean urinary mucositis index was lower in Group B (2.39 vs. 0.34, p < 0.028). Conclusions: Intrarectal administration of amifostine (1,500 mg) seemed to have a cytoprotective efficacy in acute radiation rectal mucositis but was inferior to subcutaneous administration in terms of urinary toxicity. Additional randomized studies are needed for definitive decisions concerning the

  20. Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells.

    Science.gov (United States)

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2017-03-15

    The PAC 1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC 1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC 1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC 1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC 1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC 1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Science.gov (United States)

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Tamarix gallica phenolics protect IEC-6 cells against H2O2 induced stress by restricting oxidative injuries and MAPKs signaling pathways.

    Science.gov (United States)

    Bettaib, Jamila; Talarmin, Hélène; Droguet, Mickaël; Magné, Christian; Boulaaba, Mondher; Giroux-Metges, Marie-Agnès; Ksouri, Riadh

    2017-05-01

    Polyphenolic compounds gained interest in the pharmaceutical research area due to their beneficial properties. Herein, antioxidant and cytoprotective capacities of T. gallica extract on H 2 O 2 -challenged rat small intestine epithelial cells were investigated. To set stress conditions, IEC-6 cultures were challenged with numerous H 2 O 2 doses and durations. Then, 40μM H 2 O 2 during 4h were selected to assess the cytoprotective effect of different T. gallica extract concentrations. Oxidative parameters, measured through CAT and SOD activities as well as MDA quantification were assessed. In addition, the expression of possibly involved MAPKs was also valued. Main results reported that T. gallica was rich in polyphenols and exhibited an important antioxidant activity (DPPH Assay, IC 50 =6μgmL -1 ; ABTS + test, IC 50 =50μgmL -1 ; Fe-reducing power, EC 50 =100μgmL -1 ). The exposure of IEC-6 cultures to 40μM H 2 O 2 during 4h caused oxidative stress manifested by (i) over 70% cell mortality, (ii) over-activity of CAT (246%), (iii) excess in MDA content (18.4nmolmg -1 ) and (iiii) a trigger of JNK phosphorylation. Pretreatment with T. gallica extract, especially when used at 0.25μgmL -1 , restored cell viability to 122%, and normal cell morphology in H 2 O 2 -chalenged cells. In addition, this extract normalized CAT activity and MDA content (100% and 14.7nmolmg -1 , respectively) to their basal levels as compared to control cells. Furthermore, stopping cell death seems to be due to dephosphorylated JNK MAPK exerted by T. gallica bioactive compounds. In all, T. gallica components provided a cross-talk between regulatory pathways leading to an efficient cytoprotection against harmful oxidative stimulus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Review: Taurine: A “very essential” amino acid

    Science.gov (United States)

    Shen, Wen

    2012-01-01

    Taurine is an organic osmolyte involved in cell volume regulation, and provides a substrate for the formation of bile salts. It plays a role in the modulation of intracellular free calcium concentration, and although it is one of the few amino acids not incorporated into proteins, taurine is one of the most abundant amino acids in the brain, retina, muscle tissue, and organs throughout the body. Taurine serves a wide variety of functions in the central nervous system, from development to cytoprotection, and taurine deficiency is associated with cardiomyopathy, renal dysfunction, developmental abnormalities, and severe damage to retinal neurons. All ocular tissues contain taurine, and quantitative analysis of ocular tissue extracts of the rat eye revealed that taurine was the most abundant amino acid in the retina, vitreous, lens, cornea, iris, and ciliary body. In the retina, taurine is critical for photoreceptor development and acts as a cytoprotectant against stress-related neuronal damage and other pathological conditions. Despite its many functional properties, however, the cellular and biochemical mechanisms mediating the actions of taurine are not fully known. Nevertheless, considering its broad distribution, its many cytoprotective attributes, and its functional significance in cell development, nutrition, and survival, taurine is undoubtedly one of the most essential substances in the body. Interestingly, taurine satisfies many of the criteria considered essential for inclusion in the inventory of neurotransmitters, but evidence of a taurine-specific receptor has yet to be identified in the vertebrate nervous system. In this report, we present a broad overview of the functional properties of taurine, some of the consequences of taurine deficiency, and the results of studies in animal models suggesting that taurine may play a therapeutic role in the management of epilepsy and diabetes. PMID:23170060

  4. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism.

    Science.gov (United States)

    Shah, Halley; Speen, Adam M; Saunders, Christina; Brooke, Elizabeth A S; Nallasamy, Palanisamy; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity. © 2014 by the Society for Experimental Biology and Medicine.

  5. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 100 of 263 ... Vol 5, No 2 (2006), Blood glucose level and lipid profile in rats fed on Treculia Africana (Breadfruit) diet: A sub-chronic study, Abstract. OO Okwari, OE Ofem, ... Vol 9, No 2 (2010), Comparative Effect of Fresh, Thermoxidized and Irradiated Oil on Gastric Acid Secretion and Cytoprotection in Rats, Abstract.

  6. Cytotoxic Autophagy in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Khushboo Sharma

    2014-06-01

    Full Text Available Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.

  7. Protective Effects of Alkaloid Compounds from Nelumbinis Plumula on tert-Butyl Hydroperoxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ze-Bin Guo

    2013-08-01

    Full Text Available This study was conducted to investigate the effect of Nelumbinis Plumula total alkaloid (NPA and its main alkaloid components on oxidative stress induced by tert-butyl hydroperoxide (t-BHP in the human hepatocellular HepG2 cell line. According to HPLC analysis, several major alkaloid compounds such as liensinine, isoliensinine and neferine were present in NPA. The cytotoxic effects in 0.55 mM t-BHP-induced HepG2 cells were significantly inhibited by NPA and the major compound in NPA, neferine, showed the strongest activities. The protective effect of neferine against oxidative stress induced by t-BHP may be associated with decreased ROS formation, TBARS generation, LDH release and increased GSH levels, suggesting their involvement of the cytoprotective on oxidative stress. The effects were comparable with quercetin, which was used as positive control. Overall, total alkaloid and alkaloid compounds from Nelumbinis Plumula displayed a significant cytoprotective effect against oxidative stress. Further study is needed to elucidate the relationship between the chemical structures of the components in NPA and their protective effect on oxidative stress.

  8. Silybin a silymarin - new and emerging applications in medicine

    Czech Academy of Sciences Publication Activity Database

    Gažák, Radek; Walterová, D.; Křen, Vladimír

    2007-01-01

    Roč. 14, č. 3 (2007), s. 315-338 ISSN 0929-8673 R&D Projects: GA MŠk(CZ) LC06010; GA MŠk OC 136; GA MŠk 1P05OC073 Institutional research plan: CEZ:AV0Z50200510 Keywords : silybin * silymarin * cytoprotective activity Subject RIV: CE - Biochemistry Impact factor: 4.944, year: 2007

  9. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Science.gov (United States)

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  10. Melatonin-mediated cytoprotection against hyperglycemic injury in Müller cells.

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    Full Text Available Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller cells. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against retinal injury during diabetic retinopathy.

  11. In vitro Models of Laser Induced Injury: Pathophysiology and Cytoprotection

    National Research Council Canada - National Science Library

    Bowman, Phillip D; Schuschereba, Steven T

    2007-01-01

    Lasers generating predominantly thermal energy are used in medicine and research for a variety of purposes including surgical excision, pan retinal photocoagulation for treating diabetic retinopathy...

  12. A novel antilithiatic protein from Tribulus terrestris having cytoprotective potency.

    Science.gov (United States)

    Aggarwal, Anshu; Tandon, Simran; Singla, Surinder Kumar; Tandon, Chanderdeep

    2012-08-01

    Adhesion of calcium oxalate (CaOx) crystals to kidney cells is a key event in kidney stones associated with marked hyperoxaluria. As the propensity of stone recurrence and persistent side effects are not altered by surgical techniques available, phytotherapeutic agents could be useful as an adjuvant therapy. The present study is aimed at examining the antilithiatic potency of the protein biomolecules of Tribulus terrestris, a plant which is a common constituent of herbal marketed preparations to treat urolithiasis. Various biochemical methods with mass spectrometry were used to purify and characterize the purified protein. The protective potency of the protein was tested on the oxalate induced injury on renal epithelial cell lines (NRK 52E). An antilithiatic protein having molecular weight of ~ 60kDa was purified. This purified protein showed similarities with Carotenoid cleavage dioxygenase 7 (CCD7) of Arabidopsis thaliana after matching peptide mass fingerprints in MASCOT search engine. An EF hand domain was identified in CCD7 by SCAN PROSITE. Presence of an EF hand domain, a characteristic feature of calcium binding proteins and a role in the synthesis of retinol which is transported by retinol binding protein, a protein found in kidney stone matrix; of CCD7 support the role of TTP as an antilithiatic protein. The protective potency of TTP on NRK 52E was quite comparable to the aqueous extract of cystone. Our findings suggest that this purified protein biomolecule from Tribulus terrestris could open new vista in medical management of urolithiasis.

  13. Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress.

    Science.gov (United States)

    Jami, Mohammad-Saeid; Salehi-Najafabadi, Zahra; Ahmadinejad, Fereshteh; Hoedt, Esthelle; Chaleshtori, Morteza Hashemzadeh; Ghatrehsamani, Mahdi; Neubert, Thomas A; Larsen, Jan Petter; Møller, Simon Geir

    2015-11-01

    Neuronal cell death, in neurodegenerative disorders, is mediated through a spectrum of biological processes. Excessive amounts of free radicals, such as reactive oxygen species (ROS), has detrimental effects on neurons leading to cell damage via peroxidation of unsaturated fatty acids in the cell membrane. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used for neurological recovery in several countries, including Japan and China, and it has been suggested that Edaravone may have cytoprotective effects in neurodegeneration. Edaravone protects nerve cells in the brain by reducing ROS and inhibiting apoptosis. To gain further insight into the cytoprotective effects of Edaravone against oxidative stress condition we have performed comparative two-dimensional gel electrophoresis (2DE)-based proteomic analyses on SH-SY5Y neuroblastoma cells exposed to oxidative stress and in combination with Edaravone. We showed that Edaravone can reverse the cytotoxic effects of H2O2 through its specific mechanism. We observed that oxidative stress changes metabolic pathways and cytoskeletal integrity. Edaravone seems to reverse the H2O2-mediated effects at both the cellular and protein level via induction of Peroxiredoxin-2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione.

    Science.gov (United States)

    Wiraswati, Hesti Lina; Hangen, Emilie; Sanz, Ana Belén; Lam, Ngoc-Vy; Reinhardt, Camille; Sauvat, Allan; Mogha, Ariane; Ortiz, Alberto; Kroemer, Guido; Modjtahedi, Nazanine

    2016-11-22

    Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion.

  15. Sulforaphane is a Nrf2-independent inhibitor of mitochondrial fission

    Directory of Open Access Journals (Sweden)

    Gary B. O'Mealey

    2017-04-01

    Full Text Available The KEAP1-Nrf2-ARE antioxidant system is a principal means by which cells respond to oxidative and xenobiotic stresses. Sulforaphane (SFN, an electrophilic isothiocyanate derived from cruciferous vegetables, activates the KEAP1-Nrf2-ARE pathway and has become a molecule-of-interest in the treatment of diseases in which chronic oxidative stress plays a major etiological role. We demonstrate here that the mitochondria of cultured, human retinal pigment epithelial (RPE-1 cells treated with SFN undergo hyperfusion that is independent of both Nrf2 and its cytoplasmic inhibitor KEAP1. Mitochondrial fusion has been reported to be cytoprotective by inhibiting pore formation in mitochondria during apoptosis, and consistent with this, we show Nrf2-independent, cytoprotection of SFN-treated cells exposed to the apoptosis-inducer, staurosporine. Mechanistically, SFN mitigates the recruitment and/or retention of the soluble fission factor Drp1 to mitochondria and to peroxisomes but does not affect overall Drp1 abundance. These data demonstrate that the beneficial properties of SFN extend beyond activation of the KEAP1-Nrf2-ARE system and warrant further interrogation given the current use of this agent in multiple clinical trials.

  16. Zytoprotektion mit Amifostin (Ethyol®) in der Chemotherapie: Meta-Analyse zum pharmakokinetischen Interaktionspotential mit Zytostatika.

    Science.gov (United States)

    Czejka, Martin; Schüller, Johannes; Kletzl, Heidemarie

    2017-08-25

    The cytoprotective agent amifostine (AMI) is capable to protect healthy cells (contrary to tumor cells) due to higher activity of alkaline phosphatase at the membrane site of normal cells. In seven clinical trials the influence of AMI on the pharmacokinetics of different cytostatics was investigated. Preadministration of AMI increased Cmax of doxorubicin (+ 44 %, p < 0.06), epirubicin (+ 31 %, P < 0.08), mitomycin C (+ 41 %, p < 0.01) and docetaxel (+ 31 % and + 17 %, not significant). In contrary, the peak concentration of pirarubicin , the tetrahydropyranyl-prodrug of doxorubicin was decreased (- 50 %, P < 0.03), leading to an equal higher concentrationof doxorubicin in the blood . In accordance to the peak concentrations, the AUC'ast was increased by chemoprotection: doxorubicin + 53 % (p < 0.01) and epirubicin + 23 % (not significant), docetaxel + 25 % and + 31 % (not significant). AUC'ast of mitomycin C and paclitaxel seemed to be unaffected by preadministered AMI. A particular inhibition of the protein binding by AMI has been identified as one reason for higher serum concentrations of anthracycline drugs. After cytoprotection, a possible increase of the cytostatic's Serum concentrations should be taken into account for optimal dosage schedules.

  17. Winter wild fennel leaves as a source of anti-inflammatory and antioxidant polyphenols

    Directory of Open Access Journals (Sweden)

    Severina Pacifico

    2018-05-01

    Full Text Available In the course of a screening program on the seasonal phenol composition of wild Mediterranean medicinal and aromatic plants, broadly used for culinary purposes, Foeniculum vulgare Mill. was the focus of the present study. Hydroalcoholic extracts from fennel freeze-dried leaves, collected in different seasons along 2012 and 2013 years, were quali-quantitatively analyzed through LC/MS/MS techniques. Winter extract contained, beyond several hydroxycinnamoyl quinic acids and flavonol glycosides, two chromone derivatives. Flavonol hexuronides were the main spring sample constituents. Phenol profile differences among the extracts influenced massively their bioactivity. When the antioxidant screening was performed, winter extract effectively scavenged DPPH· and ABTS·+ and reduced Fe3+. Although all the extracts did not show cytotoxicity, they were differently able to exert cytoprotection in H2O2-oxidized cell systems and to affect COX-2 gene expression in THP-1 cells. The most active one was winter extract, which inhibited COX-2 expression by 40%, whereas spring sample showed a weak pro-inflammatory capability. Keywords: Foeniculum vulgare Mill, LC-ESI-MS/MS analysis, Polyphenols, Antioxidant activity, Cytoprotection, COX-2 inhibition

  18. Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician's Expectation Be Matched by the Reality?

    Science.gov (United States)

    Houghton, Christine A.; Fassett, Robert G.; Coombes, Jeff S.

    2016-01-01

    The recognition that food-derived nonnutrient molecules can modulate gene expression to influence intracellular molecular mechanisms has seen the emergence of the fields of nutrigenomics and nutrigenetics. The aim of this review is to describe the properties of nutrigenomic activators of transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), comparing the potential for sulforaphane and other phytochemicals to demonstrate clinical efficacy as complementary medicines. Broccoli-derived sulforaphane emerges as a phytochemical with this capability, with oral doses capable of favourably modifying genes associated with chemoprevention. Compared with widely used phytochemical-based supplements like curcumin, silymarin, and resveratrol, sulforaphane more potently activates Nrf2 to induce the expression of a battery of cytoprotective genes. By virtue of its lipophilic nature and low molecular weight, sulforaphane displays significantly higher bioavailability than the polyphenol-based dietary supplements that also activate Nrf2. Nrf2 activation induces cytoprotective genes such as those playing key roles in cellular defense mechanisms including redox status and detoxification. Both its high bioavailability and significant Nrf2 inducer capacity contribute to the therapeutic potential of sulforaphane-yielding supplements. PMID:26881038

  19. Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician’s Expectation Be Matched by the Reality?

    Directory of Open Access Journals (Sweden)

    Christine A. Houghton

    2016-01-01

    Full Text Available The recognition that food-derived nonnutrient molecules can modulate gene expression to influence intracellular molecular mechanisms has seen the emergence of the fields of nutrigenomics and nutrigenetics. The aim of this review is to describe the properties of nutrigenomic activators of transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, comparing the potential for sulforaphane and other phytochemicals to demonstrate clinical efficacy as complementary medicines. Broccoli-derived sulforaphane emerges as a phytochemical with this capability, with oral doses capable of favourably modifying genes associated with chemoprevention. Compared with widely used phytochemical-based supplements like curcumin, silymarin, and resveratrol, sulforaphane more potently activates Nrf2 to induce the expression of a battery of cytoprotective genes. By virtue of its lipophilic nature and low molecular weight, sulforaphane displays significantly higher bioavailability than the polyphenol-based dietary supplements that also activate Nrf2. Nrf2 activation induces cytoprotective genes such as those playing key roles in cellular defense mechanisms including redox status and detoxification. Both its high bioavailability and significant Nrf2 inducer capacity contribute to the therapeutic potential of sulforaphane-yielding supplements.

  20. Protective effects of essential oil of Citrus limon against aspirin-induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-05-01

    Aspirin, one of the widely used nonsteroidal anti-inflammatory drugs, is the most highly consumed pharmaceutical product in the world. However, it has several side effects in cells. This study was designed to investigate the antioxidative activity and cytoprotective effects of essential oil of Citrus limon (EOC) extracted from leaves against aspirin-induced damages in the rat small intestine epithelial cells (IEC-6). Biochemical indicators were used to assess cytotoxicity and oxidative damages caused by aspirin treatment on IEC-6. Our results showed that the chemical characterization of EOC identified 25 compounds representing 98.19% of the total oil. The major compounds from this oil were z-citral (53.21%), neryl acetate (13.06%), geranyl acetate (10.33%), and limonene (4.23%). Aspirin induced a decrease in cell viability as well as an increase in superoxide dismutase (SOD) and catalase (CAT) activities. Contrariwise, the co-exposure of cells to aspirin and EOC alleviated every above syndrome by an increase in cell survival and decrease in SOD and CAT activities. In conclusion, the essential oil of C. limon has a potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  1. Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis.

    Science.gov (United States)

    Dong, Zimei; Chu, Gengbo; Sima, Yingxu; Chen, Guangwen

    2018-04-15

    Heat shock protein 90 family members (HSP90s), as molecular chaperones, have conserved roles in the physiological processes of eukaryotes regulating cytoprotection, increasing host resistance and so on. However, whether HSP90s affect regeneration in animals is unclear. Planarians are emerging models for studying regeneration in vivo. Here, the roles of three hsp90 genes from planarian Dugesia japonica are investigated by WISH and RNAi. The results show that: (1) Djhsp90s expressions are induced by heat and cold shock, tissue damage and ionic liquid; (2) Djhsp90s mRNA are mainly distributed each side of the body in intact worms as well as blastemas in regenerative worms; (3) the worms show head regression, lysis, the body curling and the regeneration arrest or even failure after Djhsp90s RNAi; (4) Djhsp90s are involved in autophagy and locomotion of the body. The research results suggest that Djhsp90s are not only conserved in cytoprotection, but also involved in homeostasis maintenance and regeneration process by regulating different pathways in planarians. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Phosphate-Containing Polyethylene Glycol Polymers Prevent Lethal Sepsis by Multidrug-Resistant Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Zaborin, Alexander; Defazio, Jennifer; Kade, Matthew; Kaiser, Brooke LD; Belogortseva, Natalia; Camp, David G.; Smith, Richard D.; Adkins, Joshua N.; Kim, Sangman M.; Alverdy, Alexandria; Goldfeld, David; Firestone, Millicent; Collier, Joel; Jabri, Bana; Tirrell, Matthew; Zaborina, Olga; Alverdy, John C.

    2014-02-01

    The gastrointestinal tract is the primary site of colonization for multi-drug resistant healthcare associated pathogens (HAPs) that are the principal source and cause of life-threatening infections in critically ill patients. We previously identified a high molecular weight co-polymer (PEG15-20) with mucoadhesive and cytoprotective actions on the intestinal epithelium. In this report we covalently bonded phosphate (Pi) to PEG15-20 ( termed Pi-PEG15-20) to enhance its cytoprotective activity against microbial virulence activation and invasion based on our previous work showing that Pi is a key environmental cue regulating microbial virulence across pathogens of clinical importance to hospitalized patients. We demonstrated that Pi-PEG15-20 can suppress phosphate-, iron-, and quorum sensing signal- mediated activation of bacterial virulence as well as inhibit intestinal epithelial IL-8 release during lipopolysaccharide (LPS) exposure. Pi-PEG15-20 also prevented mortality in C. elegans and mice exposed to several highly virulent and antibiotic(?)-resistant health care acquired pathogens (HAPs) while preserving the normal microbiota. Intestinal application Pi-PEG 15-20 has the potential to be a useful agent to prevent the pathogenic activation of microbes during critical illness where exposure to HAPs is ubiquitous.

  3. Cytotoxicity and DNA damage in the neutrophils of patients with sickle cell anaemia treated with hydroxyurea

    Directory of Open Access Journals (Sweden)

    Alano Martins Pedrosa

    2014-04-01

    Full Text Available Hydroxyurea (HU is the most important advance in the treatment of sickle cell anaemia (SCA for preventing complications and improving quality of life for patients. However, some aspects of treatment with HU remain unclear, including their effect on and potential toxicity to other blood cells such as neutrophils. This study used the measurement of Lactate Dehydrogenase (LDH and Methyl ThiazolTetrazolium (MTT and the comet assay to investigate the cytotoxicity and damage index (DI of the DNA in the neutrophils of patients with SCA using HU.In the LDH and MTT assays, a cytoprotective effect was observed in the group of patients treated, as well as an absence of toxicity. When compared to patients without the treatment, the SS group (n=20, 13 women and 07 men, aged 18-69 years, and the group of healthy individuals (AA used as a control group (n=52, 28 women and 24 men, aged 19-60 years, The SSHU group (n=21, 11 women and 10 men, aged 19-63 years showed a significant reduction (p20 months, demonstrating that despite the cytoprotective effects in terms of cell viability, the use of HU can induce DNA damage in neutrophils.

  4. Pharmacological activation of mitochondrial BKCa channels protects isolated cardiomyocytes against simulated reperfusion-induced injury

    Czech Academy of Sciences Publication Activity Database

    Borchert, Gudrun H.; Hlaváčková, Markéta; Kolář, František

    2013-01-01

    Roč. 238, č. 2 (2013), s. 233-241 ISSN 1535-3702 R&D Projects: GA AV ČR(CZ) IAA500110804; GA ČR(CZ) GAP303/12/1162 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : potassium channels * cardiomyocytes * mitochondria * ischemia/reperfusion * cytoprotection * reactive oxygen species Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.226, year: 2013

  5. The Anti-Apoptotic Activity of BAG3 Is Restricted by Caspases and the Proteasome

    OpenAIRE

    Virador, Victoria M.; Davidson, Ben; Czechowicz, Josephine; Mai, Alisha; Kassis, Jareer; Kohn, Elise C.

    2009-01-01

    Background Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis. Methodology/Principal Findings Staurosporine (STS) was used as a tool to test ...

  6. Effect of met-enkephalin on chromosomal aberrations in the lymphocytes of the peripheral blood of patients with multiple sclerosis

    OpenAIRE

    Maida Rakanović-Todić; Lejla Burnazović-Ristić; Slavka Ibrulj; Nedžad Mulabegović

    2014-01-01

    Endogenious opiod met-enkephalin throughout previous research manifested cytoprotective and anti-inflammatory effects. Previous research suggests that met-enkephalin has cytogenetic effects. Reducement in the frequency of structural chromosome aberrations as well as a suppressive effect on lymphocyte cell cycle is found. It also reduces apoptosis in the blood samples of the patients with immune-mediated diseases. Met-enkephalin exerts immunomodulatory properties and induces stabilization of t...

  7. Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets.

    Science.gov (United States)

    Kreutter, Guillaume; Kassem, Mohamad; El Habhab, Ali; Baltzinger, Philippe; Abbas, Malak; Boisrame-Helms, Julie; Amoura, Lamia; Peluso, Jean; Yver, Blandine; Fatiha, Zobairi; Ubeaud-Sequier, Geneviève; Kessler, Laurence; Toti, Florence

    2017-11-01

    Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H 2 O 2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eM aPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H 2 O 2 -treated rat islets with increased viability (62% versus 48% H 2 O 2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells.

    Science.gov (United States)

    Yen, Jui-Hung; Wu, Pei-Shan; Chen, Shu-Fen; Wu, Ming-Jiuan

    2017-04-17

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH₂-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor

  9. Alcohol in Moderation, Cardioprotection and Neuroprotection: Epidemiological Considerations and Mechanistic Studies

    OpenAIRE

    Collins, Michael A.; Neafsey, Edward J.; Mukamal, Kenneth J.; Gray, Mary O.; Parks, Dale A.; Das, Dipak K.; Korthuis, Ronald J.

    2008-01-01

    In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating beneficial effects of light-moderate, non-binge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alco...

  10. ERK controls epithelial cell death receptor signalling and cellular FLICE-like inhibitory protein (c-FLIP) in ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob Benedict; Coskun, Mehmet; Vainer, Ben

    2013-01-01

    Intestinal epithelial cell (IEC) death signalling through the Fas receptor is impaired in active ulcerative colitis (UC). This is possibly due to the activation of cytoprotective pathways resulting in limitation of the tissue injury secondary to inflammation. We hypothesized that inflammatory...... the resistance to receptor mediated epithelial apoptosis in active UC. Oncogenic c-FLIP could promote propagation of DNA-damaged IECs and contribute to cancer development in UC....

  11. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    OpenAIRE

    van Loon, Rosa Laura E; Bartelds, Beatrijs; Wagener, Frank A D T G; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W C; Takens, Janny; Berger, Rolf M F

    2015-01-01

    BACKGROUND: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). METHODS: Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the pre...

  12. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    OpenAIRE

    van Loon, Rosa Laura E.; Bartelds, Beatrijs; Wagener, Frank A. D. T. G.; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W. C.; Takens, Janny; Berger, Rolf M. F.

    2015-01-01

    Background Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). Methods Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO i...

  13. Cytoprotective Effect of Lactobacillus crispatus CTV-05 against Uropathogenic E. coli

    Directory of Open Access Journals (Sweden)

    Daniel S. C. Butler

    2016-03-01

    Full Text Available The vaginal flora consists of a subset of different lactic acid producing bacteria, typically creating a hostile environment for infecting pathogens. However, the flora can easily be disrupted, creating a favorable milieu for uropathogenic Escherichia coli (UPEC, making it possible to further infect the urinary system via the urethra. Probiotic use of different lactobacilli to restore the normal flora of the vagina has been proposed as a potential prophylactic treatment against urinary tract infections. This project evaluated the protective- and anti-inflammatory roles of the probiotic Lactobacillus crispatus strain CTV-05 in an in vitro system. The inflammatory response and the cytotoxic effect were studied by Enzyme-linked immunosorbent assays and by trypan blue exclusion of cells inoculated with L. crispatus CTV-05 and comparing it to non-infected controls and UPEC infected cells. L. crispatus CTV-05 showed no cytotoxicity to vaginal epithelial cells compared to non-infected controls and provided significant protection against UPEC infection (p < 0.05. Further more, L. crispatus CTV-05 did not create a pro-inflammatory response in vitro, with no significant increase of IL-1β or IL-6. These results demonstrate the protective effect of using L. crispatus CTV-05 as a probiotic treatment to reduce the risk of recurrent urinary tract infections.

  14. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    Science.gov (United States)

    Suttorp, Christiaan M.; Xie, Rui; Lundvig, Ditte M. S.; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C.; Wagener, Frank A. D. T. G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment. PMID:27486402

  15. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    NARCIS (Netherlands)

    Suttorp, C.M.; Xie, R.; Lundvig, D.M.S.; Kuijpers-Jagtman, A.M.; Uijttenboogaart, J.T.; Rheden, R.E.M. van; Maltha, J.C.; Wagener, F.A.D.T.G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root

  16. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats.

    Science.gov (United States)

    Suttorp, Christiaan M; Xie, Rui; Lundvig, Ditte M S; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C; Wagener, Frank A D T G

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, "fast" and "slow" tooth movers during orthodontic treatment.

  17. Tetrahydroxystilbene glucoside improves TNF-α-induced endothelial dysfunction: involvement of TGFβ/Smad pathway and inhibition of vimentin expression.

    Science.gov (United States)

    Yao, Wenjuan; Gu, Chengjing; Shao, Haoran; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-01-01

    Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.

  18. Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization.

    Science.gov (United States)

    Vavříková, Eva; Křen, Vladimír; Jezova-Kalachova, Lubica; Biler, Michal; Chantemargue, Benjamin; Pyszková, Michaela; Riva, Sergio; Kuzma, Marek; Valentová, Kateřina; Ulrichová, Jitka; Vrba, Jiří; Trouillas, Patrick; Vacek, Jan

    2017-02-15

    A series of antioxidants was designed and synthesized based on conjugation of the hepatoprotective flavonolignan silybin with l-ascorbic acid, trolox alcohol or tyrosol via a C 12 aliphatic linker. These hybrid molecules were prepared from 12-vinyl dodecanedioate-23-O-silybin using the enzymatic regioselective acylation procedure with Novozym 435 (lipase B) or with lipase PS. Voltammetric analyses showed that the silybin-ascorbic acid conjugate exhibited excellent electron donating ability, in comparison to the other conjugates. Free radical scavenging, antioxidant activities and cytoprotective action were evaluated. The silybin-ascorbic acid hybrid exhibited the best activities (IC 50  = 30.2 μM) in terms of lipid peroxidation inhibition. The promising protective action of the conjugate against lipid peroxidation can be attributed to modulated electron transfer abilities of both the silybin and ascorbate moieties, but also to the hydrophobic C 12 linker facilitating membrane insertion. This was supported experimentally and theoretically by density functional theory (DFT) and molecular dynamics (MD) calculations. The results presented here can be used in the further development of novel multipotent antioxidants and cytoprotective agents, in particular for substances acting at an aqueous/lipid interface. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-05-01

    Full Text Available Sulforaphane (SFN exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane-N-acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H2O2 challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2-antioxidant response element (ARE pathway and the induction of intracellular glutathione (GSH played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.

