WorldWideScience

Sample records for cytokine synthesis inhibitory

  1. Interactions between Autophagy and Inhibitory Cytokines.

    Science.gov (United States)

    Wu, Tian-Tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy.

  2. Inhibitory effect of human recombinant interferon gamma on synthesis of acute phase proteins in human hepatoma Hep G2 cells stimulated by leukocyte cytokines, TNF alpha and IFN-beta 2/BSF-2/IL-6.

    Science.gov (United States)

    Magielska-Zero, D; Bereta, J; Czuba-Pelech, B; Pajdak, W; Gauldie, J; Koj, A

    1988-07-01

    Supernatants from endotoxin-stimulated human leukemic cells and human recombinant interferon-beta 2 similarly enhance synthesis of alpha 1-antichymotrypsin and haptoglobin but suppress synthesis of albumin in cultured Hep G2 cells. Human recombinant tumor necrosis factor only slightly affects production of alpha 1-antichymotrypsin and albumin in a similar manner as leukocyte cytokines. In distinction, recombinant human interferon-gamma profoundly inhibits synthesis of alpha 1-antichymotrypsin, and especially of haptoglobin, but stimulates production of alpha 2-macroglobulin thus modulating the acute phase response of these cells.

  3. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Leifheit Erica C

    2004-07-01

    Full Text Available Abstract Background The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF has previously been associated with various types of adenocarcinoma. Methods MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA, anti-MIF antibody or MIF anti-sense on cell growth and cytokine expression were analyzed. Results Human bladder cancer cells (HT-1376 secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. Conclusions This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma.

  4. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    Science.gov (United States)

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the

  5. Immunoregulation of Inflammatory and Inhibitory Cytokines by Vitamin D3 in Patients with Inflammatory Bowel Diseases.

    Science.gov (United States)

    Alhassan Mohammed, H; Mirshafiey, A; Vahedi, H; Hemmasi, G; Moussavi Nasl Khameneh, A; Parastouei, K; Saboor-Yaraghi, A A

    2017-06-01

    Inflammatory bowel disease (IBD) is a group of idiopathic, chronic and relapsing inflammatory conditions of the gastrointestinal tract, caused by an aberrant and exaggerated immunological response in the gut. Supplementation of vitamin D3 in patients with IBD exerts both direct and indirect regulatory roles on the naïve T cells, thereby maintaining a balance between inflammatory and inhibitory cytokines. The direct actions of vitamin D3 on naïve T cells result in the proliferation of more regulatory T cells and inhibitory cytokines such as IL-4, IL-10 and IL-5. The binding of vitamin D to dendritic cells (DCs) through vitamin D receptors inhibits the action of IL-12 on DCs, resulting in the downregulation of Th1 and Th17. On the other hand, this interaction favours Th2 and Treg upregulation and facilitates the maintenance of immune homoeostasis between inflammatory and inhibitory cytokines which is essentially significant in the management of patients with IBD. The aim of this review was to explore the current and mounting scientific evidence on the roles of vitamin D3 in immunoregulation of inflammatory and inhibitory cytokines in patients with IBDs. An extensive literature search was conducted using keywords such as Vitamin D3*, IBD*, inflammatory cytokines*, inhibitory cytokines*, naïve-T-cells* and antigen presenting cells* through PubMed, SCOPUS and MEDLINE search engines. The results of the accumulated bodies of research that have been conducted demonstrate that vitamin D3 plays a major role not only in the immunoregulation of cytokines involved in the pathogenesis of IBDs but also in many other inflammatory disorders. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  6. Inhibitory effects of Taraxacum mongolicum with phreatic water on melanin synthesis

    OpenAIRE

    Jang, Moon-Hee; Ahn, Taek-Won

    2014-01-01

    Background: Recently, people have begun showing heightened interest in skin whitening. Melanin is an important factor that determines skin color. The purpose of this study is to investigate the inhibitory effect of Taraxacum mongolicum (TAM) with phreatic water (PW) from Dogo Hot Springs on melanin synthesis. Methods: We assessed the inhibitory effects of TAM on melanin synthesis in B16F10 mouse melanoma cells. The mRNA levels of tyrosinase related protein (TRP)-1, TRP-2, tyrosinase, MITF,...

  7. The cascade of inflammatory cytokines regulating synthesis of acute phase proteins.

    Science.gov (United States)

    Koj, A; Magielska-Zero, D; Bereta, J; Kurdowska, A; Rokita, H; Gauldie, J

    1988-12-01

    The acute phase cytokines: interleukin 1, tumor necrosis factor alpha (cachectin) and beta (lymphotoxin), hepatocyte stimulating factor and several interferons, all belong to the family of endotoxin-inducible, low molecular weight proteins. Their synthesis in macrophages, fibroblasts, lymphocytes, epithelial and some tumor cells is enhanced by the same cytokines, often in the autocrine manner, and suppressed by dexamethasone. The principal hepatocyte stimulating factor (HSF) regulating synthesis of acute phase proteins is probably identical with IFN-beta 2/BSF-2/IL-6, but other inflammatory cytokines (IL-1, TNF alpha, IFN-gamma) are able to induce distinct sets of acute phase proteins, or to modulate the final response pattern. The effect of hrIFN-gamma on production of acute phase proteins by human hepatoma Hep G2 cells is discussed in detail. It is concluded that the cascades of inflammatory cytokines in different tissues represent amplification and regulatory pathways controlling the development of acute phase response in vivo.

  8. Genetic variation in TLR10 is not associated with chronic Q fever, despite the inhibitory effect of TLR10 on Coxiella burnetii-induced cytokines in vitro

    NARCIS (Netherlands)

    Ammerdorffer, Anne; Stappers, Mark H.T.; Oosting, Marije; Roest, Hendrik Jan

    2016-01-01

    Coxiella burnetii, the causative agent of Q fever, is recognized by TLR2. TLR10 can act as an inhibitory receptor on TLR2-derived immune responses. Therefore, we investigated the role of TLR10 on C. burnetii-induced cytokine production and assessed whether genetic polymorphisms in TLR10

  9. Melanoma inhibitory activity, a biomarker related to chondrocyte anabolism, is reversibly suppressed by proinflammatory cytokines in rheumatoid arthritis.

    Science.gov (United States)

    Vandooren, B; Cantaert, T; van Lierop, M-J; Bos, E; De Rycke, L; Veys, E M; De Keyser, F; Bresnihan, B; Luyten, F P; Verdonk, P C; Tak, P P; Boots, A H; Baeten, D

    2009-06-01

    In mice, melanoma inhibitory activity (MIA) is a chondrocyte-specific molecule with similar regulation to collagen type II. As MIA is a small secreted protein, its value as cartilage biomarker in human inflammatory arthritis was assessed. MIA tissue distribution was studied by quantitative PCR and immunohistochemistry. The regulation of MIA production was studied in vivo in rheumatoid arthritis (RA) (n = 37) and spondyloarthritis (SpA) (n = 30) synovial fluid (SF), and in vitro in alginate embedded human chondrocytes. Therapeutic modulation of serum MIA was evaluated during tumour necrosis factor (TNF)alpha and interleukin (IL)1 blockade in RA. MIA was primarily expressed by chondrocytes in the human joint. SF MIA levels were lower in RA than in SpA despite similar levels of overall synovial inflammation. Further analysis indicated that these levels were inversely correlated with the degree of joint inflammation in RA, but not in SpA, and that the levels of TNFalpha and IL1beta were significantly increased in RA versus SpA. Accordingly, these proinflammatory cytokines suppressed MIA mRNA and protein in cultured chondrocytes. This suppression was paralleled by suppression of cartilage anabolism as assessed by collagen type 2 and aggrecan mRNA. Treatment of patients with RA with TNF blockade or IL1 blockade induced an increase of serum MIA levels. The decreased levels of MIA in the inflamed RA joint and the coregulation of MIA and cartilage matrix molecules by proinflammatory cytokines indicate that joint inflammation in RA not only drives accelerated cartilage degradation but also suppresses cartilage anabolism. This inflammation-driven suppression is reversible in vivo.

  10. Synthesis and acetylcholinesterase inhibitory activity of several pyrimidone analogues of huperzine A

    Energy Technology Data Exchange (ETDEWEB)

    Kozlkowski, A.P.; Campiani, G.; Saxena, A.; Doctor, S.P.

    1995-12-31

    Synthesis of four new pyrimidone analogues of the acetyicholinesterase (AChE) inhibitor huperzine A are reported together with the inhibitory potendes of these compounds for foetal bovine calf serum AChE; t3-lactone formation followed by a thermal cycloreversion reaction serves as the key step for introduction of the ethylidene appendage of analogue 12 in the stereochemically correct form.

  11. Macrophage inhibitory cytokine-1 (MIC-1/GDF15 gene deletion promotes cancer growth in TRAMP prostate cancer prone mice.

    Directory of Open Access Journals (Sweden)

    Yasmin Husaini

    Full Text Available The divergent TGF-β superfamily member, macrophage inhibitory cytokine-1 (MIC-1/GDF15, is overexpressed by most cancers, including prostate cancer (PCa. Whilst its circulating levels are linked to cancer outcome, the role MIC-1/GDF15 plays in cancer development and progression is incompletely understood. To investigate its effect on PCa development and spread, we have used TRAMP prostate cancer prone mice bearing a germline deletion of MIC-1/GDF15 (TRAMPMIC-/-. On average TRAMPMIC-/- mice died about 5 weeks earlier and had larger prostatic tumors compared with TRAMP mice that were wild type for MIC-1/GDF15 (TRAMPMIC+/+. Additionally, at the time of death or ethical end point, even when adjusted for lifespan, there were no significant differences in the number of mice with metastases between the TRAMPMIC+/+ and TRAMPMIC-/- groups. However, consistent with our previous data, more than twice as many TRAMP mice overexpressing MIC-1/GDF15 (TRAMPfmsmic-1 had metastases than TRAMPMIC+/+ mice (p<0.0001. We conclude that germ line gene deletion of MIC-1/GDF15 leads to increased local tumor growth resulting in decreased survival consistent with an overall protective role for MIC-1/GDF15 in early primary tumor development. However, in advancing disease, as we have previously noted, MIC-1/GDF15 overexpression may promote local invasion and metastatic spread.

  12. Synthesis and Topoisomerase I inhibitory properties of klavuzon derivatives.

    Science.gov (United States)

    Akçok, İsmail; Mete, Derya; Şen, Ayhan; Kasaplar, Pınar; Korkmaz, Kemal S; Çağır, Ali

    2017-04-01

    Klavuzon is a naphthalen-1-yl substituted α,β-unsaturated δ-lactone derivative, and is one of the anti-proliferative members of this class of compounds. Asymmetric and racemic syntheses of novel α,β-unsaturated δ-lactone derivatives are important to investigate their potential for the treatment of cancer. In this study, asymmetric and racemic syntheses of heteroatom-substituted klavuzon derivatives are reported. The syntheses were completed by a well-known three-step procedure. Anti-proliferative activity of seven novel racemic klavuzon derivatives were reported against MCF-7, PC3, HCT116 p53+/+ and HCT116 p53-/- cancer cell lines. Topoisomerase I inhibitory properties of 5,6-dihydro-2H-pyran-2-one derivatives were also studied. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Identification of a putative invertebrate helical cytokine similar to the ciliary neurotrophic factor/leukemia inhibitory factor family by PSI-BLAST-based approach.

    Science.gov (United States)

    Cheng, Gong; Zhao, Xin; Li, Zuofeng; Liu, Xinyi; Yan, Weiyao; Zhang, Xiaoyan; Zhong, Yang; Zheng, Zhaoxin

    2009-08-01

    Most of our knowledge of helical cytokine-like molecules in invertebrates relies on functional assays and similarities at the physicochemical level. It is hard to predict helical cytokines in invertebrates based on sequences from mammals and vertebrates, because of their long evolutionary divergence. In this article, we collected 12 kinds of fish cytokines and constructed their respective consensus sequences using hidden Markov models; then, the conserved domains region of each consensus sequence were further extracted by the SMART tool, and used as the query sequence for PSI-BLAST analysis in Drosophila melanogaster. After two filtering processes based on the properties of helical cytokines, we obtained one protein named CG14629, which shares 25% identities/46% positives to fish M17 cytokine in the half length of the N-terminus. Considering the homology between M17 and LIF/CNTF (leukemia inhibitory factor/ciliary neurotrophic factor), and the close relationship between Dome, the putative cytokine receptor in Drosophila cells, and LIFR/CNTFR (LIF receptor/CNTF receptor), the results suggest that CG14629 is a good candidate for the helical cytokine ortholog in D. melanogaster.

  14. Macrophage inhibitory cytokine-1 (MIC-1/GDF15 slows cancer development but increases metastases in TRAMP prostate cancer prone mice.

    Directory of Open Access Journals (Sweden)

    Yasmin Husaini

    Full Text Available Macrophage inhibitory cytokine-1 (MIC-1/GDF15, a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms to produce syngeneic TRAMP(fmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.

  15. Evidence for the Involvement of Spinal Cord-Inhibitory and Cytokines-Modulatory Mechanisms in the Anti-Hyperalgesic Effect of Hecogenin Acetate, a Steroidal Sapogenin-Acetylated, in Mice

    Directory of Open Access Journals (Sweden)

    Jullyana S.S. Quintans

    2014-06-01

    Full Text Available Hecogenin is a steroidal sapogenin largely drawn from the plants of the genus Agave, commonly known as ‘sisal’, and is one of the important precursors used by the pharmaceutical industry for the synthesis of steroid hormones. Hecogenin acetate (HA is a steroidal sapogenin-acetylated that produces antinociceptive activity. Thus, we evaluate the antihyperalgesic profile of HA in mice in inflammatory models, as well as its possible involvement with c-fos expression on spinal cord area and cytokines to produces analgesic profile. Acute pretreatment with HA (5, 10, or 20 mg/kg; i.p. inhibited the development of mechanical hyperalgesia induced by carrageenan, TNF-α, dopamine and PGE2. Additionally, the immunofluorescence data demonstrated that acute pretreatment with HA, at all doses tested, significantly inhibited Fos-like expression in the spinal cord dorsal horn normally observed after carrageenan-inflammation. Moreover, HA did not affect the motor performance of the mice as tested in the Rota rod test. This antinociceptive profile seems to be related, at least in part, to a reduction of pro-inflammatory cytokines, as IL-1β. The present results suggest that HA attenuates mechanical hyperalgesia by blocking the neural transmission of pain at the spinal cord levels and by cytokines-inhibitory mechanisms.

  16. Genetic variation in TLR10 is not associated with chronic Q fever, despite the inhibitory effect of TLR10 on Coxiella burnetii-induced cytokines in vitro.

    Science.gov (United States)

    Ammerdorffer, Anne; Stappers, Mark H T; Oosting, Marije; Schoffelen, Teske; Hagenaars, Julia C J P; Bleeker-Rovers, Chantal P; Wegdam-Blans, Marjolijn C; Wever, Peter C; Roest, Hendrik-Jan; van de Vosse, Esther; Netea, Mihai G; Sprong, Tom; Joosten, Leo A B

    2016-01-01

    Coxiella burnetii, the causative agent of Q fever, is recognized by TLR2. TLR10 can act as an inhibitory receptor on TLR2-derived immune responses. Therefore, we investigated the role of TLR10 on C. burnetii-induced cytokine production and assessed whether genetic polymorphisms in TLR10 influences the development of chronic Q fever. HEK293 cells, transfected with TLR2, TLR10 or TLR2/TLR10, and human peripheral blood mononuclear cells (PBMCs) in the presence of anti-TLR10, were stimulated with C. burnetii. In both assays, the absence of TLR10 resulted in increased cytokine responses after C. burnetii stimulation. In addition, the effect of single nucleotide polymorphisms (SNPs) in TLR10 was examined in healthy volunteers whose PBMCs were stimulated with C. burnetii Nine Mile or the Dutch outbreak isolate C. burnetii 3262. Individuals bearing SNPs in TLR10 displayed increased cytokine production upon C. burnetii 3262 stimulation. Furthermore, 139 chronic Q fever patients and 220 controls were genotyped for TLR10 N241H, I775V and I369L. None of these polymorphisms were associated with increased susceptibility to chronic Q fever. In conclusion, TLR10 has an inhibitory effect on in vitro cytokine production by C. burnetii, but the presence of TLR10 polymorphisms does not lead to an increased risk of developing chronic Q fever. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Maternal Serum Macrophage Inhibitory Cytokine-1 as a Biomarker for Ectopic Pregnancy in Women with a Pregnancy of Unknown Location.

    Directory of Open Access Journals (Sweden)

    Monika M Skubisz

    Full Text Available Ectopic pregnancy (EP occurs in 1-2% of pregnancies, but is over-represented as a leading cause of maternal death in early pregnancy. It remains a challenge to diagnose early and accurately. Women often present in early pregnancy with a 'pregnancy of unknown location' (PUL and the diagnosis and exclusion of EP is difficult due to a lack of reliable biomarkers. A serum biomarker able to clearly distinguish between EP and other pregnancy outcomes would greatly assist clinicians in diagnosing and safely managing PULs. This study evaluates the ability of maternal serum macrophage inhibitory cytokine-1 (MIC-1 levels to differentiate between EP and other pregnancy outcomes in women with a PUL.Sera were collected from 120 women with a PUL at first clinical presentation and assayed for MIC-1 by ELISA. Results were classified according to ultimate pregnancy outcome and the discriminatory ability of MIC-1 to diagnose EP was assessed.Serum MIC-1 levels were lower in women with histologically confirmed (definite EP (dEP (median 552 ng/mL; interquartile range (IQR 414-693 ng/mL compared to women with definite viable intra-uterine pregnancies (dVIUPs (722 ng/mL; IQR 412-1122 ng/mL, and higher when compared to women with definite non-viable intra-uterine pregnancies (dNVIUPs (465 ng/mL; IQR 341-675 ng/mL. MIC-1 levels were significantly higher in women with dEP compared to women whose PULs resolved without medical intervention (srPUL (401 ng/mL; IQR 315-475 ng/mL (p1000 ng/mL.Serum MIC-1 levels in PUL were not able to categorically diagnose EP, however, MIC-1 could distinguish women with an EP that required medical intervention and those women whose PULs spontaneously resolved. A single serum MIC-1 measurement also excluded EP at levels above 1000 ng/mL. MIC-1 may play a role in the development of a combined assay of biomarkers for the diagnosis of EP.

  18. Inhibitory effects of different fractions of Nepeta satureioides on melanin synthesis through reducing oxidative stress.

    Science.gov (United States)

    Emami, Seyed Ahmad; Yazdian-Robati, Rezvan; Sadeghi, Mohammad; Baharara, Javad; Amini, Elaheh; Salek, Farzaneh; Tayarani-Najaran, Zahra

    2017-04-01

    Nepeta satureioides Boiss. has been used in traditional medicine of eastern countries and is famous for its medicinal properties. The aim of this study was to evaluate the effect of methanol (MeOH), n-hexane and dichloromethane (CH2Cl2) fractions of the extract on melanin synthesis and oxidative stress in B16F10 melanoma cell line. The B16F10 cell line viability after treatment with increasing concentrations of different fractions of the plant (5-60 μg/mL) was measured using MTT assay. The inhibitory effect on synthesis of melanin, mushroom tyrosinase activity, cellular tyrosinase and oxidative stress were determined by the colorimetric and fluorometric methods. The data showed that at concentrations below 60 μg/mL, fractions did not show significant toxicity on melanoma cells. The amount of melanin synthesis by MeOH and CH2Cl2 fractions and mushroom tyrosinase activity by the MeOH fraction declined in B16F10 cells. In addition to the capacity of MeOH, n-hexane and CH2Cl2 fractions in decreasing the amount of reactive oxygen species (ROS) in melanoma cells, all fractions revealed remarkable antioxidant activity. The melanogenesis inhibitory and antioxidant effects of N. satureioides on B16F10 cells may suggest this plant as a new pharmaceutical agent in reducing skin pigment and skin aging in cosmetic industry.

  19. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes.

    Science.gov (United States)

    Juergens, Uwe R; Engelen, Tanja; Racké, Kurt; Stöber, Meinolf; Gillissen, Adrian; Vetter, Hans

    2004-01-01

    The therapeutic value of secretolytic agents in COPD and asthma is still disputed. For this reason, in a preclinical study we aimed to test the potential anti-inflammatory efficacy of 1,8-cineol (eucalyptol) in inhibiting polyclonal stimulated cytokine production by human unselected lymphocytes and LPS-stimulated monocytes. Cytokine production was determined following 20 h of incubation cells with 1,8-cineol simultaneously with the stimuli in culture supernatants by enzyme immunoassay. Therapeutic concentrations of 1,8-cineol (1.5 microg/ml=10(-5)M) inhibited significantly (n=13-19, p=0.0001) cytokine production in lymphocytes of TNF-alpha > IL-1beta> IL-4> IL-5 by 92, 84, 70, and 65%, respectively. Cytokine production in monocytes of TNF-alpha > IL-1beta> IL-6> IL-8 was also significantly (n=7-16, pcineol (0.15 microg/ml=10(-6)M) production of TNF-alpha>IL-1beta by monocytes and of IL-1beta> TNF-alpha by lymph-ocytes was significantly inhibited by 77, 61 and by 36, 16%, respectively. 1,8-cineol (10(-6)M) had a larger impact on TNF-alpha and IL-1beta-production in monocytes compared to lymphocytes (p0.59) at therapeutically relevant concentrations of 1,8-Cineol (10(-5)M). These results characterize 1,8-cineol as strong inhibitor of TNF-alpha and IL-1beta and suggest smaller effects on chemotactic cytokines. This is increasing evidence for the role of 1,8-cineol to control airway mucus hypersecretion by cytokine inhibition, suggesting long-term treatment to reduce exacerbations in asthma, sinusitis and COPD.

  20. Melanoma inhibitory activity, a biomarker related to chondrocyte anabolism, is reversibly suppressed by proinflammatory cytokines in rheumatoid arthritis

    NARCIS (Netherlands)

    Vandooren, B.; Cantaert, T.; van Lierop, M.J.; Bos, E.; de Rycke, L.; Veys, E.M.; de Keyser, F.; Bresnihan, B.; Luyten, F.P.; Verdonk, P.C.; Tak, P.P.; Boots, A.H.; Baeten, D.

    2009-01-01

    Objective: In mice, melanoma inhibitory activity (MIA) is a chondrocyte-specific molecule with similar regulation to collagen type II. As MIA is a small secreted protein, its value as cartilage biomarker in human inflammatory arthritis was assessed. Methods: MIA tissue distribution was studied by

  1. Cell viability, collagen synthesis and cytokine expression in human osteoblasts following incubation with generated wear particles using different bone cements.

    Science.gov (United States)

    Schulze, Christoph; Lochner, Katrin; Jonitz, Anika; Lenz, Robert; Duettmann, Oliver; Hansmann, Doris; Bader, Rainer

    2013-07-01

    In total hip arthroplasty, wear particles generated at articulating surfaces and interfaces between bone, cement and implants have a negative impact on osteoblasts, leading to osteolysis and implant loosening. The aim of this experimental study was to determine the effects of particulate wear debris generated at the interface between straight stainless steel hip stems (Exeter(®)) and three different bone cements (Palacos(®) R, Simplex™ P and Cemex(®) Genta) on cell viability, collagen synthesis and cytokine expression in human osteoblasts. Primary osteoblasts were treated with various concentrations of wear particles. The synthesis of procollagen type I and different cytokines was analysed, and markers for apoptosis and necrosis were also detected. The cytokine synthesis rates in the osteoblasts were initially increased and varied, depending on incubation time and particle concentration. Specific differences in the synthesis rates of interleukin (IL)‑6, IL-8, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) were observed with the different bone cements examined. The negative effect of the particles on the synthesis of procollagen type I and increased rates of cell apoptosis and necrosis were observed with all three cements analysed. Our present data suggest that wear particles from the interface between the total hip stem and bone cement have a significant effect on viability, cytokine expression and collagen synthesis in human osteoblasts, depending on the bone cement used.

  2. Leptin, ciliary neurotrophic factor, leukemia inhibitory factor and interleukin-6: class-I cytokines involved in the neuroendocrine regulation of the reproductive function.

    Science.gov (United States)

    Dozio, E; Ruscica, M; Galliera, E; Corsi, M M; Magni, P

    2009-12-01

    Class-I cytokines represent a large group of molecules involved in different physiological processes including host defence, immune regulation, food intake, energy metabolism and, relevant for this review, reproduction. In this latter respect, here, we focus the attention on four of these molecules, specifically leptin, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). These cytokines present similar three-dimensional fold structure, interact with related class-I receptors, which are expressed in the same regions (i.e., hypothalamus), and activate similar intracellular pathways. Leptin and CNTF share functional similarities, by acting at hypothalamic and pituitary levels, and their receptors are colocalized in the arcuate and paraventricular nuclei of the hypothalamus. For both these molecules, no effect on GnRH migration has been described. LIF has also been shown to affect gonadotropin secretion and here we present the novel observation that it is also able to stimulate GnRH secretion in vitro. Moreover, in the mouse, LIF is prenatally expressed in nasal regions where GnRH neurons originate and start their migration, and in vitro it stimulates intrinsic cell motility and directional migration. The role of the prototypical cytokine, IL-6, on the GnRH-LH axis is not fully clear and additional information seem necessary to better clarify this aspect. In conclusion, the data here discussed suggest that this family of cytokines appears to participate to the complex control of the reproductive function by affecting the development and function of the hypothalamus-pituitary system at different ontogenic times and anatomical sites.

  3. Inhibitory Effect of Natural Anti-Inflammatory Compounds on Cytokines Released by Chronic Venous Disease Patient-Derived Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Veronica Tisato

    2013-01-01

    Full Text Available Large vein endothelium plays important roles in clinical diseases such as chronic venous disease (CVD and thrombosis; thus to characterize CVD vein endothelial cells (VEC has a strategic role in identifying specific therapeutic targets. On these bases we evaluated the effect of the natural anti-inflammatory compounds α-Lipoic acid and Ginkgoselect phytosome on cytokines/chemokines released by CVD patient-derived VEC. For this purpose, we characterized the levels of a panel of cytokines/chemokines (n=31 in CVD patients’ plasma compared to healthy controls and their release by VEC purified from the same patients, in unstimulated and TNF-α stimulated conditions. Among the cytokines/chemokines released by VEC, which recapitulated the systemic profile (IL-8, TNF-α, GM-CSF, INF-α2, G-CSF, MIP-1β, VEGF, EGF, Eotaxin, MCP-1, CXCL10, PDGF, and RANTES, we identified those targeted by ex vivo treatment with α-Lipoic acid and/or Ginkgoselect phytosome (GM-CSF, G-CSF, CXCL10, PDGF, and RANTES. Finally, by investigating the intracellular pathways involved in promoting the VEC release of cytokines/chemokines, which are targeted by natural anti-inflammatory compounds, we documented that α-Lipoic acid significantly counteracted TNF-α-induced NF-κB and p38/MAPK activation while the effects of Ginkgo biloba appeared to be predominantly mediated by Akt. Our data provide new insights into the molecular mechanisms of CVD pathogenesis, highlighting new potential therapeutic targets.

  4. Data on synthesis of methylene bisphosphonates and screening of their inhibitory activity towards HIV reverse transcriptase

    Directory of Open Access Journals (Sweden)

    D.V. Yanvarev

    2016-09-01

    Full Text Available Inorganic pyrophosphate (PPi mimetics designed on a basis of methylenediphosphonic acid backbone are promising inhibitors of two key HIV replication enzymes, IN [1] and RT [2]. Herein, we present chemical synthesis of eleven methylenebisphosphonates (BPs with their NMR and HRMS analysis synthesized via five different ways. Also, we present data on inhibition of HIV RT catalyzed phosphorolysis and polymerization by synthesized BPs using two methods based on denaturing urea PAGE. Tests were also performed for thymidine analogue mutations reverse transcriptase (TAM RT, which was expressed and purified for that. Structure–activity relationships and inhibitory activity data of synthesized BPs are presented in “Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity” [2].

  5. Macrophage inhibitory cytokine 1 (MIC-1/GDF15 decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets.

    Directory of Open Access Journals (Sweden)

    Laurence Macia

    Full Text Available Food intake and body weight are controlled by a variety of central and peripheral factors, but the exact mechanisms behind these processes are still not fully understood. Here we show that that macrophage inhibitory cytokine-1 (MIC-1/GDF15, known to have anorexigenic effects particularly in cancer, provides protection against the development of obesity. Both under a normal chow diet and an obesogenic diet, the transgenic overexpression of MIC-1/GDF15 in mice leads to decreased body weight and fat mass. This lean phenotype was associated with decreased spontaneous but not fasting-induced food intake, on a background of unaltered energy expenditure and reduced physical activity. Importantly, the overexpression of MIC-1/GDF15 improved glucose tolerance, both under normal and high fat-fed conditions. Altogether, this work shows that the molecule MIC-1/GDF15 might be beneficial for the treatment of obesity as well as perturbations in glucose homeostasis.

  6. Alterations with age in peripheral blood lymphocyte subpopulations and cytokine synthesis in beagles

    Directory of Open Access Journals (Sweden)

    Ohtsuka H

    2012-08-01

    Full Text Available Megumi Fujiwara,1,2 Tomohiro Yonezawa,3 Toshiro Arai,1 Ichiro Yamamoto,1 Hiromichi Ohtsuka21Laboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, Tokyo, Japan; 2Laboratory of Large Animal Internal Medicine, 3Laboratory of Veterinary Physiology, Kitasato University, Towada, JapanPurpose: The immune system is considered to be affected by aging, which is linked to various immune pathogeneses. The purpose of this study was to determine age-associated changes in immune function of healthy dogs (beagles, specifically those of naive and memory T lymphocytes, based on cytokine synthesis.Patients and methods: Blood samples were obtained from 44 healthy beagles that were divided into three age-groups: young (<4 years, middle-aged (4–8 years, and older dogs (>8 years. Subpopulations of T lymphocytes were determined by flow cytometry. Transcriptional (mRNA levels of cytokines were determined for primary-cultured leukocytes using quantitative real-time polymerase chain reaction.Results: There were negative correlations between dogs’ages and the number of peripheral blood mononuclear cells, T cells, and B cells. In particular, the number of naive CD4+ CD45RA+ T cells and CD8+ CD45RA+ T cells significantly decreased with age. The mRNA levels for interleukin (IL-2, IL-2Rα, and interferon-gamma were significantly higher in young or middle-aged dogs (P < 0.05, whereas IL-4 mRNA expression was not significantly different over the different age-groups. IL-2Rγ mRNA expression tended to decrease with age.Conclusion: Decreases of naive CD4+ and naive CD8+ T cells may be related to age-related immunosenescence in dogs. With regard to cytokine production, leukocyte IL-4 and IL-10 mRNA levels did not change with age, whereas IL-2, IL-2Rα, and IL-2Rγ mRNA levels decreased with age. These altered cytokine mRNA expression patterns may contribute to decreased naive T-cell function(s with aging.Keywords: aging, leukocyte subpopulation

  7. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    Science.gov (United States)

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.

  8. Inhibitory effects of chloroform extracts derived from Corbicula fluminea on the release of pro-inflammatory cytokines.

    Science.gov (United States)

    Lin, Ching-Min; Lin, Yu-Ling; Tsai, Nu-Man; Wu, Hsin-Yi; Ho, Shu-Yi; Chen, Chia-Hung; Liu, Yen-Ku; Chiu, Yi-Han; Ho, Li-Ping; Lee, Ru-Ping; Liao, Kuang-Wen

    2012-04-25

    Corbicula fluminea, the primary freshwater bivalve cultivated in Taiwan, was formerly used as a remedy for hepatitis. Recent reports indicate that C. fluminea has many bioactivities, but it remains unknown whether C. fluminea affects inflammation. This study explored the anti-inflammatory activity of C. fluminea. C. fluminea was first treated with chloroform to obtain clam chloroform extracts (CCEs). On the basis of the assay for the release of pro-inflammatory cytokines in vitro and in vivo, the results show that the CCEs significantly lowered the release of lipopolysaccharide (LPS)-induced pro-inflammatory cytokines. Additionally, the CCEs reduced LPS-induced organ damage. Real-time polymerase chain reaction analysis suggested that CCEs inhibit the LPS-induced mRNA expression of interleukin-1β and tumor necrosis factor-α. Western blot analysis indicated that the CCEs increased expression of IκB and attenuated the phosphorylation of IκB. Gas chromatography-mass spectrometry suggests that phytosterols and fatty acids are responsible for the anti-inflammatory properties of CCEs. Taken together, CCEs have the potential to be developed as an anti-inflammatory functional food.

  9. Inhibitory effects of adlay bran (Coix lachryma-jobi L. var. ma-yuen Stapf) on chemical mediator release and cytokine production in rat basophilic leukemia cells.

    Science.gov (United States)

    Chen, Hong-Jhang; Lo, Yi-Chen; Chiang, Wenchang

    2012-05-07

    Adlay (Job's tears, Coix lachryma-jobi L. var. ma-yuen Stapf) has long been used in China to treat rheumatism. We investigated the anti-allergic effects of adlay bran on rat basophilic leukemia (RBL)-2H3 cells. To evaluate the anti-allergic effects of adlay bran, the release of histamines and cytokines were measured using ELISA. To explore the mechanism of these effects, the protein expression levels were determined using western blotting. A 40.8μg/mL concentration of the ethyl acetate fraction of the ethanolic extracts of adlay bran (ABE-EtOAc) effectively inhibited mast cell degranulation. The 40-100% EtOAc/Hex subfractions of ABE-EtOAc inhibited histamine release with an IC(50) of 71-87μg/mL. Moreover, the ABE-EtOAc subfractions suppressed the secretion of interleukin (IL)-4, IL-6 and tumor necrosis factor-α in the RBL-2H3 cells, indicating that adlay bran can inhibit cytokine secretion in the late phase of the allergic reaction. In addition, adlay bran reduced the intracellular production of reactive oxygen species, inhibited the phosphorylation of Akt and decreased the expression of protein kinase C. Furthermore, six phenolic acids and one flavone were isolated. Of these compounds, luteolin showed the most potent inhibitory activity (IC(50)=1.5μg/mL). Adlay bran extract reduced the release of histamines and cytokines and suppressed the production of Akt. These combined effects influenced the signal transduction in RBL-2H3 cells, thereby revealing the mechanisms of the anti-allergic effects of adlay. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Inhibitory effect of di-catechol rooperol on VCAM-1 and iNOS expression in cytokine-stimulated endothelium.

    Science.gov (United States)

    Bereta, J; Bereta, M; Allison, A C; Kruger, P B; Koj, A

    1997-01-01

    Induced expression of vascular cell adhesion molecule-1 (VCAM-1) and of nitric oxide synthase (iNOS) is believed to play a role in the pathogenesis of atherosclerosis, asthma, as well as other inflammatory disorders. In the current study we examined the effect of the di-catechol rooperol [(E)-1,5-bis (3',4'-dihydroxyphenyl) pent-4-en-1-yne] on the process of microvascular endothelial cell (MME) activation by TNF-alpha and IFN-gamma. We show that rooperol decreases VCAM-1 and iNOS mRNA levels in cytokine-activated MME with subsequent inhibition of VCAM-1 membrane expression as measured by adhesion of P815 cells to MME monolayers, and NO production, as reflected in the nitrite concentration in culture medium. The properties of rooperol now described suggest that rooperol may be an anti-inflammatory agent useful in the treatment of several inflammatory disorders.

  11. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Young [Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-714 (Korea, Republic of); Department of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Nam Deuk [Department of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Gi-Young [Department of Marine Life Sciences, Jeju National University, Jeju 690-756 (Korea, Republic of); Hwang, Hye Jin [Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Food and Nutrition, College of Human Ecology, Dongeui University, Busan 614-714 (Korea, Republic of); Kim, Byung-Woo [Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Life Science and Biotechnology, College of Natural Science, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Biomaterial Control, Graduate School, Dongeui University, Busan 614-714 (Korea, Republic of); Kim, Wun Jae [Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Choi, Yung Hyun, E-mail: choiyh@deu.ac.kr [Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-714 (Korea, Republic of); Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Biomaterial Control, Graduate School, Dongeui University, Busan 614-714 (Korea, Republic of)

    2012-07-15

    Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.

  12. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells.

    Directory of Open Access Journals (Sweden)

    Kapil K Saharia

    Full Text Available Little is known about the expression of inhibitory molecules cytotoxic T-lymphocyte antigen-4 (CTLA-4 and programmed-death-1 (PD-1 on Mycobacterium tuberculosis (Mtb-specific CD4 T-cells and how their expression is impacted by TB treatment.Cryopreserved PBMCs from HIV-TB co-infected and TB mono-infected patients with untreated and treated tuberculosis (TB disease were stimulated for six hours with PPD and stained. Using polychromatic flow cytometry, we characterized the differentiation state, cytokine profile, and inhibitory molecule expression on PPD-specific CD4 T-cells.In our HIV-TB co-infected cohort, TB treatment increased the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+IL-2+TNF-α+ and IFN-γ+IL-2+ (p = 0.0004 and p = 0.0002, respectively while decreasing the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+MIP1-β+TNF-α+ and IFN-γ+MIP1-β+. The proportion of PPD-specific CD4 T-cells expressing an effector memory phenotype decreased (63.6% vs 51.6%, p = 0.0015 while the proportion expressing a central memory phenotype increased (7.8% vs. 21.7%, p = 0.001 following TB treatment. TB treatment reduced the proportion of PPD-specific CD4 T-cells expressing CTLA-4 (72.4% vs. 44.3%, p = 0.0005 and PD-1 (34.5% vs. 29.2%, p = 0.03. Similar trends were noted in our TB mono-infected cohort.TB treatment alters the functional profile of Mtb-specific CD4 T-cells reflecting shifts towards a less differentiated maturational profile and decreases PD-1 and CTLA-4 expression. These could serve as markers of reduced mycobacterial burden. Further study is warranted.

  13. Design, synthesis, α-glucosidase inhibitory activity, molecular docking and QSAR studies of benzimidazole derivatives

    Science.gov (United States)

    Dinparast, Leila; Valizadeh, Hassan; Bahadori, Mir Babak; Soltani, Somaieh; Asghari, Behvar; Rashidi, Mohammad-Reza

    2016-06-01

    In this study the green, one-pot, solvent-free and selective synthesis of benzimidazole derivatives is reported. The reactions were catalyzed by ZnO/MgO containing ZnO nanoparticles as a highly effective, non-toxic and environmentally friendly catalyst. The structure of synthesized benzimidazoles was characterized using spectroscopic technics (FT-IR, 1HNMR, 13CNMR). Synthesized compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 3c, 3e, 3l and 4n were potent inhibitors with IC50 values ranging from 60.7 to 168.4 μM. In silico studies were performed to explore the binding modes and interactions between enzyme and synthesized benzimidazoles. Developed linear QSAR model based on density and molecular weight could predict bioactivity of newly synthesized compounds well. Molecular docking studies revealed the availability of some hydrophobic interactions. In addition, the bioactivity of most potent compounds had good correlation with estimated free energy of binding (ΔGbinding) which was calculated according to docked best conformations.

  14. Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity

    NARCIS (Netherlands)

    Hsu, D. H.; Moore, K. W.; Spits, H.

    1992-01-01

    Culture of human peripheral blood mononuclear cells (PBMC) with IL-2 stimulates synthesis of cytokines and generation of lymphokine-activated killer (LAK) activity. Both IL-4 and IL-10 [cytokine synthesis inhibitory factor (CSIF)] inhibit IL-2-induced synthesis of IFN-gamma and tumor necrosis factor

  15. Prostate field cancerization: deregulated expression of macrophage inhibitory cytokine 1 (MIC-1) and platelet derived growth factor A (PDGF-A) in tumor adjacent tissue.

    Science.gov (United States)

    Jones, Anna C; Antillon, Kresta S; Jenkins, Shannon M; Janos, Sara N; Overton, Heidi N; Shoshan, Dor S; Fischer, Edgar G; Trujillo, Kristina A; Bisoffi, Marco

    2015-01-01

    Prostate field cancerization denotes molecular alterations in histologically normal tissues adjacent to tumors. Such alterations include deregulated protein expression, as we have previously shown for the key transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS). Here we add the two secreted factors macrophage inhibitory cytokine 1 (MIC-1) and platelet derived growth factor A (PDGF-A) to the growing list of protein markers of prostate field cancerization. Expression of MIC-1 and PDGF-A was measured quantitatively by immunofluorescence and comprehensively analyzed using two methods of signal capture and several groupings of data generated in human cancerous (n = 25), histologically normal adjacent (n = 22), and disease-free (n = 6) prostate tissues. A total of 208 digitized images were analyzed. MIC-1 and PDGF-A expression in tumor tissues were elevated 7.1x to 23.4x and 1.7x to 3.7x compared to disease-free tissues, respectively (pcancerization, MIC-1 and PDGF-A expression in adjacent tissues were elevated 7.4x to 38.4x and 1.4x to 2.7x, respectively (pcancerization. These secreted factors could promote tumorigenesis in histologically normal tissues and lead to tumor multifocality. Among several clinical applications, they could also be exploited as indicators of disease in false negative biopsies, identify areas of repeat biopsy, and add molecular information to surgical margins.

  16. Development of a seaweed derived platelet activating factor acetylhydrolase (PAF-AH) inhibitory hydrolysate, synthesis of inhibitory peptides and assessment of their toxicity using the Zebrafish larvae assay.

    Science.gov (United States)

    Fitzgerald, Ciarán; Gallagher, Eimear; O'Connor, Paula; Prieto, José; Mora-Soler, Leticia; Grealy, Maura; Hayes, Maria

    2013-12-01

    The vascular inflammatory role of platelet activating factor acetylhydrolase (PAF-AH) is thought to be due to the formation of lysophosphatidyl choline and oxidized non-esterified fatty acids. This enzyme is considered a promising therapeutic target for the prevention of atherosclerosis and there is a need to expand the available chemical templates of PAF-AH inhibitors. This study demonstrated how natural PAF-AH inhibitory peptides were isolated and characterized from the red macroalga Palmaria palmata. The dried powdered alga was hydrolyzed using the food grade enzyme papain, and the resultant peptide containing fraction generated using RP-HPLC. Several oligopeptides were identified as potential PAF-AH inhibitors following bio-guided fractionation, and the amino acid sequences of these oligopeptides were confirmed by Q-TOF-MS and microwave-assisted solid phase de novo synthesis. The most promising PAF-AH inhibitory peptide had the amino acid sequence NIGK and a PAF-AH IC50 value of 2.32 mM. This peptide may constitute a valid drug template for PAF-AH inhibitors. Furthermore the P. palmata hydrolysate was nontoxic when assayed using the Zebrafish toxicity model at a concentration of 1mg/ml. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Synthesis of Some Phenylpropanoid Glycosides (PPGs and Their Acetylcholinesterase/Xanthine Oxidase Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Jin-Hui Wang

    2011-04-01

    Full Text Available In this research, three categories of phenylpropanoid glycosides (PPGs were designed and synthesized with PPGs isolated from Rhodiola rosea L. as lead compounds. Their inhibitory abilities toward acetylcholinesterase (AChE and xanthine oxidase (XOD were also tested. Some of the synthetic PPGs exhibited excellent enzyme inhibitory abilities.

  18. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives.

    Science.gov (United States)

    Liu, Jinbing; Chen, Changhong; Wu, Fengyan; Zhao, Liangzhong

    2013-07-01

    A series of chalcones and their derivatives were synthesized, and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant inhibitory activity, and four compounds exhibited more potent tyrosinase inhibitory activity than the reference standard inhibitor kojic acid (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one). Specifically, 1-(-1-(4-methoxyphen- yl)-3-phenylallylidene)thiosemicarbazide (18) exhibited the most potent tyrosinase inhibitory activity with IC₅₀ value of 0.274 μM. The inhibition mechanism analysis of 1-(-1-(2,4-dihydroxyphenyl)-3-phenylallylidene) thiosemicarbazide (16) and 1-(-1-(4-methoxyphenyl)-3-phenylallylidene) thiosemicarbazide (18) demonstrated that the inhibitory effects of the two compounds on the tyrosinase were irreversible. Preliminary structure activity relationships' analysis suggested that further development of such compounds might be of interest. © 2013 John Wiley & Sons A/S.

  19. Association of macrophage inhibitory cytokine-1 with nutritional status, body composition and bone mineral density in patients with anorexia nervosa: the influence of partial realimentation

    Directory of Open Access Journals (Sweden)

    Zikán Vít

    2010-04-01

    Full Text Available Abstract Background Macrophage inhibitory cytokine-1 (MIC-1 is a key inducer of cancer-related anorexia and weight loss. However, its possible role in the etiopathogenesis of nutritional disorders of other etiology such as anorexia nervosa (AN is currently unknown. Methods We measured fasting serum concentrations of MIC-1 in patients with AN before and after 2-month nutritional treatment and explored its relationship with nutritional status, metabolic and biochemical parameters. Sixteen previously untreated women with AN and twenty-five normal-weight age-matched control women participated in the study. We measured serum concentrations of MIC-1 and leptin by ELISA, free fatty acids by enzymatic colorimetric assay, and biochemical parameters by standard laboratory methods; determined resting energy expenditure by indirect calorimetry; and assessed bone mineral density and body fat content by dual-energy X-ray absorptiometry. ANOVA, unpaired t-test or Mann-Whitney test were used for groups comparison as appropriate. The comparisons of serum MIC-1 levels and other studied parameters in patients with AN before and after partial realimentation were assessed by paired t-test or Wilcoxon Signed Rank Test as appropriate. Results At baseline, fasting serum MIC-1 concentrations were significantly higher in patients with AN relative to controls. Partial realimentation significantly reduced serum MIC-1 concentrations in patients with AN but it still remained significantly higher compared to control group. In AN group, serum MIC-1 was inversely related to Buzby nutritional risk index, serum insulin-like growth factor-1, serum glucose, serum total protein, serum albumin, and lumbar bone mineral density and it significantly positively correlated with the duration of AN and age. Conclusions MIC-1 concentrations in AN patients are significantly higher relative to healthy women. Partial realimentation significantly decreased MIC-1 concentration in AN group

  20. Macrophage Inhibitory Cytokine-1 (MIC-1 as A Biomarker for Diagnosis 
and Prognosis of Stage I-II Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuning LIU

    2016-04-01

    Full Text Available Background and objective Increased macrophage inhibitory cytokine-1 (MIC-1, member of transforming growth factor-β (TGF-β superfamily, was found in patients serum with epithelial tumors. Therefore, our aim was to delineate the diagnostic and prognostic value of serum MIC-1 in patients with stage I-II non-small cell lung cancer (NSCLC. Methods A total of 152 consecutive patients with stage I–II NSCLC were prospectively enrolled and underwent follow up after total resection of tumor. Serum MIC-1 level was detected in lung cancer patients by ELISA, 48 benign pulmonary disease patients and 105 healthy controls, and was correlated with clinical features and prognosis of patients. Results The level of MIC-1 of NSCLC patients was significantly higher than that of controls (P<0.001 and benign pulmonary disease patients (P<0.001. A threshold of 1,000 pg/mL could be used to diagnose early-stage NSCLC with 70.4% sensitivity and 99.0% specificity. The level of MIC-1 was associated with elder age (P=0.001, female (P=0.03 and T2 (P=0.022. A threshold of 1,465 pg/mL could identify patients with early poor outcome with 72.2% sensitivity and 66.1% specificity. The overall 3-year survival rate in patients with high level of MIC-1 (≥1,465 pg/mL was significantly lower than that of patients with low MIC-1 level (77.6% vs 94.8%. Multivariable Cox regression revealed that a high level of MIC-1 was an independent risk factor for compromised overall survival (HR=3.37, 95%CI: 1.09-10.42, P=0.035. Conclusion High level of serum MIC-1 could be served as a potential biomarker for diagnosis and poorer outcome in patients with early-stage NSCLC.

  1. Macrophage inhibitory cytokine 1 biomarker serum immunoassay in combination with PSA is a more specific diagnostic tool for detection of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Ji Li

    Full Text Available Prostate cancer (PCa is the most common malignancy among men in the United States. Though highly sensitive, the often-used prostate-specific antigen (PSA test has low specificity which leads to overdiagnosis and overtreatment of PCa. This paper presents results of a retrospective study that indicates that testing for macrophage inhibitory cytokine 1 (MIC-1 concentration along with the PSA assay could provide much improved specificity to the assay.The MIC-1 serum level was determined by a novel p-Chip-based immunoassay run on 70 retrospective samples. The assay was configured on p-Chips, small integrated circuits (IC capable of storing in their electronic memories a serial number to identify the molecular probe immobilized on its surface. The distribution of MIC-1 and pre-determined PSA concentrations were displayed in a 2D plot and the predictive power of the dual MIC-1/PSA assay was analyzed.MIC-1 concentration in serum was elevated in PCa patients (1.44 ng/ml compared to normal and biopsy-negative individuals (0.93 ng/ml and 0.88 ng/ml, respectively. In addition, the MIC-1 level was correlated with the progression of PCa. The area under the receiver operator curve (AUC-ROC was 0.81 providing an assay sensitivity of 83.3% and specificity of 60.7% by using a cutoff of 0.494 for the logistic regression value of MIC-1 and PSA. Another approach, by defining high-frequency PCa zones in a two-dimensional plot, resulted in assay sensitivity of 78.6% and specificity of 89.3%.The analysis based on correlation of MIC-1 and PSA concentrations in serum with the patient PCa status improved the specificity of PCa diagnosis without compromising the high sensitivity of the PSA test alone and has potential for PCa prognosis for patient therapy strategies.

  2. Mannosylated N-aryl substituted 3-hydroxypyridine-4-ones: synthesis, hemagglutination inhibitory properties, and molecular modeling.

    Science.gov (United States)

    Car, Zeljka; Hrenar, Tomica; Petrović Peroković, Vesna; Ribić, Rosana; Seničar, Mateja; Tomić, Srđanka

    2014-10-01

    Structural alterations of the aglycon portions of α-mannosides influence their inhibitory potency toward type 1-fimbriated Escherichia coli. The aim of our work was to prepare and explore inhibitory properties of novel mannosylated N-aryl-substituted 3-hydroxypyridine-4-ones because they possess needed structural characteristics as possible FimH antagonists. Hemagglutination inhibitory tests showed that the examined 3-hydroxypyridine-4-one α-mannosides exhibited better inhibitory activity than methyl α-d-mannopyranoside used as a reference compound. Molecular modeling studies revealed the specific interactions responsible for the observed binding activities toward the mannose-specific FimH lectin. The activity depends on the substituent in p-position on the aglycon aromatic ring. © 2014 John Wiley & Sons A/S.

  3. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice.

    Science.gov (United States)

    Robertson, Sarah A; Care, Alison S; Skinner, Rebecca J

    2007-05-01

    Interleukin 10 (IL10) is a potent immune-regulating cytokine and inhibitor of inflammatory cytokine synthesis. To evaluate the anti-inflammatory role of IL10 in pregnancy, the response of genetically IL10-deficient mice to low-dose lipopolysaccharide (LPS)-induced abortion was examined. When IL10-null mutant C57Bl/6 (Il10(-/-)) and control (Il10(+/+)) mice were administered low-dose LPS on Day 9.5 of gestation, IL10 deficiency predisposed to fetal loss accompanied by growth restriction in remaining viable fetuses, with an approximately 10-fold reduction in the threshold dose for 100% abortion. After LPS administration, inflammatory cytokines tumor necrosis factor-alpha (TNFA) and IL6 were markedly increased in serum, uterine, and conceptus tissues in Il10(-/-) mice compared with Il10(+/+) mice, with elevated local synthesis of Tnfa and Il6 mRNAs in the gestational tissues. IL1A and IL12p40 were similarly elevated in serum and gestational tissues, whereas interferon gamma (IFNG) and soluble TNFRII content were unchanged in the absence of IL10. Recombinant IL10 rescued the increased susceptibility to LPS-induced fetal loss in Il10(-/-) mice but did not improve outcomes in Il10(+/+) mice. IL10 genotype also influenced the responsiveness of mice to a TNFA antagonist, etanercept. Fetal loss in Il10(-/-) mice was partly alleviated by moderate or high doses of etanercept, whereas Il10(+/+) mice were refractory to high-dose etanercept, consistent with attenuation by IL10 status of TNFA bioavailability after etanercept treatment. These data show that IL10 modulates resistance to inflammatory stimuli by downregulating expression of proinflammatory cytokines TNFA, IL6, IL1A, and IL12, acting to protect against inflammation-induced pathology in the implantation site.

  4. Differential Inhibition of T Lymphocyte Proliferation and Cytokine Synthesis by [6]-Gingerol, [8]-Gingerol, and [10]-Gingerol.

    Science.gov (United States)

    Bernard, Megan; Furlong, Suzanne J; Power Coombs, Melanie R; Hoskin, David W

    2015-11-01

    [6]-Gingerol, [8]-gingerol, and [10]-gingerol are pungent components of fresh ginger, extracts of which inhibit various components of the inflammatory response. Because little is known regarding the effect of gingerols with different unbranched alkyl side chain lengths on the activation and effector function of T lymphocytes, we compared the effects of [6]-gingerol, [8]-gingerol, and [10]-gingerol on murine T lymphocyte proliferation, expression of CD25 and CD69 activation markers, cytokine synthesis, and interleukin (IL)-2 receptor signaling. All three gingerols inhibited DNA synthesis by T lymphocytes, as well as interferon-γ synthesis. In contrast, only [8]-gingerol and [10]-gingerol inhibited CD25 and CD69 expression, and IL-2 synthesis. None of the gingerols affected IL-4 synthesis. Exogenous IL-2 enhanced T lymphocyte proliferation in the presence of [6]-gingerol but did not significantly increase T lymphocyte proliferation in the presence of [8]-gingerol or [10]-gingerol. In line with this finding, [8]-gingerol and [10]-gingerol impaired IL-2-induced proliferation of CTLL-2 cells, but constitutive CD25 expression was unaffected, indicating inhibition of IL-2 receptor signaling. In general, [10]-gingerol and [8]-gingerol were more potent inhibitors of T lymphocytes than [6]-gingerol. Suppression of T lymphocyte responses by gingerols suggests that these phytochemicals may be beneficial in chronic inflammatory conditions associated with excessive or inappropriate T lymphocyte activation. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential.

    Science.gov (United States)

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV-vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20-140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93-21.08 mm inhibition zones) and rifampicin (10.32-24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  6. Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro.

    Science.gov (United States)

    Fujimaki, Takahiro; Mori, Shoko; Horikawa, Manabu; Fukui, Yuko

    2018-05-15

    The red wines made from Vitis vinifera were identified as skin-whitening effectors by using in vitro assays. OPCs in the wine were evaluated for tyrosinase activity and melanogenesis. Strong tyrosinase inhibitory activity was observed in fractions with high oligomeric proanthocyanidin (OPC) content. Among OPC dimers, a strong inhibitory effect on tyrosinase was observed with OPCs which contain (+)-catechin as an upper unit. Melanogenesis inhibitory effect was observed with OPCs which have (-)-epicatechin as upper units. Also, OPC trimers, upper and middle units joined with 4 → 8 bonds, showed stronger effects compared to trimers with 4 → 6 linkages. Interestingly, (-)-epicatechin-(4β → 8)-(-)-epicatechin 3-O-gallate, which is a unique component of grapes has potent inhibitory effects on both tyrosinase and melanogenesis. Our data provide structural information about such active compounds. These results suggest that red wines containing OPC, have high melanogenesis inhibitory effect and are supposed to have skin-whitening effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hyaluronidase Inhibitory Activity of Pentacylic Triterpenoids from Prismatomeris tetrandra (Roxb. K. Schum: Isolation, Synthesis and QSAR Study

    Directory of Open Access Journals (Sweden)

    Nor Hayati Abdullah

    2016-02-01

    Full Text Available The mammalian hyaluronidase degrades hyaluronic acid by the cleavage of the β-1,4-glycosidic bond furnishing a tetrasaccharide molecule as the main product which is a highly angiogenic and potent inducer of inflammatory cytokines. Ursolic acid 1, isolated from Prismatomeris tetrandra, was identified as having the potential to develop inhibitors of hyaluronidase. A series of ursolic acid analogues were either synthesized via structure modification of ursolic acid 1 or commercially obtained. The evaluation of the inhibitory activity of these compounds on the hyaluronidase enzyme was conducted. Several structural, topological and quantum chemical descriptors for these compounds were calculated using semi empirical quantum chemical methods. A quantitative structure activity relationship study (QSAR was performed to correlate these descriptors with the hyaluronidase inhibitory activity. The statistical characteristics provided by the best multi linear model (BML (R2 = 0.9717, R2cv = 0.9506 indicated satisfactory stability and predictive ability of the developed model. The in silico molecular docking study which was used to determine the binding interactions revealed that the ursolic acid analog 22 had a strong affinity towards human hyaluronidase.

  8. Synthesis of Benzofuran Derivatives via Rearrangement and Their Inhibitory Activity on Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Ling-Yi Kong

    2010-11-01

    Full Text Available During a synthesis of coumarins to obtain new candidates for treating Alzheimer’s Disease (AD, an unusual rearrangement of a benzopyran group to a benzofuran group occurred, offering a novel synthesis pathway of these benzofuran derivatives. The possible mechanism of the novel rearrangement was also discussed. All of the benzofuran derivatives have weak anti-AChE activities compared with the reference compound, donepezil.

  9. Synthesis and topoisomerase II inhibitory and cytotoxic activity of oxiranylmethoxy- and thiiranylmethoxy-chalcone derivatives.

    Science.gov (United States)

    Na, Younghwa; Nam, Jung-Min

    2011-01-01

    In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC(50): 0.49 ± 0.21 μM) and HCT15 (IC(50): 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Synthesis and cholinesterase inhibitory activity study of new piperidone grafted spiropyrrolidines.

    Science.gov (United States)

    Basiri, Alireza; Abd Razik, Basma M; Ezzat, Mohammed Oday; Kia, Yalda; Kumar, Raju Suresh; Almansour, Abdulrahman I; Arumugam, Natarajan; Murugaiyah, Vikneswaran

    2017-12-01

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    OpenAIRE

    Hwayong Park; Kwang Hoon Song; Pil Mun Jung; Ji-Eun Kim; Hyunju Ro; Mi Yoon Kim; Jin Yeul Ma

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in ? -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respect...

  12. A synthesis of evidence on inhibitory control and auditory hallucinations based on the Research Domain Criteria (RDoC framework.

    Directory of Open Access Journals (Sweden)

    Johanna C. Badcock

    2014-03-01

    Full Text Available The National Institute of Mental Health initiative called the Research Domain Criteria (RDoC project aims to provide a new approach to understanding mental illness grounded in the fundamental domains of human behaviour and psychological functioning. To this end the RDoC framework encourages researchers and clinicians to think outside the [diagnostic]box, by studying symptoms, behaviours or biomarkers that cut across traditional mental illness categories. In this article we examine and discuss how the RDoC framework can improve our understanding of psychopathology by zeroing in on hallucinations- now widely recognized as a symptom that occurs in a range of clinical and non-clinical groups. We focus on a single domain of functioning - namely cognitive [inhibitory] control - and assimilate key findings structured around the basic RDoC units of analysis, which span the range from observable behaviour to molecular genetics. Our synthesis and critique of the literature provides a deeper understanding of the mechanisms involved in the emergence of auditory hallucinations, linked to the individual dynamics of inhibitory development before and after puberty; favours separate developmental trajectories for clinical and nonclinical hallucinations; yields new insights into co-occurring emotional and behavioural problems; and suggests some novel avenues for treatment.

  13. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens.

    Science.gov (United States)

    Sathishkumar, Gnanasekar; Gobinath, Chandrakasan; Karpagam, Karuppiah; Hemamalini, Vedagiri; Premkumar, Kumpati; Sivaramakrishnan, Sivaperumal

    2012-06-15

    Leaf extract of Morinda citrifolia L. was assessed for the synthesis of silver nanoscale particles under different temperature and reaction time. Synthesized nanoscale (MCAgNPs) particles were confirmed by analysing the excitation of surface plasmon resonance (SPR) using UV-visible spectrophotometer at 420 nm. Further SEM, HRTEM analysis confirmed the range of particle size between 10 and 60 nm and SEAD pattern authorizes the face centered cubic (fcc) crystalline nature of the MCAgNPs. Fourier transform infrared spectrum (FTIR) of synthesized MCAgNPs confirms the presence of high amount of phenolic compounds in the plant extract which may possibly influence the reduction process and stabilization of nanoparticles. Further, inhibitory activity of MCAgNPs and plant extract were tested against human pathogens like Eschericia coli, Pseudomonas aeroginosa, Klebsiella pneumoniae, Enterobacter aerogenes, Bacillus cereus and Enterococci sp. The results indicated that the MCAgNPs showed moderate inhibitory actions against human pathogens than crude plant extract, demonstrating its antimicrobial value against pathogenic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Review: Regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH synthesis and release in photoperiodic animals

    Directory of Open Access Journals (Sweden)

    Kazuyoshi eTsutsui

    2013-04-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R, GPR147. Subsequently, GnIH was identified in mammals and other vertebrates. As in birds, mammalian GnIH inhibits gonadotropin secretion, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal (HPG axis across species. Identification of the regulatory mechanisms governing GnIH expression and release is important in understanding the physiological role of the GnIH system. A nocturnal hormone, melatonin, appears to act directly on GnIH neurons through its receptor to induce expression and release of GnIH in quail, a photoperiodic bird. Recently, a similar, but opposite, action of melatonin on the inhibition of expression of mammalian GnIH was shown in hamsters and sheep, photoperiodic mammals. These results in photoperiodic animals demonstrate that GnIH expression is photoperiodically modulated via a melatonin-dependent process. Recent findings indicate that GnIH may be a mediator of stress-induced reproductive disruption in birds and mammals, pointing to a broad role for this neuropeptide in assessing physiological state and modifying reproductive effort accordingly. This paper summarizes the advances made in our knowledge regarding the regulation of GnIH synthesis and release in photoperiodic birds and mammals. This paper also discusses the neuroendocrine integration of environmental signals, such as photoperiods and stress, and internal signals, such as GnIH, melatonin and glucocorticoids, to control avian and mammalian reproduction.

  15. Synthesis of Triazole Schiff's Base Derivatives and Their Inhibitory Kinetics on Tyrosinase Activity.

    Directory of Open Access Journals (Sweden)

    Feng Yu

    Full Text Available In the present study, new Schiff's base derivatives: (Z-4-amino-5-(2-(3- fluorobenzylidenehydrazinyl-4H-1,2,4-triazole-3-thiol (Y1, (Z-3-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-ylhydrazonomethylphenol (Y2, (Z-2-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-ylhydrazonomethylphenol (Y3 and 3-((Z-(2-(4- (((E-3-hydroxybenzylideneamino-5-mercapto-4H-1,2,4-triazol-3-ylhydrazonomethylphenol (Y4 were synthesized and their structures were characterized by LC-MS, IR and 1H NMR. The inhibitory effects of these compounds on tyrosinase activites were evaluated. Compounds Y1, Y2 and Y3 showed potent inhibitory effects with respective IC50 value of 12.5, 7.0 and 1.5 μM on the diphenolase activities. Moreover, the inhibition mechanisms were determined to be reversible and mixed types. Interactions of the compounds with tyrosinase were further analyzed by fluorescence quenching, copper interaction, and molecular simulation assays. The results together with the anti-tyrosinase activities data indicated that substitution on the second position of benzene ring showed superior ant-ityrosinase activities than that on third position, and that hydroxyl substitutes were better than fluorine substitutes. In addition, two benzene rings connecting to the triazole ring would produce larger steric hindrance, and affect the bonding between tyrosinase and inhibitors to decrease the inhibitory effects. The anti-tyrosinase effects of these compounds were in contrast to their antioxidant activities. In summary, this research will contribute to the development and design of antityrosinase agents.

  16. Inhibitory effect of melatonin on testosterone synthesis is mediated via GATA-4/SF-1 transcription factors.

    Science.gov (United States)

    Qin, Fenju; Zhang, Jie; Zan, Linsen; Guo, Weiqiang; Wang, Jin; Chen, Lili; Cao, Yi; Shen, Ouxi; Tong, Jian

    2015-11-01

    The aim of the present study was to elucidate whether the GATA-4/SF-1 signalling pathway is involved in the inhibitory effects of melatonin on testosterone production in both the TM3 Leydig cell line and in C57BL/6J mice. In-vitro experiments demonstrated that melatonin treatment significantly reduced testosterone levels in cell culture medium (P testosterone production (P testosterone production are mediated via down-regulation of GATA-4 and SF-1 expression. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression.