  20. Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts

    Science.gov (United States)

    Micucci, Matteo; Gallina Toschi, Tullia; Di Lecce, Giuseppe; Aldini, Rita; Angeletti, Andrea; Chiarini, Alberto

    2015-01-01

    This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals. PMID:26180582

  1. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia.

    Science.gov (United States)

    Jiménez-Aspee, Felipe; Thomas-Valdés, Samanta; Schulz, Ayla; Ladio, Ana; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo

    2016-07-01

    The Patagonian currant Ribes magellanicum is highly valued due to its pleasant flavor and sweet taste. The aim of this study was to characterize its constituents and to assess their antioxidant and cytoprotective properties. For the fruit phenolic-enriched extract (PEE), total phenolics (TP), total flavonoids (TF), and antioxidant activity (DPPH, Ferric reducing antioxidant power (FRAP), and Trolox equivalent antioxidant activity (TEAC)) were determined. Argentinean samples presented better activity in the DPPH and FRAP assays. Best cytoprotection against oxidative stress induced by H2O2 in AGS cells was found in one Argentinean sample at 500 μg mL(-1) (65.7%). HPLC MS/MS analysis allowed the tentative identification of 59 constituents, including eight anthocyanins, 11 conjugates of caffeic-, ferulic-, and coumaric acid, and 38 flavonoids, most of them quercetin and kaempferol derivatives. Argentinean samples showed a more complex pattern of anthocyanins, hydroxycinnamic acids (HCA), and flavonoids. Cyanidin rhamnoside hexoside and cyanidin hexoside were the main anthocyanins, accounting for 35 and 55% for the Argentinean and 60 and 27% for the ripe Chilean fruits. HCA content was about three times higher in Argentinean samples. The phenolic profiles of Chilean and Argentinean Ribes magellanicum show remarkable differences in chemical composition with higher HCA and flavonoid content in Argentinean samples.

  2. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration

    Directory of Open Access Journals (Sweden)

    Kira M. Holmström

    2013-06-01

    Transcription factor Nrf2 and its repressor Keap1 regulate a network of cytoprotective genes involving more than 1% of the genome, their best known targets being drug-metabolizing and antioxidant genes. Here we demonstrate a novel role for this pathway in directly regulating mitochondrial bioenergetics in murine neurons and embryonic fibroblasts. Loss of Nrf2 leads to mitochondrial depolarisation, decreased ATP levels and impaired respiration, whereas genetic activation of Nrf2 increases the mitochondrial membrane potential and ATP levels, the rate of respiration and the efficiency of oxidative phosphorylation. We further show that Nrf2-deficient cells have increased production of ATP in glycolysis, which is then used by the F1Fo-ATPase for maintenance of the mitochondrial membrane potential. While the levels and in vitro activities of the respiratory complexes are unaffected by Nrf2 deletion, their activities in isolated mitochondria and intact live cells are substantially impaired. In addition, the rate of regeneration of NADH after inhibition of respiration is much slower in Nrf2-knockout cells than in their wild-type counterparts. Taken together, these results show that Nrf2 directly regulates cellular energy metabolism through modulating the availability of substrates for mitochondrial respiration. Our findings highlight the importance of efficient energy metabolism in Nrf2-mediated cytoprotection.

  3. Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor

    International Nuclear Information System (INIS)

    Sun Weiyong; Kimura, Hiromichi; Hattori, Naka; Tanaka, Satoshi; Matsuyama, Shigemi; Shiota, Kunio

    2006-01-01

    Proliferation related acidic leucine-rich protein PAL31 (PAL31) is expressed in proliferating cells and consists of 272 amino acids with a tandem structure of leucine-rich repeats in the N-terminus and a highly acidic region with a putative nuclear localization signal in the C-terminus. We previously reported that PAL31 is required for cell cycle progression. In the present study, we found that the antisense oligonucleotide of PAL31 induced apoptosis to the transfected Nb2 cells. Stable transfectants, in which PAL31 was regulated by an inducible promoter, were generated to gain further insight into the signaling role of PAL31 in the regulation of apoptosis. Expression of PAL31 resulted in the marked rescue of Rat1 cells from etoposide and UV radiation-induced apoptosis and the cytoprotection was correlated with the levels of PAL31 protein. Thus, cytoprotection from apoptosis is a physiological function of PAL31. PAL31 can suppress caspase-3 activity but not cytochrome c release in vitro, indicating that PAL31 is a direct caspase-3 inhibitor. In conclusion, PAL31 is a multifunctional protein working as a cell cycle progression factor as well as a cell survival factor

  4. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    International Nuclear Information System (INIS)

    Kim, Jiyoung; Cha, Young-Nam; Surh, Young-Joon

    2010-01-01

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  5. Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy

    Directory of Open Access Journals (Sweden)

    Marco Malavolta

    2018-01-01

    Full Text Available The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2 pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.

  6. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Cousins, R.J.

    1990-01-01

    Attention has focused on the cytokine interleukin 6 (IL-6) as a major mediator of acute-phase protein synthesis in hepatocytes in response to infection and tissue injury. The authors have evaluated the effects of IL-6 and IL-1α as well as extracellular zinc and glucocorticoid hormone on metal-lothionein gene expression and cellular zinc accumulation in rat hepatocyte monolayer cultures. Further, they have evaluated the teleological basis for cytokine mediation by examining cyto-protection from CCl 4 -induced damage. Incubation of hepatocytes with IL-6 led to concentration-dependent and time-dependent increases in metallothionein-1 and -2 mRNA and metallothionein protein. The level of each was increased within 3 hr after the addition of IL-6 at 10 ng/ml. Maximal increases the metallothionein mRNA and metallothionein protein were achieved after 12 hr and 36 hr, respectively. Concomitant with the up-regulation of metallothionein gene expression, IL-6 also increased cellular zinc. Responses to IL-6 required the synthetic glucocorticoid hormone dexamethasone and were optimized by increased extracellular zinc. Thus, IL-6 is a major cytokine mediator of metallothionein gene expression and zinc metabolism in hepatocytes and provides cytoprotection from CCl 4 -induced hepatotoxicity via a mode consistent with dependence upon increased cellular metallothionein synthesis and zinc accumulation

  7. Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad

    Directory of Open Access Journals (Sweden)

    Angelo Sparaneo

    2016-01-01

    Full Text Available The transcription factor Nrf2 (NF-E2 related factor 2 is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets.

  8. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes.

    Science.gov (United States)

    Chen, Mingcang; Gu, Honggang; Ye, Yiyi; Lin, Bing; Sun, Lijuan; Deng, Weiping; Zhang, Jingzhe; Liu, Jianwen

    2010-10-01

    Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  10. Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts.

    Science.gov (United States)

    Micucci, Matteo; Malaguti, Marco; Toschi, Tullia Gallina; Di Lecce, Giuseppe; Aldini, Rita; Angeletti, Andrea; Chiarini, Alberto; Budriesi, Roberta; Hrelia, Silvana

    2015-01-01

    This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals.

  11. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  12. The Keap1-Nrf2 system in cancers: Stress response and anabolic metabolism

    Directory of Open Access Journals (Sweden)

    Yoichiro eMitsuishi

    2012-12-01

    Full Text Available The Keap1-Nrf2 pathway plays a central role in the protection of cells against oxidative and xenobiotic stresses. Nrf2 is a potent transcription activator that recognizes a unique DNA sequence known as the antioxidant response element (ARE. Under normal conditions, Nrf2 binds to Keap1 in the cytoplasm, resulting in proteasomal degradation. Following exposure to electrophiles or reactive oxygen species, Nrf2 becomes stabilized, translocates into the nucleus and activates the transcription of various cytoprotective genes. Increasing attention has been paid to the role of Nrf2 in cancer cells because the constitutive stabilization of Nrf2 has been observed in many human cancers with poor prognosis. Recent studies have shown that the antioxidant and detoxification activities of Nrf2 confer chemo- and radio-resistance to cancer cells. In this review, we provide an overview of the Keap1-Nrf2 system and discuss its role under physiological and pathological conditions, including cancers. We also introduce the results of our recent study describing Nrf2 function in the metabolism of cancer cells. Nrf2 likely confers a growth advantage to cancer cells through enhancing cytoprotection and anabolism. Finally, we discuss the possible impact of Nrf2 inhibitors on cancer therapy.

  13. The Multiple Facets of Lutein: A Call for Further Investigation in the Perinatal Period

    OpenAIRE

    Perrone, Serafina; Tei, Monica; Longini, Mariangela; Buonocore, Giuseppe

    2016-01-01

    Lutein may have important antioxidant actions in free-radical-mediated diseases, in addition to its well-known antioxidant and cytoprotective effects on macula and photoreceptors. The peculiar perinatal susceptibility to oxidative stress indicates that prophylactic use of antioxidants as lutein could help to prevent or at least to reduce oxidative stress related diseases in newborns. Since lutein is not synthesized by humans, the intake primarily depends on diet or supplementation. Newborns r...

  14. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    OpenAIRE

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Bj?rklund, Ann-Charlotte; Zhivotovsky, Boris; Grand?r, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencin...

  15. Simultaneous Expression from Both the Sense and Antisense Strand of the Erythropoietin Receptor Gene Mitigates Acute Lung Injury

    Science.gov (United States)

    2017-09-01

    concept efficacy that increasing EpoR or RopE expression by cDNA delivery to lung cells in vitro enhances cytoprotection against hyperoxia-induced injury...oxidative damage, cell culture, rodent model, inhalation cDNA delivery, sense and antisense erythropoietin receptor transcripts 16. SECURITY...prevention of acute lung injury. 1-6 50% Subtask 1: Prepare plasmid cDNA of EpoR and RopE in nanoparticle formulation. 1 Completed 06.2017 Subtask 2

  16. Prevention and Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors

    Science.gov (United States)

    2017-04-01

    on MPNSTs. The drugs that we are testing are approved for human use and could be rapidly advanced into human MPNST clinical trials if our pre...would kill normal cells. Cytoprotective autophagy can be inhibited by lysosomotropic agents such as chloroquine (CQ) that inhibit lysosome degradation...therapeutically useful at least in part by virtue of their ability to suppress CXCL12 expression. Page 6 Figure 1: AT101 down-regulates CXCL12

  17. Mineral and/or milk supplementation of fruit beverages helps in the prevention of H2O2-induced oxidative stress in Caco-2 cells La adición de minerales y/o leche a bebidas a base de zumo de frutas ayuda en la prevención del estrés oxidativo inducido por H2O2 en celulas Caco-2

    OpenAIRE

    A. Cilla; J. M. Laparra; A. Alegria; R. Barbera

    2011-01-01

    Introduction: Fruit beverages are commonly supplemented with milk, vitamins and/or minerals in order to improve their healthy effects by providing some bioactive components that can act additively or synergistically against oxidative stress. Aims: To test whether iron, zinc, and milk added to fruit beverages do not affect the cytoprotective effect against oxidative damage to Caco-2 cells through GSH-related enzymes induction and cell cycle progression preservation, in comparison with non-supp...

  18. Induction of Apoptosis in Human Multiple Myeloma Cell Lines by Ebselen via Enhancing the Endogenous Reactive Oxygen Species Production

    OpenAIRE

    Zhang, Liang; Zhou, Liwei; Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong

    2014-01-01

    Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the pr...

  19. Protective effects of fractions from Artemisia biennis hydro-ethanolic extract against doxorubicin-induced oxidative stress and apoptosis in PC12 cells.

    Science.gov (United States)

    Mojarrab, Mahdi; Mehrabi, Mehran; Ahmadi, Farahnaz; Hosseinzadeh, Leila

    2016-05-01

    This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX) in rat pheochromocytoma cell line (PC12). Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS) and measurement of mitochondrial membrane potential (MMP) were performed by flowcytometry. Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G) on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX. The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells. Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the mitochondrial membrane potential (MMP). Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD) activity. Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions.

  20. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

    Science.gov (United States)

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2014-01-27

    Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  1. Recent insights into the biological functions of liver fatty acid binding protein 1

    Science.gov (United States)

    Wang, GuQi; Bonkovsky, Herbert L.; de Lemos, Andrew; Burczynski, Frank J.

    2015-01-01

    Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency). PMID:26443794

  2. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2.

    Science.gov (United States)

    Tao, Shasha; Park, Sophia L; Rojo de la Vega, Montserrat; Zhang, Donna D; Wondrak, Georg T

    2015-12-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and an urgent need exists for improved molecular photoprotective strategies different from (or synergistic with) photon absorption. Recent studies suggest a photoprotective role of cutaneous gene expression orchestrated by the transcription factor NRF2 (nuclear factor-E2-related factor 2). Here we have explored the molecular mechanism underlying carotenoid-based systemic skin photoprotection in SKH-1 mice and provide genetic evidence that photoprotection achieved by the FDA-approved apocarotenoid and food additive bixin depends on NRF2 activation. Bixin activates NRF2 through the critical Cys-151 sensor residue in KEAP1, orchestrating a broad cytoprotective response in cultured human keratinocytes as revealed by antioxidant gene expression array analysis. Following dose optimization studies for cutaneous NRF2 activation by systemic administration of bixin, feasibility of bixin-based suppression of acute cutaneous photodamage from solar UV exposure was investigated in Nrf2(+/+) versus Nrf2(-/-) SKH-1 mice. Systemic administration of bixin suppressed skin photodamage, attenuating epidermal oxidative DNA damage and inflammatory responses in Nrf2(+/+) but not in Nrf2(-/-) mice, confirming the NRF2-dependence of bixin-based cytoprotection. Taken together, these data demonstrate feasibility of achieving NRF2-dependent cutaneous photoprotection by systemic administration of the apocarotenoid bixin, a natural food additive consumed worldwide. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Activation of AMPK by Buddleja officinalis Maxim. Flower Extract Contributes to Protecting Hepatocytes from Oxidative Stress.

    Science.gov (United States)

    Jung, Ji Yun; Lee, Chul Won; Park, Sang Mi; Jegal, Kyung Hwan; Kim, Jae Kwang; Park, Chung A; Cho, Il Je; Jung, Dae Hwa; An, Won G; Ku, Sae Kwang; Zhao, Rongjie; Kim, Sang Chan

    2017-01-01

    The Buddleja officinalis Maxim. flower is used in traditional Chinese and Korean medicine to treat inflammation, vascular diseases, headache, and stroke, as well as enhance liver function. This research investigated the effects of B. officinalis Maxim. flower extract (BFE) on hepatotoxicity. The cytoprotective effects and mechanism of BFE against severe mitochondrial dysfunction and H 2 O 2 production in hepatotoxicity induced by coadministration of arachidonic acid (AA) and iron were observed in the HepG2 cell line. In addition, we performed blood biochemical, histopathological, and histomorphometric analyses of mice with carbon tetrachloride- (CCl 4 -) induced acute liver damage. BFE inhibited the AA + iron-mediated hepatotoxicity of HepG2 cells. Moreover, it inhibited mitochondrial dysfunction, H 2 O 2 production, and glutathione depletion mediated by AA + iron in the same cells. Meanwhile, the cytoprotective effects of BFE against oxidative stress were associated with the activation of AMP-activated protein kinase (AMPK). In particular, based on the histopathological observations, BFE (30 and 100 mg/kg) showed clear hepatoprotective effects against CCl 4 -induced acute hepatic damage. Furthermore, it inhibited 4-hydroxynonenal and nitrotyrosine immunoreactivity in hepatocytes. These results provide evidence that BFE has beneficial hepatoprotective effects against hepatic damage via the activation of AMPK pathway. Accordingly, BFE may have therapeutic potential for diverse liver disorders.

  4. Dextran loading protects macrophages from lipid peroxidation and induces a Keap1/Nrf2/ARE-dependent antioxidant response.

    Science.gov (United States)

    Chechushkov, Anton; Zaitseva, Natalia; Vorontsova, Elena; Kozhin, Petr; Menshchikova, Elena; Shkurupiy, Vyacheslav

    2016-12-01

    Linear dextrans are often proposed as drug delivery systems with milder adverse effects and lower effective drug concentrations. Linear dextrans are polysaccharides that can potentially be used to load macrophages with drugs to transport them to a site of inflammation. Recently, it was reported that dextrans may exert a protective effect vis-à-vis drug cytotoxicity and during wound healing. The aim of the current work was to evaluate molecular mechanisms of action of dextrans that may be relevant to the cytoprotective effects. We determined the effect of treatment with 40- or 70-kDa dextran on production of reactive oxygen species, lipid peroxidation, and lysosomal pH in the J774 macrophage cell line. In addition, induction of Keap1/Nrf2/ARE and autophagic activity were evaluated. Dextrans of both molecular weights protected the cells from oxidative stress induced by cumene hydroperoxide and from lysosomal stress induced by ammonium chloride. The effect was associated with induction of the Keap1/Nrf2/ARE signaling pathway. Furthermore, dextran stimulated autophagy in a dose-dependent manner but inhibited the autophagosome-lysosome fusion in a time-dependent manner. This study shows possible cytoprotective effects of dextran under oxidative stress, and these findings may be used for the development of novel (dextran-based) drug delivery approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation

    Science.gov (United States)

    Yoon, Jaemin; Ham, Hyeonmi; Sung, Jeehye; Kim, Younghwa; Choi, Youngmin; Lee, Jeom-Sig; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    BACKGROUND/OBJECTIVES The objective of this study was to evaluate the protective effect of black rice extract (BRE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. MATERIALS/METHODS Methanolic extract from black rice was evaluated for the protective effect on TBHP-induced oxidative injury in HepG2 cells. Several biomarkers that modulate cell survival and death including reactive oxygen species (ROS), caspase-3 activity, and related cellular kinases were determined. RESULTS TBHP induced cell death and apoptosis by a rapid increase in ROS generation and caspase-3 activity. Moreover, TBHP-induced oxidative stress resulted in a transient ERK1/2 activation and a sustained increase of JNK1/2 activation. While, BRE pretreatment protects the cells against oxidative stress by reducing cell death, caspase-3 activity, and ROS generation and also by preventing ERKs deactivation and the prolonged JNKs activation. Moreover, pretreatment of BRE increased the activation of ERKs and Akt which are pro-survival signal proteins. However, this effect was blunted in the presence of ERKs and Akt inhibitors. CONCLUSIONS These results suggest that activation of ERKs and Akt pathway might be involved in the cytoprotective effect of BRE against oxidative stress. Our findings provide new insights into the cytoprotective effects and its possible mechanism of black rice against oxidative stress. PMID:24741394

  6. Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells.

    Science.gov (United States)

    Fernández-Moriano, Carlos; Divakar, Pradeep Kumar; Crespo, Ana; Gómez-Serranillos, M Pilar

    2017-07-01

    Lichens species produce unique secondary metabolites that attract increasing pharmacological interest, including their redox modulatory activities. Current work evaluated for the first time the in vitro cytoprotective properties, based on the antioxidant activities, of the Parmeliaceae lichens Evernia prunastri and Usnea ghattensis and the mechanism of action of their major phenolic constituents: the evernic and usnic acids, respectively. In two models of central nervous system-like cells (U373-MG and SH-SY5Y cell lines), exogenous H 2 O 2 induced oxidative stress-mediated cytotoxicity. We first assessed their radical scavenging capacities (ORAC and DPPH tests) and the phenolic content of the extracts. At the optimal concentrations, pretreatments with evernic acid displayed significant protection against H 2 O 2 -induced cytotoxic damage in both models. It reversed the alterations in oxidative stress markers (including ROS generation, glutathione system and lipid peroxidation levels) and cellular apoptosis (caspase-3 activity). Such effects were in part mediated by a notable enhancement of the expression of intracellular phase-II antioxidant enzymes; a plausible involvement of the Nrf2 cytoprotective pathway is suggested. Usnic acid exerted similar effects, to some extent more moderate. Results suggest that lichen polyketides evernic and usnic acids merit further research as promising antioxidant candidates in the therapy of oxidative stress-related diseases, including the neurodegenerative disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Post-ischemic azotemia as a partial 'brake', slowing progressive kidney disease.

    Science.gov (United States)

    Zager, Richard A; Johnson, Ali C; Becker, Kirsten

    2013-06-01

    Recent experimental work suggests a paradox: although uremia evokes systemic toxicities, in the setting of AKI, it can induce intrarenal cytoprotective and anti-inflammatory effects. Whether these influences can attenuate post-ischemic kidney disease progression remains unknown. To explore this possibility, male CD-1 mice were subjected to a 30-min unilateral (left) kidney ischemia model, previously shown to reduce renal mass by ∼50% over 2-3 weeks. Stepwise azotemia/acute uremia was superimposed by inducing different lengths of contralateral (right) kidney ischemia (0, 15, 18, 20 min). Subsequent loss of left renal mass (kidney weight) was assessed 2 weeks later and contrasted with the degree of initial azotemia 24-h BUN. A striking correlation between 24-h BUNs and 2-week left renal mass was observed (r, 0.77; P < 0.001). With 20 min of right kidney ischemia, left kidney size was completely preserved. This preservation did not result from increased tubular cell proliferation or decreased microvascular loss, as gauged by KI-67 and CD-34 immunohistochemistry, respectively. Rather, an early reduction in proximal tubule cell dropout (as judged by renal cortical N-acetyl-glucosaminidase content), with a subsequent preservation of tubule mass, was observed. In summary, these findings advance a novel concept: acute uremia can confer early post-ischemic cytoprotection resulting in a slowed progression of post-ischemic kidney disease.

  8. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells.

    Science.gov (United States)

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.

  9. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiyoung [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cha, Young-Nam [Inha University College of Medicine, Incheon 382-751 (Korea, Republic of); Surh, Young-Joon, E-mail: surh@plaza.snu.ac.kr [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2010-08-07

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  10. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  11. Activation of AMPK by Buddleja officinalis Maxim. Flower Extract Contributes to Protecting Hepatocytes from Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ji Yun Jung

    2017-01-01

    Full Text Available The Buddleja officinalis Maxim. flower is used in traditional Chinese and Korean medicine to treat inflammation, vascular diseases, headache, and stroke, as well as enhance liver function. This research investigated the effects of B. officinalis Maxim. flower extract (BFE on hepatotoxicity. The cytoprotective effects and mechanism of BFE against severe mitochondrial dysfunction and H2O2 production in hepatotoxicity induced by coadministration of arachidonic acid (AA and iron were observed in the HepG2 cell line. In addition, we performed blood biochemical, histopathological, and histomorphometric analyses of mice with carbon tetrachloride- (CCl4- induced acute liver damage. BFE inhibited the AA + iron-mediated hepatotoxicity of HepG2 cells. Moreover, it inhibited mitochondrial dysfunction, H2O2 production, and glutathione depletion mediated by AA + iron in the same cells. Meanwhile, the cytoprotective effects of BFE against oxidative stress were associated with the activation of AMP-activated protein kinase (AMPK. In particular, based on the histopathological observations, BFE (30 and 100 mg/kg showed clear hepatoprotective effects against CCl4-induced acute hepatic damage. Furthermore, it inhibited 4-hydroxynonenal and nitrotyrosine immunoreactivity in hepatocytes. These results provide evidence that BFE has beneficial hepatoprotective effects against hepatic damage via the activation of AMPK pathway. Accordingly, BFE may have therapeutic potential for diverse liver disorders.

  12. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.).

    Science.gov (United States)

    Smeriglio, A; Denaro, M; Barreca, D; D'Angelo, V; Germanò, M P; Trombetta, D

    2018-01-01

    Black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) is a valuable source of carbohydrates, minerals and vitamins and contains also high amounts of anthocyanins giving the characteristic deep-purple color. These latter compounds are known as natural dyes used in the food and pharmaceutical industry that have recently attracted much attention for their healthful properties. The aim of this work was to investigate for the first time the polyphenolic profile and biological properties of a black carrot crude extract (BCCE) through an in-depth analysis of the main polyphenolic classes evaluating its antioxidant, cytoprotective and anti-angiogenic properties. Twenty five polyphenols were quantified by LC-DAD-FLD-MS/MS analysis (anthocyanins 78.06%, phenolic acids 17.89% and other flavonoids 4.06%) with polyglycosylated cyanidins as major components. In addition, BCCE showed a strong antioxidant and free radical scavenging activity particularly in the hydrogen transfer-based assays (ORAC and β-carotene bleaching) and a significant increase in the cell viability. Furthermore, BCCE exhibited a strong anti-angiogenic activity at the highest concentration assayed on the chick chorioallantoic membrane (50μg/egg). In conclusion, the obtained results demonstrated the antioxidant, cytoprotective and anti-angiogenic properties of BCCE, which highlight that the higher biological activity of BCCE is probably due to the synergic effects exerted by various polyphenolic classes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Molecular mechanisms of cytoprotective action of the plant proanthocyanidins in gastric lesions].

    Science.gov (United States)

    Zaiachkivs'ka, O S

    2006-01-01

    The molecular defence mechanisms against ethanol- and stress-induced (WRS) gastric lesions under the action of plant proanthocyanidins from grapefruit-seed extract (GSE) were investigated. Pre-treatment with GSE (8-64 mg/kg/day) in dose-dependent manner attenuated gastric lesions induced by 100% ethanol and WRS; the doses of GCE reducing these lesions by 50% (ID50) were 28 and 36 mg/kg/day, respectively and this protective effect was similar to that obtained with PGE2 analogue. Lesions reduction was also accompanied by improvement of gastric blood flow, antiradical action, increased mucosal generation of PGE2, antioxidant activity.

  14. Gastroprotective, cytoprotective and antioxidant effects of Oleum cinnamomi on ethanol induced damage

    OpenAIRE

    Ozbayer, Cansu; Kurt, Hulyam; Ozdemir, Zeynep; Tuncel, Tunc; Moheb Saadat, Selva; Burukoglu, Dilek; Senturk, Hakan; Degirmenci, Irfan; Gunes, Hasan Veysi

    2013-01-01

    Peptic ulcer disease is a gastrointestinal disorder defined by mucosal damage and free oxygen radicals associated with peptic ulcer and gastritis. Cinnamon is a traditional herb used for many diseases and it has also effects as an antioxidant, anti-inflammatory, antispasmodic and anti-ulcerative. Our research is based on oxidative stress and effects of Oleum cinnamomi on stomach, liver and kidney disorders induced by ethanol. In our experiment, 2–3 month old male Sprague–Dawley rats were used...

  15. Cytoprotective Effect of American Ginseng in a Rat Ethanol Gastric Ulcer Model

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-12-01

    Full Text Available Panax quinquefolium L. (American Ginseng, AG is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n = 8 per group: supplementation with water (vehicle and low-dose (AG-1X, medium-dose (AG-2X and high-dose (AG-5X AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg. Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  16. Using induced pluripotent stem cell-derived conditional medium to attenuate the light-induced photodamaged retina of rats

    Directory of Open Access Journals (Sweden)

    Hua-Ming Chang

    2015-03-01

    Conclusion: The conditional medium of iPSCs contains plenty of cytoprotective, immune-modulative and rescue chemicals, contributing to the maintenance of neuronal function and retinal layers in light-damaged retina compared with apoptotic iPSC-CM and PBS. The antiapoptotic effect of iPSC-CM also shows promise in restoring damaged neurons. This result demonstrates that iPSC-CM may serve as an alternative to cell therapy alone to treat retinal light damage and maintain functional and structural integrity of the retina.

  17. Neuroglobin over expressing mice

    DEFF Research Database (Denmark)

    Raida, Zindy; Hundahl, Christian Ansgar; Nyengaard, Jens R

    2013-01-01

    BACKGROUND: Stroke is a major cause of death and severe disability, but effective treatments are limited. Neuroglobin, a neuronal heme-globin, has been advocated as a novel pharmacological target in combating stroke and neurodegenerative disorders based on cytoprotective properties. Using...... contribution from compensatory mechanisms to the phenotype following a genetic perturbation. We also stress, that care should be taken when comparing results where different mouse strains and colonies have been used due to large genetic background contribution to the observed phenotype....

  18. Gênero Calophyllum: importância química e farmacológica

    Directory of Open Access Journals (Sweden)

    Noldin Vânia Floriani

    2006-01-01

    Full Text Available The Calophyllum genus (Clusiaceae is composed of about 200 species, with a pantropical distribution. Some species are medicinal and are used against several diseases, including gastric ulcers, infectious pathologies, painful, inflammatory processes and as molluscicidal. A search in the literature regarding the chemical and biological aspects of these plants indicates cytotoxic activity against several cell lines, inhibition of HIV-1 reverse transcriptase, antisecretory and cytoprotective properties, antinociceptive, molluscicidal and antimicrobial effects, among others, related particularly to the presence of coumarins, xanthones, flavonoids, and triterpenes.

  19. Is there an astrocyte-neuron ketone body shuttle?

    Science.gov (United States)

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  20. The prevention of gastropathy and upper abdominal symptoms caused by nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Vakil, Nimish

    2006-01-01

    The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is increasing, primarily due to arthritis in the aging population. This article reviews current data on the risk of gastrointestinal complications related to NSAIDs and strategies to manage risk in patients taking these agents. Risks of NSAID use include gastrointestinal ulceration, hemorrhage, or perforation; renal dysfunction; death; and dyspepsia. Alternate therapies include use of non-NSAID analgesics; low-dose NSAIDs; and concurrent administration of cytoprotective agents with NSAIDs, acid inhibitors, proton pump inhibitors, and COX-2 agents.

  1. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells

    International Nuclear Information System (INIS)

    Babu, Dinesh; Leclercq, Georges; Goossens, Vera; Remijsen, Quinten; Vandenabeele, Peter; Motterlini, Roberto; Lefebvre, Romain A.