    Science.gov (United States)

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Ro, Hyunju; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

  18. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hwayong Park

    2013-01-01

    Full Text Available To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

  19. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Science.gov (United States)

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  20. Quinazolinone derivatives: Synthesis and comparison of inhibitory mechanisms on α-glucosidase.

    Science.gov (United States)

    Wei, Mankun; Chai, Wei-Ming; Wang, Rui; Yang, Qin; Deng, Zhihong; Peng, Yiyuan

    2017-02-15

    In this study, eight quinazolinone derivatives were designed and synthesized. Their inhibitory activities on α-glucosidase were assessed in vitro. Two compounds: 2-(4-chlorophenyl)-quinazolin-4(3H)-one (CQ) and 2-(4-bromophenyl)-quinazolin-4(3H)-one (BQ) were found to be potent inhibitors of α-glucosidase with IC50 values of 12.5±0.1μM and 15.6±0.2μM, respectively. Spectroscopy methods were performed to analyze the inhibitory mechanisms of both compounds on α-glucosidase. The results revealed that they reversibly inhibited α-glucosidase in a non-competitive manner. CQ and BQ could statically quench the fluorescence spectra by formation of an inhibitor-α-glucosidase complex. The interaction between CQ and α-glucosidase depended on hydrogen bonds, electrostatic and hydrophobic force, while the driving force of the binding between BQ and the enzyme was hydrophobic. The docking results showed that BQ was less active than CQ against α-glucosidase because of its weaker interaction with the enzyme. In brief, the quinazolinone derivatives identified in this work were potentially promising candidates for developing as novel anti-diabetic agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Inhibitory effect of 660-nm LED on melanin synthesis in in vitro and in vivo.

    Science.gov (United States)

    Oh, Chang Taek; Kwon, Tae-Rin; Choi, Eun Ja; Kim, Soon Re; Seok, Joon; Mun, Seog Kyun; Yoo, Kwang Ho; Choi, Yeon Shik; Choi, Sun Young; Kim, Beom Joon

    2017-01-01

    Skin hyperpigmentary disorders including postinflammatory hyperpigmentation, melasma, solar lentigines, and conditions like freckles are common. The light-emitting diodes (LEDs) are the latest category of nonthermal and noninvasive phototherapy to be considered in skin pigmentation disorder treatment. The purpose of this study was to investigate the effects of 660-nm LED on inhibition of melanogenesis. We investigated whether a 660-nm LED affected melanin synthesis in in vitro and in vivo models, and we explored the mechanisms involved. The inhibitory effect of 660-nm LED on melanin synthesis was evaluated in B16F10 cells and HRM-2 melanin-possessing hairless mice were used to evaluate the antimelanogenic effects of 660-nm LED. Interestingly, 660-nm LED inhibited alpha-melanocyte-stimulating hormone-induced tyrosinase activity in B16F10 cells. We also found that 660-nm LED decreased MITF and tyrosinase expression and induced the activation of ERK. These findings suggest that the depigmenting effects of 660-nm LED result from downregulation of MITF and tyrosinase expression due to increased ERK activity. The 660-nm LED reduced UVB-induced melanogenesis in the skin of HRM-2 via downregulation of tyrosinase and MITF. These findings suggest 660-nm LED is a potentially depigmentation strategy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  3. Synthesis and tyrosinase inhibitory properties of novel isoquinoline urea/thiourea derivatives.

    Science.gov (United States)

    Genç, Hayriye; Zengin, Mustafa; Yavuz, Emre; Gençer, Nahit; Arslan, Oktay

    2014-06-01

    A new series of isoquinoline urea/thiourea derivatives (1-11) were synthesized, and their inhibitory effects on tyrosinase were evaluated. Isoquinoline urea/thiourea derivatives were obtained as a result of the reaction of 5-aminoisoquinoline with isocyanates or isothiocyanates. The result showed that all the synthesized compounds inhibited the tyrosinase enzyme activity. Among the compounds synthesized, 1-(4-chlorophenyl)-3-(isoquinolin-5-yl)thiourea (3) was found to be the most active one (Ki = 119.22 μM), and the inhibition kinetics analyzed using Lineweaver-Burk double reciprocal plots revealed that compound 3 was a competitive inhibitor. We also calculated HOMO-LUMO energy levels, some selected the synthesized compounds (1, 4, 11, 3, 6, 2) using Gaussian software.

  4. Short communication: Inhibitory effects of dietary aflatoxin B1 on cytokines expression and T-cell subsets in the cecal tonsil of broiler chickens

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2016-08-01

    Full Text Available Aflatoxin B1 (AFB1 is the most toxic form among the mycotoxins. Cytokines are important mediators of the immune system. T-cell subsets play a crucial role in cell-mediated immunity. The aim of present study was to evaluate the effects of dietary AFB1 on the cytokines expression and T-cell subsets in the cecal tonsil of broiler chickens throughout a 21-day experimental period. One hundred and fifty six one-day-old broiler chickens were randomly divided into control group (0 mg AFB1/kg feed and AFB1 group (0.6 mg pure AFB1/kg feed. At 7, 14 and 21 days of age, the levels of seven cytokines (IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ and TNF-α mRNA expression as well as the proportions of T-cell subsets (CD3+, CD3+CD4+, CD3+CD8+ by qRT-PCR and flow cytometry methods were assessed in the cecal tonsils. The levels of the seven cytokines mRNA expression and the percentages of T-cell subsets significantly decreased at 14 and 21 days of age in the AFB1 group compared with the control group. However, the CD4+/CD8+ ratio was not significantly changed. These results demonstrate that 0.6 mg/kg AFB1 dietary exposure reduced the levels of cytokines mRNA expression and the percentages of T-cell subsets in the cecal tonsils of broiler chickens, suggesting that the cell-mediated immunity of cecal tonsils might be impaired in broilers.

  5. Short communication: Inhibitory effects of dietary aflatoxin B1 on cytokines expression and T-cell subsets in the cecal tonsil of broiler chickens

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Jiang, M.; Fang, J.; Peng, X.; Cui, H.

    2016-11-01

    Afatoxin B1 (AFB1) is the most toxic form among the mycotoxins. Cytokines are important mediators of the immune system. T-cell subsets play a crucial role in cell-mediated immunity. The aim of present study was to evaluate the effects of dietary AFB1 on the cytokines expression and T-cell subsets in the cecal tonsil of broiler chickens throughout a 21-day experimental period. One hundred and fifty six one-day-old broiler chickens were randomly divided into control group (0 mg AFB1/kg feed) and AFB1 group (0.6 mg pure AFB1/kg feed). At 7, 14 and 21 days of age, the levels of seven cytokines (IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ and TNF-α) mRNA expression as well as the proportions of T-cell subsets (CD3+, CD3+CD4+, CD3+CD8+) by qRT-PCR and flow cytometry methods were assessed in the cecal tonsils. The levels of the seven cytokines mRNA expression and the percentages of T-cell subsets significantly decreased at 14 and 21 days of age in the AFB1 group compared with the control group. However, the CD4+/CD8+ ratio was not significantly changed. These results demonstrate that 0.6 mg/kg AFB1 dietary exposure reduced the levels of cytokines mRNA expression and the percentages of T-cell subsets in the cecal tonsils of broiler chickens, suggesting that the cell-mediated immunity of cecal tonsils might be impaired in broilers. (Author)

  6. Chemo-enzymatic synthesis and in vitro cytokine profiling of tailor-made oligofructosides

    Directory of Open Access Journals (Sweden)

    Homann Arne

    2012-11-01

    Full Text Available Abstract Background It is well known that carbohydrates play fundamental roles in cell signaling and infection processes as well as tumor formation and progression. However, the interaction pathways and cellular receptors targeted by carbohydrates and glycoconjugates remain poorly examined and understood. This lack of research stems, at least to a major part, from accessibility problems of large, branched oligosaccharides. Results To test glycan - cell interactions in vitro, a variety of tailored oligosaccharides was synthesized chemo-enzymatically. Glycosyltransferases from the GRAS organisms Bacillus megaterium (SacB and Aspergillus niger (Suc1 were used in this study. Substrate engineering of these glycosyltransferases generally acting on sucrose leads to the controlled formation of novel tailored di-, tri- and tetrasaccharides. Already industrially used as prebiotics in functional food, the immunogenic potential of novel oligosaccharides was characterized in this study. A differential secretion of CXCL8 and CCL2 was observed upon oligosaccharide co-cultivation with colorectal epithelial Caco-2 cells. Conclusion Pure carbohydrates are able to stimulate a cytokine response in human endothelial cells in vitro. The type and amount of cytokine secretion depends on the type of co-cultivated oligosaccharide.

  7. Enzymatic synthesis of butyl hydroxycinnamates and their inhibitory effects on LDL-oxidation.

    Science.gov (United States)

    Vafiadi, Christina; Topakas, Evangelos; Alissandratos, Apostolos; Faulds, Craig B; Christakopoulos, Paul

    2008-02-29

    The potential of the Aspergillus niger type A feruloyl esterase (AnFaeA) for the synthesis of various phenolic acid esters was examined using a ternary-organic reaction system consisting of a mixture of n-hexane, 1- or 2-butanol and water. Reaction parameters including the type of methyl hydroxycinnamate, the composition of the reaction media, the temperature, and the substrate concentration were investigated to evaluate their effect on initial rate and conversion to butyl esters of sinapic acids. Optimisation of the reaction parameters lead to 78% and 9% yield for the synthesis of 1-butyl and 2-butyl sinapate, respectively. For the first time, a feruloyl esterase was introduced in the reaction system as cross-linked enzyme aggregates (CLEAs), after optimisation of the immobilisation procedure, allowing the recycling and reuse of the biocatalyst. The inhibition of copper-induced LDL oxidation by hydroxycinnamic acids and their corresponding butyl esters was investigated in vitro. Kinetic analysis of the antioxidation process demonstrates that sinapate derivatives are effective antioxidants indicating that esterification increases the free acid's antioxidant activity especially on dimethoxylated compounds such as sinapic acid compared to methoxy-hydroxy-compounds such as ferulic acid.

  8. Sesquiterpenes from fruits of Torilis japonica with inhibitory activity on melanin synthesis in B16 cells.

    Science.gov (United States)

    Song, Da Hye; Jo, Yang Hee; Ahn, Jong Hoon; Kim, Seon Beom; Yun, Cheong-Yong; Kim, Youngsoo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2018-01-01

    Melanin, a dark macromolecular pigment, protects skin from harmful damage. However, abnormal accumulation is responsible for hyperpigmentation disorders. Melanogenesis inhibitors have therefore become important constituents in cosmetic products for depigmentation. Torilis japonica Decandolle (Umbelliferae) is a biennial plant which is distributed in East Asia. Fruits of this plant have been used for the treatment of skin disease and inflammation. In our previous study, torilin, a major sesquiterpene of T. japonica, showed an inhibitory effect on melanin production in α-melanocyte stimulating hormone (α-MSH)-activated B16 melanoma cells. Further extensive chromatographic separation resulted in thirteen compounds. On the basis of spectroscopic analysis, the structures of the compounds isolated were determined to be three new sesquiterpenes, viz. a guaiane-type, epoxytorilinol (1), a eudesmane-type, elematorilone (2) and a cadinane-type, cardinatoriloside (3), together with ten known sesquiterpenes (4-13). Of the compounds isolated, compounds 4-6 and 11-13 inhibited α-MSH-activated melanin production in B16 melanoma cells with IC 50 values from 72.9 to 191.0 μM.

  9. Synthesis and glycosidase inhibitory activity of new hexa-substituted C8-glycomimetics

    Directory of Open Access Journals (Sweden)

    Prangé Thierry

    2005-10-01

    Full Text Available Text abstract Background Glycosidases are involved in several metabolic pathways and the development of inhibitors is an important challenge towards the treatment of diseases, such as diabetes, cancer and viral infections including AIDS. Thus, inhibition of intestinal α-glucosidases can be used to treat diabetes through the lowering of blood glucose levels, and α-glucosidase inhibitors are being marketed against type 2 (non-insulinodependent mellitus diabetes (i.e.: Glyset® or Diastabol®, Basen® and Glucor® or Precose®. Results In that context, new C8-carbasugars and related aminocyclitols have been targeted in order to study the effect of the enhanced flexibility and of the new spatial distribution displayed by these structures on their adaptability in the active site of the enzymes. The synthesis of these new C8-glycomimetics is described from enantiomerically pure C2-symmetrical polyhydroxylated cyclooctenes. Their obtention notably involved a syn-dihydroxylation, and more extended functionalization through formation of a cis-cyclic sulfate followed by amination and subsequent reductive amination. This strategy involving the nucleophilic opening of a cis-cyclic sulfate by sodium azide is to our knowledge the first example in C8-series. It revealead to be an efficient alternative to the nucleoplilic opening of an epoxide moiety which proved unsuccessful in this particular case, due to the hindered conformation of such epoxides as demonstrated by X-ray cristallographic analysis. Conclusion The biological activity of the synthesized glycomimetics has been evaluated towards 24 commercially available glycosidases. The weak observed activities can probably be related to the spatial disposition of the hydroxy and amino groups which depart too much from that realized in glycomimetics such as valiolamine, voglibose and valienamine. Nevertheless, the synthetic strategy described here is efficient and general, and could be extended to increase

  10. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  11. Inhibitory Kinetics of Azachalcones and their Oximes on Mushroom Tyrosinase: A Facile Solid-state Synthesis.

    Science.gov (United States)

    Radhakrishnan, Sini K; Shimmon, Ronald G; Conn, Costa; Baker, Anthony T

    2016-05-01

    A solid-state-based mechanochemical process was used to synthesize novel azachalcones and their oximes as tyrosinase inhibitors. Their inhibitory activities on mushroom tyrosinase using l-3,4-dihydroxyphenylalanine as a substrate were investigated. Two of the novel oxime derivatives synthesized were seen to be more potent than the positive control, kojic acid. Both the compounds 1b and 2b inhibited the diphenolase activity of tyrosinase in a dose-dependent manner with their IC50 values of 15.3 and 12.7 μm, respectively. The kinetic analysis showed that their inhibition mechanism was reversible. Both the novel oxime compounds displayed competitive inhibition with their Ki values of 5.1 and 2.5 μm, respectively. This method minimizes waste disposal problems and provides a simple, efficient, and benign method for the synthesis of novel tyrosinase inhibitors for use as skin-whitening agents or as anti-browning food additives. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  12. THE CYTOKINES SYNTHESIS IN VITRO IN THE TICK-BORNE ENCEPHALITIS VIRUS INFECTED CELLS AND IN THE PRESENCE OF INACTIVATED VACCINE

    Directory of Open Access Journals (Sweden)

    M. V. Mesentseva

    2014-01-01

    Full Text Available Abstract. Tick-borne encephalitis (TBE is severe neuroinfectious disease with involvement of immune mechanisms in pathogenesis. Comparative analysis of synthesis of key cytokines had been performed for the TBE virus (TBEV infected cells and in the presence of inactivated vaccine against TBE in vitro. Persistent TBEV infection of immortal tissue culture of human larynx cancer cells caused transcription activation of interferons IFNα, IFNγ, IFNλ1, interleukins IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12, tumour necrosis factor TNFα as well as one of apoptosis factors Fas. Comparison of transcription and production of cytokines revealed that the TBEV infection resulted in posttranscription Th1 shift of cytokine response. In the presence of inactivated vaccine against TBE based on the same strain Sofjin of the TBEV activation of transcription of cytokines IFNα, IFNλ1, IL-4, IL-10 was also observed as after the TBEV infection that together with an additional stimulation of GM-CSF production might serve as an evidence of Th2 response. Involvement of IFNIII type (IFNλ1 both during persistent infection and after addition of inactivated vaccines was found in the first time. Differences in dynamics of cytokines IL-2, IL-8, IL-10, IL-12, TNFα response during the TBEV infection and in the presence of inactivated vaccine are described.

  13. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130.

    Science.gov (United States)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne; Gotfryd, Kamil; Bock, Elisabeth; Berezin, Vladimir

    2011-12-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. A facile chemo-, regio- and stereoselective synthesis and cholinesterase inhibitory activity of spirooxindole-pyrrolizine-piperidine hybrids.

    Science.gov (United States)

    Kia, Yalda; Osman, Hasnah; Kumar, Raju Suresh; Murugaiyah, Vikneswaran; Basiri, Alireza; Perumal, Subbu; Razak, Ibrahim Abdul

    2013-05-15

    A series of novel hybrid spiro heterocycles comprising pyrrolizine, spiroxindole and piperidine moieties was synthesized chemo-, regio- and stereoselectively in good yields from 1,3-dipolar cycloaddition reaction of a series of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with azomethine ylides generated in situ from 5-choloroisatin and l-proline in methanol. These cycloadducts displayed significant cholinesterase inhibitory activity. Among the compounds screened, 8g and 8e, showed maximum inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinestrase (BChE) with IC50 values of 3.33 and 3.13μM, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Design and Synthesis of High-Affinity Dimeric Inhibitors Targeting the Interactions between Gephyrin and Inhibitory Neurotransmitter Receptors

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Kedström, Linda Maria Haugaard

    2015-01-01

    Gephyrin is the central scaffolding protein for inhibitory neurotransmitter receptors in the brain. Here we describe the development of dimeric peptides that inhibit the interaction between gephyrin and these receptors, a process which is fundamental to numerous synaptic functions and diseases...

  16. An Expedient Synthesis, Acetylcholinesterase Inhibitory Activity, and Molecular Modeling Study of Highly Functionalized Hexahydro-1,6-naphthyridines

    Directory of Open Access Journals (Sweden)

    Abdulrahman I. Almansour

    2015-01-01

    Full Text Available A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E-arylmethylidene]tetrahydro-4(1H-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6–10 minutes and were assayed for their acetylcholinesterase (AChE inhibitory activity using colorimetric Ellman’s method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor.

  17. An expedient synthesis, acetylcholinesterase inhibitory activity, and molecular modeling study of highly functionalized hexahydro-1,6-naphthyridines.

    Science.gov (United States)

    Almansour, Abdulrahman I; Kumar, Raju Suresh; Arumugam, Natarajan; Basiri, Alireza; Kia, Yalda; Ali, Mohamed Ashraf

    2015-01-01

    A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6-10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor.

  18. A Facile Ionic Liquid Promoted Synthesis, Cholinesterase Inhibitory Activity and Molecular Modeling Study of Novel Highly Functionalized Spiropyrrolidines

    Directory of Open Access Journals (Sweden)

    Abdulrahman I. Almansour

    2015-01-01

    Full Text Available A series of novel dimethoxyindanone embedded spiropyrrolidines were synthesized in ionic liquid, [bmim]Br and were evaluated for their inhibitory activities towards cholinesterases. Among the spiropyrrolidines, compound 4f exhibited the most potent activity with an IC50 value of 1.57 µM against acethylcholinesterase (AChE. Molecular docking simulation for the most active compound was employed with the aim of disclosing its binding mechanism to the active site of AChE receptor.

  19. A facile ionic liquid promoted synthesis, cholinesterase inhibitory activity and molecular modeling study of novel highly functionalized spiropyrrolidines.

    Science.gov (United States)

    Almansour, Abdulrahman I; Kumar, Raju Suresh; Arumugam, Natarajan; Basiri, Alireza; Kia, Yalda; Ali, Mohamed Ashraf; Farooq, Mehvish; Murugaiyah, Vikneswaran

    2015-01-29

    A series of novel dimethoxyindanone embedded spiropyrrolidines were synthesized in ionic liquid, [bmim]Br and were evaluated for their inhibitory activities towards cholinesterases. Among the spiropyrrolidines, compound 4f exhibited the most potent activity with an IC50 value of 1.57 µM against acethylcholinesterase (AChE). Molecular docking simulation for the most active compound was employed with the aim of disclosing its binding mechanism to the active site of AChE receptor.

  20. Effects of Secondary Metabolites of Permafrost Bacillus sp. on Cytokine Synthesis by Human Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Kalenova, L F; Kolyvanova, S S; Bazhin, A S; Besedin, I M; Mel'nikov, V P

    2017-06-01

    We studied the effects of secondary metabolites of Bacillus sp. isolated from late Neogene permafrost on secretion of proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and IFNγ) and antiinflammatory (IL-4 and IL-10) cytokines by human peripheral blood mononuclear cells. It was found that metabolites of Bacillus sp. produced more potent effect on cytokine secretion than mitogen phytohemagglutinin and metabolites of Bacillus cereus, medicinal strain IP5832. Activity of metabolites depended on the temperature of bacteria incubation. "Cold" metabolites of Bacillus sp. (isolated at -5°C) primarily induced Th1-mediated secretion of IFNγ, while "warm" metabolites (obtained at 37°C) induced Th2-mediated secretion of IL-4. The results suggest that Bacillus sp. metabolites are promising material for the development of immunomodulating drugs.

  1. Synthesis of Th17 cytokines in the culture of peripheral blood mononuclear cells stimulated with Borrelia burgdorferi sensu lato

    Directory of Open Access Journals (Sweden)

    Sambor Grygorczuk

    2016-06-01

    Full Text Available [b]Introduction and objective. [/b]Th17 lymphocytes and their cytokines, interleukin 17A (IL-17A, IL-17F and IL-22, participate in the response to extracellular bacteria and in the autoimmunity and may be engaged in the pathogenesis of Lyme borreliosis. Concentrations were measured of IL-17A, IL-17F and IL-22 in the supernatant of the peripheral blood mononuclear cells (PBMC culture stimulated with [i]Borrelia burgdorferi sensu lato[/i] ([i]B. burgdorferi[/i]. [b]Materials and method.[/b] The study group consisted of 13 patients with early disseminated and late Lyme borreliosis and a control group of 7 healthy persons. PBMC cultures were stimulated for 48 hours with [i]B. burgdorferi [/i]spirochetes of three pathogenic species: [i]B. burgdorferi[/i] sensu stricto, B. afzelii or B. garinii, in the multiplicity of infection 10:1. Concentrations of Th17 cytokines IL-17A, IL-17F and IL-22, as well as Th2/immunoregulatory cytokine IL-10 were measured with ELISA assays. [b]Results. [/b]Expression of IL-17A, IL-17F and IL-22 increased under stimulation, simultaneously with the increased IL-10 expression. Concentration of IL-17F tended to be lower in early neuroborreliosis than in late Lyme borreliosis and than in controls. [i]B. afzelii[/i] elicited higher expression of IL-17A than the other two species. [b]Conclusions.[/b] IL-17A, IL-17F and IL-22 are synthesized simultaneously by PBMC stimulated with [i]B. burgdorferi[/i]. There is no antagonism between Th17 response and IL-10 expression. The role of Th17 cytokines seems to differ depending on the clinical stage of Lyme borreliosis and on the [i]B. burgdorferi[/i] species.

  2. Synthesis and Heme Polymerization Inhibitory Activity (HPIA Assay of Antiplasmodium of (1-N-(3,4-Dimethoxybenzyl-1,10-Phenanthrolinium Bromide from Vanillin

    Directory of Open Access Journals (Sweden)

    Dhina Fitriastuti

    2014-03-01

    Full Text Available The synthesis of (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide had been conducted from vanillin. Heme polymerization inhibitory activity assay of the synthesized antiplasmodium has also been carried out. The first step of reaction was methylation of vanillin using dimethylsulfate and NaOH. The mixture was refluxed for 2 h to yield veratraldehyde in the form of light yellow solid (79% yield. Methylation product was reduced using sodium borohydride (NaBH4 with grinding method and yielded veratryl alcohol in the form of yellow liquid (98% yield. Veratryl alcohol was brominated using PBr3 to yield yellowish black liquid (85% yield. The final step was benzylation of 1,10-phenanthroline monohydrate with the synthesized veratryl bromide under reflux condition in acetone for 14 h to afford (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide (84% as yellow solid with melting point of 166-177 °C. The structures of products were characterized by FT-IR, GC-MS and 1H-NMR spectrometers. The results of heme polymerization inhibitory activity assay of (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide showed that it had IC50 HPIA of 3.63 mM, while chloroquine had IC50 of4.37 mM. These results indicated that (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide was more potential antiplasmodium than chloroquine.

  3. Sulfonamide derivatives containing dihydropyrazole moieties selectively and potently inhibit MMP-2/MMP-9: Design, synthesis, inhibitory activity and 3D-QSAR analysis.

    Science.gov (United States)

    Yan, Xiao-Qiang; Wang, Zhong-Chang; Li, Zhen; Wang, Peng-Fei; Qiu, Han-Yue; Chen, Long-Wang; Lu, Xiao-Yuan; Lv, Peng-Cheng; Zhu, Hai-Liang

    2015-10-15

    New series of sulfonamide derivatives containing a dihydropyrazole moieties inhibitors of MMP-2/MMP-9 were discovered using structure-based drug design. Synthesis, antitumor activity, structure-activity relationship and optimization of physicochemical properties were described. In vitro the bioassay results revealed that most target compounds showed potent inhibitory activity in the enzymatic and cellular assays. Among the compounds, compound 3i exhibited the most potent inhibitory activity with IC50 values of 0.21 μM inhibiting MMP-2 and 1.87 μM inhibiting MMP-9, comparable to the control positive compound CMT-1 (1.26 μM, 2.52 μM). Docking simulation was performed to position compound 3i into the MMP-2 active site to determine the probable binding pose. Docking simulation was further performed to position compound 3i into the MMP-2 active site to determine the probable binding model the 3D-QSAR models were built for reasonable design of MMP-2/MMP-9 inhibitors at present and in future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Streptococcus sanguis secretes CD14-binding proteins that stimulate cytokine synthesis: a clue to the pathogenesis of infective (bacterial) endocarditis?

    Science.gov (United States)

    Banks, Julia; Poole, Stephen; Nair, Sean P; Lewthwaite, Jo; Tabona, Peter; McNab, Rod; Wilson, Michael; Paul, Angela; Henderson, Brian

    2002-03-01

    Streptococcus sanguis is the major causative organism of infective (bacterial) endocarditis but, surprisingly, almost nothing is known about how it induces endocardial inflammation. In earlier studies we have shown that many bacteria secrete potent cytokine-inducing or -inhibiting proteins. We have therefore isolated the material secreted by S. sanguis grown on blood agar or in broth culture and have tested its ability to induce human peripheral blood monocytes to synthesize pro-inflammatory cytokines. The activation of monocytes by the secreted components of S. sanguis was almost totally blocked by heat and trypsin treatment but not by the lipopolysaccharide-inactivating antibiotic, polymyxin B, suggesting that activity is due to secreted proteins. The activity of the secreted material was significantly reduced by anti-CD14 monoclonal antibodies suggesting that the active protein (or proteins) was binding to the CD14/Toll-like receptor (TLR)4 complex. Fractionation of the secreted proteins by high performance liquid chromatography (HPLC) identified two proteins as being responsible for the majority of the cytokine induction: a manganese-dependent superoxide dismutase and a 190 kDa protein, which could not be sequenced, but which was neither CshA nor the PI/II proteins. These proteins, or the receptors to which they bind, may be therapeutic targets and may allow the development of adjunctive therapies to prevent endocardial damage during the often prolonged treatment of infective endocarditis with antibiotics. In addition, blocking of CD14 may have some therapeutic benefit. Copyright 2002 Academic Press.

  5. Synthesis and evaluation of the inhibitory activity of the four stereoisomers of the potent and selective human γ-glutamyl transpeptidase inhibitor GGsTop.

    Science.gov (United States)

    Watanabe, Bunta; Tabuchi, Yukiko; Wada, Kei; Hiratake, Jun

    2017-11-01

    2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon=174M-1s-1) was ca. 8-fold more potent than the d-isomer (kon=21.5M-1s-1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon=21.5-174M-1s-1), while the RP-isomers were inactive even at concentrations of 0.1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The inhibitory effect of Duchesnea chrysantha extract on the development of atopic dermatitis-like lesions by regulating IgE and cytokine production in Nc/Nga mice.

    Science.gov (United States)

    Lee, Ji-Sook; Kim, In Sik; Ryu, Ji-Sun; Kim, Joo-Hwan; Kim, Jin Sook; Kim, Dong-Hee; Yun, Chi-Young

    2012-02-01

    Duchesnea chrysantha belongs to the Rosaceae family and has been used traditionally for the treatment of various diseases in Korea and other parts of East Asia. This study examined the antiinflammatory effect of Duchesnea chrysantha extract (DcE) on atopic dermatitis in vitro and in vivo. DcE inhibited the production of IL-6, IL-8 and MCP-1 in THP-1 cells and the release of IL-6 and MCP-1 in EoL-1 cells after treatment with house dust mite extract. In the in vivo experiment, Nc/Nga mice were sensitized to DNCB and then orally and dorsally administered DcE (50 mg/kg in PBS) for 3 weeks. The DcE administration significantly reduced the skin severity score when compared with the control group and inhibited the thickening of the epidermis and infiltration of inflammatory cells into the dermis. In addition, the serum IgE levels decreased markedly in the DcE-treated mice when compared with the control group. The synthesis of IL-5, IL-13, MCP-1 and eotaxin was also decreased in splenocytes of the DcE-treated group, while IFN-γ was increased in the Dc-administered group. These results may indicate that DcE attenuates the development of atopic dermatitis-like lesions by lowering the IgE and inflammatory cytokine levels, and that it is useful in drug development for the treatment of atopic dermatitis. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Synthesis, docking, cytotoxicity, and LTA4H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy.

    Science.gov (United States)

    El-Naggar, Mai H; Mira, Amira; Abdel Bar, Fatma M; Shimizu, Kuniyoshi; Amer, Mohamed M; Badria, Farid A

    2017-02-01

    Leukotriene A4 hydrolase (LTA4H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene which may play an important role in chronic inflammation associated carcinogenesis. [6]-gingerol, the major bioactive compound of Zingiber officinale, is a potential inhibitor of LTA4H, a highly expressed enzyme in colorectal carcinoma. Eighteen compounds; seven of natural origin (including [4]-, [6]-, [8]-, and [10]-gingerol), five new and six known semi-synthesized [6]-gingerol derivatives were examined using docking, in vitro cytotoxicity against human colon cancer cells (HCT-116) and LTA4H aminopeptidase and epoxide hydrolase inhibitory studies. Methyl shogoal (D8) showed to be the most potent compound against HCT-116 cells (IC50; 1.54μM). Remarkably, D8 proved to be non-cytotoxic to normal cells; (TIG-1) and (HF-19) with high selective index (SI; 52.3). Furthermore [6]-gingerol derivatives showed potent LTA4H inhibitory activities in comparison to the universal positive controls (bestatin and 4BSA). Among the natural gingerols, [10]-gingerol (N3) exhibited the highest LTA4H aminopeptidase and epoxide hydrolase inhibitory activities with IC50; 21.59 and 15.24μM, respectively. Meanwhile, methyl shogoal (D8) and 4'-O-prenyl-[6]-gingerol (D10) retained the highest inhibition with IC50; 4.92 and 3.01μM, for aminopeptidase, and 11.27 and 7.25μM for epoxide hydrolase activities, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Synthesis of colon-specific prodrug of indomethacin and its inhibitory effect on liver metastasis from colon cancer].

    Science.gov (United States)

    Peng, Ning-fu; Yang, Li-qun; Chen, Ru-fu; Cai, Xiang; Li, Le-qun; Li, Zhi-hua; Zhou, Quan-bo; Zhou, Jia-jia; Jiang, Zhi-peng

    2010-03-01

    To develop a colon-specific prodrug of Indomethacin microbially triggered, carry out in vitro/in vivo evaluation of drug release, and appraise its inhibitory effect on liver metastasis from colon cancer. Indomethacin prodrugs were synthesized and characterized by FTIR and NMR, and dissolution test simulating gastrointestinal tract was employed to screen the colon-specific prodrug. Then, the pharmacokinetic profile of portal vein and peripheral blood in Sprague-Dawley rats was studied. Lastly, the inhibitory effect on liver metastasis from colon cancer in nude mice was observed. The chemical structure characterized by FTIR and NMR demonstrated that six kinds of indomethacin-block-amylose with different drug loading (IDM-AM-1-6) were synthesized, among which IDM-AM-3 was degraded 1.3%, 9.3% and 95.3%, respectively, in simulated gastric fluid for 4 h, small intestine for 6 h, and colon for 36 h. The pharmacokinetic test of IDM-AM-3 showed that absorption was delayed significantly (P IDM regarding to portal vein. Additionally, its AUC(0-t) in peripheral blood was remarkably lower than that in Portal vein (P IDM (P IDM-AM-3 possesses advantage of sustained release in portal vein providing some experimental basis for colon-specific delivery system applied to sustained release in the portal vein.

  9. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques.

    Science.gov (United States)

    Ashraf, Jalaluddin M; Ansari, Mohammad Azam; Khan, Haris M; Alzohairy, Mohammad A; Choi, Inho

    2016-02-02

    Advanced glycation end-products (AGEs) resulting from non-enzymatic glycation are one of the major factors implicated in secondary complications of diabetes. Scientists are focusing on discovering new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. A number of natural and synthetic compounds have been proposed as AGE inhibitors. In this study, we investigated the inhibitory effects of AgNPs (silver nanoparticles) in AGEs formation. AgNPs (~30.5 nm) synthesized from Aloe Vera leaf extract were characterized using UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), high resolution-transmission electron microscopy, X-ray diffraction and dynamic light scattering (DLS) techniques. The inhibitory effects of AgNPs on AGEs formation were evaluated by investigating the degree of reactivity of free amino groups (lysine and arginine residues), protein-bound carbonyl and carboxymethyl lysine (CML) content, and the effects on protein structure using various physicochemical techniques. The results showed that AgNPs significantly inhibit AGEs formation in a concentration dependent manner and that AgNPs have a positive effect on protein structure. These findings strongly suggest that AgNPs may play a therapeutic role in diabetes-related complications.

  10. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: design, synthesis, cytotoxicity and enzyme-inhibitory activity.

    Science.gov (United States)

    Farzaneh, Shabnam; Zainalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2017-10-03

    Background Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anti-cancer activities. Method Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti

  11. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia.

    NARCIS (Netherlands)

    Properzi, F.; Carulli, D.; Asher, R.A.; Muir, E.; Camargo, L.M.; Kuppevelt, A.H.M.S.M. van; Dam, G.B. ten; Furukawa, Y.; Mikami, T.; Sugahara, K.; Toida, T.; Geller, H.M.; Fawcett, J.W.

    2005-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are up-regulated in the CNS after injury and inhibit axon regeneration mainly through their glycosaminoglycan (CS-GAG) chains. We have analysed the mRNA levels of the CS-GAG synthesizing enzymes and measured the CS-GAG disaccharide composition by

  12. Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth.

    Science.gov (United States)

    Zarandi, Marta; Cai, Renzhi; Kovacs, Magdolna; Popovics, Petra; Szalontay, Luca; Cui, Tengjiao; Sha, Wei; Jaszberenyi, Miklos; Varga, Jozsef; Zhang, XianYang; Block, Norman L; Rick, Ferenc G; Halmos, Gabor; Schally, Andrew V

    2017-03-01

    The syntheses and biological evaluations of new GHRH analogs of Miami (MIA) series with greatly increased anticancer activity are described. In the design and synthesis of these analogs, the following previous substitutions were conserved: D-Arg2, Har9, Abu15, and Nle27. Most new analogs had Ala at position 8. Since replacements of both Lys12 and Lys21 with Orn increased resistance against enzymatic degradation, these modifications were kept. The substitutions of Arg at both positions 11 and 20 by His were also conserved. We kept D-Arg28, Har29 -NH2 at the C-terminus or inserted Agm or 12-amino dodecanoic acid amide at position 30. We incorporated pentafluoro-Phe (Fpa5), instead of Cpa, at position 6 and Tyr(Me) at position 10 and ω-amino acids at N-terminus of some analogs. These GHRH analogs were prepared by solid-phase methodology and purified by HPLC. The evaluation of the activity of the analogs on GH release was carried out in vitro on rat pituitaries and in vivo in male rats. Receptor binding affinities were measured in vitro by the competitive binding analysis. The inhibitory activity of the analogs on tumor proliferation in vitro was tested in several human cancer cell lines such as HEC-1A endometrial adenocarcinoma, HCT-15 colorectal adenocarcinoma, and LNCaP prostatic carcinoma. For in vivo tests, various cell lines including PC-3 prostate cancer, HEC-1A endometrial adenocarcinoma, HT diffuse mixed β cell lymphoma, and ACHN renal cell carcinoma cell lines were xenografted into nude mice and treated subcutaneously with GHRH antagonists at doses of 1-5μg/day. Analogs MIA-602, MIA-604, MIA-610, and MIA-640 showed the highest binding affinities, 30, 58, 48, and 73 times higher respectively, than GHRH (1-29) NH2. Treatment of LNCaP and HCT-15 cells with 5μM MIA-602 or MIA-690 decreased proliferation by 40%-80%. In accord with previous tests in various human cancer lines, analog MIA-602 showed high inhibitory activity in vivo on growth of PC-3 prostate

  13. Inhibitory effects of tributyl phosphate on algal growth, photosynthesis, and fatty acid synthesis in the marine diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Song, Hao; Fan, Xiaoji; Liu, Guangfu; Xu, Jiahui; Li, Xingxing; Tan, Yuzhu; Qian, Haifeng

    2016-12-01

    The widely used solvent extractant, tributyl phosphate (TBP), primarily used as a solvent for the conventional processing of nuclear fuel, has come under scrutiny recently due to concerns surrounding potential environmental contamination and toxicity. In this study, we found that, in Phaeodactylum tricornutum, administration of TBP severely inhibited algal cell growth by reducing photosynthetic efficiency and inducing oxidative stress. We further explored the effect of TBP by examining the gene expression of the photosynthetic electron transport chain and its contribution to reactive oxygen species (ROS) burst. Our data revealed that TBP affected both fatty acid content and profile by regulating the transcription of genes related to glycolysis, fatty acid biosynthesis, and β-oxidation. These results demonstrated that TBP did in fact trigger the synthesis of ROS, disrupting the subcellular membrane structure of this aquatic organism. Our study brings new insight into the fundamental mechanism of toxicity exerted by TBP on the marine alga P. tricornutum.

  14. Intracellular synthesis of Epstein-Barr virus membrane antigen gp350/220. Inhibitory effect of monensin on its expression.

    Science.gov (United States)

    Bertoni, G; Nguyen, Q V; Humphreys, R E; Sairenji, T

    1989-01-01

    We have defined the intracellular expression and localization of gp350/220, one of the Epstein-Barr virus (EBV) induced membrane antigens, on 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and n-butyrate-treated P3HR-1 cells. 1B6 monoclonal antibody (mAb) immunoprecipitated gp350/220 from [35S]-methionine-labeled cells, as confirmed with other mAbs (2L10, 72A1, and C1), to the same membrane antigen. The appearance of gp350/220 was observed about 14 h after TPA and n-butyrate activation and reached a maximal level at about 48 h. 1B6 mAb membrane immunofluorescence-positive and cytoplasmic fluorescence-positive cells appeared progressively in cell populations at the same frequencies. Cytoplasmic immunofluorescent staining with 1B6 mAb demonstrated a paranuclear complex which was identical to a rhodamine-labeled wheat germ agglutinin-stained pattern which has been ascribed to the Golgi apparatus. We investigated the effect of monensin on gp350/220 expression and processing. Monensin at 10(-7) M significantly inhibited membrane antigen expression in the Golgi apparatus and on the cell surface, but had a negligible effect on synthesis of viral capsid antigen, early antigen, and viral DNA. The inhibition of gp350/220 with monensin was further characterized by the immunoprecipitation of gp350/220 with anti-MA-positive human sera and mAbs. Monensin treatment resulted in the accumulation of a 165-kD molecule which was judged to be a precursor of gp350/220. These results were consistent with the view that the Golgi apparatus plays an important role as a place of synthesis, processing, and maturation of gp350/220.

  15. GCN2 has inhibitory effect on human immunodeficiency virus-1 protein synthesis and is cleaved upon viral infection.

    Directory of Open Access Journals (Sweden)

    Javier del Pino

    Full Text Available The reversible phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2alpha is a well-characterized mechanism of translational control in response to a wide variety of cellular stresses, including viral infection. Beside PKR, the eIF2alpha kinase GCN2 participates in the cellular response against viral infection by RNA viruses with central nervous system tropism. PKR has also been involved in the antiviral response against HIV-1, although this antiviral effect is very limited due to the distinct mechanisms evolved by the virus to counteract PKR action. Here we report that infection of human cells with HIV-1 conveys the proteolytic cleavage of GCN2 and that purified HIV-1 and HIV-2 proteases produce direct proteolysis of GCN2 in vitro, abrogating the activation of GCN2 by HIV-1 RNA. Transfection of distinct cell lines with a plasmid encoding an HIV-1 cDNA clone competent for a single round of replication resulted in the activation of GCN2 and the subsequent eIF2alpha phosphorylation. Moreover, transfection of GCN2 knockout cells or cells with low levels of phosphorylated eIF2alpha with the same HIV-1 cDNA clone resulted in a marked increase of HIV-1 protein synthesis. Also, the over-expression of GCN2 in cells led to a diminished viral protein synthesis. These findings suggest that viral RNA produced during HIV-1 infection activates GCN2 leading to inhibition of viral RNA translation, and that HIV-1 protease cleaves GCN2 to overcome its antiviral effect.

  16. Role played by T-helper 2 in resetting the cytokine balance in allergic patients

    Directory of Open Access Journals (Sweden)

    Mohamed Y Attia

    2014-01-01

    Full Text Available Background Bronchial asthma is an allergic disorder characterized by excessive hyperactive nature of the airways, which depends on many cytokines such as interleukin-4 (IL-4 and IL-5 that are responsible for the allergic inflammatory response. One of the strategies in the management of bronchial asthma is the induction of synthesis of IL-10; it has an inhibitory effect on the synthesis of the T-helper-2 (Th2 cytokines. Th2 cells play a triggering role in the activation/recruitment of immunoglobulin E antibody-producing B cells, mast cells, and eosinophil cells. To assess regulatory changes in the immune system, in patients with allergy and asthma, we studied the cytokine profile in serum in comparison with normal healthy controls. The study was carried out in Allergy and Immunology Unit, Ain Shams University Hospitals. A total of 170 patients with various allergies and asthmatic conditions were studied, for cytokines in the serum by enzyme-linked immunosorbent assay using kits from Immune Technology, and analyzed to identify the triggering factors or main contributors toward allergy and asthma. Our study showed increase in the levels of IL-4, IL-5, and IL-6 in all groups, which was nonsignificant. However, the levels of IL-10, IL-13, and tumor necrosis factor-α were highly significantly increased. Besides, we found correlation of granulocyte macrophage colony-stimulating factor with IL-10. Significant positive correlation with different cytokines was observed. Most of these patients showed increase in immunoglobulin E levels. This study gives a better understanding of how cytokines are the mediators of balance of Th1 and Th2 immune responses and how immunoglobulin E synthesis is controlled by cytokines. Further studies will eventually lead to improved treatment strategies in the clinical management of immunoglobulin E-mediated allergy.

  17. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  18. Human bladder uroepithelial cells synergize with monocytes to promote IL-10 synthesis and other cytokine responses to uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Benjamin L Duell

    Full Text Available Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10 in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.

  19. Inhibition of histone deacetylase 1 or 2 reduces induced cytokine expression in microglia through a protein synthesis independent mechanism.

    Science.gov (United States)

    Durham, Benjamin S; Grigg, Ronald; Wood, Ian C

    2017-10-01

    Histone deacetylase (HDAC) inhibitors prevent neural cell death in in vivo models of cerebral ischaemia, brain injury and neurodegenerative disease. One mechanism by which HDAC inhibitors may do this is by suppressing the excessive inflammatory response of chronically activated microglia. However, the molecular mechanisms underlying this anti-inflammatory effect and the specific HDAC responsible are not fully understood. Recent data from in vivo rodent studies have shown that inhibition of class I HDACs suppresses neuroinflammation and is neuroprotective. In our study, we have identified that selective HDAC inhibition with inhibitors apicidin, MS-275 or MI-192, or specific knockdown of HDAC1 or 2 using siRNA, suppresses the expression of cytokines interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in BV-2 murine microglia activated with lipopolysaccharide (LPS). Furthermore, we found that in the absence of HDAC1, HDAC2 is up-regulated and these increased levels are compensatory, suggesting that these two HDACs have redundancy in regulating the inflammatory response of microglia. Investigating the possible underlying anti-inflammatory mechanisms suggests an increase in protein expression is not important. Taken together, this study supports the idea that inhibitors selective towards HDAC1 or HDAC2, may be therapeutically useful for targeting neuroinflammation in brain injuries and neurodegenerative disease. © 2017 International Society for Neurochemistry.

  20. Human Bladder Uroepithelial Cells Synergize with Monocytes to Promote IL-10 Synthesis and Other Cytokine Responses to Uropathogenic Escherichia coli

    Science.gov (United States)

    Duell, Benjamin L.; Carey, Alison J.; Dando, Samantha J.; Schembri, Mark A.; Ulett, Glen C.

    2013-01-01

    Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions. PMID:24155979

  1. A facile stereoselective synthesis of dispiro-indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids and evaluation of their antimycobacterial, anticancer and AchE inhibitory activities.

    Science.gov (United States)

    Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu

    2016-11-15

    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC50 <1.56μM) and 6l (IC50=2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC50 values of 1.10 and 1.16μmol/L respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Improved microwave-mediated synthesis of 3-(3-aryl-1,2,4-oxadiazol-5-yl)propionic acids and their larvicidal and fungal growth inhibitory properties.

    Science.gov (United States)

    Neves Filho, Ricardo Antonio Wanderley; da Silva, Cecília Aguiar; da Silva, Clécia Sipriano Borges; Brustein, Vanessa Passos; do Amaral Ferraz Navarro, Daniela Maria; dos Santos, Fábio André Brayner; Alves, Luiz Carlos; dos Santos Cavalcanti, Marília Gabriela; Srivastava, Rajendra Mohan; das Graças Carneiro-Da-Cunha, Maria

    2009-08-01

    The synthesis of 3-(3-aryl-1,2,4-oxadiazol-5-yl)propionic acids from arylamidoximes and succinic anhydride under focused microwave irradiation conditions is described. The new synthetic method furnished the desired products in 2-3 min and good yields. Furthermore, the previously complicated purification procedure has been simplified in a manner which is quick, eco-friendly and cost-effective. Larvicidal bioassay and fungal growth inhibitory tests were performed using several 3-(3-aryl-1,2,4-oxadiazol-5-yl)propionic acids. These acids presented strong larvicidal activity against L4 larvae of Aedes aegypti. The results suggest that larvicidal activity might be correlated with the presence of electron-withdrawing substituents in the para position of the phenyl ring except the fluorine atom. The alterations observed in the larvae spiracular valves of the siphon and anal papillae by 1,2,4-oxadiazoles in the larvicidal bioassay are responsible for larvae's death. Furthermore, all acids inhibited the fungal growth of five different types of fungi, viz., Fusarium solani, F. oxysporum, F. moniliforme, F. decemcellulare and F. lateritium in a preliminary evaluation. Both of these activities are being disclosed for the first time for 1,2,4-oxadiazole-5-yl ring linked at C-3 of propionic acid.

  3. 2-(2-(4-Benzoylpiperazin-1-ylethylisoindoline-1,3-dione derivatives: Synthesis, docking and acetylcholinesterase inhibitory evaluation as anti-alzheimer agents

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi-Farani

    2017-01-01

    Full Text Available Objective(s: Alzheimer’s disease (AD as progressive cognitive decline and the most common form of dementia is due to degeneration of the cholinergic neurons in the brain. Therefore, administration of the acetylcholinesterase (AChE inhibitors such as donepezil is the first choice for treatment of the AD. In the present study, we focused on the synthesis and anti-cholinesterase evaluation of new donepezil like analogs. Materials and Methods: A new series of phthalimide derivatives (compounds 4a-4j were synthesized via Gabriel protocol and subsequently amidation reaction was performed using various benzoic acid derivatives. Then, the corresponding anti-acetylcholinesterase activity of the prepared derivatives (4a-4j was assessed by utilization of the Ellman's test and obtained results were compared to donepezil. Besides, docking study was also carried out to explore the likely in silico binding interactions.  Results: According to the obtained results, electron withdrawing groups (Cl, F at position 3 and an electron donating group (methoxy at position 4 of the phenyl ring enhanced the acetylcholinesterase inhibitory activity. Compound 4e (m-Fluoro, IC50 = 7.1 nM and 4i (p-Methoxy, IC50 = 20.3 nM were the most active compounds in this series and exerted superior potency than donepezil (410 nM. Moreover, a similar binding mode was observed in silico for all ligands in superimposition state with donepezil into the active site of acetylcholinesterase. Conclusion: Studied compounds could be potential leads for discovery of novel anti-Alzheimer agents in the future.

  4. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors.

    Science.gov (United States)

    Channar, Pervaiz Ali; Saeed, Aamer; Larik, Fayaz Ali; Rafiq, Muhammad; Ashraf, Zaman; Jabeen, Farukh; Fattah, Tanzeela Abdul

    2017-11-01

    The present article describes the synthesis and enzyme inhibitory kinetics of methyl[2-(arylmethylene-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates 5a-j as mushroom tyrosinase inhibitors. The title compounds were synthesized via cyclocondensation of thiosemicarbazones 3a-j with dimethyl but-2-ynedioate (DMAD) 4 in good yields under solvent-free conditions. The synthesized compounds were evaluated for their potential to inhibit the activity of mushroom tyrosinase. It was unveiled that compounds 5i showed excellent enzyme inhibitory activity with IC 50 3.17µM while IC 50 of standard kojic acid is 15.91µM. The presence of heterocyclic pyridine ring in compound 5i play important role in enzyme inhibitory activity as rest of the functional groups are common in all synthesized compounds. The enzyme inhibitory kinetics of the most potent derivative 5i determined by Lineweaver-Burk plots and Dixon plots showed that it is non-competitive inhibitor with Ki value 1.5µM. It was further investigated that the wet lab results are in good agreement with the computational results. The molecular docking of the synthesized compounds was performed against tyrosinase protein (PDBID 2Y9X) to delineate ligand-protein interactions at molecular level. The docking results showed that the major interacting residues are His244, His85, His263, Val 283, His 296, Asn260, Val248, His260, His261 and Phe264 which are located in active binding site of the protein. The molecular modeling demonstrates that the oxygen atom of the compound 5i coordinated with the key residues in the active site of mushroom tyrosinase contribute significantly against inhibitory ability and diminishing the human melanin synthesis. These results evident that compound 5i is a lead structure in developing most potent mushroom tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130

    DEFF Research Database (Denmark)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne

    2011-01-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor a (CNTFRa), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has...... that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF...... similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential....

  6. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling...... via JAKs, STATs and SOCS exhibit considerable redundancy, compensation and plasticity in stem cells in accordance with the view that stem cells are governed by quantitative variations in strength and duration of signalling events known from other cell types rather than qualitatively different stem...

  7. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    Science.gov (United States)

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  8. Synthesis and 5α-Reductase Inhibitory Activity of C21 Steroids Having 1,4-diene or 4,6-diene 20-ones and 4-Azasteroid 20-Oximes

    Directory of Open Access Journals (Sweden)

    Eunsook Ma

    2011-12-01

    Full Text Available The synthesis and evaluation of 5α-reductase inhibitory activity of some 4-azasteroid-20-ones and 20-oximes and 3β-hydroxy-, 3β-acetoxy-, or epoxy-substituted C21 steroidal 20-ones and 20-oximes having double bonds in the A and/or B ring are described. Inhibitory activity of synthesized compounds was assessed using 5α-reductase enzyme and [1,2,6,7-3H]testosterone as substrate. All synthesized compounds were less active than finasteride (IC50: 1.2 nM. Three 4-azasteroid-2-oximes (compounds 4, 6 and 8 showed good inhibitory activity (IC50: 26, 10 and 11 nM and were more active than corresponding 4-azasteroid 20-ones (compounds 3, 5 and 7. 3β-Hydroxy-, 3β-acetoxy- and 1α,2α-, 5α,6α- or 6α,7α-epoxysteroid-20-one and -20-oxime derivatives having double bonds in the A and/or B ring showed no inhibition of 5α-reductase enzyme.

  9. T-Regulatory Cells and Inflammatory and Inhibitory Cytokines in Malawian Children Residing in an Area of High and an Area of Low Malaria Transmission During Acute Uncomplicated Malaria and in Convalescence.

    Science.gov (United States)

    Nyirenda, Tonney S; Molyneux, Malcolm E; Kenefeck, Rupert; Walker, Lucy S K; MacLennan, Calman A; Heyderman, Robert S; Mandala, Wilson L

    2015-09-01

    Malaria still infects many Malawian children, and it is a cause of death in some of them. Regulatory T cells (Tregs) help in negating immune-related pathology, it but can also favor multiplication of malaria parasites. The question remains whether children recovering from uncomplicated malaria (UCM) have higher Tregs and interleukin (IL)-10 levels in convalescence. We recruited children between the ages of 6 and 60 months presenting with acute UCM in Blantyre (low transmission area) and Chikwawa (high transmission area). We observed the children after 1 month and 3 months and analyzed their blood samples for parasitemia, lymphocyte subsets, and levels of the cytokines interferon (IFN)-γ, IL-10, and transforming growth factor (TGF)-β. Blood samples from age-matched controls were also analyzed for the same parameters. Compared with controls, acute UCM was associated with mild lymphopenia, splenomegaly, and high levels of IFN-γ, tumor necrosis factor-α, and IL-10, which normalized in convalescence. In Chikwawa, Treg counts were significantly (P < .0001) higher in convalescence compared with acute disease, whereas in Blantyre, these were as low as in healthy controls both during acute disease and in convalescence. Blantyre had a higher percentage of parasiteamic children (15% versus 12%) in convalescence compared with Chikwawa, but none of these developed symptomatic malaria during the study duration. Concentrations of TGF-β were higher at time points for the study participants and in controls from Blantyre compared with those recruited in Chikwawa. The high transmission area was associated with high Tregs counts and IL-10 concentrations in convalescence, which could have an effect on parasite clearance. We recommend that children recovering from UCM, especially those from high transmission area, should sleep under insecticide-treated nets, be screened for parasitemia, and a provision of antimalarial prophylaxis should be considered.

  10. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-γ

    Directory of Open Access Journals (Sweden)

    Fan Chung

    2001-01-01

    Full Text Available Interleukin-10 (IL-10 is a cytokine derived from CD4+ T-helper type 2 (TH2 cells identified as a suppressor of cytokines from T-helper type 1(TH1 cells. Interleukin-12 (IL-12 is produced by B cells, macrophages and dendritic cells, and primarily regulates TH1 cell differentiation, while suppressing the expansion of TH2 cell clones. Interferon-γ (IFN-γ is a product of TH1 cells and exerts inhibitory effects on TH2 cell differentiation. These cytokines have been implicated in the pathogenesis of asthma and allergies. In this context, IL-12 and IFN-γ production in asthma have been found to be decreased, and this may reduce their capacity to inhibit IgE synthesis and allergic inflammation. IL-10 is a potent inhibitor of monocyte/macrophage function, suppressing the production of many pro-inflammatory cytokines. A relative underproduction of IL-10 from alveolar macrophages of atopic asthmatics has been reported. Therapeutic modulation of TH1/TH2 imbalance in asthma and allergy by mycobacterial vaccine, specific immunotherapy and cytoline-guanosine dinucleotide motif may lead to increases in IL-12 and IFN-γ production. Stimulation of IL-10 production by antigen-specific T-cells during immunotherapy may lead to anergy through inhibition of CD28-costimulatory molecule signalling by IL-10s anti-inflammatory effect on basophils, mast cells and eosinophils.

  11. Synthesis of 6-hydroxyaurone analogues and evaluation of their α-glucosidase inhibitory and glucose consumption-promoting activity: Development of highly active 5,6-disubstituted derivatives.

    Science.gov (United States)

    Sun, Hua; Ding, Weina; Song, Xiaotong; Wang, Dong; Chen, Mingzhu; Wang, Kaili; Zhang, Yazhou; Yuan, Peng; Ma, Ying; Wang, Runling; Dodd, Robert H; Zhang, Yongmin; Lu, Kui; Yu, Peng

    2017-08-01

    A series of 6-hydroxyaurones and their analogues have been synthesized and evaluated for their in vitro α-glucosidase inhibitory and glucose consumption-promoting activity. These compounds exhibited varying degrees of α-glucosidase inhibitory activity, 11 of them showing higher potency than that of the control standard acarbose (IC50=50.30μM). Surprisingly, analogues devoid of a substituent at C-2 but having an aryl group at C-5 were found to be highly active (e.g., 7f, IC50=9.88μM). Docking analysis substantiated these findings. The kinetic analysis of compound 7f, the most potent α-glucosidase inhibitor of this study, revealed that it inhibited α-glucosidase in an irreversible and mixed competitive mode. In addition, compounds 7f and 10c exhibited significant glucose consumption promoting activity at 1μM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis and α-Glucosidase Inhibitory Mechanisms of Bis(2,3-dibromo-4,5-dihydroxybenzyl) Ether, a Potential Marine Bromophenol α-Glucosidase Inhibitor

    OpenAIRE

    Xiukun Lin; Jianteng Wei; , Wei Zhang; Ming Liu

    2011-01-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE), derived from the marine algae, is a potential α-glucosidase inhibitor for type 2 diabetes treatment. In the present study, a synthetic route was established as a valid approach to obtain BDDE. Fluorescence spectra, circular dichroism spectra and molecular docking methods were employed to elucidate the inhibitory mechanisms of BDDE against α-glucosidase. The results showed that BDDE could be prepared effectively and efficiently with the establ...

  13. Inhibitory effects of salidroside and paeonol on tyrosinase activity and melanin synthesis in mouse B16F10 melanoma cells and ultraviolet B-induced pigmentation in guinea pig skin.

    Science.gov (United States)

    Peng, Li-Hua; Liu, Shuai; Xu, Shen-Yao; Chen, Lei; Shan, Ying-Hui; Wei, Wei; Liang, Wen-Quan; Gao, Jian-Qing

    2013-09-15

    Salidroside, the major active component of Rhodiola rosea, a herb with antioxidant, free radical scavenging and tyrosinase inhibitory effects, has been recently reported in protecting the kerationcytes from the UV radiation, suggesting the potential of this component in depigmentation. Paeonol is isolated from Moutan Cortex Radicis with anti-inflammation/microbial activities, was reported to induce the down-regulation of microphthalmia-associated transcription factor and subsequently tyrosinase. To testify the potential of these compounds as melanin formation inhibitors for hyperpigmentation therapy, the influence of salidroside and paeonol on pigmentation was investigated. With arbutin as a positive control, salidroside and paeonol were evaluated for their inhibitory effect on the cell viability, tyrosinase activity and melanin synthesis in B16F10 melanoma cells, as well as their effects in UVB-induced hyperpigmentation in brown guinea pig skins. It was demonstrated that the significant inhibition of salidroside (33.0%) and paeonol (22.2-30.9%) on the tyrosinase activity is slightly lower than that of arbutin (18.4-44.7%). However, salidroside exhibited the dose-dependent inhibition (30.6-42.0%) in melanin synthesis at a low concentration of 100 μM, paeonol and arbutin expressed inhibition rates of 27.4-37.2% and 25.8-45.6% within 500-1000 μM. The in vivo topical application of these compounds was demonstrated to obviously decrease the hyperpigmentation on UVB stimulated guinea pig skin. This study provided the original evidence for the salidroside and paeonol as therapeutic agents for pigmentation disorder and skin lightening, with further clinical investigation of these compounds in the field of depigmentation was suggested. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Ferrocene tripeptide Gly-Pro-Arg conjugates: synthesis and inhibitory effects on Alzheimer's Aβ(1-42) fibrillogenesis and Aβ-induced cytotoxicity in vitro.

    Science.gov (United States)

    Zhou, Binbin; Li, Chun-Lan; Hao, Yuan-Qiang; Johnny, Muya Chabu; Liu, You-Nian; Li, Juan

    2013-01-15

    Alzheimer's disease (AD) is the most common cause of dementia, and currently there is no clinical treatment to cure it or to halt its progression. Aggregation and fibril formation of β-amyloid peptides (Aβ) are central events in the pathogenesis of AD. Many efforts have been spent on the development of effective inhibitors to prevent Aβ fibrillogenesis and cause disaggregation of preformed Aβ fibrils. In this study, the conjugates of ferrocene and Gly-Pro-Arg (GPR) tripeptide, Boc-Gly-Pro-Arg(NO(2))-Fca-OMe (4, GPR-Fca) and Fc-Gly-Pro-Arg-OMe (7, Fc-GPR) (Fc: ferrocene; Fca: ferrocene amino acid) were synthesized by HOBT/HBTU protocol in solution. These ferrocene GPR conjugates were employed to inhibit Aβ(1-42) fibrillogenesis and to disaggregate preformed Aβ fibrils. The inhibitory properties of ferrocene GPR conjugates on Aβ(1-42) fibrillogenesis were evaluated by thioflavin T (ThT) fluorescence assay, and confirmed by atomic force microscopy (AFM) analysis. The interaction between the ferrocene GPR conjugates and Aβ(1-42) was monitored by electrochemical means. Our results showed that both GPR and GPR-Fca can significantly inhibit the fibril formation of Aβ(1-42), and cause disaggregation of the preformed fibrils. As expected, GPR-Fca shows stronger inhibitory effect on Aβ(1-42) fibrillogenesis than that of its parent peptide GPR. In contrast, Fc-GPR shows no inhibitory effect on fibrillogenesis of Aβ(1-42). Furthermore, GPR-Fca demonstrates significantly protection against Aβ-induced cytotoxicity and exhibits high resistance to proteolysis and good lipophilicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Daisuke; Zhou, Yan; Hirata, Aiko; Sugimoto, Yukiko; Takagi, Kenichi; Akao, Takeshi; Ohya, Yoshikazu; Takagi, Hiroshi; Shimoi, Hitoshi

    2015-10-23

    The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall β-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-β-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-β-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of β-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Cytokines as cellular communicators

    Directory of Open Access Journals (Sweden)

    R. Debets

    1996-01-01

    Full Text Available Cytokines and their receptors are involved in the pathophysiology of many diseases. Here we present a detailed review on cytokines, receptors and signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activity of cytokines is controlled at the level of transcription, translation, storage, processing, posttranslational modification, trapping, binding by soluble proteins, and receptor number and/or function. Translation of this diverse regulation in strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases.

  17. Synthesis of Bivalent Lactosides Based on Terephthalamide, N,N0-Diglucosylterephthalamide, and Glycophane Scaffolds and Assessment of Their Inhibitory Capacity on Medically Relevant Lectins

    OpenAIRE

    Leyden, Rosaria; Velasco-Torrijos, Trinidad; Andre, Sabine; Gouin, Sebastien; Gabius, Hans-Joachim; Murphy, Paul V.

    2009-01-01

    Glycan recognition by lectins initiates clinically relevant processes such as toxin binding or tumor spread. Thus, the development of potent inhibitors has a medical perspective. Toward this goal, we report the synthesis of both rigid and flexible bivalent lactosides on scaffolds that include secondary and tertiary terephthalamides and N,N0-diglucosylterephthalamides. Construction of these compounds involved Schmidt-Michel glycosidation, and amide coupling or Ugi reactions of rele...

  18. Inhibitory effects of pine nodule extract and its component, SJ-2, on acetylcholine-induced catecholamine secretion and synthesis in bovine adrenal medullary cells.

    Science.gov (United States)

    Li, Xiaojia; Horishita, Takafumi; Toyohira, Yumiko; Shao, Hui; Bai, Jie; Bo, Haixia; Song, Xinbo; Ishikane, Shin; Yoshinaga, Yukari; Satoh, Noriaki; Tsutsui, Masato; Yanagihara, Nobuyuki

    2017-04-01

    Extract of pine nodules (matsufushi) formed by bark proliferation on the surface of trees of Pinus tabulaeformis or Pinus massoniana has been used as an analgesic for joint pain, rheumatism, neuralgia, dysmenorrhea and other complaints in Chinese traditional medicine. Here we report the effects of matsufushi extract and its components on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that matsufushi extract (0.0003-0.005%) and its component, SJ-2 (5-hydroxy-3-methoxy-trans-stilbene) (0.3-100 μM), but not the other three, concentration-dependently inhibited catecholamine secretion induced by acetylcholine, a physiological secretagogue. Matsufushi extract (0.0003-0.005%) and SJ-2 (0.3-100 μM) also inhibited 45Ca2+ influx induced by acetylcholine in a concentration-dependent manner, similar to its effect on catecholamine secretion. They also suppressed 14C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, matsufushi extract (0.00003-0.001%) and SJ-2 (1-100 μM) directly inhibited the current evoked by acetylcholine. The present findings suggest that SJ-2, as well as matsufushi extract, inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Synthesis and COX-2 Inhibitory Activity of 4-[(E-2-(4-Oxo-3-phenyl-3,4-dihydroquinazolin-2-ylethenyl]benzene-1-sulfonamide and Its Analogs

    Directory of Open Access Journals (Sweden)

    Hayun

    2012-11-01

    Full Text Available Some novel 3-phenyl-2-[(E-2-phenylethenyl]-3,4-dihydroquinazolin-4-one derivatives possessing para-sulfonamides groups on the phenyl ring of the 2-phenylethenyl moiety have been synthesized and their COX-2 inhibitory activity evaluated. The stuctures of the synthesized compounds were confirmed  on the basis of  FT-IR, 1H-NMR, 13C-NMR and mass spectral data. The COX-2 inhibition screening assay revealed that 4-[(E-2-{3-(4-methoxyphenyl-4-oxo-3,4-dihydroquinazolin-2-yl}ethenyl]benzene-1-sulfonamide had a  maximum COX-2 inhibition (47.1%, at a concentration of 20 μM.

  20. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives.

    Science.gov (United States)

    Maccari, Rosanna; Ottanà, Rosaria; Ciurleo, Rosella; Rakowitz, Dietmar; Matuszczak, Barbara; Laggner, Christian; Langer, Thierry

    2008-06-01

    In continuation of our studies, we here report a series of non-carboxylic acid containing 2,4-thiazolidinedione derivatives, analogues of previously synthesized carboxylic acids which we had found to be very active in vitro aldose reductase (ALR2) inhibitors. Although the replacement of the carboxylic group with the carboxamide or N-hydroxycarboxamide one decreased the in vitro ALR2 inhibitory effect, this led to the identification of mainly non-ionized derivatives with micromolar ALR2 affinity. The 5-arylidene moiety deeply influenced the activity of these 2,4-thiazolidinediones. Our induced-fit docking studies suggested that 5-(4-hydroxybenzylidene)-substituted derivatives may bind the polar recognition region of the ALR2 active site by means of the deprotonated phenol group, while their acetic chain and carbonyl group at position 2 of the thiazolidinedione ring form a tight net of hydrogen bonds with amino acid residues of the lipophilic specificity pocket of the enzyme.

  1. Novel peptides with tyrosinase inhibitory activity

    NARCIS (Netherlands)

    Schurink, M.; Berkel, van W.J.H.; Wichers, H.J.; Boeriu, C.G.

    2007-01-01

    Tyrosinase inhibition by peptides may find its application in food, cosmetics or medicine. In order to identify novel tyrosinase inhibitory peptides, protein-based peptide libraries made by SPOT synthesis were used to screen for peptides that show direct interaction with tyrosinase. One of the

  2. Cytokines in Drosophila immunity.

    Science.gov (United States)

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility.

    Science.gov (United States)

    Karasu, T; Marczylo, T H; Maccarrone, M; Konje, J C

    2011-01-01

    Marijuana, the most used recreational drug, has been shown to have adverse effects on human reproduction. Endogenous cannabinoids (also called endocannabinoids) bind to the same receptors as those of Δ(9)-tetrahydrocannabinol (THC), the psychoactive component of Cannabis sativa. The most extensively studied endocannabinoids are anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol. The endocannabinoids, their congeners and the cannabinoid receptors, together with the metabolic enzymes and putative transporters form the endocannabinoid system (ECS). In this review, we summarize current knowledge about the relationships of ECS, sex steroid hormones and cytokines in female fertility, and underline the importance of this endocannabinoid-hormone-cytokine network. Pubmed and the Web of Science databases were searched for studies published since 1985, looking into the ECS, sex hormones, type-1/2 T-helper (Th1/Th2) cytokines, leukaemia inhibitory factor, leptin and reproduction. The ECS plays a pivotal role in human reproduction. The enzymes involved in the synthesis and degradation of endocannabinoids normalize levels of AEA for successful implantation. The AEA degrading enzyme (fatty acid amide hydrolase) activity as well as AEA content in blood may potentially be used for the monitoring of early pregnancies. Progesterone and oestrogen are involved in the maintenance of endocannabinoid levels. The ECS plays an important role in the immune regulation of human fertility. The available studies suggest that tight control of the endocannabinoid-hormone-cytokine network is required for successful implantation and early pregnancy maintenance. This hormone-cytokine network is a key element at the maternal-foetal interface, and any defect in such a network may result in foetal loss.

  4. Synthesis of Pregnane Derivatives, Their Cytotoxicity on LNCap and PC-3 Cells, and Screening on 5α-Reductase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Sujeong Kim

    2009-11-01

    Full Text Available A series of epoxy- and/or 20-oxime pregnanes were synthesized from commercially available pregnenolone. Compounds 1, 3, 7, 8 and 11-13 were evaluated for cytotoxicity activity towards LNCaP (androgen-dependent and PC-3 (androgenindependent prostate cancer cells. Compound 13 showed the highest activity on both LNCaP (IC50 15.17 μM and PC-3 (IC50 11.83 μM cell lines. Compound 11 showed weak activity on LNCaP cells (IC50 71.85 μM and 8 showed the weak activity on PC-3 cells (IC50 68.95 μM, respectively. The 5α-reductase II (5AR2 inhibitory effects of compounds 1-3, 5 and 7-13 were investigated in a convenient screening model, in which compounds 5, 8, 11 and 12 were observed to be potential inhibitors of 5α-reductase, in particular, the 4-azasteroid 11, that also inhibited cell proliferation of androgen-dependent cells and 8, that in addition inhibited PC-3 cells more potently than LNCaP cells.

  5. Cytokines in sleep regulation.

    Science.gov (United States)

    Krueger, J M; Takahashi, S; Kapás, L; Bredow, S; Roky, R; Fang, J; Floyd, R; Renegar, K B; Guha-Thakurta, N; Novitsky, S

    1995-01-01

    The central thesis of this essay is that the cytokine network in brain is a key element in the humoral regulation of sleep responses to infection and in the physiological regulation of sleep. We hypothesize that many cytokines, their cellular receptors, soluble receptors, and endogenous antagonists are involved in physiological sleep regulation. The expressions of some cytokines are greatly amplified by microbial challenge. This excess cytokine production during infection induces sleep responses. The excessive sleep and wakefulness that occur at different times during the course of the infectious process results from dynamic changes in various cytokines that occur during the host's response to infectious challenge. Removal of any one somnogenic cytokine inhibits normal sleep, alters the cytokine network by changing the cytokine mix, but does not completely disrupt sleep due to the redundant nature of the cytokine network. The cytokine network operates in a paracrine/autocrine fashion and is responsive to neuronal use. Finally, cytokines elicit their somnogenic actions via endocrine and neurotransmitter systems as well as having direct effects neurons and glia. Evidence in support of these postulates is reviewed in this essay.

  6. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling.

    Science.gov (United States)

    Seo, Min-Jung; Lee, Yeon-Joo; Hwang, Ji-Hyun; Kim, Kui-Jin; Lee, Boo-Yong

    2015-11-01

    Quercetin is a flavonoid found in fruits, vegetables, leaves and grains. It has inhibitory, antiviral, antiasthma, anticancer and antiinflammatory effects. Research has suggested that obesity is linked to metabolic disorders. In this study, we examined the inhibitory effect of quercetin on lipid accumulation and obesity-induced inflammation using 3T3-L1, RAW264.7, zebrafish and mouse models. Quercetin suppressed protein levels of the key adipogenic factors C/EBPβ, C/EBPα, PPARγ and FABP4 and the TG-synthesis enzymes lipin1, DGAT1 and LPAATθ. Activation of m-TOR and p70S6K, which are related to insulin and adipogenesis, was down-regulated during adipogenesis in 3T3-L1 cells. Recent research suggested that MAPK signaling factors were involved in adipogenesis and inflammation and that the adipokines MCP-1 and TNF-α attracted macrophages into adipose tissue. Our data showed that quercetin inhibited the MAPK signaling factors ERK1/2, JNK and p38MAPK and MCP-1 and TNF-α in adipocytes and macrophages. Quercetin also inhibited secretion of the inflammatory cytokines IL-1β and IL-6 and stimulated that of IL-10, an antiinflammatory cytokine. In this study, we confirmed the inhibitory effects of quercetin in adipogenesis and inflammation using a mouse model. In mice, quercetin reduced body weight (almost 40%) and suppressed expression of adipogenic, lipogenic and inflammation-related cytokines. Our data demonstrated that quercetin inhibits lipid accumulation and obesity-induced inflammation in the cell and animal models. Our study suggested that quercetin may represent a potential therapeutic agent for other metabolic disorders by regulating obesity and obesity-induced inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Synthesis and caspase-3 inhibitory activity of 8-sulfonyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines.

    Science.gov (United States)

    Kravchenko, Dmitri V; Kysil, Volodymyr M; Tkachenko, Sergey E; Maliarchouk, Sergey; Okun, Ilya M; Ivachtchenko, Alexandre V

    2005-10-01

    A convenient synthesis of novel 8-sulfonyl-1,3-dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines is described. As key steps to assemble the target molecular scaffold, our method features (a) Pfitzinger reaction of isatin-5-sulfonate 1 with methyl 3-oxo-3-phenylpropanoate, (b) formation of 1-(1H-pyrazol-4-yl)-1H-pyrrole-2,5-dione intermediate 5, and (c) reaction of sulfinic acid 9 with acrylate or methylacrylate leading to the corresponding sulfonyl propionates. Two compounds, ester 11 and morpholide 13, have been identified as potent inhibitors of caspase-3 with IC50 = 6 nM. Our primary data suggest noncompetitive and reversible character of caspase-3 inhibition.

  8. Alpha-1-acute phase globulin in the blood of tunicamycin-injected rats. Isolation of the non-glycosylated form, its inhibitory properties and synthesis in liver slices.

    Science.gov (United States)

    Koj, A; Bereta, J; Dubin, A; Kurdowska, A; Chindemi, P; Regoeczi, E

    1986-01-01

    Plasma of rats injected with tunicamycin (2 micrograms/g body wt) shows on crossed immunoelectrophoresis the presence of an additional, slowly migrating component of alpha 1-acute-phase globulin (alpha 1-AP-globulin). The native and modified forms of alpha 1-AP-globulin were jointly isolated on the column of immobilized antibodies and then separated by chromatofocusing on polybuffer exchanger. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate demonstrated that tunicamycin-induced form of rat alpha 1-AP-globulin has Mr of 50,000 and is devoid of carbohydrates as inferred from the lack of staining with Schiff reagent. However, during incubation with papain in vitro it is only slightly less effective than mature glycosylated alpha 1-AP-globulin (Mr 68 000) in inhibiting hydrolysis of CBZ-Lys-ONp. Incubation of liver slices from control and tunicamycin-injected rats with 14C-leucine demonstrated that tunicamycin reduces synthesis and release to the medium of alpha 1-AP-globulin and some other plasma proteins, but the proportion of aglyco-alpha 1-AP-globulin is higher than in plasma.

  9. Synthesis of novel 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues and evaluation of their inhibitory activity against Ser/Thr kinases.

    Science.gov (United States)

    Deau, Emmanuel; Loidreau, Yvonnick; Marchand, Pascal; Nourrisson, Marie-Renée; Loaëc, Nadège; Meijer, Laurent; Levacher, Vincent; Besson, Thierry

    2013-12-15

    The efficient synthesis of 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues is described. 3,5-Dibromopyridine was converted into 3-amino-6-bromofuro[3,2-b]pyridine-2-carbonitrile intermediate which was formylated with DMFDMA. Functionalization at position 7 of the tricyclic scaffold was accomplished, before or after cyclisation step, by palladium-catalyzed Suzuki-Miyaura cross-coupling while the pyrimidin-4-amines and N-aryl counterparts were synthesized by microwave-assisted formamide degradation and Dimroth rearrangement, respectively. The final products were evaluated for their potent inhibition of a series of five Ser/Thr kinases (CDK5/p25, CK1δ/ε, CLK1, DYRK1A, GSK3α/β). Compound 35 showed the best inhibitory activity with an IC50 value of 49 nM and proved to be specific to CLK1 among the panel of tested kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Synthesis, Docking and Acetylcholinesterase Inhibitory Assessment of 2-(2-(4-Benzylpiperazin-1-YlEthylIsoindoline-1,3-Dione Derivatives with Potential Anti-Alzheimer Effects

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi-Farani

    2013-06-01

    Full Text Available Background:Alzheimer’s disease (AD as neurodegenerative disorder, is the most common form of dementia accounting for about 50-60% of the overall cases of dementia among persons over 65 years of age. Low acetylcholine (ACh concentration in hippocampus and cortex areas of the brain is one of the main reasons for this disease. In recent years, acetylcholinesterase (AChE inhibitors like donepezil with prevention of acetylcholine hydrolysis can enhance the duration of action of acetylcholine in synaptic cleft and improve the dementia associated with Alzheimer’s disease.Results:Design, synthesis and assessment of anticholinesterase activity of 2-(2-(4-Benzylpiperazin-1-ylethylisoindoline-1,3-dione derivatives showed prepared compounds can function as potential acetylcholinesterase inhibitor. Among 12 synthesized derivatives, compound 4a with ortho chlorine moiety as electron withdrawing group exhibited the highest potency in these series (IC50 = 0.91 ± 0.045 μM compared to donepezil (IC50 = 0.14 ± 0.03 μM. The results of the enzyme inhibition test (Ellman test showed that electron withdrawing groups like Cl, F and NO2 can render the best effect at position ortho and para of the phenyl ring. But compound 4g with methoxy group at position 3(meta afforded a favorable potency (IC50 = 5.5 ± 0.7 μM. Furthermore, docking study confirmed a same binding mode like donepezil for compound 4a.Conclusions:Synthesized compounds 4a-4l could be proposed as potential anticholinesterase agents.

  11. Cytokines and intestinal inflammation.

    Science.gov (United States)

    Bamias, Giorgos; Cominelli, Fabio

    2016-11-01

    Cytokines of the intestinal microenvironment largely dictate immunological responses after mucosal insults and the dominance of homeostatic or proinflammatory pathways. This review presents important recent studies on the role of specific cytokines in the pathogenesis of intestinal inflammation. The particular mucosal effects of cytokines depend on their inherent properties but also the cellular origin, type of stimulatory antigens, intermolecular interactions, and the particular immunological milieu. Novel cytokines of the interleukin-1 (IL-1) family, including IL-33 and IL-36, have dominant roles in mucosal immunity, whereas more established ones such as IL-18 are constantly enriched with unique properties. Th17 cells are important mucosal constituents, although their profound plasticity, makes the specific set of cytokines they secrete more important than their mere numbers. Finally, various cytokines, such as tumor necrosis factor-α, IL-6, tumor necrosis factor-like cytokine 1A, and death receptor, 3 demonstrate dichotomous roles with mucosa-protective function in acute injury but proinflammatory effects during chronic inflammation. The role of cytokines in mucosal health and disease is increasingly revealed. Such information not only will advance our understanding of the pathogenesis of gut inflammation, but also set the background for development of reliable diagnostic and prognostic biomarkers and cytokine-specific therapies.

  12. Cytokines and intraocular inflammation

    NARCIS (Netherlands)

    Hoekzema, R.; Murray, P. I.; Kijlstra, A.

    1990-01-01

    Although new endogenous mediators of inflammatory and immune responses are reported almost on a monthly basis, the cytokines IL-1, TNF, and IL-6 have emerged as the primary regulators of local inflammation in man. In this paper, uveitogenic and other properties of these particular cytokines are

  13. Etanercept Inhibits Pro-inflammatory Cytokines Expression in ...

    African Journals Online (AJOL)

    Purpose: To investigate the inhibitory role of Etanercept in pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6 production in titanium (Ti) particle stimulated macrophages. Methods: Peritoneal macrophages were stimulated with 1 × 109 Ti particles and treated simultaneously with or without 10, 100, or 1000 ng/mL ...

  14. Cytokines in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Vedel Kessing, Lars

    2012-01-01

    BACKGROUND: Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according...... to affective state. METHODS: We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS: Thirteen studies were included, comprising 556 bipolar disorder patients...... and 767 healthy controls, evaluating 15 different cytokines-, cytokine receptors- or cytokine antagonists. The levels of tumor necrosis factor-α (TNF-α), the soluble tumor necrosis factor receptor type 1 (sTNF-R1) and the soluble inlerleukin-2 receptor (sIL-2R) were elevated in manic patients compared...

  15. Eosinophil cytokines: Emerging roles in immunity

    Directory of Open Access Journals (Sweden)

    Paige eLacy

    2014-11-01

    Full Text Available Eosinophils derive from the bone marrow and circulate at low levels in the blood in healthy individuals. These granulated cells preferentially leave the circulation and marginate to tissues, where they are implicated in the regulation of innate and adaptive immunity. In diseases such as allergic inflammation, eosinophil numbers escalate markedly in the blood and tissues where inflammatory foci are located. Eosinophils possess a range of immunomodulatory factors that are released upon cell activation, including over 35 cytokines, growth factors, and chemokines. Unlike T and B cells, eosinophils can rapidly release cytokines within minutes in response to stimulation. While some cytokines are stored as preformed mediators in crystalloid granules and secretory vesicles, eosinophils are also capable of undergoing de novo synthesis and secretion of these immunological factors. Some of the molecular mechanisms that coordinate the final steps of cytokine secretion are hypothesized to involve binding of membrane fusion complexes comprised of soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs. These intracellular receptors regulate the release of granules and vesicles containing a range of secreted proteins, among which are cytokines and chemokines. Emerging evidence from both human and animal model-based research has suggested an active participation of eosinophils in several physiological/pathological processes such as immunomodulation and tissue remodeling. The observed eosinophil effector functions in health and disease implicate eosinophil cytokine secretion as a fundamental immunoregulatory process. The focus of this review is to describe the cytokines, growth factors, and chemokines that are elaborated by eosinophils, and to illustrate some of the intracellular events leading to the release of eosinophil-derived cytokines.

  16. Cytokines and major depression.

    Science.gov (United States)

    Schiepers, Olga J G; Wichers, Marieke C; Maes, Michael

    2005-02-01

    In the research field of psychoneuroimmunology, accumulating evidence has indicated the existence of reciprocal communication pathways between nervous, endocrine and immune systems. In this respect, there has been increasing interest in the putative involvement of the immune system in psychiatric disorders. In the present review, the role of proinflammatory cytokines, such as interleukin (IL)-1, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, in the aetiology and pathophysiology of major depression, is discussed. The 'cytokine hypothesis of depression' implies that proinflammatory cytokines, acting as neuromodulators, represent the key factor in the (central) mediation of the behavioural, neuroendocrine and neurochemical features of depressive disorders. This view is supported by various findings. Several medical illnesses, which are characterised by chronic inflammatory responses, e.g. rheumatoid arthritis, have been reported to be accompanied by depression. In addition, administration of proinflammatory cytokines, e.g. in cancer or hepatitis C therapies, has been found to induce depressive symptomatology. Administration of proinflammatory cytokines in animals induces 'sickness behaviour', which is a pattern of behavioural alterations that is very similar to the behavioural symptoms of depression in humans. The central action of cytokines may also account for the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity that is frequently observed in depressive disorders, as proinflammatory cytokines may cause HPA axis hyperactivity by disturbing the negative feedback inhibition of circulating corticosteroids (CSs) on the HPA axis. Concerning the deficiency in serotonergic (5-HT) neurotransmission that is concomitant with major depression, cytokines may reduce 5-HT levels by lowering the availability of its precursor tryptophan (TRP) through activation of the TRP-metabolising enzyme indoleamine-2,3-dioxygenase (IDO). Although the central effects of

  17. Cytokines and Liver Diseases

    Directory of Open Access Journals (Sweden)

    Herbert Tilg

    2001-01-01

    Full Text Available Cytokines are pleiotropic peptides produced by virtually every nucleated cell in the body. In most tissues, including the liver, constitutive production of cytokines is absent or minimal. There is increasing evidence that several cytokines mediate hepatic inflammation, apoptosis and necrosis of liver cells, cholestasis and fibrosis. Interestingly, the same mediators also mediate the regeneration of liver tissue after injury. Among the various cytokines, the proinflammatory cytokine tumour necrosis factor-alpha (TNF-a has emerged as a key factor in various aspects of liver disease, such as cachexia and/or cholestasis. Thus, antagonism of TNF-a and other injury-related cytokines in liver diseases merits evaluation as a treatment of these diseases. However, because the same cytokines are also necessary for the regeneration of the tissue after the liver has been injured, inhibition of these mediators might impair hepatic recovery. The near future will bring the exiting clinical challenge of testing new anticytokine strategies in various liver diseases.

  18. Macrophage cytokines: Involvement in immunity and infectious diseases

    Directory of Open Access Journals (Sweden)

    Guillermo eArango Duque

    2014-10-01

    Full Text Available The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting ‘classically activated’, to anti-inflammatory or ‘alternatively activated’ macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  19. Macrophage cytokines: involvement in immunity and infectious diseases.

    Science.gov (United States)

    Arango Duque, Guillermo; Descoteaux, Albert

    2014-01-01

    The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  20. Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines and dexamethasone in rat hepatocyte primary cultures.

    Science.gov (United States)

    Roeb, E; Graeve, L; Hoffmann, R; Decker, K; Edwards, D R; Heinrich, P C

    1993-12-01

    The steady-state levels of extracellular matrix proteins are regulated by the rates of their synthesis and degradation. Metalloproteinases and their specific inhibitors, tissue inhibitor of metalloproteinases-1 and -2 are believed to play a crucial role in extracellular matrix protein degradation. Here we show that the tissue inhibitor of metalloproteinases-1 is expressed in rat hepatocytes in primary culture and regulated by inflammatory cytokines. Rat hepatocytes constitutively express mRNA of tissue inhibitors of metalloproteinases-1 at a low level. Incubation with conditioned medium from lipopolysaccharide-stimulated human monocytes led to a dramatic induction of mRNA of tissue inhibitors of metalloproteinases-1. The inflammatory cytokines interleukin-1 beta, interleukin-6, interleukin-11, leukemia inhibitory factor and ciliary neurotrophic factor were also capable of stimulating expression of mRNA of tissue inhibitors of metalloproteinases-1. Among these cytokines interleukin-6 was the most potent stimulator. The combination of interleukin-1 beta, interleukin-6 and interleukin-11 synergistically up-regulated mRNA of tissue inhibitors of metalloproteinases-1. The synthetic glucocorticoid dexamethasone dose dependently inhibited constitutive and interleukin-6-induced expression of tissue inhibitors of metalloproteinases-1. A possible involvement of tissue inhibitor of metalloproteinases-1 in the pathogenesis of liver fibrosis and cirrhosis is discussed.

  1. [Cytokines and osteogenesis].

    Science.gov (United States)

    Fujiwara, Makoto; Ozono, Keiichi

    2014-06-01

    Many cytokines associate with proliferation, differentiation and activation of osteoblasts which have an important role in osteogenesis. TGF-β, BMP, IGF, FGF, Hedgehog, Notch, IL and WNT signaling pathways and their inhibitors have been revealed to correlate to osteogenesis, and those gene mutations have been shown to cause various bone disorders. It has been suggested that there are common pathways or crosstalk in these cytokine signaling each other, but mechanism of their complicated regulation on osteogenesis has been unclear. It was expected that the knowledge about these cytokines will apply to clinical therapies of bone diseases.

  2. Censored correlated cytokine concentrations

    DEFF Research Database (Denmark)

    Andersen, Andreas; Benn, Christine Stabell; Jørgensen, Mathias J

    2013-01-01

    Interest in cytokines as markers for the function of the immune system is increasing. Methods quantifying cytokine concentrations are often subject to detection limits, which lead to non-detectable observations and censored distributions. When distributions are skewed, geometric mean ratios (GMRs......) can be used to describe the relative concentration between two cytokines, and the GMR ratio (GMRR) can be used to compare two groups. The problem is how to estimate GMRRs from censored distributions.We evaluated methods, including simple deletion and substitution, in simulated and real data. One...... method applies Tobit directly to the censored difference between the two cytokine log-concentrations (Diff). However, censoring is correlated to the outcome and is therefore not independent. The correlation increases as the correlation between the two log-concentrations decreases. We propose a Tobit...

  3. Amniotic fluid inflammatory cytokines

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob

    2013-01-01

    The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy.......The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy....

  4. Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Muhammad Awais Iqbal

    2012-08-01

    Full Text Available A green synthesis route for the production of silver nanoparticles using methanol extract from Solanum xanthocarpum berry (SXE is reported in the present investigation. Silver nanoparticles (AgNps, having a surface plasmon resonance (SPR band centered at 406 nm, were synthesized by reacting SXE (as capping as well as reducing agent with AgNO3 during a 25 min process at 45 °C. The synthesized AgNps were characterized using UV–Visible spectrophotometry, powdered X-ray diffraction, and transmission electron microscopy (TEM. The results showed that the time of reaction, temperature and volume ratio of SXE to AgNO3 could accelerate the reduction rate of Ag+ and affect the AgNps size and shape. The nanoparticles were found to be about 10 nm in size, mono-dispersed in nature, and spherical in shape. In vitro anti-Helicobacter pylori activity of synthesized AgNps was tested against 34 clinical isolates and two reference strains of Helicobacter pylori by the agar dilution method and compared with AgNO3 and four standard drugs, namely amoxicillin (AMX, clarithromycin (CLA, metronidazole (MNZ and tetracycline (TET, being used in anti-H. pylori therapy. Typical AgNps sample (S1 effectively inhibited the growth of H. pylori, indicating a stronger anti-H. pylori activity than that of AgNO3 or MNZ, being almost equally potent to TET and less potent than AMX and CLA. AgNps under study were found to be equally efficient against the antibiotic-resistant and antibiotic-susceptible strains of H. pylori. Besides, in the H. pylori urease inhibitory assay, S1 also exhibited a significant inhibition. Lineweaver-Burk plots revealed that the mechanism of inhibition was noncompetitive.

  5. Class I Cytokine Receptors

    DEFF Research Database (Denmark)

    Steinocher, Helena

    The members of the class I cytokine receptor family are involved in a wide range of cellular processes and of high pharmaceutical importance, however, even though the transmembrane receptors have been studied for decades, it has not been fully elucidated yet, how these receptors induce their intr......The members of the class I cytokine receptor family are involved in a wide range of cellular processes and of high pharmaceutical importance, however, even though the transmembrane receptors have been studied for decades, it has not been fully elucidated yet, how these receptors induce...... their intracellular response. The overall goal of this thesis was to improve the understanding of class I cytokine receptor activation and regulation at an atomic level. Two members of the class I cytokine receptor family, the human growth hormone receptor (hGHR), and the human erythropoietin receptor (hEPOR) have...... the traptamers on the hEPOR TMD dimeric complex in detergent micelles. To gain a better understanding of hGHR regulation a point mutation in the hGHR intracellular domain (ICD), which has recently been linked to lung cancer, was characterized. The mutation was found to decrease binding of suppressor of cytokine...

  6. Gastric inhibitory polypeptide analogues

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2002-01-01

    Gastric inhibitory polypeptide (GIP, also called glucose-dependent insulinotropic polypeptide) and glucagon-like peptide-1 (GLP-1) are peptide hormones from the gut that enhance nutrient-stimulated insulin secretion (the 'incretin' effect). Judging from experiments in mice with targeted deletions...

  7. Anti-Double-Stranded DNA IgG Participates in Renal Fibrosis through Suppressing the Suppressor of Cytokine Signaling 1 Signals.

    Science.gov (United States)

    Wang, Ping; Yang, Jie; Tong, Fang; Duan, Zhaoyang; Liu, Xingyin; Xia, Linlin; Li, Ke; Xia, Yumin

    2017-01-01

    Suppressor of cytokine signaling 1 (SOCS1) participates in renal fibrosis by downregulating Janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1)-mediated cytokine signaling. Recently, it was found that anti-double-stranded DNA (dsDNA) IgG induces the synthesis of profibrotic cytokines by renal cells. To explore the potential effect of anti-dsDNA IgG on SOCS1-mediated renal fibrosis, kidney tissues were collected from patients with lupus nephritis (LN) as well as MRL/lpr lupus-prone mice. The SOCS1 expression was evaluated in tissue samples. In addition, SCID mice were injected with anti-dsDNA IgG, followed by evaluation of SOCS1 levels. Renal resident cells were cultured in vitro, receiving the stimulation of anti-dsDNA IgG and then the measurement of SOCS1, JAK2, STAT1α, and profibrotic cytokines. Moreover, the binding of anti-dsDNA IgG to SOCS1 kinase inhibitory region (KIR) peptide was analyzed by surface plasmon resonance. We found that SOCS1 expression was inhibited, but JAK2/STAT1 activation was prominent in the kidney tissues of patients with LN, MRL/lpr mice, or anti-dsDNA IgG-injected SCID mice. The cultured renal cells also showed SOCS1 downregulation, JAK2/STAT1 activation, and profibrotic cytokine promotion upon anti-dsDNA IgG stimulation. Surprisingly, anti-dsDNA IgG showed high affinity to KIR peptide and competed with JAK2 loop for KIR. Additionally, a DNA-mimicking peptide (ALW) blocked the binding of anti-dsDNA IgG to KIR, and even partially abrogated the activation of JAK2/STAT1α signals and the expression of profibrotic cytokines in SCID mice. In conclusion, anti-dsDNA IgG downregulates SOCS1 expression, activates JAK2/STAT1 signals, and contributes to renal fibrosis; its peptide blockade may restore the SOCS1 inhibitory effect on the production of profibrotic cytokine, and finally ameliorate renal fibrosis in LN.

  8. Divergent T-Cell Cytokine Patterns in Inflammatory Arthritis

    Science.gov (United States)

    Simon, A. K.; Seipelt, E.; Sieper, J.

    1994-08-01

    A major immunoregulatory mechanism in inflammatory infections and allergic diseases is the control of the balance of cytokines secreted by Th1/Th2 subsets of T helper (Th) cells. This might also be true in autoimmune diseases; a Th2 pattern that prevents an effective immune response in infections with intracellular bacteria may favor immunosuppression in autoimmune diseases. The pattern of cytokine expression was compared in the synovial tissue from patients with a typical autoimmune disease, rheumatoid arthritis, and with a disorder with similar synovial pathology but driven by persisting exogenous antigen, reactive arthritis. We screened 12 rheumatoid and 9 reactive arthritis synovial tissues by PCR and in situ hybridization for their expression of T-cell cytokines. The cytokine pattern differs significantly between the two diseases; rheumatoid arthritis samples express a Th1-like pattern whereas in reactive arthritis interferon γ expression is accompanied by that of interleukin 4. Studying the expression of cytokines by in situ hybridization confirmed the results found by PCR; they also show an extremely low frequency of cytokine-transcribing cells. In a double-staining experiment, it was demonstrated that interleukin 4 is made by CD4 cells. These experiments favor the possibility of therapeutic intervention in inflammatory rheumatic diseases by means of inhibitory cytokines.

  9. Cytokines in human milk.

    Science.gov (United States)

    Garofalo, Roberto

    2010-02-01

    Epidemiologic studies conducted in the past 30 years to investigate the protective functions of human milk strongly support the notion that breastfeeding prevents infantile infections, particularly those affecting the gastrointestinal and respiratory tracts. However, more recent clinical and experimental observations also suggest that human milk not only provides passive protection, but also can directly modulate the immunological development of the recipient infant. The study of this remarkable defense system in human milk has been difficult because of its biochemical complexity, the small concentration of certain bioactive components, the compartmentalization of some of these agents, the dynamic quantitative and qualitative changes of milk during lactation, and the lack of specific reagents to quantify these agents. However, a host of bioactive substances, including hormones, growth factors, and immunological factors such as cytokines, have been identified in human milk. Cytokines are pluripotent polypeptides that act in autocrine/paracrine fashions by binding to specific cellular receptors. They operate in networks and orchestrate the development and functions of immune system. Several different cytokines and chemokines have been discovered in human milk in the past years, and the list is growing very rapidly. This article will review the current knowledge about the increasingly complex network of chemoattractants, activators, and anti-inflammatory cytokines present in human milk and their potential role in compensating for the developmental delay of the neonate immune system. Copyright 2010. Published by Mosby, Inc.

  10. The cytokines cardiotrophin-like cytokine/cytokine-like factor-1 (CLC/CLF) and ciliary neurotrophic factor (CNTF) differ in their receptor specificities.

    Science.gov (United States)

    Tormo, Aurélie Jeanne; Letellier, Marie-Claude; Lissilaa, Rami; Batraville, Laurie-Anne; Sharma, Mukut; Ferlin, Walter; Elson, Greg; Crabé, Sandrine; Gauchat, Jean-François

    2012-12-01

    Ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC) are two cytokines with neurotrophic and immunomodulatory activities. CNTF is a cytoplasmic factor believed to be released upon cellular damage, while CLC requires interaction with a soluble cytokine receptor, cytokine-like factor 1 (CLF), to be efficiently secreted. Both cytokines activate a receptor complex comprising the cytokine binding CNTF receptor α (CNTFRα) and two signaling chains namely, leukemia inhibitory factor receptor β (LIFRβ) and gp130. Human CNTF can recruit and activate an alternative receptor in which CNTFRα is substituted by IL-6Rα. As both CNTF and CLC have immune-regulatory activities in mice, we compared their ability to recruit mouse receptors comprising both gp130 and LIFRβ signaling chains and either IL-6Rα or IL-11Rα which, unlike CNTFRα, are expressed by immune cells. Our results indicate that 1) mouse CNTF, like its human homologue, can activate cells expressing gp130/LIFRβ with either CNTFRα or IL-6Rα and, 2) CLC/CLF is more restricted in its specificity in that it activates only the tripartite CNTFR. Several gp130 signaling cytokines influence T helper cell differentiation. We therefore investigated the effect of CNTF on CD4 T cell cytokine production. We observed that CNTF increased the number of IFN-γ producing CD4 T cells. As IFN-γ is considered a mediator of the therapeutic effect of IFN-β in multiple sclerosis, induction of IFN-γ by CNTF may contribute to the beneficial immunomodulatory effect of CNTF in mouse multiple sclerosis models. Together, our results indicate that CNTF activates the same tripartite receptors in mouse and human cells and further validate rodent models for pre-clinical investigation of CNTF and CNTF derivatives. Furthermore, CNTF and CLC/CLF differ in their receptor specificities. The receptor α chain involved in the immunomodulatory effects of CLC/CLF remains to be identified. Crown Copyright © 2012. Published by

  11. Coordinate cytokine regulatory sequences

    Science.gov (United States)

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  12. Cytokines in human leptospirosis.

    Science.gov (United States)

    Papa, Anna; Kotrotsiou, Tzimoula

    2015-12-01

    Leptospirosis is a zoonotic disease with increased public health concern. Cytokines produced in response to the infection with pathogenic leptospires have been proposed to be involved in the pathogenesis of the disease. The aim of the study was to measure and evaluate the levels of 27 cytokines in patients with acute leptospirosis. The levels of 27 cytokines were measured from 42 acute leptospirosis cases; 47 samples were obtained from severe cases. Statistical analysis was performed using SPSS. IL-6, IL-8, GM-CSF, IP-10, MCP-1, and VEGF levels differed significantly between the severe cases and the control group, while GM-CSF levels differed significantly between the mild cases and the control group (pleptospirosis could be the basis for immunotherapeutic targets, especially for the severe cases in which antibiotic treatment is not enough. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Type 1/Type 2 Cytokine Serum Levels and Role of Interleukin-18 in ...

    African Journals Online (AJOL)

    Introduction: In view of the conflicting evidence of helper T cell type 1 (Th1) or type 2 (Th2) pattern of cytokine synthesis in steroid sensitive nephrotic syndrome (SSNS), this study aimed to assess type-1/type-2 cytokines level in different stages of SSNS and to evaluate the role of IL-18. Methods: We prospectively studied ...

  14. [Polymorphism of TNF-alpha (308 A/G), IL-10 (1082 A/G, 819 C/T 592 A/C), IL-6 (174 G/C), and IFN-gamma (874 A/T); genetically conditioned cytokine synthesis level in children with diabetes type 1].

    Science.gov (United States)

    Siekiera, Urszula; Jarosz-Chobot, P; Janusz, J; Koehler, Brygida

    2002-01-01

    Type 1 diabetes is a genetically conditioned autoimmune disease. Genes that account for strong clustering of the disease susceptibility are located within the HLA region. There is also considerable individual variation in the immune response and role of cytokine genes in the disease predisposition. The aim of our research was identification of the genetically controlled TNF-alpha, IL-10, IL-6, IFN-gamma secretion profile in children with diabetes type 1. We have examined 36 children with diabetes type 1 and 36 healthy individuals. DNA was extracted from mononuclear peripheral blood cells. For identification of the cytokine polymorphism PCR-SSP method was used. Patients with diabetes type 1 differ from the group of healthy persons in the cytokine synthesis level and in the cytokine genotypes distribution. Genotype TNF-alpha (A/G) as well as IL-10 (ATA/ATA) was found only in group of children with diabetes but not in the control group. Genotypes IL-10 (GCC/GCC), IL-6 (C/C), IFN-gamma (T/T) were observed with decreased frequency in children with diabetes type 1. No differences between patients and control group in the frequency of IL-10 (GCC/ACC) (GCC/ATA), (ACC/ACC) (ACC/ATA) IL-6 (G/G), (G/C) and IFN-gamma (T/A), (A/A) genotypes were observed. Children with diabetes type 1 were more frequent "high producers" of TNF-alpha and IL-6. It is possible to us molecular method to estimate the genetically controlled immune reactivity. It is a very important immunogenetic factor of the disease predisposition.

  15. Inflammation and cancer: macrophage migration inhibitory factor (MIF)--the potential missing link.

    LENUS (Irish Health Repository)

    Conroy, H

    2010-11-01

    Macrophage migration inhibitory factor (MIF) was the original cytokine, described almost 50 years ago and has since been revealed to be an important player in pro-inflammatory diseases. Recent work using MIF mouse models has revealed new roles for MIF. In this review, we present an increasing body of evidence implicating the key pro-inflammatory cytokine MIF in specific biological activities related directly to cancer growth or contributing towards a microenvironment favouring cancer progression.

  16. Glucocorticoids as cytokine inhibitors: role in neuroendocrine control and therapy of inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Giamila Fantuzzi

    1993-01-01

    Full Text Available Glucocorticoids are potent inhibitors of inflammation and endotoxic shock. This probably occurs through an inhibition of the synthesis of pro-inflammatory cytokines as well as of many of their toxic activities. Therefore, endogenous glucocorticoids (GC might represent a major mechanism in the control of cytokine mediated pathologies. GC inhibit the synthesis of cytokines in various experimental models. Adrenalectomy or GC antagonists potentiate TNF, IL-1 and IL-6 production in LPS treated mice. GC inhibit the formation of arachidonic acid metabolites and the induction of NO synthase. They also inhibit various activities of cytokines including toxicity, haemodynamic shock and fever. Adrenalectomy sensitizes to the toxic effects of LPS, TNF and IL-1. On the other hand, GC potentiate the synthesis of several cytokine induced APP by the liver. Since many of these proteins have anti-toxic activities (antioxidant, antiprotease etc. or bind cytokines, this might well represent a GC mediated protective feedback mechanism involving the liver. Not only do GC inhibit cytokines, but in vivo LPS and various cytokines (TNF, IL-1, IL-6 increase blood GC levels through a central mechanism involving the activation of the HPA. Thus, this neuroendocrine response to cytokines constitutes an important immunoregulatory feedback involving the brain.

  17. Detection of autoantibodies to cytokines

    DEFF Research Database (Denmark)

    Bendtzen, K; Hansen, M B; Ross, C

    2000-01-01

    Autoantibodies to various cytokines have been reported in normal individuals and in patients with various infectious and immunoinflammatory disorders, and similar antibodies (Ab) may be induced in patients receiving human recombinant cytokines. The clinical relevance of these Ab is often difficult...... to evaluate. Not only are in vitro neutralizing cytokine Ab not necessarily neutralizing in vivo, but assays for binding and neutralizing Ab to cytokines are often difficult to interpret. For example, denaturation of immobilized cytokines in immunoblotting techniques and immunometric assays may leave Ab...

  18. Inflammatory cytokine-associated depression

    OpenAIRE

    Lotrich, Francis E

    2014-01-01

    Inflammatory cytokines can sometimes trigger depression in humans, are often associated with depression, and can elicit some behaviors in animals that are homologous to major depression. Moreover, these cytokines can affect monoaminergic and glutamatergic systems, supporting an overlapping pathoetiology with major depression. This suggests that there could be a specific major depression subtype, inflammatory cytokine-associated depression (ICAD), which may require different therapeutic approa...

  19. Macrophage migration inhibitory factor: critical role in obesity, insulin resistance, and associated comorbidities.

    NARCIS (Netherlands)

    Kleemann, R.; Bucala, R.

    2010-01-01

    Obesity is associated with insulin resistance, disturbed glucose homeostasis, low grade inflammation, and comorbidities such as type 2 diabetes and cardiovascular disease. The cytokine macrophage migration inhibitory factor (MIF) is an ubiquitously expressed protein that plays a crucial role in many

  20. FEATURES OF CYTOKINE PRODUCTION IN PATIENTS WITH RECURRENT HERPETIC INFECTION

    Directory of Open Access Journals (Sweden)

    I. A. Novikovа

    2013-01-01

    Full Text Available Abstract. Cytokines play an important role in resistance to herpesvirus infections. Therefore, studies of cytokine profile are necessary in recurrent herpetic infection. However, functional studies of cytokine network upon remission of the disease yielded controversial results. In this paper, we provide some results concerning comprehensive evaluation of ex vivo cytokine production by whole blood leukocytes drawn from 15 patients observed during clinical remission of recurrent Herpes Simplex virus infection. We have found a decrease of IL-1β, IL-8 and IL-10 production, as well as imbalance of cytokine profile, with predominance of IFNγ and IL-8 synthesis over IL-10 production, along with increased IL-4 and IL-13 levels to IL-1β contents. Differently directed correlations between the content of activated lymphocytes (CD3+HLA-DR+ and CD3+CD4+CD25+, natural killers (СD3-СD16/56+, NKT-cells and cytokine production levels were found in the groups of patients and healthy individuals. These differences may be due to shifts in major cytokineproducing populations in herpesvirus infections.

  1. Novel Hybrid Molecules on the Basis of Steroids and (5Z,9Z)-Tetradeca-5,9-dienoic Acid: Synthesis, Anti-Cancer Studies and Human Topoisomerase I Inhibitory Activity.

    Science.gov (United States)

    D'yakonov, Vladimir A; Dzhemileva, Lilya U; Tuktarova, Regina A; Ishmukhametova, Svetlana R; Yunusbaeva, Milyausha M; Ramazanova, Ilfir R; Dzhemilev, Usein M

    2017-01-01

    Novel steroid derivatives of 5Z,9Z-dienoic acids were prepared by the DCC/DMAP-catalyzed esterification of (5Z,9Z)-tetradeca-5,9-dienoic acid with hydroxy steroids. High cytotoxicity towards the HEK293, Jurkat, K562 cancer cell lines and human topoisomerase I (hTop1) inhibitory activity in vitro were found for the synthesized acids. A probable mechanism of topoisomerase I inhibition was hypothesized on the basis of in silico studies resorting to docking. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Serum levels of the interferon-gamma-inducing cytokine interleukin-18 are increased in individuals at high risk of developing type I diabetes

    DEFF Research Database (Denmark)

    Nicoletti, F; Conget, I; Di Marco, R

    2001-01-01

    Interleukin (IL)-18 is a cytokine primarily produced by macrophages and capable of inducing T lymphocyte synthesis of interferon (IFN)-gamma. An up-regulated synthesis of IFN-gamma with consequential Type I cytokine dominance has been repeatedly shown in Type I (insulin-dependent) diabetes mellitus...

  3. Impact of Exogenous Gonadotropin Stimulation on Circulatory and Follicular Fluid Cytokine Profiles

    Directory of Open Access Journals (Sweden)

    N. Ellissa Baskind

    2014-01-01

    Full Text Available Background. The natural cycle is the prototype to which we aspire to emulate in assisted reproduction techniques. Increasing evidence is emerging that controlled ovarian hyperstimulation (COH with exogenous gonadotropins may be detrimental to oogenesis, embryo quality, and endometrial receptivity. This research aimed at assessing the impact of COH on the intrafollicular milieu by comparing follicular fluid (FF cytokine profiles during stimulated in vitro fertilization (IVF and modified natural cycle (MNC IVF. Methods. Ten women undergoing COH IVF and 10 matched women undergoing MNC IVF were recruited for this pilot study. 40 FF cytokine concentrations from individual follicles and plasma were measured by fluid-phase multiplex immunoassay. Demographic/cycle/cytokine data were compared and correlations between cytokines were computed. Results. No significant differences were found between COH and MNC groups for patient and cycle demographics, including outcome. Overall mean FF cytokine levels were higher in the MNC group for 29/40 cytokines, significantly so for leukaemia inhibitory factor and stromal cell-derived factor-1α. Furthermore, FF MNC cytokine correlations were significantly stronger than for COH data. Conclusions. These findings suggest that COH perturbs intrafollicular cytokine networks, in terms of both cytokine levels and their interrelationships. This may impact oocyte maturation/fertilization and embryo developmental competence.

  4. The role of glycoprotein 130 family of cytokines in fetal rat lung development.

    Directory of Open Access Journals (Sweden)

    Cristina Nogueira-Silva

    Full Text Available The glycoprotein 130 (gp130 dependent family of cytokines comprises interleukin-6 (IL-6, IL-11, leukemia inhibitory factor (LIF, cardiotrophin-like cytokine (CLC, ciliary neurotrophic factor (CNTF, cardiotrophin-1 (CT-1 and oncostatin M (OSM. These cytokines share the membrane gp130 as a common signal transducer. Recently, it was demonstrated that IL-6 promotes, whereas LIF inhibits fetal lung branching. Thus, in this study, the effects on fetal lung morphogenesis of the other classical members of the gp130-type cytokines (IL-11, CLC, CNTF, CT-1 and OSM were investigated. We also provide the first description of these cytokines and their common gp130 receptor protein expression patterns during rat lung development. Fetal rat lung explants were cultured in vitro with increasing concentrations of IL-11, CLC, CNTF, CT-1 and OSM. Treated lung explants were morphometrically analyzed and assessed for MAPK, PI3K/AKT and STAT3 signaling modifications. IL-11, which similarly to IL-6 acts through a gp130 homodimer receptor, significantly stimulated lung growth via p38 phosphorylation. On the other hand, CLC, CNTF, CT-1 and OSM, whose receptors are gp130 heterodimers, inhibited lung growth acting in different signal-transducing pathways. Thus, the present study demonstrated that although cytokines of the gp130 family share a common signal transducer, there are specific biological activities for each cytokine on lung development. Indeed, cytokine signaling through gp130 homodimers stimulate, whereas cytokine signaling through gp130 heterodimers inhibit lung branching.

  5. Cytokines and sudden infant death.

    Science.gov (United States)

    Vennemann, Mechtild M T; Loddenkötter, Brigitte; Fracasso, Tony; Mitchell, Edwin A; Debertin, Annette S; Larsch, Klaus P; Sperhake, Jan P; Brinkmann, Bernd; Sauerland, Cristina; Lindemann, Monika; Bajanowski, Thomas

    2012-03-01

    It has been hypothesised that inflammatory reactions could play an important role in the pathway(s) leading to sudden and unexpected death in infancy. On a molecular level, these reactions are regulated by various cytokines. To characterise the role of IL-1ß, IL-6 and TNFα more precisely, the concentrations of these cytokines were determined quantitatively using specific ELISA techniques in serum and cerebrospinal fluid (CSF) in 119 cases of sudden infant death. The infants were grouped into four categories (SIDS, SIDS with infection, natural death due to infection and unnatural death). A good correlation was found between CSF and serum for IL-6 (Spearman correlation coefficients (SCC), 0.73) and also for TNFα (SCC, 0.57), although the CSF concentrations were lower than that from the serum. There were no significant differences between the categories of death for any of the serum or CSF cytokines. Compared with normal values, increased serum concentrations of IL-1ß, IL-6 and TNFα were found in 70%, 69% and 38% of the cases respectively, indicating possible agonal or post-mortem changes of cytokine concentrations. In three cases very high cytokine concentrations were found (mainly for IL-6). This may have contributed to the mechanism of death (cytokine storm) in two of the cases. In a small group of patients, very high cytokine concentrations are a possible explanation for the cause of death ("cytokine storm").

  6. Detection of autoantibodies to cytokines

    DEFF Research Database (Denmark)

    Bendtzen, K; Hansen, M B; Ross, C

    2000-01-01

    Autoantibodies to various cytokines have been reported in normal individuals and in patients with various infectious and immunoinflammatory disorders, and similar antibodies (Ab) may be induced in patients receiving human recombinant cytokines. The clinical relevance of these Ab is often difficul...

  7. Lemongrass and citral effect on cytokines production by murine macrophages.

    Science.gov (United States)

    Bachiega, Tatiana Fernanda; Sforcin, José Maurício

    2011-09-01

    Cymbopogon citratus (DC) Stapf (Poaceae-Gramineae), an herb commonly known as lemongrass (LG), is an important source of ethnomedicines as well as citral, the major constituent of Cymbopogon citratus, used in perfumery, cosmetic and pharmaceutical industries for controlling pathogens. Thus, the goal of this work was to analyze the effect of LG and citral on cytokines production (IL-1β, IL-6 and IL-10) in vitro, as well as before or after LPS incubation. Peritoneal macrophages from BALB/c mice were treated with LG or citral in different concentrations for 24h. The concentrations that inhibited cytokines production were tested before or after macrophages challenge with LPS, in order to evaluate a possible anti-inflammatory action. Supernatants of cell cultures were used for cytokines determination by ELISA. As to IL-1β, only citral inhibited its release, exerting an efficient action before LPS challenge. LG and citral inhibited IL-6 release. Cymbopogon citratus showed inhibitory effects only after LPS challenge, whereas citral prevented efficiently LPS effects before and after LPS addition. Citral inhibited IL-10 production and although LG did not inhibit its production, the concentration of 100 μg/well was tested in the LPS-challenge protocol, because it inhibited IL-6 production. LG inhibited LPS action after macrophages incubation with LPS, while citral counteracted LPS action when added before or after LPS incubation. LG exerted an anti-inflammatory action and citral may be involved in its inhibitory effects on cytokines production. We suggest that a possible mechanism involved in such results could be the inhibition of the transcription factor NF-κB. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Inflammatory cytokine-associated depression.

    Science.gov (United States)

    Lotrich, Francis E

    2015-08-18

    Inflammatory cytokines can sometimes trigger depression in humans, are often associated with depression, and can elicit some behaviors in animals that are homologous to major depression. Moreover, these cytokines can affect monoaminergic and glutamatergic systems, supporting an overlapping pathoetiology with major depression. This suggests that there could be a specific major depression subtype, inflammatory cytokine-associated depression (ICAD), which may require different therapeutic approaches. However, most people do not develop depression, even when exposed to sustained elevations in inflammatory cytokines. Thus several vulnerabilities and sources of resilience to inflammation-associated depression have been identified. These range from genetic differences in neurotrophic and serotonergic systems to sleep quality and omega-3 fatty acid levels. Replicating these sources of resilience as treatments could be one approach for preventing "ICAD". This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    and inflammation in otherwise healthy human skeletal muscles. We approach this concept by comparing changes in muscle function (i.e., the force-generating capacity) with the degree of leucocyte accumulation in muscle following exercise. In the second section, we explore the cytokine response to 'muscle......-damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle...

  10. Plasma cytokines in acute stroke

    DEFF Research Database (Denmark)

    Christensen, Hanne Krarup; Boysen, Gudrun; Christensen, Erik

    2011-01-01

    GOALS: The aim of this study was to test the relations between plasma cytokines and the clinical characteristics, course, and risk factors in acute stroke. PATIENTS AND METHODS: The analysis was based on 179 patients with acute stroke included within 24 hours of stroke onset. On inclusion and 3...... measured by enzyme-linked immunoassay (ELISA). FINDINGS: The levels of most cytokines were significantly different in acute stroke from the levels 3 months later; but only IL-10 was positively associated with stroke severity. C-reactive protein and white blood cell count were positively associated...... with the cytokine response. CONCLUSIONS: We found a substantial overall cytokine reaction that reflected the stroke incident. However, these results do not, at present, suggest a potential for clinical use, as they do not seem to add to the information obtained from the clinical workup of the individual patient....

  11. Cytokines in recurrent pregnancy loss.

    Science.gov (United States)

    Daher, Silvia; de Arruda Geraldes Denardi, Kátia; Blotta, Maria Heloísa Souza Lima; Mamoni, Ronei Luciano; Reck, Ana Paula Monteiro; Camano, Luiz; Mattar, Rosiane

    2004-06-01

    Cytokines seem to play a critical role in the pathogenesis of unexplained recurrent pregnancy loss (RPL). Th1 cytokines have been shown to exert deleterious effects on pregnancy, inhibiting foetal growth and development. On the other hand, Th2 cytokines have been associated with successful pregnancy. The purpose of this study was to evaluate cytokine production in women with RPL. The studied group comprised 29 women with RPL, with at least three consecutive spontaneous abortions. The control group included 27 women with a history of successful pregnancies and no miscarriage. We determined IL-6 and TNF-alpha production in peripheral blood cultured with LPS, as well as IFN-gamma and TGF-beta induced by PHA stimulation. Cytokines were measured by enzyme-linked immunoabsorbant assay (ELISA) using commercial kits (RD, Amersham-Pharmacia). Mann-Whitney test was applied to compare differences between groups. The level of significance was defined at P < 0.05. We observed significantly higher levels of IFN-gamma (355.8 pg/ml versus 98.0 pg/ml; P = 0.01) and a trend toward increased TNF-alpha production (2410.2 pg/ml versus1980.2 pg/ml; P = 0.07) in RPL women as compared to controls. In relation to IL-6 and TGF-beta, no significant difference was detected between RPL and control groups. In agreement with experimental observations, our data support the hypothesis of Th1 cytokine involvement in the pathogenesis of RPL.

  12. Th2 cytokines inhibit lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Ira L Savetsky

    Full Text Available Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2 cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4 and interleukin-13 (IL-13 have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.

  13. Synthesis and biological evaluation of 2-aryliminopyrrolidines as selective ligands for I1 imidazoline receptors: discovery of new sympatho-inhibitory hypotensive agents with potential beneficial effects in metabolic syndrome.

    Science.gov (United States)

    Gasparik, Vincent; Greney, Hugues; Schann, Stephan; Feldman, Josiane; Fellmann, Lyne; Ehrhardt, Jean-Daniel; Bousquet, Pascal

    2015-01-22

    New 2-aryliminopyrrolidines (1-18) were synthesized and tested for their binding properties on I1 imidazoline receptors vs α2-adrenergic receptors and their blood pressure effects after both systemic and intracerebral administrations. The purposes of this study were: (i) to analyze structure-activity and affinity relationships on I1 imdazoline receptors and (ii) to propose some leader compounds for the development of new sympatho-inhibitory drugs with potential applications in hypertension and/or metabolic syndrome, i.e., a cluster of cardiovascular (hypertension) and metabolic disorders. Our study highlights decisive arguments of SAR concerning both the affinity for I1Rs and the hypotensive activity of 2-aryliminopyrrolidines. Binding assays showed high affinity and selectivity of some compounds for I1 imidazoline receptors over α2-adreergic receptors. Compound 13 (laboratory reference LNP599; Ki = 3.2 nM on I1imidazoline receptors) is the prototype for the development of new centrally acting agents targeting specifically I1imidazoline receptors to be used in the management of hypertension and/or metabolic syndrome.

  14. Design, Synthesis and Cytotoxic Evaluation of Novel Chalcone Derivatives Bearing Triazolo[4,3-a]-quinoxaline Moieties as Potent Anticancer Agents with Dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects

    Directory of Open Access Journals (Sweden)

    Mohamed Alswah

    2017-12-01

    Full Text Available A series of hybrid of triazoloquinoxaline-chalcone derivatives 7a–k were designed, synthesized, fully characterized, and evaluated for their cytotoxic activity against three target cell lines: human breast adenocarcinoma (MCF-7, human colon carcinoma (HCT-116, and human hepatocellular carcinoma (HEPG-2. The preliminary results showed that some of these chalcones like 7b–c, and 7e–g exhibited significant antiproliferative effects against most of the cell lines, with selective or non-selective behavior, indicated by IC50 values in the 1.65 to 34.28 µM range. In order to investigate the mechanistic aspects of these active compounds, EGFR TK and tubulin inhibitory activities were measured as further biological assays. The EGFR TK assay results revealed that the derivatives 7a–c, 7e, and 7g could inhibit the EGFR TK in the submicromolar range (0.093 to 0.661 µM. Moreover, an antitubulin polymerization effect was noted for the active derivatives compared to the reference drug colchicine, with compounds 7e and 7g displaying 14.7 and 8.4 micromolar activity, respectively. Furthermore, a molecular docking study was carried out to explain the observed effects and the binding modes of these chalcones with the EGFR TK and tubulin targets.

  15. Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies.

    Science.gov (United States)

    Taha, Muhammad; Imran, Syahrul; Ismail, Nor Hadiani; Selvaraj, Manikandan; Rahim, Fazal; Chigurupati, Sridevi; Ullah, Hayat; Khan, Fahad; Salar, Uzma; Javid, Muhammad Tariq; Vijayabalan, Shantini; Zaman, Khalid; Khan, Khalid Mohammed

    2017-10-01

    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50=0.38±0.82µM) and 23 (IC50=1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50=1.77-2.98µM when compared with the standard acarbose (IC50=1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synthesis, characterization, thermal degradation and urease inhibitory studies of the new hydrazide based Schiff base ligand 2-(2-hydroxyphenyl-3-{[(E-(2-hydroxyphenylmethylidene]amino}-2,3-dihydroquinazolin-4(1H-one

    Directory of Open Access Journals (Sweden)

    Ikram Muhammad

    2017-12-01

    Full Text Available The novel Schiff base ligand 2-(2-hydroxyphenyl-3-{[(E-(2-hydroxyphenylmethylidene]amino}-2,3-dihydroquinazolin-4(1H-one (H-HHAQ derived from 2-aminobenzhydrazide was synthesized and characterized by elemental analyses, ES+-MS, 1H and 13C{1H}-NMR, and IR studies. The characterization of the ligand was further confirmed by single crystal analysis. The Schiff base ligand was complexed with metal ions like Co(II, Ni(II, Cu(II and Zn(II to obtain the bis-octahedral complexes. The ligand and its metal complexes were also studied for their urease inhibitory activities. All the tested compounds show medium to moderate activities for the enzyme, whereas the copper based complex was found to be much more active against urease with an IC50 = 0.3 ± 0.1 μM±SEM, which is even more potent than the standard thiourea. The IC50 of the cobalt complex was 43.4±1.2 μM±SEM, whereas that of the nickel complex was 294.2±5.0 μM±SEM. The ligand H-HHAQ and the zinc complex were inactive against the tested enzyme.

  17. Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus.

    Science.gov (United States)

    Taha, Muhammad; Rahim, Fazal; Imran, Syahrul; Ismail, Nor Hadiani; Ullah, Hayat; Selvaraj, Manikandan; Javid, Muhammad Tariq; Salar, Uzma; Ali, Muhammad; Khan, Khalid Mohammed

    2017-10-01

    Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of type-II diabetes mellitus and the other carbohydrate mediated disease. In continuation of our drug discovery research on potential antidiabetic agents, we synthesized novel tris-indole-oxadiazole hybrid analogs (1-21), structurally characterized by various spectroscopic techniques such as 1H NMR, EI-MS, and 13C NMR. Elemental analysis was found in agreement with the calculated values. All compounds were evaluated for α-glucosidase inhibiting potential and showed potent inhibitory activity in the range of IC50=2.00±0.01-292.40±3.16μM as compared to standard acarbose (IC50=895.09±2.04µM). The pharmacokinetic predictions of tris-indole series using descriptor properties showed that almost all compounds in this series indicate the drug aptness. Detailed binding mode analyses with docking simulation was also carried out which showed that the inhibitors can be stabilized by the formation of hydrogen bonds with catalytic residues and the establishment of hydrophobic contacts at the opposite side of the active site. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Anomalous cellular morphology and growth characteristics of Neisseria meningitidis in subminimal inhibitory concentrations of penicillin G.

    OpenAIRE

    Neirinck, L G; DeVoe, I W

    1981-01-01

    The effects of subminimal inhibitory concentrations of penicillin G on Neisseria meningitidis in the presence and absence of selected stabilizers were examined. Subminimal inhibitory concentrations of penicillin G decreased cell numbers and altered both colonial and ultrastructural morphologies of this meningococcus. Although these levels of penicillin did not have immediate adverse effects on cell mass increase, deoxyribonucleic acid synthesis, or the incorporation of [3H]leucine into protei...

  19. Cytokines in Sjogren's syndrome: potential therapeutic targets

    NARCIS (Netherlands)

    Roescher, N.; Tak, P.P.; Illei, G.G.

    2010-01-01

    The dysregulated cytokine network in Sjogren's Syndrome (SS) is reflected by local and systemic overexpression of pro-inflammatory cytokines and absent or low levels of anti-inflammatory cytokines. To date, the use of cytokine based therapies in SS has been disappointing. Oral administration of low

  20. Vitamin A induces inhibitory histone methylation modifications and down-regulates trained immunity in human monocytes.

    Science.gov (United States)

    Arts, Rob J W; Blok, Bastiaan A; van Crevel, Reinout; Joosten, Leo A B; Aaby, Peter; Benn, Christine Stabell; Netea, Mihai G

    2015-07-01

    Epidemiologic studies suggest that VAS has long-lasting immunomodulatory effects. We hypothesized that ATRA inhibits inflammatory cytokines in a model of trained immunity in monocytes by inducing epigenetic reprogramming through histone modifications. We used an previously described in vitro model of trained immunity, in which adherent monocytes of healthy volunteers were incubated for 24 h with BCG in the presence or absence of ATRA. After washing the cells, they were incubated for an additional 6 d in culture medium and restimulated with microbial ligands, and cytokine production was assessed. ATRA inhibited cytokine responses upon restimulation of monocytes, and this effect was exerted through increased expression of SUV39H2, a histone methyltransferase that induces the inhibitory mark H3K9me3. H3K9me3 at promoter sites of several cytokines was up-regulated by ATRA, and inhibition of SUV39H2 restored cytokine production. In addition to H3K9me3, the stimulatory histone mark H3K4me3 was down-regulated by ATRA at several promoter locations of cytokine genes. Therefore, we can conclude that ATRA inhibits cytokine production in models of direct stimulation or BCG-induced trained immunity and that these effects are mediated by histone modifications. © Society for Leukocyte Biology.

  1. Carica papaya induces in vitro thrombopoietic cytokines secretion by mesenchymal stem cells and haematopoietic cells.

    Science.gov (United States)

    Aziz, Jazli; Abu Kassim, Noor Lide; Abu Kasim, Noor Hayaty; Haque, Nazmul; Rahman, Mohammad Tariqur

    2015-07-08

    Use of Carica papaya leaf extracts, reported to improve thrombocyte counts in dengue patients, demands further analysis on the underlying mechanism of its thrombopoietic cytokines induction In vitro cultures of peripheral blood leukocytes (PBL) and stem cells from human exfoliated deciduous teeth (SHED) were treated with unripe papaya pulp juice (UPJ) to evaluate its potential to induce thrombopoietic cytokines (IL-6 and SCF) RESULTS: In vitro scratch gap closure was significantly faster (p papaya to induce thrombopoietic cytokines synthesis in cells of hematopoietic and mesenchymal origin.

  2. Cell surface adhesion molecules and cytokine profiles in primary progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Ukkonen, Maritta; Wu, Xingchen; Reipert, Birgit

    2007-01-01

    OBJECTIVE: We evaluated the utility of adhesion molecule (AM) and cytokine/chemokine expressions in blood and cerebrospinal fluid (CSF) as markers of disease activity in primary progressive multiple sclerosis (PPMS). METHODS: The expressions of AMs and the levels of 17 cytokines in patients...... of cytokines in serum or CSF between PPMS and SPMS or controls, but evidence suggesting intrathecal synthesis of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) was found in PPMS. The expressions of CSF VLA-4 in PPMS correlated with the total volume of cerebral lesions and the number...