    2015-01-01

    Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H 2 O 2 -, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrial superoxide anion (O 2 · − ) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψ m ) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H 2 O 2 -mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O 2 · − production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O 2 · − levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on NOX-derived ROS to protect MODE-K cells from TNF

  2. Efeito de um hidrolisado de proteínas de soro de leite e de seus peptídeos na proteção de lesões ulcerativas da mucosa gástrica de ratos Effects of a whey protein concentrate and it's peptides in the protection of ulcerative lesions at rat gastric mucosa

    Directory of Open Access Journals (Sweden)

    Maria Teresa Bertoldo Pacheco

    2006-02-01

    Full Text Available OBJETIVO: Avaliar a atividade do hidrolisado das proteínas de soro de leite bovino e uma fração de peptídeos de baixo peso molecular (peso molecular OBJECTIVE: To assess the ability of bovine whey protein hydrolysate and its low molecular weight fraction (molecular weight <1kDa to protect the gastric mucosa of rats against ulcerative process induced by three different agents. METHODS: Adult Wistar rats were subjected to the indomethacin-induced ulcer (30mg/kg body weigh, absolute ethanol (1ml/animal and immobilization and cold stress (4(0C/2h, models. RESULTS: Whey protein hydrolysate was obtained by treatment with pancreatin to a degree of hydrolysis of 20% and fractionated using a tangential flow membrane with a molecular weight cut-off of 1kDa to obtain the fraction containing low molecular weight peptides (<1kDa. In the ethanol-induced acute ulcer model (single dose, whey protein hydrolysate inhibited the gastric lesion index by 65.5% and the double dose resulted in a 77.4% inhibition. CONCLUSION: For the anti-inflammatory model, the cytoprotective effect of low molecular weight peptides was stronger than that of total hydrolysate (53.1 and 71.6%, ulcerative lesion index for single and double dose, respectively. No mucosa cytoprotective activity was found for whey protein concentrate, whey protein hydrolysate or WPHP in the immobilization and cold stress model.

  3. Impairment of autophagy: From hereditary disorder to drug intoxication

    International Nuclear Information System (INIS)

    Aki, Toshihiko; Funakoshi, Takeshi; Unuma, Kana; Uemura, Koichi

    2013-01-01

    At first, the molecular mechanism of autophagy was unveiled in a unicellular organism Saccharomyces cerevisiae (budding yeast), followed by the discovery that the basic mechanism of autophagy is conserved in multicellular organisms including mammals. Although autophagy was considered to be a non-selective bulk protein degradation system to recycle amino acids during periods of nutrient starvation, it is also believed to be an essential mechanism for the selective elimination of proteins/organelles that are damaged under pathological conditions. Research advances made using autophagy-deficient animals have revealed that impairments of autophagy often underlie the pathogenesis of hereditary disorders such as Danon, Parkinson's, Alzheimer's, and Huntington's diseases, and amyotrophic lateral sclerosis. On the other hand, there are many reports that drugs and toxicants, including arsenic, cadmium, paraquat, methamphetamine, and ethanol, induce autophagy during the development of their toxicity on many organs including heart, brain, lung, kidney, and liver. Although the question as to whether autophagic machinery is involved in the execution of cell death or not remains controversial, the current view of the role of autophagy during cell/tissue injury is that it is an important, often essential, cytoprotective reaction; disturbances in cytoprotective autophagy aggravate cell/tissue injuries. The purpose of this review is to provide (1) a gross summarization of autophagy processes, which are becoming more important in the field of toxicology, and (2) examples of important studies reporting the involvement of perturbations in autophagy in cell/tissue injuries caused by acute as well as chronic intoxication

  4. Flavonoids from the leaves of Deguelia utilis (Leguminosae): structural elucidation and neuroprotective properties

    International Nuclear Information System (INIS)

    Oliveira, Dalglish G. de; Almeida, Cecilia M.C. de; Silva, Consuelo Y.Y. e; Arruda, Mara S.P.; Arruda, Alberto C.; Silva, Milton N. da; Lopes, Dielly C.F.; Yamada, Elizabeth S.; Costa, Edmar T. da; MFilho, Arnaldo Jorge

    2012-01-01

    Five new flavonoids, 5,3'-dihydroxy-4'-methoxy-2'',2''dimethylchromene-(5''6'':6,7)- dihydroflavonol (1), 5,3'-dihydroxy-7,4'-dimethoxy-6,8-dimethylallyl-dihydroflavonol (2), 5,3'-dihydroxy-4'-methoxy-8-allyl-2'',2''-dimethylchromene-(5'',6'':6,7) flavanone (3), 5,3'-dihydroxy-7,4'-dimethoxy-6,8-dimethylallyl-flavanone (4), 3,5,3'-trihydroxy-7,4'-dimethoxy- 6,8-dimethylallyl-flavanol (5), together with the stilbenes 4-methoxylonchocarpene (6) and lonchocarpene (7) were isolated from the leaves of Deguelia utilis. Their chemical structures were established on the basis of NMR (nuclear magnetic resonance) spectral data and HRESITOF-MS (electrospray ionization-high resolution time-of-flight mass spectrometry). Also, in order to investigate potential cytoprotective effects of these flavonoids, we used a fraction eluted with hexane:EtOAc containing all seven flavonoids, in an in vitro model of neurodegeneration, using hippocampal primary cultures from neonatal (PND2-P3) rats exposed to rotenone, a mitochondrial complex I inhibitor. There was a significant reduction in cell viability (19.4 ± 1.6%) when the cultures were exposed to 30 nmol L -1 rotenone for 72 h. Concomitant exposure of the cultures to the FR3 (5 μg mL -1 ) and 30 nmol L -1 rotenone resulted in values of cell viability similar to control groups (99.6 ± 4.8%), strongly suggesting a cytoprotective effect for this flavonoid-rich fraction. (author)

  5. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    Science.gov (United States)

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  6. Protective effects of fractions from Artemisia biennis hydro-ethanolic extract against doxorubicin-induced oxidative stress and apoptosis in PC12 cells

    Directory of Open Access Journals (Sweden)

    Mahdi Mojarrab

    2016-05-01

    Full Text Available Objective(s: This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX in rat pheochromocytoma cell line (PC12. Material and Methods:Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS and measurement of mitochondrial membrane potential (MMP were performed by flowcytometry. Results:  Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX.  The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells.  Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the  mitochondrial membrane potential (MMP. Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD activity. Conclusion: Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions.

  7. Pathophysiological mechanisms of death resistance in colorectal carcinoma.

    Science.gov (United States)

    Huang, Ching-Ying; Yu, Linda Chia-Hui

    2015-11-07

    Colon cancers develop adaptive mechanisms to survive under extreme conditions and display hallmarks of unlimited proliferation and resistance to cell death. The deregulation of cell death is a key factor that contributes to chemoresistance in tumors. In a physiological context, balance between cell proliferation and death, and protection against cell damage are fundamental processes for maintaining gut epithelial homeostasis. The mechanisms underlying anti-death cytoprotection and tumor resistance often bear common pathways, and although distinguishing them would be a challenge, it would also provide an opportunity to develop advanced anti-cancer therapeutics. This review will outline cell death pathways (i.e., apoptosis, necrosis, and necroptosis), and discuss cytoprotective strategies in normal intestinal epithelium and death resistance mechanisms of colon tumor. In colorectal cancers, the intracellular mechanisms of death resistance include the direct alteration of apoptotic and necroptotic machinery and the upstream events modulating death effectors such as tumor suppressor gene inactivation and pro-survival signaling pathways. The autocrine, paracrine and exogenous factors within a tumor microenvironment can also instigate resistance against apoptotic and necroptotic cell death in colon cancers through changes in receptor signaling or transporter uptake. The roles of cyclooxygenase-2/prostaglandin E2, growth factors, glucose, and bacterial lipopolysaccharides in colorectal cancer will be highlighted. Targeting anti-death pathways in the colon cancer tissue might be a promising approach outside of anti-proliferation and anti-angiogenesis strategies for developing novel drugs to treat refractory tumors.

  8. Effects of ranolazine on ischemic threshold, coronary sinus blood flow, and myocardial metabolism in coronary artery disease.

    Science.gov (United States)

    Bagger, J P; Bøtker, H E; Thomassen, A; Nielsen, T T

    1997-07-01

    Cytoprotection or metabolic modulation is a new principle in the treatment of angina pectoris. The effect of ranolazine (a cytoprotective drug) on ischemic threshold, coronary sinus blood flow, and myocardial metabolism was evaluated by means of two pacing sequences in nine male patients with coronary artery disease (CAD) and in eight male controls. Ranolazine was given as an intravenous bolus followed by continuous infusion; the mean total dose was 32.7 mg and 31.7 mg in patients and controls, respectively. Angina pectoris was relieved in two patients after ranolazine but pacing time to pain was unchanged in the remaining patients. Maximal ST depression was lower (p = 0.02), but pacing time to maximal and to 1-mm ST depression remained unchanged after the drug. Ranolazine had no overall influence on coronary sinus blood flow, cardiac oxygen consumption, blood pressure, and heart rate. Cardiac uptake of free fatty acids (FFA) was reduced (p = 0.01), and net uptakes of glucose (p = 0.07) and lactate (p = 0.06) tended to be lower after ranolazine in CAD patients and controls. Ranolazine had no direct influence on cardiac exchange of glutamate, alanine, and citrate or on the arterial concentration of any metabolite. In the present study ranolazine had minimal clinical effects. A decrease in myocardial FFA utilization, however, allows greater myocardial glucose oxidation, which may increase the energy production in relation to oxygen availability.

  9. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression

    International Nuclear Information System (INIS)

    Zhu Wei; Xu Jing; Ge Yangyang

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant and free radical scavenger that may have therapeutic applications for the treatment of many disorders. Radiation therapy is widely used for the treatment of various types of cancers; however, radiation-induced skin injury remains a serious concern. EGCG has not yet been reported as protecting skin cells against ionizing radiation. In the present study, we investigated whether EGCG confers cytoprotection against ionizing radiation. We found that, compared with the control, pretreatment with EGCG significantly enhanced the viability of human skin cells that were irradiated with X-rays, and decreased apoptosis induced by X-ray irradiation. Mito-Tracker assay showed that EGCG suppressed the damage to mitochondria induced by ionizing radiation via upregulation of SOD2. Reactive oxygen species (ROS) in HaCaT cells were significantly reduced when pretreated with EGCG before irradiation. Radiation-induced γH2AX foci, which are representative of DNA double-strand breaks, were decreased by pretreatment with EGCG. Furthermore, EGCG induced the expression of the cytoprotective molecule heme oxygenase-1 (HO-1) in a dose-dependent manner via transcriptional activation. HO-1 knockdown or treatment with the HO-1 inhibitor tin protoporphyrin (SnPPIX) reversed the protective role of EGCG, indicating an important role for HO-1. These results suggest that EGCG offers a new strategy for protecting skin against ionizing radiation. (author)

  10. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptions to hypoxia: A comparative approach

    DEFF Research Database (Denmark)

    Fago, Angela; B. Jensen, Frank; Tota, Bruno

    2012-01-01

    Hydrogen sulfide (H2S), nitric oxide (NO) and nitrite (NO2-) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular...... tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting...

  11. The role of nitrite in nitric oxide homeostasis

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulation...... mechanisms. Nitrite reduction to NO provides cytoprotection in tissues during ischemia-reperfusion events by inhibiting mitochondrial respiration and limiting reactive oxygen species. It is argued that the study of hypoxia-tolerant lower vertebrates and diving mammals may help evaluate mechanisms and a full...

  12. Nitric oxide metabolites during anoxia and reoxygenation in the anoxia-tolerant vertebrate Trachemys scripta

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Hansen, Marie Niemann; Montesanti, Gabriella

    2014-01-01

    this mechanism by up-regulating nitrite and other nitrite/NO metabolites (S-nitroso and iron-nitrosyl compounds) in several tissues when exposed to anoxia. We investigated whether this is a common strategy amongst anoxia-tolerant vertebrates by evaluating NO metabolites in red-eared slider turtles during long......-regulation of nitrite and other NO metabolites could be a general cytoprotective strategy amongst anoxia-tolerant vertebrates. The possible mechanisms of nitrite-derived NO and S-nitrosation in protecting cells from destructive Ca2+ influx during anoxia and in limiting ROS formation during reoxygenation are discussed....

  13. Cytoprotective responses in HaCaT keratinocytes exposed to high doses of curcumin

    NARCIS (Netherlands)

    Lundvig, D.M.S.; Pennings, S.W.C.; Brouwer, K.M.; Mtaya-Mlangwa, M.; Mugonzibwa, E.; Kuijpers-Jagtman, A.M.; Wagener, F.A.D.T.G.; Hoff, J.W. Von den

    2015-01-01

    Wound healing is a complex process that involves the well-coordinated interactions of different cell types. Topical application of high doses of curcumin, a plant-derived polyphenol, enhances both normal and diabetic cutaneous wound healing in rodents. For optimal tissue repair interactions between

  14. Conserved roles of C. elegans and human MANFs in sulfatide binding and cytoprotection

    Czech Academy of Sciences Publication Activity Database

    Bai, M.; Vozdek, R.; Hnízda, Aleš; Jiang, C.; Wang, B.; Kuchař, L.; Li, T.; Zhang, Y.; Wood, C.; Feng, L.; Dang, Y.; Ma, D. K.

    2018-01-01

    Roč. 9, Mar 1 (2018), č. článku 897. ISSN 2041-1723 R&D Projects: GA ČR GA15-06582S Institutional support: RVO:61388963 Keywords : unfolded protein response * neurotrophic factor MANF * Caenorhabditis elegans Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 12.124, year: 2016 https://www.nature.com/articles/s41467-018-03355-0

  15. Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection

    Directory of Open Access Journals (Sweden)

    Hossein Nahrevanian

    Full Text Available Nitric oxide (NO is thought to be an important mediator and critical signaling molecule for malaria immunopathology; it is also a target for therapy and for vaccine. Inducible nitric oxide synthase (iNOS is synthesized by a number of cell types under inflammatory conditions. The most relevant known triggers for its expression are endotoxins and cytokines. To date, there have been conflicting reports concerning the clinical significance of NO in malaria. Some researchers have proposed that NO contributes to the development of severe and complicated malaria, while others have argued that NO has a protective role. Infection with parasites resistant to the microbicidal action of NO may result in high levels of NO being generated, which could then damage the host, instead of controlling parasitemia. Consequently, the host-parasite interaction is a determining factor for whether the parasite is capable of stimulating NO production; the role of NO in resistance to malaria appears to be strain specific. It is known that NO and/or its related molecules are involved in malaria, but their involvement is not independent of other immune events. NO is an important, but possibly not an essential contributor to the control of acute-phase malaria infection. The protective immune responses against malaria parasite are multifactorial; however, they necessarily involve final effector molecules, including NO, iNOS and RNI.

  16. Cytoprotective effects of hydrogen sulfide in novel rat models of non-erosive esophagitis.

    Directory of Open Access Journals (Sweden)

    Oksana Zayachkivska

    Full Text Available Non-erosive esophagitis is a chronic inflammatory condition of the esophagus and is a form of gastroesophageal reflux disease. There are limited treatment options for non-erosive esophagitis, and it often progresses to Barrett's esophagus and esophageal carcinoma. Hydrogen sulfide has been demonstrated to be a critical mediator of gastric and intestinal mucosal protection and repair. However, roles for H2S in esophageal mucosal defence, inflammation and responses to injury have not been reported. We therefore examined the effects of endogenous and exogenous H2S in rat models of non-erosive esophagitis. Mild- and moderate-severity non-erosive esophagitis was induced in rats through supplementation of drinking water with fructose, plus or minus exposure to water-immersion stress. The effects of inhibitors of H2S synthesis or of an H2S donor on severity of esophagitis was then examined, along with changes in serum levels of a pro- and an anti-inflammatory cytokine (IL-17 and IL-10, respectively. Exposure to water-immersion stress after consumption of the fructose-supplemented water for 28 days resulted in submucosal esophageal edema and neutrophil infiltration and the development of lesions in the muscular lamina and basal cell hyperplasia. Inhibition of H2S synthesis resulted in significant exacerbation of inflammation and injury. Serum levels of IL-17 were significantly elevated, while serum IL-10 levels were reduced. Treatment with an H2S donor significantly reduced the severity of esophageal injury and inflammation and normalized the serum cytokine levels. The rat models used in this study provide novel tools for studying non-erosive esophagitis with a range of severity. H2S contributes significantly to mucosal defence in the esophagus, and H2S donors may have therapeutic value in treating esophageal inflammation and injury.

  17. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    Science.gov (United States)

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  18. Use of high-dose erythropoietin for repair after injury: A comparison of outcomes in heart and kidney.

    Science.gov (United States)

    Gobe, Glenda C; Morais, Christudas; Vesey, David A; Johnson, David W

    2013-07-01

    There is a need to define the exact benefits and contraindications of use of high-dose recombinant human erythropoietin (EPO) for its non-hematopoietic function as a cytokine that enhances tissue repair after injury. This review compares the outcomes from use of EPO in the injured heart and kidney, two organs that are thought, traditionally, to have intrinsically-different repair mechanisms. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Ongoing work by us on EPO protection of ischemia-reperfusion-injured kidneys indicated, first, that EPO acutely enhanced kidney repair via anti-apoptotic, pro-regenerative mechanisms, and second, that EPO may promote chronic fibrosis in the long term. Work by others on the ischaemia-injured heart has also indicated that EPO promotes repair. Although myocardial infarcts are made up mostly of necrotic tissue, many publications state EPO is anti-apoptotic in the heart, as well as promoting healing via cell differentiation and stimulation of granulation tissue. In the case of the heart, promotion of fibrosis may be advantageous where an infarct has destroyed a zone of cardiomyocytes, but if EPO stimulates progressive fibrosis in the heart, this may promote cardiac failure. A major concern in relation to the use of EPO in a cytoprotective role is its stimulation of long-term inflammation and fibrosis. EPO usage for cytoprotection is undoubtedly advantageous, but it may need to be offset with an anti-inflammatory agent in some organs, like kidney and heart, where progression to chronic fibrosis after acute injury is often recorded.

  19. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  20. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. Copyright © 2015. Published by Elsevier B.V.

  1. Biphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Naser Abbasi

    2016-03-01

    Full Text Available Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether a cytoprotective concentration range of luteolin could be separated from a cytotoxic concentration range in human MG-63 osteoblast-like cells in high-glucose condition. Methods: Cells were cultured in a normal- or high-glucose medium. Cell viability was determined with the MTT assay. The formation of intracellular reactive oxygen species (ROS was measured using probe 2’,7’ -dichlorofluorescein diacetate, and osteogenic differentiation was evaluated with an alkaline phosphatase bioassay. Results: ROS generation, reduction in alkaline phosphatase activity, and cell death induced by high glucose were inhibited by lower concentrations of luteolin (EC50, 1.29±0.23 µM. Oxidative stress mediated by high glucose was also overcome by N-acetyl-L-cysteine. At high concentrations, luteolin caused osteoblast cell death in normal- and high-glucose states (IC50, 34±2.33 and 27±2.42 µM, respectively, as represented by increased ROS and decreased alkaline phosphatase activity. Conclusion: Our results indicated that the cytoprotective action of luteolin in glucotoxic condition was manifested in much lower concentrations, by a factor of approximately 26 and 20, than was its cytotoxic activity, which occurred under normal or glucotoxic condition, respectively.

  2. δ-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    International Nuclear Information System (INIS)

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-01-01

    δ-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen 2,5 ]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G i/o proteins, because pre-treatment with pertussis toxin, but not over-expression of the G q/11 scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the Gβγ scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  3. Flavonoids from the leaves of Deguelia utilis (Leguminosae): structural elucidation and neuroprotective properties

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Dalglish G. de; Almeida, Cecilia M.C. de; Silva, Consuelo Y.Y. e; Arruda, Mara S.P.; Arruda, Alberto C.; Silva, Milton N. da, E-mail: yumilton@yahoo.com.br [Laboratorio de Cromatografia Liquida, Universidade Federal do Para, Guama, Belem-PA (Brazil); Lopes, Dielly C.F.; Yamada, Elizabeth S.; Costa, Edmar T. da; MFilho, Arnaldo Jorge [Laboratorio de Neuropatologia Experimental, Hospital Universitario Barros Barreto, Guama, Belem-PA (Brazil)

    2012-11-15

    Five new flavonoids, 5,3'-dihydroxy-4'-methoxy-2'',2''dimethylchromene-(5''6'':6,7)- dihydroflavonol (1), 5,3'-dihydroxy-7,4'-dimethoxy-6,8-dimethylallyl-dihydroflavonol (2), 5,3'-dihydroxy-4'-methoxy-8-allyl-2'',2''-dimethylchromene-(5'',6'':6,7) flavanone (3), 5,3'-dihydroxy-7,4'-dimethoxy-6,8-dimethylallyl-flavanone (4), 3,5,3'-trihydroxy-7,4'-dimethoxy- 6,8-dimethylallyl-flavanol (5), together with the stilbenes 4-methoxylonchocarpene (6) and lonchocarpene (7) were isolated from the leaves of Deguelia utilis. Their chemical structures were established on the basis of NMR (nuclear magnetic resonance) spectral data and HRESITOF-MS (electrospray ionization-high resolution time-of-flight mass spectrometry). Also, in order to investigate potential cytoprotective effects of these flavonoids, we used a fraction eluted with hexane:EtOAc containing all seven flavonoids, in an in vitro model of neurodegeneration, using hippocampal primary cultures from neonatal (PND2-P3) rats exposed to rotenone, a mitochondrial complex I inhibitor. There was a significant reduction in cell viability (19.4 {+-} 1.6%) when the cultures were exposed to 30 nmol L{sup -1}rotenone for 72 h. Concomitant exposure of the cultures to the FR3 (5 {mu}g mL{sup -1}) and 30 nmol L{sup -1} rotenone resulted in values of cell viability similar to control groups (99.6 {+-} 4.8%), strongly suggesting a cytoprotective effect for this flavonoid-rich fraction. (author)

  4. Flavonoids from the leaves of Deguelia utilis (Leguminosae): structural elucidation and neuroprotective properties

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Dalglish G. de; Almeida, Cecilia M.C. de; Silva, Consuelo Y.Y. e; Arruda, Mara S.P.; Arruda, Alberto C., E-mail: yumilton@yahoo.com.br [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Lab. de Cromatografia Liquida; Lopes, Dielly C.F.; Yamada, Elizabeth S.; Costa, Edmar T. da; Silva, Milton N. da [Hospital Universitario Barros Barreto, Belem, PA (Brazil). Lab. de Neuropatologia Experimental

    2012-10-15

    Five new flavonoids, 5,3'-dihydroxy-4'-methoxy-2{sup ,}2{sup -}dimethylchromene-(5''6''6,7)- dihydroflavonol (1), 5,3'-dihydroxy-7,4'-dimethoxy-6,8-dimethylallyl-dihydroflavonol (2), 5,3'-dihydroxy-4'-methoxy-8-allyl-2'', 2''-dimethylchromene-(5{sup ,}6{sup :}6,7) flavanone (3), 5,3'-dihydroxy-7,4'-dimethoxy-6,8-dimethylallyl-flavanone (4), 3,5,3'-trihydroxy-7,4'-dimethoxy- 6,8-dimethylallyl-flavanol (5), together with the stilbenes 4-methoxylonchocarpene (6) and lonchocarpene (7) were isolated from the leaves of Deguelia utilis. Their chemical structures were established on the basis of NMR (nuclear magnetic resonance) spectral data and HRESITOF-MS (electrospray ionization-high resolution time-of-flight mass spectrometry). Also, in order to investigate potential cytoprotective effects of these flavonoids, we used a fraction eluted with hexane:EtOAc containing all seven flavonoids, in an in vitro model of neurodegeneration, using hippocampal primary cultures from neonatal (PND2-P3) rats exposed to rotenone, a mitochondrial complex I inhibitor. There was a significant reduction in cell viability (19.4 {+-} 1.6%) when the cultures were exposed to 30 nmol L{sup -1} rotenone for 72 h. Concomitant exposure of the cultures to the FR3 (5 {mu}g mL{sup -1}) and 30 nmol L{sup -1} rotenone resulted in values of cell viability similar to control groups (99.6 {+-} 4.8%), strongly suggesting a cytoprotective effect for this flavonoid-rich fraction. (author)

  5. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  6. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  7. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    Science.gov (United States)

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  8. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling.

    Science.gov (United States)

    Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan

    2017-01-01

    The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?

    Science.gov (United States)

    Celli, Jean; Tsolis, Renée M

    2015-02-01

    The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.

  10. Trefoil factors in saliva and gingival tissues of patients with chronic periodontitis

    DEFF Research Database (Denmark)

    Chaiyarit, Ponlatham; Chayasadom, Anek; Wara-Aswapati, Nawarat

    2012-01-01

    BACKGROUND: Trefoil factors (TFFs) are secreted molecules that are involved in cytoprotection against tissue damage and the immune response. TFFs have been detected in saliva and oral tissues, but their clinical significance has never been investigated in patients with chronic periodontitis....... The objective of this study is to determine whether TFF expression in saliva and gingival tissues is associated with periodontal pathology. METHODS: Saliva and gingival tissue samples were collected from 25 non-periodontitis individuals and 25 patients with chronic periodontitis (CP). Enzyme...... observed in patients with CP (P = 0.003 and P periodontal pathology and number of Porphyromonas gingivalis...

  11. Metallothioneins are multipurpose neuroprotectants during brain pathology

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    Metallothioneins (MTs) constitute a family of cysteine-rich metalloproteins involved in cytoprotection during pathology. In mammals there are four isoforms (MT-I - IV), of which MT-I and -II (MT-I + II) are the best characterized MT proteins in the brain. Accumulating studies have demonstrated MT......-I overexpression demonstrated the importance of MT-I + II for coping with brain pathology. In addition, exogenous MT-I or MT-II injected intraperitoneally is able to promote similar effects as those of endogenous MT-I + II, which indicates that MT-I + II have both extra- and intracellular actions. In injured brain...

  12. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  13. Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates

    Directory of Open Access Journals (Sweden)

    Vladimir F. Lazarev

    2017-05-01

    Full Text Available The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.

  14. Evaluating the beneficial and detrimental effects of bile pigments in early and later life

    Directory of Open Access Journals (Sweden)

    Phyllis A. Dennery

    2012-06-01

    Full Text Available The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigment with important cellular functions. The impact of bile pigments on health and disease are reviewed as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronyltransferase gene (UGTA1, which is key to the elimination of excess bilirubin and to preventing its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted.

  15. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Dinesh, E-mail: dinesh.babu@ugent.be [Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University (Belgium); Leclercq, Georges [Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University (Belgium); Goossens, Vera; Remijsen, Quinten; Vandenabeele, Peter [Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent (Belgium); Motterlini, Roberto [Inserm U955, Equipe 12 and University Paris-Est Créteil, Faculty of Medicine, F-94000 Créteil (France); Lefebvre, Romain A. [Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University (Belgium)

    2015-10-15

    Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H{sub 2}O{sub 2}-, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrial superoxide anion (O{sub 2}·{sup −}) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψ{sub m}) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H{sub 2}O{sub 2}-mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O{sub 2}·{sup −} production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O{sub 2}·{sup −} levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on

  16. Cytoprotection with amifostine in the simultaneous radio-chemotherapy of recurrent head and neck cancer

    International Nuclear Information System (INIS)

    Buentzel, J.; Weinaug, R.; Kuettner, K.

    1999-01-01

    Purpose: The radiotherapeutic possibilities are limited for patients with a recurrent or second head and neck cancer if the patient was already irradiated in the first therapy. In the presented study we investigated the changes of this situation due to the usage of amifostine in the case of re-irradiation (simultaneous radio-chemotherapy). Patients and methods: Between 1995 and 1997 we treated 14 patients with a recurrent or second malignancy of the head and neck region by a simultaneous radio-chemotherapy (20x1.5 Gy, Carboplatin 70 mg/m 2 BSA on days 1 to 5 and 16 to 20, 500 mg amifostine prior to every carboplatin infusion). Six out of 14 patients got an additional brachytherapy (10 to 15 Gy) to increase the local dose because of a residual tumor. In 4 cases the treatment was an adjunctive one, following the surgical tumor debulking. Results: We have seen 3 complete remissions (21.4%), and 8 partial remissions (57.1%). The median time of observation in 13 months now. Three out of 14 patients died, 2 because of the tumor. Hematological toxicities: Side effects Grade 2 WHO were seen only in 1 patient. Acute non-hematological toxicities: Mucositis Grade 0/1 in 7 patients, mucositis Grade 2 in 7 patients, dysphagia Grade 0/1 in 9 patients, dysphagia Grade 2 in 5 patients, xerostomia Grade 1 in 9 patients, xerostomia Grade 2 in 3 patients. We registrated only 1 serious late toxicity due to radio-chemotherapy: 4 months after brachytherapy a patient (with laryngectomy) developed a submental fistula. Conclusion: These first results suggest that the usage of amifostine offers new potential ways for re-irradiation of patients with recurrent or second malignancies in the head neck region. (orig.) [de

  17. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube.

    Directory of Open Access Journals (Sweden)

    Masaki Horie

    Full Text Available Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2 transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction.

  18. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection.

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    Full Text Available Emerging strategies that center upon the mammalian target of rapamycin (mTOR signaling for neurodegenerative disorders may bring effective treatment for a number of difficult disease entities. Here we show that erythropoietin (EPO, a novel agent for nervous system disorders, prevents apoptotic SH-SY5Y cell injury in an oxidative stress model of oxygen-glucose deprivation through phosphatidylinositol-3-kinase (PI 3-K/protein kinase B (Akt dependent activation of mTOR signaling and phosphorylation of the downstream pathways of p70 ribosomal S6 kinase (p70S6K, eukaryotic initiation factor 4E-binding protein 1 (4EBP1, and proline rich Akt substrate 40 kDa (PRAS40. PRAS40 is an important regulatory component either alone or in conjunction with EPO signal transduction that can determine cell survival through apoptotic caspase 3 activation. EPO and the PI 3-K/Akt pathways control cell survival and mTOR activity through the inhibitory post-translational phosphorylation of PRAS40 that leads to subcellular binding of PRAS40 to the cytoplasmic docking protein 14-3-3. However, modulation and phosphorylation of PRAS40 is independent of other protective pathways of EPO that involve extracellular signal related kinase (ERK 1/2 and signal transducer and activator of transcription (STAT5. Our studies highlight EPO and PRAS40 signaling in the mTOR pathway as potential therapeutic strategies for development against degenerative disorders that lead to cell demise.

  19. Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions.

    Directory of Open Access Journals (Sweden)

    Hany H Arab

    Full Text Available Alcohol consumption has been commonly associated with gastric mucosal lesions including gastric ulcer. Diosmin (DIO is a natural citrus flavone with remarkable antioxidant and anti-inflammatory features that underlay its protection against cardiac, hepatic and renal injuries. However, its impact on gastric ulcer has not yet been elucidated. Thus, the current study aimed to investigate the potential protective effects of DIO against ethanol-induced gastric injury in rats. Pretreatment with DIO (100 mg/kg p.o. attenuated the severity of ethanol gastric mucosal damage as evidenced by lowering of ulcer index (UI scores, area of gastric lesions, histopathologic aberrations and leukocyte invasion. These actions were analogous to those exerted by the reference antiulcer sucralfate. DIO suppressed gastric inflammation by curbing of myeloperoxidase (MPO and tumor necrosis factor-α (TNF-α levels along with nuclear factor kappa B (NF-κB p65 expression. It also augmented the anti-inflammatory interleukin-10 (IL-10 levels. Meanwhile, DIO halted gastric oxidative stress via inhibition of lipid peroxides with concomitant enhancement of glutathione (GSH, glutathione peroxidase (GPx and the total antioxidant capacity (TAC. With respect to gastric mucosal apoptosis, DIO suppressed caspase-3 activity and cytochrome C (Cyt C with enhancement of the anti-apoptotic B cell lymphoma-2 (Bcl-2 in favor of cell survival. These favorable actions were associated with upregulation of the gastric cytoprotective prostaglandin E2 (PGE2 and nitric oxide (NO. Together, these findings accentuate the gastroprotective actions of DIO in ethanol gastric injury which were mediated via concerted multi-pronged actions, including suppression of gastric inflammation, oxidative stress and apoptosis besides boosting of the antioxidant and the cytoprotective defenses.

  20. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha 7/125I-alpha-bungarotoxin receptor subtypes.

    Science.gov (United States)

    de Fiebre, C M; Meyer, E M; Henry, J C; Muraskin, S I; Kem, W R; Papke, R L

    1995-01-01

    Investigation of the naturally occurring, nicotinic agonist anabaseine and novel derivatives has shown that these compounds have cytoprotective and memory-enhancing effects. The hypothesis that these arise at least in part through actions on brain nicotinic receptors was evaluated by examining the ability of these compounds to displace the binding of nicotinic ligands and to affect the function of the alpha 4 beta 2 and alpha 7 receptor subtypes expressed in Xenopus oocytes. The derivative 3-(4)-dimethylaminocinnamylidine anabaseine (DMAC) was found to be a selective alpha 7 receptor agonist; it was more potent than nicotine, acetylcholine, anabaseine, and other derivatives at activating the alpha 7 receptor subtype, while displaying little agonist activity at alpha 4 beta 2 and other receptor subtypes. Compared with anabaseine and the other derivatives, DMAC was the most potent at displacing 125I-alpha-bungarotoxin binding (putative alpha 7) and the least potent at displacing [3H]cytisine binding (putative alpha 4 beta 2) to brain membranes. Independently of agonist activities, all of the novel compounds displayed secondary inhibitory activity at both receptor subtypes. At the alpha 4 beta 2 receptor subtype, inhibition by the 3-(2,4)-dimethoxybenzylidene derivative was enhanced by coapplication of acetylcholine, suggesting a noncompetitive form of inhibition. Anabaseine and nicotine prolonged the time course of activation of alpha 4 beta 2 receptors, compared with acetylcholine, suggesting sequential channel-blocking activity. As selective agonists, anabaseine derivatives such as DMAC may be useful for elucidating the function of alpha 7 nicotinic receptors, including their potential role(s) in the cytoprotective and memory-enhancing effects of nicotinic agents.

  1. Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Stepniewski, Jacek; Pacholczak, Tomasz; Skrzypczyk, Aniela; Ciesla, Maciej; Szade, Agata; Szade, Krzysztof; Bidanel, Romain; Langrzyk, Agnieszka; Grochowski, Radoslaw; Vandermeeren, Felix; Kachamakova-Trojanowska, Neli; Jez, Mateusz; Drabik, Grazyna; Nakanishi, Mahito; Jozkowicz, Alicja; Dulak, Jozef

    2018-02-01

    Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1 -/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1 +/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1 +/+ and Hmox1 -/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2 +/+ and Nfe2l2 -/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  2. Rice bran protein hydrolysates attenuate diabetic nephropathy in diabetic animal model.

    Science.gov (United States)

    Boonloh, Kampeebhorn; Lee, Eun Soo; Kim, Hong Min; Kwon, Mi Hye; Kim, You Mi; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Lee, Eun Young; Kukongviriyapan, Veerapol; Chung, Choon Hee

    2018-03-01

    Diabetic nephropathy (DN) is an important microvascular complication of uncontrolled diabetes. The features of DN include albuminuria, extracellular matrix alterations, and progressive renal insufficiency. Rice bran protein hydrolysates (RBPs) have been reported to have antihyperglycemic, lipid-lowering, and anti-inflammatory effects in diabetic rats. Our study was to investigate the renoprotective effects of RBP in diabetic animals and mesangial cultured cells. Eight-week-old male db/m and db/db mice were orally treated with tap water or RBP (100 or 500 mg/kg/day) for 8 weeks. At the end of the experiment, diabetic nephropathy in kidney tissues was investigated for histological, ultrastructural, and clinical chemistry changes, and biomarkers of angiogenesis, fibrosis, inflammation, and antioxidant in kidney were analyzed by Western blotting. Protection against proangiogenic proteins and induction of cytoprotection by RBP in cultured mesangial cells was evaluated. RBP treatment improved insulin sensitivity, decreased elevated fasting serum glucose levels, and improved serum lipid levels and urinary albumin/creatinine ratios in diabetic mice. RBP ameliorated the decreases in podocyte slit pore numbers, thickening of glomerular basement membranes, and mesangial matrix expansion and suppressed elevation of MCP-1, ICAM-1, HIF-1α, VEGF, TGF-β, p-Smad2/3, and type IV collagen expression. Moreover, RBP restored suppressed antioxidant Nrf2 and HO-1 expression. In cultured mesangial cells, RBP inhibited high glucose-induced angiogenic protein expression and induced the expression of Nrf2 and HO-1. RBP attenuates the progression of diabetic nephropathy and restored renal function by suppressing the expression of proangiogenic and profibrotic proteins, inhibiting proinflammatory mediators, and restoring the antioxidant and cytoprotective system.

  3. Plant-parasitic nematodes: towards understanding molecular players in stress responses.

    Science.gov (United States)

    Gillet, François-Xavier; Bournaud, Caroline; Antonino de Souza Júnior, Jose Dijair; Grossi-de-Sa, Maria Fatima

    2017-03-01

    Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Mitochondrial BK Channel Openers CGS7181 and CGS7184 Exhibit Cytotoxic Properties

    Directory of Open Access Journals (Sweden)

    Bartłomiej Augustynek

    2018-01-01

    Full Text Available Potassium channel openers (KCOs have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases. The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.

  5. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Kanikkai Raja Aseer

    Full Text Available Secreted protein acidic and rich in cysteine (SPARC is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ and its targets (TNFα, Il6, CRP, and Fn1 as well as myeloperoxidase (Mpo and C-X-C chemokine receptor type 2 (Cxcr2. Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels.

  6. A systematic review on potential mechanisms of minocycline in kidney diseases.

    Science.gov (United States)

    Haghi-Aminjan, Hamed; Asghari, Mohammad Hossein; Goharbari, Mohammad Hadi; Abdollahi, Mohammad

    2017-08-01

    Kidney diseases need specialized health care and still are a reason of death. There is a large body of evidence that indicates minocycline possesses some cytoprotective effects beside of antibacterial properties. In this review, we aimed to explain cytoprotective mechanisms and kidney protection of minocycline. In order to find the effects of minocycline on kidney diseases a systematic literature search was performed, according to the guidelines proposed at the PRISMA statement in the electronic databases, including: PubMed, Scopus, and Web of Science up to August 2016, using the term 'minocycline' combined either by 'kidney' or 'renal' and published in English language. The following criteria were included: (1) studies that used minocycline in renal diseases; (2) full-text articles; (3) English language; (4) no limitation in publications with in-vivo or in-vitro and human or animal subjects. Our search provided a total of 1056 articles which 1045 of them were discarded due to not meeting the inclusion criteria. It has been clear that several factors, including apoptosis, oxidative stress, mitochondrial dysfunction and inflammation have pivotal roles in the development and progression of kidney diseases. Minocycline protective properties are via several ways, including anti-apoptotic, free radical scavenging, anti-inflammatory, effect on mitochondrial functions and inhibition of matrix metalloproteinase. This systematic review confirmed that minocycline could have significant effects on treatment of renal malfunctions. However, regarding any possible adverse effects of antibiotics, it appears that more investigation is still needed in this context. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Thonel, Aurelie de [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); Mezger, Valerie, E-mail: valerie.mezger@univ-paris-diderot.fr [CNRS, UMR7216 Epigenetics and Cell Fate, Paris (France); University Paris Diderot, 75013 Paris (France); Garrido, Carmen, E-mail: valerie.mezger@univ-paris-diderot.fr [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); CHU, Dijon BP1542, Dijon (France)

    2011-03-07

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  8. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene.

    Science.gov (United States)

    Melo, Luis G; Agrawal, Reitu; Zhang, Lunan; Rezvani, Mojgan; Mangi, Abeel A; Ehsan, Afshin; Griese, Daniel P; Dell'Acqua, Giorgio; Mann, Michael J; Oyama, Junichi; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A; Dzau, Victor J

    2002-02-05

    Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.

  9. Mechanisms Underlying Testicular Damage and Dysfunction in Mice With Partial IGF-1 Deficiency and the Effectiveness of IGF-1 Replacement Therapy.

    Science.gov (United States)

    Castilla-Cortázar, Inma; Gago, Alberto; Muñoz, Úrsula; Ávila-Gallego, Elena; Guerra-Menéndez, Lucía; Sádaba, María Cruz; García-Magariño, Mariano; Olleros Santos-Ruiz, María; Aguirre, G A; Puche, Juan Enrique

    2015-12-01

    To determine whether insulin-like growth factor (IGF-1) deficiency can cause testicular damage and to examine changes of the testicular morphology and testicular function-related gene expression caused by IGF-1 deficiency. Therefore, this study aims to determine the benefits of low doses of IGF-1 and to explore the mechanisms underlying the IGF-1 replacement therapy. A murine model of IGF-1 deficiency was used to avoid any factor that could contribute to testicular damage. Testicular weight, score of histopathological damage, and gene expressions were studied in 3 experimental groups of mice: controls (wild-type Igf1(+/+)), heterozygous Igf1(+/-) with partial IGF-1 deficiency, and heterozygous Igf1(+/-) treated with IGF-1. Results show that the partial IGF-1 deficiency induced testicular damage and altered expression of genes involved in IGF-1 and growth hormone signaling and regulation, testicular hormonal function, extracellular matrix establishment and its regulation, angiogenesis, fibrogenesis, inflammation, and cytoprotection. In addition, proteins involved in tight junction expression were found to be reduced. However, low doses of IGF-1 restored the testicular damage and most of these parameters. IGF-1 deficiency caused the damage of the blood-testis barrier and testicular structure and induced the abnormal testicular function-related gene expressions. However, low doses of IGF-1 constitute an effective replacement therapy that restores the described testicular damage. Data herein show that (1) cytoprotective activities of IGF-1 seem to be mediated by heat shock proteins and that (2) connective tissue growth factor could play a relevant role together with IGF-1 in the extracellular matrix establishment. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    International Nuclear Information System (INIS)

    Thonel, Aurelie de; Mezger, Valerie; Garrido, Carmen

    2011-01-01

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents

  11. The effects of ebselen on cisplatin and diethyldithiocarbamate (DDC) cytotoxicity in rat hippocampal astrocytes.

    Science.gov (United States)

    Hardej, D; Trombetta, L D

    2002-05-28

    Ebselen is a seleno-organic compound with documented cytoprotective properties. Little work has been done, however, demonstrating ebselen's cytoprotective properties in neural cell lines. In order to examine the effects of this compound and its mechanism of action, astrocytes were exposed to two known neurotoxicants, cisplatin and diethyldithiocarbamate (DDC). Cells were pretreated with 30 microM ebselen and subsequently treated with either 150 microM DDC for 1 h or 250 and 500 microM cisplatin for 24 h. Results indicate significant increases in viability in cells pretreated with ebselen and exposed to cisplatin. Ebselen pretreatment did not significantly increase viability in cells exposed to DDC. Light and scanning electron microscopy studies confirm the viability studies. Gross morphological damage was seen in cells treated with cisplatin, however, cells pretreated with ebselen and then exposed to cisplatin, appeared similar to controls. No differences were noted in cells pretreated with ebselen and then exposed to DDC or cells treated with DDC alone. In order to examine the mechanism of protection of this compound, glutathione status was examined. Results show that ebselen does not significantly increase reduced or oxidized glutathione (GSH, GSSG). All cell groups treated with cisplatin showed an increase in GSH levels. Ebselen showed protection in glutathione depleted cells at the 250 microM cisplatin dose. DDC treatment showed no significant increase in either reduced or oxidized glutathione. We conclude that ebselen significantly protects against cisplatin, but not DDC toxicity. We further conclude that this protection is not related to changes in glutathione status in the rat hippocampal cell line as has been reported in other cell types.

  12. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  13. Changes in haemogram of pulmonary TB patients during positive clinical and radiology improvement

    Directory of Open Access Journals (Sweden)

    N. A. Matsegora

    2016-01-01

    In the haemogram of patients with infiltrative tuberculosis, there was a greater severity of inflammation events, and in disseminated form – of allergic and autoimmune processes. In favourable cases, quantity and quality of blood cells become normal, reflecting the cessation of bacterial excretion, toxicity, and discussion of foci and areas of infiltration. Allergenic or toxic effects of different antibacterial medicines on haematopoiesis cannot be excluded. They often caused eosinophilia, in some cases - leukocytosis, band left shift, lymphocytosis, rarely leukopenia, which may stimulate the lymphoid and reticular reaction. The results indicate the feasibility to add TB chemotherapy with cytoprotective medicines. Key words: haemogram of patients with tuberculosis.

  14. Active compounds from cyanobacteria and microalgae: properties and potential applications in biomedicine

    Directory of Open Access Journals (Sweden)

    Alexey Llopiz

    2016-05-01

    Full Text Available Cyanobacteria and microalgae are source of many chemicals substances with potential applications on biopharmaceutical industry. Many structures have been characterized in these organism, such as: peptides, proteins, carbohydrates, terpenoids, polyinsatured fatty acids, flavonoids, phenolic compounds, vitamins, porfirins and other organic substances. Chemicals structures of isolated compounds are diverse and it depends of microalgae habitats. Pharmacological activities located in microalgae are bactericides, immunomodulatory, antioxidants, cytoprotective, fungicides and antivirals. These properties may possible the potential treatment of many diseases including autoimmunes disorders, tumoral, and infectious process. In this review are presented and discussed some elements associated to chemical structure and biological activities around of compounds with potential uses as biopharmaceuticals.

  15. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  16. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example

  17. Metabolic and cytoprotective effects of in vivo peri-patellar hyaluronic acid injections in cultured tenocytes.

    Science.gov (United States)

    Salamanna, F; Frizziero, A; Pagani, S; Giavaresi, G; Curzi, D; Falcieri, E; Marini, M; Abruzzo, P M; Martini, L; Fini, M

    2015-02-01

    The purpose of this study was to investigate tenocyte mechanobiology after sudden-detraining and to examine the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained patellar tendon (PT) may reduce and limit detrained-associated damage in tenocytes. Twenty-four male Sprague-Dawley rats were divided into three groups: Untrained, Trained and Detrained. In the Detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl). Tenocyte morphology, metabolism and synthesis of C-terminal-propeptide of type I collagen, collagen-III, fibronectin, aggrecan, tenascin-c, interleukin-1β, matrix-metalloproteinase-1 and-3 were evaluated after 1, 3, 7 and 10 days of culture. Transmission-electronic-microscopy showed a significant increase in mitochondria and rough endoplasmic reticulum in cultured tenocytes from Detrained-HA with respect to those from Detrained-NaCl. Additionally, Detrained-HA cultures showed a significantly higher proliferation rate and viability, and increased synthesis of C-terminal-Propeptide of type I collagen, fibronectin, aggrecan, tenascin-c and matrix-metalloproteinase-3 with respect to Detrained-NaCl ones, whereas synthesis of matrix-metalloproteinase-1 and interleukin-1β was decreased. Our study demonstrates that discontinuing training activity in the short-term alters tenocyte synthetic and metabolic activity and that repeated peri-patellar infiltrations of HA during detraining allow the maintenance of tenocyte anabolic activity.

  18. Insulin-secretagogue activity and cytoprotective role of the traditional antidiabetic plant Scoparia dulcis (Sweet Broomweed).

    Science.gov (United States)

    Latha, Muniappan; Pari, Leelavinothan; Sitasawad, Sandhya; Bhonde, Ramesh

    2004-09-03

    Scoparia dulcis (Sweet Broomweed) has been documented as a traditional treatment of diabetes. The administration of an aqueous extract of Scoparia dulcis at a dose of 200 mg/kg body weight significantly decreased the blood glucose with significant increase in plasma insulin level in streptozotocin diabetic rats at the end of 15 days treatment. The insulin secretagogue action of Scoparia dulcis plant extract (SPEt) was further investigated using isolated pancreatic islets from mice. SPEt at a dose of 10 microg/ml evoked 6.0 fold stimulation of insulin secretion from isolated islets indicating its insulin secretagogue activity. In addition the effect of SPEt on streptozotocin induced cell death and nitric oxide (NO) in terms of nitrite production were also examined. SPEt protected against streptozotocin- mediated cytotoxicity (88%) and NO production in rat insulinoma cell line (RINm5F). Above results suggest the glucose lowering effect of SPEt to be associated with potentiation of insulin release from pancreatic islets. Our results revealed the possible therapeutic value of Scoparia dulcis for the better control, management and prevention of diabetes mellitus progression.

  19. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice

    International Nuclear Information System (INIS)

    Dinkova-Kostova, Albena T.; Jenkins, Stephanie N.; Wehage, Scott L.; Huso, David L.; Benedict, Andrea L.; Stephenson, Katherine K.; Fahey, Jed W.; Liu Hua; Liby, Karen T.; Honda, Tadashi; Gribble, Gordon W.; Sporn, Michael B.; Talalay, Paul

    2008-01-01

    Inducible phase 2 enzymes constitute a primary line of cellular defense. The oleanane dicyanotriterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile (TP-225) is a very potent inducer of these systems. Topical application of TP-225 to SKH-1 hairless mice increases the levels of NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) and protects against UV radiation-induced dermal thickening. Daily topical treatments of 10 nmol of TP-225 to the backs of mice that were previously subjected to low-level chronic UVB radiation (30 mJ/cm 2 /session, twice a week for 17 weeks), led to 50% reduction in multiplicity of skin tumors. In addition, the total tumor burden of squamous cell carcinomas was reduced by 5.5-fold. The identification of new agents for protection against UV radiation-induced skin cancer and understanding of their mechanism(s) of action is especially important in view of the fact that human skin cancers represent a significant source of increasing morbidity and mortality

  20. Curcumin induces differential expression of cytoprotective enzymes but similar apoptotic responses in fibroblasts and myofibroblasts

    NARCIS (Netherlands)

    Lundvig, D.M.S.; Pennings, S.W.C.; Brouwer, K.M.; Mtaya-Mlangwa, M.; Mugonzibwa, E.A.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den; Wagener, F.A.D.T.G.

    2015-01-01

    Excessive extracellular matrix (ECM) deposition and tissue contraction after injury can lead to esthetic and functional problems. Fibroblasts and myofibroblasts activated by transforming growth factor (TGF)-beta1 play a key role in these processes. The persistence of (myo)fibroblasts and their

  1. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    International Nuclear Information System (INIS)

    Guo, Shiguang; Mao, Li; Ji, Feng; Wang, Shouguo; Xie, Yue; Fei, Haodong; Wang, Xiao-dong

    2016-01-01

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  2. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin

    Science.gov (United States)

    Mohamed, Elham Abdelmonem; Abu Hashim, Irhan Ibrahim; Yusif, Rehab Mohammad; Shaaban, Ahmed Abdel Aziz; El-Sheakh, Ahmed Ramadan; Hamed, Mohammed Fawzy; Badria, Farid Abd Elreheem

    2018-01-01

    Naringin is one of the most interesting phytopharmaceuticals that has been widely investigated for various biological actions. Yet, its low water solubility, limited permeability, and suboptimal bioavailability limited its use. Therefore, in this study, polymeric micelles of naringin based on pluronic F68 (PF68) were developed, fully characterized, and optimized. The optimized formula was investigated regarding in vitro release, storage stability, and in vitro cytotoxicity vs different cell lines. Also, cytoprotection against ethanol-induced ulcer in rats and antitumor activity against Ehrlich ascites carcinoma in mice were investigated. Nanoscopic and nearly spherical 1:50 micelles with the mean diameter of 74.80±6.56 nm and narrow size distribution were obtained. These micelles showed the highest entrapment efficiency (EE%; 96.14±2.29). The micelles exhibited prolonged release up to 48 vs 10 h for free naringin. The stability of micelles was confirmed by insignificant changes in drug entrapment, particle size, and retention (%) (91.99±3.24). At lower dose than free naringin, effective cytoprotection of 1:50 micelles against ethanol-induced ulcer in rat model has been indicated by significant reduction in mucosal damage, gastric level of malondialdehyde, gastric expression of tumor necrosis factor-alpha, caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, and interleukin-6 with the elevation of gastric reduced glutathione and superoxide dismutase when compared with the positive control group. As well, these micelles provoked pronounced antitumor activity assessed by potentiated in vitro cytotoxicity particularly against colorectal carcinoma cells and tumor growth inhibition when compared with free naringin. In conclusion, 1:50 naringin–PF68 micelles can be represented as a potential stable nanodrug delivery system with prolonged release and enhanced antiulcer as well as antitumor activities. PMID:29497294

  3. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    International Nuclear Information System (INIS)

    Huang, Chien-Sheng; Kawamura, Tomohiro; Peng, Ximei; Tochigi, Naobumi; Shigemura, Norihisa; Billiar, Timothy R.; Nakao, Atsunori; Toyoda, Yoshiya

    2011-01-01

    Highlights: → Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. → There is very limited information on the pathways regulated in vivo by the hydrogen. → Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. → NFκB activation during hydrogen treatment was correlated with elevated antiapoptotic protein. → NFκB activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1 h of ventilation and decreased NFκB DNA binding after 2 h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway

  4. A phase II randomized study of topical intrarectal administration of amifostine for the prevention of acute radiation-induced rectal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kouloulias, V.E. [Dept. of Radiation Oncology, Aretaieion Univ. Hospital, Univ. of Athens Medical School, Athens (Greece); Dept. of Electrical and Computer Engineering, National Technical Univ. of Athens, Athens (Greece); Center of Radiation Oncology, YGEIA Diagnostic and Therapeutic Center of Athens, Athens (Greece); Kouvaris, J.R.; Kokakis, J.D.; Antypas, C.; Mallas, E.; Vosdoganis, S.P.; Vlahos, L.J. [Dept. of Radiation Oncology, Aretaieion Univ. Hospital, Univ. of Athens Medical School, Athens (Greece); Pissakas, G. [Radiotherapy Dept., Agios Savvas Anticancer Hospital, Athens (Greece); Matsopoulos, G. [Dept. of Electrical and Computer Engineering, National Technical Univ. of Athens, Athens (Greece); Michopoulos, S. [Gastroenterology Unit, Alexandra General Hospital, Athens (Greece); Kostakopoulos, A. [Urology Dept., Sismanoglio Hospital, Univ. of Athens Medical School, Athens (Greece)

    2004-09-01

    Purpose: to investigate the cytoprotective effect of intrarectal amifostine administration on acute radiation-induced rectal toxicity. Patients and methods: 67 patients with T1b-2 NO MO prostate cancer were randomized to receive amifostine intrarectally (group A, n - 33) or not (group B, n = 34) before irradiation. Therapy was delivered using a four-field technique with three-dimensional conformal planning. In group A, 1,500 mg amifostine was administered intrarectally as an aqueous solution in a 40-ml enema. Two different toxicity scales were used: EORTC/RTOG rectal and urologic toxicity criteria along with a Subjective-RectoSigmoid (S-RS) scale based on the endoscopic terminology of the World Organization for Digestive Endoscopy. Objective measurements with rectosigmoidoscopy were performed at baseline and 1-2 days after the completion of radiotherapy. The area under curve for the time course of mucositis (RTOG criteria) during irradiation represented the mucositis index (MI). Results: intrarectal amifostine was feasible and well tolerated without any systemic or local side effects. According to the RTOG toxicity scale, five out of 33 patients showed grade 1 mucositis in group A versus 15 out of 34 patients with grade 1/2 in group B (p = 0.026). Mean rectal MI was 0.3 {+-} 0.1 in group A versus 2.2 {+-} 0.4 in group B (p < 0.001), while S-RS score was 3.9 {+-} 0.5 in group A versus 6.3 {+-} 0.7 in group B (p < 0.001). The incidence of urinary toxicity was the same in both groups. Conclusion: intrarectal administration of amifostine seems to have a cytoprotective efficacy in acute radiation-induced rectal mucositis. Further randomized studies are needed for definitive therapeutic decisions. (orig.)

  5. Amifostine as radioprotective agent for the rectal mucosa during irradiation of pelvic tumors. A phase II randomized study using various toxicity scales and rectosigmoidoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kouvaris, J.; Antypas, C.; Kokakis, J.; Vlahos, L. [Radiology-Radiotherapy Dept., National Technical Univ. of Athens (Greece); Kouloulias, V. [Radiology-Radiotherapy Dept., National Technical Univ. of Athens (Greece); Dept. of Electrical and Computer Engineering, Inst. of Communication and Computer Systems, National Technical Univ. of Athens (Greece); Malas, E. [Endoscopy-Gastroenterology Unit, Dept. of Surgical Oncology, Aretaieion Univ. Hospital, Athens (Greece); Michopoulos, S. [Dept. of Gastroenterology, Alexandra General Hospital of Athens (Greece); Matsopoulos, G. [Dept. of Electrical and Computer Engineering, Inst. of Communication and Computer Systems, National Technical Univ. of Athens (Greece)

    2003-03-01

    Aim: To evaluate the cytoprotective effect of amifostine against radiation-induced acute toxicity to the rectal mucosa. Patients and Methods: 36 patients irradiated for prostate or gynecologic cancer were randomized to receive amifostine (n = 18, group A) or not (n = 18, group B). The radiation-induced acute rectal toxicity was evaluated by using three different toxicity scales: WHO scale, EORTC/RTOG toxicity criteria, and a modified toxicity scale based on the LENT-SOMA grading scale and the endoscopic terminology of the World Organization for Digestive Endoscopy. The objective measurements were coming from flexible rectosigmoidoscopy performed at baseline and 1-2 days after completion of the radiotherapy schedule. Anterior-posterior fields were used in the gynecologic patients while 3-D conformal 4-field technique was applied in the prostate cancer patients. The area under the curve (AUC) for dose-volume histograms (DVHs) of the rectum was also assessed during a 3-D treatment planning schedule, and no significant differences were assessed between the two groups, indicating a homogeneous dose-volume effect. Results: Amifostine was well tolerated. No grade 2 or higher WHO and EORTC/RTOG acute toxicity was noted in group A, while acute rectal toxicity ({>=} grade 1) was observed in 16/18 patients of group B versus 2/18 of group A (p < 0.001). The onset as well as the duration of acute rectal toxicity were significantly improved in group A (p = 0.002). Rectosigmoidoscopy revealed more severe rectal mucositis in noncytoprotected patients (group B), and modified LENT-SOMA overall mucositis grading score was significantly lower in group A (p = 0.003). Conclusion: Amifostine seems to have a significant cytoprotective efficacy in acute radiation-induced rectal mucositis in terms of symptomatic and objective endpoints. (orig.)

  6. Human DPP III – Keap1 Interactions: A Combined Experimental And Computational study

    Directory of Open Access Journals (Sweden)

    Mario Gundić

    2016-06-01

    Full Text Available Kelch-like ECH associated protein 1 (Keap1 is a cellular sensor for oxidative stress and a negative regulator of the transcription factor Nrf2. Keap1 and Nrf2 control expression of nearly 500 genes with diverse cytoprotective functions and the Nrf2-Keap1 signaling pathway is a major regulator of cytoprotective responses to oxidative and electrophilic stress. It was found that the metallopeptidase dipeptidyl peptidase III (DPP III contributes to Nrf2 activation by binding to Keap1, probably by binding to the Kelch domain, and thereby influences Nrf2 activity in cancer. We here first determined that the KD of the DPP III-Kelch domain complex is in the submicromolar range. In order to elucidate the molecular details of the DPP III – Kelch interaction we then built models of the complex between human DPP III and the Keap1 Kelch domain and performed coarse-grained and atomistic simulations of the complexes. In the most stable complexes, the ETGE motif in the DPP III flexible loop binds near the central pore of the six-blade β-propeller Kelch domain. According to the preliminary HD exchange experiments DPP III binds to the more unstructured end of Kelch domain. According to the results of MD simulations DPP III binding to the Kelch domain does not influence the overall DPP III structure or the long-range domain fluctuations. We can conclude that DPP III forms the stable complexes with the Keap1 Kelch domain by inserting the flexible loop into the entrance to the central pore of the six blade β-propeller Kelch domain at its more unstructured, N-terminus. This work is licensed under a Creative Commons Attribution 4.0 International License.