  3. The role of cytokine deficiencies and cytokine autoantibodies in clinical dermatology

    DEFF Research Database (Denmark)

    Liszewski, Walter; Gniadecki, Robert

    2016-01-01

    Cytokines are small, secreted proteins that are essential for promoting and maintaining a normal immune response. Upregulation of cytokines frequently occurs in autoimmune and inflammatory diseases. Conversely, several immunodeficiency, autoimmune and autoinflammatory disorders are known to occur...... due to a downregulation or absence of cytokines. Here, we review the diagnosis and clinical management of cytokine deficiency syndromes in dermatology. We will review the biology of cytokines, and the current approved indications for recombinant cytokines and anticytokine antibodies. We will also...... review the role of cytokine deficiencies and cytokine autoantibodies in immunodeficiency syndromes, as well as in autoimmune disorders. Finally, we will examine autoinflammatory disorders due to cytokine deficiencies....

  4. Inhibitory control in childhood stuttering

    NARCIS (Netherlands)

    Eggers, K.; de Nil, L.; Van den Bergh, B.R.H.

    2013-01-01

    Purpose The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method Participants were 30 children who

  5. Activated Platelets Induce an Anti-Inflammatory Response of Monocytes/Macrophages through Cross-Regulation of PGE2 and Cytokines

    Directory of Open Access Journals (Sweden)

    Bona Linke

    2017-01-01

    Full Text Available Platelets are well known for their role in hemostasis and are also increasingly recognized for their roles in the innate immune system during inflammation and their regulation of macrophage activation. Here, we aimed to study the influence of platelets on the production of inflammatory mediators by monocytes and macrophages. Analyzing cocultures of platelets and murine bone marrow-derived macrophages or human monocytes, we found that collagen-activated platelets release high amounts of prostaglandin E2 (PGE2 that leads to an increased interleukin- (IL- 10 release and a decreased tumor necrosis factor (TNF α secretion out of the monocytes or macrophages. Platelet PGE2 mediated the upregulation of IL-10 in both cell types via the PGE2 receptor EP2. Notably, PGE2-mediated IL-10 synthesis was also mediated by EP4 in murine macrophages. Inhibition of TNFα synthesis via EP2 and EP4, but not EP1, was mediated by IL-10, since blockade of the IL-10 receptor abolished the inhibitory effect of both receptors on TNFα release. This platelet-mediated cross-regulation between PGE2 and cytokines reveals one mechanism how monocytes and macrophages can attenuate excessive inflammatory responses induced by activated platelets in order to limit inflammatory processes.

  6. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase.

    Science.gov (United States)

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B

    1989-06-01

    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  7. Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients.

    Science.gov (United States)

    Szkaradkiewicz, Andrzej; Marciniak, Ryszard; Chudzicka-Strugała, Izabela; Wasilewska, Agnieszka; Drews, Michał; Majewski, Przemysław; Karpiński, Tomasz; Zwoździak, Barbara

    2009-01-01

    The aim of the study was to describe the levels of circulating monocyte/macrophage pro-inflammatory cytokines (TNF-alpha, IL-1beta IL-6, and IL-8) and an anti-inflammatory cytokine (IL-10) in inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients and healthy controls. The study was conducted on 15 healthy individuals, 20 patients with ulcerative colitis (UC), 12 with Crohn's disease (CD), and 15 with CRC (Dukes' stage B). Blood serum cytokine levels were measured by ELISA. The patients with UC had significantly higher levels of the pro-inflammatory cytokines and of circulating IL-10 than the healthy controls. The patients with CD and CRC had the same specific pattern of serum cytokines of significantly elevated levels of the pro-inflammatory cytokines, but the IL-10 levels were within the range found in the healthy individuals. Thus our results demonstrate that both IBD and CRC are linked with an intensified production of a wide array of monocyte/macrophage pro-inflammatory cytokines which is not accompanied by elevated levels of circulating IL-10, except for its insufficiently inhibitory elevation in UC patients.

  8. Malaria: toxins, cytokines and disease

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bate, C A; Taverne, J

    1995-01-01

    In this review the old concept of severe malaria as a toxic disease is re-examined in the light of recent discoveries in the field of cytokines. Animal studies suggest that the induction of TNF by parasite-derived molecules may be partly responsible for cerebral malaria and anemia, while hypoglyc......In this review the old concept of severe malaria as a toxic disease is re-examined in the light of recent discoveries in the field of cytokines. Animal studies suggest that the induction of TNF by parasite-derived molecules may be partly responsible for cerebral malaria and anemia, while...

  9. Cytokine crowdsourcing: multicellular production of TH17-associated cytokines.

    Science.gov (United States)

    Busman-Sahay, Kathleen O; Walrath, Travis; Huber, Samuel; O'Connor, William

    2015-03-01

    In the 2 decades since its discovery, IL-17A has become appreciated for mounting robust, protective responses against bacterial and fungal pathogens. When improperly regulated, however, IL-17A can play a profoundly pathogenic role in perpetuating inflammation and has been linked to a wide variety of debilitating diseases. IL-17A is often present in a composite milieu that includes cytokines produced by TH17 cells (i.e., IL-17F, IL-21, IL-22, and IL-26) or associated with other T cell lineages (e.g., IFN-γ). These combinatorial effects add mechanistic complexity and more importantly, contribute differentially to disease outcome. Whereas TH17 cells are among the best-understood cell types that secrete IL-17A, they are frequently neither the earliest nor dominant producers. Indeed, non-TH17 cell sources of IL-17A can dramatically alter the course and severity of inflammatory episodes. The dissection of the temporal regulation of TH17-associated cytokines and the resulting net signaling outcomes will be critical toward understanding the increasingly intricate role of IL-17A and TH17-associated cytokines in disease, informing our therapeutic decisions. Herein, we discuss important non-TH17 cell sources of IL-17A and other TH17-associated cytokines relevant to inflammatory events in mucosal tissues. © Society for Leukocyte Biology.

  10. Leukemia inhibitory factor and ciliary neurotropic factor promote the survival of Sertoli cells and gonocytes in coculture system

    NARCIS (Netherlands)

    de Miguel, M. P.; de Boer-Brouwer, M.; Paniagua, R.; van den Hurk, R.; de rooij, D. G.; van Dissel-Emiliani, F. M.

    1996-01-01

    Leukemia inhibitory factor (LIF) and ciliary neurotropic factor (CNTF) were found to be pleiotropic modulators of Sertoli cell and gonocyte development (both isolated from the neonatal rat testis) in a coculture system, whereas IL-6, another member of this cytokine family, had no effect on these

  11. Suppression of cytokine-dependent human T-cell proliferation by intravenous immunoglobulin.

    Science.gov (United States)

    Amran, D; Renz, H; Lack, G; Bradley, K; Gelfand, E W

    1994-11-01

    Human intravenous immunoglobulin (hIVIG) modifies the course of numerous immune-mediated diseases, but its specific mode of action remains unknown. In order to delineate possible immunoregulatory mechanisms, we studied the effects of hIVIG on the in vitro proliferation of human T cells. Cells from normal donors were stimulated with anti-CD3 antibody, tetanus toxoid antigen or the combination of a phorbol ester/ionomycin (P/I) and incubated with increasing concentrations of hIVIG (1 mg/ml to 10 mg/ml) for three to seven days. Addition of hIVIG inhibited anti-CD3 and tetanus but not P/I-induced proliferation in a dose-dependent manner. Addition of exogenous IL-2 to the cultures overcame the inhibitory effect of hIVIG; addition of IL-4 was ineffective. To further define the effect of hIVIG on specific cell populations, competent, purified T cells were stimulated with anti-CD3 or phorbol ester for three days in the presence of hIVIG. Addition of hIVIG blocked anti-CD3 and phorbol ester-induced stimulation of competent T cells. In cultures of competent T cells, either IL-2 or IL-4 was successful in reversing the hIVIG-induced inhibition. In these cultures, hIVIG also significantly prevented the synthesis/secretion of both IL-2 and IL-4 in PDB-stimulated competent T cells. Taken together, these data suggest that one mechanism of action of hIVIG may be through its interference with cytokine-dependent T-cell proliferation.

  12. Cortical neurodynamics of inhibitory control.

    Science.gov (United States)

    Hwang, Kai; Ghuman, Avniel S; Manoach, Dara S; Jones, Stephanie R; Luna, Beatriz

    2014-07-16

    The ability to inhibit prepotent responses is critical for successful goal-directed behaviors. To investigate the neural basis of inhibitory control, we conducted a magnetoencephalography study where human participants performed the antisaccade task. Results indicated that neural oscillations in the prefrontal cortex (PFC) showed significant task modulations in preparation to suppress saccades. Before successfully inhibiting a saccade, beta-band power (18-38 Hz) in the lateral PFC and alpha-band power (10-18 Hz) in the frontal eye field (FEF) increased. Trial-by-trial prestimulus FEF alpha-band power predicted successful saccadic inhibition. Further, inhibitory control enhanced cross-frequency amplitude coupling between PFC beta-band (18-38 Hz) activity and FEF alpha-band activity, and the coupling appeared to be initiated by the PFC. Our results suggest a generalized mechanism for top-down inhibitory control: prefrontal beta-band activity initiates alpha-band activity for functional inhibition of the effector and/or sensory system. Copyright © 2014 the authors 0270-6474/14/349551-11$15.00/0.

  13. SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition.

    Science.gov (United States)

    Kershaw, Nadia J; Murphy, James M; Liau, Nicholas P D; Varghese, Leila N; Laktyushin, Artem; Whitlock, Eden L; Lucet, Isabelle S; Nicola, Nicos A; Babon, Jeffrey J

    2013-04-01

    The inhibitory protein SOCS3 plays a key part in the immune and hematopoietic systems by regulating signaling induced by specific cytokines. SOCS3 functions by inhibiting the catalytic activity of Janus kinases (JAKs) that initiate signaling within the cell. We determined the crystal structure of a ternary complex between mouse SOCS3, JAK2 (kinase domain) and a fragment of the interleukin-6 receptor β-chain. The structure shows that SOCS3 binds JAK2 and receptor simultaneously, using two opposing surfaces. While the phosphotyrosine-binding groove on the SOCS3 SH2 domain is occupied by receptor, JAK2 binds in a phosphoindependent manner to a noncanonical surface. The kinase-inhibitory region of SOCS3 occludes the substrate-binding groove on JAK2, and biochemical studies show that it blocks substrate association. These studies reveal that SOCS3 targets specific JAK-cytokine receptor pairs and explains the mechanism and specificity of SOCS action.

  14. Cytokines and mood in healthy young adults

    NARCIS (Netherlands)

    Jansen, J.; Fernstrand, A.M.; Van De Loo, A.J.A.E.; Garssen, J.; Verster, J.C.

    2015-01-01

    Purpose: A link between chronic inflammation and neuropsychiatric disorders has been demonstrated previously. For example, pro- and anti-inflammatory cytokines have shown to impact neurocircuits relevant to mood regulation. Elevated levels of inflammatory cytokines have been associated with the

  15. Inhibitory effect of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli and intestinal dysfunction.

    Science.gov (United States)

    Hong, Lei; Jing, Wu; Qing, Wang; Anxiang, Su; Mei, Xue; Qin, Liu; Qiuhui, Hu

    2017-04-19

    The inhibitory effects of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli (E. coli) in vitro and in vivo were investigated, as well as its function of improvement of intestinal health. The results of in vitro studies, such as minimal inhibitory concentration (MIC) analysis, agar disc diffusion test and growth curve analysis of E. coli, showed that ZBEO had an excellent inhibitory effect on the growth of E. coli, which may be related to the loss of the normal shape of the cell membranes and the leakage of intracellular constituents, on the basis of SEM observation and cell constituents' release assay. ZBEO also had an inhibitory effect on enteritis and intestinal dysfunction induced by infection of E. coli in vivo, and histopathological observation indicated that ZBEO could markedly ameliorate the structural destruction of intestinal tissues, which might be related to its inhibitory effect on the gene expression of inflammatory cytokines (TLR2, TLR4, TNF α and IL-8). In conclusion, ZBEO showed an excellent inhibitory effect on E. coli both in vitro and in vivo, suggesting the potential application of ZBEO as a kind of functional component having the effects of improving intestinal function and health.

  16. [Cytokine storm in avian influenza].

    Science.gov (United States)

    Us, Dürdal

    2008-04-01

    The most dramatic example of defining the pathogenicity of influenza virus A/H5N1 strains is the higher fatality rate of avian influenza epidemic (>50%) occured in Southeast Asia in 1997 comparing to the pandemic caused by influenza virus A/H1N1 in 1918 (5-10%) which was recorded as the most destructive pandemic in the world. When considering the fatal/total case numbers (208/340) reported by World Health Organization in respect of December 14th, 2007, the mortality rate has now reached to 61 percent. Recent studies have shown that the high fatality rate of avian influenza virus infections is a consequence of an overactive inflammatory response and the severity of infection is closely related with virus-induced cytokine dysregulation. The most important feature of A/H5N1 immunopathogenesis is the appearence of hypercytokinemia ("cytokine storm") which is characterized by the extreme (exaggerated) production and secretion of large numbers and excessive levels of pro-inflammatory cytokines. This phenomenon is blamed on the emergence of lethal clinical symptoms such as extensive pulmonary oedema, acute bronchopneumoniae, alveolar haemorrhage, reactive haemophagocytosis, and acute respiratory distress syndrome, associated with necrosis and tissue destruction. Numerous in vitro, in vivo and clinical studies have pointed out that A/H5N1 viruses are very strong inducers of various cytokines and chemokines [Tumor Necrosis Factor (TNF)-alpha, Interferon (IFN)-gamma, IFN-alpha/beta, Interleukin (IL)-6, IL-1, MIP-1 (Macrophage Inflammatory Protein), MIG (Monokine Induced by IFN-gamma), IP-10 (Interferon-gamma-Inducible Protein), MCP-1 (Monocyte Chemoattractant Protein), RANTES (Regulated on Activation Normal T-cell Expressed and Secreted), IL-8], in both humans and animals. The privileged cells of cytokine storm are macrophages and CD8+ T-lymphocytes, while the primary contributor cytokines are TNF-alpha, IL-6 and IFN-gamma. It has been detected that, mutations of some viral

  17. Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family

    Directory of Open Access Journals (Sweden)

    Hideaki Hasegawa

    2016-11-01

    Full Text Available The interleukin (IL-6/IL-12 family cytokines have pleiotropic functions and play critical roles in multiple immune responses. This cytokine family has very unique characteristics in that they are composed of two distinct subunits forming a heterodimer and each cytokine and receptor subunit shares with each other. The members of this cytokine family are increasing; currently, there are more than 6 cytokines, including the tentatively named cytokines IL-Y (p28/p40, IL-12 (p35/p40, IL-23 (p19/p40, IL-27 p28/Epstein-Barr virus-induced protein 3 (EBI3, IL-35 (p35/EBI3, and IL-39 (p19/EBI3. This family of cytokines covers a very broad range of immune responses, including pro-inflammatory responses such as helper T (Th1, Th2, and Th17 to anti-inflammatory responses such as regulatory T (Treg cells and IL-10-producing Treg cells. IL-12 is the first member of this family, and IL-12, IL-23, and IL-27 are mainly produced by activated antigen-presenting cells such as dendritic cells and macrophages. IL-12 plays a critical role in the promotion of Th1 immune responses by inducing interferon-γ production to combat pathogens and malignant tumors. IL-23 induces IL-17 production and is necessary to maintain pathogenic Th17 cells that cause inflammatory and autoimmune diseases. IL-27 was initially reported to play a critical role in promotion of Th1 differentiation; however, subsequent studies revealed that IL-27 has broader stimulatory and inhibitory roles by inducing IL-10-producing Treg cells. IL-35 is produced by forkhead box P3+ Treg cells and activated B cells and has immunosuppressive functions to maintain immune tolerance. The most recently identified cytokine, IL-39, is produced by activated B cells and has pro-inflammatory functions. The cytokine tentatively named IL-Y seems to have anti-inflammatory functions by inhibiting Th1 and Th17 differentiation. In addition, individual cytokine subunits were also shown to have self-standing activities. Thus

  18. Avian cytokines in health and disease

    Directory of Open Access Journals (Sweden)

    Wigley P

    2003-01-01

    Full Text Available Cytokines are proteins secreted by cells that play an important role in the activation and regulation of other cells and tissues during inflammation and immune responses. Although well described in several mammalian species, the role of cytokines and other related proteins is poorly understood in avian species. Recent advances in avian genetics and immunology have begun to allow the exploration of cytokines in health and disease. Cytokines may be classified in a number of ways, but may be conveniently arranged into four broad groups on the basis of their function. Proinflammatory cytokines such as interleukin-6 and interleukin-1beta play a role in mediating inflammation during disease or injury. Th1 cytokines, including interleukin-12 and interferon-gamma, are involved in the induction of cell-mediated immunity, whereas Th2 cytokines such as interleukin-4 are involved in the induction of humoral immunity. The final group Th3 or Tr cytokines play a role in regulation of immunity. The role of various cytokines in infectious and non-infectious diseases of chickens and turkeys is now being investigated. Although there are only a few reliable ELISAs or bioassays developed for avian cytokines, the use of molecular techniques, and in particular quantitative RT-PCR (Taqman has allowed investigation of cytokine responses in a number of diseases including salmonellosis, coccidiosis and autoimmune thyroiditis. In addition the use of recombinant cytokines as therapeutic agents or as vaccine adjuvants is now being explored.

  19. Cytokine Signature in Infective Endocarditis

    Science.gov (United States)

    Araújo, Izabella Rodrigues; Ferrari, Teresa Cristina Abreu; Teixeira-Carvalho, Andréa; Campi-Azevedo, Ana Carolina; Rodrigues, Luan Vieira; Guimarães Júnior, Milton Henriques; Barros, Thais Lins Souza; Gelape, Cláudio Léo; Sousa, Giovane Rodrigo; Nunes, Maria Carmo Pereira

    2015-01-01

    Infective endocarditis (IE) is a severe disease with high mortality rate. Cytokines participate in its pathogenesis and may contribute to early diagnosis improving the outcome. This study aimed to evaluate the cytokine profile in IE. Serum concentrations of interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12 and tumor necrosis factor (TNF)-α were measured by cytometric bead array (CBA) at diagnosis in 81 IE patients, and compared with 34 healthy subjects and 30 patients with non-IE infections, matched to the IE patients by age and gender. Mean age of the IE patients was 47±17 years (range, 15–80 years), and 40 (50%) were male. The IE patients had significantly higher serum concentrations of IL-1β, IL-6, IL-8, IL-10 and TNF-α as compared to the healthy individuals. The median levels of IL-1β, TNF-α and IL-12 were higher in the IE than in the non-IE infections group. TNF-α and IL-12 levels were higher in staphylococcal IE than in the non-staphylococcal IE subgroup. There was a higher proportion of both low IL-10 producers and high producers of IL-1β, TNF-α and IL-12 in the staphylococcal IE than in the non-staphylococcal IE subgroup. This study reinforces a relationship between the expression of proinflammatory cytokines, especially IL-1β, IL-12 and TNF-α, and the pathogenesis of IE. A lower production of IL-10 and impairment in cytokine network may reflect the severity of IE and may be useful for risk stratification. PMID:26225421

  20. Pharmacokinetic parameters and biodistribution of soluble cytokine receptors.

    Science.gov (United States)

    Jacobs, C A; Beckmann, M P; Mohler, K; Maliszewski, C R; Fanslow, W C; Lynch, D H

    1993-01-01

    The potential use of soluble cytokine receptors as therapeutics in disease states when excessive or prolonged cytokine expression leads to pathogenesis is just beginning (Van Brunt, 1989). The inhibitory effects of soluble receptors have been found to be highly potent and specific for their respective cytokines (Maliszewski and Fanslow, 1990; Maliszewski et al., 1990). Recent in vivo data have shown that exogenously administered soluble receptors can function as cytokine antagonists and suppress autoimmune inflammatory responses (Jacobs et al., 1991a), allograft rejection, and alloreactivity (Fanslow et al., 1990b). The proposed frequency of administration and dosage of a therapeutic agent is dependent on the half-life of the agent and the route of administration. The elimination or half-life of a drug usually depends on its physiochemical properties (molecular size, glycosylation, isoelectric point, and hydrophobic/hydrophilic properties) (DiPalma and DiGregorio, 1990; Katzung, 1984). The half-life will also depend on the mechanism of clearance for that specific receptor. Once pharmacokinetic data are available for soluble receptors, the therapeutic potential of these molecules can be better evaluated. Only limited pharmacokinetic data are currently available for soluble cytokine receptors (Jacobs et al., 1991b). For sIL-1R, the majority of an intravenously administered dose was cleared in the second elimination phase, with a reasonably long half-life (6.3 hr), such that the entire dose was not eliminated until 35 hr. If administration is by subcutaneous injection, the half-life was even more prolonged. One explanation for the prolonged half-life is the minimal distribution to liver and kidneys and thus low levels of clearance by these organs. In contrast, elimination of intravenously administered sIL-4R was relatively rapid, with a short half-life (2.3 hr). This appeared mainly due to liver distribution and clearance, which has been the highest observed for any

  1. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  2. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  3. Induction of Chemokine Secretion and Monocyte Migration by Human Choroidal Melanocytes in Response to Proinflammatory Cytokines

    DEFF Research Database (Denmark)

    Jehs, Tina; Faber, Carsten; Udsen, Maja S.

    2016-01-01

    Purpose: To determine to which extent inflammatory cytokines affect chemokine secretion by primary human choroidal melanocytes (HCMs), their capacity to attract monocytes, and whether HCMs are able to influence the proliferation of activated T cells. Methods: Primary cultures of HCMs were...... and secretion of CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL5 and intercellular adhesion molecule 1. Vascular endothelial growth factor and monocyte migration inhibitory factor were constitutively expressed without changes in response to proinflammatory cytokines. Supernatants derived from unstimulated cultures...... of 10 HCM donors induced a high initial level of monocyte migration, which decreased upon stimulation with either TCM or IFN-γ and TNF-α. The supernatants from three HCM donors initially showed a low level of monocyte attraction, which increased after exposure to proinflammatory cytokines. Direct...

  4. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy--a review.

    Science.gov (United States)

    Becker, Yechiel

    2006-10-01

    discussed. The aim of the present review is to base RSV pathogenicity on the numerous very good analyses of the virus genes and to suggest a therapeutic approach to treatment that is directed at preventing the inhibitory effects of Th2 cytokines on the adaptive immune system of the patients, instead of inhibiting RSV replication by antivirals. The review of the molecular research on the role of the viral fusion (F) and attachment (G) glycoproteins of RSV provided information on their role in the virus infection: early in infection the F glycoprotein induces Th1 cells to release the Th1 cytokines IL-2, IL-12 and IFN-gamma to activate precursors CTLs (pCTLs) to become anti-RSV CTLs. The G and sG glycoproteins attach to FKNR1(+) ciliary respiratory epithelial cells as well as directly to eosinophils to the lungs. The sG T cell antigen can also induce the release of large amounts of Th2 cytokines from CD4(+) T cells and from FCepsilonRI(+) mast cells, basophils and monocytes. By comparison to HIV-1 gp120 it is possible to show that in the G and sG proteins the T cell antigen resembles the CD4(+) T cell superantigen (=allergen) domain of HIV-1 gp120 which aggregates with IgE/FCepsilonRI(+) hematopoietic cells. The increased IL-4 level in the serum inhibits the adaptive immune response: IL-4Ralpha(+) Th1 cells stop Th1 cytokine synthesis and IL-4Ralpha(+) B cells stop the synthesis of antiviral IgG and IgA and switch to IgE synthesis. In addition, the hematopoietic cells release histamine and prostaglandin which induce wheezing. The gradual increase of sG molecules creates a gradient of fractalkine (FKN) which directs IL-5-activated eosinophils to the lungs of the patient.

  5. Impact of cytokine and cytokine receptor gene polymorphisms on cellular immunity after smallpox vaccination.

    Science.gov (United States)

    Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Pankratz, V Shane; Vierkant, Robert A; Jacobson, Robert M; Poland, Gregory A

    2012-11-15

    We explored associations between SNPs in cytokine/cytokine receptor genes and cellular immunity in subjects following primary smallpox vaccination. We also analyzed the genotype-phenotype associations discovered in the Caucasian subjects among a cohort of African-Americans. In Caucasians we found 277 associations (psmallpox vaccine-induced cytokine responses are modulated by genetic polymorphisms in cytokine and cytokine receptor genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Recombinant replication-restricted VSV as an expression vector for murine cytokines.

    Science.gov (United States)

    Miller, Mark A; Lavine, Christy L; Klas, Sheri D; Pfeffer, Lawrence M; Whitt, Michael A

    2004-01-01

    Vesicular stomatitis virus (VSV) is a prototypic non-segmented, negative-strand RNA virus that rapidly and efficiently shuts down the production of host cell-encoded proteins and utilizes the cell's protein production machinery to express high levels of virally encoded proteins. In an effort to take advantage of this characteristic of VSV, we have employed a reverse genetics system to create recombinant forms of VSV encoding a variety of murine cytokines. Previous studies have revealed that cells infected with recombinant VSV that lack expression of the surface glycoprotein (G protein), designated deltaG-VSV, more efficiently express and secrete recombinant proteins than do recombinant "wild-type" VSV. Therefore, murine cytokine-expressing recombinants were produced as deltaG viruses. Propagation of these deltaG viruses in cells that transiently express G protein in vitro results in G-complemented virions that can infect cells, shut down host protein synthesis, and express at high levels each virally encoded protein (including the designated cytokine). We assessed the ability of each deltaG-VSV construct to express recombinant cytokine by infecting BHK cells and then monitoring/measuring the production of the desired cytokine. When possible, the bioactivity of the cytokine products was also measured. The results presented here reveal that large quantities of bioactive cytokines can be produced rapidly and inexpensively using deltaG-VSV as a protein expression system.

  7. Human ACAT inhibitory effects of shikonin derivatives from Lithospermum erythrorhizon.

    Science.gov (United States)

    An, Sojin; Park, Yong-Dae; Paik, Young-Ki; Jeong, Tae-Sook; Lee, Woo Song

    2007-02-15

    Three naphthoquinones were isolated by bioassay-guided fractionation from the CHCl(3) extracts of roots of Lithospermum erythrorhizon. They were identified as acetylshikonin (1), isobutyrylshikonin (2), and beta-hydroxyisovalerylshikonin (3) on the basis of their spectroscopic analyses. The compounds 1-3 were tested for their inhibitory activities against human ACAT-1 (hACAT-1) or human ACAT-2 (hACAT-2). Compound 2 preferentially inhibited hACAT-2 (IC(50)=57.5microM) than hACAT-1 (32% at 120microM), whereas compounds 1 and 3 showed weak inhibitory activities in both hACAT-1 and -2. To develop more potent hACAT inhibitor, shikonin derivatives (5-11) were synthesized by semi-synthesis of shikonin (4), which was prepared by hydrolysis of 1-3. Among them, compounds 5 and 7 exhibited the strong inhibitory activities against hACAT-1 and -2. Furthermore, we demonstrated that compound 7 behaved as a potent ACAT inhibitor in not only in vitro assay system but also cell-based assay system.

  8. Cytokine Regulation Immunoglobulin Isotype Production

    Science.gov (United States)

    1994-11-08

    immune mediators which are released likely play a role in the protective response to helminthic parasites and in the pathogenesis of atopic disease...demonstrated by its critical role as an immunomodulator . in both stimulatory and inhibitory capacities. as well as by the concomitant involvement of TG...IgG subclass responses of mice to four helminth parasites." Cell Immunol 199: 193-201. 65. Bach, M.D., Bloch, K.H., Austen, K.F. (1971). "IgE and

  9. Soluble cytokine receptors in biological therapy.

    Science.gov (United States)

    Fernandez-Botran, Rafael; Crespo, Fabian A; Sun, Xichun

    2002-08-01

    Due to their fundamental involvement in the pathogenesis of many diseases, cytokines constitute key targets for biotherapeutic approaches. The discovery that soluble forms of cytokine receptors are involved in the endogenous regulation of cytokine activity has prompted substantial interest in their potential application as immunotherapeutic agents. As such, soluble cytokine receptors have many advantages, including specificity, low immunogenicity and high affinity. Potential disadvantages, such as low avidity and short in vivo half-lifes, have been addressed by the use of genetically-designed receptors, hybrid proteins or chemical modifications. The ability of many soluble cytokine receptors to inhibit the binding and biological activity of their ligands makes them very specific cytokine antagonists. Several pharmaceutical companies have generated a number of therapeutic agents based on soluble cytokine receptors and many of them are undergoing clinical trials. The most advanced in terms of clinical development is etanercept (Enbrel, Immunex), a fusion protein between soluble TNF receptor Type II and the Fc region of human IgG1. This TNF-alpha; antagonist was the first soluble cytokine receptor to receive approval for use in humans. In general, most agents based on soluble cytokine receptors have been safe, well-tolerated and have shown only minor side effects in the majority of patients. Soluble cytokine receptors constitute a new generation of therapeutic agents with tremendous potential for applications in a wide variety of human diseases. Two current areas of research are the identification of their most promising applications and characterisation of their long-term effects.

  10. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    Science.gov (United States)

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Length and coverage of inhibitory decision rules

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  12. Monetary rewards modulate inhibitory control

    Directory of Open Access Journals (Sweden)

    Paula Marcela Herrera

    2014-05-01

    Full Text Available The ability to override a dominant response, often referred to as behavioural inhibiton, is considered a key element of executive cognition. Poor behavioural inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioural inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/Nogo and Stop Signal Tasks. Several studies have reported a positive modulatory effect of reward on the performance of such tasks in pathological conditions such as substance abuse, pathological gambling, and ADHD. However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory paradigms are rare and consequently, little is known about the finer grained relationship between motivation and self-control. Here, we probed the effect of reward and reward magnitude on behavioural inhibition using two modified version of the widely used Stop Signal Task. The first task compared no reward with reward, whilst the other compared two different reward magnitudes. The reward magnitude effect was confirmed by the second study, whereas it was less compelling in the first study, possibly due to the effect of having no reward in some conditions. In addition, our results showed a kick start effect over global performance measures. More specifically, there was a long lasting improvement in performance throughout the task, when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate that individuals’ behavioural inhibition capacities are dynamic not static because they are modulated by the reward magnitude and initial reward history of the task at hand.

  13. Blastocyst-endometrium interaction: intertwining a cytokine network

    Directory of Open Access Journals (Sweden)

    W.A. Castro-Rendón

    2006-11-01

    Full Text Available The successful implantation of the blastocyst depends on adequate interactions between the embryo and the uterus. The development of the embryo begins with the fertilized ovum, a single totipotent cell which undergoes mitosis and gives rise to a multicellular structure named blastocyst. At the same time, increasing concentrations of ovarian steroid hormones initiate a complex signaling cascade that stimulates the differentiation of endometrial stromal cells to decidual cells, preparing the uterus to lodge the embryo. Studies in humans and in other mammals have shown that cytokines and growth factors are produced by the pre-implantation embryo and cells of the reproductive tract; however, the interactions between these factors that converge for successful implantation are not well understood. This review focuses on the actions of interleukin-1, leukemia inhibitory factor, epidermal growth factor, heparin-binding epidermal growth factor, and vascular endothelial growth factor, and on the network of their interactions leading to early embryo development, peri-implantatory endometrial changes, embryo implantation and trophoblast differentiation. We also propose therapeutical approaches based on current knowledge on cytokine interactions.

  14. JAK2 activation by growth hormone and other cytokines

    Science.gov (United States)

    Waters, Michael J.; Brooks, Andrew J.

    2015-01-01

    Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer–JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value. PMID:25656053

  15. Bioanalytical Chemistry of Cytokines-A Review

    Science.gov (United States)

    Stenken, Julie A.; Poschenrieder, Andreas J.

    2014-01-01

    Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described. PMID:25467452

  16. CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; part I: CD200/CD200R Structure, Activation, and Function

    Directory of Open Access Journals (Sweden)

    Drahomíra Holmannová

    2012-01-01

    Full Text Available CD200/CD200R are highly conserved type I paired membrane glycoproteins that belong to the Ig superfamily containing a two immunoglobulin‑like domain (V, C. CD200 is broadly distributed in a variety of cell types, whereas CD200R is primarily expressed in myeloid and lymphoid cells. They fulfill multiple functions in regulating inflammation. The interaction between CD200/CD200R results in activation of the intracellular inhibitory pathway with RasGAP recruitment and thus contributes to effector cell inhibition. It was confirmed that the CD200R activation stimulates the differentiation of T cells to the Treg subset, upregulates indoleamine 2,3‑dioxygenase activity, modulates cytokine environment from a Th1 to a Th2 pattern, and facilitates an antiinflammatory IL‑10 and TGF‑β synthesis. CD200/CD200R are required for maintaining self‑tolerance. Many studies have demonstrated the importance of CD200 in controlling autoimmunity, inflammation, the development and spread of cancer, hypersensitivity, and spontaneous fetal loss.

  17. miRNA regulation of cytokine genes

    OpenAIRE

    Asirvatham, Ananthi J.; Magner, William J.; Tomasi, Thomas B.

    2009-01-01

    In this review we discuss specific examples of regulation of cytokine genes and focus on a new mechanism involving post-transcriptional regulation via miRNAs. The post-transcriptional regulation of cytokine genes via the destabilizing activity of AU-rich elements [AREs] and miRNAs is a pre-requisite for regulating the half-life of many cytokines and achieving the temporal and spatial distributions required for regulation of these genes.

  18. Effect of wine phenolics on cytokine-induced C-reactive protein expression

    Science.gov (United States)

    KAUR, G.; RAO, L. V. M.; AGRAWAL, A.; PENDURTHI, U. R.

    2010-01-01

    Summary Background Elevation of C-reactive protein (CRP) levels in blood was recognized as one of the cardiac disease risk factors. Consumption of wine is shown to reduce the risk from heart disease and improve longevity. Objectives In the present study, we evaluated the effect of various wine polyphenolic compounds and several active synthetic derivatives of resveratrol on the inflammatory cytokines (IL-1β + IL-6)-induced CRP expression in Hep3B cells. Results Among the wine phenolics tested, quercetin and resveratrol, in a dose-dependent manner, suppressed cytokine-induced CRP expression. Two of the synthetic derivatives of resveratrol, R3 and 7b, elicited a fiftyfold higher suppressive effect compared with resveratrol. The inhibitory effects of resveratrol and its derivatives on CRP expression were at the level of mRNA production. Investigation of signaling pathways showed that the cytokines induced the phosphorylation of p38 and p44/42MAP kinases. Inhibitors of p38 and p44/42 mitogen-activated protein kinase (MAPK) activation inhibited CRP expression, implicating the involvement of both pathways in cytokine-induced CRP expression. These data revealed a previously unrecognized role of the p44/42 MAPK signaling pathway in CRP expression. Wine polyphenolics or the synthetic compounds of resveratrol did not affect cytokine-activated phosphorylation of these MAPKs. Conclusions Wine phenolics inhibit CRP expression; however, to do so, they do not utilize the MAPK pathways. PMID:17388968

  19. Cytokine Response to Exercise and Its Modulation

    Directory of Open Access Journals (Sweden)

    Katsuhiko Suzuki

    2018-01-01

    Full Text Available Strenuous exercise induces such inflammatory responses as leukocytosis (neutrophilia and symptoms as delayed-onset muscle soreness and swelling. However, the association between inflammatory mediator cytokines and oxidative stress is not fully delineated. Herein, in addition to basic background information on cytokines, research findings on exertional effects on cytokine release and the underlying mechanisms and triggers are introduced. Then, the associations among cytokine responses, oxidative stress, and tissue damage are described not only in overloaded skeletal muscle, but also in other internal organs. Furthermore, we introduce preventive countermeasures against the exhaustive exercise-induced pathogenesis together with the possibility of antioxidant interventions.

  20. The role of cytokine signaling in the pathogenesis of cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    abraham, Robert; Zhang, Qiang; Ødum, Niels

    2011-01-01

    Cutaneous T-cell lymphoma (CTCL) displays immunosuppressive properties and phenotypic plasticity. The malignant T cells in CTCL can possess features of immunomodulating regulatory T cells (Treg) and IL-17-producing helper T cells (Th17) depending on the stimuli they receive from antigen presenting...... cells and other sources. IL-2-type cytokines activate STAT5 to promote expression of Treg-related FoxP3, while various cytokines can activate STAT3 to induce synthesis of IL-10 and IL-17. When the Treg phenotype is activated in the early stages of CTCL, “immune evasion” can occur, allowing the clonal T...

  1. Stimulation of nAchRα7 Receptor Inhibits TNF Synthesis and Secretion in Response to LPS Treatment of Mast Cells by Targeting ERK1/2 and TACE Activation.

    Science.gov (United States)

    Guzmán-Mejía, F; López-Rubalcava, C; González-Espinosa, C

    2018-03-01

    The cholinergic anti-inflammatory pathway is recognized as one of the main mechanisms of neuromodulation of the immune system. Activation of the α7 nicotinic acetylcholine receptor (nAchRα7) suppresses cytokine synthesis in distinct immune cells but the molecular mechanisms behind this effect remain to be fully described. Mast cells (MCs) are essential players of allergic reactions and innate immunity responses related to chronic inflammation. Activation of TLR4 receptor in MCs leads to the rapid secretion of pre-synthesized TNF from intracellular pools and to the activation of NFκB, necessary for de novo synthesis of TNF and other cytokines. Here we report that the nAchRα7 receptor specific agonist GTS-21 inhibits TLR4-induced secretion of preformed TNF from MCs in vivo and in vitro. Utilizing bone marrow-derived mast cells (BMMCs) it was found that GTS-21 also diminished secretion of de novo synthesized TNF, TNF mRNA accumulation and IKK-dependent p65-NFκB phosphorylation in response to LPS. nAchRα7 triggering prevented TLR4-induced ERK1/2 phosphorylation, which resulted an essential step for TNF secretion due to the phosphorylation of the metallopeptidase responsible for TNF maturation (TACE). Main inhibitory actions of GTS-21 were prevented by AG490, an inhibitor of JAK-2 kinase. Our results show for the first time, that besides the prevention of NFκB-dependent transcription, inhibitory actions of nAchRα7 triggering include the blockade of pathways leading to exocytosis of granule-stored cytokines in MCs.

  2. Phytochemical screening and in vitro acetylcholinesterase inhibitory ...

    African Journals Online (AJOL)

    Recent studies have shown the effectiveness of plants as enhancers of memory activity. This study sought to investigate the inhibitory effect of seven plants on acetylcholinesterase and its phytochemical contents. The in vitro acetylcholinesterase inhibitory effect by the seven plants and their phytochemical contents each, ...

  3. Developmental broadening of inhibitory sensory maps

    Science.gov (United States)

    Quast, Kathleen B; Ung, Kevin; Froudarakis, Emmanouil; Huang, Longwen; Herman, Isabella; Addison, Angela P; Ortiz-Guzman, Joshua; Cordiner, Keith; Saggau, Peter; Tolias, Andreas S; Arenkiel, Benjamin R

    2017-01-01

    Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps. PMID:28024159

  4. Developmental broadening of inhibitory sensory maps.

    Science.gov (United States)

    Quast, Kathleen B; Ung, Kevin; Froudarakis, Emmanouil; Huang, Longwen; Herman, Isabella; Addison, Angela P; Ortiz-Guzman, Joshua; Cordiner, Keith; Saggau, Peter; Tolias, Andreas S; Arenkiel, Benjamin R

    2017-02-01

    Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.

  5. Plasticity of Cortical Excitatory-Inhibitory Balance

    Science.gov (United States)

    Froemke, Robert C.

    2015-01-01

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior. PMID:25897875

  6. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  7. Cytokine response to vitamin E supplementation is dependent on pre-supplementation cytokine levels

    Science.gov (United States)

    Belisle, Sarah E.; Leka, Lynette S.; Dallal, Gerard E.; Jacques, Paul F.; Delgado-Lista, Javier; Ordovas, Jose M.; Meydani, Simin Nikbin

    2009-01-01

    Vitamin E supplementation has been suggested to improve immune response in the aged in part by altering cytokine production. However, there is not a consensus regarding the effect of supplemental vitamin E on cytokine production in humans. There is evidence that baseline immune health can affect immune response to supplemental vitamin E in the elderly. Thus, the effect of vitamin E on cytokines may depend on their pre-supplementation cytokine response. Using data from a vitamin E intervention in elderly nursing home residents, we examined if the effect of vitamin E on ex vivo cytokine production of IL-1β, IL-6, TNF-α, and IFN-γ depended on baseline cytokine production. . We observed that the effect of vitamin E supplementation on cytokine production depended on pre-supplementation production of the respective cytokines. The interactions between vitamin E and baseline cytokine production were not explained covariates known to impact cytokine production. Our results offer evidence that baseline cytokine production should be considered in studies that examine the effect of supplemental vitamin E on immune and inflammatory responses. Our results could have implications in designing clinical trials to determine the impact of vitamin E on conditions in which cytokines are implicated such as infections and atherosclerotic disease. PMID:19478423

  8. Compartmentalized Cytokine Responses in Hidradenitis Suppurativa.

    Directory of Open Access Journals (Sweden)

    Theodora Kanni

    Full Text Available Favorable treatment outcomes with TNF blockade led us to explore cytokine responses in hidradenitis suppurativa (HS.Blood monocytes of 120 patients and 24 healthy volunteers were subtyped by flow cytometry. Isolated blood mononuclear cells (PBMCs were stimulated for cytokine production; this was repeated in 13 severe patients during treatment with etanercept. Cytokines in pus were measured.CD14brightCD16dim inflammatory monocytes and patrolling monocytes were increased in Hurley III patients. Cytokine production by stimulated PBMCs was low compared to controls but the cytokine gene copies did not differ, indicating post-translational inhibition. The low production of IL-17 was restored, when cells were incubated with adalimumab. In pus, high concentrations of pro-inflammatory cytokines were detected. Based on the patterns, six different cytokine profiles were discerned, which are potentially relevant for the choice of treatment. Clinical improvement with etanercept was predicted by increased production of IL-1β and IL-17 by PBMCs at week 8.Findings indicate compartmentalized cytokine expression in HS; high in pus but suppressed in PBMCs. This is modulated through blockade of TNF.

  9. Compartmentalized Cytokine Responses in Hidradenitis Suppurativa

    NARCIS (Netherlands)

    Kanni, T.; Tzanetakou, V.; Savva, A.; Kersten, B.; Pistiki, A.; Veerdonk, F.L. van de; Netea, M.G.; Meer, J.W.M. van der; Giamarellos-Bourboulis, E.J.

    2015-01-01

    BACKGROUND: Favorable treatment outcomes with TNF blockade led us to explore cytokine responses in hidradenitis suppurativa (HS). METHODS: Blood monocytes of 120 patients and 24 healthy volunteers were subtyped by flow cytometry. Isolated blood mononuclear cells (PBMCs) were stimulated for cytokine

  10. Cytokine profile of cervical cancer cells

    NARCIS (Netherlands)

    Hazelbag, S; Fleuren, GJ; Baelde, JJ; Schuuring, E; Kenter, GG; Gorter, A

    2001-01-01

    Objective. In patients with cervical carcinoma, the presence of cytokines produced by T(H)2 cells, and the presence of an eosinophilic inflammatory infiltrate, has been associated with a less effective immune response and tumor progression. In the present study, we have investigated the cytokine

  11. Study of cytokines microenvironment during autoimmune diseases ...

    African Journals Online (AJOL)

    The development of autoimmun diseases involves an intricate network of cytokines that recruit and activate TREGS/ TH17 cells. This study was aimed to compare PBMC levels of pro-inflammatory and anti-inflammatory cytokines in AID patients and non-AID controls from Bobo Dioulasso. We prospectively enrolled 17 ...

  12. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Lipopolysaccharide (LPS) is a predominant glycolipid in the outer membranes of gam-negative bacteria that stimulates monocytes, macrophages, and neutrophils to produce cytokines. The aim was to study the expression profile of TLRs and cytokines and determine the role of LPS in the peripheral blood lymphocytes.

  13. Cytokines and organ failure in acute pancreatitis

    DEFF Research Database (Denmark)

    Malmstrøm, Marie Louise; Hansen, Mark Berner; Andersen, Anders Møller

    2012-01-01

    We aimed at synchronously examining the early time course of 4 proinflammatory cytokines as predictive factors for development of organ failure in patients with acute pancreatitis (AP).......We aimed at synchronously examining the early time course of 4 proinflammatory cytokines as predictive factors for development of organ failure in patients with acute pancreatitis (AP)....

  14. Cytokine signal transduction in P19 embryonal carcinoma cells : Regulation of Stat3-mediated transactivation occurs independently of p21ras-Erk signaling

    NARCIS (Netherlands)

    van Puijenbroek, AAFL; van der Saag, PT; Coffer, PJ

    1999-01-01

    Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are members of a subfamily of related cytokines that share gp130 as common signal-transducing receptor component. CNTF has recently been demonstrated to induce increased survival and neuronal differentiation of P19 embryonal

  15. T cell subsets and cytokines in allergic and non-allergic children. I. Analysis of IL-4, IFN-? and IL-13 mRNA expression and protein production

    NARCIS (Netherlands)

    Koning, H.; Neijens, H.J.; Baert, M.R.M.; Oranje, A.P.; Savelkoul, H.F.J.

    1997-01-01

    Interleukin 4 (IL-4) and IL-13 are key cytokines inducing switching to immunoglobulin E (IgE), whereas interferon (IFN-) acts inhibitory on this process. We analysed whether differences existed in IL-4, IFN- and IL-13 mRNA expression and protein production between T cells of children with allergic

  16. Novel methods of cytokine detection: Real-time PCR, ELISPOT, and intracellular cytokine staining

    Directory of Open Access Journals (Sweden)

    Eliza Turlej

    2009-05-01

    Full Text Available Cytokines are small hormone-like proteins that play important roles in immune system control. Cytokines regulate the proliferation and differentiation of cells and hematopoiesis and act as mediators in the inflammatory reaction. Changes in cytokine levels are found in many diseases, such as sepsis, bowel inflammatory disease, autoimmune diseases, as well as graft-versus-host disease. Cytokines levels can be detected using in vivo, in vitro, and ex vivo techniques. The level of cytokine produced can be measured by immunoenzymatic test (ELISA in supernatant after cell culture with the addition of stimulant and in plasma by techniques that measure the level of cytokine secretion in cells (e.g. immunohistochemical staining, ELISPOT, and intracellular cytokine staining, and by molecular biological methods (RPA, real-time PCR, in situ hybridization, and Northern blot. Detection of cytokine mRNA in tissues is useful in the direct determination of heterogenic populations of cytokine-producing cells. Nowadays the most frequently used methods for measuring cytokine level are ELISPOT, intracellular cytokine staining with flow cytometry detection, and real-time PCR. These methods have an important clinical role in vaccine efficacy, in viral, bacterial, and verminous diagnostics, and in determining the efficacy of cancer treatment.

  17. Effect of 17β-oestradiol on cytokine-induced nitric oxide production in rat isolated aorta

    Science.gov (United States)

    Kauser, Katalin; Sonnenberg, Dagmar; Diel, Patrick; Rubanyi, Gabor M

    1998-01-01

    Studies were performed on isolated aortic rings without endothelium to investigate the effect of 17β-oestradiol on cytokine-induced nitric oxide production by the inducible nitric oxide synthase (iNOS).Treatment of the isolated aortic rings with interleukin-1β (IL-1β, 20 μ ml−1) led to the expression of iNOS mRNA and protein, as well as significant nitrite accumulation in the incubation media and suppression of phenylephrine (1 nM–10 μM)-evoked contraction.Cycloheximide (1 μM), a protein synthesis inhibitor, prevented iNOS protein expression, nitrite accumulation and the suppression of contractility by IL-1β on the isolated aortic rings. 17β-oestradiol (1 nM–10 μM) and the partial oestrogen receptor agonist 4-OH-tamoxifen (1 nM–10 μM) produced concentration-dependent inhibition of IL-1β-induced nitrite accumulation and restored vasoconstrictor responsiveness to phenylephrine, similar to the iNOS inhibitor aminoguanidine (100 μM).Semiquantitative PCR demonstrated decreased iNOS mRNA in the IL-1β-induced and 17β-oestradiol-treated rings. Western blot analysis of rat aorta homogenates revealed that 17β-oestradiol treatment resulted in a reduction in IL-1ß-induced iNOS protein level.Incubation with tumour necrosis factor α (TNFα, 1 ng ml−1) resulted in significant nitrite accumulation in the incubation media and suppression of the smooth muscle contractile response to phenylephrine, similar to IL-1β. The effects of TNFα were also inhibited by co-incubation of the rings with 17β-oestradiol and 4-OH-tamoxifen (1 μM).The anti-transforming growth factor-β1 (TGF-β1) antibody, which inhibited TGF-β1-induced suppression of nitrite production from IL-1β-treated vascular rings, did not affect the inhibitory action of 17β-oestradiol, suggesting that the effect of oestrogen on iNOS inhibition was not mediated by TGF-β1.These results show that the ovarian sex steroid, 17β-oestradiol is a modulator of cytokine

  18. Mimitin - a novel cytokine-regulated mitochondrial protein.

    Science.gov (United States)

    Wegrzyn, Paulina; Yarwood, Stephen J; Fiegler, Nathalie; Bzowska, Monika; Koj, Aleksander; Mizgalska, Danuta; Malicki, Stanisław; Pajak, Magdalena; Kasza, Aneta; Kachamakova-Trojanowska, Neli; Bereta, Joanna; Jura, Jacek; Jura, Jolanta

    2009-03-31

    The product of a novel cytokine-responsive gene discovered by differential display analysis in our earlier studies on HepG2 cells was identified as mimitin - a small mitochondrial protein. Since proinflammatory cytokines are known to affect components of the respiratory chain in mitochondria, and mimitin was reported as a possible chaperone for assembly of mitochondrial complex I, we looked for the effects of modulation of mimitin expression and for mimitin-binding partners. By blocking mimitin expression in HepG2 cells by siRNA we found that mimitin has no direct influence on caspase 3/7 activities implicated in apoptosis. However, when apoptosis was induced by TNF and cycloheximide, and mimitin expression blocked, the activities of these caspases were significantly increased. This was accompanied by a slight decrease in proliferation of HepG2 cells. Our observations suggest that mimitin may be involved in the control of apoptosis indirectly, through another protein, or proteins. Using the yeast two-hybrid system and coimmunoprecipitation we found MAP1S among proteins interacting with mimitin. MAP1S is a recently identified member of the microtubule-associated protein family and has been shown to interact with NADH dehydrogenase I and cytochrome oxidase I. Moreover, it was implicated in the process of mitochondrial aggregation and nuclear genome destruction. The expression of mimitin is stimulated more than 1.6-fold by IL-1 and by IL-6, with the maximum level of mimitin observed after 18-24 h exposure to these cytokines. We also found that the cytokine-induced signal leading to stimulation of mimitin synthesis utilizes the MAP kinase pathway. Mimitin is a mitochondrial protein upregulated by proinflammatory cytokines at the transcriptional and protein levels, with MAP kinases involved in IL-1-dependent induction. Mimitin interacts with a microtubular protein (MAP1S), and some changes of mimitin gene expression modulate activity of apoptotic caspases 3

  19. Mimitin – a novel cytokine-regulated mitochondrial protein

    Directory of Open Access Journals (Sweden)

    Kachamakova-Trojanowska Neli

    2009-03-01

    Full Text Available Abstract Background The product of a novel cytokine-responsive gene discovered by differential display analysis in our earlier studies on HepG2 cells was identified as mimitin – a small mitochondrial protein. Since proinflammatory cytokines are known to affect components of the respiratory chain in mitochondria, and mimitin was reported as a possible chaperone for assembly of mitochondrial complex I, we looked for the effects of modulation of mimitin expression and for mimitin-binding partners. Results By blocking mimitin expression in HepG2 cells by siRNA we found that mimitin has no direct influence on caspase 3/7 activities implicated in apoptosis. However, when apoptosis was induced by TNF and cycloheximide, and mimitin expression blocked, the activities of these caspases were significantly increased. This was accompanied by a slight decrease in proliferation of HepG2 cells. Our observations suggest that mimitin may be involved in the control of apoptosis indirectly, through another protein, or proteins. Using the yeast two-hybrid system and coimmunoprecipitation we found MAP1S among proteins interacting with mimitin. MAP1S is a recently identified member of the microtubule-associated protein family and has been shown to interact with NADH dehydrogenase I and cytochrome oxidase I. Moreover, it was implicated in the process of mitochondrial aggregation and nuclear genome destruction. The expression of mimitin is stimulated more than 1.6-fold by IL-1 and by IL-6, with the maximum level of mimitin observed after 18–24 h exposure to these cytokines. We also found that the cytokine-induced signal leading to stimulation of mimitin synthesis utilizes the MAP kinase pathway. Conclusion Mimitin is a mitochondrial protein upregulated by proinflammatory cytokines at the transcriptional and protein levels, with MAP kinases involved in IL-1-dependent induction. Mimitin interacts with a microtubular protein (MAP1S, and some changes of mimitin gene

  20. Mimitin – a novel cytokine-regulated mitochondrial protein

    Science.gov (United States)

    Wegrzyn, Paulina; Yarwood, Stephen J; Fiegler, Nathalie; Bzowska, Monika; Koj, Aleksander; Mizgalska, Danuta; Malicki, Stanisław; Pajak, Magdalena; Kasza, Aneta; Kachamakova-Trojanowska, Neli; Bereta, Joanna; Jura, Jacek; Jura, Jolanta

    2009-01-01

    Background The product of a novel cytokine-responsive gene discovered by differential display analysis in our earlier studies on HepG2 cells was identified as mimitin – a small mitochondrial protein. Since proinflammatory cytokines are known to affect components of the respiratory chain in mitochondria, and mimitin was reported as a possible chaperone for assembly of mitochondrial complex I, we looked for the effects of modulation of mimitin expression and for mimitin-binding partners. Results By blocking mimitin expression in HepG2 cells by siRNA we found that mimitin has no direct influence on caspase 3/7 activities implicated in apoptosis. However, when apoptosis was induced by TNF and cycloheximide, and mimitin expression blocked, the activities of these caspases were significantly increased. This was accompanied by a slight decrease in proliferation of HepG2 cells. Our observations suggest that mimitin may be involved in the control of apoptosis indirectly, through another protein, or proteins. Using the yeast two-hybrid system and coimmunoprecipitation we found MAP1S among proteins interacting with mimitin. MAP1S is a recently identified member of the microtubule-associated protein family and has been shown to interact with NADH dehydrogenase I and cytochrome oxidase I. Moreover, it was implicated in the process of mitochondrial aggregation and nuclear genome destruction. The expression of mimitin is stimulated more than 1.6-fold by IL-1 and by IL-6, with the maximum level of mimitin observed after 18–24 h exposure to these cytokines. We also found that the cytokine-induced signal leading to stimulation of mimitin synthesis utilizes the MAP kinase pathway. Conclusion Mimitin is a mitochondrial protein upregulated by proinflammatory cytokines at the transcriptional and protein levels, with MAP kinases involved in IL-1-dependent induction. Mimitin interacts with a microtubular protein (MAP1S), and some changes of mimitin gene expression modulate activity of

  1. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature

    Directory of Open Access Journals (Sweden)

    Aldag C

    2016-11-01

    Full Text Available Caroline Aldag,1,* Diana Nogueira Teixeira,1,* Phillip S Leventhal2 1Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany; 24Clinics, Paris, France *These authors contributed equally to this work Abstract: Skin aging is primarily due to alterations in the dermal extracellular matrix, especially a decrease in collagen I content, fragmentation of collagen fibrils, and accumulation of amorphous elastin material, also known as elastosis. Growth factors and cytokines are included in several cosmetic products intended for skin rejuvenation because of their ability to promote collagen synthesis. Matrikines and matrikine-like peptides offer the advantage of growth factor-like activities but better skin penetration due to their much smaller molecular size. In this review, we summarize the commercially available products containing growth factors, cytokines, and matrikines for which there is evidence that they promote skin rejuvenation. Keywords: cosmetics, skin, aging, growth factor, cytokine, matrikine

  2. Post-translational regulation of macrophage migration inhibitory factor: Basis for functional fine-tuning

    Directory of Open Access Journals (Sweden)

    Lisa Schindler

    2018-05-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a chemokine-like protein and an important mediator in the inflammatory response. Unlike most other pro-inflammatory cytokines, a number of cell types constitutively express MIF and secretion occurs from preformed stores. MIF is an evolutionarily conserved protein that shows a remarkable functional diversity, including specific binding to surface CD74 and chemokine receptors and the presence of two intrinsic tautomerase and oxidoreductase activities. Several studies have shown that MIF is subject to post-translational modification, particularly redox-dependent modification of the catalytic proline and cysteine residues. In this review, we summarize and discuss MIF post-translational modifications and their effects on the biological properties of this protein. We propose that the redox-sensitive residues in MIF will be modified at sites of inflammation and that this will add further depth to the functional diversity of this intriguing cytokine.

  3. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Broholm, Christa; Brandt, Claus; Schultz, Ninna S

    2012-01-01

    to LIF. The mRNA and protein expressions of LIF and its receptor (LIFR) were measured in skeletal muscle biopsies from healthy individuals and patients with type 2 diabetes by use of qPCR and Western blot. LIF signaling and response were studied following administration of recombinant LIF and si......The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response......RNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts...

  4. Telomerase-inhibitory effects of sugar-modified nucleotide analogs.

    Science.gov (United States)

    Jinmei, Hiroshi; Takahashi, Hazuki; Amano, Rie; Suzuki, Kaori; Saneyoshi, Mineo; Yamaguchi, Toyofumi

    2002-01-01

    Telomerase is an endogenous reverse transcriptase that uses its internal RNA moiety as a template for the synthesis of telomere repeats, thus maintaining telomere length. To study the susceptibility of telomerase to sugar-modified nucleotide analogs, inhibition by arabinofuranosylguanine 5'-triphosphate (araGTP), 3'-azido-2',3'-dideoxyguanosine 5'-triphosphate (AZdGTP), 2',3'-dideoxy-2'-fluoroarabino-furanosylguanine 5'-triphosphate (FaraGTP), and their thymine counterparts was investigated. Among these compounds, all dGTP analogs showed potent inhibitory activity against human telomerase. Conversely, dTTP analogs showed moderate or weak inhibition. Partially purified telomerase from cherry salmon testis utilized ddGTP and AZdGTP as substrates into the 3'-terminus of DNA.

  5. Nickel-induced cytokine production from mononuclear cells in nickel-sensitive individuals and controls. Cytokine profiles in nickel-sensitive individuals with nickel allergy-related hand eczema before and after nickel challenge

    DEFF Research Database (Denmark)

    Borg, L; Christensen, J M; Kristiansen, J

    2000-01-01

    Exposure to nickel is a major cause of allergic contact dermatitis which is considered to be an inflammatory response induced by antigen-specific T cells. Here we describe the in vitro analysis of the nickel-specific T-cell-derived cytokine response of peripheral blood mononuclear cells from 35......, interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha) by quantitative ELISA. The analysis showed that the synthesis of IL-4 and IL-5 but not of IFN-gamma or TNF-alpha was significantly higher in the nickel-allergic individuals. The finding of preferential synthesis of Th2 cytokines...... differences were observed in the nickel-induced in vitro cytokine response during the exposure period. Our results indicate the possibility that IL-4 and IL-5 are involved in the pathogenesis of nickel-mediated contact dermatitis....

  6. Macrophage Migration Inhibitory Factor: Critical Role in Obesity, Insulin Resistance, and Associated Comorbidities

    Directory of Open Access Journals (Sweden)

    Robert Kleemann

    2010-01-01

    Full Text Available Obesity is associated with insulin resistance, disturbed glucose homeostasis, low grade inflammation, and comorbidities such as type 2 diabetes and cardiovascular disease. The cytokine macrophage migration inhibitory factor (MIF is an ubiquitously expressed protein that plays a crucial role in many inflammatory and autoimmune disorders. Increasing evidence suggests that MIF also controls metabolic and inflammatory processes underlying the development of metabolic pathologies associated with obesity. This is a comprehensive summary of our current knowledge on the role of MIF in obesity and obesity-associated comorbidities, based on human clinical data as well as animal models of disease.

  7. Functional characterization of the turkey macrophage migration inhibitory factor.

    Science.gov (United States)

    Park, Myeongseon; Kim, Sungwon; Fetterer, Raymond H; Dalloul, Rami A

    2016-08-01

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evidence for an inhibitory-control theory of the reasoning brain

    Directory of Open Access Journals (Sweden)

    Olivier eHoudé

    2015-03-01

    Full Text Available In this article, we first describe our general inhibitory-control theory and, then, we describe how we have tested its specific hypotheses on reasoning with brain imaging techniques in adults and children. The innovative part of this perspective lies in its attempt to come up with a brain-based synthesis of Jean Piaget’s theory on logical algorithms and Daniel Kahneman’s theory on intuitive heuristics.

  9. Evidence for an inhibitory-control theory of the reasoning brain.

    Science.gov (United States)

    Houdé, Olivier; Borst, Grégoire

    2015-01-01

    In this article, we first describe our general inhibitory-control theory and, then, we describe how we have tested its specific hypotheses on reasoning with brain imaging techniques in adults and children. The innovative part of this perspective lies in its attempt to come up with a brain-based synthesis of Jean Piaget's theory on logical algorithms and Daniel Kahneman's theory on intuitive heuristics.

  10. The control of reproductive physiology and behavior by gonadotropin-inhibitory hormone

    OpenAIRE

    Ubuka, Takayoshi; McGuire, Nicolette L.; Calisi, Rebecca M.; Perfito, Nicole; Bentley, George E.

    2008-01-01

    Gonadotropin-releasing hormone (GnRH) controls the reproductive physiology and behavior of vertebrates by stimulating synthesis and release of gonadotropin from the pituitary gland. In 2000, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), was discovered in quail and found to be an inhibiting factor for gonadotropin release. GnIH homologs are present in the brains of vertebrates, including birds, mammals, amphibians, and fish. These peptides, categorized as RF amide-...

  11. Inhibitory ability of children with developmental dyscalculia.

    Science.gov (United States)

    Zhang, Huaiying; Wu, Hanrong

    2011-02-01

    Inhibitory ability of children with developmental dyscalculia (DD) was investigated to explore the cognitive mechanism underlying DD. According to the definition of developmental dyscalculia, 19 children with DD-only and 10 children with DD&RD (DD combined with reading disability) were selected step by step, children in two control groups were matched with children in case groups by gender and age, and the match ratio was 1:1. Psychological testing software named DMDX was used to measure inhibitory ability of the subjects. The differences of reaction time in number Stroop tasks and differences of accuracy in incongruent condition of color-word Stroop tasks and object inhibition tasks between DD-only children and their controls reached significant levels (Pgeneral inhibitory deficits, while children with DD&RD confronted with word inhibitory deficits only.

  12. Inhibitory effects of Ledebouria ovaltifolia (hyacithaceae) aqueous ...

    African Journals Online (AJOL)

    Inhibitory effects of Ledebouria ovaltifolia (hyacithaceae) aqueous root extract on contractile responses of Rat Vas deferens to K and adrenaline, pendular movement of isolated rabbit jejunum and acetic acid induced pain in Mice.

  13. INHIBITORY MOTOR SEIZURES: SEMIOLOGY AND THERAPY

    Directory of Open Access Journals (Sweden)

    K. Yu. Мukhin

    2013-01-01

    Full Text Available The article is devoted to rare and unique type of epileptic seizures – inhibitory motor seizures, characterized by the inability to execute a voluntary movement with preserved consciousness. The exact prevalence of this type of seizures is not known, but many cases are unrecognized or non-correctly diagnosed as Todd's paralysis. Therefore practical doctors should know the clinical and electroencephalographic characteristics of this type of seizures andtake them into account in the differential diagnoses . The authors presented a detailed review of the literature, including the historical data, etiology, pathogenesis and proposed mechanisms of formation of inhibitory motor seizures, clinical and EEG characteristics, therapeutic approaches. Antiepileptic drugs of choice used in the treatment of inhibitory motor seizures are valproic acid (preferably depakine chronosphere – original prolonged form of valproate. The authors also presented their observations of patients with inhibitory motor seizures.

  14. Phenotypic characterisation and assessment of the inhibitory ...

    African Journals Online (AJOL)

    Fred

    Their inhibitory action was tested against some spoilage and pathogenic ... The use of chemical preservatives and salt in foods is ... 1998). To ensure microbiological safety of foods, ... other bacteria such as Escherichia coli and Salmonella.

  15. Cytokine array after cyclosporine treatment in rats.

    Science.gov (United States)

    Jin, K B; Choi, H J; Kim, H T; Hwang, E A; Han, S Y; Park, S B; Kim, H C; Ha, E Y; Kim, Y H; Suh, S I; Mun, K C

    2008-10-01

    Long-term treatment with cyclosporine (CsA) results in chronic nephrotoxicity, which is known to be mediated by several cytokines including transforming growth factor-betal. Cytokines are known to play an important role in innate immunity, apoptosis, angiogenesis, cell growth, and differentiation. They are known to be involved in most disease processes, including cancer, cardiac disease, and nephrotoxicity. To evaluate changes of cytokines in a rat model of CsA-induced chronic nephrotoxicity, we performed a cytokine array. Experiments were performed on two groups of rats; normal control group and CsA-treated group. Cytokine array in rat serum was performed using Cytokine Antibody Array I kit from RayBiotech. Serum creatinine, urine creatinine, and creatinine clearance increased in the CsA-treated group. Among the several cytokines, the expressions of the lipopolysaccharide-induced CXC chemokine (LIX), monocyte chemoattractant protein 1 (MCP-1), nerve growth factor (beta-NGF), and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the CsA-treated group were increased above that of cytokines in the control group. The density of the LIX in controls was 0.62, and in the CsA-treated group was 1.24. The density of the MCP-1 in controls was 0.68, and in CsA-treated, 1.43. The density of the beta-NGF in controls was 0.62, and that in CsA-treated, 1.24. The density of the TIMP-1 in controls 1.13, and in CsA-treated, 1.40. Our data suggested that among several cytokines elevated levels of the LIX, MCP-1, beta-NGF, and TIMP-1 are the contributing factors to CsA-induced nephropathy.

  16. How Do Cytokines Trigger Genomic Instability?

    Directory of Open Access Journals (Sweden)

    Ioannis L. Aivaliotis

    2012-01-01

    Full Text Available Inflammation is a double-edged sword presenting a dual effect on cancer development, from one hand promoting tumor initiation and progression and from the other hand protecting against cancer through immunosurveillance mechanisms. Cytokines are crucial components of inflammation, participating in the interaction between the cells of tumor microenvironment. A comprehensive study of the role of cytokines in the context of the inflammation-tumorigenesis interplay helps us to shed light in the pathogenesis of cancer. In this paper we focus on the role of cytokines in the development of genomic instability, an evolving hallmark of cancer.

  17. Cytokines in Radiobiological Responses: A Review

    Science.gov (United States)

    Schaue, Dörthe; Kachikwu, Evelyn L.; McBride, William H.

    2013-01-01

    Cytokines function in many roles that are highly relevant to radiation research. This review focuses on how cytokines are structurally organized, how they are induced by radiation, and how they orchestrate mesenchymal, epithelial and immune cell interactions in irradiated tissues. Pro-inflammatory cytokines are the major components of immediate early gene programs and as such can be rapidly activated after tissue irradiation. They converge with the effects of ionizing radiation in that both generate free radicals including reactive oxygen and nitrogen species (ROS/RNS). “Self” molecules secreted or released from cells after irradiation feed the same paradigm by signaling for ROS and cytokine production. As a result, multilayered feedback control circuits can be generated that perpetuate the radiation tissue damage response. The pro-inflammatory phase persists until such times as perceived challenges to host integrity are eliminated. Antioxidant, anti-inflammatory cytokines then act to restore homeostasis. The balance between pro-inflammatory and anti-inflammatory forces may shift to and fro for a long time after radiation exposure, creating waves as the host tries to deal with persisting pathogenesis. Individual cytokines function within socially interconnected groups to direct these integrated cellular responses. They hunt in packs and form complex cytokine networks that are nested within each other so as to form mutually reinforcing or antagonistic forces. This yin-yang balance appears to have redox as a fulcrum. Because of their social organization, cytokines appear to have a considerable degree of redundancy and it follows that an elevated level of a specific cytokine in a disease situation or after irradiation does not necessarily implicate it causally in pathogenesis. In spite of this, “driver” cytokines are emerging in pathogenic situations that can clearly be targeted for therapeutic benefit, including in radiation settings. Cytokines can greatly

  18. ApoE production in human monocytes and its regulation by inflammatory cytokines.

    Directory of Open Access Journals (Sweden)

    Sten Braesch-Andersen

    Full Text Available The apoE production by tissue macrophages is crucial for the prevention of atherosclerosis and the aim of this study was to further elucidate how this apolipoprotein is regulated by cytokines present during inflammation. Here we studied apoE production in peripheral blood mononuclear cells (PBMC and analysis was made with a newly developed apoE ELISpot assay. In PBMC, apoE secretion was restricted to monocytes with classical (CD14(++CD16(- and intermediate (CD14(+CD16(+ monocytes being the main producers. As earlier described for macrophages, production was strongly upregulated by TGF-β and downregulated by bacterial lipopolysaccharide (LPS and the inflammatory cytokines IFN-γ, TNF-α and IL-1β. We could here show that a similar down-regulatory effect was also observed with the type I interferon, IFN-α, while IL-6, often regarded as one of the more prominent inflammatory cytokines, did not affect TGF-β-induced apoE production. The TNF-α inhibitor Enbrel could partly block the down-regulatory effect of IFN-γ, IFN-α and IL-1β, indicating that inhibition of apoE by these cytokines may be dependent on or synergize with TNF-α. Other cytokines tested, IL-2, IL-4, IL-12, IL-13, IL-17A and IL-23, had no inhibitory effect on apoE production. In contrast to the effect on monocytes, apoE production by primary hepatocytes and the hepatoma cell line HepG2 was more or less unaffected by treatment with cytokines or LPS.

  19. The interleukin (IL)-1 cytokine family--Balance between agonists and antagonists in inflammatory diseases.

    Science.gov (United States)

    Palomo, Jennifer; Dietrich, Damien; Martin, Praxedis; Palmer, Gaby; Gabay, Cem

    2015-11-01

    The interleukin (IL)-1 family of cytokines comprises 11 members, including 7 pro-inflammatory agonists (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) and 4 defined or putative antagonists (IL-1R antagonist (IL-1Ra), IL-36Ra, IL-37, and IL-38) exerting anti-inflammatory activities. Except for IL-1Ra, IL-1 cytokines do not possess a leader sequence and are secreted via an unconventional pathway. In addition, IL-1β and IL-18 are produced as biologically inert pro-peptides that require cleavage by caspase-1 in their N-terminal region to generate active proteins. N-terminal processing is also required for full activity of IL-36 cytokines. The IL-1 receptor (IL-1R) family comprises 10 members and includes cytokine-specific receptors, co-receptors and inhibitory receptors. The signaling IL-1Rs share a common structure with three extracellular immunoglobulin (Ig) domains and an intracellular Toll-like/IL-1R (TIR) domain. IL-1 cytokines bind to their specific receptor, which leads to the recruitment of a co-receptor and intracellular signaling. IL-1 cytokines induce potent inflammatory responses and their activity is tightly controlled at the level of production, protein processing and maturation, receptor binding and post-receptor signaling by naturally occurring inhibitors. Some of these inhibitors are IL-1 family antagonists, while others are IL-1R family members acting as membrane-bound or soluble decoy receptors. An imbalance between agonist and antagonist levels can lead to exaggerated inflammatory responses. Several genetic modifications or mutations associated with dysregulated IL-1 activity and autoinflammatory disorders were identified in mouse models and in patients. These findings paved the road to the successful use of IL-1 inhibitors in diseases that were previously considered as untreatable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Distinct cytokines balance the development of regulatory T cells and interleukin-10-producing regulatory B cells

    Science.gov (United States)

    Holan, Vladimir; Zajicova, Alena; Javorkova, Eliska; Trosan, Peter; Chudickova, Milada; Pavlikova, Michaela; Krulova, Magdalena

    2014-01-01

    Regulatory T cells have been well described and the factors regulating their development and function have been identified. Recently, a growing body of evidence has documented the existence of interleukin-10 (IL-10)-producing B cells, which are called regulatory B10 cells. These cells attenuate autoimmune, inflammatory and transplantation reactions, and the main mechanism of their inhibitory action is the production of IL-10. We show that the production of IL-10 by lipopolysaccharide-stimulated B cells is significantly enhanced by IL-12 and interferon-γ and negatively regulated by IL-21 and transforming growth factor-β. In addition, exogenous IL-10 also inhibits B-cell proliferation and the expression of the IL-10 gene in lipopolysaccharide-stimulated B cells. The negative autoregulation of IL-10 production is supported by the observation that the inclusion of anti-IL-10 receptor monoclonal antibody enhances IL-10 production and the proliferation of activated B cells. The effects of cytokines on IL-10 production by B10 cells did not correlate with their effects on B-cell proliferation or on IL-10 production by T cells or macrophages. The cytokine-induced changes in IL-10 production occurred on the level of IL-10 gene expression, as confirmed by increased or decreased IL-10 mRNA expression in the presence of a particular cytokine. The regulatory cytokines modulate the number of IL-10-producing cells rather than augmenting or decreasing the secretion of IL-10 on a single-cell level. Altogether these data show that the production of IL-10 by B cells is under the strict regulatory control of cytokines and that individual cytokines differentially regulate the development and activity of regulatory T cells and IL-10-producing regulatory B cells. PMID:24256319

  1. Inhibitory engrams in perception and memory.

    Science.gov (United States)

    Barron, Helen C; Vogels, Tim P; Behrens, Timothy E; Ramaswami, Mani

    2017-06-27

    Nervous systems use excitatory cell assemblies to encode and represent sensory percepts. Similarly, synaptically connected cell assemblies or "engrams" are thought to represent memories of past experience. Multiple lines of recent evidence indicate that brain systems create and use inhibitory replicas of excitatory representations for important cognitive functions. Such matched "inhibitory engrams" can form through homeostatic potentiation of inhibition onto postsynaptic cells that show increased levels of excitation. Inhibitory engrams can reduce behavioral responses to familiar stimuli, thereby resulting in behavioral habituation. In addition, by preventing inappropriate activation of excitatory memory engrams, inhibitory engrams can make memories quiescent, stored in a latent form that is available for context-relevant activation. In neural networks with balanced excitatory and inhibitory engrams, the release of innate responses and recall of associative memories can occur through focused disinhibition. Understanding mechanisms that regulate the formation and expression of inhibitory engrams in vivo may help not only to explain key features of cognition but also to provide insight into transdiagnostic traits associated with psychiatric conditions such as autism, schizophrenia, and posttraumatic stress disorder.

  2. Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils

    Science.gov (United States)

    2013-01-01

    Background Subepithelial fibrosis is one of the most critical structural changes affecting bronchial airway function during asthma. Eosinophils have been shown to contribute to the production of pro-fibrotic cytokines, TGF-β and IL-11, however, the mechanism regulating this process is not fully understood. Objective In this report, we investigated whether cytokines associated with inflammation during asthma may induce eosinophils to produce pro-fibrotic cytokines. Methods Eosinophils were isolated from peripheral blood of 10 asthmatics and 10 normal control subjects. Eosinophils were stimulated with Th1, Th2 and Th17 cytokines and the production of TGF-β and IL-11 was determined using real time PCR and ELISA assays. Results The basal expression levels of eosinophil derived TGF-β and IL-11 cytokines were comparable between asthmatic and healthy individuals. Stimulating eosinophils with Th1 and Th2 cytokines did not induce expression of pro-fibrotic cytokines. However, stimulating eosinophils with Th17 cytokines resulted in the enhancement of TGF-β and IL-11 expression in asthmatic but not healthy individuals. This effect of IL-17 on eosinophils was dependent on p38 MAPK activation as inhibiting the phosphorylation of p38 MAPK, but not other kinases, inhibited IL-17 induced pro-fibrotic cytokine release. Conclusions Th17 cytokines might contribute to airway fibrosis during asthma by enhancing production of eosinophil derived pro-fibrotic cytokines. Preventing the release of pro-fibrotic cytokines by blocking the effect of Th17 cytokines on eosinophils may prove to be beneficial in controlling fibrosis for disorders with IL-17 driven inflammation such as allergic and autoimmune diseases. PMID:23496774

  3. Structural Organization of a Full-Length Gp130/LIF-R Cytokine Receptor Transmembrane Complex

    Energy Technology Data Exchange (ETDEWEB)

    Skiniotis, G.; Lupardus, P.J.; Martick, M.; Walz, T.; Garcia, K.C.

    2009-05-26

    gp130 is a shared receptor for at least nine cytokines, and can signal either as a homodimer, or as a heterodimer with Leukemia Inhibitory Factor Receptor (LIF-R). Here we biophysically and structurally characterize the full-length, transmembrane form of a quaternary cytokine receptor complex consisting of gp130, LIF-R, the cytokine Ciliary Neurotrophic Factor (CNTF), and its alpha receptor (CNTF-R{alpha}). Thermodynamic analysis indicates that, unlike the cooperative assembly of the symmetric gp130/Interleukin-6/IL-6R{alpha} hexameric complex, CNTF/CNTF-R{alpha} heterodimerizes gp130 and LIF-R via non-cooperative energetics to form an asymmetric 1:1:1:1 complex. Single particle electron microscopic (EM) analysis of the full-length gp130/LIF-R/CNTF-R{alpha}/CNTF quaternary complex elucidates an asymmetric structural arrangement, in which the receptor extracellular and transmembrane segments join as a continuous, rigid unit, poised to sensitively transduce ligand engagement to the membrane-proximal intracellular signaling regions. These studies also enumerate the organizing principles for assembly of the 'tall' class of gp130-family cytokine receptor complexes including LIF, IL-27, IL-12, and others.

  4. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin.

    Directory of Open Access Journals (Sweden)

    Yilin Qi

    Full Text Available Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses.

  5. Obesity and Inflammation: Reduced cytokine expression due to resveratrol in a human in-vitro model of inflamed adipose tissue

    Directory of Open Access Journals (Sweden)

    Ivana eZagotta

    2015-04-01

    Full Text Available Obesity is associated with an inflammatory status and linked with a number of pathophysiological complications among them cardiovascular disease, type 2 diabetes mellitus, or the metabolic syndrome. Resveratrol was proposed to improve obesity-related inflammatory problems, but the effect of resveratrol on cytokine expression in obesity is not completely understood. In this study, we used an in vitro model of human adipose tissue inflammation to examine the effects of resveratrol on the production of the inflammatory cytokines IL-6, IL-8, and MCP-1. We found that resveratrol reduced IL-6, IL-8, and MCP-1 levels in a concentration-dependent manner in adipocytes under inflammatory conditions. Further experiments showed that the action of resveratrol was mainly due to its NFkB inhibitory potential. Thus, our data support the concept that resveratrol can alleviate obesity-induced up-regulation of inflammatory cytokines providing a new insight towards novel treatment options in obesity.

  6. Obesity and inflammation: reduced cytokine expression due to resveratrol in a human in vitro model of inflamed adipose tissue.

    Science.gov (United States)

    Zagotta, Ivana; Dimova, Elitsa Y; Debatin, Klaus-Michael; Wabitsch, Martin; Kietzmann, Thomas; Fischer-Posovszky, Pamela

    2015-01-01

    Obesity is associated with an inflammatory status and linked with a number of pathophysiological complications among them cardiovascular disease, type 2 diabetes mellitus, or the metabolic syndrome. Resveratrol was proposed to improve obesity-related inflammatory problems, but the effect of resveratrol on cytokine expression in obesity is not completely understood. In this study, we used an in vitro model of human adipose tissue inflammation to examine the effects of resveratrol on the production of the inflammatory cytokines interleukin 6 (IL-6), IL-8, and monocyte chemoattractant protein 1 (MCP-1). We found that resveratrol reduced IL-6, IL-8, and MCP-1 levels in a concentration-dependent manner in adipocytes under inflammatory conditions. Further experiments showed that the action of resveratrol was mainly due to its NFκB inhibitory potential. Thus, our data support the concept that resveratrol can alleviate obesity-induced up-regulation of inflammatory cytokines providing a new insight toward novel treatment options in obesity.

  7. Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus.

    Directory of Open Access Journals (Sweden)

    Lin-Lin Jia

    Full Text Available AIMS: Regular exercise as an effective non-pharmacological antihypertensive therapy is beneficial for prevention and control of hypertension, but the central mechanisms are unclear. In this study, we hypothesized that chronic exercise training (ExT delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs and restoring the neurotransmitters balance in the hypothalamic paraventricular nucleus (PVN in young spontaneously hypertensive rats (SHR. In addition, we also investigated the involvement of nuclear factor-κB (NF-κB p65 and NAD(PH oxidase in exercise-induced effects. METHODS AND RESULTS: Moderate-intensity ExT was administrated to young normotensive Wistar-Kyoto (WKY and SHR rats for 16 weeks. SHR rats had a significant increase in mean arterial pressure and cardiac hypertrophy. SHR rats also had higher levels of glutamate, norepinephrine (NE, phosphorylated IKKβ, NF-κB p65 activity, NAD(PH oxidase subunit gp91(phox, PICs and the monocyte chemokine protein-1 (MCP-1, and lower levels of gamma-aminobutyric acid (GABA and interleukin-10 (IL-10 in the PVN. These SHR rats also exhibited higher renal sympathetic nerve activity (RSNA, and higher plasma levels of PICs, and lower plasma IL-10. However, ExT ameliorates all these changes in SHR rats. CONCLUSION: These findings suggest that there are the imbalances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN of SHR rats, which at least partly contributing to sympathoexcitation, hypertension and cardiac hypertrophy; chronic exercise training attenuates hypertension and cardiac hypertrophy by restoring the balances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN; NF-κB and oxidative stress in the PVN may be involved in these exercise-induced effects.

  8. Cytokines and Organ Failure in Acute Pancreatitis

    DEFF Research Database (Denmark)

    Malmstrøm, Marie Louise; Hansen, Mark Berner; Andersen, Anders Møller

    2012-01-01

    Objectives: We aimed at synchronously examining the early time course of 4 proinflammatory cytokines as predictive factors for development of organ failure in patients with acute pancreatitis (AP). Methods: Interleukin (IL) 6, IL-8, IL-18, and tumor necrosis factor > were measured on admission...... and at days 1, 2, and 14 in 60 patients admitted with first attack of AP. The prediction of single-organ and multiorgan failure from the cytokine profiles was evaluated by receiver operating characteristic analyses. Results: Interleukin 6 and IL-8 levels were significantly higher in patients who developed....... Conclusions: Synchronous measurements of 4 cytokines demonstrated IL-6 and IL-8 to be predictive as early surrogate markers with regard to organ failures in AP. The fact that all of the cytokines were particularly elevated in patients with organ failures calls for evaluation of agents modifying the severe...

  9. Cytokines and inflammatory bowel disease: a review.

    Science.gov (United States)

    McClane, S J; Rombeau, J L

    1999-01-01

    The etiology and pathogenesis of inflammatory bowel disease (IBD) remains an area under intense investigation. Cytokine secretion, which is important in the regulation of normal gastrointestinal immune responses, appears to be dysregulated in IBD. In Crohn's disease, there appears to be an excessive T(H)1 T-cell response to an antigenic stimulus, leading to increased levels of proinflammatory cytokines, such as interferon-gamma (IFN-gamma), interleukin (IL)-12, IL-1, IL-6, and tumor necrosis factor-alpha (TNF-alpha). In ulcerative colitis, a T(H)2 T-cell response appears to be the pathological process responsible for the inflammatory disease. New and innovative therapeutic strategies targeting cytokines, such as TNF-alpha, are producing some promising results in animal and human studies. As more is learned about the complex cytokine interactions in IBD, more effective treatments will undoubtedly ensue.

  10. Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release.

    Science.gov (United States)

    Hostens, K; Pavlovic, D; Zambre, Y; Ling, Z; Van Schravendijk, C; Eizirik, D L; Pipeleers, D G

    1999-07-01

    Infiltration of immunocytes into pancreatic islets precedes loss of beta cells in type 1 diabetes. It is conceivable that local release of cytokines affects the function of beta cells before their apoptosis. This study examines whether the elevated proinsulin levels that have been described in prediabetes can result from exposure of beta cells to cytokines. Human beta-cell preparations were cultured for 48 or 72 hours with or without IL-1beta, TNF-alpha, or IFN-gamma, alone or in combination. None of these conditions were cytotoxic, nor did they reduce insulin biosynthetic activity. Single cytokines did not alter medium or cellular content in insulin or proinsulin. Cytokine combinations, in particular IL-1beta plus IFN-gamma, disproportionately elevated medium proinsulin levels. This effect expresses an altered functional state of the beta cells characterized by preserved proinsulin synthesis, a slower hormone conversion, and an increased ratio of cellular proinsulin over insulin content. The delay in proinsulin conversion can be attributed to lower expression of PC1 and PC2 convertases. It is concluded that disproportionately elevated proinsulin levels in pre-type 1 diabetic patients might result from exposure of their beta cells to cytokines released from infiltrating immunocytes. This hormonal alteration expresses an altered functional state of the beta cells that can occur independently of beta-cell death.

  11. Silica-ceramic suppresses the expression of proinflammatory cytokines induced by lipopolysaccharide in macrophages.

    Science.gov (United States)

    Hwang, Meeyul; Park, Kwan-Kyu; Chang, Young-Chae; Choo, Young-Ae; Jeon, Jae-Pil; Shin, Im-Hee; Lee, Tae-Sung

    2007-03-01

    Bioactive materials have previously been used to coat implants. In a new development for bioactive materials, a silica-ceramic mixture was found to alleviate pain (Lee, Poster presented at the Ninth World Congress of Gynecological Endocrinology, Hongkong, 2001. Poster session (p47)). Here, we hypothesized that silica-ceramic can reduce the expression and activity of cyclooxygenase 2 (COX2) or cytokines associated with inflammation. The production of COX2 and proinflammatory cytokines was investigated by reverse transcriptase (RT)-PCR and ELISA assay in macrophages stimulated by lipopolysaccharide (LPS). Silica-ceramic had no effect of COX2 expression and prostaglandin production in macrophages. However, silica-ceramic suppressed the synthesis of cytokines involved in inflammation, in particular, the expression of IL-1beta and IL-6 was reduced at the transcriptional and translational levels. The involvement of NF-kappaB in the suppression of cytokines by silica-ceramic was examined by luciferase reporter assay. The NF-kappaB activity stimulated by LPS was inhibited by 20-60% with silica-ceramic compared with treatment with LPS alone. We suggest that inhibition of NF-kappaB activity by silica-ceramic might cause the attenuation of proinflammatory cytokine expression in macrophages. In conclusion, silica-ceramic could be an alternative approach to regulate the inflammation process.

  12. Interleukin-6: A multifunctional targetable cytokine in human prostate cancer

    Science.gov (United States)

    Culig, Zoran; Puhr, Martin

    2012-01-01

    Several cytokines are involved in regulation of cellular events in prostate cancer. Interleukin-6 (IL-6) was frequently investigated in prostate cancer models because of its increased expression in cancer tissue at early stages of the disease. In patients with metastatic prostate cancer, it is well-known that IL-6 levels increase in serum. High levels of IL-6 were measured in the supernatants of cells which do not respond to androgenic stimulation. IL-6 expression in prostate cancer increases due to enhanced expression of transforming growth factor-beta, and members of the activating protein-1 complex, and loss of the retinoblastoma tumour suppressor. IL-6 activation of androgen receptor (AR) may contribute to progression of a subgroup of prostate cancers. Results obtained with two prostate cancer cell lines, LNCaP and MDA PCa 2b, indicate that IL-6 activation of AR may cause either stimulatory or inhibitory responses on proliferation. Interestingly, prolonged treatment with IL-6 led to establishment of an IL-6 autocrine loop, suppressed signal transducer and activator of transcription (STAT)3 activation, and increased mitogen-activated protein kinase phosphorylation. In several cell lines IL-6 acts as a survival molecule through activation of the signalling pathway of phosphotidylinositol 3-kinase. Expression of suppressors of cytokine signalling (SOCS) has been studied in prostate cancer. SOCS-3 prevents phosphorylation of STAT3 and is an important anti-apoptotic factor in AR-negative prostate cancer cells. Experimental therapy against IL-6 in prostate cancer is based on the use of the monoclonal antibody siltuximab which may be used for personalised therapy coming in the future. PMID:21664423

  13. On the existence of cytokines in invertebrates.

    Science.gov (United States)

    Beschin, A; Bilej, M; Torreele, E; De Baetselier, P

    2001-05-01

    Based on the assumption that invertebrates, like vertebrates, possess factors regulating responses to infection or wounding, studies dealing with the evolution of immunity have focussed on the isolation and characterisation of putative cytokine-related molecules from invertebrates. Until recently, most of our knowledge of cytokine- and cytokine receptor-like molecules in invertebrates relies on functional assays and similarities at the physicochemical level. As such, a phylogenetic relationship between invertebrate cytokine-like molecules and vertebrate counterparts could not be convincingly demonstrated. Recent genomic sequence analyses of interleukin-1-receptor-related molecules, that is Toll-like receptors, and members of the transforming growth factor-beta superfamily suggest that the innate immune system of invertebrates and vertebrates evolved independently. In addition, data from protochordates and annelids suggest that invertebrate cytokine-like molecules and vertebrate factors do not have the same evolutionary origin. We propose instead that the convergence of function of invertebrate cytokine-like molecules and vertebrate counterparts involved in innate immune defences may be based on similar lectin-like activities.

  14. IL-17 family: cytokines, receptors and signaling

    Science.gov (United States)

    Gu, Chunfang; Wu, Ling; Li, Xiaoxia

    2013-01-01

    The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial roles in host defense against microbial organisms and in the development of inflammatory diseases. Although IL-17A is the signature cytokine produced by T helper 17 (Th17) cells, IL-17A and other IL-17 family cytokines have multiple sources ranging from immune cells to non-immune cells. The IL-17 family signals via their correspondent receptors and activates downstream pathways that include NFκB, MAPKs and C/EBPs to induce the expression of anti-microbial peptides, cytokines and chemokines. The proximal adaptor Act1 is a common mediator during the signaling of all IL-17 cytokines so far and is thus involved in IL-17 mediated host defense and IL-17-driven autoimmune conditions. This review will give an overview and recent updates on the IL-17family, the activation and regulation of IL-17 signaling as well as diseases associated with this cytokine family PMID:24011563

  15. Human_Leishmaniasis@cytokines.bahia.br

    Directory of Open Access Journals (Sweden)

    M. Barral-Netto

    1998-01-01

    Full Text Available The cell-mediated immune response is critical in the resistance to and recovery from leishmaniasis. Cytokines are central elements in mounting an immune response and have received a great deal of attention in both human and experimental leishmaniasis. IFN-g is responsible for macrophage activation leading to leishmanicidal mechanisms. Understanding the balance of cytokines that lead to enhanced production of or synergize with IFN-g, and those cytokines that counterbalance its effects is fundamental for developing rational immunotherapeutic or immunoprophylactic approaches to leishmaniasis. Here we focus on the cytokine balance in human leishmaniasis, particularly IL-10 as an IFN-g opposing cytokine, and IL-12 as an IFN-g inducer. The effects of these cytokines were evaluated in terms of several parameters of the human immune response. IL-10 reduced lymphocyte proliferation, IFN-g production and cytotoxic activity of responsive human peripheral blood mononuclear cells. Neutralization of IL-10 led to partial restoration of lymphoproliferation, IFN-g production and cytotoxic activity in unresponsive visceral leishmaniasis patients. IL-12 also restored the responses of peripheral blood mononuclear cells from visceral leishmaniasis patients. The responses obtained with IL-12 are higher than those obtained with anti-IL-10, even when anti-IL-10 is combined with anti-IL-4

  16. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  17. Macrophage migration inhibitory factor (MIF in Clinical Kidney Disease - review

    Directory of Open Access Journals (Sweden)

    Annette eBruchfeld

    2016-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine implicated in acute and chronic inflammatory conditions including sepsis, autoimmune disease, atherogenesis, plaque instability and pulmonary arterial hypertension (PAH. MIF in plasma and urine is significantly elevated in patients with Acute Kidney injury (AKI and elevated MIF in serum is associated with markers of oxidative stress, endothelial dysfunction, arterial stiffness and markers of myocardial damage in Chronic Kidney disease (CKD. Furthermore MIF seems to be involved in vascular processes and cardiovascular disease associated with CKD, glomerulonephritis, autosomal dominant polycystic kidney disease and possibly also in progression to renal failure. Moreover, in active ANCA-associated vasculitis plasma MIF-levels have been shown to be significantly elevated as compared with samples from patients in remission. A significant difference in the genotype frequency of high production MIF -173 G/C genotype has been found in end-stage renal disease (ESRD, compared to controls. Inhibition of MIF in a diabetic nephropathy model ameliorated blood glucose and albuminuria and in a model of adult polycystic kidney disease cyst growth was delayed. Preclinical studies support a potential therapeutic role for MIF in AKI and in a number of chronic kidney diseases whereas these data in human disease are still observational. Future interventional studies are needed to delineate the role of MIF as a treatment target in clinical kidney disease. Keywords: MIF, , AKI, CKD, glomerulonephritis, vasculitis, MIF gene polymorphism, diabetic nephropathy, ADPKD

  18. Serum macrophage migration inhibitory factor levels in leprosy patients with erythema nodosum leprosum.

    Science.gov (United States)

    Bansal, Frainey; Narang, Tarun; Dogra, Sunil; Vinay, Keshavamurthy; Chhabra, Seema

    2017-06-27

    migration inhibitory factor gene polymorphism analysis will be needed to elucidate the role of this pro-inflammatory cytokine in erythema nodosum leprosum.

  19. Eosinophil secretion of granule-derived cytokines

    Directory of Open Access Journals (Sweden)

    Lisa A Spencer

    2014-10-01

    Full Text Available Eosinophils are tissue-dwelling leukocytes, present in the thymus, and gastrointestinal and genitourinary tracts of healthy individuals at baseline, and recruited, often in large numbers, to allergic inflammatory foci and sites of active tissue repair. The biological significance of eosinophils is vast and varied. In health, eosinophils support uterine and mammary gland development, and maintain bone marrow plasma cells and adipose tissue alternatively activated macrophages, while in response to tissue insult eosinophils function as inflammatory effector cells, and, in the wake of an inflammatory response, promote tissue regeneration and wound healing. One common mechanism driving many of the diverse eosinophil functions is the regulated and differential secretion of a vast array of eosinophil-derived cytokines. Eosinophils are distinguished from most other leukocytes in that many, if not all, of the over three dozen eosinophil-derived cytokines are pre-synthesized and stored within intracellular granules, poised for very rapid, stimulus-induced secretion. Eosinophils engaged in cytokine secretion in situ utilize distinct pathways of cytokine release that include: classical exocytosis, whereby granules themselves fuse with the plasma membrane and release their entire contents extracellularly; piecemeal degranulation, whereby granule-derived cytokines are selectively mobilized into vesicles that emerge from granules, traverse the cytoplasm and fuse with the plasma membrane to release discrete packets of cytokines; and eosinophil cytolysis, whereby intact granules are extruded from eosinophils, and deposited within tissues. In this latter scenario, extracellular granules can themselves function as stimulus-responsive secretory-competent organelles within the tissue. Here we review the distinctive processes of differential secretion of eosinophil granule-derived cytokines.

  20. ANTIBODY-CYTOKINE FUSION PROTEINS FOR TREATMENT OF CANCER: ENGINEERING CYTOKINES FOR IMPROVED EFFICACY AND SAFETY

    Science.gov (United States)

    Young, Patricia A.; Morrison, Sherie L.; Timmerman, John M.

    2014-01-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing IL-2, IL-12, IL-21, TNFα, and interferons α, β and γ have been constructed and have shown anti-tumor activity in pre-clinical and early phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. PMID:25440607

  1. Regulation of human cytokines by Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Yong Sun

    2014-12-01

    Full Text Available Cordyceps (Cordyceps militaris exhibits many biological activities including antioxidant, inhibition of inflammation, cancer prevention, hypoglycemic, and antiaging properties, etc. However, a majority of studies involving C. militaris have focused only on in vitro and animal models, and there is a lack of direct translation and application of study results to clinical practice (e.g., health benefits. In this study, we investigated the regulatory effects of C. militaris micron powder (3 doses on the human immune system. The study results showed that administration of C. militaris at various dosages reduced the activity of cytokines such as eotaxin, fibroblast growth factor-2, GRO, and monocyte chemoattractant protein-1. In addition, there was a significant decrease in the activity of various cytokines, including GRO, sCD40L, and tumor necrosis factor-α, and a significant downregulation of interleukin-12(p70, interferon-γ inducible protein 10, and macrophage inflammatory protein-1β activities, indicating that C. militaris at all three dosages downregulated the activity of cytokines, especially inflammatory cytokines and chemokines. Different dosages of C. militaris produced different changes in cytokines.

  2. Cytokine Effects on Mechano-Induced Electrical Activity in Atrial Myocardium.

    Science.gov (United States)

    Kazanski, V; Mitrokhin, V M; Mladenov, M I; Kamkin, A G

    2017-01-01

    The role of cytokines as regulators of stretch-related mechanisms is of special importance since mechano-sensitivity plays an important role in a wide variety of biological processes. Here, we elucidate the influence of cytokine application on mechano-sensitivity and mechano-transduction. The atrial myocardial stretch induces production of interleukin (IL)-2, IL-6, IL-13, IL-17A, and IL-18 with exception of tumor necrosis factor α (TNF-α), IL-1β, and vascular endothelial growth factor B (VEGF-B). Positive ionotropic effect was specific for VEGF-B, negative ionotropic effects were specific for TNF-α, IL-1β, IL-2, IL-6, IL-13, IL-17A and IL-18, while IL-1α doesn't show direct ionotropic effect. The IL-2, IL-6, IL-17A, IL-18, and VEGF-B cause elongation of the APD, in comparison with the reduced APD caused by the IL-13. The TNF-α, IL-1β, and IL-18 influences L-type Ca(2+) channels, IL-2 has an inhibitory effect on the fast Na(+) channels while IL-17A and VEGF-B were specific for Kir channels. With exception of the IL-1α, IL-2, and VEGF-B, all analyzed cytokines include nitric oxide dependent signaling with resultant combined effects on mechano-gated and Ca(2+) channels. The relationships between these pathways and the time-dependence of their activation are of important considerations in the evaluation of cytokine-induced electrical abnormality, specific for cardiac dysfunctions. In general, the discussion presented in this review covers research devoted to counterbalance between different cytokines in the regulation of stretch-induced effects in rat atrial myocardium. APs: action potentials; APD25: action potential durations to 25% of re-polarization; APD50: action potential durations to 50% of repolarization; APD90: action potential durations to 90% of repolarization; MGCs: mechanically gated channels.

  3. HBV Core Protein Enhances Cytokine Production

    Directory of Open Access Journals (Sweden)

    Tatsuo Kanda

    2015-09-01

    Full Text Available Hepatitis B virus (HBV infection, a cause of hepatocellular carcinoma (HCC, remains a serious global health concern. HCC development and human hepatocarcinogenesis are associated with hepatic inflammation caused by host interferons and cytokines. This article focused on the association between the HBV core protein, which is one of the HBV-encoding proteins, and cytokine production. The HBV core protein induced the production of interferons and cytokines in human hepatoma cells and in a mouse model. These factors may be responsible for persistent HBV infection and hepatocarcinogenesis. Inhibitors of programmed death (PD-1 and HBV core and therapeutic vaccines including HBV core might be useful for the treatment of patients with chronic HBV infection. Inhibitors of HBV core, which is important for hepatic inflammation, could be helpful in preventing the progression of liver diseases in HBV-infected patients.

  4. Cytokines and Pancreatic β-Cell Apoptosis

    DEFF Research Database (Denmark)

    Berchtold, L A; Prause, M; Størling, J

    2016-01-01

    The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival...... and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations...... to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential...

  5. Phenotypic characterisation and assessment of the inhibitory ...

    African Journals Online (AJOL)

    Six strains of Lactobacillus spp. were isolated from fermenting corn slurry, fresh cow milk, and the faeces of pig, albino rat, and human infant. Their inhibitory action was tested against some spoilage and pathogenic bacteria. Lactobacillus acidophilus isolated from milk was found to display a higher antagonistic effect with ...

  6. Sphingomyelinase inhibitory and free radical scavenging potential ...

    African Journals Online (AJOL)

    The extractsf sphingomyelinase inhibitory potencies were assessed colorimetrically and their free radical scavenging capabilities were assayed by the ability to quench 2,2]diphenyl]1]picrylhydrazyl (DPPH) radical and superoxide anion (O2.]) radical. Considering their IC50 (ƒÊg/ml) values, the extracts inhibited the ...

  7. Phytochemistry and Inhibitory Activity of Chrozophora senegalensis ...

    African Journals Online (AJOL)

    Dried leaves of Chrozophora senegalensis were extracted with acetone and hexane respectively using percolation method. The crude leaf extracts were subjected to phytochemical screening for the presence of secondary metabolites using standard procedures. The inhibitory activities of the extracts were tested against ...

  8. Cytokine-neuroantigen fusion proteins as a new class of tolerogenic, therapeutic vaccines for treatment of inflammatory demyelinating disease in rodent models of multiple sclerosis.

    Science.gov (United States)

    Mannie, Mark D; Blanchfield, J Lori; Islam, S M Touhidul; Abbott, Derek J

    2012-01-01

    Myelin-specific induction of tolerance represents a promising means to modify the course of autoimmune inflammatory demyelinating diseases such as multiple sclerosis (MS). Our laboratory has focused on a novel preclinical strategy for the induction of tolerance to the major encephalitogenic epitopes of myelin that cause experimental autoimmune encephalomyelitis (EAE) in rats and mice. This novel approach is based on the use of cytokine-NAg (neuroantigen) fusion proteins comprised of the native cytokine fused either with or without a linker to a NAg domain. Several single-chain cytokine-NAg fusion proteins were tested including GMCSF-NAg, IFNbeta-NAg, NAgIL16, and IL2-NAg. These cytokine-NAg vaccines were tolerogenic, therapeutic vaccines that had tolerogenic activity when given as pre-treatments before encephalitogenic immunization and also were effective as therapeutic interventions during the effector phase of EAE. The rank order of inhibitory activity was as follows: GMCSF-NAg, IFNbeta-NAg > NAgIL16 > IL2-NAg > MCSF-NAg, IL4-NAg, IL-13-NAg, IL1RA-NAg, and NAg. Several cytokine-NAg fusion proteins exhibited antigen-targeting activity. High affinity binding of the cytokine domain to specific cytokine receptors on particular subsets of APC resulted in the concentrated uptake of the NAg domain by those APC which in turn facilitated the enhanced processing and presentation of the NAg domain on cell surface MHC class II glycoproteins. For most cytokine-NAg vaccines, the covalent linkage of the cytokine domain and NAg domain was required for inhibition of EAE, thereby indicating that antigenic targeting of the NAg domain to APC was also required in vivo for tolerogenic activity. Overall, these studies introduced a new concept of cytokine-NAg fusion proteins as a means to induce tolerance and to inhibit the effector phase of autoimmune disease. The approach has broad application for suppressive vaccination as a therapy for autoimmune diseases such as MS.

  9. Cytokine-neuroantigen fusion proteins as a new class of tolerogenic, therapeutic vaccines for treatment of inflammatory demyelinating disease in rodent models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mark D. Mannie

    2012-08-01

    Full Text Available Myelin-specific induction of tolerance represents a promising means to modify the course of autoimmune inflammatory demyelinating diseases such as multiple sclerosis (MS. Our laboratory has focused on a novel preclinical strategy for the induction of tolerance to the major encephalitogenic epitopes of myelin that cause experimental autoimmune encephalomyelitis (EAE in rats and mice. This novel approach is based on the use of cytokine-NAg (neuroantigen fusion proteins comprised of the native cytokine fused either with or without a linker to a NAg domain. Several single-chain cytokine-NAg fusion proteins were tested including GMCSF-NAg, IFNbeta-NAg, NAgIL16, and IL2-NAg. These cytokine-NAg vaccines were tolerogenic, therapeutic vaccines that had tolerogenic activity when given as pre-treatments before encephalitogenic immunization and also were effective as therapeutic interventions during the effector phase of EAE. The rank order of inhibitory activity was: GMCSF-NAg, IFNbeta-NAg > NAgIL16 > IL2-NAg > MCSF-NAg, IL4-NAg, IL13-NAg, IL1RA-NAg, and NAg. Several cytokine-NAg fusion proteins exhibited antigen-targeting activity. High affinity binding of the cytokine domain to specific-cytokine receptors on particular subsets of APC resulted in the concentrated uptake of the NAg domain by those APC which in turn facilitated the enhanced processing and presentation of the NAg domain on cell surface MHC class II (MHCII glycoproteins. For most cytokine-NAg vaccines, the covalent linkage of the cytokine domain and NAg domain was required for inhibition of EAE, thereby indicating that antigenic targeting of the NAg domain to APC was also required in vivo for tolerogenic activity. Overall, these studies introduced a new concept of cytokine-NAg fusion proteins as a means to induce tolerance and to inhibit the effector phase of autoimmune disease. The approach has broad application for suppressive vaccination as a therapy for autoimmune diseases such as MS.

  10. Macrophage migration inhibitory factor promotes tumor growth in the context of lung injury and repair.

    Science.gov (United States)

    Arenberg, Douglas; Luckhardt, Tracy R; Carskadon, Shannon; Zhao, Liujian; Amin, Mohammad A; Koch, Alisa E

    2010-10-15

    Tissue injury and repair involve highly conserved processes governed by mechanisms that can be co-opted in tumors. We hypothesized that soluble factors released during the repair response to lung injury would promote orthotopic tumor growth. To determine whether lung injury promoted growth of orthotopic lung tumors and to study the molecular mechanisms. We initiated lung injury in C57Bl6 mice using different stimuli, then injected Lewis lung carcinoma cells during the repair phase. We assessed tumor growth 14 days later. We measured tumor angiogenesis, cytokine expression, proliferation, and apoptosis. Regardless of the mechanism, injured lungs contained more numerous and larger tumors than sham-injured lungs. Tumors from injured lungs were no more vascular, but had higher levels of proliferation and reduced rates of apoptosis. The cytokine macrophage migration inhibitory factor (MIF) was highly expressed in both models of tissue injury. We observed no increase in tumor growth after lung injury in MIF knockout mice. We induced lung-specific overexpression of MIF in a double-transgenic mouse, and observed that MIF overexpression by itself was sufficient to accelerate the growth of orthotopic Lewis lung carcinoma tumors. Lung injury leads to increased expression of the cytokine MIF, which results in protection from apoptosis and increased proliferation in orthotopic tumors injected after the acute phase of injury.

  11. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  12. Cytokine inhibition in the treatment of COPD

    Directory of Open Access Journals (Sweden)

    Caramori G

    2014-04-01

    Full Text Available Gaetano Caramori,1 Ian M Adcock,2,3 Antonino Di Stefano,4 Kian Fan Chung2,3 1Dipartimento di Scienze Mediche, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO, Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy; 2Airway Diseases Section, National Heart and Lung Institute, Imperial College London, UK; 3Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK; 4Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio-Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno, Italy Abstract: Cytokines play an important part in many pathobiological processes of chronic obstructive pulmonary disease (COPD, including the chronic inflammatory process, emphysema, and altered innate immune response. Proinflammatory cytokines of potential importance include tumor necrosis factor (TNF-α, interferon-γ, interleukin (IL-1β, IL-6, IL-17, IL-18, IL-32, and thymic stromal lymphopoietin (TSLP, and growth factors such as transforming growth factor-β. The current objectives of COPD treatment are to reduce symptoms, and to prevent and reduce the number of exacerbations. While current treatments achieve these goals to a certain extent, preventing the decline in lung function is not currently achievable. In addition, reversal of corticosteroid insensitivity and control of the fibrotic process while reducing the emphysematous process could also be controlled by specific cytokines. The abnormal pathobiological process of COPD may contribute to these fundamental characteristics of COPD, and therefore targeting cytokines involved may be a fruitful endeavor. Although there has been much work that has implicated various cytokines as potentially playing an important role in COPD, there have been very few studies that have examined the effect of specific cytokine blockade in

  13. Invasion of human aortic endothelial cells by oral viridans group streptococci and induction of inflammatory cytokine production.

    Science.gov (United States)

    Nagata, E; de Toledo, A; Oho, T

    2011-02-01

    Oral viridans group streptococci are the major commensal bacteria of the supragingival oral biofilm and have been detected in human atheromatous plaque. Atherosclerosis involves an ongoing inflammatory response, reportedly involving chronic infection caused by multiple pathogens. The aim of this study was to examine the invasion of human aortic endothelial cells (HAECs) by oral viridans group streptococci and the subsequent cytokine production by viable invaded HAECs. The invasion of HAECs by bacteria was examined using antibiotic protection assays and was visualized by confocal scanning laser microscopy. The inhibitory effects of catalase and cytochalasin D on the invasion of HAECs were also examined. The production of cytokines by invaded or infected HAECs was determined using enzyme-linked immunosorbent assays, and a real-time polymerase chain reaction method was used to evaluate the expression of cytokine messenger RNA. The oral streptococci tested were capable of invading HAECs. The number of invasive bacteria increased with the length of the co-culture period. After a certain co-culture period, some organisms were cytotoxic to the HAECs. Catalase and cytochalasin D inhibited the invasion of HAECs by the organism. HAECs invaded by Streptococcus mutans Xc, Streptococcus gordonii DL1 (Challis), Streptococcus gordonii ATCC 10558 and Streptococcus salivarius ATCC 13419 produced more cytokine(s) (interleukin-6, interleukin-8, monocyte chemoattractant protein-1) than non-invaded HAECs. The HAECs invaded by S. mutans Xc produced the largest amounts of cytokines, and the messenger RNA expression of cytokines by invaded HAECs increased markedly compared with that by non-invaded HAECs. These results suggest that oral streptococci may participate in the pathogenesis of atherosclerosis. © 2010 John Wiley & Sons A/S.

  14. Expression Optimizing and Purification of Recombinant Human Leukemia Inhibitory Factor Produced in E. coli Strain BL21

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2015-02-01

    Full Text Available Background: Leukemia inhibitory factor (LIF is a glycoprotein, categorized as a subfamily of interleukin 6 cytokines which is known in many mammolals. A pluripotent cytokine with a wide biological function range has numerous effects on target cells. The LIF regulates neuron survival, hematopoiesis and seen in LIF-/- knockout mice affects blastocyst implantation, also acts as pre-inflammolatory cytokine, and regulates immolune response. Further, it is able to maintain stem cells poly potency. The main object of present work was expression, optimizing, and purification of recombinant human leukemia inhibitory factor (rhLIF. Materials and Methods: In this experimental study, Pet28 (+ carrying the LIF gene and kanamycin resistance marker was cloned in E. coli strain BL21. The induction was optimized by altering 3 factors including the temperature, the induction time, and the concentration of the Isopropyl β-D-1-thiogalactopyranoside (IPTG as inducer. The purification of the recombinant human LIF (rhLIF was done by single step affinity chromatography. After the purification, method accuracy was proved by Sodium dodecyl sulfate (SDS -PAGE electrophoresis and Western blotting. Results: Optimizing of the expression was reached by changing various parameters, and purification has been done successful. Conclusion: rhLIF undergoes modification by glycosylation to get its full functionality. The produced rhLIF in prokaryotic host in this work is lacking of glycosylation. However, its proper function should be evaluated in further studies.

  15. Linking the cytokine and neurocircuitry hypotheses of depression: a translational framework for discovery and development of novel anti-depressants.

    Science.gov (United States)

    Piser, Timothy M

    2010-05-01

    Recent studies suggest a model of depression that links the cytokine hypothesis from the field of psychoneuroimmunology with the neurocircuitry hypothesis derived from burgeoning insight into neurophysiological changes observed in depressed patients. According to the neurocircuitry hypothesis of depression, failure of homeostatic synaptic plasticity in cortical-striatal-limbic nodes of a distributed network of neural circuits involving the sub-genual anterior cingulate cortex is responsible for core symptoms of depression: loss of interest or pleasure (anhedonia) and depressed mood (sadness). According to the cytokine hypothesis of depression, inflammatory cytokines act on neural circuits to evoke the behavioral and physiological changes observed in depression. Synthesis of these hypotheses implicates cytokines released during injury, infection, illness, or psychological stress as a cause of dysregulated synaptic plasticity in cortical-striatal-limbic circuits implicated in depression. These neural circuits process affective and reward-based information for optimal cost-benefit decision-making, a function that may link cytokine-evoked changes in synaptic plasticity to translatable measures of specific behavioral impairments observed in depressed patients. This viewpoint outlines evidence linking the cytokine and neurocircuitry hypotheses of depression to offer a translational model of major depressive disorder suitable for novel drug discovery and development. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Impact of Sub-Inhibitory Concentrations of Amoxicillin on Streptococcus suis Capsule Gene Expression and Inflammatory Potential

    Directory of Open Access Journals (Sweden)

    Bruno Haas

    2016-04-01

    Full Text Available Streptococcus suis is an important swine pathogen and emerging zoonotic agent worldwide causing meningitis, endocarditis, arthritis and septicemia. Among the 29 serotypes identified to date, serotype 2 is mostly isolated from diseased pigs. Although several virulence mechanisms have been characterized in S. suis, the pathogenesis of S. suis infections remains only partially understood. This study focuses on the response of S. suis P1/7 to sub-inhibitory concentrations of amoxicillin. First, capsule expression was monitored by qRT-PCR when S. suis was cultivated in the presence of amoxicillin. Then, the pro-inflammatory potential of S. suis P1/7 culture supernatants or whole cells conditioned with amoxicillin was evaluated by monitoring the activation of the NF-κB pathway in monocytes and quantifying pro-inflammatory cytokines secreted by macrophages. It was found that amoxicillin decreased capsule expression in S. suis. Moreover, conditioning the bacterium with sub-inhibitory concentrations of amoxicillin caused an increased activation of the NF-κB pathway in monocytes following exposure to bacterial culture supernatants and to a lesser extent to whole bacterial cells. This was associated with an increased secretion of pro-inflammatory cytokines (CXCL8, IL-6, IL-1β by macrophages. This study identified a new mechanism by which S. suis may increase its inflammatory potential in the presence of sub-inhibitory concentrations of amoxicillin, a cell wall-active antibiotic, thus challenging its use for preventive treatments or as growth factor.

  17. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth

    Science.gov (United States)

    Burger, Renate; Günther, Andreas; Klausz, Katja; Staudinger, Matthias; Peipp, Matthias; Penas, Eva Maria Murga; Rose-John, Stefan; Wijdenes, John; Gramatzki, Martin

    2017-01-01

    Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo. In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab’)2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window

  18. The Effect of Enzymatically Polymerised Polyphenols on CD4 Binding and Cytokine Production in Murine Splenocytes

    Science.gov (United States)

    Yamanaka, Daisuke; Tamiya, Yumi; Motoi, Masuro; Ishibashi, Ken-ichi; Miura, Noriko N.; Adachi, Yoshiyuki; Ohno, Naohito

    2012-01-01

    High-molecular weight polymerised polyphenols have been shown to exhibit anti-influenza virus, anti-HIV, and anti-cancer activities. The purpose of this study was to evaluate the immunomodulating activities of enzymatically polymerised polyphenols, and to clarify the underlying mechanisms of their effects. The cytokine-inducing activity of the enzymatically polymerised polyphenols derived from caffeic acid (CA), ferulic acid (FA), and p-coumaric acid (CoA) was investigated using murine splenocytes. Polymerised polyphenols, but not non-polymerised polyphenols, induced cytokine synthesis in murine splenocytes. Polymerised polyphenols induced several cytokines in murine splenocytes, with interferon-γ (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) being the most prominent. The underlying mechanisms of the effects of the polymerised polyphenols were then studied using neutralising antibodies and fluorescent-activated cell sorting (FACS) analysis. Our results show that polymerised polyphenols increased IFN-γ and GM-CSF production in splenocytes. In addition, the anti-CD4 neutralised monoclonal antibody (mAb) inhibited polymerised polyphenol-induced IFN-γ and GM-CSF secretion. Moreover, polymerised polyphenols bound directly to a recombinant CD4 protein, and FACS analysis confirmed that interaction occurs between polymerised polyphenols and CD4 molecules expressed on the cell surface. In this study, we clearly demonstrated that enzymatic polymerisation confers immunoactivating potential to phenylpropanoic acids, and CD4 plays a key role in their cytokine-inducing activity. PMID:22540016

  19. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on melanin synthesis.

    Science.gov (United States)

    Tokiwa, Yutaka; Kitagawa, Masaru; Raku, Takao; Yanagitani, Shusaku; Yoshino, Kenji

    2007-06-01

    Transesterification of arbutin and undecylenic acid vinyl ester was catalyzed by alkaline protease, Bioprase, in dimethylformamide to get arbutin derivative having undecylenic acid at 6-position of glucose moiety, 6-O-undecylenoyl p-hydroxyphenyl beta-D-glucopyranoside. The reaction rate increased with increase of arbutin concentration, and when its concentration was 0.9 M, the conversion rate was more than 90% under addition of 2 M undecylenic acid vinyl ester. The obtained arbutin ester significantly suppressed melanin production in murine B16 melanoma cells.

  20. Lonchocarpus sericeus lectin decreases leukocyte migration and mechanical hypernociception by inhibiting cytokine and chemokines production.

    Science.gov (United States)

    Napimoga, Marcelo H; Cavada, Benildo S; Alencar, Nylane M N; Mota, Mário L; Bittencourt, Flávio S; Alves-Filho, José C; Grespan, Renata; Gonçalves, Reginaldo B; Clemente-Napimoga, Juliana T; de Freitas, Andressa; Parada, Carlos A; Ferreira, Sérgio H; Cunha, Fernando Q

    2007-06-01

    In this study, we tested the potential use of a lectin from Lonchocarpus sericeus seeds (LSL), to control neutrophil migration and inflammatory hypernociception (decrease of nociceptive threshold). Pretreatment of the animals intravenously (15 min before) with LSL inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. We also tested the ability of the pretreatment with LSL to inhibit neutrophil migration on immunised mice, and it was observed that a strong inhibition of neutrophil migration induced by ovoalbumin in immunized mice. Another set of experiments showed that pretreatment of the animals with LSL, inhibited the mechanical hypernociception in mice induced by the i.pl. injection of OVA in immunized mice and of carrageenan in naïve mice, but not that induced by prostaglandin E(2) (PGE(2)) or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. In addition, we measured cytokines (TNF-alpha and IL-1beta) and chemokines (MIP-1alpha [CCL3] and KC [CXCL1]) from the peritoneal exudates and i.pl. tissue. Animals treated with LSL showed inhibition of cytokines and chemokines release in a dose-dependent manner. In conclusion, we demonstrated that the inhibitory effects of LSL on neutrophil migration and mechanical inflammatory hypernocicepetion are associated with the inhibition of the production of cytokines and chemokines.

  1. Identification of a gp130 cytokine receptor critical site involved in oncostatin M response.

    Science.gov (United States)

    Olivier, C; Auguste, P; Chabbert, M; Lelièvre, E; Chevalier, S; Gascan, H

    2000-02-25

    Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes.

  2. Bromelain Treatment Decreases Secretion of Pro-Inflammatory Cytokines and Chemokines by Colon Biopsies In Vitro

    Science.gov (United States)

    Onken, Jane E.; Greer, Paula K.; Calingaert, Brian; Hale, Laura P.

    2008-01-01

    Oral bromelain has been anecdotally reported to decrease inflammation in ulcerative colitis (UC). Proteolytically active bromelain is known to decrease expression of mRNAs encoding pro-inflammatory cytokines by human leukocytes in vitro. To assess the effect of bromelain on mucosal secretion of cytokines in inflammatory bowel disease (IBD), endoscopic colon biopsies from patients with UC, Crohn’s disease (CD), and non-IBD controls were treated in vitro with bromelain or media, then cultured. Secretion of pro-inflammatory cytokines and chemokines was measured. Significant increases in granulocyte colony stimulating factor (G-CSF), interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) were detected in the media from actively inflamed areas in UC and CD as compared with non-inflamed IBD tissue and non-IBD controls. In vitro bromelain treatment decreased secretion of G-CSF, granulocyte-macrophage colony stimulating factor (GM-CSF), IFN-γ, CCL4/macrophage inhibitory protein (MIP)-1β, and TNF by inflamed tissue in IBD. Bromelain may be a novel therapy for IBD. PMID:18160345

  3. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  4. Cytokine production by lymphocytes in pregnancy.

    Science.gov (United States)

    Szereday, L; Varga, P; Szekeres-Bartho, J

    1997-12-01

    In the presence of progesterone lymphocytes of pregnant women release a 34-kDa protein named the progesterone-induced blocking factor (PIBF). PIBF mediates the immunomodulatory and anti-abortive effects of progesterone and its presence is related to the outcome of pregnancy. PIBF induces production of Th2 type cytokines by activated lymphocytes. The in vivo relationship between PIBF- and cytokine production of pregnancy lymphocytes and the outcome of pregnancy was investigated. Interleukin (IL)-12 and IL-10 production and PIBF expression in peripheral lymphocytes of 111 healthy pregnant women and 120 women at risk for premature pregnancy termination were detected by immunocytochemistry. We found increased IL-12 and low PIBF and IL-10 expression on lymphocytes of "risk" patients, and a high rate of IL-10 and PIBF positivity on lymphocytes from healthy pregnant women. The cytokine production pattern of the lymphocytes was related to the presence or absence of previous abortions as well as to the outcome of pregnancy. These data suggest the involvement of an altered cytokine production pattern in the immunologic effects of progesterone.

  5. Cytokines regulating hematopoietic stem cell function.

    Science.gov (United States)

    Zhang, Cheng C; Lodish, Harvey F

    2008-07-01

    Regulation of the multiple fates of hematopoietic stem cells - including quiescence, self-renewal, differentiation, apoptosis, and mobilization from the niche - requires the cooperative actions of several cytokines and other hormones that bind to receptors on these cells. In this review we discuss recent advances in the identification of novel hematopoietic stem cell supportive cytokines and the mechanisms by which they control hematopoietic stem cell fate decisions. Several extrinsic factors that stimulate ex-vivo expansion of hematopoietic stem cells were recently identified by a number of experimental approaches, including forward genetic screening and transcriptional profiling of supportive stromal cells. Recent experiments in which multiple cytokine signaling pathways are activated or suppressed in hematopoietic stem cells reveal the complexity of signal transduction and cell-fate choice in hematopoietic stem cells in vivo and in vitro. The study of genetically modified mice and improvements in the in-vitro hematopoietic stem cell culture system will be powerful tools to elucidate the functions of cytokines that regulate hematopoietic stem cell function. These will further reveal the complex nature of the mechanisms by which extrinsic factors regulate signal transduction and cell-fate decisions of hematopoietic stem cells.

  6. Salivary cytokine levels in early gingival inflammation

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Damgaard, Christian; Könönen, Eija

    2017-01-01

    Salivary protein levels have been studied in periodontitis. However, there is lack of information on salivary cytokine levels in early gingival inflammation. The aim of this study was to determine salivary levels of vascular endothelial growth factor (VEGF), interleukin (IL)-8, monocyte chemoattr......Salivary protein levels have been studied in periodontitis. However, there is lack of information on salivary cytokine levels in early gingival inflammation. The aim of this study was to determine salivary levels of vascular endothelial growth factor (VEGF), interleukin (IL)-8, monocyte...... chemoattractant protein (MCP)-1, IL-1β, and IL-1 receptor antagonist (IL-1Ra) in gingival inflammation. Twenty-eight systemically and orally healthy nonsmokers abstained from oral hygiene protocols for 10 days. After that, self-performed cleaning was resumed for 14 days. Plaque and gingival indexes were measured...... levels decreased and remained low during development and resolution of experimental gingivitis. Initial inflammation in gingival tissues is associated with a decrease in inflammatory cytokines in saliva. Further studies are needed to evaluate if inflammatory cytokines bind to their functional receptors...

  7. Cytokines and immune surveillance in humans

    Science.gov (United States)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to explore further the effects of space flight on cyotokines and cytokine-directed immunological function. Among the tests carried out are interferon-alpha production, interferon-gamma production, interleukin-1 and -2 production, signal transduction in neutrophils, signal transduction in monocytes, and monocyte phagocytic activity. The experiments will be performed using peripheral blood obtained from human subjects. It is our intent to eventually carry out these experiments using astronauts as subjects to determine the effects of space flight on cytokine production and activity. However, these subjects are not currently available. Until they become available, we will carry out these experiments using subjects maintained in the bed-rest model for microgravity.

  8. Cytokines in Sjögren's syndrome

    NARCIS (Netherlands)

    Roescher, N.; Tak, P. P.; Illei, G. G.

    2009-01-01

    Cytokines play a central role in the regulation of immunity and are often found to be deregulated in autoimmune diseases. Sjögren's syndrome is a chronic autoimmune disease characterized by inflammation and loss of secretory function of the salivary and lachrymal glands. This review highlights the

  9. IFN-gamma: Novel antiviral cytokines

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Paludan, Søren Riis

    2006-01-01

    and adaptive immune responses. Recently, a novel class of cytokines was discovered and named IFN-lambda (alternatively type III IFN or interleukin-28/29 [IL- 28/29]), based on IFN-like antiviral activity and induction of typical IFN-inducible genes. Here, we review the literature on IFN-lambda and discuss...

  10. Cytokines as biomarkers of nanoparticle immunotoxicity

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L.

    2013-01-01

    Nanoscale objects, whether of biologic origin or synthetically created, are being developed into devices for a variety of bionanotechnology diagnostic and pharmaceutical applications. However, the potential immunotoxicity of these nanomaterials and mechanisms by which they may induce adverse reactions have not received sufficient attention. Nanomaterials, depending on their characteristics and compositions, can interact with the immune system in several ways and either enhance or suppress immune system function. Cytokines perform pleiotropic functions to mediate and regulate the immune response and are generally recognized as biomarkers of immunotoxicity. While the specificity and validity of certain cytokines as markers of adverse immune response has been established for chemicals, small and macromolecular drugs, research on their applicability for predicting and monitoring the immunotoxicity of engineered nanomaterials is still ongoing. The goal of this review is to provide guidelines as to important cytokines that can be utilized for evaluating the immunotoxicity of nanomaterials and to highlight the role of those cytokines in mediating adverse reactions, which is of particular importance for the clinical development of nanopharmaceuticals and other nanotechnology-based products. Importantly, the rational design of nanomaterials of low immunotoxicity will be discussed, focusing on synthetic nanodevices, with emphasis on both the nanoparticle-forming materials and the embedded cargoes. PMID:23549679

  11. Cytokines in atherosclerosis: an intricate balance

    NARCIS (Netherlands)

    Boshuizen, M.C.S.

    2016-01-01

    Atherosclerosis is the underlying pathology in the majority of clinical manifestations of cardiovascular diseases, which are nowadays the main global cause of mortality. Atherosclerosis is a lipid-driven chronic inflammatory disease of the arterial wall. This inflammatory response, with cytokines as

  12. Cytokines and Immune Responses in Murine Atherosclerosis

    NARCIS (Netherlands)

    Kusters, Pascal J. H.; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and

  13. Cytokines as biomarkers of nanoparticle immunotoxicity.

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L

    2013-06-21

    Nanoscale objects, whether of biologic origin or synthetically created, are being developed into devices for a variety of bionanotechnology diagnostic and pharmaceutical applications. However, the potential immunotoxicity of these nanomaterials and mechanisms by which they may induce adverse reactions have not received sufficient attention. Nanomaterials, depending on their characteristics and compositions, can interact with the immune system in several ways and either enhance or suppress immune system function. Cytokines perform pleiotropic functions to mediate and regulate the immune response and are generally recognized as biomarkers of immunotoxicity. While the specificity and validity of certain cytokines as markers of adverse immune response has been established for chemicals, small and macromolecular drugs, research on their applicability for predicting and monitoring the immunotoxicity of engineered nanomaterials is still ongoing. The goal of this review is to provide guidelines as to important cytokines that can be utilized for evaluating the immunotoxicity of nanomaterials and to highlight the role of those cytokines in mediating adverse reactions, which is of particular importance for the clinical development of nanopharmaceuticals and other nanotechnology-based products. Importantly, the rational design of nanomaterials of low immunotoxicity will be discussed, focusing on synthetic nanodevices, with emphasis on both the nanoparticle-forming materials and the embedded cargoes.