  7. Protective effect of the poly(ADP-ribose polymerase inhibitor PJ34 on mitochondrial depolarization-mediated cell death in hepatocellular carcinoma cells involves attenuation of c-Jun N-terminal kinase-2 and protein kinase B/Akt activation

    Directory of Open Access Journals (Sweden)

    Radnai Balazs

    2012-05-01

    Full Text Available Abstract Background 2,4-Dimethoxyphenyl-E-4-arylidene-3-isochromanone (IK11 was previously described to induce apoptotic death of A431 tumor cells. In this report, we investigated the molecular action of IK11 in the HepG2 human hepatocellular carcinoma cell line to increase our knowledge of the role of poly (ADP-ribose-polymerase (PARP, protein kinase B/Akt and mitogen activated protein kinase (MAPK activation in the survival and death of tumor cells and to highlight the possible role of PARP-inhibitors in co-treatments with different cytotoxic agents in cancer therapy. Results We found that sublethal concentrations of IK11 prevented proliferation, migration and entry of the cells into their G2 phase. At higher concentrations, IK11 induced reactive oxygen species (ROS production, mitochondrial membrane depolarization, activation of c-Jun N-terminal kinase 2 (JNK2, and substantial loss of HepG2 cells. ROS production appeared marginal in mediating the cytotoxicity of IK11 since N-acetyl cysteine was unable to prevent it. However, the PARP inhibitor PJ34, although not a ROS scavenger, strongly inhibited both IK11-induced ROS production and cell death. JNK2 activation seemed to be a major mediator of the effect of IK11 since inhibition of JNK resulted in a substantial cytoprotection while inhibitors of the other kinases failed to do so. Inhibition of Akt slightly diminished the effect of IK11, while the JNK and Akt inhibitor and ROS scavenger trans-resveratrol completely protected against it. Conclusions These results indicate significant involvement of PARP, a marginal role of ROS and a pro-apoptotic role of Akt in this system, and raise attention to a novel mechanism that should be considered when cancer therapy is augmented with PARP-inhibition, namely the cytoprotection by inhibition of JNK2.

  8. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  9. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease.

    Science.gov (United States)

    Liby, Karen T; Sporn, Michael B

    2012-10-01

    We review the rationale for the use of synthetic oleanane triterpenoids (SOs) for prevention and treatment of disease, as well as extensive biological data on this topic resulting from both cell culture and in vivo studies. Emphasis is placed on understanding mechanisms of action. SOs are noncytotoxic drugs with an excellent safety profile. Several hundred SOs have now been synthesized and in vitro have been shown to: 1) suppress inflammation and oxidative stress and therefore be cytoprotective, especially at low nanomolar doses, 2) induce differentiation, and 3) block cell proliferation and induce apoptosis at higher micromolar doses. Animal data on the use of SOs in neurodegenerative diseases and in diseases of the eye, lung, cardiovascular system, liver, gastrointestinal tract, and kidney, as well as in cancer and in metabolic and inflammatory/autoimmune disorders, are reviewed. The importance of the cytoprotective Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1/nuclear factor (erythroid-derived 2)-like 2/antioxidant response element (Keap1/Nrf2/ARE) pathway as a mechanism of action is explained, but interactions with peroxisome proliferator-activated receptor γ (PARPγ), inhibitor of nuclear factor-κB kinase complex (IKK), janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT), human epidermal growth factor receptor 2 (HER2)/ErbB2/neu, phosphatase and tensin homolog (PTEN), the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, mammalian target of rapamycin (mTOR), and the thiol proteome are also described. In these interactions, Michael addition of SOs to reactive cysteine residues in specific molecular targets triggers biological activity. Ultimately, SOs are multifunctional drugs that regulate the activity of entire networks. Recent progress in the earliest clinical trials with 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) methyl ester (bardoxolone methyl) is also

  10. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Amifostine as radioprotective agent for the rectal mucosa during irradiation of pelvic tumors. A phase II randomized study using various toxicity scales and rectosigmoidoscopy

    International Nuclear Information System (INIS)

    Kouvaris, J.; Antypas, C.; Kokakis, J.; Vlahos, L.; Kouloulias, V.; Malas, E.; Michopoulos, S.; Matsopoulos, G.

    2003-01-01

    Aim: To evaluate the cytoprotective effect of amifostine against radiation-induced acute toxicity to the rectal mucosa. Patients and Methods: 36 patients irradiated for prostate or gynecologic cancer were randomized to receive amifostine (n = 18, group A) or not (n = 18, group B). The radiation-induced acute rectal toxicity was evaluated by using three different toxicity scales: WHO scale, EORTC/RTOG toxicity criteria, and a modified toxicity scale based on the LENT-SOMA grading scale and the endoscopic terminology of the World Organization for Digestive Endoscopy. The objective measurements were coming from flexible rectosigmoidoscopy performed at baseline and 1-2 days after completion of the radiotherapy schedule. Anterior-posterior fields were used in the gynecologic patients while 3-D conformal 4-field technique was applied in the prostate cancer patients. The area under the curve (AUC) for dose-volume histograms (DVHs) of the rectum was also assessed during a 3-D treatment planning schedule, and no significant differences were assessed between the two groups, indicating a homogeneous dose-volume effect. Results: Amifostine was well tolerated. No grade 2 or higher WHO and EORTC/RTOG acute toxicity was noted in group A, while acute rectal toxicity (≥ grade 1) was observed in 16/18 patients of group B versus 2/18 of group A (p < 0.001). The onset as well as the duration of acute rectal toxicity were significantly improved in group A (p = 0.002). Rectosigmoidoscopy revealed more severe rectal mucositis in noncytoprotected patients (group B), and modified LENT-SOMA overall mucositis grading score was significantly lower in group A (p = 0.003). Conclusion: Amifostine seems to have a significant cytoprotective efficacy in acute radiation-induced rectal mucositis in terms of symptomatic and objective endpoints. (orig.)

  12. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Qin, Meng; Ye, Jing-xue; Pan, Rui-le; Meng, Xiang-bao; Wang, Min; Luo, Yun; Li, Zong-yang; Wang, Hong-wei; Sun, Xiao-bo

    2013-01-01

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H 2 O 2 )-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H 2 O 2 -induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H 2 O 2 -induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H 2 O 2 induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up regulates eNOS activity in HUVECs.

  13. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  14. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  15. Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A prevented Helicobacter pylori-initiated, salt diet-promoted gastric tumorigenesis.

    Science.gov (United States)

    Park, Jong-Min; Park, Sang-Ho; Hong, Kyung-Sook; Han, Young-Min; Jang, Sang-Ho; Kim, Eun-Hee; Hahm, Ki-Baik

    2014-06-01

    In spite of cytoprotective and anti-inflammatory actions, conventional licorice extracts (c-lico) were limitedly used due to serious side effects of glycyrrhizin. As our group had successfully isolated special licorice extracts (s-lico) lowering troublesome glycyrrhizin, but increasing licochalcone A, we have compared anti-inflammatory, antioxidative, and cytoprotective actions of s-lico and c-lico against either in vitro or in vivo Helicobacter pylori infection. RT-PCR and Western blot were performed to check anti-inflammatory action and electron spin resonance (ESR) and DCFDA spectroscopy to check antioxidative action. s-lico or c-lico was pretreated 1 hours before H. pylori infection on AGS cells. Interleukin-10 deficient mice inoculated H. pylori and followed with high salt containing pallet diets to produce H. pylori-associated chronic atrophic gastritis and gastric tumors, during which s-lico or c-lico-containing pellet diets were administered up to 24 weeks. s-lico had fabulous efficacy on scavenging ROS which was further confirmed by DCFDA study and ESR measurement. The expressions of COX-2, iNOS, VEGF, and IL-8 were increased after H. pylori infection, of which levels were significantly decreased with s-lico in a dose-dependent manner. s-lico significantly ameliorated hypoxia-induced or H. pylori-induced angiogenic activities. s-lico significantly ameliorated H. pylori-induced gastric damages as well as gastritis. Our animal model showed significant development of gastric tumors including adenoma and dysplasia relevant to H. pylori infection, and s-lico administration significantly attenuated incidence of H. pylori-induced gastric tumorigenesis. Special licorice extracts can be anticipating substance afforded significant attenuation of either H. pylori-induced gastritis or tumorigenesis based on potent antioxidative, anti-inflammatory, and antimutagenic actions. © 2014 John Wiley & Sons Ltd.

  16. Diet-Induced Ketosis Protects Against Focal Cerebral Ischemia in Mouse.

    Science.gov (United States)

    Xu, Kui; Ye, Lena; Sharma, Katyayini; Jin, Yongming; Harrison, Matthew M; Caldwell, Tylor; Berthiaume, Jessica M; Luo, Yu; LaManna, Joseph C; Puchowicz, Michelle A

    2017-01-01

    Over the past decade we have consistently shown that ketosis is neuroprotective against ischemic insults in rats. We reported that diet-induced ketotic rats had a significant reduction in infarct volume when subjected to middle cerebral artery occlusion (MCAO), and improved survival and recovery after cardiac arrest and resuscitation. The neuroprotective mechanisms of ketosis (via ketogenic diet; KG) include (i) ketones are alternate energy substrates that can restore energy balance when glucose metabolism is deficient and (ii) ketones modulate cell-signalling pathways that are cytoprotective. We investigated the effects of diet-induced ketosis following transient focal cerebral ischemia in mice. The correlation between levels of ketosis and hypoxic inducible factor-1alpha (HIF-1α), AKT (also known as protein kinase B or PKB) and 5' AMP-activated protein kinase (AMPK) were determined. Mice were fed with KG diet or standard lab-chow (STD) diet for 4 weeks. For the MCAO group, mice underwent 60 min of MCAO and total brain infarct volumes were evaluated 48 h after reperfusion. In a separate group of mice, brain tissue metabolites, levels of HIF-1α, phosphorylated AKT (pAKT), and AMPK were measured. After feeding a KG diet, levels of blood ketone bodies (beta-hydroxyburyrate, BHB) were increased. There was a proportional decrease in infarct volumes with increased blood BHB levels (KG vs STD; 4.2 ± 0.6 vs 7.8 ± 2.2 mm 3 , mean ± SEM). A positive correlation was also observed with HIF-1α and pAKT relative to blood BHB levels. Our results showed that chronic ketosis can be induced in mice by KG diet and was neuroprotective against focal cerebral ischemia in a concentration dependent manner. Potential mechanisms include upregulation of cytoprotective pathways such as those associated with HIF-1α, pAKT and AMPK.

  17. Effects on muscle performance of NSAID treatment with piroxicam versus placebo in geriatric patients with acute infection-induced inflammation. A double blind randomized controlled trial.

    Science.gov (United States)

    Beyer, Ingo; Bautmans, Ivan; Njemini, Rose; Demanet, Christian; Bergmann, Pierre; Mets, Tony

    2011-12-30

    Inflammation is the main cause of disease-associated muscle wasting. In a previous single blind study we have demonstrated improved recovery of muscle endurance following celecoxib treatment in hospitalized geriatric patients with acute infection. Here we further evaluate NSAID treatment with piroxicam in a double blind RCT and investigate the role of cytokines and heat shock proteins (Hsp) with respect to muscle performance. We hypothesized that NSAID treatment would preserve muscle performance better than antibiotic treatment alone, by reducing infection-associated inflammation and by increasing expression of cytoprotective Hsp. Consecutive admissions to the geriatric ward were screened. 30 Caucasian patients, median age 84.5 years, with acute infection-induced inflammation and serum levels of CRP > 10 mg/L were included and randomized to active treatment with 10 mg piroxicam daily or placebo. Assessment comprised general clinical and biochemical parameters, 25 cytokines in serum, intra-and extracellular Hsp27 and Hsp70, Elderly Mobility Scale (EMS) scores, grip strength (GS), fatigue resistance (FR) and lean body mass (LBM). Patients were evaluated until discharge with a maximum of 3 weeks after treatment allocation. EMS scores, FR and grip work (GW), a measure taking into account GS and FR, significantly improved with piroxicam, but not with placebo. Early decreases in IL-6 serum levels with piroxicam correlated with better muscle performance at week 2. Basal expression of Hsp27 in monocytes without heat challenge (WHC) was positively correlated with FR at baseline and significantly increased by treatment with piroxicam compared to placebo. Profound modifications in the relationships between cytokines or Hsp and changes in muscle parameters were observed in the piroxicam group. Piroxicam improves clinically relevant measures of muscle performance and mobility in geriatric patients hospitalized with acute infection-induced inflammation. Underlying mechanisms may

  18. Gastroprotective and Antioxidant Activity of Kalanchoe brasiliensis and Kalanchoe pinnata Leaf Juices against Indomethacin and Ethanol-Induced Gastric Lesions in Rats

    Directory of Open Access Journals (Sweden)

    Edilane Rodrigues Dantas de Araújo

    2018-04-01

    Full Text Available Kalanchoe brasiliensis and Kalanchoe pinnata are used interchangeably in traditional medicine for treating peptic ulcers and inflammatory problems. In this context, this study aims to characterize the chemical constituents and evaluate the gastroprotective activity of the leaf juices of the two species in acute gastric lesions models. Thin Layer Chromatography (TLC and Ultra High Performance Liquid Chromatography coupled to Mass Spectrometer (UHPLC-MS were performed for chemical characterization. Wistar rats were pre-treated orally with leaf juices (125, 250 and 500 mg/kg or ranitidine (50 mg/kg. The peaks observed in the chromatogram of K. brasiliensis showed similar mass spectra to flavonoid glycosides derived from patuletin and eupafolin, while K. pinnata showed mass spectra similar to compounds derived from quercetin, patuletin, eupafolin and kaempferol. K. brasiliensis at all doses and K. pinnata at doses of 250 mg/kg and 500 mg/kg significantly reduced the lesions in the ethanol induction model. In the indomethacin induction model, both species showed significant results at doses of 250 and 500 mg/kg. Also, the pre-treatment with leaf juices increased the antioxidant defense system, glutathione (GSH, whereas malondialdehyde (MDA, myeloperoxidase (MPO, interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α levels were significantly decreased. Treatment with leaf juices led to the upregulation of zone occludes-1 (ZO-1 and the downregulation of inducible nitric oxide synthase (iNOS and factor nuclear-κβ transcription (NF-κB-p65, while also showing a cytoprotective effect and maintaining mucus production. These findings show that the leaf juices of the two species showed gastroprotective effects on ethanol and gastric indomethacin injury which were a consequence of gastric inflammation suppression, antioxidant activity and the maintenance of cytoprotective defenses and mucosal structure architecture.

  19. Mitochondrial p38β and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Han Liu

    Full Text Available While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2 protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R by inhibiting p38α - p53 signaling in apoptosis and activating pro-survival p38β mitogen activated protein kinase (p38β MAPK, leading to suppression of reactive oxygen species (ROS post H/R. However, little is known about the mechanism behind the antioxidant actions of E2-dependent p38β. The aim of this study is to determine whether the cytoprotection by estrogen involves regulation of manganese superoxide dismutase (MnSOD, a major mitochondrial ROS scavenging enzyme, via cardiac p38β.We identified mitochondrial p38β by immunocytochemistry and by immunoblotting in mitochondria isolated from neonatal cardiomyocytes of Sprague-Dawley rats. E2 facilitated the mitochondrial localization of the active form of the kinase, phosphorylated p38β (p-p38β. E2 also reduced the H/R-induced mitochondrial membrane potential decline, augmented the MnSOD activity and suppressed anion superoxide generation, while the dismutase protein expression remained unaltered. Co-immunoprecipitation studies showed physical association between MnSOD and p38β. p38β phosphorylated MnSOD in an E2-dependent manner in in-vitro kinase assays.This work demonstrates for the first time a mitochondrial pool of active p38β and E2-mediated phosphorylation of MnSOD by the kinase. The results shed light on the mechanism behind the cytoprotective actions of E2 in cardiomyocytes under oxidative stress.

  20. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer's disease pathogenesis.

    Science.gov (United States)

    Trovato, A; Siracusa, R; Di Paola, R; Scuto, M; Ontario, M L; Bua, Ornella; Di Mauro, Paola; Toscano, M A; Petralia, C C T; Maiolino, L; Serra, A; Cuzzocrea, S; Calabrese, Vittorio

    2016-01-01

    There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses. Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase -1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding. Conceivably, activation of

  1. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland

    International Nuclear Information System (INIS)

    Xiang, Bin; Han, Lichi; Wang, Xinyue; Tang, Ling; Li, Kailiang; Li, Xiuxiu; Zhao, Xibo; Xia, Miaomiao; Zhou, Xixi; Zhang, Fuyin; Liu, Ke Jian

    2016-01-01

    Purpose: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. Methods and Materials: The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. Results: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. Conclusions: These findings reveal the regulatory mechanisms of NAMPT expression

  2. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bin, E-mail: xiangbin72@163.com [Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian (China); Han, Lichi [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Wang, Xinyue [Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian (China); Tang, Ling [Life Sciences and Technology College, Dalian University, Dalian (China); Li, Kailiang [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Li, Xiuxiu [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Zhao, Xibo [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Xia, Miaomiao [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico (United States); Zhang, Fuyin [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico (United States)

    2016-11-01

    Purpose: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. Methods and Materials: The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. Results: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. Conclusions: These findings reveal the regulatory mechanisms of NAMPT expression

  3. Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal.

    Science.gov (United States)

    Tift, Michael S; Ponganis, Paul J; Crocker, Daniel E

    2014-05-15

    Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from heme-proteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O2 delivery to tissues by lowering arterial O2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (± s.e.m.) value in adult seals was 8.7 ± 0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6 ± 0.2% and 7.1 ± 0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia-reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO. © 2014. Published by The Company of Biologists Ltd.

  4. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases.

    Science.gov (United States)

    Kumar, Hemant; Kim, In-Su; More, Sandeep Vasant; Kim, Byung-Wook; Choi, Dong-Kug

    2014-01-01

    Covering: 2000 to 2013. Oxidative stress is the central component of chronic diseases. The nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway is vital in the up-regulation of cytoprotective genes and enzymes in response to oxidative stress and treatment with certain dietary phytochemicals. Herein, we classify bioactive compounds derived from natural products that are Nrf2/ARE pathway activators and recapitulate the molecular mechanisms for inducing Nrf2 to provide favorable effects in experimental models of chronic diseases. Moreover, pharmacological inhibition of Nrf2 signalling has emerged as promising strategy against multi-drug resistance thereby improving the treatment efficacy. We have also enlisted natural product-derived inhibitors of Nrf2/ARE pathway.

  5. The balance between life and death of cells: Roles of Metallothioneins

    DEFF Research Database (Denmark)

    Penkowa, Milena; Bohr, Adam; Nielsen, Allan

    2007-01-01

    and death, as seen in two rather contrasting pathological conditions: Neurodegeneration and neoplasms. MT-I+II have analogous functions including: 1) Antioxidant scavenging of reactive oxygen species (ROS); 2) Cytoprotection against degeneration and apoptosis; 3) Stimulation of cell growth and repair...... including angiogenesis/revascularization, activation of stem/progenitor cells, and neuroregeneration. Thereby, MT-I+II mediate neuroprotection, CNS restoration and clinical recovery during neurodegenerative disorders. Due to the promotion of cell survival, increased MT-I+II levels have been associated......-dependent transcription factors, protein synthesis, cellular energy levels/metabolism and cell redox state. Here, the neuroprotective and regenerative functions of MT-I+II are reviewed, and the presumed link to oncogenesis is critically perused....

  6. IKK connects autophagy to major stress pathways.

    Science.gov (United States)

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-01-01

    Cells respond to stress by activating cytoplasmic mechanisms as well as transcriptional programs that can lead to adaptation or death. Autophagy represents an important cytoprotective response that is regulated by both transcriptional and transcription-independent pathways. NFkappaB is perhaps the transcription factor most frequently activated by stress and has been ascribed with either pro- or anti-autophagic functions, depending on the cellular context. Our results demonstrate that activation of the IKK (IkappaB kinase) complex, which is critical for the stress-elicited activation of NFkappaB, is sufficient to promote autophagy independent of NFkappaB, and that IKK is required for the optimal induction of autophagy by both physiological and pharmacological autophagic triggers.

  7. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity.

    Science.gov (United States)

    Pardo-Andreu, Gilberto L; Sánchez-Baldoquín, Carlos; Avila-González, Rizette; Yamamoto, Edgar T Suzuki; Revilla, Andrés; Uyemura, Sérgio Akira; Naal, Zeki; Delgado, René; Curti, Carlos

    2006-11-01

    A standard aqueous stem bark extract from selected species of Mangifera indica L. (Anacardiaceae)--Vimang, whose major polyphenolic component is mangiferin, displays potent in vitro and in vivo antioxidant activity. The present study provides evidence that the Vimang-Fe(III) mixture is more effective at scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals, as well as in protecting against t-butyl hydroperoxide-induced mitochondrial lipid peroxidation and hypoxia/reoxygenation-induced hepatocytes injury, compared to Vimang alone. Voltammetric assays demonstrated that Vimang, in line with the high mangiferin content of the extract, behaves electrochemically like mangiferin, as well as interacts with Fe(III) in close similarity with mangiferin's interaction with the cation. These results justify the high efficiency of Vimang as an agent protecting from iron-induced oxidative damage. We propose Vimang as a potential therapy against the deleterious action of reactive oxygen species generated during iron-overload, such as that occurring in diseases like beta-thalassemia, Friedreich's ataxia and haemochromatosis.

  8. Fullerene C-60 with cytoprotective and cytotoxic potential : Prospects as a novel treatment agent in Dermatology?

    NARCIS (Netherlands)

    Rondags, Angelica; Yuen, Wing Yan; Jonkman, Marcel F.; Horvath, Barbara

    It is known that an excess amount of (oxygen) radicals in the skin can lead to (local cellular) oxidative stress. From one side, oxidative stress can contribute to the existence of various (inflammatory) skin diseases such as acne vulgaris and alopecia, as well as to accelerated photo-ageing of the

  9. Photobiomodulation reduces photoreceptor death and regulates cytoprotection in early states of P23H retinal dystrophy

    Science.gov (United States)

    Kirk, Diana K.; Gopalakrishnan, Sandeep; Schmitt, Heather; Abroe, Betsy; Stoehr, Michele; Dubis, Adam; Carroll, Joseph; Stone, Jonathan; Valter, Krisztina; Eells, Janis

    2013-03-01

    Irradiation by light in the far-red to near-infrared (NIR) region of the spectrum (photobiomodulation, PBM) has been demonstrated to attenuate the severity of neurodegenerative disease in experimental and clinical studies. The purpose of this study was to test the hypothesis that 670 nm PBM would protect against the loss of retinal function and improve photoreceptor survival in a rodent model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated once per day with a 670 nm LED array (180 sec treatments at 50 mW/cm2; fluence 9 joules/cm2) (Quantum Devices Inc., Barneveld WI) from postnatal day (p) 16-20 or from p10-20. Sham-treated rats were restrained, but not exposed to NIR light. The status of the retina was determined at p22 by assessment of mitochondrial function, oxidative stress and cell death. In a second series of studies, retinal status was assessed at p30 by measuring photoreceptor function by ERG and retinal morphology by Spectral Domain Optical Coherence Tomography (SD-OCT). 670 nm PBM increased retinal mitochondrial cytochrome oxidase activity and upregulated the retina's production of the key mitochondrial antioxidant enzyme, MnSOD. PBM also attenuated photoreceptor cell loss and improved photoreceptor function. PBM protects photoreceptors in the developing P23H retina, by augmenting mitochondrial function and stimulating antioxidant protective pathways. Photobiomodulation may have therapeutic potential, where mitochondrial damage is a step in the death of photoreceptors.

  10. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance.

    Science.gov (United States)

    Dupéré-Richer, D; Kinal, M; Ménasché, V; Nielsen, T H; Del Rincon, S; Pettersson, F; Miller, W H

    2013-02-07

    Histone deacetylase inhibitors (HDACi) have shown promising activity against hematological malignancies in clinical trials and have led to the approval of vorinostat for the treatment of cutaneous T-cell lymphoma. However, de novo or acquired resistance to HDACi therapy is inevitable, and their molecular mechanisms are still unclear. To gain insight into HDACi resistance, we developed vorinostat-resistant clones from the hematological cell lines U937 and SUDHL6. Although cross-resistant to some but not all HDACi, the resistant cell lines exhibit dramatically increased sensitivity toward chloroquine, an inhibitor of autophagy. Consistent with this, resistant cells growing in vorinostat show increased autophagy. Inhibition of autophagy in vorinostat-resistant U937 cells by knockdown of Beclin-1 or Lamp-2 (lysosome-associated membrane protein 2) restores sensitivity to vorinostat. Interestingly, autophagy is also activated in parental U937 cells by de novo treatment with vorinostat. However, in contrast to the resistant cells, inhibition of autophagy decreases sensitivity to vorinostat. These results indicate that autophagy can switch from a proapoptotic signal to a prosurvival function driving acquired resistance. Moreover, inducers of autophagy (such as mammalian target of rapamycin inhibitors) synergize with vorinostat to induce cell death in parental cells, whereas the resistant cells remain insensitive. These data highlight the complexity of the design of combination strategies using modulators of autophagy and HDACi for the treatment of hematological malignancies.

  11. Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury

    Directory of Open Access Journals (Sweden)

    Ravirajsinh N. Jadeja

    2016-01-01

    Full Text Available Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2, a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.

  12. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  13. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells

    Science.gov (United States)

    Zeng, Yizhou; Tian, Xiaofang; Wang, Quan; He, Weiyang; Fan, Jing; Gou, Xin

    2018-01-01

    Aim The mammalian target of rapamycin (mTOR) pathway is a critical target for cancer treatment and the mTOR inhibitor everolimus (RAD001) has been approved for treatment of renal cell carcinoma (RCC). However, the limited efficacy of RAD001 has led to the development of drug resistance. Autophagy is closely related to cell survival and death, which may be activated under RAD001 stimulation. The aim of the present study was to identify the underlying mechanisms of RAD001 resistance in RCC cells through cytoprotective autophagy involving activation of the extracellular signal-regulated kinase (ERK) pathway. Methods and results: RAD001 strongly induced autophagy of RCC cells in a dose- and time-dependent manner, as confirmed by Western blot analysis. Importantly, suppression of autophagy by the pharmacological inhibitor chloroquine effectively enhanced RAD001-induced apoptotic cytotoxicity, as demonstrated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blot analysis, indicating a cytoprotective role for RAD001-induced autophagy. In addition, as was shown by the MTT assay, flow cytometry, and Western blot analysis, RAD001 robustly activated ERK, but not c-Jun N-terminal kinase and p38. Activation of ERK was inhibited by the pharmacological inhibitor selumetinib (AZD6244), which effectively promoted RAD001-induced cell death. Moreover, employing AZD6244 markedly attenuated RAD001-induced autophagy and enhanced RAD001-induced apoptosis, which play a central role in RAD001-induced cell death. Furthermore, RAD001-induced autophagy is regulated by ERK-mediated phosphorylation of Beclin-1 and B-cell lymphoma 2, as confirmed by Western blot analysis. Conclusion These results suggest that RAD001-induced autophagy involves activation of the ERK, which may impair cytotoxicity of RAD001 in RCC cells. Thus, inhibition of the activation of ERK pathway-mediated autophagy may be useful to overcome chemoresistance to RAD001. PMID:29719377

  14. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons.

    Science.gov (United States)

    Jeong, Jong Hee; Noh, Min-Young; Choi, Jae-Hyeok; Lee, Haiwon; Kim, Seung Hyun

    2016-04-01

    Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H 2 O 2 )-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H 2 O 2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H 2 O 2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c , apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H 2 O 2 , and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H 2 O 2

  15. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  16. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  17. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  18. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Sheng [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Division of Thoracic Surgery, Department of Surgery, Taipei-Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Kawamura, Tomohiro; Peng, Ximei [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tochigi, Naobumi [Department of Pathology, University of Pittsburgh Medical Center, PA (United States); Shigemura, Norihisa [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Billiar, Timothy R. [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Nakao, Atsunori, E-mail: anakao@imap.pitt.edu [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Toyoda, Yoshiya [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  19. A novel compound derived from danshensu inhibits apoptosis via upregulation of heme oxygenase-1 expression in SH-SY5Y cells.

    Science.gov (United States)

    Pan, Li-Long; Liu, Xin-Hua; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Gong, Qi-Hai; Wang, Yang; Zhu, Yi-Zhun

    2013-04-01

    Heme oxygenase-1 (HO-1) has potential anti-apoptotic properties. A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2- ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)] was synthesized by joining danshensu and cysteine through an appropriate linker. This study investigated if the cytoprotective properties of DSC involved the induction of HO-1. We evaluated the cytoprotective effects of DSC on H2O2-induced cell damage, apoptosis, intracellular and mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm) loss, and apoptosis-related proteins expression and its underlying mechanisms. DSC concentration-dependently attenuated cell death, lactate dehydrogenase release, intracellular and mitochondrial ROS production, and ΔΨm collapse, modulated apoptosis-related proteins (Bcl-2, Bax, caspase-3, p53, and cleaved PARP) expression, and inhibited phosphorylation of extracellular signal-regulated kinase 1/2 in SH-SY5Y cells induced by H2O2. In addition, DSC concentration-dependently induced HO-1 expression associated with nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2), while the effect of DSC was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, the protective effect of DSC on H2O2-induced cell death was abolished by HO-1 inhibitor ZnPP, but was mimicked by carbon monoxide-releasing moiety CORM-3 or HO-1 by-product bilirubin. Finally, DSC inhibited H2O2-induced changes of Bcl-2, Bax, and caspase-3 expression, and all of these effects were reversed by HO-1 silencing. Induction of HO-1 may be, at least in part, responsible for the anti-apoptotic property of DSC, an effect that involved the activation of PI3K/Akt/Nrf-2 axis. DSC might have the potential for beneficial therapeutic interventions for neurodegenerative diseases. Copyright © 2013. Published by Elsevier B.V.

  20. Activation of transglutaminase 2 by nerve growth factor in differentiating neuroblastoma cells: A role in cell survival and neurite outgrowth.

    Science.gov (United States)

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2018-02-05

    NGF (nerve growth factor) and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 transamidase activity by NGF in retinoic acid-induced differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. The role of TG2 in NGF-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with NGF in N2a and SH-SY5Y cells. NGF mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-l-valinyl-l-prolinyl-l-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) and by pharmacological inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB) and protein kinase C (PKC), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated NGF induced in situ TG2 activity. TG2 inhibition blocked NGF-induced attenuation of hypoxia-induced cell death and neurite outgrowth in both cell lines. Together, these results demonstrate that NGF stimulates TG2 transamidase activity via a ERK1/2, PKB and PKC-dependent pathway in differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. Furthermore, NGF-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results suggest a novel and important role of TG2 in the cellular functions of NGF. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.

    Science.gov (United States)

    Almeida, Ana S; Sonnewald, Ursula; Alves, Paula M; Vieira, Helena L A

    2016-08-01

    The process of cell differentiation goes hand-in-hand with metabolic adaptations, which are needed to provide energy and new metabolites. Carbon monoxide (CO) is an endogenous cytoprotective molecule able to inhibit cell death and improve mitochondrial metabolism. Neuronal differentiation processes were studied using the NT2 cell line, which is derived from human testicular embryonic teratocarcinoma and differentiates into post-mitotic neurons upon retinoic acid treatment. CO-releasing molecule A1 (CORM-A1) was used do deliver CO into cell culture. CO treatment improved NT2 neuronal differentiation and yield, since there were more neurons and the total cell number increased following the differentiation process. CO supplementation enhanced the mitochondrial population in post-mitotic neurons derived from NT2 cells, as indicated by an increase in mitochondrial DNA. CO treatment during neuronal differentiation increased the extent of the classical metabolic change that occurs during neuronal differentiation, from glycolytic to more oxidative metabolism, by decreasing the ratio of lactate production and glucose consumption. The expression of pyruvate and lactate dehydrogenases was higher, indicating an augmented oxidative metabolism. Moreover, these findings were corroborated by an increased percentage of (13) C incorporation from [U-(13) C]glucose into the tricarboxylic acid cycle metabolites malate and citrate, and also glutamate and aspartate in CO-treated cells. Finally, under low levels of oxygen (5%), which enhances glycolytic metabolism, some of the enhancing effects of CO on mitochondria were not observed. In conclusion, our data show that CO improves neuronal and mitochondrial yield by stimulation of tricarboxylic acid cycle activity, and thus oxidative metabolism of NT2 cells during the process of neuronal differentiation. The process of cell differentiation is coupled with metabolic adaptations. Carbon monoxide (CO) is an endogenous cytoprotective

  2. Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-equol-induced activation of Nrf2/ARE in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available S-(-equol, a natural product of the isoflavone daidzein, has been reported to offer cytoprotective effects with respect to the cardiovascular system, but how this occurs is unclear. Interestingly, S-(-equol is produced by the human gut, suggesting a role in physiological processes. We report that treatment of human umbilical vein endothelial cells and EA.hy926 cells with S-(-equol induces ARE-luciferase reporter gene activity that is dose and time dependent. S-(-equol (10-250 nM increases nuclear factor-erythroid 2-related factor 2 (Nrf2 as well as gene products of Nrf2 target genes heme oxygenase-1 (HO-1 and NAD(PH (nicotinamide-adenine-dinucleotide-phosphate quinone oxidoreductase 1 (NQO1. Endothelial cells transfected with an HA-Nrf2 expression plasmid had elevated HA-Nrf2, HO-1, and NQO1 in response to S-(-equol exposure. S-(-equol treatment affected Nrf2 mRNA only slightly but significantly increased HO-1 and NQO1 mRNA. The pretreatment of cells with specific ER inhibitors or PI3K/Akt (ICI182,780 and LY294002 increased Nrf2, HO-1, and NQO1 protein, impaired nuclear translocation of HA-Nrf2, and decreased ARE-luciferase activity. Identical experiments were conducted with daidzein, which had effects similar to S-(-equol. In addition, DPN treatment (an ERβ agonist induced the ARE-luciferase reporter gene, promoting Nrf2 nuclear translocation. Cell pretreatment with an ERβ antagonist (PHTPP impaired S-(-equol-induced Nrf2 activation. Pre-incubation of cells followed by co-treatment with S-(-equol significantly improved cell survival in response to H2O2 or tBHP and reduced apoptotic and TUNEL-positively-stained cells. Notably, the ability of S-(-equol to protect against H2O2-induced cell apoptosis was attenuated in cells transfected with an siRNA against Nrf2. Thus, beneficial effects of S-(-equol with respect to cytoprotective antioxidant gene activation may represent a novel strategy to prevent and treat cardiovascular diseases.

  3. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Sun, Xiao; Wang, Min; Ye, Jing-xue; Si, Jian-yong; Xu, Hui-bo; Meng, Xiang-bao; Qin, Meng; Sun, Jing; Wang, Hong-wei; Sun, Xiao-bo

    2012-01-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H 2 O 2 )-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H 2 O 2 -derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage. ► Luteolin

  4. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics?

    Directory of Open Access Journals (Sweden)

    Michal Horowitz

    2017-07-01

    Full Text Available The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce “ON CALL” molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance—HACT. The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower “doses” of the stressor, which induce adaptation to higher “doses” of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo

  5. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Xiao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Ye, Jing-xue [Jilin Agricultural University, No.2888, Xincheng Street, Changchun, 130021, Jilin (China); Si, Jian-yong [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo [Academy of Chinese Medical Sciences of Jilin Province, Gongnongda road 1745, Changchun, 130021, Jiblin (China); Meng, Xiang-bao; Qin, Meng; Sun, Jing [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2012-12-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage.

  6. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Qin, Meng [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Ye, Jing-xue [Jilin Agricultural University, No. 2888, Xincheng Street, Changchun, 130118 Jilin (China); Pan, Rui-le; Meng, Xiang-bao; Wang, Min; Luo, Yun; Li, Zong-yang [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China)

    2013-08-15

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H{sub 2}O{sub 2})-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H{sub 2}O{sub 2}-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H{sub 2}O{sub 2}-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H{sub 2}O{sub 2} induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up

  7. Solution NMR structure and inhibitory effect against amyloid-β fibrillation of Humanin containing a D-isomerized serine residue

    Energy Technology Data Exchange (ETDEWEB)

    Alsanousi, Nesreen [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sugiki, Toshihiko, E-mail: sugiki@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Furuita, Kyoko; So, Masatomo; Lee, Young-Ho; Fujiwara, Toshimichi [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kojima, Chojiro, E-mail: kojima-chojiro-xk@ynu.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2016-09-02

    Humanin comprising 24 amino acid residues is a bioactive peptide that has been isolated from the brain tissue of patients with Alzheimer's disease. Humanin reportedly suppressed aging-related death of various cells due to amyloid fibrils and oxidative stress. There are reports that the cytoprotective activity of Humanin was remarkably enhanced by optical isomerization of the Ser14 residue from L to D form, but details of the molecular mechanism remained unclear. Here we demonstrated that Humanin D-Ser14 exhibited potent inhibitory activity against fibrillation of amyloid-β and remarkably higher binding affinity for amyloid-β than that of the Humanin wild-type and S14G mutant. In addition, we determined the solution structure of Humanin D-Ser14 by nuclear magnetic resonance (NMR) and showed that D-isomerization of the Ser14 residue enables drastic conformational rearrangement of Humanin. Furthermore, we identified an amyloid-β-binding site on Humanin D-Ser14 at atomic resolution by NMR. These biophysical and high-resolution structural analyses clearly revealed structure–function relationships of Humanin and explained the driving force of the drastic conformational change and molecular basis of the potent anti-amyloid-β fibrillation activity of Humanin caused by D-isomerization of the Ser14 residue. This is the first study to show correlations between the functional activity, tertiary structure, and partner recognition mode of Humanin and may lead to elucidation of the molecular mechanisms of the cytoprotective activity of Humanin. - Highlights: • Humanin D-Ser14 showed the strongest inhibitory activity against Aβ40 fibrillation. • NMR structure of Humanin D-Ser14 was determined in alcohol/water mixture solution. • Humanin D-Ser14 directly bound Aβ40 stronger than Humanin wild-type and Humanin S14G. • Aβ40 and zinc ion binding sites of Humanin D-Ser14 were identified. • Structure around Ser14 of Humanin is critical for Aβ40 binding and

  8. The anti-apoptotic activity of BAG3 is restricted by caspases and the proteasome.

    Directory of Open Access Journals (Sweden)

    Victoria M Virador

    Full Text Available Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis.Staurosporine (STS was used as a tool to test for caspase involvement in BAG3 degradation. MDA435 and HeLa human cancer cell lines exposed to STS underwent apoptosis with a concomitant time and dose-dependent loss of BAG3, suggesting the survival role of BAG3 was subject to STS regulation. zVAD-fmk or caspase 3 and 9 inhibitors provided a strong but incomplete protection of both cells and BAG3 protein. Two putative caspase cleavage sites were tested: KEVD (BAG3(E345A/D347A within the proline-rich center of BAG3 (PXXP and the C-terminal LEAD site (BAG3(E516A/D518A. PXXP deletion mutant and BAG3(E345A/D347A, or BAG3(E516A/D518A respectively slowed or stalled STS-mediated BAG3 loss. BAG3, ubiquitinated under basal growth conditions, underwent augmented ubiquitination upon STS treatment, while there was no increase in ubiquitination of the BAG3(E516A/D518A caspase-resistant mutant. Caspase and proteasome inhibition resulted in partial and independent protection of BAG3 whereas inhibitors of both blocked BAG3 degradation. STS-induced apoptosis was increased when BAG3 was silenced, and retention of BAG3 was associated with cytoprotection.BAG3 is tightly controlled by selective degradation during STS exposure. Loss of BAG3 under STS injury required sequential caspase cleavage followed by polyubiquitination and proteasomal degradation. The need for dual regulation of BAG3 in apoptosis suggests a key role for BAG3 in cancer cell resistance to apoptosis.

  9. The Role of Bismuth in the Treatment of Gastroduodenal Pathology (Literature Review and Own Researches

    Directory of Open Access Journals (Sweden)

    Yu.M. Stepanov

    2016-09-01

    Full Text Available The article presents the history of colloidal bismuth subcitrate and considers the basic mechanisms of its effects on the gastric mucosa, both cytoprotective and anti-helicobacter. The recent data of the worldwide researches are given on the use of the bismuth subcitrate as a component of antibacterial therapy in order to improve the effectiveness of the eradication, especially under the resistance to the basic drugs. The results of own researches are also shown, they are dedicated to the dynamics of structural adjustment of the gastric mucosa in patients with chronic atrophic gastritis for 3 years after the eradication of H.pylori. The use of first-line therapy with the addition of the drug De-Nol allowed to achieve eradication in 94.3 % of patients and positive microstructural changes of the gastric mucosa.

  10. Radiotherapy induced xerostomia: mechanisms, diagnostics, prevention and treatment--evidence based up to 2013.

    Science.gov (United States)

    Kałużny, Jarosław; Wierzbicka, Małgorzata; Nogala, Hanna; Milecki, Piotr; Kopeć, Tomasz

    2014-01-01

    Definition and prevalence of xerostomia were shortly presented. Radiosensitivity of the salivary glands, mechanism, diagnostics, and possible prediction methods of the intensity of xerostomia in the pre-radiotherapy period are widely discussed. Prevention of xerostomia: salivary gland sparing radiotherapy, cytoprotective agents, preservation by stimulation with cholinergic muscarinic agonists, surgical transfer of submandibular glands according to ASCO Management Guidelines and Quality of Life Recommendations were cited. Oral Care Study Group (2010) therapeutic approaches for relieving xerostomia are referred. Current therapies, restricted to symptom relief such as oral hygiene with fluoride agents, antimicrobials to prevent dental caries, saliva substitutes to relieve symptoms, and sialogenic agents to stimulate saliva were also discussed. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  11. The roles of tissue nitrate reductase activity and myoglobin in securing nitric oxide availability in deeply hypoxic crucian carp

    DEFF Research Database (Denmark)

    Hansen, Marie Niemann; Lundberg, Jon O; Filice, Mariacristina

    2016-01-01

    . We also tested whether liver, muscle and heart tissue possess nitrate reductase activity that supplies nitrite to the tissues during severe hypoxia. Crucian carp exposed to deep hypoxia (1nitrite in red musculature to more than double the value in normoxic fish......In mammals, treatment with low doses of nitrite has a cytoprotective effect in ischemia/reperfusion events, as a result of nitric oxide formation and S-nitrosation of proteins. Interestingly, anoxia-tolerant lower vertebrates possess an intrinsic ability to increase intracellular nitrite...... concentration during anoxia in tissues with high myoglobin and mitochondria content, such as the heart. Here, we tested the hypothesis that red and white skeletal muscles develop different nitrite levels in crucian carp exposed to deep hypoxia and assessed whether this correlates with myoglobin concentration...

  12. Acute effects of high-dose intragastric nicotine on mucosal defense mechanisms

    DEFF Research Database (Denmark)

    Lindell, G; Bukhave, Klaus; Lilja, I

    1997-01-01

    Peptic ulcer disease is overrepresented among smokers; they also heal slowly and relapse frequently. Data are accumulating that smoking is detrimental to gastroduodenal mucosal cytoprotection. This study was designed to assess acute effects of high-dose intragastric nicotine, as it has been shown...... that nicotine is accumulated in gastric juice when smoking, Seven healthy smokers were given nicotine base (6 mg) as tablets, which yielded very high intragastric concentrations and plasma levels comparable to those seen when smoking. In addition to nicotine analysis, concentration levels of prostaglandin E(2......) (PGE(2)), phospholipase A(2) (PLA(2)), and phospholipid classes were measured before and after nicotine administration, Nicotine inhibited PGE(2) levels by 27-81%, whereas PLA(2) and total phospholipids were unaffected. Lysolecithin, a degradation product of the main constituent of gastric surfactant...

  13. THE ROLE OF PHYTOTHERAPY IN OPTIMIZATION OF REHABILITATION AT A HEALTH RESORT IN PATIENTS WITH CHRONIC TONSILLITIS

    Directory of Open Access Journals (Sweden)

    E.I. Kondrat’eva

    2010-01-01

    Full Text Available Authors present results of a treatment with complex of physical methods and phyto drug Tonsilgon N (Althaeae officinalis L., Chamomilla recutita, Equisetum arvense L., Juglans regia L., Achillea millefolium L., Quercus robur, Taraxacum officinale of 35 children with chronic tonsillitis at a health resort. Clinical, immunological effectiveness and safety was estimated. Inclusion of the drug in treatment scheme resulted in decrease of morbidity with acute respiratory infections and rate of exacerbations of tonsillitis. Phyto drug has anti-inflammatory and immunomodulating activity manifested in increase of level of humoral factors in nasal secretion and cytoprotective effect related to positive changes in functional state of epithelium of nasal mucous membrane in children with chronic tonsillitis.Key words: children, chronic tonsillitis, rehabilitation, phytotherapy.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(2:58-63

  14. An Insight into Sargassum muticum Cytoprotective Mechanisms against Oxidative Stress on a Human Cell In Vitro Model

    Directory of Open Access Journals (Sweden)

    Susete Pinteus

    2017-11-01

    Full Text Available Sargassum muticum is a brown seaweed with strong potential to be used as a functional food ingredient, mainly due to its antioxidant properties. It is widely used in traditional oriental medicine for the treatment of numerous diseases. Nevertheless, few studies have been conducted to add scientific evidence on its effects as well as on the mechanisms of action involved. In this work, the human cell line MCF-7 was used as an in vitro cellular model to evaluate the capability of Sargassum muticum enriched fractions to protect cells on an oxidative stress condition. The concentration of the bioactive compounds was obtained by vacuum liquid chromatography applied on methanol (M and 1:1 methanol:dichloromethane (MD crude extracts, resulting in seven enriched fractions from the M extraction (MF2–MF8, and eight fractions from the MD extraction (MDF1–MDF8. All fractions were tested for cytotoxic properties on MCF-7 cells and the nontoxic ones were tested for their capacity to blunt the damaging effects of hydrogen peroxide-induced oxidative stress. The nontoxic effects were also confirmed in 3T3 fibroblast cells as a nontumor cell line. The antioxidant potential of each fraction, as well as changes in the cell’s real-time hydrogen peroxide production, in the mitochondrial membrane potential, and in Caspase-9 activity were evaluated. The results suggest that the protective effects evidenced by S. muticum can be related with the inhibition of hydrogen peroxide production and the inhibition of Caspase-9 activity.

  15. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    International Nuclear Information System (INIS)

    Sobhakumari, Arya; Schickling, Brandon M.; Love-Homan, Laurie; Raeburn, Ayanna; Fletcher, Elise V.M.; Case, Adam J.; Domann, Frederick E.; Miller, Francis J.

    2013-01-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy

  16. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Chiong, Hoe Siong; Yong, Yoke Keong; Ahmad, Zuraini; Sulaiman, Mohd Roslan; Zakaria, Zainul Amiruddin; Yuen, Kah Hay; Hakim, Muhammad Nazrul

    2013-01-01

    Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug. Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7. Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2) than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine. This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.

  17. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sobhakumari, Arya [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Schickling, Brandon M. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Love-Homan, Laurie; Raeburn, Ayanna [Department of Pathology, The University of Iowa, Iowa City, IA (United States); Fletcher, Elise V.M. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Case, Adam J. [Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Domann, Frederick E. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); Miller, Francis J. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); and others

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.

  18. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  19. Anti-inflammatory activity of horseradish (Armoracia rusticana) root extracts in LPS-stimulated macrophages.

    Science.gov (United States)

    Marzocco, Stefania; Calabrone, Luana; Adesso, Simona; Larocca, Marilena; Franceschelli, Silvia; Autore, Giuseppina; Martelli, Giuseppe; Rossano, Rocco

    2015-12-01

    Horseradish (Armoracia rusticana) is a perennial crop belonging to the Brassicaceae family. Horseradish root is used as a condiment due to its extremely pungent flavour, deriving from the high content of glucosinolates and their breakdown products such as isothiocyanates and other sulfur compounds. Horseradish also has a long history in ethnomedicine. In this study the anti-inflammatory potential of three accessions of Armoracia rusticana on lipopolysaccharide from E. coli treated J774A.1 murine macrophages was evaluated. Our results demonstrate that Armoracia rusticana reduced nitric oxide, tumor necrosis factor-α and interleukin-6 release and nitric oxide synthase and cyclooxygenase-2 expression in macrophages, acting on nuclear transcription factor NF-κB p65 activation. Moreover Armoracia rusticana reduced reactive oxygen species release and increased heme-oxygenase-1 expression, thus contributing to the cytoprotective cellular effect during inflammation.

  20. Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).

    Science.gov (United States)

    Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J

    2005-01-01

    Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.

  1. Heat Shock Proteins as Danger Signals for Cancer Detection

    International Nuclear Information System (INIS)

    Seigneuric, Renaud; Mjahed, Hajare; Gobbo, Jessica; Joly, Anne-Laure; Berthenet, Kevin; Shirley, Sarah; Garrido, Carmen

    2011-01-01

    First discovered in 1962, heat shock proteins (HSPs) are highly studied with about 35,500 publications on the subject to date. HSPs are highly conserved, function as molecular chaperones for a large panel of “client” proteins and have strong cytoprotective properties. Induced by many different stress signals, they promote cell survival in adverse conditions. Therefore, their roles have been investigated in several conditions and pathologies where HSPs accumulate, such as in cancer. Among the diverse mammalian HSPs, some members share several features that may qualify them as cancer biomarkers. This review focuses mainly on three inducible HSPs: HSP27, HPS70, and HSP90. Our survey of recent literature highlights some recurring weaknesses in studies of the HSPs, but also identifies findings that indicate that some HSPs have potential as cancer biomarkers for successful clinical applications.

  2. Phenylephrine protects autotransplanted rabbit submandibular gland from apoptosis

    International Nuclear Information System (INIS)

    Xiang Bin; Zhang Yan; Li Yuming; Gao Yan; Gan Yehua; Wu Liling; Yu Guangyan

    2008-01-01

    Submandibular gland (SMG) autotransplantation is an effective treatment for severe keratoconjunctivitis sicca. Our previous studies have shown that phenylephrine attenuates structural injury and promotes cell proliferation in autotransplanted rabbit SMG. However, the mechanism by which phenylephrine reduces the injury has not been fully evaluated. In this study, we investigate the ability of phenylephrine to inhibit apoptosis in autotransplanted rabbit SMG. We observed that apoptosis occurred in the early phase of SMG transplantation and that phenylephrine treatment protected transplanted SMG from apoptosis. Furthermore, we found that phenylephrine could significantly upregulate the expression of Bcl-2, downregulate the expression of Bax, and inhibit the activation of both caspase-3 and p38 mitogen-activated protein kinase in autotransplanted SMG. Therefore, the cytoprotective effects of phenylephrine on autotransplanted SMG may be a novel clinical strategy for autotransplanted SMG protection during the early postoperative stage of transplantation

  3. [The opportunity to use combined stem cells transplantation for haemopoesis activation in the old and mature laboratory animals under the conditions of ionizing radiation].

    Science.gov (United States)

    Grebnev, D Iu; Maklakova, I Iu; Iastrebov, A P

    2014-01-01

    The objective of this work was to study the influence of combined transplantation of stem cells (multypotent mesenchimal stromal and haemopoetic stem cells) on the haemopoesis of old and mature laboratory animals under the condition of ionizing radiation. The result of the experiment shows that under physiological conditions the combined transplantation brings the erithropoesis activation, under the ionizing radiation conditions it brings the erythroid and granulocytopoesis activation. Moreover the combined MMSC and HSC transplantation gives cytoprotective action on the myeloid tissue due to decrease of cyto genically changed cells in the mature animals under the condition of ionizing radiation, but in the old animals this effect can be seen even under physiological condition. Combined transplantation of MMSC and GSC can be used in the mature and old laboratory animals under the conditions of ionising radiation for the haemopoesis activation.

  4. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats.

    Science.gov (United States)

    Rasoolijazi, Homa; Mehdizadeh, Mehdi; Soleimani, Mansoureh; Nikbakhte, Farnaz; Eslami Farsani, Mohsen; Ababzadeh, Shima

    2015-01-01

    The Rosemary extract (RE) possesses various antioxidant, cytoprotective and cognition- improving bioactivities. In this study, we postulated which doses of RE have a more effect on the hippocampus of middle-aged rats. In this experimental study, thirty-two middle-aged male Wistar rats were fed by different doses (50,100 and 200 mg/kg/day) of RE (containing 40% carnosic acid) or distilled water for 12 weeks. The effects of different RE doses on learning and spatial memory scores, hippocampal neuronal survival, antioxidant enzymes and lipid peroxidation amount were evaluated by one and two way analysis of variance (ANOVA). It seemed that RE (100mg/kg) could recover the spatial memory retrieval score (prosemary extract (40% carnosic acid) may improve the memory score and oxidative stress activity in middle aged rats in a dose dependent manner, especially in 100mg/kg.

  5. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia.

    Science.gov (United States)

    Moos, Walter H; Maneta, Eleni; Pinkert, Carl A; Irwin, Michael H; Hoffman, Michelle E; Faller, Douglas V; Steliou, Kosta

    2016-03-01

    Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia. © 2016 Wiley Periodicals, Inc.

  6. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms

    Directory of Open Access Journals (Sweden)

    Michal eHorowitz

    2015-07-01

    Full Text Available Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA develops via altered molecular programs such as cross-tolerance (Heat Acclimation -Neuroprotection Cross-Tolerance -HANCT. The mechanisms underlying cross-tolerance depend on enhanced on-demand protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI. The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.

  7. When defense becomes dangerous – transcription factor Nrf2 and cancer

    Directory of Open Access Journals (Sweden)

    Adam Krysztofiak

    2015-01-01

    Full Text Available The transcription factor Nrf2 controls the expression of genes encoding cytoprotective enzymes and proteins. Its activation is related to conformational changes in the inhibitory protein Keap1 and/or Nrf2 phosphorylation by upstream kinases. Activation of Nrf2 can lead to the induction of phase II enzymes responsible for the inactivation of potential carcinogens. This may constitute an important strategy of chemoprevention. Moreover, these enzymatic systems participating in the biotransformation of drugs can reduce their therapeutic effects, contributing to drug resistance. For this reason, a clear understanding of the role of Nrf2 is essential to assess the beneficial and adverse effects of its up-regulation, particularly in relation to the prevention and treatment of cancer. This article summarizes the current state of knowledge on the significance of Nrf2 in tumorigenesis.

  8. High-dose erythropoietin for tissue protection

    DEFF Research Database (Denmark)

    Lund, Anton; Lundby, Carsten; Olsen, Niels Vidiendal

    2014-01-01

    BACKGROUND: The discovery of potential anti-apoptotic and cytoprotective effects of recombinant human erythropoietin (rHuEPO) has led to clinical trials investigating the use of high-dose, short-term rHuEPO therapy for tissue protection in conditions such as stroke and myocardial infarction....... Experimental studies have been favourable, but the clinical efficacy has yet to be validated. MATERIALS AND METHODS: We have reviewed clinical studies regarding the use of high-dose, short-term rHuEPO therapy for tissue protection in humans with the purpose to detail the safety and efficacy of r...... no effect of rHuEPO therapy on measures of tissue protection. Five trials including 1025 patients reported safety concerns in the form of increased mortality or adverse event rates. No studies reported reduced mortality. CONCLUSIONS: Evidence is sparse to support a tissue-protective benefit of r...

  9. Dietary nitrates, nitrites, and cardiovascular disease.

    Science.gov (United States)

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  10. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    Science.gov (United States)

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  11. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    International Nuclear Information System (INIS)

    Arana, Maite Rocío; Tocchetti, Guillermo Nicolás; Domizi, Pablo; Arias, Agostina; Rigalli, Juan Pablo; Ruiz, María Laura

    2015-01-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA

  12. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    Energy Technology Data Exchange (ETDEWEB)

    Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar [Instituto de Biología Molecular y Celular de Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Arias, Agostina, E-mail: agoarias@yahoo.com.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Rigalli, Juan Pablo, E-mail: jprigalli@gmail.com [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Ruiz, María Laura, E-mail: ruiz@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); and others

    2015-09-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA

  13. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, Rumen V.; Knatko, Elena V.; McLaughlin, Lesley A.; Henderson, Colin J. [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Zheng, Suqing [Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794 (United States); Huang, Jeffrey T.-J. [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Honda, Tadashi [Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794 (United States); Dinkova-Kostova, Albena T., E-mail: a.dinkovakostova@dundee.ac.uk [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States); Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States)

    2015-09-25

    The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC{sub 0–24h} was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the k{sub el} was 0.068 h{sup −1}. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs. - Highlights: • TBE-31 is a cysteine targeting compound with a reversible covalent mode of action. • After a single oral dose, the blood concentration of TBE-31 exhibits two peaks. • Oral TBE-31 is a potent activator of Nrf2-dependent enzymes in

  14. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    International Nuclear Information System (INIS)

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  15. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  16. Effects of octreotide and a-tocopherol on bacterial translocation in experimental intestinal obstruction: a microbiological, light and electronmicroscopical study.

    Science.gov (United States)

    Reis, E; Kama, N A; Coskun, T; Korkusuz, P; Ors, U; Aksoy, M; Kulaçoglu, S

    1997-01-01

    Bacterial translocation induced by intestinal obstruction is suggested to be due to increased intestinal luminal volume, leading to intestinal overgrowth with certain enteric microorganisms and intestinal mucosal damage. If this suggestion is true, maintenance of intestinal mucosal integrity by a cytoprotective agent, a-tocopherol, and inhibition of gastrointestinal secretions by octreotide should decrease the incidence of bacterial translocation and extent of mucosal injury due to intestinal obstruction. Complete intestinal obstruction was created in the distal ileum of male Wistar Albino rats by a single 3-0 silk suture. The animals received subcutaneous injections of 1 ml of physiologic saline (group 1) (PS 24) and 1 ml of saline containing octreotide acetate (100 micrograms/kg) (group 2) (OC 24), at 0, 12 and 24 hours of obstruction. In group 3 (PS 48) and group 4 (OC 48), the rats were treated with subcutaneous physiologic saline (1 ml) and octreotide acetate (100 micrograms/kg), respectively, beginning at the time of obstruction and every 12 hours for 48 hours. The rats in group 5 (Toc 24), were pretreated with intramuscular a-tocopherol 500 mg/kg on day 1 and 8, and underwent laparotomy on day 9. A third dose of a-tocopherol was injected at the time of obstruction on day 9 and no treatment was given thereafter. We tested the incidence of bacterial translocation in systemic organs and circulation and evaluated the histopathological changes in all groups. Treatment with octreotide acetate was found to be ineffective in reducing the incidence of translocation, with no histopathological improvement. Mucosal damage scores, on the other hand, in the a-tocopherol group were statistically less than those in the octreotide and control groups (p < 0.05). Additionally, a-tocopherol treatment decreased the incidence of organ invasion with translocating bacteria, although this difference did not reach statistical significance. Octreotide acetate treatment in complete

  17. [Modifications in myocardial energy metabolism in diabetic patients

    Science.gov (United States)

    Grynberg, A

    2001-11-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimétazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  18. Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds

    International Nuclear Information System (INIS)

    Bisht, Kavita; Wagner, Karl-Heinz; Bulmer, Andrew C.

    2010-01-01

    Numerous dietary compounds, ubiquitous in fruits, vegetables and spices have been isolated and evaluated during recent years for their therapeutic potential. These compounds include flavonoid and non-flavonoid polyphenols, which describe beneficial effects against a variety of ailments. The notion that these plant products have health promoting effects emerged because their intake was related to a reduced incidence of cancer, cardiovascular, neurological, respiratory, and age-related diseases. Exposure of the body to a stressful environment challenges cell survival and increases the risk of chronic disease developing. The polyphenols afford protection against various stress-induced toxicities through modulating intercellular cascades which inhibit inflammatory molecule synthesis, the formation of free radicals, nuclear damage and induce antioxidant enzyme expression. These responses have the potential to increase life expectancy. The present review article focuses on curcumin, resveratrol, and flavonoids and seeks to summarize their anti-inflammatory, cytoprotective and DNA-protective properties.