  14. Utility of cytokines to predict neonatal sepsis.

    Science.gov (United States)

    Ye, Qing; Du, Li-Zhong; Shao, Wen-Xia; Shang, Shi-Qiang

    2017-04-01

    Sepsis is an important cause of neonatal morbidity and mortality worldwide. Diagnosis and treatment of neonatal sepsis relies on clinical judgment and interpretation of nonspecific laboratory tests. In a prospective cohort, we measured inflammatory cytokines as a potential biomarker for neonatal sepsis. Serum inflammatory cytokine levels were evaluated in the early stage of neonatal sepsis and after antimicrobial treatment. Receiver operating characteristic curves assessed the diagnostic value of cytokines. We performed multiple logistic regression analysis to characterize the role of each cytokine independently for infants with culture proven sepsis. C-reactive protein, interleukin (IL)-6, IL-10 and IL-6/IL-10 levels were significantly elevated in neonatal sepsis when compared with the control group and there were 1.4 (95% confidence interval (CI): 1.2-1.5), 4.9 (95% CI: 4.6-5.1), 5.1 (95% CI: 4.5-5.6), and 10.2 (95% CI: 9.2-11.1) fold greater odds, respectively, to predict neonatal sepsis when increased. After effective treatment, median IL-6 (pretreatment value: 263.0 pg/ml and post-treatment value: 7.4 pg/ml) and IL-6/IL-10 levels (pretreatment value: 16.6 and post-treatment value: 1.4) significantly decreased. The areas under the curve for IL-6, IL-10, IL-6/IL-10 and C-reactive protein for differential diagnosis were 0.98, 0.82, 0.90, and 0.88, respectively. IL-6 and IL-6/IL-10 outperformed C-reactive protein to diagnose neonatal sepsis. Of the cytokines studied, IL-6 was the most sensitive, whereas IL-6/IL-10 was the most specific predictor of neonatal sepsis.

  15. Inflammatory cytokines as biomarkers in heart failure.

    Science.gov (United States)

    Ueland, Thor; Gullestad, Lars; Nymo, Ståle H; Yndestad, Arne; Aukrust, Pål; Askevold, Erik T

    2015-03-30

    Inflammation has been implicated in the pathogenesis of heart failure (HF). In addition to their direct involvement as mediators in the pathogenesis of HF, inflammatory cytokines and related mediators could also be suitable markers for risk stratification and prognostication in HF patients. Many reports have suggested that inflammatory cytokines may predict adverse outcome in these patients. However, most studies have been limited in sample size and lacking full adjustment with the most recent and strongest biochemical predictor such as NT-proBNP and high sensitivity troponins. Furthermore, a number of pre-analytical and analytical aspects of cytokine measurements may limit their use as biomarkers. This review focuses on technical, informative and practical considerations concerning the clinical use of inflammatory cytokines as prognostic biomarkers in HF. We focus on the predictive value of tumor necrosis factor (TNF) α, the TNF family receptors sTNFR1 and osteoprotegerin, interleukin (IL)-6 and its receptor gp130, the chemokines MCP-1, IL-8, CXCL16 and CCL21 and the pentraxin PTX-3 in larger prospective fully adjusted studies. No single inflammatory cytokine provides sufficient discrimination to justify the transition to everyday clinical use as a prognosticator in HF. However, while subjecting potential new HF markers to rigorous comparisons with "gold-standard" markers, such as NT-proBNP, using receiver operating characteristics (ROCs) and HF risk models, makes sense from a clinical standpoint, it may pose a threat to a broadening of mechanistic insight if the new markers are dismissed solely on account of lower statistical power. Copyright © 2014. Published by Elsevier B.V.

  16. Synthesis of 3-(2, 8, 9-trioxa-5-aza-1-germatricyclo [3.3.3.0] undecane-1-yl)-3-(4-hydroxyl-3-methoxyphenyl)-propionic acid and its inhibitory effect on the cervical tumor U14 in vitro and in vivo.

    Science.gov (United States)

    Ye, Lianbao; Ou, Xiaomin; Peng, Xuedong; Luo, Yan

    2012-07-01

    In this study, the novel germatrane compound, 3-(2, 8, 9-trioxa-5-aza-1- germatricyclo [3.3.3.0] undecane-1-yl)-3-(4-hydroxy-3- methoxyphenyl)-propionic acid (1), has been synthesized and its activities against cervical tumor U14 were evaluated in vitro and in vivo. The results have demonstrated that the compound posed significant inhibition on U14 tumor with IC(50) values of 48.57 mg/L in cell-based assay and tumor inhibitory rates of 38.50%, 47.17% and 64.02% (from low dose to high dose) in animal experiment.

  17. Production of fibrogenic cytokines by interleukin-2-treated peripheral blood leukocytes

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Silber, I E

    1993-01-01

    OBJECTIVE: To assess the production of fibrogenic cytokines by interleukin-2 (IL-2)-stimulated peripheral blood leukocytes and to examine their ability to stimulate the production of connective tissue. METHODS: Culture medium from human peripheral blood leukocytes incubated with or without IL-2...... was tested for induction of fibroblast proliferation, collagen synthesis, and expression of cytokine genes. RESULTS: Supernatants from IL-2-treated peripheral blood leukocytes induced six times more fibroblast proliferation than medium from leukocytes cultured without IL-2. The expression of type I...... procollagen and fibronectin messenger RNAs was increased in human fibroblasts in response to leukocyte supernatants. Unstimulated leukocytes expressed minimal levels of transforming growth factor-beta or platelet-derived growth factor B chain messenger RNAs, but could be greatly enhanced by IL-2 treatment...

  18. The role of the cytokine network in psychological stress.

    Science.gov (United States)

    Kim, Yong-Ku; Maes, Michael

    2003-06-01

    Although a considerable amount of evidence has shown that psychological stress alters peripheral and brain cytokines, the physiological significance of cytokine alteration in psychological stress remains to be elucidated. The aims of this review are to analyze the influence of acute and chronic psychological stresses on the cytokine network in animals and in humans, and to explore the pathophysiological implication of the cytokine changes in psychological stress. Acute psychological stress may increase proinflammatory cytokines both in animals and in humans, and increase T-helper-1 cell cytokines in humans. Investigations into the effect of chronic psychological stress on cytokine production in animals gives mixed results. However, in humans, academic exam stress or care-giver's stress appears to induce a shift in the Th1/Th2 cytokine balance toward a Th2 response and increase proinflammatory cytokines. Psychological stress-induced cytokines stimulate the activity of indoleamine 2,3 dioxygenase (IDO) and could induce serotonin depletion-related disorders such as depression in susceptible individuals. Psychological stress-induced production of cytokines may increase the risk for human diseases, such as cardiovascular disease and exacerbation of autoimmune diseases. Proinflammatory cytokines may also play a regulatory role in glucocorticoid resistance and may be involved in wound healing and skin barrier function alterations. Finally, psychological stress-induced production of cytokines may play a role in neurodegenerative changes in the brain.

  19. Inflammatory markers are associated with inhibitory avoidance memory deficit induced by sleep deprivation in rats.

    Science.gov (United States)

    Esumi, L A; Palma, B D; Gomes, V L; Tufik, S; Hipólide, D C

    2011-08-01

    Sleep deprivation (SD) causes detrimental effects to the body, such as memory impairment and weight loss. SD also changes the concentration of inflammatory mediators such as cytokines, which, in turn, can affect cognitive functioning. Thus, the objective of this study was to investigate the involvement of these inflammatory mediators in inhibitory avoidance memory deficit in sleep-deprived rats. Male Wistar rats were deprived of sleep by the modified multiple platform method for 96 h, while their respective controls remained in their housing cages. To assess memory after SD, all animals underwent training, followed by the inhibitory avoidance task test 24h later. Also, the weight of each animal was recorded daily. In the first experiment, animals received an acute administration of lipopolysaccharide (LPS, 50 or 75 μg/kg i.p.) 3h before the inhibitory avoidance training. In the experiment 2, the animals received acute or chronic administration of anti-IL-6 antibody (Ab, 2 μg/kg i.p.). The acute administration was performed 3h before the inhibitory avoidance training, while the chronic treatment administrations were performed daily during the SD period. The 75 μg/kg dose of LPS, but not the 50 μg/kg dose, caused a significant attenuation of memory impairment in the sleep-deprived animals. Although the treatments with the anti-IL-6 Ab did not produce any significant changes in cognitive performance, the Ab attenuated weight loss in sleep-deprived animals. Taken together, these results suggest the involvement of inflammatory mediators in the modulation of memory deficit and weight loss that are observed in sleep-deprived rats. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Melanoma inhibitory activity in Brazilian patients with cutaneous melanoma*

    OpenAIRE

    Odashiro, Macanori; Hans Filho, Gunter; Pereira,Patricia Rusa; Castro, Ana Rita Coimbra Motta de; Stief, Alcione Cavalheiro; Pontes, Elenir Rose Jardim Cury; Odashiro, Alexandre Nakao

    2015-01-01

    Abstract BACKGROUND: Melanoma inhibitory activity is a protein secreted by melanoma cells and has been used as a tumor marker. Increased Melanoma inhibitory activity serum levels are related to metastatic disease or tumor recurrence. Currently there are no studies on Melanoma inhibitory activity and cutaneous melanoma involving Brazilian patients. OBJECTIVE: To evaluate the performance and feasibility of measuring Melanoma inhibitory activity levels in Brazilian patients with cutaneous melano...

  1. A proteomic study of the regulatory role for STAT-1 in cytokine-induced beta-cell death

    DEFF Research Database (Denmark)

    Rondas, Dieter; Gudmundsdottir, Valborg; D’Hertog, Wannes

    2015-01-01

    PURPOSE: Signal transducer and activator of transcription 1 (STAT-1) plays a crucial role in cytokine-induced beta-cell destruction. However, its precise downstream pathways have not been completely clarified. We performed a proteome analysis of cytokine-exposed C57Bl/6 and STAT-1-/- mouse islets...... synthesis and processing. Network analysis revealed a complex interaction between proteins from different functional groups and IPA analysis confirmed the protective effect of STAT-1 deletion on cytokine-induced beta-cell death. Finally, a central role in this STAT-1-regulated mechanism was assigned...... to small ubiquitin-related modifier 4 (SUMO4). CONCLUSIONS AND CLINICAL RELEVANCE: These findings confirm a central role for STAT-1 in pancreatic islet inflammation induced destruction and most importantly elucidate the underlying proteomic pathways involved....

  2. Anti-cytokine therapies in T1D

    DEFF Research Database (Denmark)

    Nepom, Gerald T; Ehlers, Mario; Mandrup-Poulsen, Thomas

    2013-01-01

    Therapeutic targeting of proinflammatory cytokines is clinically beneficial in several autoimmune disorders. Several of these cytokines are directly implicated in the pathogenesis of type 1 diabetes, suggesting opportunities for design of clinical trials in type 1 diabetes that incorporate...

  3. Drug targets in the cytokine universe for autoimmune disease.

    Science.gov (United States)

    Liu, Xuebin; Fang, Lei; Guo, Taylor B; Mei, Hongkang; Zhang, Jingwu Z

    2013-03-01

    In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Inflammasome-independent regulation of IL-1-family cytokines

    NARCIS (Netherlands)

    Netea, M.G.; Veerdonk, F.L. van de; Meer, J.W.M. van der; Dinarello, C.A.; Joosten, L.A.B.

    2015-01-01

    Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the

  5. Cytokine expression profile over time in severely burned pediatric patients

    National Research Council Canada - National Science Library

    Finnerty, Celeste C; Herndon, David N; Przkora, Rene; Pereira, Clifford T; Oliveira, Hermes M; Queiroz, Dulciene M M; Rocha, Andreia M C; Jeschke, Marc G

    2006-01-01

    .... The massive release of cytokines is implicated in this hypermetabolic response. The aim of the present study was to compare cytokine expression profiles from severely burned children without signs of infections or inhalation injury (n = 19...

  6. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma.

    Science.gov (United States)

    Pritchard, Antonia L; Carroll, Melanie L; Burel, Julie G; White, Olivia J; Phipps, Simon; Upham, John W

    2012-06-15

    Human rhinoviruses (RV) cause only minor illness in healthy individuals, but can have deleterious consequences in people with asthma. This study sought to examine normal homeostatic mechanisms regulating adaptive immunity to RV in healthy humans, focusing on effects of IFN-αβ and plasmacytoid dendritic cells (pDC) on Th2 immune responses. PBMC were isolated from 27 healthy individuals and cultured with RV16 for up to 5 d. In some experiments, IFN-αβ was neutralized using a decoy receptor that blocks IFN signaling, whereas specific dendritic cell subsets were depleted from cultures with immune-magnetic beads. RV16 induced robust expression of IFN-α, IFN-β, multiple IFN-stimulated genes, and T cell-polarizing factors within the first 24 h. At 5 d, the production of memory T cell-derived IFN-γ, IL-10, and IL-13, but not IL-17A, was significantly elevated. Neutralizing the effects of type-I IFN with the decoy receptor B18R led to a significant increase in IL-13 synthesis, but had no effect on IFN-γ synthesis. Depletion of pDC from RV-stimulated cultures markedly inhibited IFN-α secretion, and led to a significant increase in expression and production of the Th2 cytokines IL-5 (p = 0.02), IL-9 (p effect on IFN-γ synthesis. Depletion of CD1c(+) dendritic cells did not alter cytokine synthesis. In healthy humans, pDC and the IFN-αβ they secrete selectively constrain Th2 cytokine synthesis following RV exposure in vitro. This important regulatory mechanism may be lost in asthma; deficient IFN-αβ synthesis and/or pDC dysfunction have the potential to contribute to asthma exacerbations during RV infections.

  7. Expression of leukemia inhibitory factor and leukemia inhibitory factor receptor in the canine pituitary gland and corticotrope adenomas.

    Science.gov (United States)

    Hanson, J M; Mol, J A; Meij, B P

    2010-05-01

    Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH(1-24) expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation

    Science.gov (United States)

    Lee, Yu-Hui; Shynlova, Oksana; Lye, Stephen J

    2015-01-01

    Spontaneous term labour is associated with amplified inflammatory events in the myometrium including cytokine production and leukocyte infiltration; however, potential mechanisms regulating such events are not fully understood. We hypothesized that mechanical stretch of the uterine wall by the growing fetus facilitates peripheral leukocyte extravasation into the term myometrium through the release of various cytokines by uterine myocytes. Human myometrial cells (hTERT-HM) were subjected to static mechanical stretch; stretch-conditioned media was collected and analysed using 48-plex Luminex assay and ELISA. Effect of stretch-conditioned media on cell adhesion molecule expression of human uterine microvascular endothelial cells (UtMVEC-Myo) was detected by quantitative polymerase chain reaction (qPCR) and flow cytometry; functional assays testing leukocyte–endothelial interactions: adhesion of leukocytes to endothelial cells and transendothelial migration of calcein-labelled primary human neutrophils as well as migration of THP-1 monocytic cells were assessed by fluorometry. The current in vitro study demonstrated that mechanical stretch (i) directly induces secretion of multiple cytokines and chemokines by hTERT-HM cells (IL-6, CXCL8, CXCL1, migration inhibitory factor (MIF), VEGF, G-CSF, IL-12p70, bFGF and platelet-derived growth factor subunit B (PDGF-bb), Pstretch-induced cytokines (ii) enhance leukocyte adhesion to the endothelium of the surrounding uterine microvasculature by (iii) inducing the expression of endothelial cell adhesion molecules and (iv) directing the transendothelial migration of peripheral leukocytes. (vi) Chemokine-neutralizing antibodies and broad-spectrum chemokine inhibitor block leukocyte migration. Our data provide a proof of mechanical regulation for leukocyte recruitment from the uterine blood vessels to the myometrium, suggesting a putative mechanism for the leukocyte infiltrate into the uterus during labour and postpartum involution

  9. Glucocorticoid-cholinergic interactions in the dorsal striatum in memory consolidation of inhibitory avoidance training

    Science.gov (United States)

    Sánchez-Resendis, Oscar; Medina, Andrea C.; Serafín, Norma; Prado-Alcalá, Roberto A.; Roozendaal, Benno; Quirarte, Gina L.

    2012-01-01

    Extensive evidence indicates that glucocorticoid hormones act in a variety of brain regions to enhance the consolidation of memory of emotionally motivated training experiences. We previously reported that corticosterone, the major glucocorticoid in the rat, administered into the dorsal striatum immediately after inhibitory avoidance training dose-dependently enhances memory consolidation of this training. There is also abundant evidence that the intrinsic cholinergic system of the dorsal striatum is importantly involved in memory consolidation of inhibitory avoidance training. However, it is presently unknown whether these two neuromodulatory systems interact within the dorsal striatum in the formation of long-term memory. To address this issue, we first investigated in male Wistar rats whether the muscarinic receptor agonist oxotremorine administered into the dorsal striatum immediately after inhibitory avoidance training enhances 48 h retention of the training. Subsequently, we examined whether an attenuation of glucocorticoid signaling by either a systemic administration of the corticosterone-synthesis inhibitor metyrapone or an intra-striatal infusion of the glucocorticoid receptor (GR) antagonist RU 38486 would block the memory enhancement induced by oxotremorine. Our findings indicate that oxotremorine dose-dependently enhanced 48 h retention latencies, but that the administration of either metyrapone or RU 38486 prevented the memory-enhancing effect of oxotremorine. In the last experiment, corticosterone was infused into the dorsal striatum together with the muscarinic receptor antagonist scopolamine immediately after inhibitory avoidance training. Scopolamine blocked the enhancing effect of corticosterone on 48 h retention performance. These findings indicate that there are mutual interactions between glucocorticoids and the striatal cholinergic system in enhancing the consolidation of memory of inhibitory avoidance training. PMID:22737110

  10. Nerve growth factor: neurotrophin or cytokine?

    Science.gov (United States)

    Bonini, S; Rasi, G; Bracci-Laudiero, M L; Procoli, A; Aloe, L

    2003-06-01

    Nerve growth factor (NGF) is a neutrophin exerting an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several immune cells - such as mast cells, lymphocytes and eosinophils - produce, store and release NGF. Moreover, NGF high and low affinity receptors are widely expressed in the immune system, thus indicating the potential of responding to this neurotrophin through an autocrine mechanism. In fact, NGF influences development differentiation, chemotaxis and mediator release of inflammatory cells as well as fibroblast activation through a complex network influenced by other pro-inflammatory cytokines. Finally, NGF is increased in biological fluids of several allergic, immune and inflammatory diseases. Data reviewed suggest, therefore, that NGF might also be viewed as a (Th2?) cytokine with a modulatory role in allergic inflammation and tissue remodeling. Copyright 2003 S. Karger AG, Basel

  11. Rosacea: the Cytokine and Chemokine Network

    Science.gov (United States)

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Steinhoff, Martin; Homey, Bernhard

    2013-01-01

    Rosacea is one of the most common dermatoses of adults. Recent studies have improved our understanding of the pathophysiology of rosacea. Current concepts suggest that known clinical trigger factors of rosacea such as UV radiation, heat, cold, stress, spicy food, and microbes modulate Toll-like receptor signaling, induce reactive oxygen species, as well as enhance antimicrobial peptide and neuropeptide production. Downstream of these events cytokines and chemokines orchestrate an inflammatory response that leads to the recruitment and activation of distinct leukocyte subsets and induces the characteristic histopathological features of rosacea. Here we summarize the current knowledge of the cytokine and chemokine network in rosacea and propose pathways that may be of therapeutic interest. PMID:22076326

  12. Cytokines and Other Mediators in Alopecia Areata

    Science.gov (United States)

    Gregoriou, Stamatis; Papafragkaki, Dafni; Kontochristopoulos, George; Rallis, Eustathios; Kalogeromitros, Dimitrios; Rigopoulos, Dimitris

    2010-01-01

    Alopecia areata, a disease of the hair follicles with multifactorial etiology and a strong component of autoimmune origin, has been extensively studied as far as the role of several cytokines is concerned. So far, IFN-γ, interleukins, TNF-α, are cytokines that are well known to play a major role in the pathogenesis of the disease, while several studies have shown that many more pathways exist. Among them, MIG, IP-10, BAFF, HLA antigens, MIG, as well as stress hormones are implicated in disease onset and activity. Within the scope of this paper, the authors attempt to shed light upon the complexity of alopecia areata underlying mechanisms and indicate pathways that may suggest future treatments. PMID:20300578

  13. Cytokine-producing T cell subsets in human leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, Kåre

    2000-01-01

    Leishmania specific Th1/Th2 cells have been identified in humans as well as in mice. There is a correlation between the clinical outcome of the infection and the cytokine response profile. Generally, the production of Th2 cytokines leads to severe infection, whereas the production of Th1 cytokine...

  14. Cytokines as Immunological Markers for Follow up of Disease ...

    African Journals Online (AJOL)

    Background: Cytokines play a major role in protection against Mycobacterium tuberculosis infection and regulate the immune responses at a cellular level. Cytokine profile determines clinical outcome of the disease and responses to treatment as well. A T helper 1 (Th1) cytokine interferon gamma (IFN-U) is one of the most ...

  15. Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: psychoneuroimmunology at the translational interface.

    Science.gov (United States)

    Miller, Andrew H

    2009-02-01

    Work in our laboratory has focused on the mechanisms by which cytokines can influence the brain and behavior in humans and non-human primates. Using administration of interferon (IFN)-alpha as a tool to unravel these mechanisms, we have expanded upon findings from the basic science literature implicating cytokine-induced changes in monoamine metabolism as a primary pathway to depression. More specifically, a role for serotonin metabolism has been supported by the clinical efficacy of serotonin reuptake inhibitors in blocking the development of IFN-alpha-induced depression, and the capacity of IFN-alpha to activate metabolic enzymes (indolamine 2,3 dioxygenase) and cytokine signaling pathways (p38 mitogen activated protein kinase) that can influence the synthesis and reuptake of serotonin. Our data also support a role for dopamine depletion as reflected by IFN-alpha-induced changes in behavior (psychomotor slowing and fatigue) and regional brain activity, which implicate the involvement of the basal ganglia, as well as the association of IFN-alpha-induced depressive-like behavior in rhesus monkeys with decreased cerebrospinal fluid concentrations of the dopamine metabolite, homovanillic acid. Neuroimaging data in IFN-alpha-treated patients also suggest that activation of neural circuits (dorsal anterior cingulate cortex) associated with anxiety and alarm may contribute to cytokine-induced behavioral changes. Taken together, these effects of cytokines on the brain and behavior appear to subserve competing evolutionary survival priorities that promote reduced activity to allow healing, and hypervigilance to protect against future attack. Depending on the relative balance between these behavioral accoutrements of an activated innate immune response, clinical presentations may be distinct and warrant individualized therapeutic approaches.

  16. Role played by Th2 type cytokines in IgE mediated allergy and asthma

    Directory of Open Access Journals (Sweden)

    Deo Sudha

    2010-01-01

    Full Text Available Objective: Recent evidence suggest that allergen type 2 helper T cells (Th2 play a triggering role in the activation/recruitment of IgE antibody producing B cells, mast cells and eosinophils. Reduced microbial exposure in early life is responsible for a shift of Th1/Th2 balance in the immune system towards the pre-allergic Th2 response. The Th1 predominantly produce IFNg and delayed type hypersensitivity while Th2 secrete IL-4, IL-5, IL-6, IL-13 and regulate B cell and eosinophil mediated responses. To assess regulatory changes in the immune system, in patients with allergy and asthma, we studied the cytokine profile in serum in comparison with normal healthy controls. Patients and Methods: A total of 170 patients with various allergies and asthmatic conditions were studied, for cytokines in the serum by ELISA using kits from Immunotech, and analyzed to identify the triggering factors or main contributors towards allergy and asthma. Results: Our study showed increase in the levels of IL-4, IL-5 and IL-6 in all groups which were non- significant. But the levels of IL-10, IL-13 and TNF α were highly significant. Besides, we found correlation of GM-CSF with IL-10. Significant correlation with different cytokines was observed. Most of these patients showed increase in IgE levels. Conclusions: This study gives a better understanding of how cytokines are the mediators of balance of Th1 and Th2 immune responses and IgE synthesis is controlled by cytokines. Further studies will eventually lead to improved treatment strategies in the clinical management of IgE mediated allergy.

  17. Ethanolic Echinacea purpurea Extracts Contain a Mixture of Cytokine-Suppressive and Cytokine-Inducing Compounds, Including Some That Originate from Endophytic Bacteria.

    Directory of Open Access Journals (Sweden)

    Daniel A Todd

    Full Text Available Echinacea preparations, which are used for the prevention and treatment of upper respiratory infections, account for 10% of the dietary supplement market in the U.S., with sales totaling more than $100 million annually. In an attempt to shed light on Echinacea's mechanism of action, we evaluated the effects of a 75% ethanolic root extract of Echinacea purpurea, prepared in accord with industry methods, on cytokine and chemokine production from RAW 264.7 macrophage-like cells. We found that the extract displayed dual activities; the extract could itself stimulate production of the cytokine TNF-α, and also suppress production of TNF-α in response to stimulation with exogenous LPS. Liquid:liquid partitioning followed by normal-phase flash chromatography resulted in separation of the stimulatory and inhibitory activities into different fractions, confirming the complex nature of this extract. We also studied the role of alkylamides in the suppressive activity of this E. purpurea extract. Our fractionation method concentrated the alkylamides into a single fraction, which suppressed production of TNF-α, CCL3, and CCL5; however fractions that did not contain detectable alkylamides also displayed similar suppressive effects. Alkylamides, therefore, likely contribute to the suppressive activity of the extract but are not solely responsible for that activity. From the fractions without detectable alkylamides, we purified xanthienopyran, a compound not previously known to be a constituent of the Echinacea genus. Xanthienopyran suppressed production of TNF-α suggesting that it may contribute to the suppressive activity of the crude ethanolic extract. Finally, we show that ethanolic extracts prepared from E. purpurea plants grown under sterile conditions and from sterilized seeds, do not contain LPS and do not stimulate macrophage production of TNF-α, supporting the hypothesis that the macrophage-stimulating activity in E. purpurea extracts can

  18. Ethanolic Echinacea purpurea Extracts Contain a Mixture of Cytokine-Suppressive and Cytokine-Inducing Compounds, Including Some That Originate from Endophytic Bacteria

    Science.gov (United States)

    Britton, Emily R.; Oberhofer, Martina; Leyte-Lugo, Martha; Moody, Ashley N.; Shymanovich, Tatsiana; Grubbs, Laura F.; Juzumaite, Monika; Graf, Tyler N.; Oberlies, Nicholas H.; Faeth, Stanley H.; Laster, Scott M.; Cech, Nadja B.

    2015-01-01

    Echinacea preparations, which are used for the prevention and treatment of upper respiratory infections, account for 10% of the dietary supplement market in the U.S., with sales totaling more than $100 million annually. In an attempt to shed light on Echinacea's mechanism of action, we evaluated the effects of a 75% ethanolic root extract of Echinacea purpurea, prepared in accord with industry methods, on cytokine and chemokine production from RAW 264.7 macrophage-like cells. We found that the extract displayed dual activities; the extract could itself stimulate production of the cytokine TNF-α, and also suppress production of TNF-α in response to stimulation with exogenous LPS. Liquid:liquid partitioning followed by normal-phase flash chromatography resulted in separation of the stimulatory and inhibitory activities into different fractions, confirming the complex nature of this extract. We also studied the role of alkylamides in the suppressive activity of this E. purpurea extract. Our fractionation method concentrated the alkylamides into a single fraction, which suppressed production of TNF-α, CCL3, and CCL5; however fractions that did not contain detectable alkylamides also displayed similar suppressive effects. Alkylamides, therefore, likely contribute to the suppressive activity of the extract but are not solely responsible for that activity. From the fractions without detectable alkylamides, we purified xanthienopyran, a compound not previously known to be a constituent of the Echinacea genus. Xanthienopyran suppressed production of TNF-α suggesting that it may contribute to the suppressive activity of the crude ethanolic extract. Finally, we show that ethanolic extracts prepared from E. purpurea plants grown under sterile conditions and from sterilized seeds, do not contain LPS and do not stimulate macrophage production of TNF-α, supporting the hypothesis that the macrophage-stimulating activity in E. purpurea extracts can originate from endophytic

  19. Salivary cytokine levels in early gingival inflammation

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Damgaard, Christian; Könönen, Eija

    2017-01-01

    Salivary protein levels have been studied in periodontitis. However, there is lack of information on salivary cytokine levels in early gingival inflammation. The aim of this study was to determine salivary levels of vascular endothelial growth factor (VEGF), interleukin (IL)-8, monocyte chemoattr......Salivary protein levels have been studied in periodontitis. However, there is lack of information on salivary cytokine levels in early gingival inflammation. The aim of this study was to determine salivary levels of vascular endothelial growth factor (VEGF), interleukin (IL)-8, monocyte...... chemoattractant protein (MCP)-1, IL-1β, and IL-1 receptor antagonist (IL-1Ra) in gingival inflammation. Twenty-eight systemically and orally healthy nonsmokers abstained from oral hygiene protocols for 10 days. After that, self-performed cleaning was resumed for 14 days. Plaque and gingival indexes were measured......, and saliva samples were collected at days 1, 4, 7, 10, and 24. Salivary cytokines were detected with Luminex®-xMAP™. Salivary IL-1β, IL-1Ra, and VEGF levels decreased after 10 days' development of experimental gingivitis and reached baseline levels at the end of the 2-week resolution period. Salivary IL-8...

  20. Cytokines as Biomarkers in Rheumatoid Arthritis

    Science.gov (United States)

    Burska, Agata; Boissinot, Marjorie; Ponchel, Frederique

    2014-01-01

    RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria) and for prognostic notably in at risk of evolution patients with autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable. Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to rheumatology. We will review the current knowledge's relation to cytokine used as biomarker in RA. However, given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA. PMID:24733962

  1. Antiasthmatic Effects of Hesperidin, a Potential Th2 Cytokine Antagonist, in a Mouse Model of Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Seung-Hyung Kim

    2011-01-01

    Full Text Available Background and Objective. The features of asthma are airway inflammation, reversible airflow obstruction, and an increased sensitivity to bronchoconstricting agents, termed airway hyperresponsiveness (AHR, excess production of Th2 cytokines, and eosinophil accumulation in the lungs. To investigate the antiasthmatic potential of hesperidin as well as the underlying mechanism involved, we studied the inhibitory effect and anti-inflammatory effect of hesperidin (HPN on the production of Th2 cytokines, eotaxin, IL-17, -OVA-specific IgE in vivo asthma model mice. Methods. In this paper, BALB/c mice were systemically sensitized to ovalbumin (OVA followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of HPN on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production and OVA-specific IgE production in a mouse model of asthma. Results. In BALB/c mice, we found that HPN-treated groups had suppressed eosinophil infiltration, allergic airway inflammation, and AHR, and these occurred by suppressing the production of IL-5, IL-17, and OVA-specific IgE. Conclusions. Our data suggest that the therapeutic mechanism by which HPN effectively treats asthma is based on reductions of Th2 cytokines (IL-5, eotaxin, OVA-specific IgE production, and eosinophil infiltration via inhibition of GATA-3 transcription factor.

  2. Antiasthmatic Effects of Hesperidin, a Potential Th2 Cytokine Antagonist, in a Mouse Model of Allergic Asthma

    Science.gov (United States)

    Kim, Seung-Hyung; Kim, Bok-Kyu; Lee, Young-Cheol

    2011-01-01

    Background and Objective. The features of asthma are airway inflammation, reversible airflow obstruction, and an increased sensitivity to bronchoconstricting agents, termed airway hyperresponsiveness (AHR), excess production of Th2 cytokines, and eosinophil accumulation in the lungs. To investigate the antiasthmatic potential of hesperidin as well as the underlying mechanism involved, we studied the inhibitory effect and anti-inflammatory effect of hesperidin (HPN) on the production of Th2 cytokines, eotaxin, IL-17, -OVA-specific IgE in vivo asthma model mice. Methods. In this paper, BALB/c mice were systemically sensitized to ovalbumin (OVA) followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of HPN on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production and OVA-specific IgE production in a mouse model of asthma. Results. In BALB/c mice, we found that HPN-treated groups had suppressed eosinophil infiltration, allergic airway inflammation, and AHR, and these occurred by suppressing the production of IL-5, IL-17, and OVA-specific IgE. Conclusions. Our data suggest that the therapeutic mechanism by which HPN effectively treats asthma is based on reductions of Th2 cytokines (IL-5), eotaxin, OVA-specific IgE production, and eosinophil infiltration via inhibition of GATA-3 transcription factor. PMID:21772663

  3. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  4. Serum Macrophage Migration Inhibitory Factor in the Prediction of Preterm Delivery

    DEFF Research Database (Denmark)

    Pearce, Brad; Garvin, Sicily; Grove, Jakob

    2008-01-01

    Objective: Macrophage migration inhibitory factor (MIF) is a soluble mediator that helps govern the interaction between cytokines and stress hormones (e.g. cortisol). We determined if maternal MIF levels predicted subsequent preterm delivery (PTD). Study Design: A nested case-control study...... measuring serum MIF concentration at 9-23 weeks gestation in women who ultimately delivered preterm (n=60) compared to control women who delivered at term (n=123). We also examined the connection of MIF with self-reported psychosocial variables. Results: MIF was elevated in the PTD cases (p=0.0004), and log...... MIF concentration showed a graded response relationship with likelihood of PTD. High MIF was also associated with maternal risk-taking behavior, which itself was a risk factor for PTD. MIF remained associated independently with PTD after adjusting regression models for several other PTD risk factors...

  5. Can we design a better anti-cytokine therapy?

    Science.gov (United States)

    Drutskaya, Marina S; Efimov, Grigory A; Kruglov, Andrei A; Nedospasov, Sergei A

    2017-09-01

    Cytokine neutralization is successfully used for treatment of various autoimmune diseases and chronic inflammatory conditions. The complex biology of the two well-characterized proinflammatory cytokines TNF and IL-6 implicates unavoidable consequences when it comes to their global blockade. Because systemic cytokine ablation may result in unwanted side effects, efforts have been made to develop more specific cytokine inhibitors, which would spare the protective immunoregulatory functions of a given cytokine. In this article, we review current research and summarize new strategies for improved anti-TNF and anti-IL-6 biologics, which specifically target only selected parts of the signaling cascades mediated by these ligands. © Society for Leukocyte Biology.

  6. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.

    Directory of Open Access Journals (Sweden)

    Malgorzata Jasinska

    Full Text Available Associative fear learning, resulting from whisker stimulation paired with application of a mild electric shock to the tail in a classical conditioning paradigm, changes the motor behavior of mice and modifies the cortical functional representation of sensory receptors involved in the conditioning. It also induces the formation of new inhibitory synapses on double-synapse spines of the cognate barrel hollows. We studied density and distribution of polyribosomes, the putative structural markers of enhanced synaptic activation, following conditioning. By analyzing serial sections of the barrel cortex by electron microscopy and stereology, we found that the density of polyribosomes was significantly increased in dendrites of the barrel activated during conditioning. The results revealed fear learning-induced increase in the density of polyribosomes associated with both excitatory and inhibitory synapses located on dendritic spines (in both single- and double-synapse spines and only with the inhibitory synapses located on dendritic shafts. This effect was accompanied by a significant increase in the postsynaptic density area of the excitatory synapses on single-synapse spines and of the inhibitory synapses on double-synapse spines containing polyribosomes. The present results show that associative fear learning not only induces inhibitory synaptogenesis, as demonstrated in the previous studies, but also stimulates local protein synthesis and produces modifications of the synapses that indicate their potentiation.

  7. Regulation of cytokines by small RNAs during skin inflammation

    Directory of Open Access Journals (Sweden)

    Mikkelsen Jacob G

    2010-07-01

    Full Text Available Abstract Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.

  8. Human blood mononuclear cell in vitro cytokine response before and after two different strenuous exercise bouts in the presence of bloodroot and Echinacea extracts.

    Science.gov (United States)

    Senchina, David S; Hallam, Justus E; Dias, Amila S; Perera, M Ann

    2009-01-01

    The purpose of this multidisciplinary investigation was to characterize cytokine production by human blood mononuclear cells after 2 contrasting exercise bouts (a maximal graded oxygen consumption [VO(2)max] test and 90 min of cycling at 85% of ventilatory threshold [VT]) when stimulated in vitro with extracts from bloodroot (Sanguinaria canadensis), coneflower (Echinacea tennesseensis), or solvent vehicle controls. Blood was sampled pre- and post-exercise. Production of TNF, IL-1beta, and IL-10 were measured at 24, 48, and 72 h, respectively. In the VO(2)max test there was a main effect of exercise such that exercise increased cytokine synthesis and a main effect of stimulant such that bloodroot extracts significantly increased cytokine production compared to other stimulants or controls. In the 90-min bout, there was a main effect of exercise for TNF and IL-1beta (but not IL-10) such that exercise decreased cytokine synthesis and a main effect of stimulant such that bloodroot extracts significantly increased cytokine production compared to other stimulants or controls, with exercisexstimulant interactions for both IL-1beta and IL-10. A similar though weaker effect was seen with Echinacea extracts; subsequent biochemical analyses suggested this was related to alkamide decay during 3 years undisturbed storage at ultralow (-80 degrees C) temperature. In this study, the VO(2)max test was associated with enhanced cytokine production whereas the 90-min cycling at 85% VT was associated with suppressed cytokine production. Bloodroot extracts were able to increase cytokine production in both contexts. Herbal extracts purported to offset exercise-associated effects on immune activity warrant continued investigation.

  9. The Role of Cytokine in the Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Yasunori Iwata

    2011-01-01

    Full Text Available Lupus nephritis (LN is a major clinical manifestation of systemic lupus erythematosus (SLE. Although numerous abnormalities of immune system have been proposed, cytokine overexpression plays an essential role in the pathogenesis of LN. In the initial phase of the disease, the immune deposits and/or autoantibodies induce cytokine production in renal resident cells, leading to further inflammatory cytokine/chemokine expression and leukocyte infiltration and activation. Then, infiltrate leukocytes, such as macrophages (Mφ and dendritic cells (DCs, secrete a variety of cytokines and activate naïve T cells, leading the cytokine profile towards T helper (Th1, Th2, and/or Th17. Recent studies revealed these inflammatory processes in experimental animal models as well as human LN. The cytokine targeted intervention may have the therapeutic potentials for LN. This paper focuses on the expression of cytokine and its functional role in the pathogenesis of LN.

  10. Comparison of Heuristics for Inhibitory Rule Optimization

    KAUST Repository

    Alsolami, Fawaz

    2014-09-13

    Knowledge representation and extraction are very important tasks in data mining. In this work, we proposed a variety of rule-based greedy algorithms that able to obtain knowledge contained in a given dataset as a series of inhibitory rules containing an expression “attribute ≠ value” on the right-hand side. The main goal of this paper is to determine based on rule characteristics, rule length and coverage, whether the proposed rule heuristics are statistically significantly different or not; if so, we aim to identify the best performing rule heuristics for minimization of rule length and maximization of rule coverage. Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.

  11. Rational decision-making in inhibitory control

    Directory of Open Access Journals (Sweden)

    Pradeep eShenoy

    2011-05-01

    Full Text Available An important aspect of cognitive flexibility is inhibitory control, the ability to dynamically modify or cancel planned actions in response to changes in the sensory environment or task demands. We formulate a probabilistic, rational decision-making framework for inhibitory control in the well-studied stop signal paradigm. Our model posits that subjects maintain a Bayes-optimal, continually updated representation of sensory inputs, and repeatedly assess the relative value of stopping and going on a fine temporal scale, in order to make an optimal decision on when and whether to go on each trial. We further posit that they implement this continual evaluation with respect to a global objective function capturing the various reward and penalties associated with different behavioral outcomes, such as speed and accuracy, or the relative costs of stop errors and go errors. We demonstrate that our rational decision-making model naturally gives rise to basic behavioral characteristics consistently observed for this paradigm, as well as more subtle effects due to contextual factors such as reward contingencies or motivational factors. Furthermore, we show that the classical race model can be seen as a computationally simpler, perhaps neurally plausible, approximation to optimal decision-making. This conceptual link allows us to predict how the parameters of the race model, such as the stopping latency, should change with task parameters and individual experiences/ability.

  12. Maximizing exposure therapy: an inhibitory learning approach.

    Science.gov (United States)

    Craske, Michelle G; Treanor, Michael; Conway, Christopher C; Zbozinek, Tomislav; Vervliet, Bram

    2014-07-01

    Exposure therapy is an effective approach for treating anxiety disorders, although a substantial number of individuals fail to benefit or experience a return of fear after treatment. Research suggests that anxious individuals show deficits in the mechanisms believed to underlie exposure therapy, such as inhibitory learning. Targeting these processes may help improve the efficacy of exposure-based procedures. Although evidence supports an inhibitory learning model of extinction, there has been little discussion of how to implement this model in clinical practice. The primary aim of this paper is to provide examples to clinicians for how to apply this model to optimize exposure therapy with anxious clients, in ways that distinguish it from a 'fear habituation' approach and 'belief disconfirmation' approach within standard cognitive-behavior therapy. Exposure optimization strategies include (1) expectancy violation, (2) deepened extinction, (3) occasional reinforced extinction, (4) removal of safety signals, (5) variability, (6) retrieval cues, (7) multiple contexts, and (8) affect labeling. Case studies illustrate methods of applying these techniques with a variety of anxiety disorders, including obsessive-compulsive disorder, posttraumatic stress disorder, social phobia, specific phobia, and panic disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Cytokine profile and pathology in human leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ribeiro-de-Jesus A.

    1998-01-01

    Full Text Available The clinical spectrum of leishmaniasis and control of the infection are influenced by the parasite-host relationship. The role of cellular immune responses of the Th1 type in the protection against disease in experimental and human leishmaniasis is well established. In humans, production of IFN-g is associated with the control of infection in children infected by Leishmania chagasi. In visceral leishmaniasis, an impairment in IFN-g production and high IL-4 and IL-10 levels (Th2 cytokines are observed in antigen-stimulated peripheral blood mononuclear cells (PBMC. Moreover, IL-12 restores IFN-g production and enhances the cytotoxic response. IL-10 is the cytokine involved in down-regulation of IFN-g production, since anti-IL-10 monoclonal antibody (mAb restores in vitro IFN-g production and lymphoproliferative responses, and IL-10 abrogates the effect of IL-12. In cutaneous and mucosal leishmaniasis, high levels of IFN-g are found in L. amazonensis-stimulated PBMC. However, low or absent IFN-g levels were observed in antigen-stimulated PBMC from 50% of subjects with less than 60 days of disease (24 ± 26 pg/ml. This response was restored by IL-12 (308 ± 342 pg/ml and anti-IL-10 mAb (380 ± 245 pg/ml (P<0.05. Later during the disease, high levels of IFN-g and TNF-a are produced both in cutaneous and mucosal leishmaniasis. After treatment there is a decrease in TNF-a levels (366 ± 224 pg/ml before treatment vs 142 ± 107 pg/ml after treatment, P = 0.02. Although production of IFN-g and TNF-a might be involved in the control of parasite multiplication in the early phases of Leishmania infection, these cytokines might also be involved in the tissue damage seen in tegumentary leishmaniasis

  14. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation.

    Directory of Open Access Journals (Sweden)

    Yung-Chun Chuang

    Full Text Available Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF induced reactive oxygen species (ROS production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC. In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation.

  15. Insights into the role of macrophage migration inhibitory factor in obesity and insulin resistance.

    LENUS (Irish Health Repository)

    Finucane, Orla M

    2012-11-01

    High-fat diet (HFD)-induced obesity has emerged as a state of chronic low-grade inflammation characterised by a progressive infiltration of immune cells, particularly macrophages, into obese adipose tissue. Adipose tissue macrophages (ATM) present immense plasticity. In early obesity, M2 anti-inflammatory macrophages acquire an M1 pro-inflammatory phenotype. Pro-inflammatory cytokines including TNF-α, IL-6 and IL-1β produced by M1 ATM exacerbate local inflammation promoting insulin resistance (IR), which consequently, can lead to type-2 diabetes mellitus (T2DM). However, the triggers responsible for ATM recruitment and activation are not fully understood. Adipose tissue-derived chemokines are significant players in driving ATM recruitment during obesity. Macrophage migration inhibitory factor (MIF), a chemokine-like inflammatory regulator, is enhanced during obesity and is directly associated with the degree of peripheral IR. This review focuses on the functional role of macrophages in obesity-induced IR and highlights the importance of the unique inflammatory cytokine MIF in propagating obesity-induced inflammation and IR. Given MIF chemotactic properties, MIF may be a primary candidate promoting ATM recruitment during obesity. Manipulating MIF inflammatory activities in obesity, using pharmacological agents or functional foods, may be therapeutically beneficial for the treatment and prevention of obesity-related metabolic diseases.

  16. Inhibitory effect of cucurbitacin B on imiquimod-induced skin inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng Jun; Shin, Jung-Min; Choi, Dae-Kyoung; Lim, Seul Ki [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Yoon, Tae-Jin [Department of Dermatology, School of Medicine, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Young Ho [Department of Anatomy, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Sohn, Kyung-Cheol; Im, Myung; Lee, Young; Seo, Young-Joon; Kim, Chang Deok [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jeung-Hoon, E-mail: jhoon@cnu.ac.kr [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Skin Med Company, Daejeon (Korea, Republic of)

    2015-04-17

    Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin B resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis. - Highlights: • Cucurbitacin B has a potential for inhibiting the growth of keratinocytes. • Cucurbitacin B inhibits imiquimod-induced inflammatory reaction in keratinocytes. • Cucurbitacin B inhibits imiquimod-induced psoriasiform dermatitis in experimental animal.

  17. Overview of Macrophage Migration Inhibitory Factor (MIF as a Potential Biomarker Relevant to Adiposity

    Directory of Open Access Journals (Sweden)

    Jun Nishihira

    2012-07-01

    Full Text Available The cytokine “macrophage migration inhibitory factor (MIF” is generally recognized as a proinflammatory cytokine, and MIF is involved in broad range of acute and chronic inflammatory states. With regard to glucose metabolism and insulin secretion, MIF is produced by pancreatic β cells and acts as a positive regulator of insulin secretion. In contrast, it is evident that MIF expressed in adipose tissues causes insulin resistance. Concerning MIF gene analysis, we found four alleles: 5-, 6-, 7-and 8-CATT at position −794 of MIF gene in a Japanese population. Genotypes without the 5-CATT allele were more common in the obese subjects than in the lean or overweight groups. It is conceivable that promoter polymorphism in the MIF gene is profoundly linked with obesity relevant to lifestyle diseases, such as diabetes. Obesity has become a serious social issue due to the inappropriate nutritional balance, and the consumption of functional foods (including functional foods to reduce fat mass is expected to overcome this issue. In this context, MIF would be a reliable quantitative biomarker to evaluate the effects of functional foods on adiposity.

  18. Synthesis of new 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine derivatives with an incorporated thiazolidinone moiety and testing their possible serine protease and cercarial elastase inhibitory effects with a possible prospective to block penetration of Schistosoma mansoni cercariae into the mice skin.

    Science.gov (United States)

    Bahgat, Mahmoud Mohamed; Maghraby, Amany Sayed; Heiba, Mogeda Emam; Ruppel, Andreas; Fathalla, Omar Abd-elfattah Mohamed

    2005-09-01

    5-Substituted 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine were synthesized by interaction of 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonylhydrazide with some aldehydes to give the corresponding Schiff-bases, which after cyclization gave corresponding thiazolidinones. For some of the thiazolidinones, Mannich bases reaction was carried out. All the derivatives were tested for their possible inhibitory effect on Schistosoma mansoni cercarial elastase (CE). Only, N-(4-methylbenzyledine)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-sulfonylhydrazide was found to have potent inhibitory effect on the CE activity with IC50 = 264 microM. Upon its use as a paint for mice tails before infection with S. mansoni cercariae, the compound formulated in jojoba oil caused a significant reduction (93%; P-value = 0.0002) in the worm burden. IgG & IgM in mice sera were measured by using several S. mansoni antigens by ELISA. Sera from treated infected mice (TIM) 2, 4, and 6 weeks (W) post infection (PI) showed 1.2 folds lower, 1.2 folds higher, 1.7 folds lower IgM reactivity against soluble cercarial antigenic preparation (CAP), respectively, when compared with sera collected from infected untreated mice (IUM). Sera from TIM 2, 4, and 6WPI showed 1.3, 1.6, and 1.7 folds higher IgG reactivity, respectively against CAP than the IgG reactivity from IUM. Sera from TIM 2, 4 and 6WPI showed 1.5, 1.2 folds lower and 1.4 folds higher IgM reactivity, respectively against soluble worm antigenic preparation (SWAP) when compared with sera collected from IUM. Sera from TIM 2, 4, and 6WPI showed 1.4, 1 folds lower and 1 fold higher IgG reactivity, respectivley to SWAP when compared with sera from IUM. Sera from TIM 2, 4, and 6WPI had generaly lower IgM and IgG reactivities against soluble egg antigen (SEA) when compared with sera from IUM.

  19. Cytokines in Alzheimer's disease and vascular dementia.

    Science.gov (United States)

    Angelopoulos, P; Agouridaki, H; Vaiopoulos, H; Siskou, E; Doutsou, K; Costa, V; Baloyiannis, S I

    2008-12-01

    The levels of interleukin 1beta, interleukin 6, and interleukin 10 were elevated in the serum of patients with dementia. No statistically significant correlation was recorded in the interleukin levels among patients with Alzheimer's disease and vascular dementia. Also, no significant correlation was observed in the interleukin levels in the serum and the severity of dementia. However, a significant correlation was found between IL-6 and tumor necrosis factor-alpha (TNF-alpha) levels and age. The levels of IL-1beta and IL-6 were positively correlated with hypertension, and IL-2 levels were negatively correlated. No correlation was found between depressive symptoms and levels of cytokines in the serum.

  20. Cytokines in the modulation of eosinophilia

    Directory of Open Access Journals (Sweden)

    Faccioli Lúcia H

    1997-01-01

    Full Text Available In this review we discuss our recently results showing interleukin 5 (IL-5 involvement in eosinophil migration and in the maintenance of eosinophilia in blood, bone marrow, lung and peritoneal cavity, in a visceral larva migrans syndrome model using guinea-pigs infected with Toxocara canis. We also describe the sequential release of TNF-alpha and IL-8 during the course of infection, and the interaction between these cytokines and IL-5 during infection. Finally we propose a new biological role for IL-5, at least in our model, as a modulator of IL-8 release and secretion.

  1. Hypothyroidism and depression: Are cytokines the link?

    Directory of Open Access Journals (Sweden)

    Parimal S Tayde

    2017-01-01

    Full Text Available Context: Primary hypothyroidism has been thought of as an inflammatory condition characterized by raised levels of cytokines such as C-reactive protein (CRP, interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α. Depression is also well known to occur in hypothyroidism. Depression is also characterized by elevated inflammatory cytokines. We planned to study whether cytokines play an important part in linking these two conditions. Objectives: (1 To know the prevalence of depression in overt hypothyroidism due to autoimmune thyroid disease. (2 To correlate the levels of inflammatory markers with the occurrence of depression. (3 To study the effect of levothyroxine on inflammatory markers and depression. Materials and Methods: In this longitudinal, case–controlled study, 33 patients with autoimmune hypothyroidism (thyroid-stimulating hormone >10 uIU/ml were included with 33 age-, sex-, and body max index-matched healthy controls. Individuals were tested for Serum TNF-α, IL-6, high-sensitivity-CRP (hs-CRP. They were assessed for depression using Montgomery Asberg Depression Rating Scale (MADRS and World Health Organization Quality of Life (QOL Scale. Patients received L Thyroxine titrated to achieve euthyroidism and were reassessed for inflammatory markers and cognitive dysfunction. Results: Nineteen patients (57% had mild to moderate depression (MADRS >11. After 6 months of treatment, eight patients (42% had remission of depression with significant improvement in QOL scores (P < 0.05. TNF-α, IL-6, and hs-CRP were significantly elevated in patients compared with controls and reduced with therapy but did not reach baseline as controls. The change in inflammatory markers correlated with improvement in QOL scores in social and environmental domains (P < 0.01. Conclusions: Primary autoimmune hypothyroidism is an inflammatory state characterized by elevated cytokines which decline with LT4 therapy. It is associated with depression and poor

  2. Cytokine production capacity in depression and anxiety.

    Science.gov (United States)

    Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W

    2016-05-31

    Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18-65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: interleukin (IL)-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health

  3. Inhibitory effects of arbutin-beta-glycosides synthesized from enzymatic transglycosylation for melanogenesis.

    Science.gov (United States)

    Jun, So-Young; Park, Kyung-Min; Choi, Ki-Won; Jang, Min Kyung; Kang, Hwan Yul; Lee, Sang-Hyeon; Park, Kwan-Hwa; Cha, Jaeho

    2008-04-01

    To develop a new skin whitening agent, arbutin-beta-glycosides were synthesized and evaluated for their melanogenesis inhibitory activities. Three active compounds were synthesized via the transglycosylation reaction of Thermotoga neapolitana beta-glucosidase and purified by recycling preparative HPLC. As compared with arbutin (IC(50 )= 6 mM), the IC(50 )values of these compounds were 8, 10, and 5 mM for beta-D -glucopyranosyl-(1-->6)-arbutin, beta-D: -glucopyranosyl-(1-->4)-arbutin, and beta-D -glucopyranosyl-(1-->3)-arbutin, respectively. beta-D: -Glucosyl-(1-->3)-arbutin also exerted the most profound inhibitory effects on melanin synthesis in B16F10 melanoma cells. Melanin synthesis was inhibited to a significant degree at 5 mM, at which concentration the melanin content was reduced to below 70% of that observed in the untreated cells. Consequently, beta-D: -glucopyranosyl-(1-->3)-arbutin is a more effective depigmentation agent and is also less cytotoxic than the known melanogenesis inhibitor, arbutin.

  4. ASK2 Bioactive Compound Inhibits MDR Klebsiella pneumoniae by Antibiofilm Activity, Modulating Macrophage Cytokines and Opsonophagocytosis

    Directory of Open Access Journals (Sweden)

    Cheepurupalli Lalitha

    2017-08-01

    Full Text Available The emergence and spread of pathogens harboring extended spectrum beta-lactamase (ESBL like carbapenem resistant Gram negative bacteria are the major emerging threat to public health. Of particular concern Klebsiella pneumoniae carbapenamase- producing strains have been recorded worldwide. Catheter associated urinary tract infections (CAUTI caused by K. pneumoniae are significantly associated with morbidity and mortality. Hence the present work was aimed to develop a strategy for addressing these issues through an innovative approach of antibiofilm and immunomodulation. These two independent activities were analyzed in a Streptomyces derived ASK2 bioactive compound. While analysing the effect of sub-minimum inhibitory concentrations (sub-MICs, 0.5x of Minimum Inhibitory Concentration (MIC was found to be more effective in preventing biofilm formation on coverslip and silicone catheter. The minimum biofilm eradication concentration (MBEC was found to be 15-fold higher MIC with eradication of 75% of 3 day old biofilm. Apart from its antibiofilm potential, ASK2 also acts as an opsonin and enhances phagocytic response of macrophages against multidrug resistant K. pneumoniae. In addition, ASK2 resulted in elevated levels of nitric oxide generation by the macrophages and has a stimulating effect on IL-12, IFN-γ, and TNF-α proinflammatory cytokines. The opsonic role of ASK2 and its potential in modulating proinflammatory cytokines secreted by macrophages implies the importance of ASK2 in modulating cellular immune response of macrophages against MDR K. pneumoniae. The present study proposes ASK2 as a promising candidate for treating MDR K. pneumoniae infections with its dual properties of antibiofilm and immunomodulatory activities.

  5. ASK2 Bioactive Compound Inhibits MDRKlebsiella pneumoniaeby Antibiofilm Activity, Modulating Macrophage Cytokines and Opsonophagocytosis.

    Science.gov (United States)

    Lalitha, Cheepurupalli; Raman, Thiagarajan; Rathore, Sudarshan S; Ramar, Manikandan; Munusamy, Arumugam; Ramakrishnan, Jayapradha

    2017-01-01

    The emergence and spread of pathogens harboring extended spectrum beta-lactamase (ESBL) like carbapenem resistant Gram negative bacteria are the major emerging threat to public health. Of particular concern Klebsiella pneumoniae carbapenamase- producing strains have been recorded worldwide. Catheter associated urinary tract infections (CAUTI) caused by K. pneumoniae are significantly associated with morbidity and mortality. Hence the present work was aimed to develop a strategy for addressing these issues through an innovative approach of antibiofilm and immunomodulation. These two independent activities were analyzed in a Streptomyces derived ASK2 bioactive compound. While analysing the effect of sub-minimum inhibitory concentrations (sub-MICs), 0.5x of Minimum Inhibitory Concentration (MIC) was found to be more effective in preventing biofilm formation on coverslip and silicone catheter. The minimum biofilm eradication concentration (MBEC) was found to be 15-fold higher MIC with eradication of 75% of 3 day old biofilm. Apart from its antibiofilm potential, ASK2 also acts as an opsonin and enhances phagocytic response of macrophages against multidrug resistant K. pneumoniae . In addition, ASK2 resulted in elevated levels of nitric oxide generation by the macrophages and has a stimulating effect on IL-12, IFN-γ, and TNF-α proinflammatory cytokines. The opsonic role of ASK2 and its potential in modulating proinflammatory cytokines secreted by macrophages implies the importance of ASK2 in modulating cellular immune response of macrophages against MDR K. pneumoniae . The present study proposes ASK2 as a promising candidate for treating MDR K. pneumoniae infections with its dual properties of antibiofilm and immunomodulatory activities.

  6. Rimexolone inhibits proliferation, cytokine expression and signal transduction of human CD4+ T-cells.

    Science.gov (United States)

    Spies, Cornelia M; Gaber, Timo; Hahne, Martin; Naumann, Lydia; Tripmacher, Robert; Schellmann, Saskia; Stahn, Cindy; Burmester, Gerd-Rüdiger; Radbruch, Andreas; Buttgereit, Frank

    2010-06-15

    Rimexolone is a lipophilic glucocorticoid drug used for local application. Only few data are available describing its effects on immune cell functions. In this study we investigated the effects of rimexolone on the proliferation of human CD4+ T-cells using dexamethasone as standard reference. Isolated CD4+ T-cells were pre-incubated with rimexolone or dexamethasone at different concentrations for 10 min (10(-11)/10(-8)/10(-5)M) and stimulated with anti-CD3/anti-CD28 for 96 h. Proliferation was determined by flow cytometry. The percentage of dividing cells was significantly reduced by 10(-5)M rimexolone and dexamethasone; however, the average number of cell divisions was unchanged. In addition, production of IL-2 and other cytokines was reduced by both glucocorticoids at 10(-5)M. Interestingly, we observed a rimexolone-induced down-regulation of CD4 expression in unstimulated and non-dividing cells. The inhibitory effects on proliferation and CD4 expression could be blocked by the glucocorticoid-antagonist RU486 and were not due to glucocorticoid-induced apoptosis. Rimexolone and dexamethasone showed a similar potential to induce IkappaBalpha gene expression. We demonstrate rimexolone and dexamethasone to impair T-cell signalling pathways by rapid non-genomic suppression of the phosphorylation of Akt, p38 and ERK. We conclude that rimexolone and dexamethasone inhibit T-cell proliferation as well as cytokine production of activated CD4+ T-cells in a similar manner. As these inhibitory effects predominantly occur at high concentrations, a relatively high occupation-rate of cytosolic glucocorticoid receptors is needed, but receptor-mediated non-genomic effects may also be involved. It is implied that these effects contribute to the well-known beneficial anti-inflammatory and immunomodulatory effects of glucocorticoid therapy. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. [The correlation between adrenal corticosteroids and cytokines expressions in mice of different syndromes].

    Science.gov (United States)

    Pan, Zhi-Qiang; Fang, Zhao-Qin; Lu, Wen-Li

    2012-07-01

    To study the cytokines expressions in the adrenal gland and its correlation with serum adrenal corticosteroids in mice of different syndromes. Using the quantitative four diagnosis and syndrome differentiation methods, 60 normal mice and 190 H22 liver cancer bearing mice were syndrome typed. Serum corticosterone and aldosterone were tested by ELISA, and mRNA expressions of cytokines in the adrenal gland were detected using Real-time PCR. Mice of different syndromes were obtained, such as normal mice of no syndrome, normal mice of vigorous qi syndrome, normal mice of qi deficiency syndrome, liver cancer bearing mice of excessive evil toxic syndrome, liver cancer bearing mice of evil lying in the middle syndrome, liver cancer bearing mice of weak evil toxic syndrome, and liver cancer bearing mice of poisonous pathogenic factors and qi deficiency syndrome. The serum corticosteroids were significantly higher in the liver cancer bearing mice than in the normal mice (P corticosteroid level in liver cancer bearing mice could possibly be induced by chronic tumor stress, partial cytokines were involved in the synthesis and secretion of the adrenal hormone. Of them, IL-6 might positively regulate the secretion of corticosteroids, while IL-1beta, IL-2, IL-5, IL-12alpha, IL-12beta, and TNF-alpha might negatively regulate their secretions.

  8. Efficient Maturation and Cytokine Production of Neonatal DCs Requires Combined Proinflammatory Signals

    Directory of Open Access Journals (Sweden)

    Doreen Krumbiegel

    2005-01-01

    Full Text Available Specific functional properties of dendritic cells (DCs have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs. Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNγ, CD40L, TNFα, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNγ proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.

  9. In vitro treatment with interleukin-2 normalizes type-1 cytokine production by lymphocytes from elderly.

    Science.gov (United States)

    Lio, D; Balistreri, C R; Candore, G; D'Anna, C; Di Lorenzo, G; Gervasi, F; Listì, F; Scola, L; Caruso, C

    2000-05-01

    The term immunosenescence is taken to mean the deterioration of immune function seen in elderly, which is manifested in increased susceptibility to infectious diseases, neoplasias, and autoimmune diseases. It is only recently that we have begun to understand the cellular and molecular changes involved. Of special interest in this regard are observations of a decline in synthesis of Type-1 cytokines which predisposes to diminished cell mediated immunity. We have evaluated the production of type 1 cytokines in old and young donors either in presence or in absence of recombinant interleukin-2 (rIL-2). Lymphocytes were stimulated with plastic bound anti-CD3 and after 48 h the supernatants were harvested and stored at -70 degrees C until assay. Type 1 cytokine, i.e. IL-12 and interferon-gamma (IFN-gamma) production by anti-CD3 stimulated lymphocytes from old subjects was significantly reduced when compared to that from young ones. This impaired production was reversed by adding rIL-2 in the culture medium. In previous studies on aged subjects, we have been able to demonstrate that in vitro treatment with rIL-2 completely restores proliferative responses and partially rescues the increased apoptosis of T cell cultures. Present and previous results suggest that rIL-2 completely restores Type 1 responses by overcoming the well known costimulation deficit of aged lymphocytes.

  10. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    Science.gov (United States)

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  11. The Cross-talk between Tristetraprolin and Cytokines in Cancer.

    Science.gov (United States)

    Guo, Jian; Wang, Hao; Jiang, Shiyi; Xia, Jiazeng; Jin, Shimao

    2017-11-24

    Cytokines are small secreted proteins serving as vital mediators that mediate the host immune responses. Transcription and post-transcription play a critical role in cytokine expression through the regulation of message RNA (mRNA) cytoplasmic localization, translation initiation and decay. Researches have been conducted to reveal regulatory mechanisms of cytokines production in cells involved in cancer. AU-rich element (ARE) can regulate the degradation and translation of mRNA by connecting with specific ARE binding proteins. It is now clear that tristetraprolin (TTP), as the most common ARE binding protein, negatively regulates many aspects of the cytokines through binding to the AREs in the 3'-untranslated region (3'UTR) of mRNA. Furthermore, some certain cytokines have an impact on TTP expression and function. Therefore, the cross-regulation between cytokines and TTP has come into sight. The complicated regulatory networks between cytokines and TTP are closely related to tumorigenesis. In this review, we summarize specific regulatory mechanisms of cytokine mRNAs. We focus on how TTP negatively regulates inflammatory and oncogenic cytokines expression after combining with AREs, we also pay attention to some cytokines mediating the expression of TTP and their cross-talk in various cancers in detail. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Do Children with Better Inhibitory Control Donate More? Differentiating between Early and Middle Childhood and Cool and Hot Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-12-01

    Full Text Available Inhibitory control may play an important part in prosocial behavior, such as donating behavior. However, it is not clear at what developmental stage inhibitory control becomes associated with donating behavior and which aspects of inhibitory control are related to donating behavior during development in early to middle childhood. The present study aimed to clarify these issues with two experiments. In Experiment 1, 103 3- to 5-year-old preschoolers completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results indicated that there were no relationships between cool or hot inhibitory control and donating behavior in the whole group and each age group of the preschoolers. In Experiment 2, 140 elementary school children in Grades 2, 4, and 6 completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results showed that inhibitory control was positively associated with donating behavior in the whole group. Cool and hot inhibitory control respectively predicted donating behavior in the second and sixth graders. Therefore, the present study reveals that donating behavior increasingly relies on specific inhibitory control, i.e., hot inhibitory control as children grow in middle childhood.

  13. Effect of perceived stress on cytokine production in healthy college students.

    Science.gov (United States)

    Sribanditmongkol, Vorachai; Neal, Jeremy L; Patrick, Thelma E; Szalacha, Laura A; McCarthy, Donna O

    2015-04-01

    Chronic psychological stress impairs antibody synthesis following influenza vaccination. Chronic stress also increases circulating levels of proinflammatory cytokines and glucocorticoids in elders and caregivers, which can impair antibody synthesis. The purpose of this study was to determine whether psychological stress increases ex vivo cytokine production or decreases glucocorticoid sensitivity (GCS) of peripheral blood leukocytes from healthy college students. A convenience sample of Reserve Officer Training Corps (ROTC) students completed the Perceived Stress Scale (PSS). Whole blood was incubated in the presence of influenza vaccine and dexamethasone to evaluate production of interleukin-6 (IL-6), interleukin-1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). Multiple regression models controlling for age, gender, and grade point average revealed a negative relationship between PSS and GCS for vaccine-stimulated production of IL-1β, IL-6, and TNF-α. These data increase our understanding of the complex relationship between chronic stress and immune function. © The Author(s) 2014.

  14. Multiple Inhibitory Pathways Contribute to Lung CD8+ T Cell Impairment and Protect against Immunopathology during Acute Viral Respiratory Infection.

    Science.gov (United States)

    Erickson, John J; Rogers, Meredith C; Tollefson, Sharon J; Boyd, Kelli L; Williams, John V

    2016-07-01

    Viruses are frequent causes of lower respiratory infection (LRI). Programmed cell death-1 (PD-1) signaling contributes to pulmonary CD8(+) T cell (TCD8) functional impairment during acute viral LRI, but the role of TCD8 impairment in viral clearance and immunopathology is unclear. We now find that human metapneumovirus infection induces virus-specific lung TCD8 that fail to produce effector cytokines or degranulate late postinfection, with minimally increased function even in the absence of PD-1 signaling. Impaired lung TCD8 upregulated multiple inhibitory receptors, including PD-1, lymphocyte activation gene 3 (LAG-3), T cell Ig mucin 3, and 2B4. Moreover, coexpression of these receptors continued to increase even after viral clearance, with most virus-specific lung TCD8 expressing three or more inhibitory receptors on day 14 postinfection. Viral infection also increased expression of inhibitory ligands by both airway epithelial cells and APCs, further establishing an inhibitory environment. In vitro Ab blockade revealed that multiple inhibitory receptors contribute to TCD8 impairment induced by either human metapneumovirus or influenza virus infection. In vivo blockade of T cell Ig mucin 3 signaling failed to enhance TCD8 function or reduce viral titers. However, blockade of LAG-3 in PD-1-deficient mice restored TCD8 effector functions but increased lung pathology, indicating that LAG-3 mediates lung TCD8 impairment in vivo and contributes to protection from immunopathology during viral clearance. These results demonstrate that an orchestrated network of pathways modifies lung TCD8 functionality during viral LRI, with PD-1 and LAG-3 serving prominent roles. Lung TCD8 impairment may prevent immunopathology but also contributes to recurrent lung infections. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Relationship of cytokines and cytokine signaling to immunodeficiency disorders in the mouse

    Directory of Open Access Journals (Sweden)

    Morawetz R.A.

    1998-01-01

    Full Text Available The contributions of cytokines to the development and progression of disease in a mouse model of retrovirus-induced immunodeficiency (MAIDS are controversial. Some studies have indicated an etiologic role for type 2 cytokines, while others have emphasized the importance of type 1 cytokines. We have used mice deficient in expression of IL-4, IL-10, IL-4 and IL-10, IFN-g, or ICSBP - a transcriptional protein involved in IFN signaling - to examine their contributions to this disorder. Our results demonstrate that expression of type 2 cytokines is an epiphenomenon of infection and that IFN-g is a driving force in disease progression. In addition, exogenously administered IL-12 prevents many manifestations of disease while blocking retrovirus expression. Interruption of the IFN signaling pathways in ICSBP-/- mice blocks induction of MAIDS. Predictably, ICSBP-deficient mice exhibit impaired responses to challenge with several other viruses. This immunodeficiency is associated with impaired production of IFN-g and IL-12. Unexpectedly, however, the ICSBP-/- mice also develop a syndrome with many similarities to chronic myelogenous leukemia in humans. The chronic phase of this disease is followed by a fatal blast crisis characterized by clonal expansions of undifferentiated cells. ICSBP is thus an important determinant of hematopoietic growth and differentiation as well as a prominent signaling molecule for IFNs

  16. Cytokine and anti-cytokine therapies in prevention or treatment of fibrosis in IBD

    Science.gov (United States)

    Jacob, Noam; Targan, Stephan R

    2016-01-01

    The frequency of fibrosing Crohn’s disease (CD) is significant, with approximately 40% of CD patients with ileal disease developing clinically apparent strictures throughout their lifetime. Although strictures may be subdivided into fibrotic, inflammatory, or mixed forms, despite immunosuppressive therapy in CD patients in the form of steroids or immunomodulators, the frequency of fibrostenosing complications has still remained significant. A vast number of genetic and epigenetic variables are thought to contribute to fibrostenosing disease, including those that affect cytokine biology, and therefore highlight the complexity of disease, but also shed light on targetable pathways. Exclusively targeting fibrosis may be difficult, however, because of the relatively slow evolution of fibrosis in CD, and the potential adverse effects of inhibiting pathways involved in tissue repair and mucosal healing. Acknowledging these caveats, cytokine-targeted therapy has become the mainstay of treatment for many inflammatory conditions and is being evaluated for fibrotic disorders. The question of whether anti-cytokine therapy will prove useful for intestinal fibrosis is, therefore, acutely relevant. This review will highlight some of the current therapeutics targeting cytokines involved in fibrosis. PMID:27536363

  17. Anti-cytokine autoantibodies in autoimmune diseases

    Science.gov (United States)

    Cappellano, Giuseppe; Orilieri, Elisabetta; Woldetsadik, Abiy D; Boggio, Elena; Soluri, Maria F; Comi, Cristoforo; Sblattero, Daniele; Chiocchetti, Annalisa; Dianzani, Umberto

    2012-01-01

    An overview of the current literature is showing that autoantibodies (AutoAbs) against cytokines are produced in several pathological conditions, including autoimmune diseases, but can also be detected in healthy individuals. In autoimmune diseases, these AutoAbs may also be prognostic markers, either negative (such as AutoAbs to IL-8 and IL-1α in rheumatoid arthritis) or positive (such as AutoAbs to IL-6 in systemic sclerosis and those to osteopontin in rheumatoid arthritis). They may have neutralizing activity and influence the course of the physiological and pathological immune responses. High levels of AutoAbs against cytokines may even lead to immunodeficiency, such as those to IL-17 in autoimmune polyendocrine syndrome type I or those to IFN-γ in mycobacterial infections. Their role in human therapy may be exploited not only through passive immunization but also through vaccination, which may improve the costs for long lasting treatments of autoimmune diseases. Detection and quantification of these AutoAbs can be profoundly influenced by the technique used and standardization of these methods is needed to increase the value of their analysis. PMID:23885320

  18. Angiogenic Factors and Cytokines in Diabetic Retinopathy

    Science.gov (United States)

    Abcouwer, Steven F.

    2013-01-01

    Diabetic retinopathy (DR) is a sight-threatening complication of both type-1 and type-2 diabetes. The recent success of treatments inhibiting the function of vascular endothelial growth factor (VEGF) demonstrates that specific targeting of a growth factor responsible for vascular permeability and growth is an effective means of treating DR-associated vascular dysfunction, edema and angiogenesis. This has stimulated research of alternative therapeutic targets involved in the control of retinal vascular function. However, additional treatment options and preventative measures are still needed and these require a greater understanding of the pathological mechanisms leading to the disturbance of retinal tissue homeostasis in DR. Although severe DR can be treated as a vascular disease, abundant data suggests that inflammation is also occurring in the diabetic retina.Thus, anti-inflammatory therapies may also be useful for treatment and prevention of DR. Herein, the evidence for altered expression of angiogenic factors and cytokines in DR is reviewed and possible mechanisms by which the expression of VEGF and cytokines may be increased in the diabetic retina are examined. In addition, the potential role for microglial activation in diabetic retinal neuroinflammation is explored. PMID:24319628

  19. Interplay of cytokines in preterm birth

    Directory of Open Access Journals (Sweden)

    Monika Pandey

    2017-01-01

    Full Text Available Preterm infants (i.e., born before <37 wk of gestation are at increased risk of morbidity and mortality and long-term disabilities. Global prevalence of preterm birth (PTB varies from 5 to 18 per cent. There are multiple aetiological causes and factors associated with PTB. Intrapartum infections are conventionally associated with PTB. However, maternal genotype modulates response to these infections. This review highlights the association of cytokine gene polymorphisms and their levels with PTB. Varying PTB rates across the different ethnic groups may be as a result of genetically mediated varying cytokines response to infections. Studies on genetic variations in tumour necrosis factor-alpha, interleukin-1 alpha (IL-1α, IL-1β, IL-6, IL-10 and toll-like receptor-4 genes and their association with PTB, have been reviewed. No single polymorphism of the studied genes was found to be associated with PTB. However, increased maternal levels of IL-1β and IL-6 and low levels of IL-10 have been found to be associated with PTB.

  20. Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus.

    Science.gov (United States)

    Povarov, I S; Kondratenko, R V; Derevyagin, V I; Ostrovskaya, R U; Skrebitskii, V G

    2015-01-01

    Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons.

  1. The Biochemical Anatomy of Cortical Inhibitory Synapses

    Science.gov (United States)

    Heller, Elizabeth A.; Zhang, Wenzhu; Selimi, Fekrije; Earnheart, John C.; Ślimak, Marta A.; Santos-Torres, Julio; Ibañez-Tallon, Ines; Aoki, Chiye; Chait, Brian T.; Heintz, Nathaniel

    2012-01-01

    Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD) exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from the cerebral cortex. We show that these synaptic complexes contain a variety of neurotransmitter receptors, neural cell-scaffolding and adhesion molecules, but that they are entirely lacking in cell signaling proteins. This fundamental distinction between the functions of type 1 and type 2 synapses in the nervous system has far reaching implications for models of synaptic plasticity, rapid adaptations in neural circuits, and homeostatic mechanisms controlling the balance of excitation and inhibition in the mature brain. PMID:22768092

  2. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    to the subfamily of protein Z-type serpins and the amino acid sequence is 70%, identical with the barley serpins BSZ4 and BSZx and 27-33% identical with human serpins such as alpha(1)-proteinase inhibitor, antithrombin III, and plasminogen activator inhibitor. The cDNA was subcloned in the pET3d expression vector......, equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  3. Impaired inhibitory control in recreational cocaine users.

    Directory of Open Access Journals (Sweden)

    Lorenza S Colzato

    Full Text Available Chronic use of cocaine is associated with impairment in response inhibition but it is an open question whether and to which degree findings from chronic users generalize to the upcoming type of recreational users. This study compared the ability to inhibit and execute behavioral responses in adult recreational users and in a cocaine-free-matched sample controlled for age, race, gender distribution, level of intelligence, and alcohol consumption. Response inhibition and response execution were measured by a stop-signal paradigm. Results show that users and non users are comparable in terms of response execution but users need significantly more time to inhibit responses to stop-signals than non users. Interestingly, the magnitude of the inhibitory deficit was positively correlated with the individuals lifetime cocaine exposure suggesting that the magnitude of the impairment is proportional to the degree of cocaine consumed.

  4. Melatonin, an inhibitory agent in breast cancer.

    Science.gov (United States)

    Nooshinfar, Elaheh; Safaroghli-Azar, Ava; Bashash, Davood; Akbari, Mohammad Esmaeil

    2017-01-01

    The heterogeneous nature of breast cancer makes it one of the most challenging cancers to treat. Due to the stimulatory effect of estrogen in mammary cancer progression, anti-estrogenic agents like melatonin have found their way into breast cancer treatment. Further studies confirmed a reverse correlation between nocturnal melatonin levels and the development of mammary cancer. In this study we reviewed the molecular inhibitory effects of melatonin in breast cancer therapy. To open access the articles, Google scholar and science direct were used as a motor search. We used from valid external and internal databases. To reach the search formula, we determined mean key words like breast cancer, melatonin, cell proliferation and death. To retrieval the related articles, we continuously search the articles from 1984 to 2015. The relevance and the quality of the 480 articles were screened; at least we selected 80 eligible articles about melatonin molecular mechanism in breast cancer. The results showed that melatonin not only inhibits breast cancer cell growth, but also is capable of inhibiting angiogenesis, cancer cell invasion, and telomerase activity. Interestingly this hormone is able to induce apoptosis through the suppression or induction of a wide range of signaling pathways. Moreover, it seems that the concomitant administration of melatonin with other conventional chemotherapy agents had beneficial effects for patients with breast cancer, by alleviating unfavorable effects of those agents and enhancing their efficacy. The broad inhibitory effects of melatonin in breast cancer make it a promising agent and may add it to the list of potential drugs in treatment of this cancer.

  5. Modulation of innate immune mechanisms to enhance vaccine induced immunity: Role of co-inhibitory molecules

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2016-05-01

    Full Text Available No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several anti-leishmanial vaccine formulations have been tested in various animal models including genetically modified live attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells i.e., dendritic cells (DC and macrophages (M. Further, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs, and to condition the infected M towards anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of anti-microbial reactive oxygen, nitrogen molecules and pro-inflammatory cytokines such as IFN-, IL-12 and TNF-α. These early events limit the activation of TH1 effector cells and set the stage for pathogenesis. Further, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells, and TH2 biased immunity that results in production of anti-inflammatory cytokines such as TGF-, and IL-10. More recent studies have also documented the induction of co-inhibitory ligands such as CTLA-4, PD-L1, CD200 and Tim-3 that induce exhaustion and/or non-proliferation in antigen experienced T cells. Most of these studies focus on viral infections in chronic phase thus limiting the direct application of these results from these studies to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine induced protective immunity can be modulated using strategies that enhance the co-stimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules such as PD-L1 and CD200. In this

  6. Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients.

    Directory of Open Access Journals (Sweden)

    Masaru Takeuchi

    Full Text Available Macrophages are involved in low-grade inflammation in diabetes, and play pathogenic roles in proliferative diabetic retinopathy (PDR by producing proinflammatory cytokines. T cells as well as other cells are also activated by proinflammatory cytokines, and infiltration into the vitreous of patients with PDR has been shown. In this study, we measured helper T (Th cell-related cytokines in the vitreous of PDR patients to define the characteristics of Th-mediated immune responses associated with PDR. The study group consisted of 25 type 2 diabetic patients (25 eyes with PDR. The control group consisted of 27 patients with epiretinal membrane (ERM, 26 patients with idiopathic macular hole (MH, and 26 patients with uveitis associated with sarcoidosis. Vitreous fluid was obtained at the beginning of vitrectomy, and centrifuging for cellular removals was not performed. Serum was also collected from PDR patients. IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, soluble sCD40L, and TNFα in the vitreous and serum samples were measured. Both percent detectable and levels of IL-4, IL-6, IL-17A, IL-21, IL-22, and TNFα in the vitreous were significantly higher than those in the serum in PDR patients. Vitreous levels of these cytokines and IL-31 were significantly higher in PDR than in ERM or MH patients. Vitreous levels of IL-4, IL-17A, IL-22, IL-31, and TNFα in PDR patients were also significantly higher than those of sarcoidosis patients. In PDR patients, vitreous IL-17A level correlated significantly with vitreous levels of IL-22 and IL-31, and especially with IL-4 and TNFα. Although it is unclear whether these cytokines play facilitative roles or inhibitory roles for the progression of PDR, the present study indicated that Th2- and Th17-related immune responses are involved in the pathogenesis of PDR.

  7. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    Science.gov (United States)

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients

    Science.gov (United States)

    Takeuchi, Masaru; Sato, Tomohito; Tanaka, Atsushi; Muraoka, Tadashi; Taguchi, Manzo; Sakurai, Yutaka; Karasawa, Yoko; Ito, Masataka

    2015-01-01

    Macrophages are involved in low-grade inflammation in diabetes, and play pathogenic roles in proliferative diabetic retinopathy (PDR) by producing proinflammatory cytokines. T cells as well as other cells are also activated by proinflammatory cytokines, and infiltration into the vitreous of patients with PDR has been shown. In this study, we measured helper T (Th) cell-related cytokines in the vitreous of PDR patients to define the characteristics of Th-mediated immune responses associated with PDR. The study group consisted of 25 type 2 diabetic patients (25 eyes) with PDR. The control group consisted of 27 patients with epiretinal membrane (ERM), 26 patients with idiopathic macular hole (MH), and 26 patients with uveitis associated with sarcoidosis. Vitreous fluid was obtained at the beginning of vitrectomy, and centrifuging for cellular removals was not performed. Serum was also collected from PDR patients. IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, soluble sCD40L, and TNFα in the vitreous and serum samples were measured. Both percent detectable and levels of IL-4, IL-6, IL-17A, IL-21, IL-22, and TNFα in the vitreous were significantly higher than those in the serum in PDR patients. Vitreous levels of these cytokines and IL-31 were significantly higher in PDR than in ERM or MH patients. Vitreous levels of IL-4, IL-17A, IL-22, IL-31, and TNFα in PDR patients were also significantly higher than those of sarcoidosis patients. In PDR patients, vitreous IL-17A level correlated significantly with vitreous levels of IL-22 and IL-31, and especially with IL-4 and TNFα. Although it is unclear whether these cytokines play facilitative roles or inhibitory roles for the progression of PDR, the present study indicated that Th2- and Th17-related immune responses are involved in the pathogenesis of PDR. PMID:26352837

  9. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures

    LENUS (Irish Health Repository)

    Nic An Ultaigh, Sinead

    2011-02-23

    Abstract Introduction The aim of this study was to examine the effect of blocking Toll-like receptor 2 (TLR2) in rheumatoid arthritis (RA) synovial cells. Methods RA synovial tissue biopsies, obtained under direct visualization at arthroscopy, were established as synovial explant cultures ex vivo or snap frozen for immunohistology. Mononuclear cell cultures were isolated from peripheral blood and synovial fluid of RA patients. Cultures were incubated with the TLR1\\/2 ligand, Pam3CSK4 (200 ng, 1 and 10 μg\\/ml), an anti-TLR2 antibody (OPN301, 1 μg\\/ml) or an immunoglobulin G (IgG) (1 μg\\/ml) matched control. The comparative effect of OPN301 and adalimumab (anti-tumour necrosis factor alpha) on spontaneous release of proinflammatory cytokines from RA synovial explants was determined using quantitative cytokine MSD multiplex assays or ELISA. OPN301 penetration into RA synovial tissue explants cultures was assessed by immunohistology. Results Pam3CSK4 significantly upregulated interleukin (IL)-6 and IL-8 in RA peripheral blood mononuclear cells (PBMCs), RA synovial fluid mononuclear cells (SFMCs) and RA synovial explant cultures (P < 0.05). OPN301 significantly decreased Pam3CSK4-induced cytokine production of tumour necrosis factor alpha (TNF-α), IL-1β, IL-6, interferon (IFN)-γ and IL-8 compared to IgG control in RA PBMCs and SFMCs cultures (all P < 0.05). OPN301 penetration of RA synovial tissue cultures was detected in the lining layer and perivascular regions. OPN301 significantly decreased spontaneous cytokine production of TNF-α, IL-1β, IFN-γ and IL-8 from RA synovial tissue explant cultures (all P < 0.05). Importantly, the inhibitory effect of OPN on spontaneous cytokine secretion was comparable to inhibition by anti-TNFα monoclonal antibody adalimumab. Conclusions These findings further support targeting TLR2 as a potential therapeutic agent for the treatment of RA.

  10. Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation.

    Science.gov (United States)

    Johnson, Rachelle W; White, Jason D; Walker, Emma C; Martin, T John; Sims, Natalie A

    2014-07-01

    Muscle and bone are intimately linked by bi-directional signals regulating both muscle and bone cell gene expression and proliferation. It is generally accepted that muscle cells secrete factors (myokines) that influence adjacent bone cells, but these myokines are yet to be identified. We have previously shown that osteocyte-specific deletion of the co-receptor subunit utilized by IL-6 family cytokines, glycoprotein 130 (gp130), resulted in impaired bone formation in the trabecular bone, but enhanced periosteal expansion, suggesting a gp130-dependent periosteum-specific inhibition of osteoblast function, potentially induced by the local muscle fibres. We report here that differentiated primary calvarial osteoblasts cultured in myotube-conditioned media (CM) from myogenic C2C12 cells show reduced mRNA levels of genes associated with osteoblast differentiation. Alkaline phosphatase protein activity and all mRNA markers of osteoblast differentiation in the tested panel (runx2, osterix, alkaline phosphatase, parathyroid hormone (PTH) receptor, osteoprotegerin, osteocalcin, sclerostin) were reduced following culture with myotube CM. The exception was RANKL, which was significantly elevated in differentiated primary osteoblast cultures expressing osteocytic genes. A cytokine array of the C2C12 myotube-conditioned media identified TIMP-1 and MCP-1 as the most abundant myokines, but treatment with recombinant TIMP-1 or MCP-1 did not inhibit osteoblast gene expression. Rather, the IL-6 family cytokine ciliary neurotrophic factor (CNTF), which we found abundantly expressed by mouse muscle at the transcript and protein level, reduced osteoblast gene expression, although not to the same extent as the myotube-conditioned media. These data indicate that muscle cells secrete abundant TIMP-1, MCP-1, and CNTF, and that of these, only CNTF has the ability to suppress osteoblast function and gene expression in a similar manner to myotube-conditioned medium. This suggests that CNTF is

  11. Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation.

    Science.gov (United States)

    Lee, Yu-Hui; Shynlova, Oksana; Lye, Stephen J

    2015-03-01

    Spontaneous term labour is associated with amplified inflammatory events in the myometrium including cytokine production and leukocyte infiltration; however, potential mechanisms regulating such events are not fully understood. We hypothesized that mechanical stretch of the uterine wall by the growing fetus facilitates peripheral leukocyte extravasation into the term myometrium through the release of various cytokines by uterine myocytes. Human myometrial cells (hTERT-HM) were subjected to static mechanical stretch; stretch-conditioned media was collected and analysed using 48-plex Luminex assay and ELISA. Effect of stretch-conditioned media on cell adhesion molecule expression of human uterine microvascular endothelial cells (UtMVEC-Myo) was detected by quantitative polymerase chain reaction (qPCR) and flow cytometry; functional assays testing leukocyte-endothelial interactions: adhesion of leukocytes to endothelial cells and transendothelial migration of calcein-labelled primary human neutrophils as well as migration of THP-1 monocytic cells were assessed by fluorometry. The current in vitro study demonstrated that mechanical stretch (i) directly induces secretion of multiple cytokines and chemokines by hTERT-HM cells (IL-6, CXCL8, CXCL1, migration inhibitory factor (MIF), VEGF, G-CSF, IL-12p70, bFGF and platelet-derived growth factor subunit B (PDGF-bb), Pcytokines (ii) enhance leukocyte adhesion to the endothelium of the surrounding uterine microvasculature by (iii) inducing the expression of endothelial cell adhesion molecules and (iv) directing the transendothelial migration of peripheral leukocytes. (vi) Chemokine-neutralizing antibodies and broad-spectrum chemokine inhibitor block leukocyte migration. Our data provide a proof of mechanical regulation for leukocyte recruitment from the uterine blood vessels to the myometrium, suggesting a putative mechanism for the leukocyte infiltrate into the uterus during labour and postpartum involution.

  12. Therapeutic Potential for Targeting the Suppressor of Cytokine Signalling-1 Pathway for the Treatment of SLE.

    Science.gov (United States)

    Sukka-Ganesh, B; Larkin, J

    2016-11-01

    Although the specific events dictating systemic lupus erythematosus (SLE) pathology remain unclear, abundant evidence indicates a critical role for dysregulated cytokine signalling in disease progression. Notably, the suppressor of cytokine signalling (SOCS) family of intracellular proteins, in particular the kinase inhibitory region (KIR) bearing SOCS1 and SOCS3, plays a critical role in regulating cytokine signalling. To assess a relationship between SOCS1/SOCS3 expression and SLE, the goals of this study were to (1) evaluate the time kinetics of SOCS1/SOCS3 message and protein expression based on SLE-associated stimulations, (2) compare levels of SOCS1 and SOCS3 present in SLE patients and healthy controls by message and protein, (3) relate SOCS1/SOCS3 expression to inflammatory markers in SLE patients and (4) correlate SOCS1/SOCS3 levels to current treatments. We found that SOCS1 and SOCS3 were most abundant in murine splenic samples at 48 h subsequent to stimulation by anti-CD3, LPS or interferon-gamma. In addition, significant reductions in SOCS1 and SOCS3 were present within PMBCs of SLE patients compared to controls by both mRNA and protein expression. We also found that decreased levels of SOCS1 in SLE patients were correlated with enhanced levels of inflammatory markers and upregulated expression of MHC class II. Finally, we show that patients receiving steroid treatment possessed higher levels SOCS1 compared to SLE patient counterparts and that steroid administration to human PBMCs upregulated SOCS1 message in a dose- and time-dependent manner. Together, these results suggest that therapeutic strategies focused on SOCS1 signalling may have efficacy in the treatment of SLE. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  13. A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses.

    Science.gov (United States)

    Naessens, Elodie; Dubreuil, Géraldine; Giordanengo, Philippe; Baron, Olga Lucia; Minet-Kebdani, Naïma; Keller, Harald; Coustau, Christine

    2015-07-20

    Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Proinflammatory Cytokines in the Prefrontal Cortex of Teenage Suicide Victims

    OpenAIRE

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Ren, Xinguo; Fareed, Jawed; Hoppensteadt, Debra A.; Roberts, Rosalinda C.; Conley, Robert R.; Dwivedi, Yogesh

    2011-01-01

    Teenage suicide is a major public health concern, but its neurobiology is not well understood. Proinflammatory cytokines play an important role in stress and in the pathophysiology of depression—two major risk factors for suicide. Cytokines are increased in the serum of patients with depression and suicidal behavior; however, it is not clear if similar abnormality in cytokines occurs in brains of suicide victims. We therefore measured the gene and protein expression levels of proinflammatory ...

  15. Leptin–cytokine crosstalk in breast cancer

    Science.gov (United States)

    Newman, Gale; Gonzalez-Perez, Ruben Rene

    2013-01-01

    Despite accumulating evidence suggesting a positive correlation between leptin levels, obesity, post-menopause and breast cancer incidence, our current knowledge on the mechanisms involved in these relationships is still incomplete. Since the cloning of leptin in 1994 and its receptor (OB-R) 1 year later by Friedman’s laboratory (Zhang et al., 1994) and Tartaglia et al. (Tartaglia et al., 1995), respectively, more than 22,000 papers related to leptin functions in several biological systems have been published (Pubmed, 2012). The ob gene product, leptin, is an important circulating signal for the regulation of body weight. Additionally, leptin plays critical roles in the regulation of glucose homeostasis, reproduction, growth and the immune response. Supporting evidence for leptin roles in cancer has been shown in more than 1000 published papers, with almost 300 papers related to breast cancer (Pubmed, 2012). Specific leptin-induced signaling pathways are involved in the increased levels of inflammatory, mitogenic and pro-angiogenic factors in breast cancer. In obesity, a mild inflammatory condition, deregulated secretion of proinflammatory cytokines and adipokines such as IL-1, IL-6, TNF-α and leptin from adipose tissue, inflammatory and cancer cells could contribute to the onset and progression of cancer. We used an in silico software program, Pathway Studio 9, and found 4587 references citing these various interactions. Functional crosstalk between leptin, IL-1 and Notch signaling (NILCO) found in breast cancer cells could represent the integration of developmental, proinflammatory and pro-angiogenic signals critical for leptin-induced breast cancer cell proliferation/migration, tumor angiogenesis and breast cancer stem cells (BCSCs). Remarkably, the inhibition of leptin signaling via leptin peptide receptor antagonists (LPrAs) significantly reduced the establishment and growth of syngeneic, xenograft and carcinogen-induced breast cancer and, simultaneously

  16. Cytokine ratios in chronic periodontitis and type 2 diabetes mellitus.

    Science.gov (United States)

    Acharya, Anirudh B; Thakur, Srinath; Muddapur, M V; Kulkarni, Raghavendra D

    Chronic periodontitis may influence systemic cytokines in type 2 diabetes. This study aimed to evaluate the cytokine ratios in type 2 diabetes with, and without chronic periodontitis. Gingival status, periodontal, glycemic parameters and serum cytokines were evaluated in participants grouped as healthy, chronic periodontitis, and type 2 diabetes with, and without chronic periodontitis. Cytokine ratios showed significant differences in type 2 diabetes and chronic periodontitis, were highest in participants having both type 2 diabetes and chronic periodontitis, with a statistically significant cut-off point and area under curve by receiver operating characteristic. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. PORCINE CYTOKINE RESPONSES TO PAMP-STRUCTURES IN VITRO

    DEFF Research Database (Denmark)

    Sørensen, Nanna Skall; Skovgaard, Kerstin; Vorsholt, Henriette

    antigen-presentation. Different PAMPs will activate different signalling pathways, resulting in specific cytokine signatures, which will influence the orientation of a developing immune response. In the pig, the range of antibodies available for cytokine-detection is limited, and so cytokines are often......Pathogen-associated molecular patterns (PAMPs) are conserved microbial structures recognized by pattern-recognition receptors (PRRs) of the innate immune system. Binding of PAMPs by certain PRRs on dendritic cells induces these to express costimulatory molecules and cytokines, enabling an inductive...

  18. β2- and β3-adrenergic receptors drive COMT-dependent pain by increasing production of nitric oxide and cytokines

    Science.gov (United States)

    E., Hartung Jane; P., Ciszek, Brittney; G., Nackley, Andrea

    2014-01-01

    Decreased activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, contributes to pain in humans and animals. Previously, we demonstrated that development of COMT-dependent pain is mediated by both β2- and β3-adrenergic receptors (β2-and β3ARs). Here, we investigated molecules downstream of β2-and β3ARs driving pain in animals with decreased COMT activity. Based on evidence linking their role in pain and synthesis downstream of β2- and β3AR stimulation, we hypothesized that nitric oxide (NO) and pro-inflammatory cytokines drive COMT-dependent pain. To test this, we measured plasma NO derivatives and cytokines in rats receiving the COMT inhibitor OR486 in the presence or absence of the β2AR antagonist ICI118,551 + β3AR antagonist SR59320A. We also assessed if the NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) and cytokine neutralizing antibodies block the development of COMT-dependent pain. Results showed that animals receiving OR486 exhibited higher levels of NO derivatives, tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2) in a β2-and β3AR-dependent manner. Additionally, inhibition of NO synthases and neutralization of the innate immunity cytokines TNFα, IL-1β, and IL-6 blocked the development of COMT-dependent pain. Finally, we found that NO influences TNFα, IL-1β, IL-6 and CCL2 levels, while TNFα and IL-6 influence NO levels. Altogether, these results demonstrate that β2- and β3ARs contribute to COMT-dependent pain, at least partly, by increasing NO and cytokines. Furthermore, they identify β2- and β3ARs, NO, and pro-inflammatory cytokines as potential therapeutic targets for pain patients with abnormalities in COMT physiology. PMID:24727346

  19. Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment.

    Science.gov (United States)

    Cieślak, Marek; Wojtczak, Andrzej; Cieślak, Michał

    2015-01-01

    Several relations between cytokines and pathogenesis of diabetes are reviewed. In type 1 and type 2 diabetes an increased synthesis is observed and as well as the release of pro-inflammatory cytokines, which cause the damage of pancreatic islet cells and, in type 2 diabetes, the development of the insulin resistance. That process results in the disturbed balance between pro-inflammatory and protective cytokines. Pro-inflammatory cytokines such as interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), as well as recently discovered pancreatic derived factor PANDER are involved in the apoptosis of pancreatic β-cells. Inside β-cells, cytokines activate different metabolic pathways leading to the cell death. IL-1β activates the mitogen-activated protein kinases (MAPK), affects the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activates the inducible nitric oxide synthase (iNOS). TNF-α and IFN-γ in a synergic way activate calcium channels, what leads to the mitochondrial dysfunction and activation of caspases. Neutralization of pro-inflammatory cytokines, especially interleukin 1β with the IL-1 receptor antagonist (IL-1Ra) and/or IL-1β antibodies might cause the extinction of the inflammatory process of pancreatic islets, and consequently normalize concentration of glucose in blood and decrease the insulin resistance. In type 1 diabetes interleukin-6 participates in regulation of balance between Th17 and regulatory T cells. In type 2 diabetes and obesity, the long-duration increase of IL-6 concentration in blood above 5 pg/ml leads to the chronic and permanent increase in expression of SOCS3, contributing to the increase in the insulin resistance in cells of the skeletal muscles, liver and adipose tissue.

  20. Cytokines and Angiogenesis in the Corpus Luteum

    Directory of Open Access Journals (Sweden)

    António M. Galvão

    2013-01-01

    Full Text Available In adults, physiological angiogenesis is a rare event, with few exceptions as the vasculogenesis needed for tissue growth and function in female reproductive organs. Particularly in the corpus luteum (CL, regulation of angiogenic process seems to be tightly controlled by opposite actions resultant from the balance between pro- and antiangiogenic factors. It is the extremely rapid sequence of events that determines the dramatic changes on vascular and nonvascular structures, qualifying the CL as a great model for angiogenesis studies. Using the mare CL as a model, reports on locally produced cytokines, such as tumor necrosis factor α (TNF, interferon gamma (IFNG, or Fas ligand (FASL, pointed out their role on angiogenic activity modulation throughout the luteal phase. Thus, the main purpose of this review is to highlight the interaction between immune, endothelial, and luteal steroidogenic cells, regarding vascular dynamics/changes during establishment and regression of the equine CL.

  1. Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Richa Tyagi

    2015-02-01

    Full Text Available Rheb, a ubiquitous small GTPase, is well known to bind and activate mTOR, which augments protein synthesis. Inhibition of protein synthesis is also physiologically regulated. Thus, with cell stress, the unfolded protein response system leads to phosphorylation of the initiation factor eIF2α and arrest of protein synthesis. We now demonstrate a major role for Rheb in inhibiting protein synthesis by enhancing the phosphorylation of eIF2α by protein kinase-like ER kinase (PERK. Interplay between the stimulatory and inhibitory roles of Rheb may enable cells to modulate protein synthesis in response to varying environmental stresses.

  2. Synthesis and antibacterial activity of sulfonamide derivatives at C-8 ...

    Indian Academy of Sciences (India)

    industry and these are salicylic acid derivatives with a non-isoprenoid alk(en)yl side chain.1 Anacardic acid and its derivatives exhibit biological activities like antimicrobial activity2,3 and soybean lipoxygenase-1 inhibitory activity4,5 Reddy et al. reported the synthesis of benzamide derivatives of anacardic acid6 sildenafil ...

  3. Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis

    NARCIS (Netherlands)

    Eigler, A; Greten, T F; Sinha, B; Haslberger, C; Sullivan, G W; Endres, S

    Recent studies have demonstrated the inhibitory effect of exogenous adenosine on TNF production. During inflammation endogenous adenosine levels are elevated and may be one of several anti-inflammatory mediators that reduce TNF synthesis. In the present study the authors investigated this role of

  4. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    Science.gov (United States)

    Dawson, Harry D; Collins, Gary; Pyle, Robert; Key, Michael; Taub, Dennis D

    2008-01-01

    Background We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-α (RAR-α)-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR). Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production. PMID:18416830

  5. The Retinoic Acid Receptor-alpha mediates human T-cell activation and Th2 cytokine and chemokine production.

    Science.gov (United States)

    Dawson, Harry D; Collins, Gary; Pyle, Robert; Key, Michael; Taub, Dennis D

    2008-04-16

    We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-gamma and TNF-alpha expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-alpha (RAR-alpha)-selective agonist, AM580 but not with the RAR-beta/gamma ligand, 4-hydroxyphenylretinamide (4-HPR). The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-alpha-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-alpha-selective antagonist, RO 41-5253, inhibited these effects. These results strongly support a role for RAR-alpha engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.

  6. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    Directory of Open Access Journals (Sweden)

    Key Michael

    2008-04-01

    Full Text Available Abstract Background We have recently demonstrated that all-trans-retinoic acid (ATRA and 9-cis-retinoic acid (9-cis RA promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA, and the retinoic acid receptor-α (RAR-α-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR. Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.

  7. Bacterial Immune Evasion through Manipulation of Host Inhibitory Immune Signaling

    NARCIS (Netherlands)

    Van Avondt, Kristof; van Sorge, Nina M.|info:eu-repo/dai/nl/279926812; Meyaard, Linde|info:eu-repo/dai/nl/13444972X

    An innate immune response is essential for survival of the host upon infection, yet excessive inflammation can result in harmful complications [1]. Inhibitory signaling evolved to limit host responses and prevent inflammatory pathology [2,3]. Given the significance of inhibitory pathways for

  8. The Inhibitory Effects of Neem Oil against the Development of ...

    African Journals Online (AJOL)

    Although neem oil extract is widely used in Africa and Asia for the treatment and prevention of malaria, its inhibitory effect on the growth of malaria parasites in vivo has not been fully tested. In the present study, the inhibitory effects of neem oil extract against the growth of rodent malaria parasite in the mice were investigated ...

  9. Evaluation of α-glucosidase inhibitory activity of dichloromethane ...

    African Journals Online (AJOL)

    Purpose: To evaluate the α-glucosidase inhibitory activity of Croton bonplandianum Baill as a probable remedy for the management of diabetes. Methods: Dichloromethane and methanol extracts were prepared and screened for their α-glucosidae inhibitory activity using standard in vitro α-glucosidae inhibition assay.

  10. Acetyl-cholinesterase Enzyme Inhibitory Effect of Calophyllum species

    African Journals Online (AJOL)

    acetylcholinesterase (AChE) enzyme using Ellman's method. Results: Most of the extracts showed promising inhibitory activity against AChE at concentrations of. 100 µg/mL, with the methanol extract of C. inophyllum demonstrating the strongest inhibitory effect of. 81.28 % followed by the methanol extract of C. benjaminum ...

  11. Acetyl-cholinesterase Enzyme Inhibitory Effect of Calophyllum species

    African Journals Online (AJOL)

    : Most of the extracts showed promising inhibitory activity against AChE at concentrations of 100 μg/mL, with the methanol extract of C. inophyllum demonstrating the strongest inhibitory effect of 81.28 % followed by the methanol extract of C.

  12. Inhibitory Control Predicts Language Switching Performance in Trilingual Speech Production

    Science.gov (United States)

    Linck, Jared A.; Schwieter, John W.; Sunderman, Gretchen

    2012-01-01

    This study investigated the role of domain-general inhibitory control in trilingual speech production. Taking an individual differences approach, we examined the relationship between performance on a non-linguistic measure of inhibitory control (the Simon task) and a multilingual language switching task for a group of fifty-six native English (L1)…

  13. Remodeling of inhibitory synaptic connections in developing ferret visual cortex

    Directory of Open Access Journals (Sweden)

    Dalva Matthew B

    2010-02-01

    Full Text Available Abstract Background In the visual cortex, as in many other regions of the developing brain, excitatory synaptic connections undergo substantial remodeling during development. While evidence suggests that local inhibitory synapses may behave similarly, the extent and mechanisms that mediate remodeling of inhibitory connections are not well understood. Results Using scanning laser photostimulation in slices of developing ferret visual cortex, we assessed the overall patterns of developing inhibitory and excitatory synaptic connections converging onto individual neurons. Inhibitory synaptic inputs onto pyramidal neurons in cortical layers 2 and 3 were already present as early as postnatal day 20, well before eye opening, and originated from regions close to the recorded neurons. During the ensuing 2 weeks, the numbers of synaptic inputs increased, with the numbers of inhibitory (and excitatory synaptic inputs peaking near the time of eye opening. The pattern of inhibitory inputs refined rapidly prior to the refinement of excitatory inputs. By uncaging the neurotransmtter GABA in brain slices from animals of different ages, we find that this rapid refinement correlated with a loss of excitatory activity by GABA. Conclusion Inhibitory synapses, like excitatory synapses, undergo significant postnatal remodeling. The time course of the remodeling of inhibitory connections correlates with the emergence of orientation tuning in the visual cortex, implicating these rearrangements in the genesis of adult cortical response properties.

  14. The inhibitory avoidance discrimination task to investigate accuracy of memory

    NARCIS (Netherlands)

    Atucha Trevino, E.; Roozendaal, B.

    2015-01-01

    The present study was aimed at developing a new inhibitory avoidance task, based on training and/or testing rats in multiple contexts, to investigate accuracy of memory. In the first experiment, male Sprague-Dawley rats were given footshock in an inhibitory avoidance apparatus and, 48 h later,

  15. Modulation of Cytokine and Cytokine Receptor/Antagonist by Treatment with Doxycycline and Tetracycline in Patients with Dengue Fever

    Directory of Open Access Journals (Sweden)

    J. E. Z. Castro

    2011-01-01

    Full Text Available Dengue virus infection can lead to dengue fever (DF or dengue hemorrhagic fever (DHF. Disease severity has been linked to an increase in various cytokine levels. In this study, we evaluated the effectiveness of doxycycline and tetracycline to modulate serum levels of IL-6, IL-1B, and TNF and cytokine receptor/receptor antagonist TNF-R1 and IL-1RA in patients with DF or DHF. Hospitalized patients were randomized to receive standard supportive care or supportive care combined with doxycycline or tetracycline therapy. Serum cytokine and cytokine receptor/antagonist levels were determined at the onset of therapy and after 3 and 7 days. Cytokine and cytokine receptor/antagonist levels were substantially elevated at day 0. IL-6, IL-1β, and TNF remained at or above day 0 levels throughout the study period in untreated patients. Treatment with tetracycline or doxycycline resulted in a significant decline in cytokine levels. Similarly, IL-1RA and TNF-R1 serum concentrations were elevated at baseline and showed a moderate increase among untreated patients. Both drugs resulted in a significant rise in IL-1Ra levels by day 3 in patients. In contrast, treatment did not affect a similar result for TNF-R1. When compared to the control group, however, a significant rise post-treatment was seen upon intragroup analysis. Further analysis demonstrated that doxycycline was significantly more effective at modulating cytokine and cytokine receptor/antagonist levels than tetracycline.

  16. Formoterol and budesonide inhibit rhinovirus infection and cytokine production in primary cultures of human tracheal epithelial cells.

    Science.gov (United States)

    Yamaya, Mutsuo; Nishimura, Hidekazu; Nadine, Lusamba; Kubo, Hiroshi; Nagatomi, Ryoichi

    2014-07-01

    Long-acting β(2) agonists (LABAs) and inhaled corticosteroids (ICSs) reduce the frequency of exacerbations of chronic obstructive pulmonary disease and bronchial asthma. However, inhibitory effects of LABAs and ICSs on the replication of rhinovirus (RV), the major cause of exacerbations, have not been demonstrated. Primary cultures of human tracheal epithelial cells were infected with a major group RV, type 14 rhinovirus (RV14), to examine the effects of formoterol and budesonide on RV infection and infection-induced airway inflammation. Treatment with formoterol and budesonide 72 h before and after RV14 infection reduced RV14 titers and cytokine concentrations, including interleukin (IL)-1β, IL-6 and IL-8, in supernatants and viral RNA within cells. Formoterol and budesonide reduced mRNA expression and protein concentration of intercellular adhesion molecule-1 (ICAM-1), the receptor for RV14. Formoterol reduced the number and fluorescence intensity of acidic endosomes through which RV RNA enters the cytoplasm. Formoterol and budesonide reduced the activation of the nuclear factor kappa-B protein p65 in nuclear extracts. The effects of formoterol plus budesonide were additive with respect to RV14 replication, cytokine production, ICAM-1 expression, acidic endosome fluorescence intensity, and p65 activation. The selective β(2)-adrenergic receptor antagonist, ICI 118551 [erythro-dl-1-(7-methylindan-4-yloxy)-3-isopropylaminobutan-2-ol], reversed the inhibitory effects of formoterol on RV14 titers and RNA levels, the susceptibility of cells to RV14 infection, cytokine production, acidic endosomes, ICAM-1 expression, and p65 activation. Formoterol and budesonide may inhibit RV infection by reducing the ICAM-1 levels and/or acidic endosomes and modulate airway inflammation associated with RV infections. Copyright © 2014 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  17. Inhibitory processes in visual perception: a bilingual advantage.

    Science.gov (United States)

    Wimmer, Marina C; Marx, Christina

    2014-10-01

    Bilingual inhibitory control advantages are well established. An open question is whether inhibitory superiority also extends to visual perceptual phenomena that involve inhibitory processes. This research used ambiguous figures to assess inhibitory bilingual superiority in 3-, 4-, and 5-year-old mono- and bilingual children (N=141). Findings show that bilinguals across all ages are superior in inhibiting a prevalent interpretation of an ambiguous figure to perceive the alternative interpretation. In contrast, mono- and bilinguals revealed no differences in understanding that an ambiguous figure can have two distinct referents. Together, these results suggest that early bilingual inhibitory control superiority is also evident in visual perception. Bilinguals' conceptual understanding of figure ambiguity is comparable to that of their monolingual peers. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The presence of some cytokines and Chlamydia pneumoniae in the atherosclerotic carotid plaque in patients with carotid artery stenosis

    Directory of Open Access Journals (Sweden)

    Dariusz Janczak

    2015-02-01

    Full Text Available Background: Over the last few years the role of microorganisms in the pathogenesis of atherosclerosis has been widely discussed. Chlamydia pneumoniae activates immune cells to produce cytokines that are responsible for the formation of atheromatous carotid lesions.Material and methods: The study was carried out at the Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, in 2002-2003, on 100 consecutive symptomatic patients with internal carotid stenosis, who underwent an endarterectomy procedure. Each patient had their carotid artery sampled in order to find C. pneumoniae DNA using the nested PCR method and some cytokines (TGF-β, VEGF, FGF, TNF-α using immunohistochemical examination. The control group consisted of 20 young organ donors who had been diagnosed with brain death and who had their healthy carotid artery harvested. Analogous genetic and immunohistochemical tests were performed.Results: We did not confirm the presence of either cytokines or C. pneumoniae in the healthy carotid arteries. The presence of FGF was probably due to intima fibroblast activity, which is responsible for elastin and collagen synthesis for the extracellular matrix. C. pneumoniae was discovered in 68% of patients with carotid plaques. Three cytokines (TGF-β, FGF, TNF-α were detected in atherosclerotic internal carotid arteries as well.Conclusion: Chronic infection by C. pneumoniae may exacerbate carotid plaque development and may lead to its destabilization.

  19. CYTOKINE - The Official Journal of the International Cytokine Society. Volume 11, Number 11

    Science.gov (United States)

    1999-12-09

    through upregulation of IFN-y production.1 Another phagocyte-derived cytokine displaying a potent IFN-y- inducing activity, provisionally called IGIF... antimicrobial activity and disrupt the cytoplasmic membrane of microorganisms. We observed that human ß-defensins (HBDs) were also chemotactic for immature...Collection, Braunschweig, Germany Dennis L. Stevens (Pathogenesis) VA Medical Center, Boise, USA Anne Tanner (Oral & Dental Bacteriology & Infection

  20. Inhibitory effect of 5-iodotubercidin on pigmentation.

    Science.gov (United States)

    Kim, Kyung-Il; Jeong, Hae Bong; Ro, Hyunju; Lee, Jeung-Hoon; Kim, Chang Deok; Yoon, Tae-Jin

    2017-09-02

    Melanin pigments are the primary contributors for the skin color. They are produced in melanocytes and then transferred to keratinocytes, eventually giving various colors on skin surface. Although many depigmenting and/or skin-lightening agents have been developed, there is still a growing demand on materials for reducing pigmentation. We attempted to find materials for depigmentation and/or skin-lightening using the small molecule compounds commercially available, and found that 5-iodotubercidin had inhibitory potential on pigmentation. When HM3KO melanoma cells were treated with 5-iodotubercidin, pigmentation was dramatically reduced. The 5-iodotubercidin decreased the protein level for pigmentation-related molecules such as MITF, tyrosinase, and TRP1. In addition, 5-iodotubercidin decreased the phosphorylation of CREB, while increased the phosphorylation of AKT and ERK. These data suggest that 5-iodotubercidin inhibits melanogenesis via the regulation of intracellular signaling related with pigmentation. Finally, 5-iodotubercidin markedly inhibited the melanogenesis of zebrafish embryos, an in vivo evaluation model for pigmentation. Together, these data suggest that 5-iodotubercidin can be developed as a depigmenting and/or skin-lightening agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Kukoamine A analogs with lipoxygenase inhibitory activity.

    Science.gov (United States)

    Hadjipavlou-Litina, Dimitra; Garnelis, Thomas; Athanassopoulos, Constantinos M; Papaioannou, Dionissios

    2009-10-01

    Kukoamine A (KukA) is a spermine (SPM) conjugate with dihydrocaffeic acid (DHCA), with interesting biological activities. The four possible regioisomers of KukA, as well as a series of KukA analogs incorporating changes in either the SPM or the DHCA structural units, were evaluated for their antioxidant activity and their inhibitory activity on soybean lipoxygenase (LOX) and lipid peroxidation. The reducing properties of the compounds were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and found to be in the range 5-97.5%. KukA significantly inhibits LOX with IC(50) 9.5 microM. All tested analogs inhibited lipid peroxidation in the range of 11-100%. The most potent compounds KukA and its analog 3, in which the DHCA units had been replaced by O,O9-dimethylcaffeic acid units, were studied for their anti-inflammatory activity in vivo on rat paw edema induced by carrageenan and found to be of comparable activity to indomethacin. The results of the biological tests are discussed in terms of structural characteristics.

  2. Monoamine oxidase inhibitory activities of heterocyclic chalcones.

    Science.gov (United States)

    Minders, Corné; Petzer, Jacobus P; Petzer, Anél; Lourens, Anna C U

    2015-11-15

    Studies have shown that natural and synthetic chalcones (1,3-diphenyl-2-propen-1-ones) possess monoamine oxidase (MAO) inhibition activities. Of particular importance to the present study is a report that a series of furanochalcones acts as MAO-B selective inhibitors. Since the effect of heterocyclic substitution, other than furan (and more recently thiophene, piperidine and quinoline) on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesise and evaluate further heterocyclic chalcone analogues as inhibitors of the human MAOs. For this purpose, heterocyclic chalcone analogues that incorporate pyrrole, 5-methylthiophene, 5-chlorothiophene and 6-methoxypyridine substitution were examined. Seven of the nine synthesised compounds exhibited IC50 values chalcones are reversible and competitive MAO inhibitors. 4h, however, may exhibit tight-binding to MAO-B, a property linked to its thiophene moiety. We conclude that high potency chalcones such as 4h represent suitable leads for the development of MAO-B inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Molecular inhibitory mechanism of tricin on tyrosinase

    Science.gov (United States)

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-01

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  4. Hippocampal CA1 Ripples as Inhibitory Transients.

    Directory of Open Access Journals (Sweden)

    Paola Malerba

    2016-04-01

    Full Text Available Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  5. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  6. Inhibitory effect of cyanide on wastewater nitrification ...

    Science.gov (United States)

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN- used in the batch assays were 0.03, 0.06, 0.1 and 1.0 mg/L. There was considerable decrease in SOUR with increasing dosages of CN-. A decrease of more than 50% in nitrification activity was observed at 0.1 mg/L CN-. Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN- dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric heme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. Nitrification is the first step of nitrogen removal is wastewater, and it is susceptible to inhibition by many industrial chemical. We looked at

  7. Initiation of lymphocyte DNA synthesis.

    Science.gov (United States)

    Coffman, F D; Fresa, K L; Cohen, S

    1991-01-01

    The initiation of DNA replication in T lymphocytes appears to be regulated by two distinct activities: one associated with proliferation which mediates initiation, and another associated with quiescence which blocks initiation. Activated lymphocytes and proliferating lymphoid cell lines produce an activity, termed ADR, which can initiate DNA replication in isolated, quiescent nuclei. ADR is heat-labile, has protease activity or interacts closely with a protease, and is distinct from the DNA polymerases. ADR activity is absent in quiescent lymphocytes and appears in mitogen-stimulated lymphocytes after IL-2 binding. The generation of active ADR appears to be mediated by phosphorylation of a precursor which is present in resting cells. Nuclei from mitogen-unresponsive lymphocytes fail to initiate DNA replication in response to ADR, of potential importance in the age-related decline of immunity. Quiescent lymphocytes lack ADR and synthesize an ADR-inhibitory activity. The ADR inhibitor is a heat-stable protein which suppresses the initiation of DNA synthesis, but is ineffective at suppressing elongation once DNA strand replication has begun. Nuclei from several neoplastic cell lines fail to respond to the ADR inhibitor, which may play a role in the continuous proliferation of these cells. At least one of these neoplastic cell lines produces both ADR and an inhibitory factor. These findings suggest that the regulation of proliferation is dependent on the balance between activating and inhibitory pathways.

  8. A psychoneuroimmunological review on cytokines involved in antidepressant treatment response.

    Science.gov (United States)

    Janssen, Debbie G A; Caniato, Riccardo N; Verster, Joris C; Baune, Bernhard T

    2010-04-01

    The literature exploring the role that cytokine functioning plays in the pathogenesis and treatment of depressive illness is reviewed. The review focuses on the influence of antidepressants on cytokines, and on how treatment response might be affected by genetic variants of cytokines. The authors systematically reviewed the scientific literature on the subject over the last 20 years, searching PubMed, PsychInfo, and Cochrane databases. Antidepressants modulate cytokine functioning, and these mechanisms appear to directly influence treatment outcome in depression. Antidepressants appear to normalize serum levels of major inflammatory cytokines, including interleukin (IL)-1beta, IL-6, tumor necrosis factor alpha (TNF-alpha), and interferon gamma (IFN-gamma). Antidepressants are postulated to modulate cytokine functioning through their effects on intracellular cyclic adenosyl monophosphate (cAMP), serotonin metabolism, the hypothalamo-pituitary-adrenocortical (HPA) axis or through a direct action on neurogenesis. Preliminary research shows that cytokine genotypes and functioning may be able to help predict antidepressant treatment response. Current literature demonstrates an association between antidepressant action and cytokine functioning in major depression. Improved understanding of the specific pharmacologic and pharmacogenetic mechanisms is needed. Such knowledge may serve to enhance our understanding of depression, leading to promising new directions in the pathology, nosology, and treatment of depression. Copyright (c) 2010 John Wiley & Sons, Ltd.

  9. Cytokines: abnormalities in major depression and implications for pharmacological treatment.

    LENUS (Irish Health Repository)

    O'Brien, Sinead M

    2012-02-03

    The role of cytokines in depression was first considered when the cytokine interferon resulted in "sickness behaviour", the symptoms of which are similar to those of major depression. The latter is associated with an increase in pro-inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-alpha). These cytokines are potent modulators of corticotropin-releasing hormone (CRH) which produces heightened hypothalamic-pituitary-adrenal axis (HPA) activity characterized by increases in ACTH and cortisol, both of which are reported elevated in major depression. Antidepressant treatment has immunomodulatory effects with increases in the production of IL-10, which is an anti-inflammatory cytokine. This review based on a Medline search from 1980-2003, focuses on the evidence available of cytokine changes in acute stress, chronic stress and major depression. It examines the effects of antidepressant treatment on immune parameters in both animal models and clinical trials. We suggest that future antidepressants may target the immune system by either blocking the actions of pro-inflammatory cytokines or increasing the production of anti-inflammatory cytokines.

  10. Effects of coagulation factors and inflammatory cytokines on ...

    African Journals Online (AJOL)

    be closely related to the high levels of coagulation factors and inflammatory cytokines in the blood. Keywords: Coagulation factor, Inflammatory cytokines, Acute myocardial infarction, C-reactive protein,. Tumor necrosis factor-α, ... addition, the systemic inflammation response has been documented in patients with AMI, and.

  11. Cytokine Levels in the Serum of Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Giulio Kleiner

    2013-01-01

    Full Text Available Growing knowledge about the cytokine network response has led to a better comprehension of mechanisms of pathologies and to the development of new treatments with biological drugs, able to block specific molecules of the immune response. Indeed, when the cytokine production is deregulated, diseases often occur. The understanding of the physiological mechanism of the cytokine network would be useful to better comprehend pathological conditions. Moreover, since the immune system and response change their properties with development, differences in patients' age should be taken into account, both in physiological and in pathological conditions. In this study, we analyzed the profile of 48 cytokines and chemokines in the serum of healthy subjects, comparing adults (≥18 years with young children and children (1–6 and 7–17 years. We found that a certain number of cytokines were not being produced in healthy subjects; others showed a constant serum level amongst the groups. Certain cytokines exhibited a downward or an upward trend with increasing age. The remaining cytokines were up- or downregulated in the group of the children with respect to the other groups. In conclusion, we drew some kinds of guidelines about the physiological production of cytokines and chemokines, underling the difference caused by aging.

  12. Cytokine expression & TGF-beta signaling in cervical cancer

    NARCIS (Netherlands)

    Kloth, Judith Nathalie

    2009-01-01

    Immune surveillance is of utmost importance in preventing cervical carcinogenesis. Cytokines play a central role in directing and fine tuning the immune response. In cancer, cytokines can either be involved in stimulating the anti-tumor immune response or in tumor growth and progression. The studies

  13. Cytokines and the neurodevelopmental basis of mental illness

    Directory of Open Access Journals (Sweden)

    Udani eRatnayake

    2013-10-01

    Full Text Available Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioural and neurological abnormalities.

  14. Cytokines in lethal graft-versus-host disease

    NARCIS (Netherlands)

    Knulst, A.C.; Bril-Bazuin, C.; Tibbe, G.J.M.; Oudenaren, van A.; Savelkoul, H.F.J.; Benner, R.

    1992-01-01

    Graft-versus-host disease (GVHD) is caused by donor T lymphocytes that recognize foreign antigens on host tissues. This leads to T cell activation, which involves a cascade of events including the transcription of genes for cytokines and their receptors and the production of cytokines. One of the

  15. Cytokines and the Risk of Preterm Delivery in Twin Pregnancies

    DEFF Research Database (Denmark)

    Rode, Line; Klein, Katharina; Larsen, Helle

    2012-01-01

    To estimate the association between cytokine levels in twin pregnancies and risk of spontaneous preterm delivery, including the effect of progesterone treatment.......To estimate the association between cytokine levels in twin pregnancies and risk of spontaneous preterm delivery, including the effect of progesterone treatment....

  16. Identification of overexpressed cytokines as serum biomarkers of ...

    African Journals Online (AJOL)

    Hepatic inflammation is the stimulator to activate hepatic stellate cells (HSCs) and triggers fibrogenesis. Cytokines are produced during liver inflammation and maybe considered as liver fibrosis biomarker. The aim of this study was to investigate whether cytokines can be used as reliable biomarkers of liver fibrosis using ...

  17. Cytokine gene polymorphisms and their association with cervical ...

    African Journals Online (AJOL)

    Introduction: The production of cytokines, growth factors and adhesion molecules promotes tumor progression and involves inflammation, angiogenesis and thrombosis, thus providing optimal conditions for cancer development. Materials and methods: The present study was undertaken to evaluate association of cytokine ...

  18. Inflammatory cytokines and risk of coronary heart disease

    DEFF Research Database (Denmark)

    Kaptoge, Stephen; Seshasai, Sreenivasa Rao Kondapally; Gao, Pei

    2014-01-01

    Because low-grade inflammation may play a role in the pathogenesis of coronary heart disease (CHD), and pro-inflammatory cytokines govern inflammatory cascades, this study aimed to assess the associations of several pro-inflammatory cytokines and CHD risk in a new prospective study, including meta...

  19. Modulation of cytokine production profiles in splenic dendritic cells ...

    African Journals Online (AJOL)

    We examined the role of splenic dendritic cells in immune response to Toxoplasma gondii infection in SAG1 (P30+) transgenic mice by investigating the kinetics of intracellular cytokines expression of IL-4, IL-10, IL-12 and IFN-γ by intracellular cytokine staining (ICS) using flow cytometry, and compared the results to those of ...

  20. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells

    DEFF Research Database (Denmark)

    Hansen, Peter Riis; Rieneck, Klaus; Bendtzen, Klaus

    2004-01-01

    The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF.......The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF....

  1. Stat6-dependent inhibition of Mincle expression in mouse and human antigen-presenting cells by the Th2 cytokine IL-4

    Directory of Open Access Journals (Sweden)

    Thomas Hupfer

    2016-10-01

    Full Text Available The C-type lectin receptors (CLR Mincle, Mcl and Dectin-2 bind mycobacterial and fungal cell wall glycolipids and carbohydrates. Recently, we described that expression of these CLR is down-regulated during differentiation of human monocytes to dendritic cells (DC in the presence of GM-CSF and IL-4. Here, we demonstrate that the Th2 cytokine IL-4 specifically inhibits expression of Mincle, Mcl and Dectin-2in human APC. This inhibitory effect of IL-4 was observed across species, as murine macrophages and DC treated with IL-4 also down-regulated these receptors. IL-4 blocked up-regulation of Mincle and Mcl mRNA expression and cell surface protein by murine macrophages in response to the Mincle ligand Trehalose-6,6-dibehenate (TDB, whereas the TLR4 ligand LPS overcame inhibition by IL-4. Functionally, down-regulation of Mincle expression by IL-4 was accompanied by reduced cytokine production upon stimulation with TDB. These inhibitory effects of IL-4 were dependent on the transcription factor Stat6. Together, our results show that the key Th2 cytokine IL-4 exerts a negative effect on the expression of Mincle and other Dectin-2 cluster CLR in mouse and human macrophages and DC, which may render these sentinel cells less vigilant for sensing mycobacterial and fungal ligands.