  19. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors

    Directory of Open Access Journals (Sweden)

    Donald M. Bryant

    2017-01-01

    Full Text Available Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.

  20. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  1. Melatonin and pregnancy in the human.

    Science.gov (United States)

    Tamura, Hiroshi; Nakamura, Yasuhiko; Terron, M Pilar; Flores, Luis J; Manchester, Lucien C; Tan, Dun-Xian; Sugino, Norihiro; Reiter, Russel J

    2008-04-01

    The purpose of this systematic review is to access the current state of knowledge concerning the role for melatonin in human pregnancy. Melatonin is a neuroendocrine hormone secreted nightly by pineal gland and regulates biological rhythms. The nighttime serum concentration of melatonin shows an incremental change toward the end of pregnancy. This small lipophilic indoleamine crosses the placenta freely without being altered. Maternal melatonin enters the fetal circulation with ease providing photoperiodic information to the fetus. Melatonin works in a variety of ways as a circadian rhythm modulator, endocrine modulator, immunomodulator, direct free radical scavenger and indirect antioxidant and cytoprotective agent in human pregnancy, and it appears to be essential for successful pregnancy. It also seems to be involved in correcting the pathophysiology of complications during pregnancy including those due to abortion, pre-eclampsia and fetal brain damage. The scientific evidence supporting a role for melatonin in human pregnancy is summarized.

  2. Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway.

    Science.gov (United States)

    Mascuch, Samantha J; Boudreau, Paul D; Carland, Tristan M; Pierce, N Tessa; Olson, Joshua; Hensler, Mary E; Choi, Hyukjae; Campanale, Joseph; Hamdoun, Amro; Nizet, Victor; Gerwick, William H; Gaasterland, Teresa; Gerwick, Lena

    2018-03-23

    The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway. Activation of this pathway by honaucin A in cultured human MCF7 cells was confirmed using an Nrf2 luciferase reporter assay. In vitro alkylation experiments with the natural product and N-acetyl-l-cysteine suggest that honaucin A activates this pathway through covalent interaction with the sulfhydryl residues of the cytosolic repressor protein Keap1. Honaucin A presents a potential therapeutic lead for diseases with an inflammatory component modulated by Nrf2-ARE.

  3. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide.

    Science.gov (United States)

    Song, Yi; Ni, Yuanying; Hu, Xiaosong; Li, Quanhong

    2015-11-01

    Phosphorylated derivatives of pumpkin polysaccharide with different degree of substitution were synthesized using POCl3 and pyridine. Antioxidant activities and cytoprotective effects of unmodified polysaccharide and phosphorylated derivatives were investigated employing various in vitro systems. Results showed that high ratio of POCl3/pyridine could increase the degree of substitution and no remarkable degradation occurred in the phosphorylation process. Characteristic absorption of phosphorylation appeared both in the IR and (31)P NMR spectrum. The df values between 2.27 and 2.55 indicated the relatively expanded conformation of the phosphorylated derivatives. All the phosphorylated polysaccharides exhibited higher antioxidant activities. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by the derivatives. In general, phosphorylation could improve the antioxidant activities of pumpkin polysaccharide both in vitro and in a cell system. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neuroprotective effects of curcumin and highly bioavailable curcumin on oxidative stress induced by sodium nitroprusside in rat striatal cell culture.

    Science.gov (United States)

    Nazari, Qand Agha; Kume, Toshiaki; Izuo, Naotaka; Takada-Takatori, Yuki; Imaizumi, Atsushi; Hashimoto, Tadashi; Izumi, Yasuhiko; Akaike, Akinori

    2013-01-01

    Curcumin, a polyphenolic compound extracted from Curcuma longa, has several pharmacological activities such as anticancer, anti-inflammatory, and antioxidant effects. The purpose of this study was to investigate the protective effects of curcumin and THERACURMIN, a highly bioavailable curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in primary striatal cell culture. THERACURMIN as well as curcumin significantly prevented SNP-induced cytotoxicity. To elucidate the cytoprotective effects of curcumin and THERACURMIN, we measured the intracellular glutathione level in striatal cells. Curcumin and THERACURMIN significantly elevated the glutathione level, which was decreased by treatment with SNP. Moreover, curcumin showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability. Finally, a ferrozine assay showed that curcumin (10-100 µg/mL) has potent Fe(2+)-chelating ability. These results suggest that curcumin and THERACURMIN exert potent protective effects against SNP-induced cytotoxicity by free radical-scavenging and iron-chelating activities.

  5. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA2 activity

    International Nuclear Information System (INIS)

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2015-01-01

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA 2 , which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA 2 activity, leading to avoidance of non-apoptotic cell death

  6. ANTI-HSP60 and ANTI-HSP70 antibody levels and micro/ macrovascular complications in type 1 diabetes: the EURODIAB Study

    DEFF Research Database (Denmark)

    Gruden, G.; Bruno, G.; Chaturvedi, N.

    2009-01-01

    OBJECTIVES: The heat shock proteins 60 and 70 (HSP60, HSP70) play an important role in cytoprotection. Under stress conditions they are released into the circulation and elicit an immune response. Anti-HSP60 and anti-HSP70 antibody levels have been associated with cardiovascular disease. Type 1......-control study from the EURODIAB Study of 531 type 1 diabetic patients was performed. SUBJECTS: Cases (n = 363) were defined as those with one or more complications of diabetes; control subjects (n = 168) were all those with no evidence of any complication. We measured anti-HSP60 and anti-HSP70 antibody levels...... quartiles were associated with a 47% reduced odds ratio of micro/macrovascular complications, independently of conventional risk factors, markers of inflammation and endothelial dysfunction [odds ratio (OR) = 0.53, 95% confidence intervals (CI): 0.28-1.02]. CONCLUSIONS: In this large cohort of type 1...

  7. Evaluation of the radioprotective potential of the polyphenol norbadione A

    International Nuclear Information System (INIS)

    Le Roux, Antoine; Josset, Elodie; Benzina, Sami; Bischoff, Pierre; Nadal, Brice; Desage-El Murr, Marine; Heurtaux, Benoit; Taran, Frederic; Le Gall, Thierry; Meunier, Stephane; Denis, Jean-Marc

    2012-01-01

    There is an obvious need to develop efficient countermeasure agents for use in emergency situations or as adjuncts to radiotherapy to protect healthy tissues from the consequences of an irradiation. To this end, we have investigated the capacity of norbadione A, a polyphenol extracted from the edible mushroom Bay boletus to reduce the toxicity of ionizing radiation towards cultured cells and whole-body exposed mice. Results indicate that this compound could slightly enhance the resistance of TK6 lymphoid cells to radiation and increase the survival rate in lethally irradiated mice. However, norbadione A was found to be cytotoxic at concentrations over 30 μM in vitro. The acute toxicity of this compound also precluded its use at higher doses for enhanced in vivo radioprotection. Norbadione A may nevertheless serve as lead for development of less toxic analogs with potentially cytoprotective/radioprotective activities. (authors)

  8. A study of the effect of propolis against gastric ulcers induced in gamma -irradiated rats

    International Nuclear Information System (INIS)

    Abd El-Aziz, R.R

    2009-01-01

    The anti-ulcerogenic activity of propolis or bee glue, a natural product from honey bees, was investigated against indomethacin -induced gastric ulcers in non- irradiated and irradiated rats, and the effects were compared with those of the proton pump inhibitor lansoprazole, as a reference anti-ulcerogenic drug. Indomethacin-induced gastric ulcer was used in this study as a model of experimentally induced gastric ulceration. The anti-ulcerogenic, antisecretory and cytoprotective activities of 13% aqueous propolis extract (APE) were assessed. Gastric contents of animals were sampled for the measurement of free acidity, acid output, mucin and pepsin concentrations in the gastric juice. The stomach was examined macroscopically for the determination of the ulcer index. PGE 2 was assayed in the gastric mucosa, while the pro-inflammatory cytokines TNF-α and IL-1β as well as the oxidative stress marker MDA were determined in the plasma.

  9. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis

    Directory of Open Access Journals (Sweden)

    Samuel B. Stephens

    2017-09-01

    Full Text Available The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity.

  10. Gas Chromatography-Mass Spectrometry Analysis of Ulva fasciata (Green Seaweed Extract and Evaluation of Its Cytoprotective and Antigenotoxic Effects

    Directory of Open Access Journals (Sweden)

    Idania Rodeiro

    2015-01-01

    Full Text Available The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract’s antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1–500 µg/mL and benzo[a]pyrene (BP, the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25–50 µg/mL inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent.

  11. Gas Chromatography-Mass Spectrometry Analysis of Ulva fasciata (Green Seaweed) Extract and Evaluation of Its Cytoprotective and Antigenotoxic Effects.

    Science.gov (United States)

    Rodeiro, Idania; Olguín, Sitlali; Santes, Rebeca; Herrera, José A; Pérez, Carlos L; Mangas, Raisa; Hernández, Yasnay; Fernández, Gisselle; Hernández, Ivones; Hernández-Ojeda, Sandra; Camacho-Carranza, Rafael; Valencia-Olvera, Ana; Espinosa-Aguirre, Jesús Javier

    2015-01-01

    The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract's antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1-500 µg/mL) and benzo[a]pyrene (BP), the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25-50 µg/mL) inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent.

  12. The Multiple Facets of Lutein: A Call for Further Investigation in the Perinatal Period.

    Science.gov (United States)

    Perrone, Serafina; Tei, Monica; Longini, Mariangela; Buonocore, Giuseppe

    Lutein may have important antioxidant actions in free-radical-mediated diseases, in addition to its well-known antioxidant and cytoprotective effects on macula and photoreceptors. The peculiar perinatal susceptibility to oxidative stress indicates that prophylactic use of antioxidants as lutein could help to prevent or at least to reduce oxidative stress related diseases in newborns. Since lutein is not synthesized by humans, the intake primarily depends on diet or supplementation. Newborns receive lutein exclusively from breast milk. Lutein supplementation in term newborns has been reported to reduce oxidative stress and increase antioxidant capacities in the first days of life. Innovative frontiers concerning lutein supplementation are orientated toward cardiometabolic health improvement and cognitive benefits. The safety of lutein as an antioxidant agent has been confirmed in experimental and clinical studies, but its routine use is not recommended in perinatal period. This review summarizes what is known about the role of lutein as an antioxidant and anti-inflammatory agent in animal model and humans.

  13. The Multiple Facets of Lutein: A Call for Further Investigation in the Perinatal Period

    Directory of Open Access Journals (Sweden)

    Serafina Perrone

    2016-01-01

    Full Text Available Lutein may have important antioxidant actions in free-radical-mediated diseases, in addition to its well-known antioxidant and cytoprotective effects on macula and photoreceptors. The peculiar perinatal susceptibility to oxidative stress indicates that prophylactic use of antioxidants as lutein could help to prevent or at least to reduce oxidative stress related diseases in newborns. Since lutein is not synthesized by humans, the intake primarily depends on diet or supplementation. Newborns receive lutein exclusively from breast milk. Lutein supplementation in term newborns has been reported to reduce oxidative stress and increase antioxidant capacities in the first days of life. Innovative frontiers concerning lutein supplementation are orientated toward cardiometabolic health improvement and cognitive benefits. The safety of lutein as an antioxidant agent has been confirmed in experimental and clinical studies, but its routine use is not recommended in perinatal period. This review summarizes what is known about the role of lutein as an antioxidant and anti-inflammatory agent in animal model and humans.

  14. Use of ursodeoxycholic acid in patients with hypertransaminasemia

    Directory of Open Access Journals (Sweden)

    Claudio Puoti

    2014-09-01

    Full Text Available Ursodeoxycholic acid (UDCA is a hydrophilic bile acid deriving from 7β epimerization of primary bile compound chenodeoxycholic acid. It may have antioxidant, immunomodulatory, antifibrotic and cytoprotective effects, therefore it has been extensively used in the treatment of cholestatic chronic liver diseases (primary biliary cirrhosis, primary sclerosing cholangitis, cholestasis of pregnancy, etc.. Due to the effectiveness of UDCA in decreasing serum liver enzyme levels also in non-cholestatic patients with chronic liver damage of various etiologies, this bile acid is now extensively used in clinical practice in combination with standard therapies, or as alternative treatment. In this paper, after a review of the biochemistry and physiology of UDCA, we have analyzed available data from the international literature on the efficacy and safety of UDCA in patients with hypertransaminasemia due to non-cholestatic chronic liver diseases, such as chronic viral hepatitis B and C and liver steatosis, the three main causes of aminotransferase elevation in western countries.

  15. Fatty Acid Mixtures from Nigella sativa Protects PC12 Cells from Oxidative Stress and Apoptosis Induced by Doxorubicin

    Directory of Open Access Journals (Sweden)

    Leila Hosseinzadeh

    2018-03-01

    Full Text Available Background: Fatty acids (FAs, the key structural elements of dietary lipids, are notable in the nutritional value of plants. Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs. Methods: Seeds were extracted using hexane and their cytoprotective activity was assessed against doxorubicin (DOX-mediated oxidative stress and apoptosis in PC12 cell line. Results: In spite of the cellular death induced by DOX toward PC12 cells, bioassay-guided purification showed that pretreatment with FAs mixtures (24h attenuated DOX-mediated apoptosis, which could be attributed to the inhibited caspase 3 activity and enhanced mitochondrial membrane potential. Palmitic acid, caprylic acid and oleic acid each 1/3 in the mixture, also suppressed DOX-induced ROS generation. Conclusion: Our observation indicated that the subtoxic concentration of FAs from Nigella sativa could effectively protect the cells against oxidative stress, due to their antioxidant activity, and could be regarded as a dietary supplement.

  16. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  17. Anti-ulcer activity of African walnut Tetracarpidium conophorum nuts against gastric ulcers in rats

    Directory of Open Access Journals (Sweden)

    Kenneth Maduabuchi Ezealisiji

    2014-09-01

    Full Text Available Objective: To determine the anti-ulcer activity of methanol extract of Tetracarpidium conophorum (Mull. Arg. (METC nuts in albino Wistar rats. Methods: METC was investigated in pylorus ligation and ethanol induced models in experimental animals. Parameters such as gastric volume, pH, total and free acidity, and ulcer index were used as indicator for antiulcerogenic activity in both models. METC at doses of 250 and 500 mg/kg orally was used to determine whether the extract could produce significant protection of the gastric lesions by pylorus ligation and ethanol. Results: The extract at dose levels of 250 and 500 mg/kg exhibited significant (P<0.05 decrease in the gastric volume, total and free acidity while the pH of gastric juice was significantly (P<0.05 increased in both models. Conclusions: The result showed that METC possesses anti-ulcer as well as cytoprotective properties which could be attributed to the presence of secondary metabolites.

  18. Emerging functions of the Fanconi anemia pathway at a glance.

    Science.gov (United States)

    Sumpter, Rhea; Levine, Beth

    2017-08-15

    Fanconi anemia (FA) is a rare disease, in which homozygous or compound heterozygous inactivating mutations in any of 21 genes lead to genomic instability, early-onset bone marrow failure and increased cancer risk. The FA pathway is essential for DNA damage response (DDR) to DNA interstrand crosslinks. However, proteins of the FA pathway have additional cytoprotective functions that may be independent of DDR. We have shown that many FA proteins participate in the selective autophagy pathway that is required for the destruction of unwanted intracellular constituents. In this Cell Science at a Glance and the accompanying poster, we briefly review the role of the FA pathway in DDR and recent findings that link proteins of the FA pathway to selective autophagy of viruses and mitochondria. Finally, we discuss how perturbations in FA protein-mediated selective autophagy may contribute to inflammatory as well as genotoxic stress. © 2017. Published by The Company of Biologists Ltd.

  19. Structural Probing and Molecular Modeling of the A₃ Adenosine Receptor: A Focus on Agonist Binding.

    Science.gov (United States)

    Ciancetta, Antonella; Jacobson, Kenneth A

    2017-03-11

    Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A₁, A 2A , A 2B and A₃, which belong to the G protein-coupled receptor (GPCR) superfamily. The human A₃AR (hA₃AR) subtype is implicated in several cytoprotective functions. Therefore, hA₃AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure-activity relationships (SARs) of newly emerged A₃AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM) data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A₃AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates.

  20. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-01-01

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection

  1. Genetic and Chemical Correction of Cholesterol Accumulation and Impaired Autophagy in Hepatic and Neural Cells Derived from Niemann-Pick Type C Patient-Specific iPS Cells

    Directory of Open Access Journals (Sweden)

    Dorothea Maetzel

    2014-06-01

    Full Text Available Niemann-Pick type C (NPC disease is a fatal inherited lipid storage disorder causing severe neurodegeneration and liver dysfunction with only limited treatment options for patients. Loss of NPC1 function causes defects in cholesterol metabolism and has recently been implicated in deregulation of autophagy. Here, we report the generation of isogenic pairs of NPC patient-specific induced pluripotent stem cells (iPSCs using transcription activator-like effector nucleases (TALENs. We observed decreased cell viability, cholesterol accumulation, and dysfunctional autophagic flux in NPC1-deficient human hepatic and neural cells. Genetic correction of a disease-causing mutation rescued these defects and directly linked NPC1 protein function to impaired cholesterol metabolism and autophagy. Screening for autophagy-inducing compounds in disease-affected human cells showed cell type specificity. Carbamazepine was found to be cytoprotective and effective in restoring the autophagy defects in both NPC1-deficient hepatic and neuronal cells and therefore may be a promising treatment option with overall benefit for NPC disease.

  2. Novel Phenolic Inhibitors of Small/Intermediate-Conductance Ca(2+)-Activated K(+) Channels, KCa3.1 and KCa2.3

    DEFF Research Database (Denmark)

    Olivan-Viguera, Aida; Valero, Marta Sofía; Murillo, María Divina

    2013-01-01

    -inflammatory drugs (NSAIDs), with known cytoprotective, anti-inflammatory, and/or cytostatic activities. METHODOLOGYPRINCIPAL FINDINGS: In electrophysiological experiments, we identified the natural phenols, caffeic acid (EC50 1.3 µM) and resveratrol (EC50 10 µM) as KCa3.1 inhibitors with moderate potency....... The phenols, vanillic acid, gallic acid, and hydroxytyrosol had weak or no blocking effects. Out of the NSAIDs, flufenamic acid was moderately potent (EC50 1.6 µM), followed by mesalamine (EC50≥10 µM). The synthetic fluoro-trivanillic ester, 13b ([3,5-bis[(3-fluoro-4-hydroxy-benzoyl)oxymethyl]phenyl]methyl 3.......3 activation. CONCLUSIONSSIGNIFICANCE: We identified the natural phenols, caffeic acid and resveratrol, the NSAID, flufenamic acid, and the polyphenol 13b as novel KCa3.1 inhibitors. The high potency of 13b with pan-activity on KCa3.1/KCa2 channels makes 13b a new pharmacological tool to manipulate...

  3. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney.

    Science.gov (United States)

    Reglodi, Dora; Kiss, Peter; Horvath, Gabriella; Lubics, Andrea; Laszlo, Eszter; Tamas, Andrea; Racz, Boglarka; Szakaly, Peter

    2012-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a widespread neuropeptide with diverse effects in the nervous system and peripheral organs. One of the most well-studied effects of PACAP is its cytoprotective action, against different harmful stimuli in a wide variety of cells and tissues. PACAP occurs in the urinary system, from the kidney to the lower urinary tract. The present review focuses on the nephroprotective effects of PACAP and summarizes data obtained regarding the protective effects of PACAP in different models of kidney pathologies. In vitro data show that PACAP protects tubular cells against oxidative stress, myeloma light chain, cisplatin, cyclosporine-A and hypoxia. In vivo data provide evidence for its protective effects in ischemia/reperfusion, cisplatin, cyclosporine-A, myeloma kidney injury, diabetic nephropathy and gentamicin-induced kidney damage. Results accumulated on the renoprotective effects of PACAP suggest that PACAP is an emerging candidate for treatment of human kidney pathologies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System

    Directory of Open Access Journals (Sweden)

    Maya Ben Yehuda Greenwald

    2017-01-01

    Full Text Available Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf2 pathway and induce phase II cytoprotective enzymes. Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases.

  5. Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System

    Science.gov (United States)

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben Sasson, Shmuel; Bitton, Ronit; Bianco-Peled, Havazelet

    2017-01-01

    Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf2 pathway and induce phase II cytoprotective enzymes). Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases. PMID:28757910

  6. Seasonal Variation in the Hepatoproteome of the Dehydration- and Freeze-Tolerant Wood Frog, Rana sylvatica

    Directory of Open Access Journals (Sweden)

    Jon P. Costanzo

    2011-11-01

    Full Text Available Winter’s advent invokes physiological adjustments that permit temperate ectotherms to cope with stresses such as food shortage, water deprivation, hypoxia, and hypothermia. We used liquid chromatography (LC in combination with tandem mass spectrometry (MS/MS quantitative isobaric (iTRAQ™ peptide mapping to assess variation in the abundance of hepatic proteins in summer- and winter-acclimatized wood frogs (Rana sylvatica, a northerly-distributed species that tolerates extreme dehydration and tissue freezing during hibernation. Thirty-three unique proteins exhibited strong seasonal lability. Livers of winter frogs had relatively high levels of proteins involved in cytoprotection, including heat-shock proteins and an antioxidant, and a reduced abundance of proteins involved in cell proliferation, protein synthesis, and mitochondrial function. They also exhibited altered levels of certain metabolic enzymes that participate in the biochemical reorganization associated with aphagia and reliance on energy reserves, as well as the freezing mobilization and post-thaw recovery of glucose, an important cryoprotective solute in freezing adaptation.

  7. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts.

    Science.gov (United States)

    Oztürk, Nilgün; Korkmaz, Seval; Oztürk, Yusuf; Başer, K Hüsnü Can

    2006-03-01

    Wound healing properties of Gentian (Gentiana lutea ssp. symphyandra) extract and its main constituents, gentiopicroside, sweroside and swertiamarine (compounds 1-3, respectively) were evaluated by comparison with dexpanthenol on cultured chicken embryonic fibroblasts. The extract was also analyzed by HPLC to quantify its constituents. Chicken embryonic fibroblasts from fertilized eggs were incubated with the plant extract and its constituents, compounds 1-3. Using microscopy, mitotic ability, morphological changes and collagen production in the cultured fibroblasts were evaluated as parameters. Wound healing activity of Gentian seems to be mainly due to the increase in the stimulation of collagen production and the mitotic activity by compounds 2 and 3, respectively (p < 0.005 in all cases). All three compounds also exhibited cytoprotective effects, which may cause a synergism in terms of wound healing activity of Gentian. The findings demonstrated the wound healing activity of Gentian, which has previously been based only on ethnomedical data.

  8. Nrf2, the Master Regulator of Anti-Oxidative Responses

    Directory of Open Access Journals (Sweden)

    Sandra Vomund

    2017-12-01

    Full Text Available Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2. Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.

  9. [Alpha-melanocyte-stimulating hormone. From bench to bedside].

    Science.gov (United States)

    Böhm, M; Luger, T A

    2010-06-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) is a tridecapeptide that is produced by the skin itself from the precursor proopiomelanocortin. It crucially mediates ultraviolet light-induced tanning after binding to melanocortin-1 receptors (MC-1R) expressed on the surface of epidermal melanocytes. The potent pigment-inducing and also cytoprotective actions of alpha-MSH are the rationale for the performance of first phase II clinical trials with Nle4-D-Phe7-alpha-MSH (NDP-alpha-MSH), a subcutaneously administered synthetic and superpotent alpha-MSH analogue, in patients with photodermatoses such as erythropoietic protoporphyria. Since alpha-MSH has shown promising anti-inflammatory and antifibrotic properties in numerous preclinical studies, it will be most interesting to evaluate these effects in further clinical pilot studies with NDP-alpha-MSH. In addition to alpha-MSH analogues, truncated tripeptides such as KDPT which do not bind to MC-1R but have sustained anti-inflammatory properties are currently emerging as another novel therapeutic strategy in dermatology.

  10. Spermidine: a novel autophagy inducer and longevity elixir.

    Science.gov (United States)

    Madeo, Frank; Eisenberg, Tobias; Büttner, Sabrina; Ruckenstuhl, Christoph; Kroemer, Guido

    2010-01-01

    Spermidine is a ubiquitous polycation that is synthesized from putrescine and serves as a precursor of spermine. Putrescine, spermidine and spermine all are polyamines that participate in multiple known and unknown biological processes. Exogenous supply of spermidine prolongs the life span of several model organisms including yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans) and flies (Drosophila melanogaster) and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug. Spermidine induces autophagy in cultured yeast and mammalian cells, as well as in nematodes and flies. Genetic inactivation of genes essential for autophagy abolishes the life span-prolonging effect of spermidine in yeast, nematodes and flies. These findings complement expanding evidence that autophagy mediates cytoprotection against a variety of noxious agents and can confer longevity when induced at the whole-organism level. We hypothesize that increased autophagic turnover of cytoplasmic organelles or long-lived proteins is involved in most if not all life span-prolonging therapies.

  11. In vitro investigation of sodium diclofenac adsorption on sucralfate.

    Science.gov (United States)

    Grimling, Bozena; Pluta, Janusz

    2006-01-01

    Adsorption of sodium diclofenac was investigated in the presence of sucralfate--a cytoprotective agent preventing gastropathy, adverse effect of diclofenac. Evaluation of adsorption was performed by means of a static method in vitro taking into account pH of the environment, temperature, concentration of the investigated agents and the form of sucralfate. Findings obtained prove that sodium diclofenac is adsorbed on sucralfate in all investigated pH ranges and the capability of sucralfate binding depends on its form, temperature and environmental pH. The highest binding was observed at pH 5.0 in the presence of sucralfate, which at this pH has the form of a suspension, while the lowest--at pH 1.5 in the presence of sucralfate in the form of paste. Low values of adsorption temperature of diclofenac as well as the relationship between the level of its adsorption and environmental pH are the dominating factors pointing to the physical and exothermic adsorption.

  12. Examination of the requirement for ucp-4, a putative homolog of mammalian uncoupling proteins, for stress tolerance and longevity in C. elegans.

    Science.gov (United States)

    Iser, Wendy B; Kim, Daemyung; Bachman, Eric; Wolkow, Catherine

    2005-10-01

    Reactive oxygen species (ROS) are generated by mitochondrial respiration and can react with and damage cellular components. According to the free radical theory of aging, oxidative damage from mitochondrial ROS is a major cause of cellular decline during aging. Mitochondrial uncoupling proteins (UCPs) uncouple ATP production from electron transport and can be stimulated by free radicals, suggesting UCPs may perform a cytoprotective function. The nematode, Caenorhabditis elegans, contains one UCP-like protein, encoded by the ucp-4 gene. We have investigated the genetic requirement for ucp-4 in normal aging and stress resistance. Consistent with the hypothesis that ucp-4 encodes a putative uncoupling protein, animals lacking ucp-4 function contained elevated ATP levels. However, the absence of ucp-4 function did not affect adult lifespan or survival in the presence of thermal or oxidative stress. Together, these results demonstrate that ucp-4 is a negative regulator of ATP production in C. elegans, but is not required for normal lifespan.

  13. Expression of Flk-1 and Cyclin D2 mRNA in the Myocardium of Rats with Doxorubicin-Induced Cardiomyopathy and after Treatment with Betulonic Acid Amide.

    Science.gov (United States)

    Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L

    2017-10-01

    The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.

  14. Protective Effect of the Ethyl Acetate Fraction of Sargassum muticum against Ultraviolet B–Irradiated Damage in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Jin Won Hyun

    2011-11-01

    Full Text Available The aim of this study was to investigate the cytoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME against ultraviolet B (UVB-induced cell damage in human keratinocytes (HaCaT cells. SME exhibited scavenging activity toward the 1,1-diphenyl-2-picrylhydrazyl radicals and hydrogen peroxide (H2O2 and UVB-induced intracellular reactive oxygen species (ROS. SME also scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4 + H2O2, which was detected using electron spin resonance spectrometry. In addition, SME decreased the level of lipid peroxidation that was increased by UVB radiation, and restored the level of protein expression and the activities of antioxidant enzymes that were decreased by UVB radiation. Furthermore, SME reduced UVB-induced apoptosis as shown by decreased DNA fragmentation and numbers of apoptotic bodies. These results suggest that SME protects human keratinocytes against UVB-induced oxidative stress by enhancing antioxidant activity in cells, thereby inhibiting apoptosis.

  15. Mitochondrial energy metabolism is required for lifespan extension by the spastic paraplegia-associated protein spartin

    Directory of Open Access Journals (Sweden)

    Julia Ring

    2017-11-01

    Full Text Available Hereditary spastic paraplegias, a group of neurodegenerative disorders, can be caused by loss-of-function mutations in the protein spartin. However, the physiological role of spartin remains largely elusive. Here we show that heterologous expression of human or Drosophila spartin extends chronological lifespan of yeast, reducing age-associated ROS production, apoptosis, and necrosis. We demonstrate that spartin localizes to the proximity of mitochondria and physically interacts with proteins related to mitochondrial and respiratory metabolism. Interestingly, Nde1, the mitochondrial external NADH dehydrogenase, and Pda1, the core enzyme of the pyruvate dehydrogenase complex, are required for spartin-mediated cytoprotection. Furthermore, spartin interacts with the glycolysis enhancer phospo-fructo-kinase-2,6 (Pfk26 and is sufficient to complement for PFK26-deficiency at least in early aging. We conclude that mitochondria-related energy metabolism is crucial for spartin’s vital function during aging and uncover a network of specific interactors required for this function.

  16. Carbon monoxide mediates heme oxygenase 1 induction via Nrf2 activation in hepatoma cells

    International Nuclear Information System (INIS)

    Lee, Bok-Soo; Heo, JungHee; Kim, Yong-Man; Shim, Sang Moo; Pae, Hyun-Ock; Kim, Young-Myeong; Chung, Hun-Taeg

    2006-01-01

    Carbon monoxide (CO) and nitric oxide (NO) are two gas molecules which have cytoprotective functions against oxidative stress and inflammatory responses in many cell types. Currently, it is known that NO produced by nitric oxide synthase (NOS) induces heme oxygenase 1 (HO1) expression and CO produced by the HO1 inhibits inducible NOS expression. Here, we first show CO-mediated HO1 induction and its possible mechanism in human hepatocytes. Exposure of HepG2 cells or primary hepatocytes to CO resulted in dramatic induction of HO1 in dose- and time-dependent manner. The CO-mediated HO1 induction was abolished by MAP kinase inhibitors (MAPKs) but not affected by inhibitors of PI3 kinase or NF-κB. In addition, CO induced the nuclear translocation and accumulation of Nrf2, which suppressed by MAPKs inhibitors. Taken together, we suggest that CO induces Nrf2 activation via MAPKs signaling pathways, thereby resulting in HO1 expression in HepG2 cells

  17. Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective

    Directory of Open Access Journals (Sweden)

    Stefania Bellini

    2017-12-01

    Full Text Available Heat shock proteins (HSPs are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.

  18. Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production.

    Science.gov (United States)

    Zhang, Liang; Zhou, Liwei; Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong

    2014-01-01

    Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

  19. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    Science.gov (United States)

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic

  20. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  1. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  2. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  3. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    International Nuclear Information System (INIS)

    Lammering, G.; Hewit, T.H.; Contessa, J.N.; Hawkins, W.; Lin, P.S.; Valerie, K.; Mikkelsen, R.; Dent, P.; Schmidt-Ullrich, R.K.

    2001-01-01

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts from human carcinoma and malignant glioma cells invariably expressed the constitutively active EGFR mutant, EGFRvIII. This mutant EGFRvIII is frequently found in vivo in glioblastoma, breast, prostate, lung and ovarian carcinoma, but does not appear to be expressed in tumor cells under in vitro conditions. The functional consequences of EGFRvIII expression on tumor cell radiation responses are currently unknown. We have therefore investigated in a transient transfection cell system the responses of EGFRvIII and downstream signal transduction pathways to IR. In addition, the capacity of EGFR-CD533 to disrupt the function of EGFRvIII was tested. Materials and Methods: The MDA-MB-231, U-87 MG and U-373 MG cell lines were established as tumors and then intratumorally transduced with Ad-EGFR-CD533 or Ad-LacZ (control vector). The transduction efficiency was > 40% in MDA-MB-231 tumors and reached > 70% in the glioma xenografts. Radiosensitivity was measured by ex vivo colony formation and growth delay assays. The functional consequences of EGFRvIII expression on cellular IR responses were studied in transiently transfected Chinese hamster ovary (CHO) cells because tumor cells do not express EGFRvIII in vitro. Transfection with null vectors and vectors encoding either EGFRvIII or EGFR were performed and similar protein expression levels were verified by Western blot analyses. Results: The radiosensitivity of Ad-EGFR-CD533 transduced tumors was significantly increased compared with Ad-LacZ transduced

  4. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    International Nuclear Information System (INIS)

    Latonen, Leena; Jaervinen, Paeivi M.; Laiho, Marikki

    2008-01-01

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  5. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology.

    Science.gov (United States)

    Kiang, J G; Tsokos, G C

    1998-11-01

    Heat shock proteins (HSPs) are detected in all cells, prokaryotic and eukaryotic. In vivo and in vitro studies have shown that various stressors transiently increase production of HSPs as protection against harmful insults. Increased levels of HSPs occur after environmental stresses, infection, normal physiological processes, and gene transfer. Although the mechanisms by which HSPs protect cells are not clearly understood, their expression can be modulated by cell signal transducers, such as changes in intracellular pH, cyclic AMP, Ca2+, Na+, inositol trisphosphate, protein kinase C, and protein phosphatases. Most of the HSPs interact with other proteins in cells and alter their function. These and other protein-protein interactions may mediate the little understood effects of HSPs on various cell functions. In this review, we focus on the structure of the HSP-70 family (HSP-70s), regulation of HSP-70 gene expression, their cytoprotective effects, and the possibility of regulating HSP-70 expression through modulation of signal transduction pathways. The clinical importance and therapeutic potential of HSPs are discussed.

  6. Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death.

    Science.gov (United States)

    Li, Zheng; Wang, Ji-Wei; Wang, Wei-Zhi; Zhi, Xiao-Fei; Zhang, Qun; Li, Bo-Wen; Wang, Lin-Jun; Xie, Kun-Ling; Tao, Jin-Qiu; Tang, Jie; Wei, Song; Zhu, Yi; Xu, Hao; Zhang, Dian-Cai; Yang, Li; Xu, Ze-Kuan

    2016-10-01

    Natriuretic peptide receptor A (NPRA), the major receptor for atrial natriuretic peptide (ANP), has been implicated in tumorigenesis; however, the role of ANP-NPRA signaling in the development of gastric cancer remains unclear. Immunohistochemical analyses indicated that NPRA expression was positively associated with gastric tumor size and cancer stage. NPRA inhibition by shRNA induced G2/M cell cycle arrest, cell death, and autophagy in gastric cancer cells, due to accumulation of reactive oxygen species (ROS). Either genetic or pharmacologic inhibition of autophagy led to caspase-dependent cell death. Therefore, autophagy induced by NPRA silencing may represent a cytoprotective mechanism. ROS accumulation activated c-Jun N-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). ROS-mediated activation of JNK inhibited cell proliferation by disturbing cell cycle and decreased cell viability. In addition, AMPK activation promoted autophagy in NPRA-downregulated cancer cells. Overall, our results indicate that the inhibition of NPRA suppresses gastric cancer development and targeting NPRA may represent a promising strategy for the treatment of gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

    Science.gov (United States)

    Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I

    2009-09-01

    Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.

  8. The Potential of Tetrandrine as a Protective Agent for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Sheng-Hong Tseng

    2011-09-01

    Full Text Available Stroke is one of the leading causes of mortality, with a high incidence of severe morbidity in survivors. The treatment to minimize tissue injury after stroke is still unsatisfactory and it is mandatory to develop effective treatment strategies for stroke. The pathophysiology of ischemic stroke is complex and involves many processes including energy failure, loss of ion homeostasis, increased intracellular calcium level, platelet aggregation, production of reactive oxygen species, disruption of blood brain barrier, and inflammation and leukocyte infiltration, etc. Tetrandrine, a bisbenzylisoquinoline alkaloid, has many pharmacologic effects including anti-inflammatory and cytoprotective effects. In addition, tetrandrine has been found to protect the liver, heart, small bowel and brain from ischemia/reperfusion injury. It is a calcium channel blocker, and can inhibit lipid peroxidation, reduce generation of reactive oxygen species, suppress the production of cytokines and inflammatory mediators, inhibit neutrophil recruitment and platelet aggregation, which are all devastating factors during ischemia/reperfusion injury of the brain. Because tetrandrine can counteract these important pathophysiological processes of ischemic stroke, it has the potential to be a protective agent for ischemic stroke.

  9. Garlic-Derived Organic Polysulfides and Myocardial Protection123

    Science.gov (United States)

    Bradley, Jessica M; Organ, Chelsea L; Lefer, David J

    2016-01-01

    For centuries, garlic has been shown to exert substantial medicinal effects and is considered to be one of the best disease-preventative foods. Diet is important in the maintenance of health and prevention of many diseases including cardiovascular disease (CVD). Preclinical and clinical evidence has shown that garlic reduces risks associated with CVD by lowering cholesterol, inhibiting platelet aggregation, and lowering blood pressure. In recent years, emerging evidence has shown that hydrogen sulfide (H2S) has cardioprotective and cytoprotective properties. The active metabolite in garlic, allicin, is readily degraded into organic diallyl polysulfides that are potent H2S donors in the presence of thiols. Preclinical studies have shown that enhancement of endogenous H2S has an impact on vascular reactivity. In CVD models, the administration of H2S prevents myocardial injury and dysfunction. It is hypothesized that these beneficial effects of garlic may be mediated by H2S-dependent mechanisms. This review evaluates the current knowledge concerning the cardioprotective effects of garlic-derived diallyl polysulfides. PMID:26764335

  10. Structural Probing and Molecular Modeling of the A3 Adenosine Receptor: A Focus on Agonist Binding

    Science.gov (United States)

    Ciancetta, Antonella; Jacobson, Kenneth A.

    2017-01-01

    Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A1, A2A, A2B and A3, which belong to the G protein-coupled receptor (GPCR) superfamily. The human A3AR (hA3AR) subtype is implicated in several cytoprotective functions. Therefore, hA3AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure-activity relationships (SARs) of newly emerged A3AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM) data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A3AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates. PMID:28287473

  11. Structural Probing and Molecular Modeling of the A3 Adenosine Receptor: A Focus on Agonist Binding

    Directory of Open Access Journals (Sweden)

    Antonella Ciancetta

    2017-03-01

    Full Text Available Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR subtypes, termed A1, A2A, A2B and A3, which belong to the G protein-coupled receptor (GPCR superfamily. The human A3AR (hA3AR subtype is implicated in several cytoprotective functions. Therefore, hA3AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure–activity relationships (SARs of newly emerged A3AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A3AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates.

  12. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  13. Screening of cytoprotectors against methotrexate-induced cytogenotoxicity from bioactive phytochemicals.

    Science.gov (United States)

    Gu, Shaobin; Wu, Ying; Yang, Jianbo

    2016-01-01

    As a well known anti-neoplastic drug, the cytogenotoxicity of methotrexate (MTX) has received more attention in recent years. To develop a new cytoprotector to reduce the risk of second cancers caused by methotrexate, an umu test combined with a micronucleus assay was employed to estimate the cytoprotective effects of ten kinds of bioactive phytochemicals and their combinations. The results showed that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones had higher antimutagenic activities than other phytochemicals. At the highest dose tested, the MTX genetoxicity was suppressed by 34.03%∼67.12%. Of all the bioactive phytochemical combinations, the combination of grape seed proanthocyanidins and eleutherosides from Siberian ginseng as well as green tea polyphenols and eleutherosides exhibited stronger antimutagenic effects; the inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5% and 71.8 ± 4.7%. Pretreatment of Kunming mice with phytochemical combinations revealed an obvious reduction in micronucleus and sperm abnormality rates following exposure to MTX (p phytochemicals combinations had the potential to be used as new cytoprotectors.

  14. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice.

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    Full Text Available Taurine (2-aminoethanesulfonic acid is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a. Tissue taurine depletion also enhances unfolded protein response (UPR, which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.

  15. Protective effects of red wine flavonols on 4-hydroxynonenal-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Jang, Young Jin; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    There is accumulating evidence that a moderate consumption of red wine has health benefits, such as the inhibition of neurodegenerative diseases. Although this is generally attributed to resveratrol, the protective mechanisms and the active substance(s) remain unclear. We examined whether and how red wine extract (RWE) and red wine flavonols quercetin and myricetin inhibited 4-hydroxynonenal (HNE)-induced apoptosis of rat pheochromocytoma PC12 cells. RWE attenuated HNE-induced PC12 cell death in a dose-dependent manner. HNE induced cleavage of poly(ADP-ribose) polymerase, which is involved in DNA repair in the nucleus, and this was inhibited by RWE treatment. Treatment with RWE also inhibited HNE-induced nuclear condensation in PC12 cells. Data of 2',7'-dichlorofluorescin diacetate showed that RWE protected against apoptosis of PC12 cells by attenuating intracellular reactive oxygen species. The cytoprotective effects on HNE-induced cell death were stronger for quercetin and myricetin than for resveratrol. HNE-induced nuclear condensation was attenuated by quercetin and myricetin. These results suggest that the neuroprotective potential of red wine is attributable to flavonols rather than to resveratrol.

  16. Melatonin.

    Science.gov (United States)

    Hardeland, Rüdiger; Pandi-Perumal, S R; Cardinali, Daniel P

    2006-03-01

    Melatonin, originally discovered as a hormone of the pineal gland, is produced by bacteria, protozoa, plants, fungi, invertebrates, and various extrapineal sites of vertebrates, including gut, skin, Harderian gland, and leukocytes. Biosynthetic pathways seem to be identical. Actions are pleiotropic, mediated by membrane and nuclear receptors, other binding sites or chemical interactions. Melatonin regulates the sleep/wake cycle, other circadian and seasonal rhythms, and acts as an immunostimulator and cytoprotective agent. Circulating melatonin is mostly 6-hydroxylated by hepatic P450 monooxygenases and excreted as 6-sulfatoxymelatonin. Pyrrole-ring cleavage is of higher importance in other tissues, especially the brain. The product, N1-acetyl-N2-formyl-5-methoxykynuramine, is formed by enzymatic, pseudoenzymatic, photocatalytic, and numerous free-radical reactions. Additional metabolites result from hydroxylation and nitrosation. The secondary metabolite, N1-acetyl-5-methoxykynuramine, supports mitochondrial function and downregulates cyclooxygenase 2. Antioxidative protection, safeguarding of mitochondrial electron flux, and in particular, neuroprotection, have been demonstrated in many experimental systems. Findings are encouraging to use melatonin as a sleep promoter and in preventing progression of neurodegenerative diseases.

  17. Induction of Apoptosis in Human Multiple Myeloma Cell Lines by Ebselen via Enhancing the Endogenous Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2014-01-01

    Full Text Available Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

  18. EICOSANOIDS AND INFLAMMATION

    Directory of Open Access Journals (Sweden)

    A. E. Karateev

    2016-01-01

    Full Text Available Inflammation is the most important element in the pathogenesis of major human diseases. It determines the fundamental value of anti-inflammatory therapy in the modern concept of targeted pathogenetic treatment. The rational choice of anti-inflammatory drugs and the design of new promising agents are inconceivable without clear knowledge of the characteristics of development of an inflammatory response. Eicosanoids, the metabolites of polyunsaturated fatty acids, play a key role in the process of inflammation. These substances have diverse and frequently antagonistic biological effects, which is determined by their chemical structure and specific features of receptors with which they interact. Some of them (prostaglandins, leukotrienes, auxins, and hepoxilins are potential mediators of inflammation and pain; others (lipoxins, epoxyeicosatrienoic acid derivatives, resolvins, protectins, maresins, and endocannabinoids have anti-inflammatory and cytoprotective activities, contributing to the resolution of the inflammatory response. This review describes considers the main classes of eicosanoids, their metabolism, effects, and clinical significance, as well as the possibilities of pharmacological interventions in their synthesis or interaction with receptors. 

  19. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols.

    Science.gov (United States)

    Turell, Lucía; Steglich, Martina; Alvarez, Beatriz

    2018-03-22

    Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Cancer: Towards a general theory of the target: All successful cancer therapies, actual or potential, are reducible to either (or both) of two fundamental strategies.

    Science.gov (United States)

    Vincent, Mark D

    2017-09-01

    General theories (GT) are reductionist explications of apparently independent facts. Here, in reviewing the literature, I develop a GT to simplify the cluttered landscape of cancer therapy targets by revealing they cluster parsimoniously according to only a few underlying principles. The first principle is that targets can be only exploited by either or both of two fundamentally different approaches: causality-inhibition, and 'acausal' recognition of some marker or signature. Nonetheless, each approach must achieve both of two separate goals, efficacy (reduction in cancer burden) and selectivity (sparing of normal cells); if the mechanisms are known, this provides a definition of rational treatment. The second principle is target fragmentation, whereby the target may perform up to three categoric functions (cytoreduction, modulation, cytoprotection), potentially mediated by physically different target molecules, even on different cell types, or circulating freely. This GT remains incomplete until the minimal requirements for cure, or alternatively, proof that cure is impossible, become predictable. © 2017 The Authors. BioEssays Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Effects of Minocycline on Urine Albumin, Interleukin-6, and Osteoprotegerin in Patients with Diabetic Nephropathy: A Randomized Controlled Pilot Trial

    Science.gov (United States)

    Wang, Ying; Tong, Lili; Pak, Youngju; Andalibi, Ali; LaPage, Janine A.; Adler, Sharon G.

    2016-01-01

    Background We tested minocycline as an anti-proteinuric adjunct to renin-angiotensin-aldosterone system inhibitors (RAASi) in diabetic nephropathy (DN) and measured urinary biomarkers to evaluate minocycline’s biological effects. Methods Design: Prospective, single center, randomized, placebo-controlled, intention-to-treat pilot trial. Inclusion. Type 2 diabetes/DN; Baseline creatinine clearance > 30 mL/min; proteinuria ≥ 1.0 g/day; Age ≥30 years; BP minocycline patients (6 month P:Cr ÷ Baseline P:Cr, 0.85 vs. 0.92) was not significant (p = 0.27). Creatinine clearance did not differ in the 2 groups. Urine IL-6:Cr (p = 0.03) and osteoprotegerin/Cr (p = 0.046) decrements were significant. Minocycline modified the relationship between urine IL-6 and proteinuria, suggesting a protective biological effect. Conclusions Although the decline in U P:Cr in minocycline patients was not statistically significant, the significant differences in urine IL-6 and osteoprotegerin suggest that minocycline may confer cytoprotection in patients with DN, providing a rationale for further study. Trial Registration Clinicaltrials.gov NCT01779089 PMID:27019421

  2. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari: A review

    Directory of Open Access Journals (Sweden)

    Shashi Alok

    2013-06-01

    Full Text Available Asparagus racemosus (A. racemosus belongs to family Liliaceae and commonly known as Satawar, Satamuli, Satavari found at low altitudes throughout India. The dried roots of the plant are used as drug. The roots are said to be tonic and diuretic and galactgogue, the drug has ulcer healing effect probably via strenthening the mucosal resistance or cytoprotection. It has also been identified as one of the drugs to control the symotoms of AIDS. A. racemosus has also been successfully by some Ayurvedic practitioner for nervous disorder, inflammation and certain infectious disease. However, no scintific proof justify aborementioned uses of root extract of A. racemosus is available so far. Recently few reports are available demonstrating beneficial effects of alcoholic and water extract of the roots of A. racemosus in some clinical conditions and experimentally indused disease e.g. galactogougue affects, antihepatotoxic, immunomodulatory effects, immunoadjuvant effect, antilithiatic effect and teratogenicity of A. racemosus. The present artical includes the detailed exploration of pharmacological properties of the root extract of A. racemosus reported so far.

  3. The Effect of Amifostine on Submandibular Gland Histology after Radiation

    Directory of Open Access Journals (Sweden)

    Jacqueline C. Junn

    2012-01-01

    Full Text Available Background. The purpose of this study was to assess the effects of amifostine on submandibular gland histology in patients receiving chemoradiation therapy. Methods. We conducted a retrospective submandibular gland histologic slide review of HNSCC patients receiving chemoradiation for head and neck squamous cell carcinoma with three different levels of amifostine exposure. We used six scoring parameters: fatty replacement, lobular architecture degeneration, interstitial fibrosis, ductal degeneration, acinar degeneration, and inflammatory component presence. Results. Differences in gender, tumor stage, amifostine dose, age, number of days after neck dissection, and smoking history (pack years exposure were not significant between the three groups, although there was a difference between groups in the primary subsite (P=0.006. The nonparametric Cuzick's test for histologic parameters with varied amifostine treatment showed no significance among the three groups. Conclusions. Although patients did not receive a full dose of amifostine due to side effects, varying doses of amifostine had no apparent evident cytoprotective effects in three groups of cancer patients treated with primary chemoradiation.

  4. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress.

    Science.gov (United States)

    Chen, Zong-Tsi; Chu, Heuy-Ling; Chyau, Charng-Cherng; Chu, Chin-Chen; Duh, Pin-Der

    2012-12-15

    Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress were investigated. According to HPLC-DAD and HPLC-MS/MS analysis, hesperidin (HD), hesperetin (HT), nobiletin (NT), and tangeretin (TT) were present in water extracts of sweet orange peel (WESP). The cytotoxic effect in 0.2mM t-BHP-induced HepG2 cells was inhibited by WESP and their bioactive compounds. The protective effect of WESP and their bioactive compounds in 0.2mM t-BHP-induced HepG2 cells may be associated with positive regulation of GSH levels and antioxidant enzymes, decrease in ROS formation and TBARS generation, increase in the mitochondria membrane potential and Bcl-2/Bax ratio, as well as decrease in caspase-3 activation. Overall, WESP displayed a significant cytoprotective effect against oxidative stress, which may be most likely because of the phenolics-related bioactive compounds in WESP, leading to maintenance of the normal redox status of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. THE MODULATORY ROLE OF TAURINE IN RETINAL GANGLION CELLS

    Science.gov (United States)

    Jiang, Zheng; Bulley, Simon; Guzzone, Joseph; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their pre-synaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABAA receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the pre-synaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells. PMID:23392924

  6. [The "Chaco": eatable medicinal clay in the Peruvian highlands and his properties in digestive diseases].

    Science.gov (United States)

    Castillo Contreras, Ofelia; Frisancho Velarde, Oscar

    2015-01-01

    The inhabitants of the peruvian-bolivian plateau consume a natural substance known as "Chaco", widespread since pre-Columbian era and appreciated for its digestive properties. The Chaco is an edible medicinal clay that is used as slurry with water to restrain dyspeptic discomfort or acid-peptic manifestations. In this contribution we present physicochemical aspects of the composition of the Chaco, experimental animal studies that evaluate its antiulcer effect and in vitro test that studies the antacid property. The proposed mechanism of therapeutic action is due to a cytoprotective effect on the gastric mucosa by independent mechanisms of acid secretion inhibition, as it has no antacid property in vitro. Also it has an adsorptivity to different organic molecules due to their large surface area and tetrahedral charge that makes it to interact with polar substances such as water and toxins. The other purpose of this special contribution is to recognize the coexistence of "Traditional Medicine" and "Western Medicine", a situation which leads to the need for preclinical research of various natural resources.

  7. Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway.

    Science.gov (United States)

    Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan

    2016-09-01

    Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.

  8. Review on mechanisms of dairy summer infertility and implications for hormonal intervention

    Directory of Open Access Journals (Sweden)

    B.U. Wakayo

    2015-02-01

    Full Text Available In dairy cows and buffaloes, summer heat stress (HS reduces milk yield and delays return to pregnancy leading to financial loss. Clues for effective interventions against summer infertility (SI lie in understanding the underlying mechanisms. This article reviews current knowledge on the mechanisms of bovine SI and their implication for hormonal management. Under HS dairy animals encounter anestrous, silent cycles and repeat breeding which extend their open period. These effects are attributed mainly to HS induced disturbances in luteinizing hormone (LH secretion, follicular dominance and estrogen secretion, ovulation and oocyte competence, luteal development and progesterone secretion, utero-placental function and embryo-fetal development. Hormonal timed artificial insemination protocols and LH support around estrous improved summer pregnancy rates by avoiding need for estrus detection, assisting follicular development and ovulation, enhancing quality oocytes and stimulating luteal function. Progesterone supplementation to enhance embryonic development did not produce significant improvement in summer pregnancy rates. There is need for evaluating integrated approaches combining hormones, metabolic modifier and cyto-protective agents.

  9. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  10. E-Peptides Control Bioavailability of IGF-1

    Science.gov (United States)

    Piszczek, Agnieszka; Perlas, Emarald; Winn, Nadine; Nastasi, Tommaso; Rosenthal, Nadia

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is a potent cytoprotective growth factor that has attracted considerable attention as a promising therapeutic agent. Transgenic over-expression of IGF-1 propeptides facilitates protection and repair in a broad range of tissues, although transgenic mice over-expressing IGF-1 propeptides display little or no increase in IGF-1 serum levels, even with high levels of transgene expression. IGF-1 propeptides are encoded by multiple alternatively spliced transcripts including C-terminal extension (E) peptides, which are highly positively charged. In the present study, we use decellularized mouse tissue to show that the E-peptides facilitate in vitro binding of murine IGF-1 to the extracellular matrix (ECM) with varying affinities. This property is independent of IGF-1, since proteins consisting of the E-peptides fused to relaxin, a related member of the insulin superfamily, bound equally avidly to decellularized ECM. Thus, the E-peptides control IGF-1 bioavailability by preventing systemic circulation, offering a potentially powerful way to tether IGF-1 and other therapeutic proteins to the site of synthesis and/or administration. PMID:23251442

  11. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  12. Tumor suppression and promotion by autophagy.

    Science.gov (United States)

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  13. Synergistic Application of Black Tea Extracts and Lactic Acid Bacteria in Protecting Human Colonocytes against Oxidative Damage.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-03-23

    In view of the potential of lactic acid bacteria (LAB) to enhance the antioxidant activity of food products, this work explored the effectiveness of LAB fermented black tea samples in alleviating H2O2-induced oxidative stress in human colonocytes. The antioxidant capacity of tea samples was evaluated in terms of cyto-protectiveness, mitochondria membrane potential (Δψm)-stabilizing activity, ROS-inhibitory effect, and antioxidant enzyme-modulating activity. The effect on oxidative DNA damage and repair was studied in CCD 841 by comet assay. Results showed that the protective effect of tea pretreatment was more pronounced in normal cells (CCD 841) than in carcinomas (Caco-2), and fermented samples were invariably more effective. Higher cell viability and Δψm were maintained and ROS production was markedly inhibited with tea pretreatment. The fermented tea samples also remarkably stimulated DNA repair, resulting in fewer strand breaks and oxidative lesions. Our study implied that LAB fermentation may be an efficient way to enhance the antioxidative effectiveness of black tea flavonoid-enriched foods.

  14. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  15. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  16. Nrf2: bane or blessing in cancer?

    Science.gov (United States)

    Xiang, MingJun; Namani, Akhileshwar; Wu, ShiJun; Wang, XiaoLi

    2014-08-01

    The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element pathway serves a major function in endogenous cytoprotection in normal cells. Nrf2 is a transcription factor that mainly regulates the expression of a wide array of genes that produce the antioxidants and other proteins responsible for the detoxification of xenobiotics and reactive oxygen species. Nrf2 mediates the chemoprevention of cancer in normal cells. Growing body of evidence suggests that Nrf2 is not only involved in the chemoprevention of normal cells but also promotes the growth of cancer cells. However, the mechanism underlying the function of Nrf2 in oncogenesis and tumor protection in cancer cells remains unclear and thus requires further study. This review aims to rationalize the existing functions of Nrf2 in chemoprevention and tumorigenesis, as well as the somatic mutations of Nrf2 and Keap1 in cancer and Nrf2 cross talk with miRNAs. This review also discusses the future challenges in Nrf2 research.

  17. Adoptive Transfer of Dying Cells Causes Bystander-Induced Apoptosis

    Science.gov (United States)

    Schwulst, Steven J.; Davis, Christopher G.; Coopersmith, Craig M.; Hotchkiss, Richard S.

    2009-01-01

    The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death from several noxious stimuli. Intriguingly, Bcl-2 overexpression in one cell type has been reported to protect against cell death in neighboring non-Bcl-2 overexpressing cell types. The mechanism of this “trans” protection has been speculated to be secondary to the release of a cytoprotective factor by Bcl-2 overexpressing cells. We employed a series of adoptive transfer experiments in which lymphocytes that overexpress Bcl-2 were administered to either wild type mice or mice lacking mature T and B cells (Rag-1-/-) to detect the presence or absence of the putative protective factor. We were unable to demonstrate “trans” protection. However, adoptive transfer of apoptotic or necrotic cells exacerbated the degree of apoptotic death in neighboring non-Bcl-2 overexpressing cells (p≤0.05). Therefore, this data suggests that dying cells emit signals triggering cell death in neighboring non-Bcl-2 overexpressing cells, i.e. a “trans” destructive effect. PMID:17194455

  18. Data demonstrating the role of peroxiredoxin 2 as important anti-oxidant system in lung homeostasis

    Directory of Open Access Journals (Sweden)

    Enrica Federti

    2017-12-01

    Full Text Available The data presented in this article are related to the research paper entitled “peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension” (Federti et al., 2017 [1]. Data show that the absence of peroxiredoxin-2 (Prx2 is associated with increased lung oxidation and pulmonary vascular endothelial dysfunction. Prx2−/− mice displayed activation of the redox-sensitive transcriptional factors, NF-kB and Nrf2, and increased expression of cytoprotective system such as heme-oxygenase-1 (HO-1. We also noted increased expression of both markers of vascular activation and extracellular matrix remodeling. The administration of the recombinant fusion protein PEP Prx2 reduced the activation of NF-kB and Nrf2 and was paralleled by a decrease in HO-1 and in vascular endothelial abnormal activation. Prolonged hypoxia was used to trigger pulmonary artery hypertension (PAH. Prx2−/− precociously developed PAH compared to wildtype animals.

  19. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system.

    Science.gov (United States)

    Shibu, Marthandam Asokan; Kuo, Chia-Hua; Chen, Bih-Cheng; Ju, Da-Tong; Chen, Ray-Jade; Lai, Chao-Hung; Huang, Pei-Jane; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Bad ser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions. © 2017 Wiley Periodicals, Inc.

  20. Involvement of Heme Oxygenase-1 Induction in the Cytoprotective and Immunomodulatory Activities of Viola patrinii in Murine Hippocampal and Microglia Cells

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-01-01

    Full Text Available A number of diseases that lead to injury of the central nervous system are caused by oxidative stress and inflammation in the brain. In this study, NNMBS275, consisting of the ethanol extract of Viola patrinii, showed potent antioxidative and anti-inflammatory activity in murine hippocampal HT22 cells and BV2 microglia. NNMBS275 increased cellular resistance to oxidative injury caused by glutamate-induced neurotoxicity and reactive oxygen species generation in HT22 cells. In addition, the anti-inflammatory effects of NNMBS275 were demonstrated by the suppression of proinflammatory mediators, including proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2 and cytokines (tumor necrosis factor-α and interleukin-1β. Furthermore, we found that the neuroprotective and anti-inflammatory effects of NNMBS275 were linked to the upregulation of nuclear transcription factor-E2-related factor 2-dependent expression of heme oxygenase-1 in HT22 and BV2 cells. These results suggest that NNMBS275 possesses therapeutic potential against neurodegenerative diseases that are induced by oxidative stress and neuroinflammation.