  2. Multiparameter fluorescence imaging for quantification of TH-1 and TH-2 cytokines at the single-cell level

    Science.gov (United States)

    Fekkar, Hakim; Benbernou, N.; Esnault, S.; Shin, H. C.; Guenounou, Moncef

    1998-04-01

    Immune responses are strongly influenced by the cytokines following antigenic stimulation. Distinct cytokine-producing T cell subsets are well known to play a major role in immune responses and to be differentially regulated during immunological disorders, although the characterization and quantification of the TH-1/TH-2 cytokine pattern in T cells remained not clearly defined. Expression of cytokines by T lymphocytes is a highly balanced process, involving stimulatory and inhibitory intracellular signaling pathways. The aim of this study was (1) to quantify the cytokine expression in T cells at the single cell level using optical imaging, (2) and to analyze the influence of cyclic AMP- dependent signal transduction pathway in the balance between the TH-1 and TH-2 cytokine profile. We attempted to study several cytokines (IL-2, IFN-(gamma) , IL-4, IL-10 and IL-13) in peripheral blood mononuclear cells. Cells were prestimulated in vitro using phytohemagglutinin and phorbol ester for 36h, and then further cultured for 8h in the presence of monensin. Cells were permeabilized and then simple-, double- or triple-labeled with the corresponding specific fluorescent monoclonal antibodies. The cell phenotype was also determined by analyzing the expression of each of CD4, CD8, CD45RO and CD45RA with the cytokine expression. Conventional images of cells were recorded with a Peltier- cooled CCD camera (B/W C5985, Hamamatsu photonics) through an inverted microscope equipped with epi-fluorescence (Diaphot 300, Nikon). Images were digitalized using an acquisition video interface (Oculus TCX Coreco) in 762 by 570 pixels coded in 8 bits (256 gray levels), and analyzed thereafter in an IBM PC computer based on an intel pentium processor with an adequate software (Visilog 4, Noesis). The first image processing step is the extraction of cell areas using an edge detection and a binary thresholding method. In order to reduce the background noise of fluorescence, we performed an opening

  3. EFFECT OF PIDOTIMOD ON PRODUCTION OF PRO- AND ANTI-INFLAMMATORY CYTOKINES EX VIVO

    Directory of Open Access Journals (Sweden)

    S.S. Grigoryan

    2011-01-01

    Full Text Available Pidotimod is per oral immunomodulator; its efficacy is conditioned by activation of different components of immune system. The efficacy of pidotimod was studied in frequently sick children; its influence on the production of pro- and anti-inflammatory cytokines with leucocytes in peripheral blood was evaluated. The study was performed ex vivo with 15 samples of peripheral blood of frequently sick children 4 years old. The rate of interferon (IFN status, sensitivity to pidotimod, concentration of pro-inflammatory (IFN , Interleukin [Il] 18 and anti-inflammatory (Il 4, 10 cytokines were detected before and after processing the samples with the drug. Pidotimodex vivo induced more than 4 times increase of initially low production of IFN with leucocytes of peripheral blood (from 11.5 ± 3.4 to 51.8 ± 8.3 U/ml. It did not influence the production of IFN _ (432 ± 49 and 448 ± 30 U/ml — before and after processing the samples correspondingly. The drug stimulated production of IFN ex vivo; the concentration of IFN compared to its spontaneous production increased from 2.3 ± 0.9 to 11.8 ± 1.6 picogram/ml correspondingly. Stimulation of PGA-induced production of IFN was less expressed; it increased in correlation with the time of exposition 1.5–2.5 times higher compared to induction of IFN synthesis without the drug. The drug favored to increase of Il 18 level (spontaneous — from 23.5 ± 3.5 to 49.1 ± 2.2 pg/ml, induced — from 34.2 ± 2.4 to 47.8 ± 4.4 pg/ml and Il 10 (from 6.7 ± 1.3 to 15.5 ± 0.9 pg/ml and from 20.6 ± 1.2 to 42.7 ± 2.5 pg/ml correspondingly. As the production of cytokines increased because of pidotimod, the level of Il 4 (as spontaneous, as induced one decreased from 2.6 ± 0.8 to 0.5 ± 0.2 pg/ml correspondingly. Thus, pidotimod ex vivo stimulates the synthesis of IFN , Il 10 and 18 and decreases the level of Il 4. These effects favor to the activation of Th1 immune response of organism.Key words: frequently sick

  4. Unique Cytokine Signature in the Plasma of Patients with Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Jamie Sturgill

    2014-01-01

    Full Text Available Fibromyalgia (FMS is a chronic pain syndrome with a complex but poorly understood pathogenesis affecting approximately 10 million adults in the United States. The lack of a clear etiology of FMS has limited the effective diagnosis and treatment of this debilitating condition. The objective of this secondary data analysis was to examine plasma cytokine levels in women with FMS using the Bio-Plex Human Cytokine 17-plex Assay. Post hoc analysis of plasma cytokine levels was performed to evaluate patterns that were not specified a priori. Upon examination, patients with FMS exhibited a marked reduction in TH2 cytokines such as IL-4, IL-5, and IL-13. The finding of this pattern of altered cytokine milieu not only supports the role of inflammation in FMS but also may lead to more definitive diagnostic tools for clinicians treating FMS. The TH2 suppression provides strong evidence of immune dysregulation in patients with FMS.

  5. Cytokines in Bipolar Disorder: Paving the Way for Neuroprogression

    Directory of Open Access Journals (Sweden)

    Izabela Guimarães Barbosa

    2014-01-01

    Full Text Available Bipolar disorder (BD is a severe, chronic, and recurrent psychiatric illness. It has been associated with high prevalence of medical comorbidities and cognitive impairment. Its neurobiology is not completely understood, but recent evidence has shown a wide range of immune changes. Cytokines are proteins involved in the regulation and the orchestration of the immune response. We performed a review on the involvement of cytokines in BD. We also discuss the cytokines involvement in the neuroprogression of BD. It has been demonstrated that increased expression of cytokines in the central nervous system in postmortem studies is in line with the elevated circulating levels of proinflammatory cytokines in BD patients. The proinflammatory profile and the immune imbalance in BD might be regarded as potential targets to the development of new therapeutic strategies.

  6. Characterization and potential clinical applications of autoantibodies against cytokines

    DEFF Research Database (Denmark)

    de Lemos Rieper, Carina; Galle, Pia; Hansen, Morten Bagge

    2009-01-01

    Autoantibodies recognizing cytokines arise in certain patients during the course of therapy with recombinant cytokines, although they may arise spontaneously as well. They are typically high avidity and in vitro neutralizing IgG antibodies present in picomolar to nanomolar concentrations....... Methodology is therefore critical. Quantitative studies based on sound methodology strongly indicate that nanomolar levels of cytokine autoantibodies are likely to be involved in a number of "new" syndromes such as acquired immune deficiencies, lung diseases, and certain age-related manifestations....... There are many ways in which the autoantibodies could be naturally induced, and they have been experimentally induced with ease. Therefore, a new therapeutic concept of inducing cytokine autoantibodies via anti-cytokine vaccination is currently rapidly emerging....

  7. Role of IL-38 and Its Related Cytokines in Inflammation

    Directory of Open Access Journals (Sweden)

    Xianli Yuan

    2015-01-01

    Full Text Available Interleukin- (IL- 38 is a recently discovered cytokine and is the tenth member of the IL-1 cytokine family. IL-38 shares structural features with IL-1 receptor antagonist (IL-1Ra and IL-36Ra. IL-36R is the specific receptor of IL-38, a partial receptor antagonist of IL-36. IL-38 inhibits the production of T-cell cytokines IL-17 and IL-22. IL-38 also inhibits the production of IL-8 induced by IL-36γ, thus inhibiting inflammatory responses. IL-38-related cytokines, including IL-1Ra and IL-36Ra, are involved in the regulation of inflammation and immune responses. The study of IL-38 and IL-38-related cytokines might provide new insights for developing anti-inflammatory treatments in the near future.

  8. Cytokine genes as potential biomarkers for muscle weakness in OPMD

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Raz, Yotam; van der Slujis, Barbara

    2016-01-01

    Molecular biomarkers emerge as an accurate diagnostic tool, but are scarce for myopathies. Lack of outcome measures sensitive to disease onset and symptom severity hamper evaluation of therapeutic developments. Cytokines are circulating immunogenic molecules, and their potential as biomarkers has...... been exploited in the last decade. Cytokines are released from many tissues, including skeletal muscles, but their application to monitor muscle pathology is sparse. We report that the cytokine functional group is altered in the transcriptome of oculopharyngeal muscular dystrophy (OPMD). OPMD...... is a dominant, late-onset myopathy, caused by an alanine-expansion mutation in the gene encoding for poly(A) binding protein nuclear 1 (expPABPN1). Here, we investigated the hypothesis that cytokines could mark OPMD disease state. We determined cytokines levels the vastus lateralis muscle from genetically...

  9. Citoquinas en tuberculosis Cytokines in tuberculosis

    Directory of Open Access Journals (Sweden)

    Jaime I. Rodríguez

    1997-04-01

    Full Text Available La tuberculosis continúa siendo un modelo inmunológico para estudiar las infecciones intracelulares. Entenderlos complejos mecanismos de interacción de la micobacteria con el sistema inmune del hospedero permitirá un manejo más racional de los fenómenos clínicos que se presentan en la enfermedad. Las citoquinas desempeñan un papel fundamental tanto en el desarrollo de los mecanismos de inmunidad protectora como en el daño tisular presente en esta enfermedad. La estimulación in vitro de linfocitos de sujetos sanos tuberculino positivos con antígenos específicos induce preferencial mente un patrón de citoquinas tipo I (1'IL-2, 1'IFN-y, ~IL-4, ~IL-5, mientras que en la mayoría de los pacientes no se presenta este patrón. Las citoquinas tipo I conducen a la activación de los macrófagos que a su vez inhiben la replicación de las micobacterias. En el ratón, los macrófagos activados inhiben la micobacteria por medio del óxido nítrico; en los humanos la producción de óxido nítrico por los macrófagos no está plenamente demostrada. Recientemente se ha demostrado que la infección con M. tuberculosis puede inducir apoptosis en los macrófagos infectados. La apoptosis depende de la producción del Factor de Necrosis Tumoral a y de óxido nítrico. Paradójicamente, ellipoarabinomanán manosilado (ManLAM presente en la pared de las micobacterias inhibe la apoptosis. Estos hallazgos muestran un nuevo fenómeno en la interacción micobacteriamacrófago el cual debe estar finamente regulado tanto en el microorganismo como en el hospedero. Tuberculosis continues to be a model to study the immunological aspects of intracellular infections. A better understanding of the mycobacteria.host interaction would allow a more rational approach to the clinical problems of this disease. Cytokines playa key role in the development of protective immunity as well as in the tissue injury that occurs during the disease. In vitro stimulation with

  10. Celastrol nanomicelles attenuate cytokine secretion in macrophages and inhibit macrophage-induced corneal neovascularization in rats.

    Science.gov (United States)

    Li, Zhanrong; Li, Jingguo; Zhu, Lei; Zhang, Ying; Zhang, Junjie; Yao, Lin; Liang, Dan; Wang, Liya

    The aim of the present study was to investigate the inhibitory effects of celastrol-loaded nanomicelles (CNMs) on activated macrophage-induced corneal neovascularization (CNV) in rats and cytokine secretion in macrophages. Using an angiogenesis assay in vitro, we detected the effects of CNMs on human umbilical vein endothelial cell (HUVEC) migration and invasion. In addition, the expression levels of cytokines secreted from hypoxia-induced macrophages were assessed through cytokine array analysis. The expression of hypoxia-inducible factors-1α (HIF-1α), nuclear factor-kappa B p65 (NF-κB p65), phospho-nuclear factor-kappa B p65 (phospho-NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-ERK1/2 was analyzed by western blotting. Activated macrophages were elicited through mineral oil lumbar injection, labeled with 1,19-dioctadecyl-3-3-39,39-tetramethylindocarbocyanine (DiI) and implanted into the corneal micro-pocket to induce CNV and to assess the antiangiogenic effect in rats. CNV was morphometrically analyzed using ImageJ software. Histopathological features were evaluated by immunofluorescence immunostaining for vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) on day 2 after surgery. In the present study, the results indicated that CNMs significantly inhibited the migration and invasion of HUVECs; remarkably attenuated the expression of VEGF, tumor necrosis factor-α, interleukin-1α, monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 3, and MMP-9 protein; and downregulated ERK1/2, p38 MAPK, NF-κB activation, and HIF-1α expression in macrophages. The peritoneal cells elicited using mineral oil were highly purified macrophages, and the length and area of CNV were significantly decreased in the CNMs group compared with the control group. There was a significant reduction in the expression of VEGF and MMP-9 in

  11. Regulation of TH17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Leonie Brockmann

    2017-05-01

    Full Text Available Wound healing is a crucial process which protects our body against permanent damage and invasive infectious agents. Upon tissue damage, inflammation is an early event which is orchestrated by a multitude of innate and adaptive immune cell subsets including TH17 cells. TH17 cells and TH17 cell associated cytokines can impact wound healing positively by clearing pathogens and modulating mucosal surfaces and epithelial cells. Injury of the gut mucosa can cause fast expansion of TH17 cells and their induction from naïve T cells through Interleukin (IL-6, TGF-β, and IL-1β signaling. TH17 cells produce various cytokines, such as tumor necrosis factor (TNF-α, IL-17, and IL-22, which can promote cell survival and proliferation and thus tissue regeneration in several organs including the skin, the intestine, and the liver. However, TH17 cells are also potentially pathogenic if not tightly controlled. Failure of these control mechanisms can result in chronic inflammatory conditions, such as Inflammatory Bowel Disease (IBD, and can ultimately promote carcinogenesis. Therefore, there are several mechanisms which control TH17 cells. One control mechanism is the regulation of TH17 cells via regulatory T cells and IL-10. This mechanism is especially important in the intestine to terminate immune responses and maintain homeostasis. Furthermore, TH17 cells have the potential to convert from a pro-inflammatory phenotype to an anti-inflammatory phenotype by changing their cytokine profile and acquiring IL-10 production, thereby limiting their own pathological potential. Finally, IL-22, a signature cytokine of TH17 cells, can be controlled by an endogenous soluble inhibitory receptor, Interleukin 22 binding protein (IL-22BP. During tissue injury, the production of IL-22 by TH17 cells is upregulated in order to promote tissue regeneration. To limit the regenerative program, which could promote carcinogenesis, IL-22BP is upregulated during the later phase of

  12. Inhibitory effect of TNF-α on malaria pre-erythrocytic stage development: influence of host hepatocyte/parasite combinations.

    Directory of Open Access Journals (Sweden)

    Nadya Depinay

    Full Text Available BACKGROUND: The liver stages of malaria parasites are inhibited by cytokines such as interferon-γ or Interleukin (IL-6. Binding of these cytokines to their receptors at the surface of the infected hepatocytes leads to the production of nitric oxide (NO and radical oxygen intermediates (ROI, which kill hepatic parasites. However, conflicting results were obtained with TNF-α possibly because of differences in the models used. We have reassessed the role of TNF-α in the different cellular systems used to study the Plasmodium pre-erythrocytic stages. METHODS AND FINDINGS: Human or mouse TNF-α were tested against human and rodent malaria parasites grown in vitro in human or rodent primary hepatocytes, or in hepatoma cell lines. Our data demonstrated that TNF-α treatment prevents the development of malaria pre-erythrocytic stages. This inhibitory effect however varies with the infecting parasite species and with the nature and origin of the cytokine and hepatocytes. Inhibition was only observed for all parasite species tested when hepatocytes were pre-incubated 24 or 48 hrs before infection and activity was directed only against early hepatic parasite. We further showed that TNF-α inhibition was mediated by a soluble factor present in the supernatant of TNF-α stimulated hepatocytes but it was not related to NO or ROI. Treatment TNF-α prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. CONCLUSIONS: Treatment TNF-α prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. However, the nature of the cytokine-host cell-parasite combination must be carefully considered for extrapolation to the human infection.

  13. Involvement of cytokines in slow wave sleep.

    Science.gov (United States)

    Krueger, James M; Clinton, James M; Winters, Bradley D; Zielinski, Mark R; Taishi, Ping; Jewett, Kathryn A; Davis, Christopher J

    2011-01-01

    Cytokines such as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) play a role in sleep regulation in health and disease. TNFα or IL1β injection enhances non-rapid eye movement sleep. Inhibition of TNFα or IL1β reduces spontaneous sleep. Mice lacking TNFα or IL1β receptors sleep less. In normal humans and in multiple disease states, plasma levels of TNFα covary with EEG slow wave activity (SWA) and sleep propensity. Many of the symptoms induced by sleep loss, for example, sleepiness, fatigue, poor cognition, enhanced sensitivity to pain, are elicited by injection of exogenous TNFα or IL1β. IL1β or TNFα applied unilaterally to the surface of the cortex induces state-dependent enhancement of EEG SWA ipsilaterally, suggesting greater regional sleep intensity. Interventions such as unilateral somatosensory stimulation enhance localized sleep EEG SWA, blood flow, and somatosensory cortical expression of IL1β and TNFα. State oscillations occur within cortical columns. One such state shares properties with whole animal sleep in that it is dependent on prior cellular activity, shows homeostasis, and is induced by TNFα. Extracellular ATP released during neuro- and gliotransmission enhances cytokine release via purine type 2 receptors. An ATP agonist enhances sleep, while ATP antagonists inhibit sleep. Mice lacking the P2X7 receptor have attenuated sleep rebound responses after sleep loss. TNFα and IL1β alter neuron sensitivity by changing neuromodulator/neurotransmitter receptor expression, allowing the neuron to scale its activity to the presynaptic neurons. TNFα's role in synaptic scaling is well characterized. Because the sensitivity of the postsynaptic neuron is changed, the same input will result in a different network output signal and this is a state change. The top-down paradigm of sleep regulation requires intentional action from sleep/wake regulatory brain circuits to initiate whole-organism sleep. This raises unresolved

  14. Mixed-mode synchronization between two inhibitory neurons with post-inhibitory rebound

    Science.gov (United States)

    Nagornov, Roman; Osipov, Grigory; Komarov, Maxim; Pikovsky, Arkady; Shilnikov, Andrey

    2016-07-01

    We study an array of activity rhythms generated by a half-center oscillator (HCO), represented by a pair of reciprocally coupled neurons with post-inhibitory rebounds (PIR). Such coupling-induced bursting possesses two time scales, one for fast spiking and another for slow quiescent periods, is shown to exhibit an array of synchronization properties. We discuss several HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent neurons, as well as mixed-mode configurations composed of neurons of different type. We demonstrate that burst synchronization can be accompanied by complex, often chaotic, interactions of fast spikes within synchronized bursts.

  15. [Comparative study of the effect of L-lysine-L-oxidase from Trichoderma harzianum Rifai and Trichoderma viride on nucleic acid synthesis in human tumor cells in vitro].

    Science.gov (United States)

    Khaduev, S Kh; Zhukova, O S; Dobrynin, Ia V; Soda, K; Berezov, T T

    1986-05-01

    L-lysine-alpha-oxidase, a new fungal enzyme catalyzing oxidative deamination of L-lysine, exerts an inhibitory effect on DNA, RNA and protein synthesis in human cells of carcinoma ovarius (CaOv) in vitro.

  16. Sex dependency of inhibitory control functions.

    Science.gov (United States)

    Mansouri, Farshad A; Fehring, Daniel J; Gaillard, Alexandra; Jaberzadeh, Shapour; Parkington, Helena

    2016-01-01

    Inhibition of irrelevant responses is an important aspect of cognitive control of a goal-directed behavior. Females and males show different levels of susceptibility to neuropsychological disorders such as impulsive behavior and addiction, which might be related to differences in inhibitory brain functions. We examined the effects of 'practice to inhibit', as a model of rehabilitation approach, and 'music', as a salient contextual factor in influencing cognition, on the ability of females and males to perform a stop-signal task that required inhibition of initiated or planned responses. In go trials, the participants had to rapidly respond to a directional go cue within a limited time window. In stop trials, which were presented less frequently, a stop signal appeared immediately after the go-direction cue and the participants had to stop their responses. We found a significant difference between females and males in benefiting from practice in the stop-signal task: the percentage of correct responses in the go trials increased, and the ability to inhibit responses significantly improved, after practice in females. While listening to music, females became faster but males became slower in responding to the go trials. Both females and males became slower in performing the go trials following an error in the stop trials; however, music significantly affected this post-error slowing depending on the sex. Listening to music decreased post-error slowing in females but had an opposite effect in males. Here, we show a significant difference in executive control functions and their modulation by contextual factors between females and males that might have implications for the differences in their propensity for particular neuropsychological disorders and related rehabilitation approaches.

  17. Neuroendocrine effects of cytokines in the rat.

    Science.gov (United States)

    Rivier, C

    1993-01-01

    The necessity ot maintain and/or restore homeostasis is an essential feature of mammals. This requires complex interactions between body cells, such as those from the immune and neuroendocrine systems, and in particular implies that the occurrence of immune activation be conveyed to the brain. It is now widely recognized that following infection, injury or inflammation, some immune cells (particularly macrophages) produce polypeptides called cytokines, interleukins or lymphokines /48/. These proteins provide the basis for intercellular communication between leukocytes (hence the name "interleukins") and mediate the immunoinflammatory responses (in particular T and B lymphocyte proliferation) /4,177/. In addition, interleukins (IL) can enter the general circulation and reach cells of the neuroendocrine axes, a phenomenon which represents one arm of the bidirectional communication links between the immune and the endocrine systems /25/. The early events which take place after presentation of an antigen (the so-called "acute-phase response" /89/) include metabolic and endocrine changes, such as changes in the circulating levels of insulin, TSH, GH, LH and ACTH, as well as adrenal and gonadal steroids /7,14/. This article reviews our present state of knowledge with regard to the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes of the rodent in response to interleukins.

  18. Cytokine and antibody production during murine leptospirosis

    Directory of Open Access Journals (Sweden)

    M. Marinho

    2006-01-01

    Full Text Available The aim of the present study was to investigate the kinetics of humoral and cellular responses during leptospirosis. We observed that the presence of tumor necrosis factor-alpha (TNF-alpha and interleukin-6 (IL-6 was associated with antibody production and bacterial recovery, and the compromising of both TNF-alpha and IL-6 in the immunopathogenesis of leptospirosis during an experimental infection of BALB/c mice inoculated with Leptospira interrogans serovar Canicola was verified. Results showed higher levels of TNF-alpha and IL-6 in the initial phase of infection, in which the greatest bacterial clearance was observed. However, when the bacterial recovery was compared with the kinetics of the production of antibodies, the results revealed a kinetics proportionally inverted to antibody production. This fact may be related to some inhibitory factor which could be responsible for the selective suppression of the cellular immune response. We concluded that during leptospirosis there was a greater mobilization of the cellular immune response activity, mainly in the initial phase of the infectious process, for posterior involvement of the humoral response, and that both TNF-alpha and IL-6 could be associated with the immunopathogenesis of the disease.

  19. The role of glucocorticoids in the immediate vs. delayed effects of acute ethanol exposure on cytokine production in a binge drinking model.

    Science.gov (United States)

    Glover, Mitzi; Cheng, Bing; Deng, Xiaomin; Pruett, Stephen

    2011-06-01

    Acute ethanol administration just prior to a stimulus, such as the viral mimic poly I:C, results in decreased proinflammatory cytokine production. Studies have indicated that this suppression is not primarily mediated by glucocorticoids (corticosterone in mice) released in the ethanol-induced stress response. Fewer studies have been done on the effects of acute ethanol administration 12 or more hours prior to a stimulus. The purpose of this study was to determine the role of corticosterone on these effects. Also, since gender differences occur in immune responses, separate experiments were performed using male and female mice. Mice were treated with ethanol 15 min or 12h before stimulation by poly I:C to demonstrate immunosuppressive effects of ethanol on cytokine production. A glucocorticoid synthesis inhibitor was used to manipulate corticosterone levels. Short-term and persistent effects of acute ethanol exposure on corticosterone and cytokine levels were nearly identical in males and females. Blocking glucocorticoid synthesis altered the inhibition of some cytokines, particularly IL-6, in females, but not in males. These results indicate that the short-term effects of acute ethanol on poly I:C-induced cytokine production are not primarily mediated by corticosterone in male or female mice. In female mice, however, corticosterone does appear to mediate the persistent effects of acute ethanol administration on poly I:C- induced IL-6 levels. Since many IL-6 related disorders are gender associated, further research into the bidirectional effects of the HPG and HPA axes on alterations in cytokine production mediated by ethanol is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Taurin-conjugated ursodeoxycholic acid has a reversible inhibitory effect on human keratinocyte growth.

    Science.gov (United States)

    Yamaguchi, Y; Itami, S; Nishida, K; Ando, Y; Okamoto, S; Hosokawa, K; Yoshikawa, K

    1998-09-01

    Tauroursodeoxycholic acid (TUDC) is one of the most hydrophilic taurin conjugated bile acids. TUDC has a suppressive effect on DNA synthesis in primary cultured rat hepatocytes. In this study, we investigated the growth inhibitory effect of TUDC on cultured human keratinocytes. TUDC suppressed the proliferation of keratinocytes in a dose dependent fashion, as measured by both cell counts and 5-bromo-2'-deoxyuridine (BrdU) uptake. Keratinocytes reproliferated and reached almost the same cell number as control after removal of TUDC from the medium. TUDC (1 mM) had no effect on the cell viability, as measured by the dye exclusion test. Epidermal sheets stratified in the presence of TUDC appeared thinner than those stratified without TUDC. These results suggest that TUDC has a reversible growth suppressive effect on human keratinocytes through the mechanism other than cytotoxicity and would be applicable for the treatment of hyperproliferative skin disorders such as psoriasis.

  1. New ACE-Inhibitory Peptides from Hemp Seed (Cannabis sativa L.) Proteins.

    Science.gov (United States)

    Orio, Lara P; Boschin, Giovanna; Recca, Teresa; Morelli, Carlo F; Ragona, Laura; Francescato, Pierangelo; Arnoldi, Anna; Speranza, Giovanna

    2017-12-06

    A hemp seed protein isolate, prepared from defatted hemp seed meals by alkaline solubilization/acid precipitation, was subjected to extensive chemical hydrolysis under acid conditions (6 M HCl). The resulting hydrolysate was fractionated by semipreparative RP-HPLC, and the purified fractions were tested as inhibitors of angiotensin converting enzyme (ACE). Mono- and bidimensional NMR experiments and LC-MS analyses led to the identification of four potentially bioactive peptides, i.e. GVLY, IEE, LGV, and RVR. They were prepared by solid-phase synthesis, and tested for ACE-inhibitory activity. The IC50 values were GVLY 16 ± 1.5 μM, LGV 145 ± 13 μM, and RVR 526 ± 33 μM, confirming that hemp seed may be a valuable source of hypotensive peptides.

  2. Investigation of hydrazide derivatives inhibitory effect on peroxidase enzyme purified from turnip roots

    Science.gov (United States)

    Almaz, Züleyha; Öztekin, Aykut; Özdemir, Hasan

    2017-04-01

    Peroxidases (EC: 1.11.1.7) are haem proteins and contain iron (III) protoporphyrin IX (ferriprotoporphyrin IX) as the prosthetic group [1]. They are found in all cells and play a critical role in many biological processes, such as the host-defense mechanism [2]. Peroxidases (PODs) are widely used in clinical biochemistry, enzyme immunoassays, synthesis of various aromatic chemicals, treatment of waste water containing phenolic compounds [3, 4]. In this study, peroxidase enzyme was purified with Para amino benzohydrazide (PABH)-L-Tyrosine Sepharose 4B affinity chromatography to investigate the inhibitory effect of hydrazide derivatives on Turnip (Brassica rapa L.). IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzyme and inhibition type of these molecules were determined.

  3. Inflammation, cytokines and anti-inflammatory therapies in heart failure.

    Science.gov (United States)

    Tabet, J Y; Lopes, M E; Champagne, S; Su, J B; Merlet, P; Hittinger, L

    2002-03-01

    Both experimental and clinical studies have shown a role for inflammation in the pathogenesis of heart failure. This seems related to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Certain categories in patients with dilated cardiomyopathy have shown the presence of humoral and cellular immunity activation suggesting a possible relation between myocarditis and dilated cardiomyopathy. Recent studies suggest a link between the circulating levels of cytokines (TNF alpha IL-1 et IL-6), the clinical status and prognostic. However, the mechanisms connecting heart failure and cytokine activation are unclear and the sites of cytokines production remain controversial. In the clinical setting, specific measurements of cytokines are not available. As tests of inflammation, erythrocyte sedimentation rate and C-reactive protein concentration appear to have interesting pronostic values. Current conventional therapy i.e. ACE inhibitors, type I angiotensin II antagonist and beta-blockers have shown some anti-cytokine properties. Recently, immunosuppressive therapies have shown their ability to improve symptoms and LV ejection in selected patients with dilated cardiomyopathy and clear sign of myocardium inflammation. Specific anti-cytokine therapy have been developed and showed interesting results in preliminary clinical studies. However large clinical trials testing this new therapy have been stoppel prematurely because of deterious effects.

  4. Cytokine expression profile over time in severely burned pediatric patients.

    Science.gov (United States)

    Finnerty, Celeste C; Herndon, David N; Przkora, Rene; Pereira, Clifford T; Oliveira, Hermes M; Queiroz, Dulciene M M; Rocha, Andreia M C; Jeschke, Marc G

    2006-07-01

    A severe burn leads to hypermetabolism and catabolism resulting in compromised function and structure of essential organs. The massive release of cytokines is implicated in this hypermetabolic response. The aim of the present study was to compare cytokine expression profiles from severely burned children without signs of infections or inhalation injury (n = 19) to the cytokine profiles from normal, noninfected, nonburned children (n = 14). The Bio-Plex suspension array system was used to measure the concentration of 17 cytokines. The expression of proinflammatory and anti-inflammatory cytokines was maximal during the first week after thermal injury. Significant increases were measured for 15 mediators during the first week after thermal injury: interleukin (IL) 1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 p70, IL-13, IL-17, interferon gamma, monocyte chemoattractant protein 1, macrophage inflammatory protein 1beta, and granulocyte colony-stimulating factor (P sepsis. The cytokine concentrations decrease during 5 weeks after burn but remain elevated over nonburned values. Furthermore, the elevation in most serum cytokine levels during the first week after burn may indicate a potential window of opportunity for therapeutic intervention.

  5. Inhibitory Effects of Palmultang on Inflammatory Mediator Production Related to Suppression of NF-κB and MAPK Pathways and Induction of HO-1 Expression in Macrophages

    Directory of Open Access Journals (Sweden)

    You-Chang Oh

    2014-05-01

    Full Text Available Palmultang (PM is an herbal decoction that has been used to treat anorexia, anemia, general prostration, and weakness due to chronic illness since medieval times in Korea, China, and Japan. The present study focused on the inhibitory effects of PM on the production of inflammatory factors and on the activation of mechanisms in murine macrophages. PM suppressed the expression of nitric oxide (NO, inflammatory cytokines and inflammatory proteins by inhibiting nuclear factor (NF-κB and mitogen-activated protein kinase (MAPK signaling pathways and by inducing heme oxygenase (HO-1 expression. Collectively, our results explain the anti-inflammatory effect and inhibitory mechanism of PM in macrophages stimulated with lipopolysaccharide (LPS.

  6. DMPD: Cytokines, PGE2 and endotoxic fever: a re-assessment. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15967158 Cytokines, PGE2 and endotoxic fever: a re-assessment. Blatteis CM, Li S, L... (.svg) (.html) (.csml) Show Cytokines, PGE2 and endotoxic fever: a re-assessment. PubmedID 15967158 Title Cytokines

  7. Effects of inhibitory compounds in lignocellulosic hydrolysates on Mortierella isabellina growth and carbon utilization.

    Science.gov (United States)

    Ruan, Zhenhua; Hollinshead, Whitney; Isaguirre, Christine; Tang, Yinjie J; Liao, Wei; Liu, Yan

    2015-05-01

    Oleaginous fungus Mortierella isabellina showed excellent lipid conversion on non-detoxified lignocellulosic hydrolysate. This study investigated the effects of inhibitory compounds (furfural, hydroxymethylfurfural, and ferulic and coumaric acids) in lignocellulosic hydrolysate on M. isabellina growth and lipid production. M. isabellina can tolerate furfural (∼1 g/L), hydroxymethylfurfural (∼2.5 g/L), ferulic (∼0.5 g/L) and coumaric acid (∼0.5 g/L) with normal growth rates. Synergistic effect of these inhibitors (2 g/L furfural, 0.4 g/L hydroxymethylfurfural, 0.02 g/L ferulic acid and 0.02 g/L coumaric acid) moderately reduces total fungal growth (by 28%), while the presence of these inhibitors has minor impact on cell lipid contents and lipid profiles. In the presence of inhibitory compounds, (13)C-tracing has revealed that M. isabellina can simultaneously utilize glucose and acetate, and acetate is mainly assimilated for synthesis of lipid and TCA cycle amino acids. The results also demonstrate that glucose has strong catabolite repression for xylose utilization for biomass and lipid production in the presence of inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanism of growth inhibitory effect of cape aloe extract in ehrlich ascites tumor cells.

    Science.gov (United States)

    Kametani, Saeda; Oikawa, Tomoko; Kojima-Yuasa, Akiko; Kennedy, David Opare; Norikura, Toshio; Honzawa, Mayumi; Matsui-Yuasa, Isao

    2007-12-01

    Cape aloe (Aloe ferox Miller) has been a herb well known for its cathartic properties and has also been used popularly as a health drink (juice, tea and tonic) in the United States and in Europe. Cape aloe extract also has been reported to possess several pharmacological effects, such as anti-inflammatory, anti-bacterial, anti-fungal and protective effect against liver injury. However, the investigations on an anti-tumor activity in cape aloe extract are very few and subsequent mechanisms have not been well elucidated. In this study, we examined the effect of the selective growth inhibitory activity of cape aloe extract and found that the cape aloe extract, especially the dichloromethane (CH(2)Cl(2)) extract, caused a dose-dependent growth inhibitory effect in Ehrlich ascites tumor cells (EATC), but not in mouse embryo fibroblast (NIH3T3) cells, which was used as a normal cell model. Furthermore, the CH(2)Cl(2) extract caused an accumulation of cells in the G1 phase and a decrease of cells in the S and G2/M phase of the cell cycle and inhibited DNA synthesis in a dose-dependent manner. In addition, other results suggest that cell cycle arrest and inhibition of proliferation in EATC by the CH(2)Cl(2 )extract are associated with decreased retinoblastoma protein (Rb) phosphorylation.

  9. Proliferation, migration, and expression of oral-mucosal-healing-related genes by oral fibroblasts receiving low-level laser therapy after inflammatory cytokines challenge.

    Science.gov (United States)

    Basso, Fernanda G; Soares, Diana G; Pansani, Taisa N; Cardoso, Lais M; Scheffel, Débora L; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-12-01

    Increased expression of inflammatory cytokines in the oral cavity has been related to the etiopathogenesis of oral mucositis and to delayed oral mucosal repair. Low-level laser therapy (LLLT) stimulates proliferation and migration of gingival fibroblasts, but the effects of specific inflammatory cytokines on oral mucosal cells and the modulation of these effects by LLLT have not been fully investigated. Therefore, this study investigated the effects of LLLT on oral fibroblasts after being challenged by oral-mucositis-related inflammatory cytokines. Human gingival fibroblasts were seeded in plain culture medium (DMEM) containing 10% fetal bovine serum (FBS) for 24 hours. Then, cells were kept in contact with inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) in serum-free DMEM for 24 hours. After this period, cells were subjected to LLLT with a diode laser device (LaserTABLE, InGaAsP, 780 nm, 25 mW) delivering energy doses from 0.5 to 3 J/cm 2 . Irradiation was repeated for 3 consecutive days. Twenty-four hours after the last irradiation, cell migration (wound-healing and transwell migration assays), cell proliferation (BrdU), gene expression of COL-I and growth factors (real-time PCR), and synthesis of COL-I (Sirius Red assay) and VEGF (ELISA) were assessed. Data were subjected to two-way ANOVA and Tukey's tests or Kruskall-Walis and Mann-Whitney tests (P cytokines decreased the migration capacity of gingival fibroblasts. However, a statistically significant difference was observed only for IL-6, detected by transwell assay, where 30% less cells migrated through the pores (P cytokines, while growth factors and COL-I expression (approximately 80%; P cytokines. The opposite was seen for total collagen synthesis. LLLT promoted an acceleration of fibroblast migration (30%; P cytokines. Gene expression of VEGF (approximately 30%; P cytokines, especially IL-6 and IL-8 on gingival fibroblast functions directly related to the wound-healing process

  10. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus

    Directory of Open Access Journals (Sweden)

    Weber Friedemann

    2006-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.

  11. Leukemia inhibitory factor protects axons in experimental autoimmune encephalomyelitis via an oligodendrocyte-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Melissa M Gresle

    Full Text Available Leukemia inhibitory factor (LIF and Ciliary Neurotrophic factor (CNTF are members of the interleukin-6 family of cytokines, defined by use of the gp130 molecule as an obligate receptor. In the murine experimental autoimmune encephalomyelitis (EAE model, antagonism of LIF and genetic deletion of CNTF worsen disease. The potential mechanism of action of these cytokines in EAE is complex, as gp130 is expressed by all neural cells, and could involve immuno-modulation, reduction of oligodendrocyte injury, neuronal protection, or a combination of these actions. In this study we aim to investigate whether the beneficial effects of CNTF/LIF signalling in EAE are associated with axonal protection; and whether this requires signalling through oligodendrocytes. We induced MOG₃₅₋₅₅ EAE in CNTF, LIF and double knockout mice. On a CNTF null background, LIF knockout was associated with increased EAE severity (EAE grade 2.1±0.14 vs 2.6±0.19; P<0.05. These mice also showed increased axonal damage relative to LIF heterozygous mice, as indicated by decreased optic nerve parallel diffusivity on MRI (1540±207 µm²-/s vs 1310±175 µm²-/s; P<0.05, and optic nerve (-12.5% and spinal cord (-16% axon densities; and increased serum neurofilament-H levels (2.5 fold increase. No differences in inflammatory cell numbers or peripheral auto-immune T-cell priming were evident. Oligodendrocyte-targeted gp130 knockout mice showed that disruption of CNTF/LIF signalling in these cells has no effect on acute EAE severity. These studies demonstrate that endogenous CNTF and LIF act centrally to protect axons from acute inflammatory destruction via an oligodendrocyte-independent mechanism.

  12. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates

    Science.gov (United States)

    Schneider, Anina; Weier, Manuela; Sweep, Fred C. G. J.; Le Roy, Didier; Bernhagen, Jürgen; Calandra, Thierry; Giannoni, Eric

    2016-01-01

    The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis. PMID:26858459

  13. Functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis

    Science.gov (United States)

    Savva, Athina; Brouwer, Matthijs C.; Valls Serón, Mercedes; Le Roy, Didier; Ferwerda, Bart; van der Ende, Arie; Bochud, Pierre-Yves; van de Beek, Diederik; Calandra, Thierry

    2016-01-01

    Pneumococcal meningitis is the most frequent and critical type of bacterial meningitis. Because cytokines play an important role in the pathogenesis of bacterial meningitis, we examined whether functional polymorphisms of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) were associated with morbidity and mortality of pneumococcal meningitis. Two functional MIF promoter polymorphisms, a microsatellite (−794 CATT5–8; rs5844572) and a single-nucleotide polymorphism (−173 G/C; rs755622) were genotyped in a prospective, nationwide cohort of 405 patients with pneumococcal meningitis and in 329 controls matched for age, gender, and ethnicity. Carriages of the CATT7 and −173 C high-expression MIF alleles were associated with unfavorable outcome (P = 0.005 and 0.003) and death (P = 0.03 and 0.01). In a multivariate logistic regression model, shock [odds ratio (OR) 26.0, P = 0.02] and carriage of the CATT7 allele (OR 5.12, P = 0.04) were the main predictors of mortality. MIF levels in the cerebrospinal fluid were associated with systemic complications and death (P = 0.0002). Streptococcus pneumoniae strongly up-regulated MIF production in whole blood and transcription activity of high-expression MIF promoter Luciferase reporter constructs in THP-1 monocytes. Consistent with these findings, treatment with anti-MIF immunoglogulin G (IgG) antibodies reduced bacterial loads and improved survival in a mouse model of pneumococcal pneumonia and sepsis. The present study provides strong evidence that carriage of high-expression MIF alleles is a genetic marker of morbidity and mortality of pneumococcal meningitis and also suggests a potential role for MIF as a target of immune-modulating adjunctive therapy. PMID:26976591

  14. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kwon, Taeg Kyu [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Shin, Tae-Yong [College of Pharmacy, Woosuk University, Jeonju 565-701 (Korea, Republic of); Park, Pil-Hoon; Lee, Seung-Ho [College of Pharmacy, Youngnam University, Kyungsan 712-749 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.

  15. TNF‐α has both stimulatory and inhibitory effects on mouse monocyte‐derived osteoclastogenesis

    Science.gov (United States)

    Jansen, Ineke D.C.; Sprangers, Sara; de Vries, Teun J.; Everts, Vincent

    2017-01-01

    Phenotypically different osteoclasts may be generated from different subsets of precursors. To what extent the formation of these osteoclasts is influenced or mediated by the inflammatory cytokine TNF‐α, is unknown and was investigated in this study. The osteoclast precursors early blasts (CD31hiLy‐6C−), myeloid blasts (CD31+Ly‐6C+), and monocytes (CD31−Ly‐6Chi) were sorted from mouse bone marrow using flow cytometry and cultured with M‐CSF and RANKL, with or without TNF‐α. Surprisingly, TNF‐α prevented the differentiation of TRAcP+ osteoclasts generated from monocytes on plastic; an effect not seen with early blasts and myeloid blasts. This inhibitory effect could not be prevented by other cytokines such as IL‐1β or IL‐6. When monocytes were pre‐cultured with M‐CSF and RANKL followed by exposure to TNF‐α, a stimulatory effect was found. TNF‐α also stimulated monocytes’ osteoclastogenesis when the cells were seeded on bone. Gene expression analysis showed that when TNF‐α was added to monocytes cultured on plastic, RANK, NFATc1, and TRAcP were significantly down‐regulated while TNF‐αR1 and TNF‐αR2 were up‐regulated. FACS analysis showed a decreased uptake of fluorescently labeled RANKL in monocyte cultures in the presence of TNF‐α, indicating an altered ratio of bound‐RANK/unbound‐RANK. Our findings suggest a diverse role of TNF‐α on monocytes’ osteoclastogenesis: it affects the RANK‐signaling pathway therefore inhibits osteoclastogenesis when added at the onset of monocyte culturing. This can be prevented when monocytes were pre‐cultured with M‐CSF and RANKL, which ensures the binding of RANKL to RANK. This could be a mechanism to prevent unfavorable monocyte‐derived osteoclast formation away from the bone. PMID:28543070

  16. Rheumatoid factor and its interference with cytokine measurements

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Falbe Wätjen, Inger; Littrup Andersen, Eva

    2011-01-01

    Use of cytokines as biomarkers for disease is getting more widespread. Cytokines are conveniently determined by immunoassay, but interference from present antibodies is known to cause problems. In rheumatoid arthritis (RA), interference of rheumatoid factor (RF) may be problematic. RF covers...... a group of autoantibodies from immunoglobulin subclasses and is present in 65-80% of RA patients. Partly removal of RF is possible by precipitation. This study aims at determining the effects of presence of RF in blood and synovial fluid on cytokine measurements in samples from RA patients and finding...

  17. Expressions of macrophage migration inhibitory factor in patients ...

    African Journals Online (AJOL)

    ESRD) and is responsible for high mortality rates and increased left ventricular mass index (LVMI). Macrophage migration inhibitory factor (MIF) promotes inflammation and is an important factor in uremic cardiomyopathy. Aims: The aim of this study ...

  18. Neuroscientific Insights: Attention, Working Memory, and Inhibitory Control

    National Research Council Canada - National Science Library

    C. Cybele Raver; Clancy Blair

    2016-01-01

    ...)—including the flexible control of attention, the ability to hold information through working memory, and the ability to maintain inhibitory control EF processes are crucial for young children's learning...

  19. Kinetics of Tyrosinase Inhibitory Activity Using Vitis vinifera Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2017-01-01

    Full Text Available Natural medical plant is considered as a good source of tyrosinase inhibitors. Red vine leaf extract (RVLE can be applied to a wide variety of medical disciplines, such as treatments for chronic venous insufficiency over many decades. This study investigated the tyrosinase inhibitory activity of RVLE containing gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol which are effective for skin hyperpigmentation. The five components contents are 1.03, 0.2, 18.55, 6.45, and 0.48 mg/g for gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol. The kinetic study showed the tyrosinase inhibitory of RVLE via a competitive reaction mechanism. RVLE solution has an IC50 (the half inhibitory concentration value of 3.84 mg/mL for tyrosinase inhibition, that is, an effective tyrosinase inhibitory activity, and can be used as a whitening agent for cosmetic formulations in the future.

  20. Macrophage migration inhibitory factor and autism spectrum disorders

    NARCIS (Netherlands)

    Grigorenko, Elena L.; Han, Summer S.; Yrigollen, Carolyn M.; Leng, Lin; Mizue, Yuka; Anderson, George M.; Mulder, Erik J.; de Bildt, Annelies; Minderaa, Ruud B.; Volkmar, Fred R.; Chang, Joseph T.; Bucala, Richard

    OBJECTIVE. Autistic spectrum disorders are childhood neurodevelopmental disorders characterized by social and communicative impairment and repetitive and stereotypical behavior. Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity that promotes

  1. In vitro growth-inhibitory activity of Calophyllum inophyllum ethanol ...

    African Journals Online (AJOL)

    In vitro growth-inhibitory activity of Calophyllum inophyllum ethanol leaf extract against diarrhoea-causing bacteria. Tomas Kudera, Johana Rondevaldova, Rashmi Kant, Mohammed Umar, Eva Skrivanova, Ladislav Kokoska ...

  2. Phenolics from Durian Exert Pronounced NO Inhibitory and Antioxidant Activities.

    Science.gov (United States)

    Feng, Jianying; Wang, Yihai; Yi, Xiaomin; Yang, Weimin; He, Xiangjiu

    2016-06-01

    Durian, known as the king of fruits, is native to Southeast Asia and popular in many countries. Bioactivity-guided fractionation of the peel of durian was applied to determine its bioactive constituents. Four novel phenolics, along with 16 known, were purified and identified. Four novel phenolics were elucidated to be durianol A (1), durianol B (2), durianol C (3), and 5'-methoxy-7'-epi-jatrorin A (4), respectively. The antioxidant and NO inhibitory activities were evaluated for the isolated phenolics. Some phenolics showed significant antioxidant activity in the DPPH and superoxide anion radical scavenging capacity assay. Most of the phenolics revealed pronounced inhibitory effects on NO production in murine RAW 264.7 cells induced by LPS, which showed more potent NO inhibitory activity compared to indomethacin. The results strongly demonstrated that the phenolics may be partially responsible for durian's NO inhibitory activity.

  3. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    National Research Council Canada - National Science Library

    Abdullahi, A; Hamzah, RU; Jigam, AA; Yahya, A; Kabiru, AY; Muhammad, H; Sakpe, S; Adefolalu, FS; Isah, MC; Kolo, MZ

    2012-01-01

    ...: Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation...

  4. Different influence of antipsychotics on the balance between pro- and anti-inflammatory cytokines depends on glia activation: An in vitro study.

    Science.gov (United States)

    Obuchowicz, Ewa; Bielecka-Wajdman, Anna M; Paul-Samojedny, Monika; Nowacka, Marta

    2017-06-01

    The microglial hypothesis of schizophrenia suggests that its neuropathology is closely associated with neuroinflammation manifested, inter alia, by an increased expression of cytokines. However, clinical investigations imply that schizophrenia is a heterogeneous disease and in some groups of patients the activated inflammatory process does not contribute to the disease-associated impairment of brain function. Clinical studies revealed also an equivocal impact of antipsychotics on peripheral and CSF cytokines, whereas experimental research performed on the stimulated glia cultures showed their inhibitory effect on pro-inflammatory cytokine levels. In the present study, the effect of chlorpromazine, haloperidol and risperidone (0.5, 5 or 10μM) on production of pro-inflammatory cytokines IL-1β and TNF-α and anti-inflammatory IL-10 was investigated in the unstimulated and lipopolysaccharide-stimulated primary rat mixed glial cell cultures. In the unstimulated cultures, haloperidol at all applied concentrations, risperidone at 5, 10μM and chlorpromazine at 10μM increased IL-10 levels in the culture supernatants without a significant influence on IL-1β or TNF-α levels, and all drugs applied at 10μM induced a robust increase in IL-10 mRNA expression. Under strong inflammatory activation, haloperidol and risperidone at all concentrations reduced production of both pro-inflammatory cytokines, without adverse effects on IL-10 expression when used at 10μM. Chlorpromazine at all concentrations diminished the production of three cytokines and did not induce anti-inflammatory effect. These results suggest that dependently on glia activation antipsychotics via different mechanisms may induce anti-inflammatory effect and that this activity is not common for all drugs under conditions of strong glia activation. Copyright © 2017. Published by Elsevier Ltd.

  5. Simplified Method to Produce Human Bioactive Leukemia Inhibitory Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2016-07-01

    Full Text Available Background Human leukemia inhibitory factor (hLIF is a poly functional cytokine with numerous regulatory effects on different cells. Main application of hLIF is maintaining pluripotency of embryonic stem cells. hLIF indicated effective work in implantation rate of fertilized eggs and multiple sclerosis (MS treatment. Low production of hLIF in eukaryotic cells and prokaryotic host’s problems for human protein production convinced us to develop a simple way to reach high amount of this widely used clinical and research factor. Objectives In this study we want to purify recombinant human leukemia inhibitory factor in single simple method. Materials and Methods This is an experimental study, gene expression: human LIF gene was codon optimized for expression in Escherichia coli and attached his-tag tail to make it extractable. After construction and transformation of vector to E. coli, isopropyl β-D-1-thiogalactopyranoside (IPTG used for induction. Single step immobilized metal affinity chromatography (IMAC used for purification confirmed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE and western blotting. Bioactivity of the hLIF were tested by MTT assay with TF-1 cells and CISH gene stimulation in monocyte and TF-1 by real-time PCR. Induction by 0.4 mM of IPTG in 25°C for 3 hours indicated best result for soluble expression. SPSS indicated P ˂ 0.05 that is significant for our work. Results Cloning, expression, and extraction of bio active rhLIF was successfully achieved according MTT assay and real time PCR after treatment of TF-1 and monocyte cell lines. Conclusions We developed an effective single step purification method to produce bioactive recombinant hLIF in E. coli. For the first time we used CISH gene stimulating for bioactivity test for qualifying of recombinant hLIF for application.

  6. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    Science.gov (United States)

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  7. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring.

    Science.gov (United States)

    Corradini, Irene; Focchi, Elisa; Rasile, Marco; Morini, Raffaella; Desiato, Genni; Tomasoni, Romana; Lizier, Michela; Ghirardini, Elsa; Fesce, Riccardo; Morone, Diego; Barajon, Isabella; Antonucci, Flavia; Pozzi, Davide; Matteoli, Michela

    2017-11-14

    The association between maternal infection and neurodevelopmental defects in progeny is well established, although the biological mechanisms and the pathogenic trajectories involved have not been defined. Pregnant dams were injected intraperitoneally at gestational day 9 with polyinosinic:polycytidylic acid. Neuronal development was assessed by means of electrophysiological, optical, and biochemical analyses. Prenatal exposure to polyinosinic:polycytidylic acid causes an imbalanced expression of the Na+-K+-2Cl- cotransporter 1 and the K+-Cl- cotransporter 2 (KCC2). This results in delayed gamma-aminobutyric acid switch and higher susceptibility to seizures, which endures up to adulthood. Chromatin immunoprecipitation experiments reveal increased binding of the repressor factor RE1-silencing transcription (also known as neuron-restrictive silencer factor) to position 509 of the KCC2 promoter that leads to downregulation of KCC2 transcription in prenatally exposed offspring. Interleukin-1 receptor type I knockout mice, which display braked immune response and no brain cytokine elevation upon maternal immune activation, do not display KCC2/Na+-K+-2Cl- cotransporter 1 imbalance when implanted in a wild-type dam and prenatally exposed. Notably, pretreatment of pregnant dams with magnesium sulfate is sufficient to prevent the early inflammatory state and the delay in excitatory-to-inhibitory switch associated to maternal immune activation. We provide evidence that maternal immune activation hits a key neurodevelopmental process, the excitatory-to-inhibitory gamma-aminobutyric acid switch; defects in this switch have been unequivocally linked to diseases such as autism spectrum disorder or epilepsy. These data open the avenue for a safe pharmacological treatment that may prevent the neurodevelopmental defects caused by prenatal immune activation in a specific pregnancy time window. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  8. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis.

    Science.gov (United States)

    Furukawa, Ryohei; Tamaki, Kana; Kaneko, Hiroyuki

    2016-04-01

    Immune cell recruitment is critical step in the inflammatory response and associated diseases. However, the underlying regulatory mechanisms are poorly understood in invertebrates. Mesenchyme cells of the starfish larvae, which allowed Metchnikoff to complete his landmark experiments, are important model for analysis of immune cell migration. The present study investigated the role of macrophage migration inhibitory factor (MIF)--an evolutionarily conserved cytokine that is functionally similar to chemokines--in the larvae of the starfish Patiria (Asterina) pectinifera, which were found to possess two orthologs, ApMIF1 and ApMIF2. ApMIF1 and ApMIF2 clustered with mammalian MIF and its homolog D-dopachrome tautomerase (DDT), respectively, in the phylogenetic analysis. In contrast to the functional similarity between mammalian MIF and DDT, ApMIF1 knockdown resulted in the excessive recruitment of mesenchyme cells in vivo, whereas ApMIF2 deficiency inhibited the recruitment of these cells to foreign bodies. Mesenchyme cells migrated along a gradient of recombinant ApMIF2 in vitro, whereas recombinant ApMIF1 completely blocked ApMIF2-induced directed migration. Moreover, the expression patterns of ApMIF1 and ApMIF2 messenger RNA in bacteria-challenged mesenchyme cells were consistent with in vivo observations of cell behaviors. These results indicate that ApMIF1 and ApMIF2 act as chemotactic inhibitory and stimulatory factors, respectively, and coordinately regulate mesenchyme cell recruitment during the immune response in starfish larvae. This is the first report describing opposing functions for MIF- and DDT-like molecules. Our findings provide novel insight into the mechanisms underlying immune regulation in invertebrates.

  9. Circadian variations in clinical symptoms and concentrations of inflammatory cytokines, melatonin, and cortisol in polymyalgia rheumatica before and during prednisolone treatment

    DEFF Research Database (Denmark)

    Galbo, Henrik; Kall, Lisbeth

    2016-01-01

    to concentrations during the day of melatonin, inflammatory cytokines, and cortisol. Furthermore, the effects of 14 days of prednisolone treatment were studied. METHODS: Ten glucocorticoid-naive patients newly diagnosed with PMR and seven non-PMR control subjects were studied for 24 h before treatment and during...... higher throughout the 24-h observation period in patients than in control subjects (2P melatonin and cortisol were consistently higher in patients (2P ..., and cortisol are increased throughout the day and show diurnal variation, as also seen in healthy subjects. The time courses and the inhibitory effects of prednisolone indicate that in PMR, as proposed for RA, melatonin stimulates cytokine production, which in turn accounts at least partly for the symptoms...

  10. Optimization of inhibitory decision rules relative to length and coverage

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    The paper is devoted to the study of algorithms for optimization of inhibitory rules relative to the length and coverage. In contrast with usual rules that have on the right-hand side a relation "attribute ≠ value", inhibitory rules have a relation "attribute = value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. © 2012 Springer-Verlag.

  11. Chronic exercise keeps working memory and inhibitory capacities fit

    OpenAIRE

    Concepción ePadilla; Laura ePérez; Pilar eAndres

    2014-01-01

    Padilla et al. (2013) recently showed that chronic aerobic exercise in young adults is associated with better inhibitory control as measured by the strategic Stop Signal Task (SST). The aim of the current study was to explore whether better inhibitory abilities, associated with high levels of physical fitness, were also associated with higher working memory capacity (WMC) in young healthy adults. Participants aged between 18 and 30 years and showing different levels of fitness confirmed by th...

  12. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    OpenAIRE

    A Abdullahi; RU Hamzah; AA Jigam; Yahya, A.; AY Kabiru; Muhammad, H.; S Sakpe; FS Adefolalu; MC Isah; MZ Kolo

    2012-01-01

    Objective: To study the inhibitory effect of various extracts from Crateva adansonii (C. adansonii) used traditionally against several inflammatory diseases such as rheumatism, arthritis, and gout, was investigated on purified bovine milk xanthine oxidase (XO) activity. Methods: Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Enzy...

  13. Polymorphisms in cytokine genes and serum cytokine levels among New Mexican women with and without breast cancer.

    Science.gov (United States)

    Erdei, Esther; Kang, Huining; Meisner, Angela; White, Kirsten; Pickett, Gavin; Baca, Cynthia; Royce, Melanie; Berwick, Marianne

    2010-07-01

    Among New Mexican Hispanic women, breast cancer is detected at a more advanced stage than compared to Non-Hispanic White women. One central factor that has been little studied is the role of critical cytokines. We genotyped incident breast cancer cases and their age-, gender- and smoking-matched controls (N=40 matched pairs) for 25 single nucleotide polymorphisms (SNPs) in cytokine genes. We measured corresponding serum cytokine levels as well. Five cytokines (IL-1beta, IL-5, TNF-alpha, IL-6 and IL-2) were significantly associated with disease and based on their serum levels, concentrations were higher in the cases than in the controls. Disease odds ratios corresponding to one standard deviation change in log-transformed concentrations of these cytokines were 18.87, 4.10, 3.61, 3.27 and 2.52. Three most statistically significant SNPs were rs2069705, located in the promoter region of the interferon gamma gene (INF-gamma); rs2243248, in the promoter of IL-4 (rs2243248); and rs1800925, in the promoter of the IL-13 gene. Increased serum cytokine levels at diagnosis are indicative for immunological alterations and possibly related to genetic susceptibility markers as well. These findings might guide us to understand the presence of SNPs in cytokine genes and serum concentrations among breast cancer patients and potentially in other cancers. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Evaluation of Serum Cytokines Levels and the Role of Cannabidiol Treatment in Animal Model of Asthma

    Directory of Open Access Journals (Sweden)

    Francieli Vuolo

    2015-01-01

    Full Text Available Asthma represents a public health problem and traditionally is classified as an atopic disease, where the allergen can induce clinical airway inflammation, bronchial hyperresponsiveness, and reversible obstruction of airways. Studies have demonstrated the presence of T-helper 2 lymphocytes in the lung of patients with asthma. These cells are involved in cytokine production that regulates immunoglobulin synthesis. Recognizing that T cell interaction with antigens/allergens is key to the development of inflammatory diseases, the aim of this study is to evaluate the anti-inflammatory potential of cannabidiol (CBD in this setting. Asthma was induced in 8-week-old Wistar rats by ovalbumin (OVA. In the last 2 days of OVA challenge animals received CBD (5 mg/kg, i.p. and were killed 24 hours after. The levels of IL-4, IL-5, IL-13, IL-6, IL-10, and TNF-α were determinate in the serum. CBD treatment was able to decrease the serum levels of all analyzed cytokines except for IL-10 levels. CBD seems to be a potential new drug to modulate inflammatory response in asthma.

  15. Evaluation of Serum Cytokines Levels and the Role of Cannabidiol Treatment in Animal Model of Asthma

    Science.gov (United States)

    Vuolo, Francieli; Petronilho, Fabricia; Sonai, Beatriz; Ritter, Cristiane; Hallak, Jaime E. C.; Zuardi, Antonio Waldo; Crippa, José A.; Dal-Pizzol, Felipe

    2015-01-01

    Asthma represents a public health problem and traditionally is classified as an atopic disease, where the allergen can induce clinical airway inflammation, bronchial hyperresponsiveness, and reversible obstruction of airways. Studies have demonstrated the presence of T-helper 2 lymphocytes in the lung of patients with asthma. These cells are involved in cytokine production that regulates immunoglobulin synthesis. Recognizing that T cell interaction with antigens/allergens is key to the development of inflammatory diseases, the aim of this study is to evaluate the anti-inflammatory potential of cannabidiol (CBD) in this setting. Asthma was induced in 8-week-old Wistar rats by ovalbumin (OVA). In the last 2 days of OVA challenge animals received CBD (5 mg/kg, i.p.) and were killed 24 hours after. The levels of IL-4, IL-5, IL-13, IL-6, IL-10, and TNF-α were determinate in the serum. CBD treatment was able to decrease the serum levels of all analyzed cytokines except for IL-10 levels. CBD seems to be a potential new drug to modulate inflammatory response in asthma. PMID:26101464

  16. Cytokine Pattern of T Lymphocytes in Acute Schistosomiasis mansoni Patients following Treated Praziquantel Therapy

    Science.gov (United States)

    Silveira-Lemos, Denise; Fernandes Costa-Silva, Matheus; Cardoso de Oliveira Silveira, Amanda; Azevedo Batista, Mauricio; Alves Oliveira-Fraga, Lúcia; Soares Silveira, Alda Maria; Barbosa Alvarez, Maria Carolina; Martins-Filho, Olindo Assis; Gazzinelli, Giovanni; Corrêa-Oliveira, Rodrigo; Teixeira-Carvalho, Andréa

    2013-01-01

    Acute schistosomiasis is associated with a primary exposure and is more commonly seen in nonimmune individuals traveling through endemic regions. In this study, we have focused on the cytokine profile of T lymphocytes evaluated in circulating leukocytes of acute Schistosomiasis mansoni-infected patients (ACT group) before and after praziquantel treatment (ACT-TR group). Our data demonstrated increased values of total leukocytes, eosinophils, and monocytes in both groups. Interestingly, we have observed that patients treated with praziquantel showed increased values of lymphocytes as compared with noninfected group (NI) or ACT groups. Furthermore, a decrease of neutrophils in ACT-TR was observed when compared to ACT group. Analyses of short-term in vitro whole blood stimulation demonstrated that, regardless of the presence of soluble Schistosoma mansoni eggs antigen (SEA), increased synthesis of IFN-γ and IL-4 by T-cells was observed in the ACT group. Analyses of cytokine profile in CD8 T cells demonstrated higher percentage of IFN-γ and IL-4 cells in both ACT and ACT-TR groups apart from increased percentage of IL-10 cells only in the ACT group. This study is the first one to point out the relevance of CD8 T lymphocytes in the immune response induced during the acute phase of schistosomiasis. PMID:23401741

  17. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  18. Effect of inflammatory cytokines on the adherence of tumor cells to endothelium in a murine model.

    Science.gov (United States)

    Bereta, M; Bereta, J; Cohen, S; Zaifert, K; Cohen, M C

    1991-09-01

    We have demonstrated that pretreatment of mouse brain microvascular endothelial cells (MBE) with tumor necrosis factor-alpha (TNF), IL-1, or LPS augmented the binding of P815 mastocytoma cells in vitro. The effect of these agents was dose and time dependent. PMA was able to mimic the influence of these factors to a limited degree. The effect of TNF on endothelium was accompanied by the appearance of changes in the expression of proteins isolated from endothelial cell membranes. The adherence of tumor cells to endothelium was not inhibited by RGD-containing peptides but could be decreased by preincubation of endothelium with high concentrations of FCS. Our data suggest that cytokines regulate the synthesis of endothelial adhesion proteins which may be involved in tumor cell adherence leading to metastasis. These results raise the possibility that cytokines may exert paradoxical effects in vivo, i.e., a cytotoxic effect that reduces tumor mass accompanied by a metastasis-enhancing effect that actually promotes dissemination of the remaining tumor cells. Definition of the molecular events involved in tumor cell-endothelial cell interactions may lead to strategies for minimizing the latter effect in therapeutic settings.

  19. Biomodulation of Inflammatory Cytokines Related to Oral Mucositis by Low-Level Laser Therapy.

    Science.gov (United States)

    Basso, Fernanda G; Pansani, Taisa N; Soares, Diana G; Scheffel, Débora L; Bagnato, Vanderlei S; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2015-01-01

    This study evaluated the effects of LLLT on the expression of inflammatory cytokines related to the development of oral mucositis by gingival fibroblasts. Primary gingival fibroblasts were seeded on 24-well plates (10(5) cells/well) for 24 h. Fresh serum-free culture medium (DMEM) was then added, and cells were placed in contact with LPS (Escherichia coli, 1 μg mL(-1)), followed by LLLT irradiation (LaserTABLE-InGaAsP diode prototype-780 nm, 25 mW) delivering 0, 0.5, 1.5 or 3 J cm(-2)². Cells without contact with LPS were also irradiated with the same energy densities. Gene expression of TNF-α, IL-1β, IL-6 and IL-8 was evaluated by Real-Time PCR, and protein synthesis of these cytokines was determined by enzyme-linked immunosorbent (ELISA) assay. Data were statistically analyzed by the Kruskal-Wallis test, complemented by the Mann-Whitney test (P mucositis by human gingival fibroblasts. © 2015 The American Society of Photobiology.

  20. Effects of Cultivated Wild Ginseng Herbal Acupuncture to the serum cytokine on Hepatic Metastatic Model using Colon26-L5 Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Byung Jun, Cho

    2006-02-01

    Full Text Available Objectives : This experiment was conducted to evaluate inhibitory effects against hepatic metastasis by cultivated wild ginseng Herbal Acupuncture. Methods : Colon26-L5 carcinoma cells were injected through hepatic portal vein to induce hepatic metastatic cancer. Afer treated cultivated wild ginseng Herbal Acupuncture and investigated various kinds of cytokine level using cytokine chip. Results : 1. Mice treated with cultivated wild ginseng Herbal Acupuncture reduced the level of IL-1α, IL-1β and TNF-α compared to the control group. 2. Mice treated with cultivated wild ginseng Herbal Acupuncture was not showed significant change in the level of IL-4, IL-10, IL-12 and INF-γ compared to the control group. 3. Observing the level of various kinds of cytokine, cultivated wild ginseng Herbal Acupuncture was suppressed pro-inflammatory cytokine. These findings indicate cultivated wild ginseng Herbal Acupuncture is possible to use the inflammatory disease and futher studies carry out for the explanation of anticancer mechanism.